| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Kernel timekeeping code and accessor functions. Based on code from |
| 4 | * timer.c, moved in commit 8524070b7982. |
| 5 | */ |
| 6 | #include <linux/timekeeper_internal.h> |
| 7 | #include <linux/module.h> |
| 8 | #include <linux/interrupt.h> |
| 9 | #include <linux/percpu.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/mm.h> |
| 12 | #include <linux/nmi.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/sched/loadavg.h> |
| 15 | #include <linux/sched/clock.h> |
| 16 | #include <linux/syscore_ops.h> |
| 17 | #include <linux/clocksource.h> |
| 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/time.h> |
| 20 | #include <linux/timex.h> |
| 21 | #include <linux/tick.h> |
| 22 | #include <linux/stop_machine.h> |
| 23 | #include <linux/pvclock_gtod.h> |
| 24 | #include <linux/compiler.h> |
| 25 | #include <linux/audit.h> |
| 26 | #include <linux/random.h> |
| 27 | |
| 28 | #include "tick-internal.h" |
| 29 | #include "ntp_internal.h" |
| 30 | #include "timekeeping_internal.h" |
| 31 | |
| 32 | #define TK_CLEAR_NTP (1 << 0) |
| 33 | #define TK_CLOCK_WAS_SET (1 << 1) |
| 34 | |
| 35 | #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) |
| 36 | |
| 37 | enum timekeeping_adv_mode { |
| 38 | /* Update timekeeper when a tick has passed */ |
| 39 | TK_ADV_TICK, |
| 40 | |
| 41 | /* Update timekeeper on a direct frequency change */ |
| 42 | TK_ADV_FREQ |
| 43 | }; |
| 44 | |
| 45 | /* |
| 46 | * The most important data for readout fits into a single 64 byte |
| 47 | * cache line. |
| 48 | */ |
| 49 | struct tk_data { |
| 50 | seqcount_raw_spinlock_t seq; |
| 51 | struct timekeeper timekeeper; |
| 52 | struct timekeeper shadow_timekeeper; |
| 53 | raw_spinlock_t lock; |
| 54 | } ____cacheline_aligned; |
| 55 | |
| 56 | static struct tk_data tk_core; |
| 57 | |
| 58 | /* flag for if timekeeping is suspended */ |
| 59 | int __read_mostly timekeeping_suspended; |
| 60 | |
| 61 | /** |
| 62 | * struct tk_fast - NMI safe timekeeper |
| 63 | * @seq: Sequence counter for protecting updates. The lowest bit |
| 64 | * is the index for the tk_read_base array |
| 65 | * @base: tk_read_base array. Access is indexed by the lowest bit of |
| 66 | * @seq. |
| 67 | * |
| 68 | * See @update_fast_timekeeper() below. |
| 69 | */ |
| 70 | struct tk_fast { |
| 71 | seqcount_latch_t seq; |
| 72 | struct tk_read_base base[2]; |
| 73 | }; |
| 74 | |
| 75 | /* Suspend-time cycles value for halted fast timekeeper. */ |
| 76 | static u64 cycles_at_suspend; |
| 77 | |
| 78 | static u64 dummy_clock_read(struct clocksource *cs) |
| 79 | { |
| 80 | if (timekeeping_suspended) |
| 81 | return cycles_at_suspend; |
| 82 | return local_clock(); |
| 83 | } |
| 84 | |
| 85 | static struct clocksource dummy_clock = { |
| 86 | .read = dummy_clock_read, |
| 87 | }; |
| 88 | |
| 89 | /* |
| 90 | * Boot time initialization which allows local_clock() to be utilized |
| 91 | * during early boot when clocksources are not available. local_clock() |
| 92 | * returns nanoseconds already so no conversion is required, hence mult=1 |
| 93 | * and shift=0. When the first proper clocksource is installed then |
| 94 | * the fast time keepers are updated with the correct values. |
| 95 | */ |
| 96 | #define FAST_TK_INIT \ |
| 97 | { \ |
| 98 | .clock = &dummy_clock, \ |
| 99 | .mask = CLOCKSOURCE_MASK(64), \ |
| 100 | .mult = 1, \ |
| 101 | .shift = 0, \ |
| 102 | } |
| 103 | |
| 104 | static struct tk_fast tk_fast_mono ____cacheline_aligned = { |
| 105 | .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), |
| 106 | .base[0] = FAST_TK_INIT, |
| 107 | .base[1] = FAST_TK_INIT, |
| 108 | }; |
| 109 | |
| 110 | static struct tk_fast tk_fast_raw ____cacheline_aligned = { |
| 111 | .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), |
| 112 | .base[0] = FAST_TK_INIT, |
| 113 | .base[1] = FAST_TK_INIT, |
| 114 | }; |
| 115 | |
| 116 | unsigned long timekeeper_lock_irqsave(void) |
| 117 | { |
| 118 | unsigned long flags; |
| 119 | |
| 120 | raw_spin_lock_irqsave(&tk_core.lock, flags); |
| 121 | return flags; |
| 122 | } |
| 123 | |
| 124 | void timekeeper_unlock_irqrestore(unsigned long flags) |
| 125 | { |
| 126 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Multigrain timestamps require tracking the latest fine-grained timestamp |
| 131 | * that has been issued, and never returning a coarse-grained timestamp that is |
| 132 | * earlier than that value. |
| 133 | * |
| 134 | * mg_floor represents the latest fine-grained time that has been handed out as |
| 135 | * a file timestamp on the system. This is tracked as a monotonic ktime_t, and |
| 136 | * converted to a realtime clock value on an as-needed basis. |
| 137 | * |
| 138 | * Maintaining mg_floor ensures the multigrain interfaces never issue a |
| 139 | * timestamp earlier than one that has been previously issued. |
| 140 | * |
| 141 | * The exception to this rule is when there is a backward realtime clock jump. If |
| 142 | * such an event occurs, a timestamp can appear to be earlier than a previous one. |
| 143 | */ |
| 144 | static __cacheline_aligned_in_smp atomic64_t mg_floor; |
| 145 | |
| 146 | static inline void tk_normalize_xtime(struct timekeeper *tk) |
| 147 | { |
| 148 | while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { |
| 149 | tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; |
| 150 | tk->xtime_sec++; |
| 151 | } |
| 152 | while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { |
| 153 | tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; |
| 154 | tk->raw_sec++; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | static inline struct timespec64 tk_xtime(const struct timekeeper *tk) |
| 159 | { |
| 160 | struct timespec64 ts; |
| 161 | |
| 162 | ts.tv_sec = tk->xtime_sec; |
| 163 | ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); |
| 164 | return ts; |
| 165 | } |
| 166 | |
| 167 | static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) |
| 168 | { |
| 169 | struct timespec64 ts; |
| 170 | |
| 171 | ts.tv_sec = tk->xtime_sec; |
| 172 | ts.tv_nsec = tk->coarse_nsec; |
| 173 | return ts; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Update the nanoseconds part for the coarse time keepers. They can't rely |
| 178 | * on xtime_nsec because xtime_nsec could be adjusted by a small negative |
| 179 | * amount when the multiplication factor of the clock is adjusted, which |
| 180 | * could cause the coarse clocks to go slightly backwards. See |
| 181 | * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse |
| 182 | * clockids which only is updated when the clock has been set or we have |
| 183 | * accumulated time. |
| 184 | */ |
| 185 | static inline void tk_update_coarse_nsecs(struct timekeeper *tk) |
| 186 | { |
| 187 | tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; |
| 188 | } |
| 189 | |
| 190 | static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) |
| 191 | { |
| 192 | tk->xtime_sec = ts->tv_sec; |
| 193 | tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; |
| 194 | tk_update_coarse_nsecs(tk); |
| 195 | } |
| 196 | |
| 197 | static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) |
| 198 | { |
| 199 | tk->xtime_sec += ts->tv_sec; |
| 200 | tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; |
| 201 | tk_normalize_xtime(tk); |
| 202 | tk_update_coarse_nsecs(tk); |
| 203 | } |
| 204 | |
| 205 | static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) |
| 206 | { |
| 207 | struct timespec64 tmp; |
| 208 | |
| 209 | /* |
| 210 | * Verify consistency of: offset_real = -wall_to_monotonic |
| 211 | * before modifying anything |
| 212 | */ |
| 213 | set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, |
| 214 | -tk->wall_to_monotonic.tv_nsec); |
| 215 | WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); |
| 216 | tk->wall_to_monotonic = wtm; |
| 217 | set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); |
| 218 | /* Paired with READ_ONCE() in ktime_mono_to_any() */ |
| 219 | WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); |
| 220 | WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); |
| 221 | } |
| 222 | |
| 223 | static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) |
| 224 | { |
| 225 | /* Paired with READ_ONCE() in ktime_mono_to_any() */ |
| 226 | WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); |
| 227 | /* |
| 228 | * Timespec representation for VDSO update to avoid 64bit division |
| 229 | * on every update. |
| 230 | */ |
| 231 | tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * tk_clock_read - atomic clocksource read() helper |
| 236 | * |
| 237 | * This helper is necessary to use in the read paths because, while the |
| 238 | * seqcount ensures we don't return a bad value while structures are updated, |
| 239 | * it doesn't protect from potential crashes. There is the possibility that |
| 240 | * the tkr's clocksource may change between the read reference, and the |
| 241 | * clock reference passed to the read function. This can cause crashes if |
| 242 | * the wrong clocksource is passed to the wrong read function. |
| 243 | * This isn't necessary to use when holding the tk_core.lock or doing |
| 244 | * a read of the fast-timekeeper tkrs (which is protected by its own locking |
| 245 | * and update logic). |
| 246 | */ |
| 247 | static inline u64 tk_clock_read(const struct tk_read_base *tkr) |
| 248 | { |
| 249 | struct clocksource *clock = READ_ONCE(tkr->clock); |
| 250 | |
| 251 | return clock->read(clock); |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * tk_setup_internals - Set up internals to use clocksource clock. |
| 256 | * |
| 257 | * @tk: The target timekeeper to setup. |
| 258 | * @clock: Pointer to clocksource. |
| 259 | * |
| 260 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment |
| 261 | * pair and interval request. |
| 262 | * |
| 263 | * Unless you're the timekeeping code, you should not be using this! |
| 264 | */ |
| 265 | static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) |
| 266 | { |
| 267 | u64 interval; |
| 268 | u64 tmp, ntpinterval; |
| 269 | struct clocksource *old_clock; |
| 270 | |
| 271 | ++tk->cs_was_changed_seq; |
| 272 | old_clock = tk->tkr_mono.clock; |
| 273 | tk->tkr_mono.clock = clock; |
| 274 | tk->tkr_mono.mask = clock->mask; |
| 275 | tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); |
| 276 | |
| 277 | tk->tkr_raw.clock = clock; |
| 278 | tk->tkr_raw.mask = clock->mask; |
| 279 | tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; |
| 280 | |
| 281 | /* Do the ns -> cycle conversion first, using original mult */ |
| 282 | tmp = NTP_INTERVAL_LENGTH; |
| 283 | tmp <<= clock->shift; |
| 284 | ntpinterval = tmp; |
| 285 | tmp += clock->mult/2; |
| 286 | do_div(tmp, clock->mult); |
| 287 | if (tmp == 0) |
| 288 | tmp = 1; |
| 289 | |
| 290 | interval = (u64) tmp; |
| 291 | tk->cycle_interval = interval; |
| 292 | |
| 293 | /* Go back from cycles -> shifted ns */ |
| 294 | tk->xtime_interval = interval * clock->mult; |
| 295 | tk->xtime_remainder = ntpinterval - tk->xtime_interval; |
| 296 | tk->raw_interval = interval * clock->mult; |
| 297 | |
| 298 | /* if changing clocks, convert xtime_nsec shift units */ |
| 299 | if (old_clock) { |
| 300 | int shift_change = clock->shift - old_clock->shift; |
| 301 | if (shift_change < 0) { |
| 302 | tk->tkr_mono.xtime_nsec >>= -shift_change; |
| 303 | tk->tkr_raw.xtime_nsec >>= -shift_change; |
| 304 | } else { |
| 305 | tk->tkr_mono.xtime_nsec <<= shift_change; |
| 306 | tk->tkr_raw.xtime_nsec <<= shift_change; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | tk->tkr_mono.shift = clock->shift; |
| 311 | tk->tkr_raw.shift = clock->shift; |
| 312 | |
| 313 | tk->ntp_error = 0; |
| 314 | tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; |
| 315 | tk->ntp_tick = ntpinterval << tk->ntp_error_shift; |
| 316 | |
| 317 | /* |
| 318 | * The timekeeper keeps its own mult values for the currently |
| 319 | * active clocksource. These value will be adjusted via NTP |
| 320 | * to counteract clock drifting. |
| 321 | */ |
| 322 | tk->tkr_mono.mult = clock->mult; |
| 323 | tk->tkr_raw.mult = clock->mult; |
| 324 | tk->ntp_err_mult = 0; |
| 325 | tk->skip_second_overflow = 0; |
| 326 | } |
| 327 | |
| 328 | /* Timekeeper helper functions. */ |
| 329 | static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) |
| 330 | { |
| 331 | return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); |
| 332 | } |
| 333 | |
| 334 | static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) |
| 335 | { |
| 336 | /* Calculate the delta since the last update_wall_time() */ |
| 337 | u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; |
| 338 | |
| 339 | /* |
| 340 | * This detects both negative motion and the case where the delta |
| 341 | * overflows the multiplication with tkr->mult. |
| 342 | */ |
| 343 | if (unlikely(delta > tkr->clock->max_cycles)) { |
| 344 | /* |
| 345 | * Handle clocksource inconsistency between CPUs to prevent |
| 346 | * time from going backwards by checking for the MSB of the |
| 347 | * mask being set in the delta. |
| 348 | */ |
| 349 | if (delta & ~(mask >> 1)) |
| 350 | return tkr->xtime_nsec >> tkr->shift; |
| 351 | |
| 352 | return delta_to_ns_safe(tkr, delta); |
| 353 | } |
| 354 | |
| 355 | return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; |
| 356 | } |
| 357 | |
| 358 | static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) |
| 359 | { |
| 360 | return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); |
| 361 | } |
| 362 | |
| 363 | /** |
| 364 | * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. |
| 365 | * @tkr: Timekeeping readout base from which we take the update |
| 366 | * @tkf: Pointer to NMI safe timekeeper |
| 367 | * |
| 368 | * We want to use this from any context including NMI and tracing / |
| 369 | * instrumenting the timekeeping code itself. |
| 370 | * |
| 371 | * Employ the latch technique; see @write_seqcount_latch. |
| 372 | * |
| 373 | * So if a NMI hits the update of base[0] then it will use base[1] |
| 374 | * which is still consistent. In the worst case this can result is a |
| 375 | * slightly wrong timestamp (a few nanoseconds). See |
| 376 | * @ktime_get_mono_fast_ns. |
| 377 | */ |
| 378 | static void update_fast_timekeeper(const struct tk_read_base *tkr, |
| 379 | struct tk_fast *tkf) |
| 380 | { |
| 381 | struct tk_read_base *base = tkf->base; |
| 382 | |
| 383 | /* Force readers off to base[1] */ |
| 384 | write_seqcount_latch_begin(&tkf->seq); |
| 385 | |
| 386 | /* Update base[0] */ |
| 387 | memcpy(base, tkr, sizeof(*base)); |
| 388 | |
| 389 | /* Force readers back to base[0] */ |
| 390 | write_seqcount_latch(&tkf->seq); |
| 391 | |
| 392 | /* Update base[1] */ |
| 393 | memcpy(base + 1, base, sizeof(*base)); |
| 394 | |
| 395 | write_seqcount_latch_end(&tkf->seq); |
| 396 | } |
| 397 | |
| 398 | static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) |
| 399 | { |
| 400 | struct tk_read_base *tkr; |
| 401 | unsigned int seq; |
| 402 | u64 now; |
| 403 | |
| 404 | do { |
| 405 | seq = read_seqcount_latch(&tkf->seq); |
| 406 | tkr = tkf->base + (seq & 0x01); |
| 407 | now = ktime_to_ns(tkr->base); |
| 408 | now += timekeeping_get_ns(tkr); |
| 409 | } while (read_seqcount_latch_retry(&tkf->seq, seq)); |
| 410 | |
| 411 | return now; |
| 412 | } |
| 413 | |
| 414 | /** |
| 415 | * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic |
| 416 | * |
| 417 | * This timestamp is not guaranteed to be monotonic across an update. |
| 418 | * The timestamp is calculated by: |
| 419 | * |
| 420 | * now = base_mono + clock_delta * slope |
| 421 | * |
| 422 | * So if the update lowers the slope, readers who are forced to the |
| 423 | * not yet updated second array are still using the old steeper slope. |
| 424 | * |
| 425 | * tmono |
| 426 | * ^ |
| 427 | * | o n |
| 428 | * | o n |
| 429 | * | u |
| 430 | * | o |
| 431 | * |o |
| 432 | * |12345678---> reader order |
| 433 | * |
| 434 | * o = old slope |
| 435 | * u = update |
| 436 | * n = new slope |
| 437 | * |
| 438 | * So reader 6 will observe time going backwards versus reader 5. |
| 439 | * |
| 440 | * While other CPUs are likely to be able to observe that, the only way |
| 441 | * for a CPU local observation is when an NMI hits in the middle of |
| 442 | * the update. Timestamps taken from that NMI context might be ahead |
| 443 | * of the following timestamps. Callers need to be aware of that and |
| 444 | * deal with it. |
| 445 | */ |
| 446 | u64 notrace ktime_get_mono_fast_ns(void) |
| 447 | { |
| 448 | return __ktime_get_fast_ns(&tk_fast_mono); |
| 449 | } |
| 450 | EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); |
| 451 | |
| 452 | /** |
| 453 | * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw |
| 454 | * |
| 455 | * Contrary to ktime_get_mono_fast_ns() this is always correct because the |
| 456 | * conversion factor is not affected by NTP/PTP correction. |
| 457 | */ |
| 458 | u64 notrace ktime_get_raw_fast_ns(void) |
| 459 | { |
| 460 | return __ktime_get_fast_ns(&tk_fast_raw); |
| 461 | } |
| 462 | EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); |
| 463 | |
| 464 | /** |
| 465 | * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. |
| 466 | * |
| 467 | * To keep it NMI safe since we're accessing from tracing, we're not using a |
| 468 | * separate timekeeper with updates to monotonic clock and boot offset |
| 469 | * protected with seqcounts. This has the following minor side effects: |
| 470 | * |
| 471 | * (1) Its possible that a timestamp be taken after the boot offset is updated |
| 472 | * but before the timekeeper is updated. If this happens, the new boot offset |
| 473 | * is added to the old timekeeping making the clock appear to update slightly |
| 474 | * earlier: |
| 475 | * CPU 0 CPU 1 |
| 476 | * timekeeping_inject_sleeptime64() |
| 477 | * __timekeeping_inject_sleeptime(tk, delta); |
| 478 | * timestamp(); |
| 479 | * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); |
| 480 | * |
| 481 | * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be |
| 482 | * partially updated. Since the tk->offs_boot update is a rare event, this |
| 483 | * should be a rare occurrence which postprocessing should be able to handle. |
| 484 | * |
| 485 | * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() |
| 486 | * apply as well. |
| 487 | */ |
| 488 | u64 notrace ktime_get_boot_fast_ns(void) |
| 489 | { |
| 490 | struct timekeeper *tk = &tk_core.timekeeper; |
| 491 | |
| 492 | return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); |
| 493 | } |
| 494 | EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); |
| 495 | |
| 496 | /** |
| 497 | * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. |
| 498 | * |
| 499 | * The same limitations as described for ktime_get_boot_fast_ns() apply. The |
| 500 | * mono time and the TAI offset are not read atomically which may yield wrong |
| 501 | * readouts. However, an update of the TAI offset is an rare event e.g., caused |
| 502 | * by settime or adjtimex with an offset. The user of this function has to deal |
| 503 | * with the possibility of wrong timestamps in post processing. |
| 504 | */ |
| 505 | u64 notrace ktime_get_tai_fast_ns(void) |
| 506 | { |
| 507 | struct timekeeper *tk = &tk_core.timekeeper; |
| 508 | |
| 509 | return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); |
| 510 | } |
| 511 | EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); |
| 512 | |
| 513 | /** |
| 514 | * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. |
| 515 | * |
| 516 | * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. |
| 517 | */ |
| 518 | u64 ktime_get_real_fast_ns(void) |
| 519 | { |
| 520 | struct tk_fast *tkf = &tk_fast_mono; |
| 521 | struct tk_read_base *tkr; |
| 522 | u64 baser, delta; |
| 523 | unsigned int seq; |
| 524 | |
| 525 | do { |
| 526 | seq = raw_read_seqcount_latch(&tkf->seq); |
| 527 | tkr = tkf->base + (seq & 0x01); |
| 528 | baser = ktime_to_ns(tkr->base_real); |
| 529 | delta = timekeeping_get_ns(tkr); |
| 530 | } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); |
| 531 | |
| 532 | return baser + delta; |
| 533 | } |
| 534 | EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); |
| 535 | |
| 536 | /** |
| 537 | * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. |
| 538 | * @tk: Timekeeper to snapshot. |
| 539 | * |
| 540 | * It generally is unsafe to access the clocksource after timekeeping has been |
| 541 | * suspended, so take a snapshot of the readout base of @tk and use it as the |
| 542 | * fast timekeeper's readout base while suspended. It will return the same |
| 543 | * number of cycles every time until timekeeping is resumed at which time the |
| 544 | * proper readout base for the fast timekeeper will be restored automatically. |
| 545 | */ |
| 546 | static void halt_fast_timekeeper(const struct timekeeper *tk) |
| 547 | { |
| 548 | static struct tk_read_base tkr_dummy; |
| 549 | const struct tk_read_base *tkr = &tk->tkr_mono; |
| 550 | |
| 551 | memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); |
| 552 | cycles_at_suspend = tk_clock_read(tkr); |
| 553 | tkr_dummy.clock = &dummy_clock; |
| 554 | tkr_dummy.base_real = tkr->base + tk->offs_real; |
| 555 | update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); |
| 556 | |
| 557 | tkr = &tk->tkr_raw; |
| 558 | memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); |
| 559 | tkr_dummy.clock = &dummy_clock; |
| 560 | update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); |
| 561 | } |
| 562 | |
| 563 | static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); |
| 564 | |
| 565 | static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) |
| 566 | { |
| 567 | raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); |
| 568 | } |
| 569 | |
| 570 | /** |
| 571 | * pvclock_gtod_register_notifier - register a pvclock timedata update listener |
| 572 | * @nb: Pointer to the notifier block to register |
| 573 | */ |
| 574 | int pvclock_gtod_register_notifier(struct notifier_block *nb) |
| 575 | { |
| 576 | struct timekeeper *tk = &tk_core.timekeeper; |
| 577 | int ret; |
| 578 | |
| 579 | guard(raw_spinlock_irqsave)(&tk_core.lock); |
| 580 | ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); |
| 581 | update_pvclock_gtod(tk, true); |
| 582 | |
| 583 | return ret; |
| 584 | } |
| 585 | EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); |
| 586 | |
| 587 | /** |
| 588 | * pvclock_gtod_unregister_notifier - unregister a pvclock |
| 589 | * timedata update listener |
| 590 | * @nb: Pointer to the notifier block to unregister |
| 591 | */ |
| 592 | int pvclock_gtod_unregister_notifier(struct notifier_block *nb) |
| 593 | { |
| 594 | guard(raw_spinlock_irqsave)(&tk_core.lock); |
| 595 | return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); |
| 596 | } |
| 597 | EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); |
| 598 | |
| 599 | /* |
| 600 | * tk_update_leap_state - helper to update the next_leap_ktime |
| 601 | */ |
| 602 | static inline void tk_update_leap_state(struct timekeeper *tk) |
| 603 | { |
| 604 | tk->next_leap_ktime = ntp_get_next_leap(); |
| 605 | if (tk->next_leap_ktime != KTIME_MAX) |
| 606 | /* Convert to monotonic time */ |
| 607 | tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * Leap state update for both shadow and the real timekeeper |
| 612 | * Separate to spare a full memcpy() of the timekeeper. |
| 613 | */ |
| 614 | static void tk_update_leap_state_all(struct tk_data *tkd) |
| 615 | { |
| 616 | write_seqcount_begin(&tkd->seq); |
| 617 | tk_update_leap_state(&tkd->shadow_timekeeper); |
| 618 | tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; |
| 619 | write_seqcount_end(&tkd->seq); |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * Update the ktime_t based scalar nsec members of the timekeeper |
| 624 | */ |
| 625 | static inline void tk_update_ktime_data(struct timekeeper *tk) |
| 626 | { |
| 627 | u64 seconds; |
| 628 | u32 nsec; |
| 629 | |
| 630 | /* |
| 631 | * The xtime based monotonic readout is: |
| 632 | * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); |
| 633 | * The ktime based monotonic readout is: |
| 634 | * nsec = base_mono + now(); |
| 635 | * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec |
| 636 | */ |
| 637 | seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); |
| 638 | nsec = (u32) tk->wall_to_monotonic.tv_nsec; |
| 639 | tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); |
| 640 | |
| 641 | /* |
| 642 | * The sum of the nanoseconds portions of xtime and |
| 643 | * wall_to_monotonic can be greater/equal one second. Take |
| 644 | * this into account before updating tk->ktime_sec. |
| 645 | */ |
| 646 | nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); |
| 647 | if (nsec >= NSEC_PER_SEC) |
| 648 | seconds++; |
| 649 | tk->ktime_sec = seconds; |
| 650 | |
| 651 | /* Update the monotonic raw base */ |
| 652 | tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Restore the shadow timekeeper from the real timekeeper. |
| 657 | */ |
| 658 | static void timekeeping_restore_shadow(struct tk_data *tkd) |
| 659 | { |
| 660 | lockdep_assert_held(&tkd->lock); |
| 661 | memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); |
| 662 | } |
| 663 | |
| 664 | static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) |
| 665 | { |
| 666 | struct timekeeper *tk = &tk_core.shadow_timekeeper; |
| 667 | |
| 668 | lockdep_assert_held(&tkd->lock); |
| 669 | |
| 670 | /* |
| 671 | * Block out readers before running the updates below because that |
| 672 | * updates VDSO and other time related infrastructure. Not blocking |
| 673 | * the readers might let a reader see time going backwards when |
| 674 | * reading from the VDSO after the VDSO update and then reading in |
| 675 | * the kernel from the timekeeper before that got updated. |
| 676 | */ |
| 677 | write_seqcount_begin(&tkd->seq); |
| 678 | |
| 679 | if (action & TK_CLEAR_NTP) { |
| 680 | tk->ntp_error = 0; |
| 681 | ntp_clear(); |
| 682 | } |
| 683 | |
| 684 | tk_update_leap_state(tk); |
| 685 | tk_update_ktime_data(tk); |
| 686 | |
| 687 | update_vsyscall(tk); |
| 688 | update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); |
| 689 | |
| 690 | tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; |
| 691 | update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); |
| 692 | update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); |
| 693 | |
| 694 | if (action & TK_CLOCK_WAS_SET) |
| 695 | tk->clock_was_set_seq++; |
| 696 | |
| 697 | /* |
| 698 | * Update the real timekeeper. |
| 699 | * |
| 700 | * We could avoid this memcpy() by switching pointers, but that has |
| 701 | * the downside that the reader side does not longer benefit from |
| 702 | * the cacheline optimized data layout of the timekeeper and requires |
| 703 | * another indirection. |
| 704 | */ |
| 705 | memcpy(&tkd->timekeeper, tk, sizeof(*tk)); |
| 706 | write_seqcount_end(&tkd->seq); |
| 707 | } |
| 708 | |
| 709 | /** |
| 710 | * timekeeping_forward_now - update clock to the current time |
| 711 | * @tk: Pointer to the timekeeper to update |
| 712 | * |
| 713 | * Forward the current clock to update its state since the last call to |
| 714 | * update_wall_time(). This is useful before significant clock changes, |
| 715 | * as it avoids having to deal with this time offset explicitly. |
| 716 | */ |
| 717 | static void timekeeping_forward_now(struct timekeeper *tk) |
| 718 | { |
| 719 | u64 cycle_now, delta; |
| 720 | |
| 721 | cycle_now = tk_clock_read(&tk->tkr_mono); |
| 722 | delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, |
| 723 | tk->tkr_mono.clock->max_raw_delta); |
| 724 | tk->tkr_mono.cycle_last = cycle_now; |
| 725 | tk->tkr_raw.cycle_last = cycle_now; |
| 726 | |
| 727 | while (delta > 0) { |
| 728 | u64 max = tk->tkr_mono.clock->max_cycles; |
| 729 | u64 incr = delta < max ? delta : max; |
| 730 | |
| 731 | tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; |
| 732 | tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; |
| 733 | tk_normalize_xtime(tk); |
| 734 | delta -= incr; |
| 735 | } |
| 736 | tk_update_coarse_nsecs(tk); |
| 737 | } |
| 738 | |
| 739 | /** |
| 740 | * ktime_get_real_ts64 - Returns the time of day in a timespec64. |
| 741 | * @ts: pointer to the timespec to be set |
| 742 | * |
| 743 | * Returns the time of day in a timespec64 (WARN if suspended). |
| 744 | */ |
| 745 | void ktime_get_real_ts64(struct timespec64 *ts) |
| 746 | { |
| 747 | struct timekeeper *tk = &tk_core.timekeeper; |
| 748 | unsigned int seq; |
| 749 | u64 nsecs; |
| 750 | |
| 751 | WARN_ON(timekeeping_suspended); |
| 752 | |
| 753 | do { |
| 754 | seq = read_seqcount_begin(&tk_core.seq); |
| 755 | |
| 756 | ts->tv_sec = tk->xtime_sec; |
| 757 | nsecs = timekeeping_get_ns(&tk->tkr_mono); |
| 758 | |
| 759 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 760 | |
| 761 | ts->tv_nsec = 0; |
| 762 | timespec64_add_ns(ts, nsecs); |
| 763 | } |
| 764 | EXPORT_SYMBOL(ktime_get_real_ts64); |
| 765 | |
| 766 | ktime_t ktime_get(void) |
| 767 | { |
| 768 | struct timekeeper *tk = &tk_core.timekeeper; |
| 769 | unsigned int seq; |
| 770 | ktime_t base; |
| 771 | u64 nsecs; |
| 772 | |
| 773 | WARN_ON(timekeeping_suspended); |
| 774 | |
| 775 | do { |
| 776 | seq = read_seqcount_begin(&tk_core.seq); |
| 777 | base = tk->tkr_mono.base; |
| 778 | nsecs = timekeeping_get_ns(&tk->tkr_mono); |
| 779 | |
| 780 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 781 | |
| 782 | return ktime_add_ns(base, nsecs); |
| 783 | } |
| 784 | EXPORT_SYMBOL_GPL(ktime_get); |
| 785 | |
| 786 | u32 ktime_get_resolution_ns(void) |
| 787 | { |
| 788 | struct timekeeper *tk = &tk_core.timekeeper; |
| 789 | unsigned int seq; |
| 790 | u32 nsecs; |
| 791 | |
| 792 | WARN_ON(timekeeping_suspended); |
| 793 | |
| 794 | do { |
| 795 | seq = read_seqcount_begin(&tk_core.seq); |
| 796 | nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; |
| 797 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 798 | |
| 799 | return nsecs; |
| 800 | } |
| 801 | EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); |
| 802 | |
| 803 | static ktime_t *offsets[TK_OFFS_MAX] = { |
| 804 | [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, |
| 805 | [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, |
| 806 | [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, |
| 807 | }; |
| 808 | |
| 809 | ktime_t ktime_get_with_offset(enum tk_offsets offs) |
| 810 | { |
| 811 | struct timekeeper *tk = &tk_core.timekeeper; |
| 812 | unsigned int seq; |
| 813 | ktime_t base, *offset = offsets[offs]; |
| 814 | u64 nsecs; |
| 815 | |
| 816 | WARN_ON(timekeeping_suspended); |
| 817 | |
| 818 | do { |
| 819 | seq = read_seqcount_begin(&tk_core.seq); |
| 820 | base = ktime_add(tk->tkr_mono.base, *offset); |
| 821 | nsecs = timekeeping_get_ns(&tk->tkr_mono); |
| 822 | |
| 823 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 824 | |
| 825 | return ktime_add_ns(base, nsecs); |
| 826 | |
| 827 | } |
| 828 | EXPORT_SYMBOL_GPL(ktime_get_with_offset); |
| 829 | |
| 830 | ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) |
| 831 | { |
| 832 | struct timekeeper *tk = &tk_core.timekeeper; |
| 833 | ktime_t base, *offset = offsets[offs]; |
| 834 | unsigned int seq; |
| 835 | u64 nsecs; |
| 836 | |
| 837 | WARN_ON(timekeeping_suspended); |
| 838 | |
| 839 | do { |
| 840 | seq = read_seqcount_begin(&tk_core.seq); |
| 841 | base = ktime_add(tk->tkr_mono.base, *offset); |
| 842 | nsecs = tk->coarse_nsec; |
| 843 | |
| 844 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 845 | |
| 846 | return ktime_add_ns(base, nsecs); |
| 847 | } |
| 848 | EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); |
| 849 | |
| 850 | /** |
| 851 | * ktime_mono_to_any() - convert monotonic time to any other time |
| 852 | * @tmono: time to convert. |
| 853 | * @offs: which offset to use |
| 854 | */ |
| 855 | ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) |
| 856 | { |
| 857 | ktime_t *offset = offsets[offs]; |
| 858 | unsigned int seq; |
| 859 | ktime_t tconv; |
| 860 | |
| 861 | if (IS_ENABLED(CONFIG_64BIT)) { |
| 862 | /* |
| 863 | * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and |
| 864 | * tk_update_sleep_time(). |
| 865 | */ |
| 866 | return ktime_add(tmono, READ_ONCE(*offset)); |
| 867 | } |
| 868 | |
| 869 | do { |
| 870 | seq = read_seqcount_begin(&tk_core.seq); |
| 871 | tconv = ktime_add(tmono, *offset); |
| 872 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 873 | |
| 874 | return tconv; |
| 875 | } |
| 876 | EXPORT_SYMBOL_GPL(ktime_mono_to_any); |
| 877 | |
| 878 | /** |
| 879 | * ktime_get_raw - Returns the raw monotonic time in ktime_t format |
| 880 | */ |
| 881 | ktime_t ktime_get_raw(void) |
| 882 | { |
| 883 | struct timekeeper *tk = &tk_core.timekeeper; |
| 884 | unsigned int seq; |
| 885 | ktime_t base; |
| 886 | u64 nsecs; |
| 887 | |
| 888 | do { |
| 889 | seq = read_seqcount_begin(&tk_core.seq); |
| 890 | base = tk->tkr_raw.base; |
| 891 | nsecs = timekeeping_get_ns(&tk->tkr_raw); |
| 892 | |
| 893 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 894 | |
| 895 | return ktime_add_ns(base, nsecs); |
| 896 | } |
| 897 | EXPORT_SYMBOL_GPL(ktime_get_raw); |
| 898 | |
| 899 | /** |
| 900 | * ktime_get_ts64 - get the monotonic clock in timespec64 format |
| 901 | * @ts: pointer to timespec variable |
| 902 | * |
| 903 | * The function calculates the monotonic clock from the realtime |
| 904 | * clock and the wall_to_monotonic offset and stores the result |
| 905 | * in normalized timespec64 format in the variable pointed to by @ts. |
| 906 | */ |
| 907 | void ktime_get_ts64(struct timespec64 *ts) |
| 908 | { |
| 909 | struct timekeeper *tk = &tk_core.timekeeper; |
| 910 | struct timespec64 tomono; |
| 911 | unsigned int seq; |
| 912 | u64 nsec; |
| 913 | |
| 914 | WARN_ON(timekeeping_suspended); |
| 915 | |
| 916 | do { |
| 917 | seq = read_seqcount_begin(&tk_core.seq); |
| 918 | ts->tv_sec = tk->xtime_sec; |
| 919 | nsec = timekeeping_get_ns(&tk->tkr_mono); |
| 920 | tomono = tk->wall_to_monotonic; |
| 921 | |
| 922 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 923 | |
| 924 | ts->tv_sec += tomono.tv_sec; |
| 925 | ts->tv_nsec = 0; |
| 926 | timespec64_add_ns(ts, nsec + tomono.tv_nsec); |
| 927 | } |
| 928 | EXPORT_SYMBOL_GPL(ktime_get_ts64); |
| 929 | |
| 930 | /** |
| 931 | * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC |
| 932 | * |
| 933 | * Returns the seconds portion of CLOCK_MONOTONIC with a single non |
| 934 | * serialized read. tk->ktime_sec is of type 'unsigned long' so this |
| 935 | * works on both 32 and 64 bit systems. On 32 bit systems the readout |
| 936 | * covers ~136 years of uptime which should be enough to prevent |
| 937 | * premature wrap arounds. |
| 938 | */ |
| 939 | time64_t ktime_get_seconds(void) |
| 940 | { |
| 941 | struct timekeeper *tk = &tk_core.timekeeper; |
| 942 | |
| 943 | WARN_ON(timekeeping_suspended); |
| 944 | return tk->ktime_sec; |
| 945 | } |
| 946 | EXPORT_SYMBOL_GPL(ktime_get_seconds); |
| 947 | |
| 948 | /** |
| 949 | * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME |
| 950 | * |
| 951 | * Returns the wall clock seconds since 1970. |
| 952 | * |
| 953 | * For 64bit systems the fast access to tk->xtime_sec is preserved. On |
| 954 | * 32bit systems the access must be protected with the sequence |
| 955 | * counter to provide "atomic" access to the 64bit tk->xtime_sec |
| 956 | * value. |
| 957 | */ |
| 958 | time64_t ktime_get_real_seconds(void) |
| 959 | { |
| 960 | struct timekeeper *tk = &tk_core.timekeeper; |
| 961 | time64_t seconds; |
| 962 | unsigned int seq; |
| 963 | |
| 964 | if (IS_ENABLED(CONFIG_64BIT)) |
| 965 | return tk->xtime_sec; |
| 966 | |
| 967 | do { |
| 968 | seq = read_seqcount_begin(&tk_core.seq); |
| 969 | seconds = tk->xtime_sec; |
| 970 | |
| 971 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 972 | |
| 973 | return seconds; |
| 974 | } |
| 975 | EXPORT_SYMBOL_GPL(ktime_get_real_seconds); |
| 976 | |
| 977 | /** |
| 978 | * __ktime_get_real_seconds - The same as ktime_get_real_seconds |
| 979 | * but without the sequence counter protect. This internal function |
| 980 | * is called just when timekeeping lock is already held. |
| 981 | */ |
| 982 | noinstr time64_t __ktime_get_real_seconds(void) |
| 983 | { |
| 984 | struct timekeeper *tk = &tk_core.timekeeper; |
| 985 | |
| 986 | return tk->xtime_sec; |
| 987 | } |
| 988 | |
| 989 | /** |
| 990 | * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter |
| 991 | * @systime_snapshot: pointer to struct receiving the system time snapshot |
| 992 | */ |
| 993 | void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) |
| 994 | { |
| 995 | struct timekeeper *tk = &tk_core.timekeeper; |
| 996 | unsigned int seq; |
| 997 | ktime_t base_raw; |
| 998 | ktime_t base_real; |
| 999 | ktime_t base_boot; |
| 1000 | u64 nsec_raw; |
| 1001 | u64 nsec_real; |
| 1002 | u64 now; |
| 1003 | |
| 1004 | WARN_ON_ONCE(timekeeping_suspended); |
| 1005 | |
| 1006 | do { |
| 1007 | seq = read_seqcount_begin(&tk_core.seq); |
| 1008 | now = tk_clock_read(&tk->tkr_mono); |
| 1009 | systime_snapshot->cs_id = tk->tkr_mono.clock->id; |
| 1010 | systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; |
| 1011 | systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; |
| 1012 | base_real = ktime_add(tk->tkr_mono.base, |
| 1013 | tk_core.timekeeper.offs_real); |
| 1014 | base_boot = ktime_add(tk->tkr_mono.base, |
| 1015 | tk_core.timekeeper.offs_boot); |
| 1016 | base_raw = tk->tkr_raw.base; |
| 1017 | nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); |
| 1018 | nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); |
| 1019 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1020 | |
| 1021 | systime_snapshot->cycles = now; |
| 1022 | systime_snapshot->real = ktime_add_ns(base_real, nsec_real); |
| 1023 | systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); |
| 1024 | systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); |
| 1025 | } |
| 1026 | EXPORT_SYMBOL_GPL(ktime_get_snapshot); |
| 1027 | |
| 1028 | /* Scale base by mult/div checking for overflow */ |
| 1029 | static int scale64_check_overflow(u64 mult, u64 div, u64 *base) |
| 1030 | { |
| 1031 | u64 tmp, rem; |
| 1032 | |
| 1033 | tmp = div64_u64_rem(*base, div, &rem); |
| 1034 | |
| 1035 | if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || |
| 1036 | ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) |
| 1037 | return -EOVERFLOW; |
| 1038 | tmp *= mult; |
| 1039 | |
| 1040 | rem = div64_u64(rem * mult, div); |
| 1041 | *base = tmp + rem; |
| 1042 | return 0; |
| 1043 | } |
| 1044 | |
| 1045 | /** |
| 1046 | * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval |
| 1047 | * @history: Snapshot representing start of history |
| 1048 | * @partial_history_cycles: Cycle offset into history (fractional part) |
| 1049 | * @total_history_cycles: Total history length in cycles |
| 1050 | * @discontinuity: True indicates clock was set on history period |
| 1051 | * @ts: Cross timestamp that should be adjusted using |
| 1052 | * partial/total ratio |
| 1053 | * |
| 1054 | * Helper function used by get_device_system_crosststamp() to correct the |
| 1055 | * crosstimestamp corresponding to the start of the current interval to the |
| 1056 | * system counter value (timestamp point) provided by the driver. The |
| 1057 | * total_history_* quantities are the total history starting at the provided |
| 1058 | * reference point and ending at the start of the current interval. The cycle |
| 1059 | * count between the driver timestamp point and the start of the current |
| 1060 | * interval is partial_history_cycles. |
| 1061 | */ |
| 1062 | static int adjust_historical_crosststamp(struct system_time_snapshot *history, |
| 1063 | u64 partial_history_cycles, |
| 1064 | u64 total_history_cycles, |
| 1065 | bool discontinuity, |
| 1066 | struct system_device_crosststamp *ts) |
| 1067 | { |
| 1068 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1069 | u64 corr_raw, corr_real; |
| 1070 | bool interp_forward; |
| 1071 | int ret; |
| 1072 | |
| 1073 | if (total_history_cycles == 0 || partial_history_cycles == 0) |
| 1074 | return 0; |
| 1075 | |
| 1076 | /* Interpolate shortest distance from beginning or end of history */ |
| 1077 | interp_forward = partial_history_cycles > total_history_cycles / 2; |
| 1078 | partial_history_cycles = interp_forward ? |
| 1079 | total_history_cycles - partial_history_cycles : |
| 1080 | partial_history_cycles; |
| 1081 | |
| 1082 | /* |
| 1083 | * Scale the monotonic raw time delta by: |
| 1084 | * partial_history_cycles / total_history_cycles |
| 1085 | */ |
| 1086 | corr_raw = (u64)ktime_to_ns( |
| 1087 | ktime_sub(ts->sys_monoraw, history->raw)); |
| 1088 | ret = scale64_check_overflow(partial_history_cycles, |
| 1089 | total_history_cycles, &corr_raw); |
| 1090 | if (ret) |
| 1091 | return ret; |
| 1092 | |
| 1093 | /* |
| 1094 | * If there is a discontinuity in the history, scale monotonic raw |
| 1095 | * correction by: |
| 1096 | * mult(real)/mult(raw) yielding the realtime correction |
| 1097 | * Otherwise, calculate the realtime correction similar to monotonic |
| 1098 | * raw calculation |
| 1099 | */ |
| 1100 | if (discontinuity) { |
| 1101 | corr_real = mul_u64_u32_div |
| 1102 | (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); |
| 1103 | } else { |
| 1104 | corr_real = (u64)ktime_to_ns( |
| 1105 | ktime_sub(ts->sys_realtime, history->real)); |
| 1106 | ret = scale64_check_overflow(partial_history_cycles, |
| 1107 | total_history_cycles, &corr_real); |
| 1108 | if (ret) |
| 1109 | return ret; |
| 1110 | } |
| 1111 | |
| 1112 | /* Fixup monotonic raw and real time time values */ |
| 1113 | if (interp_forward) { |
| 1114 | ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); |
| 1115 | ts->sys_realtime = ktime_add_ns(history->real, corr_real); |
| 1116 | } else { |
| 1117 | ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); |
| 1118 | ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); |
| 1119 | } |
| 1120 | |
| 1121 | return 0; |
| 1122 | } |
| 1123 | |
| 1124 | /* |
| 1125 | * timestamp_in_interval - true if ts is chronologically in [start, end] |
| 1126 | * |
| 1127 | * True if ts occurs chronologically at or after start, and before or at end. |
| 1128 | */ |
| 1129 | static bool timestamp_in_interval(u64 start, u64 end, u64 ts) |
| 1130 | { |
| 1131 | if (ts >= start && ts <= end) |
| 1132 | return true; |
| 1133 | if (start > end && (ts >= start || ts <= end)) |
| 1134 | return true; |
| 1135 | return false; |
| 1136 | } |
| 1137 | |
| 1138 | static bool convert_clock(u64 *val, u32 numerator, u32 denominator) |
| 1139 | { |
| 1140 | u64 rem, res; |
| 1141 | |
| 1142 | if (!numerator || !denominator) |
| 1143 | return false; |
| 1144 | |
| 1145 | res = div64_u64_rem(*val, denominator, &rem) * numerator; |
| 1146 | *val = res + div_u64(rem * numerator, denominator); |
| 1147 | return true; |
| 1148 | } |
| 1149 | |
| 1150 | static bool convert_base_to_cs(struct system_counterval_t *scv) |
| 1151 | { |
| 1152 | struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; |
| 1153 | struct clocksource_base *base; |
| 1154 | u32 num, den; |
| 1155 | |
| 1156 | /* The timestamp was taken from the time keeper clock source */ |
| 1157 | if (cs->id == scv->cs_id) |
| 1158 | return true; |
| 1159 | |
| 1160 | /* |
| 1161 | * Check whether cs_id matches the base clock. Prevent the compiler from |
| 1162 | * re-evaluating @base as the clocksource might change concurrently. |
| 1163 | */ |
| 1164 | base = READ_ONCE(cs->base); |
| 1165 | if (!base || base->id != scv->cs_id) |
| 1166 | return false; |
| 1167 | |
| 1168 | num = scv->use_nsecs ? cs->freq_khz : base->numerator; |
| 1169 | den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; |
| 1170 | |
| 1171 | if (!convert_clock(&scv->cycles, num, den)) |
| 1172 | return false; |
| 1173 | |
| 1174 | scv->cycles += base->offset; |
| 1175 | return true; |
| 1176 | } |
| 1177 | |
| 1178 | static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) |
| 1179 | { |
| 1180 | struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; |
| 1181 | struct clocksource_base *base; |
| 1182 | |
| 1183 | /* |
| 1184 | * Check whether base_id matches the base clock. Prevent the compiler from |
| 1185 | * re-evaluating @base as the clocksource might change concurrently. |
| 1186 | */ |
| 1187 | base = READ_ONCE(cs->base); |
| 1188 | if (!base || base->id != base_id) |
| 1189 | return false; |
| 1190 | |
| 1191 | *cycles -= base->offset; |
| 1192 | if (!convert_clock(cycles, base->denominator, base->numerator)) |
| 1193 | return false; |
| 1194 | return true; |
| 1195 | } |
| 1196 | |
| 1197 | static bool convert_ns_to_cs(u64 *delta) |
| 1198 | { |
| 1199 | struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; |
| 1200 | |
| 1201 | if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) |
| 1202 | return false; |
| 1203 | |
| 1204 | *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); |
| 1205 | return true; |
| 1206 | } |
| 1207 | |
| 1208 | /** |
| 1209 | * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp |
| 1210 | * @treal: CLOCK_REALTIME timestamp to convert |
| 1211 | * @base_id: base clocksource id |
| 1212 | * @cycles: pointer to store the converted base clock timestamp |
| 1213 | * |
| 1214 | * Converts a supplied, future realtime clock value to the corresponding base clock value. |
| 1215 | * |
| 1216 | * Return: true if the conversion is successful, false otherwise. |
| 1217 | */ |
| 1218 | bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) |
| 1219 | { |
| 1220 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1221 | unsigned int seq; |
| 1222 | u64 delta; |
| 1223 | |
| 1224 | do { |
| 1225 | seq = read_seqcount_begin(&tk_core.seq); |
| 1226 | if ((u64)treal < tk->tkr_mono.base_real) |
| 1227 | return false; |
| 1228 | delta = (u64)treal - tk->tkr_mono.base_real; |
| 1229 | if (!convert_ns_to_cs(&delta)) |
| 1230 | return false; |
| 1231 | *cycles = tk->tkr_mono.cycle_last + delta; |
| 1232 | if (!convert_cs_to_base(cycles, base_id)) |
| 1233 | return false; |
| 1234 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1235 | |
| 1236 | return true; |
| 1237 | } |
| 1238 | EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); |
| 1239 | |
| 1240 | /** |
| 1241 | * get_device_system_crosststamp - Synchronously capture system/device timestamp |
| 1242 | * @get_time_fn: Callback to get simultaneous device time and |
| 1243 | * system counter from the device driver |
| 1244 | * @ctx: Context passed to get_time_fn() |
| 1245 | * @history_begin: Historical reference point used to interpolate system |
| 1246 | * time when counter provided by the driver is before the current interval |
| 1247 | * @xtstamp: Receives simultaneously captured system and device time |
| 1248 | * |
| 1249 | * Reads a timestamp from a device and correlates it to system time |
| 1250 | */ |
| 1251 | int get_device_system_crosststamp(int (*get_time_fn) |
| 1252 | (ktime_t *device_time, |
| 1253 | struct system_counterval_t *sys_counterval, |
| 1254 | void *ctx), |
| 1255 | void *ctx, |
| 1256 | struct system_time_snapshot *history_begin, |
| 1257 | struct system_device_crosststamp *xtstamp) |
| 1258 | { |
| 1259 | struct system_counterval_t system_counterval; |
| 1260 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1261 | u64 cycles, now, interval_start; |
| 1262 | unsigned int clock_was_set_seq = 0; |
| 1263 | ktime_t base_real, base_raw; |
| 1264 | u64 nsec_real, nsec_raw; |
| 1265 | u8 cs_was_changed_seq; |
| 1266 | unsigned int seq; |
| 1267 | bool do_interp; |
| 1268 | int ret; |
| 1269 | |
| 1270 | do { |
| 1271 | seq = read_seqcount_begin(&tk_core.seq); |
| 1272 | /* |
| 1273 | * Try to synchronously capture device time and a system |
| 1274 | * counter value calling back into the device driver |
| 1275 | */ |
| 1276 | ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); |
| 1277 | if (ret) |
| 1278 | return ret; |
| 1279 | |
| 1280 | /* |
| 1281 | * Verify that the clocksource ID associated with the captured |
| 1282 | * system counter value is the same as for the currently |
| 1283 | * installed timekeeper clocksource |
| 1284 | */ |
| 1285 | if (system_counterval.cs_id == CSID_GENERIC || |
| 1286 | !convert_base_to_cs(&system_counterval)) |
| 1287 | return -ENODEV; |
| 1288 | cycles = system_counterval.cycles; |
| 1289 | |
| 1290 | /* |
| 1291 | * Check whether the system counter value provided by the |
| 1292 | * device driver is on the current timekeeping interval. |
| 1293 | */ |
| 1294 | now = tk_clock_read(&tk->tkr_mono); |
| 1295 | interval_start = tk->tkr_mono.cycle_last; |
| 1296 | if (!timestamp_in_interval(interval_start, now, cycles)) { |
| 1297 | clock_was_set_seq = tk->clock_was_set_seq; |
| 1298 | cs_was_changed_seq = tk->cs_was_changed_seq; |
| 1299 | cycles = interval_start; |
| 1300 | do_interp = true; |
| 1301 | } else { |
| 1302 | do_interp = false; |
| 1303 | } |
| 1304 | |
| 1305 | base_real = ktime_add(tk->tkr_mono.base, |
| 1306 | tk_core.timekeeper.offs_real); |
| 1307 | base_raw = tk->tkr_raw.base; |
| 1308 | |
| 1309 | nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); |
| 1310 | nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); |
| 1311 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1312 | |
| 1313 | xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); |
| 1314 | xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); |
| 1315 | |
| 1316 | /* |
| 1317 | * Interpolate if necessary, adjusting back from the start of the |
| 1318 | * current interval |
| 1319 | */ |
| 1320 | if (do_interp) { |
| 1321 | u64 partial_history_cycles, total_history_cycles; |
| 1322 | bool discontinuity; |
| 1323 | |
| 1324 | /* |
| 1325 | * Check that the counter value is not before the provided |
| 1326 | * history reference and that the history doesn't cross a |
| 1327 | * clocksource change |
| 1328 | */ |
| 1329 | if (!history_begin || |
| 1330 | !timestamp_in_interval(history_begin->cycles, |
| 1331 | cycles, system_counterval.cycles) || |
| 1332 | history_begin->cs_was_changed_seq != cs_was_changed_seq) |
| 1333 | return -EINVAL; |
| 1334 | partial_history_cycles = cycles - system_counterval.cycles; |
| 1335 | total_history_cycles = cycles - history_begin->cycles; |
| 1336 | discontinuity = |
| 1337 | history_begin->clock_was_set_seq != clock_was_set_seq; |
| 1338 | |
| 1339 | ret = adjust_historical_crosststamp(history_begin, |
| 1340 | partial_history_cycles, |
| 1341 | total_history_cycles, |
| 1342 | discontinuity, xtstamp); |
| 1343 | if (ret) |
| 1344 | return ret; |
| 1345 | } |
| 1346 | |
| 1347 | return 0; |
| 1348 | } |
| 1349 | EXPORT_SYMBOL_GPL(get_device_system_crosststamp); |
| 1350 | |
| 1351 | /** |
| 1352 | * timekeeping_clocksource_has_base - Check whether the current clocksource |
| 1353 | * is based on given a base clock |
| 1354 | * @id: base clocksource ID |
| 1355 | * |
| 1356 | * Note: The return value is a snapshot which can become invalid right |
| 1357 | * after the function returns. |
| 1358 | * |
| 1359 | * Return: true if the timekeeper clocksource has a base clock with @id, |
| 1360 | * false otherwise |
| 1361 | */ |
| 1362 | bool timekeeping_clocksource_has_base(enum clocksource_ids id) |
| 1363 | { |
| 1364 | /* |
| 1365 | * This is a snapshot, so no point in using the sequence |
| 1366 | * count. Just prevent the compiler from re-evaluating @base as the |
| 1367 | * clocksource might change concurrently. |
| 1368 | */ |
| 1369 | struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); |
| 1370 | |
| 1371 | return base ? base->id == id : false; |
| 1372 | } |
| 1373 | EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); |
| 1374 | |
| 1375 | /** |
| 1376 | * do_settimeofday64 - Sets the time of day. |
| 1377 | * @ts: pointer to the timespec64 variable containing the new time |
| 1378 | * |
| 1379 | * Sets the time of day to the new time and update NTP and notify hrtimers |
| 1380 | */ |
| 1381 | int do_settimeofday64(const struct timespec64 *ts) |
| 1382 | { |
| 1383 | struct timespec64 ts_delta, xt; |
| 1384 | |
| 1385 | if (!timespec64_valid_settod(ts)) |
| 1386 | return -EINVAL; |
| 1387 | |
| 1388 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { |
| 1389 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1390 | |
| 1391 | timekeeping_forward_now(tks); |
| 1392 | |
| 1393 | xt = tk_xtime(tks); |
| 1394 | ts_delta = timespec64_sub(*ts, xt); |
| 1395 | |
| 1396 | if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { |
| 1397 | timekeeping_restore_shadow(&tk_core); |
| 1398 | return -EINVAL; |
| 1399 | } |
| 1400 | |
| 1401 | tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); |
| 1402 | tk_set_xtime(tks, ts); |
| 1403 | timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); |
| 1404 | } |
| 1405 | |
| 1406 | /* Signal hrtimers about time change */ |
| 1407 | clock_was_set(CLOCK_SET_WALL); |
| 1408 | |
| 1409 | audit_tk_injoffset(ts_delta); |
| 1410 | add_device_randomness(ts, sizeof(*ts)); |
| 1411 | return 0; |
| 1412 | } |
| 1413 | EXPORT_SYMBOL(do_settimeofday64); |
| 1414 | |
| 1415 | /** |
| 1416 | * timekeeping_inject_offset - Adds or subtracts from the current time. |
| 1417 | * @ts: Pointer to the timespec variable containing the offset |
| 1418 | * |
| 1419 | * Adds or subtracts an offset value from the current time. |
| 1420 | */ |
| 1421 | static int timekeeping_inject_offset(const struct timespec64 *ts) |
| 1422 | { |
| 1423 | if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) |
| 1424 | return -EINVAL; |
| 1425 | |
| 1426 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { |
| 1427 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1428 | struct timespec64 tmp; |
| 1429 | |
| 1430 | timekeeping_forward_now(tks); |
| 1431 | |
| 1432 | /* Make sure the proposed value is valid */ |
| 1433 | tmp = timespec64_add(tk_xtime(tks), *ts); |
| 1434 | if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || |
| 1435 | !timespec64_valid_settod(&tmp)) { |
| 1436 | timekeeping_restore_shadow(&tk_core); |
| 1437 | return -EINVAL; |
| 1438 | } |
| 1439 | |
| 1440 | tk_xtime_add(tks, ts); |
| 1441 | tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); |
| 1442 | timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); |
| 1443 | } |
| 1444 | |
| 1445 | /* Signal hrtimers about time change */ |
| 1446 | clock_was_set(CLOCK_SET_WALL); |
| 1447 | return 0; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Indicates if there is an offset between the system clock and the hardware |
| 1452 | * clock/persistent clock/rtc. |
| 1453 | */ |
| 1454 | int persistent_clock_is_local; |
| 1455 | |
| 1456 | /* |
| 1457 | * Adjust the time obtained from the CMOS to be UTC time instead of |
| 1458 | * local time. |
| 1459 | * |
| 1460 | * This is ugly, but preferable to the alternatives. Otherwise we |
| 1461 | * would either need to write a program to do it in /etc/rc (and risk |
| 1462 | * confusion if the program gets run more than once; it would also be |
| 1463 | * hard to make the program warp the clock precisely n hours) or |
| 1464 | * compile in the timezone information into the kernel. Bad, bad.... |
| 1465 | * |
| 1466 | * - TYT, 1992-01-01 |
| 1467 | * |
| 1468 | * The best thing to do is to keep the CMOS clock in universal time (UTC) |
| 1469 | * as real UNIX machines always do it. This avoids all headaches about |
| 1470 | * daylight saving times and warping kernel clocks. |
| 1471 | */ |
| 1472 | void timekeeping_warp_clock(void) |
| 1473 | { |
| 1474 | if (sys_tz.tz_minuteswest != 0) { |
| 1475 | struct timespec64 adjust; |
| 1476 | |
| 1477 | persistent_clock_is_local = 1; |
| 1478 | adjust.tv_sec = sys_tz.tz_minuteswest * 60; |
| 1479 | adjust.tv_nsec = 0; |
| 1480 | timekeeping_inject_offset(&adjust); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic |
| 1486 | */ |
| 1487 | static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) |
| 1488 | { |
| 1489 | tk->tai_offset = tai_offset; |
| 1490 | tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * change_clocksource - Swaps clocksources if a new one is available |
| 1495 | * |
| 1496 | * Accumulates current time interval and initializes new clocksource |
| 1497 | */ |
| 1498 | static int change_clocksource(void *data) |
| 1499 | { |
| 1500 | struct clocksource *new = data, *old = NULL; |
| 1501 | |
| 1502 | /* |
| 1503 | * If the clocksource is in a module, get a module reference. |
| 1504 | * Succeeds for built-in code (owner == NULL) as well. Abort if the |
| 1505 | * reference can't be acquired. |
| 1506 | */ |
| 1507 | if (!try_module_get(new->owner)) |
| 1508 | return 0; |
| 1509 | |
| 1510 | /* Abort if the device can't be enabled */ |
| 1511 | if (new->enable && new->enable(new) != 0) { |
| 1512 | module_put(new->owner); |
| 1513 | return 0; |
| 1514 | } |
| 1515 | |
| 1516 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { |
| 1517 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1518 | |
| 1519 | timekeeping_forward_now(tks); |
| 1520 | old = tks->tkr_mono.clock; |
| 1521 | tk_setup_internals(tks, new); |
| 1522 | timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); |
| 1523 | } |
| 1524 | |
| 1525 | if (old) { |
| 1526 | if (old->disable) |
| 1527 | old->disable(old); |
| 1528 | module_put(old->owner); |
| 1529 | } |
| 1530 | |
| 1531 | return 0; |
| 1532 | } |
| 1533 | |
| 1534 | /** |
| 1535 | * timekeeping_notify - Install a new clock source |
| 1536 | * @clock: pointer to the clock source |
| 1537 | * |
| 1538 | * This function is called from clocksource.c after a new, better clock |
| 1539 | * source has been registered. The caller holds the clocksource_mutex. |
| 1540 | */ |
| 1541 | int timekeeping_notify(struct clocksource *clock) |
| 1542 | { |
| 1543 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1544 | |
| 1545 | if (tk->tkr_mono.clock == clock) |
| 1546 | return 0; |
| 1547 | stop_machine(change_clocksource, clock, NULL); |
| 1548 | tick_clock_notify(); |
| 1549 | return tk->tkr_mono.clock == clock ? 0 : -1; |
| 1550 | } |
| 1551 | |
| 1552 | /** |
| 1553 | * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec |
| 1554 | * @ts: pointer to the timespec64 to be set |
| 1555 | * |
| 1556 | * Returns the raw monotonic time (completely un-modified by ntp) |
| 1557 | */ |
| 1558 | void ktime_get_raw_ts64(struct timespec64 *ts) |
| 1559 | { |
| 1560 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1561 | unsigned int seq; |
| 1562 | u64 nsecs; |
| 1563 | |
| 1564 | do { |
| 1565 | seq = read_seqcount_begin(&tk_core.seq); |
| 1566 | ts->tv_sec = tk->raw_sec; |
| 1567 | nsecs = timekeeping_get_ns(&tk->tkr_raw); |
| 1568 | |
| 1569 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1570 | |
| 1571 | ts->tv_nsec = 0; |
| 1572 | timespec64_add_ns(ts, nsecs); |
| 1573 | } |
| 1574 | EXPORT_SYMBOL(ktime_get_raw_ts64); |
| 1575 | |
| 1576 | |
| 1577 | /** |
| 1578 | * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres |
| 1579 | */ |
| 1580 | int timekeeping_valid_for_hres(void) |
| 1581 | { |
| 1582 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1583 | unsigned int seq; |
| 1584 | int ret; |
| 1585 | |
| 1586 | do { |
| 1587 | seq = read_seqcount_begin(&tk_core.seq); |
| 1588 | |
| 1589 | ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| 1590 | |
| 1591 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1592 | |
| 1593 | return ret; |
| 1594 | } |
| 1595 | |
| 1596 | /** |
| 1597 | * timekeeping_max_deferment - Returns max time the clocksource can be deferred |
| 1598 | */ |
| 1599 | u64 timekeeping_max_deferment(void) |
| 1600 | { |
| 1601 | struct timekeeper *tk = &tk_core.timekeeper; |
| 1602 | unsigned int seq; |
| 1603 | u64 ret; |
| 1604 | |
| 1605 | do { |
| 1606 | seq = read_seqcount_begin(&tk_core.seq); |
| 1607 | |
| 1608 | ret = tk->tkr_mono.clock->max_idle_ns; |
| 1609 | |
| 1610 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 1611 | |
| 1612 | return ret; |
| 1613 | } |
| 1614 | |
| 1615 | /** |
| 1616 | * read_persistent_clock64 - Return time from the persistent clock. |
| 1617 | * @ts: Pointer to the storage for the readout value |
| 1618 | * |
| 1619 | * Weak dummy function for arches that do not yet support it. |
| 1620 | * Reads the time from the battery backed persistent clock. |
| 1621 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 1622 | * |
| 1623 | * XXX - Do be sure to remove it once all arches implement it. |
| 1624 | */ |
| 1625 | void __weak read_persistent_clock64(struct timespec64 *ts) |
| 1626 | { |
| 1627 | ts->tv_sec = 0; |
| 1628 | ts->tv_nsec = 0; |
| 1629 | } |
| 1630 | |
| 1631 | /** |
| 1632 | * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset |
| 1633 | * from the boot. |
| 1634 | * @wall_time: current time as returned by persistent clock |
| 1635 | * @boot_offset: offset that is defined as wall_time - boot_time |
| 1636 | * |
| 1637 | * Weak dummy function for arches that do not yet support it. |
| 1638 | * |
| 1639 | * The default function calculates offset based on the current value of |
| 1640 | * local_clock(). This way architectures that support sched_clock() but don't |
| 1641 | * support dedicated boot time clock will provide the best estimate of the |
| 1642 | * boot time. |
| 1643 | */ |
| 1644 | void __weak __init |
| 1645 | read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, |
| 1646 | struct timespec64 *boot_offset) |
| 1647 | { |
| 1648 | read_persistent_clock64(wall_time); |
| 1649 | *boot_offset = ns_to_timespec64(local_clock()); |
| 1650 | } |
| 1651 | |
| 1652 | static __init void tkd_basic_setup(struct tk_data *tkd) |
| 1653 | { |
| 1654 | raw_spin_lock_init(&tkd->lock); |
| 1655 | seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * Flag reflecting whether timekeeping_resume() has injected sleeptime. |
| 1660 | * |
| 1661 | * The flag starts of false and is only set when a suspend reaches |
| 1662 | * timekeeping_suspend(), timekeeping_resume() sets it to false when the |
| 1663 | * timekeeper clocksource is not stopping across suspend and has been |
| 1664 | * used to update sleep time. If the timekeeper clocksource has stopped |
| 1665 | * then the flag stays true and is used by the RTC resume code to decide |
| 1666 | * whether sleeptime must be injected and if so the flag gets false then. |
| 1667 | * |
| 1668 | * If a suspend fails before reaching timekeeping_resume() then the flag |
| 1669 | * stays false and prevents erroneous sleeptime injection. |
| 1670 | */ |
| 1671 | static bool suspend_timing_needed; |
| 1672 | |
| 1673 | /* Flag for if there is a persistent clock on this platform */ |
| 1674 | static bool persistent_clock_exists; |
| 1675 | |
| 1676 | /* |
| 1677 | * timekeeping_init - Initializes the clocksource and common timekeeping values |
| 1678 | */ |
| 1679 | void __init timekeeping_init(void) |
| 1680 | { |
| 1681 | struct timespec64 wall_time, boot_offset, wall_to_mono; |
| 1682 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1683 | struct clocksource *clock; |
| 1684 | |
| 1685 | tkd_basic_setup(&tk_core); |
| 1686 | |
| 1687 | read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); |
| 1688 | if (timespec64_valid_settod(&wall_time) && |
| 1689 | timespec64_to_ns(&wall_time) > 0) { |
| 1690 | persistent_clock_exists = true; |
| 1691 | } else if (timespec64_to_ns(&wall_time) != 0) { |
| 1692 | pr_warn("Persistent clock returned invalid value"); |
| 1693 | wall_time = (struct timespec64){0}; |
| 1694 | } |
| 1695 | |
| 1696 | if (timespec64_compare(&wall_time, &boot_offset) < 0) |
| 1697 | boot_offset = (struct timespec64){0}; |
| 1698 | |
| 1699 | /* |
| 1700 | * We want set wall_to_mono, so the following is true: |
| 1701 | * wall time + wall_to_mono = boot time |
| 1702 | */ |
| 1703 | wall_to_mono = timespec64_sub(boot_offset, wall_time); |
| 1704 | |
| 1705 | guard(raw_spinlock_irqsave)(&tk_core.lock); |
| 1706 | |
| 1707 | ntp_init(); |
| 1708 | |
| 1709 | clock = clocksource_default_clock(); |
| 1710 | if (clock->enable) |
| 1711 | clock->enable(clock); |
| 1712 | tk_setup_internals(tks, clock); |
| 1713 | |
| 1714 | tk_set_xtime(tks, &wall_time); |
| 1715 | tks->raw_sec = 0; |
| 1716 | |
| 1717 | tk_set_wall_to_mono(tks, wall_to_mono); |
| 1718 | |
| 1719 | timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); |
| 1720 | } |
| 1721 | |
| 1722 | /* time in seconds when suspend began for persistent clock */ |
| 1723 | static struct timespec64 timekeeping_suspend_time; |
| 1724 | |
| 1725 | /** |
| 1726 | * __timekeeping_inject_sleeptime - Internal function to add sleep interval |
| 1727 | * @tk: Pointer to the timekeeper to be updated |
| 1728 | * @delta: Pointer to the delta value in timespec64 format |
| 1729 | * |
| 1730 | * Takes a timespec offset measuring a suspend interval and properly |
| 1731 | * adds the sleep offset to the timekeeping variables. |
| 1732 | */ |
| 1733 | static void __timekeeping_inject_sleeptime(struct timekeeper *tk, |
| 1734 | const struct timespec64 *delta) |
| 1735 | { |
| 1736 | if (!timespec64_valid_strict(delta)) { |
| 1737 | printk_deferred(KERN_WARNING |
| 1738 | "__timekeeping_inject_sleeptime: Invalid " |
| 1739 | "sleep delta value!\n"); |
| 1740 | return; |
| 1741 | } |
| 1742 | tk_xtime_add(tk, delta); |
| 1743 | tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); |
| 1744 | tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); |
| 1745 | tk_debug_account_sleep_time(delta); |
| 1746 | } |
| 1747 | |
| 1748 | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) |
| 1749 | /* |
| 1750 | * We have three kinds of time sources to use for sleep time |
| 1751 | * injection, the preference order is: |
| 1752 | * 1) non-stop clocksource |
| 1753 | * 2) persistent clock (ie: RTC accessible when irqs are off) |
| 1754 | * 3) RTC |
| 1755 | * |
| 1756 | * 1) and 2) are used by timekeeping, 3) by RTC subsystem. |
| 1757 | * If system has neither 1) nor 2), 3) will be used finally. |
| 1758 | * |
| 1759 | * |
| 1760 | * If timekeeping has injected sleeptime via either 1) or 2), |
| 1761 | * 3) becomes needless, so in this case we don't need to call |
| 1762 | * rtc_resume(), and this is what timekeeping_rtc_skipresume() |
| 1763 | * means. |
| 1764 | */ |
| 1765 | bool timekeeping_rtc_skipresume(void) |
| 1766 | { |
| 1767 | return !suspend_timing_needed; |
| 1768 | } |
| 1769 | |
| 1770 | /* |
| 1771 | * 1) can be determined whether to use or not only when doing |
| 1772 | * timekeeping_resume() which is invoked after rtc_suspend(), |
| 1773 | * so we can't skip rtc_suspend() surely if system has 1). |
| 1774 | * |
| 1775 | * But if system has 2), 2) will definitely be used, so in this |
| 1776 | * case we don't need to call rtc_suspend(), and this is what |
| 1777 | * timekeeping_rtc_skipsuspend() means. |
| 1778 | */ |
| 1779 | bool timekeeping_rtc_skipsuspend(void) |
| 1780 | { |
| 1781 | return persistent_clock_exists; |
| 1782 | } |
| 1783 | |
| 1784 | /** |
| 1785 | * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values |
| 1786 | * @delta: pointer to a timespec64 delta value |
| 1787 | * |
| 1788 | * This hook is for architectures that cannot support read_persistent_clock64 |
| 1789 | * because their RTC/persistent clock is only accessible when irqs are enabled. |
| 1790 | * and also don't have an effective nonstop clocksource. |
| 1791 | * |
| 1792 | * This function should only be called by rtc_resume(), and allows |
| 1793 | * a suspend offset to be injected into the timekeeping values. |
| 1794 | */ |
| 1795 | void timekeeping_inject_sleeptime64(const struct timespec64 *delta) |
| 1796 | { |
| 1797 | scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { |
| 1798 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1799 | |
| 1800 | suspend_timing_needed = false; |
| 1801 | timekeeping_forward_now(tks); |
| 1802 | __timekeeping_inject_sleeptime(tks, delta); |
| 1803 | timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); |
| 1804 | } |
| 1805 | |
| 1806 | /* Signal hrtimers about time change */ |
| 1807 | clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); |
| 1808 | } |
| 1809 | #endif |
| 1810 | |
| 1811 | /** |
| 1812 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| 1813 | */ |
| 1814 | void timekeeping_resume(void) |
| 1815 | { |
| 1816 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1817 | struct clocksource *clock = tks->tkr_mono.clock; |
| 1818 | struct timespec64 ts_new, ts_delta; |
| 1819 | bool inject_sleeptime = false; |
| 1820 | u64 cycle_now, nsec; |
| 1821 | unsigned long flags; |
| 1822 | |
| 1823 | read_persistent_clock64(&ts_new); |
| 1824 | |
| 1825 | clockevents_resume(); |
| 1826 | clocksource_resume(); |
| 1827 | |
| 1828 | raw_spin_lock_irqsave(&tk_core.lock, flags); |
| 1829 | |
| 1830 | /* |
| 1831 | * After system resumes, we need to calculate the suspended time and |
| 1832 | * compensate it for the OS time. There are 3 sources that could be |
| 1833 | * used: Nonstop clocksource during suspend, persistent clock and rtc |
| 1834 | * device. |
| 1835 | * |
| 1836 | * One specific platform may have 1 or 2 or all of them, and the |
| 1837 | * preference will be: |
| 1838 | * suspend-nonstop clocksource -> persistent clock -> rtc |
| 1839 | * The less preferred source will only be tried if there is no better |
| 1840 | * usable source. The rtc part is handled separately in rtc core code. |
| 1841 | */ |
| 1842 | cycle_now = tk_clock_read(&tks->tkr_mono); |
| 1843 | nsec = clocksource_stop_suspend_timing(clock, cycle_now); |
| 1844 | if (nsec > 0) { |
| 1845 | ts_delta = ns_to_timespec64(nsec); |
| 1846 | inject_sleeptime = true; |
| 1847 | } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { |
| 1848 | ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); |
| 1849 | inject_sleeptime = true; |
| 1850 | } |
| 1851 | |
| 1852 | if (inject_sleeptime) { |
| 1853 | suspend_timing_needed = false; |
| 1854 | __timekeeping_inject_sleeptime(tks, &ts_delta); |
| 1855 | } |
| 1856 | |
| 1857 | /* Re-base the last cycle value */ |
| 1858 | tks->tkr_mono.cycle_last = cycle_now; |
| 1859 | tks->tkr_raw.cycle_last = cycle_now; |
| 1860 | |
| 1861 | tks->ntp_error = 0; |
| 1862 | timekeeping_suspended = 0; |
| 1863 | timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); |
| 1864 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); |
| 1865 | |
| 1866 | touch_softlockup_watchdog(); |
| 1867 | |
| 1868 | /* Resume the clockevent device(s) and hrtimers */ |
| 1869 | tick_resume(); |
| 1870 | /* Notify timerfd as resume is equivalent to clock_was_set() */ |
| 1871 | timerfd_resume(); |
| 1872 | } |
| 1873 | |
| 1874 | int timekeeping_suspend(void) |
| 1875 | { |
| 1876 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 1877 | struct timespec64 delta, delta_delta; |
| 1878 | static struct timespec64 old_delta; |
| 1879 | struct clocksource *curr_clock; |
| 1880 | unsigned long flags; |
| 1881 | u64 cycle_now; |
| 1882 | |
| 1883 | read_persistent_clock64(&timekeeping_suspend_time); |
| 1884 | |
| 1885 | /* |
| 1886 | * On some systems the persistent_clock can not be detected at |
| 1887 | * timekeeping_init by its return value, so if we see a valid |
| 1888 | * value returned, update the persistent_clock_exists flag. |
| 1889 | */ |
| 1890 | if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) |
| 1891 | persistent_clock_exists = true; |
| 1892 | |
| 1893 | suspend_timing_needed = true; |
| 1894 | |
| 1895 | raw_spin_lock_irqsave(&tk_core.lock, flags); |
| 1896 | timekeeping_forward_now(tks); |
| 1897 | timekeeping_suspended = 1; |
| 1898 | |
| 1899 | /* |
| 1900 | * Since we've called forward_now, cycle_last stores the value |
| 1901 | * just read from the current clocksource. Save this to potentially |
| 1902 | * use in suspend timing. |
| 1903 | */ |
| 1904 | curr_clock = tks->tkr_mono.clock; |
| 1905 | cycle_now = tks->tkr_mono.cycle_last; |
| 1906 | clocksource_start_suspend_timing(curr_clock, cycle_now); |
| 1907 | |
| 1908 | if (persistent_clock_exists) { |
| 1909 | /* |
| 1910 | * To avoid drift caused by repeated suspend/resumes, |
| 1911 | * which each can add ~1 second drift error, |
| 1912 | * try to compensate so the difference in system time |
| 1913 | * and persistent_clock time stays close to constant. |
| 1914 | */ |
| 1915 | delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); |
| 1916 | delta_delta = timespec64_sub(delta, old_delta); |
| 1917 | if (abs(delta_delta.tv_sec) >= 2) { |
| 1918 | /* |
| 1919 | * if delta_delta is too large, assume time correction |
| 1920 | * has occurred and set old_delta to the current delta. |
| 1921 | */ |
| 1922 | old_delta = delta; |
| 1923 | } else { |
| 1924 | /* Otherwise try to adjust old_system to compensate */ |
| 1925 | timekeeping_suspend_time = |
| 1926 | timespec64_add(timekeeping_suspend_time, delta_delta); |
| 1927 | } |
| 1928 | } |
| 1929 | |
| 1930 | timekeeping_update_from_shadow(&tk_core, 0); |
| 1931 | halt_fast_timekeeper(tks); |
| 1932 | raw_spin_unlock_irqrestore(&tk_core.lock, flags); |
| 1933 | |
| 1934 | tick_suspend(); |
| 1935 | clocksource_suspend(); |
| 1936 | clockevents_suspend(); |
| 1937 | |
| 1938 | return 0; |
| 1939 | } |
| 1940 | |
| 1941 | /* sysfs resume/suspend bits for timekeeping */ |
| 1942 | static struct syscore_ops timekeeping_syscore_ops = { |
| 1943 | .resume = timekeeping_resume, |
| 1944 | .suspend = timekeeping_suspend, |
| 1945 | }; |
| 1946 | |
| 1947 | static int __init timekeeping_init_ops(void) |
| 1948 | { |
| 1949 | register_syscore_ops(&timekeeping_syscore_ops); |
| 1950 | return 0; |
| 1951 | } |
| 1952 | device_initcall(timekeeping_init_ops); |
| 1953 | |
| 1954 | /* |
| 1955 | * Apply a multiplier adjustment to the timekeeper |
| 1956 | */ |
| 1957 | static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, |
| 1958 | s64 offset, |
| 1959 | s32 mult_adj) |
| 1960 | { |
| 1961 | s64 interval = tk->cycle_interval; |
| 1962 | |
| 1963 | if (mult_adj == 0) { |
| 1964 | return; |
| 1965 | } else if (mult_adj == -1) { |
| 1966 | interval = -interval; |
| 1967 | offset = -offset; |
| 1968 | } else if (mult_adj != 1) { |
| 1969 | interval *= mult_adj; |
| 1970 | offset *= mult_adj; |
| 1971 | } |
| 1972 | |
| 1973 | /* |
| 1974 | * So the following can be confusing. |
| 1975 | * |
| 1976 | * To keep things simple, lets assume mult_adj == 1 for now. |
| 1977 | * |
| 1978 | * When mult_adj != 1, remember that the interval and offset values |
| 1979 | * have been appropriately scaled so the math is the same. |
| 1980 | * |
| 1981 | * The basic idea here is that we're increasing the multiplier |
| 1982 | * by one, this causes the xtime_interval to be incremented by |
| 1983 | * one cycle_interval. This is because: |
| 1984 | * xtime_interval = cycle_interval * mult |
| 1985 | * So if mult is being incremented by one: |
| 1986 | * xtime_interval = cycle_interval * (mult + 1) |
| 1987 | * Its the same as: |
| 1988 | * xtime_interval = (cycle_interval * mult) + cycle_interval |
| 1989 | * Which can be shortened to: |
| 1990 | * xtime_interval += cycle_interval |
| 1991 | * |
| 1992 | * So offset stores the non-accumulated cycles. Thus the current |
| 1993 | * time (in shifted nanoseconds) is: |
| 1994 | * now = (offset * adj) + xtime_nsec |
| 1995 | * Now, even though we're adjusting the clock frequency, we have |
| 1996 | * to keep time consistent. In other words, we can't jump back |
| 1997 | * in time, and we also want to avoid jumping forward in time. |
| 1998 | * |
| 1999 | * So given the same offset value, we need the time to be the same |
| 2000 | * both before and after the freq adjustment. |
| 2001 | * now = (offset * adj_1) + xtime_nsec_1 |
| 2002 | * now = (offset * adj_2) + xtime_nsec_2 |
| 2003 | * So: |
| 2004 | * (offset * adj_1) + xtime_nsec_1 = |
| 2005 | * (offset * adj_2) + xtime_nsec_2 |
| 2006 | * And we know: |
| 2007 | * adj_2 = adj_1 + 1 |
| 2008 | * So: |
| 2009 | * (offset * adj_1) + xtime_nsec_1 = |
| 2010 | * (offset * (adj_1+1)) + xtime_nsec_2 |
| 2011 | * (offset * adj_1) + xtime_nsec_1 = |
| 2012 | * (offset * adj_1) + offset + xtime_nsec_2 |
| 2013 | * Canceling the sides: |
| 2014 | * xtime_nsec_1 = offset + xtime_nsec_2 |
| 2015 | * Which gives us: |
| 2016 | * xtime_nsec_2 = xtime_nsec_1 - offset |
| 2017 | * Which simplifies to: |
| 2018 | * xtime_nsec -= offset |
| 2019 | */ |
| 2020 | if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { |
| 2021 | /* NTP adjustment caused clocksource mult overflow */ |
| 2022 | WARN_ON_ONCE(1); |
| 2023 | return; |
| 2024 | } |
| 2025 | |
| 2026 | tk->tkr_mono.mult += mult_adj; |
| 2027 | tk->xtime_interval += interval; |
| 2028 | tk->tkr_mono.xtime_nsec -= offset; |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | * Adjust the timekeeper's multiplier to the correct frequency |
| 2033 | * and also to reduce the accumulated error value. |
| 2034 | */ |
| 2035 | static void timekeeping_adjust(struct timekeeper *tk, s64 offset) |
| 2036 | { |
| 2037 | u64 ntp_tl = ntp_tick_length(); |
| 2038 | u32 mult; |
| 2039 | |
| 2040 | /* |
| 2041 | * Determine the multiplier from the current NTP tick length. |
| 2042 | * Avoid expensive division when the tick length doesn't change. |
| 2043 | */ |
| 2044 | if (likely(tk->ntp_tick == ntp_tl)) { |
| 2045 | mult = tk->tkr_mono.mult - tk->ntp_err_mult; |
| 2046 | } else { |
| 2047 | tk->ntp_tick = ntp_tl; |
| 2048 | mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - |
| 2049 | tk->xtime_remainder, tk->cycle_interval); |
| 2050 | } |
| 2051 | |
| 2052 | /* |
| 2053 | * If the clock is behind the NTP time, increase the multiplier by 1 |
| 2054 | * to catch up with it. If it's ahead and there was a remainder in the |
| 2055 | * tick division, the clock will slow down. Otherwise it will stay |
| 2056 | * ahead until the tick length changes to a non-divisible value. |
| 2057 | */ |
| 2058 | tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; |
| 2059 | mult += tk->ntp_err_mult; |
| 2060 | |
| 2061 | timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); |
| 2062 | |
| 2063 | if (unlikely(tk->tkr_mono.clock->maxadj && |
| 2064 | (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) |
| 2065 | > tk->tkr_mono.clock->maxadj))) { |
| 2066 | printk_once(KERN_WARNING |
| 2067 | "Adjusting %s more than 11%% (%ld vs %ld)\n", |
| 2068 | tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, |
| 2069 | (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * It may be possible that when we entered this function, xtime_nsec |
| 2074 | * was very small. Further, if we're slightly speeding the clocksource |
| 2075 | * in the code above, its possible the required corrective factor to |
| 2076 | * xtime_nsec could cause it to underflow. |
| 2077 | * |
| 2078 | * Now, since we have already accumulated the second and the NTP |
| 2079 | * subsystem has been notified via second_overflow(), we need to skip |
| 2080 | * the next update. |
| 2081 | */ |
| 2082 | if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { |
| 2083 | tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << |
| 2084 | tk->tkr_mono.shift; |
| 2085 | tk->xtime_sec--; |
| 2086 | tk->skip_second_overflow = 1; |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | /* |
| 2091 | * accumulate_nsecs_to_secs - Accumulates nsecs into secs |
| 2092 | * |
| 2093 | * Helper function that accumulates the nsecs greater than a second |
| 2094 | * from the xtime_nsec field to the xtime_secs field. |
| 2095 | * It also calls into the NTP code to handle leapsecond processing. |
| 2096 | */ |
| 2097 | static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) |
| 2098 | { |
| 2099 | u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; |
| 2100 | unsigned int clock_set = 0; |
| 2101 | |
| 2102 | while (tk->tkr_mono.xtime_nsec >= nsecps) { |
| 2103 | int leap; |
| 2104 | |
| 2105 | tk->tkr_mono.xtime_nsec -= nsecps; |
| 2106 | tk->xtime_sec++; |
| 2107 | |
| 2108 | /* |
| 2109 | * Skip NTP update if this second was accumulated before, |
| 2110 | * i.e. xtime_nsec underflowed in timekeeping_adjust() |
| 2111 | */ |
| 2112 | if (unlikely(tk->skip_second_overflow)) { |
| 2113 | tk->skip_second_overflow = 0; |
| 2114 | continue; |
| 2115 | } |
| 2116 | |
| 2117 | /* Figure out if its a leap sec and apply if needed */ |
| 2118 | leap = second_overflow(tk->xtime_sec); |
| 2119 | if (unlikely(leap)) { |
| 2120 | struct timespec64 ts; |
| 2121 | |
| 2122 | tk->xtime_sec += leap; |
| 2123 | |
| 2124 | ts.tv_sec = leap; |
| 2125 | ts.tv_nsec = 0; |
| 2126 | tk_set_wall_to_mono(tk, |
| 2127 | timespec64_sub(tk->wall_to_monotonic, ts)); |
| 2128 | |
| 2129 | __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); |
| 2130 | |
| 2131 | clock_set = TK_CLOCK_WAS_SET; |
| 2132 | } |
| 2133 | } |
| 2134 | return clock_set; |
| 2135 | } |
| 2136 | |
| 2137 | /* |
| 2138 | * logarithmic_accumulation - shifted accumulation of cycles |
| 2139 | * |
| 2140 | * This functions accumulates a shifted interval of cycles into |
| 2141 | * a shifted interval nanoseconds. Allows for O(log) accumulation |
| 2142 | * loop. |
| 2143 | * |
| 2144 | * Returns the unconsumed cycles. |
| 2145 | */ |
| 2146 | static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, |
| 2147 | u32 shift, unsigned int *clock_set) |
| 2148 | { |
| 2149 | u64 interval = tk->cycle_interval << shift; |
| 2150 | u64 snsec_per_sec; |
| 2151 | |
| 2152 | /* If the offset is smaller than a shifted interval, do nothing */ |
| 2153 | if (offset < interval) |
| 2154 | return offset; |
| 2155 | |
| 2156 | /* Accumulate one shifted interval */ |
| 2157 | offset -= interval; |
| 2158 | tk->tkr_mono.cycle_last += interval; |
| 2159 | tk->tkr_raw.cycle_last += interval; |
| 2160 | |
| 2161 | tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; |
| 2162 | *clock_set |= accumulate_nsecs_to_secs(tk); |
| 2163 | |
| 2164 | /* Accumulate raw time */ |
| 2165 | tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; |
| 2166 | snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; |
| 2167 | while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { |
| 2168 | tk->tkr_raw.xtime_nsec -= snsec_per_sec; |
| 2169 | tk->raw_sec++; |
| 2170 | } |
| 2171 | |
| 2172 | /* Accumulate error between NTP and clock interval */ |
| 2173 | tk->ntp_error += tk->ntp_tick << shift; |
| 2174 | tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << |
| 2175 | (tk->ntp_error_shift + shift); |
| 2176 | |
| 2177 | return offset; |
| 2178 | } |
| 2179 | |
| 2180 | /* |
| 2181 | * timekeeping_advance - Updates the timekeeper to the current time and |
| 2182 | * current NTP tick length |
| 2183 | */ |
| 2184 | static bool timekeeping_advance(enum timekeeping_adv_mode mode) |
| 2185 | { |
| 2186 | struct timekeeper *tk = &tk_core.shadow_timekeeper; |
| 2187 | struct timekeeper *real_tk = &tk_core.timekeeper; |
| 2188 | unsigned int clock_set = 0; |
| 2189 | int shift = 0, maxshift; |
| 2190 | u64 offset, orig_offset; |
| 2191 | |
| 2192 | guard(raw_spinlock_irqsave)(&tk_core.lock); |
| 2193 | |
| 2194 | /* Make sure we're fully resumed: */ |
| 2195 | if (unlikely(timekeeping_suspended)) |
| 2196 | return false; |
| 2197 | |
| 2198 | offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), |
| 2199 | tk->tkr_mono.cycle_last, tk->tkr_mono.mask, |
| 2200 | tk->tkr_mono.clock->max_raw_delta); |
| 2201 | orig_offset = offset; |
| 2202 | /* Check if there's really nothing to do */ |
| 2203 | if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) |
| 2204 | return false; |
| 2205 | |
| 2206 | /* |
| 2207 | * With NO_HZ we may have to accumulate many cycle_intervals |
| 2208 | * (think "ticks") worth of time at once. To do this efficiently, |
| 2209 | * we calculate the largest doubling multiple of cycle_intervals |
| 2210 | * that is smaller than the offset. We then accumulate that |
| 2211 | * chunk in one go, and then try to consume the next smaller |
| 2212 | * doubled multiple. |
| 2213 | */ |
| 2214 | shift = ilog2(offset) - ilog2(tk->cycle_interval); |
| 2215 | shift = max(0, shift); |
| 2216 | /* Bound shift to one less than what overflows tick_length */ |
| 2217 | maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; |
| 2218 | shift = min(shift, maxshift); |
| 2219 | while (offset >= tk->cycle_interval) { |
| 2220 | offset = logarithmic_accumulation(tk, offset, shift, &clock_set); |
| 2221 | if (offset < tk->cycle_interval<<shift) |
| 2222 | shift--; |
| 2223 | } |
| 2224 | |
| 2225 | /* Adjust the multiplier to correct NTP error */ |
| 2226 | timekeeping_adjust(tk, offset); |
| 2227 | |
| 2228 | /* |
| 2229 | * Finally, make sure that after the rounding |
| 2230 | * xtime_nsec isn't larger than NSEC_PER_SEC |
| 2231 | */ |
| 2232 | clock_set |= accumulate_nsecs_to_secs(tk); |
| 2233 | |
| 2234 | /* |
| 2235 | * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls |
| 2236 | * making small negative adjustments to the base xtime_nsec |
| 2237 | * value, only update the coarse clocks if we accumulated time |
| 2238 | */ |
| 2239 | if (orig_offset != offset) |
| 2240 | tk_update_coarse_nsecs(tk); |
| 2241 | |
| 2242 | timekeeping_update_from_shadow(&tk_core, clock_set); |
| 2243 | |
| 2244 | return !!clock_set; |
| 2245 | } |
| 2246 | |
| 2247 | /** |
| 2248 | * update_wall_time - Uses the current clocksource to increment the wall time |
| 2249 | * |
| 2250 | */ |
| 2251 | void update_wall_time(void) |
| 2252 | { |
| 2253 | if (timekeeping_advance(TK_ADV_TICK)) |
| 2254 | clock_was_set_delayed(); |
| 2255 | } |
| 2256 | |
| 2257 | /** |
| 2258 | * getboottime64 - Return the real time of system boot. |
| 2259 | * @ts: pointer to the timespec64 to be set |
| 2260 | * |
| 2261 | * Returns the wall-time of boot in a timespec64. |
| 2262 | * |
| 2263 | * This is based on the wall_to_monotonic offset and the total suspend |
| 2264 | * time. Calls to settimeofday will affect the value returned (which |
| 2265 | * basically means that however wrong your real time clock is at boot time, |
| 2266 | * you get the right time here). |
| 2267 | */ |
| 2268 | void getboottime64(struct timespec64 *ts) |
| 2269 | { |
| 2270 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2271 | ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); |
| 2272 | |
| 2273 | *ts = ktime_to_timespec64(t); |
| 2274 | } |
| 2275 | EXPORT_SYMBOL_GPL(getboottime64); |
| 2276 | |
| 2277 | void ktime_get_coarse_real_ts64(struct timespec64 *ts) |
| 2278 | { |
| 2279 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2280 | unsigned int seq; |
| 2281 | |
| 2282 | do { |
| 2283 | seq = read_seqcount_begin(&tk_core.seq); |
| 2284 | |
| 2285 | *ts = tk_xtime_coarse(tk); |
| 2286 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 2287 | } |
| 2288 | EXPORT_SYMBOL(ktime_get_coarse_real_ts64); |
| 2289 | |
| 2290 | /** |
| 2291 | * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor |
| 2292 | * @ts: timespec64 to be filled |
| 2293 | * |
| 2294 | * Fetch the global mg_floor value, convert it to realtime and compare it |
| 2295 | * to the current coarse-grained time. Fill @ts with whichever is |
| 2296 | * latest. Note that this is a filesystem-specific interface and should be |
| 2297 | * avoided outside of that context. |
| 2298 | */ |
| 2299 | void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) |
| 2300 | { |
| 2301 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2302 | u64 floor = atomic64_read(&mg_floor); |
| 2303 | ktime_t f_real, offset, coarse; |
| 2304 | unsigned int seq; |
| 2305 | |
| 2306 | do { |
| 2307 | seq = read_seqcount_begin(&tk_core.seq); |
| 2308 | *ts = tk_xtime_coarse(tk); |
| 2309 | offset = tk_core.timekeeper.offs_real; |
| 2310 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 2311 | |
| 2312 | coarse = timespec64_to_ktime(*ts); |
| 2313 | f_real = ktime_add(floor, offset); |
| 2314 | if (ktime_after(f_real, coarse)) |
| 2315 | *ts = ktime_to_timespec64(f_real); |
| 2316 | } |
| 2317 | |
| 2318 | /** |
| 2319 | * ktime_get_real_ts64_mg - attempt to update floor value and return result |
| 2320 | * @ts: pointer to the timespec to be set |
| 2321 | * |
| 2322 | * Get a monotonic fine-grained time value and attempt to swap it into |
| 2323 | * mg_floor. If that succeeds then accept the new floor value. If it fails |
| 2324 | * then another task raced in during the interim time and updated the |
| 2325 | * floor. Since any update to the floor must be later than the previous |
| 2326 | * floor, either outcome is acceptable. |
| 2327 | * |
| 2328 | * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), |
| 2329 | * and determining that the resulting coarse-grained timestamp did not effect |
| 2330 | * a change in ctime. Any more recent floor value would effect a change to |
| 2331 | * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. |
| 2332 | * |
| 2333 | * @ts will be filled with the latest floor value, regardless of the outcome of |
| 2334 | * the cmpxchg. Note that this is a filesystem specific interface and should be |
| 2335 | * avoided outside of that context. |
| 2336 | */ |
| 2337 | void ktime_get_real_ts64_mg(struct timespec64 *ts) |
| 2338 | { |
| 2339 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2340 | ktime_t old = atomic64_read(&mg_floor); |
| 2341 | ktime_t offset, mono; |
| 2342 | unsigned int seq; |
| 2343 | u64 nsecs; |
| 2344 | |
| 2345 | do { |
| 2346 | seq = read_seqcount_begin(&tk_core.seq); |
| 2347 | |
| 2348 | ts->tv_sec = tk->xtime_sec; |
| 2349 | mono = tk->tkr_mono.base; |
| 2350 | nsecs = timekeeping_get_ns(&tk->tkr_mono); |
| 2351 | offset = tk_core.timekeeper.offs_real; |
| 2352 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 2353 | |
| 2354 | mono = ktime_add_ns(mono, nsecs); |
| 2355 | |
| 2356 | /* |
| 2357 | * Attempt to update the floor with the new time value. As any |
| 2358 | * update must be later then the existing floor, and would effect |
| 2359 | * a change to ctime from the perspective of the current task, |
| 2360 | * accept the resulting floor value regardless of the outcome of |
| 2361 | * the swap. |
| 2362 | */ |
| 2363 | if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { |
| 2364 | ts->tv_nsec = 0; |
| 2365 | timespec64_add_ns(ts, nsecs); |
| 2366 | timekeeping_inc_mg_floor_swaps(); |
| 2367 | } else { |
| 2368 | /* |
| 2369 | * Another task changed mg_floor since "old" was fetched. |
| 2370 | * "old" has been updated with the latest value of "mg_floor". |
| 2371 | * That value is newer than the previous floor value, which |
| 2372 | * is enough to effect a change to ctime. Accept it. |
| 2373 | */ |
| 2374 | *ts = ktime_to_timespec64(ktime_add(old, offset)); |
| 2375 | } |
| 2376 | } |
| 2377 | |
| 2378 | void ktime_get_coarse_ts64(struct timespec64 *ts) |
| 2379 | { |
| 2380 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2381 | struct timespec64 now, mono; |
| 2382 | unsigned int seq; |
| 2383 | |
| 2384 | do { |
| 2385 | seq = read_seqcount_begin(&tk_core.seq); |
| 2386 | |
| 2387 | now = tk_xtime_coarse(tk); |
| 2388 | mono = tk->wall_to_monotonic; |
| 2389 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 2390 | |
| 2391 | set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, |
| 2392 | now.tv_nsec + mono.tv_nsec); |
| 2393 | } |
| 2394 | EXPORT_SYMBOL(ktime_get_coarse_ts64); |
| 2395 | |
| 2396 | /* |
| 2397 | * Must hold jiffies_lock |
| 2398 | */ |
| 2399 | void do_timer(unsigned long ticks) |
| 2400 | { |
| 2401 | jiffies_64 += ticks; |
| 2402 | calc_global_load(); |
| 2403 | } |
| 2404 | |
| 2405 | /** |
| 2406 | * ktime_get_update_offsets_now - hrtimer helper |
| 2407 | * @cwsseq: pointer to check and store the clock was set sequence number |
| 2408 | * @offs_real: pointer to storage for monotonic -> realtime offset |
| 2409 | * @offs_boot: pointer to storage for monotonic -> boottime offset |
| 2410 | * @offs_tai: pointer to storage for monotonic -> clock tai offset |
| 2411 | * |
| 2412 | * Returns current monotonic time and updates the offsets if the |
| 2413 | * sequence number in @cwsseq and timekeeper.clock_was_set_seq are |
| 2414 | * different. |
| 2415 | * |
| 2416 | * Called from hrtimer_interrupt() or retrigger_next_event() |
| 2417 | */ |
| 2418 | ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, |
| 2419 | ktime_t *offs_boot, ktime_t *offs_tai) |
| 2420 | { |
| 2421 | struct timekeeper *tk = &tk_core.timekeeper; |
| 2422 | unsigned int seq; |
| 2423 | ktime_t base; |
| 2424 | u64 nsecs; |
| 2425 | |
| 2426 | do { |
| 2427 | seq = read_seqcount_begin(&tk_core.seq); |
| 2428 | |
| 2429 | base = tk->tkr_mono.base; |
| 2430 | nsecs = timekeeping_get_ns(&tk->tkr_mono); |
| 2431 | base = ktime_add_ns(base, nsecs); |
| 2432 | |
| 2433 | if (*cwsseq != tk->clock_was_set_seq) { |
| 2434 | *cwsseq = tk->clock_was_set_seq; |
| 2435 | *offs_real = tk->offs_real; |
| 2436 | *offs_boot = tk->offs_boot; |
| 2437 | *offs_tai = tk->offs_tai; |
| 2438 | } |
| 2439 | |
| 2440 | /* Handle leapsecond insertion adjustments */ |
| 2441 | if (unlikely(base >= tk->next_leap_ktime)) |
| 2442 | *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); |
| 2443 | |
| 2444 | } while (read_seqcount_retry(&tk_core.seq, seq)); |
| 2445 | |
| 2446 | return base; |
| 2447 | } |
| 2448 | |
| 2449 | /* |
| 2450 | * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex |
| 2451 | */ |
| 2452 | static int timekeeping_validate_timex(const struct __kernel_timex *txc) |
| 2453 | { |
| 2454 | if (txc->modes & ADJ_ADJTIME) { |
| 2455 | /* singleshot must not be used with any other mode bits */ |
| 2456 | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) |
| 2457 | return -EINVAL; |
| 2458 | if (!(txc->modes & ADJ_OFFSET_READONLY) && |
| 2459 | !capable(CAP_SYS_TIME)) |
| 2460 | return -EPERM; |
| 2461 | } else { |
| 2462 | /* In order to modify anything, you gotta be super-user! */ |
| 2463 | if (txc->modes && !capable(CAP_SYS_TIME)) |
| 2464 | return -EPERM; |
| 2465 | /* |
| 2466 | * if the quartz is off by more than 10% then |
| 2467 | * something is VERY wrong! |
| 2468 | */ |
| 2469 | if (txc->modes & ADJ_TICK && |
| 2470 | (txc->tick < 900000/USER_HZ || |
| 2471 | txc->tick > 1100000/USER_HZ)) |
| 2472 | return -EINVAL; |
| 2473 | } |
| 2474 | |
| 2475 | if (txc->modes & ADJ_SETOFFSET) { |
| 2476 | /* In order to inject time, you gotta be super-user! */ |
| 2477 | if (!capable(CAP_SYS_TIME)) |
| 2478 | return -EPERM; |
| 2479 | |
| 2480 | /* |
| 2481 | * Validate if a timespec/timeval used to inject a time |
| 2482 | * offset is valid. Offsets can be positive or negative, so |
| 2483 | * we don't check tv_sec. The value of the timeval/timespec |
| 2484 | * is the sum of its fields,but *NOTE*: |
| 2485 | * The field tv_usec/tv_nsec must always be non-negative and |
| 2486 | * we can't have more nanoseconds/microseconds than a second. |
| 2487 | */ |
| 2488 | if (txc->time.tv_usec < 0) |
| 2489 | return -EINVAL; |
| 2490 | |
| 2491 | if (txc->modes & ADJ_NANO) { |
| 2492 | if (txc->time.tv_usec >= NSEC_PER_SEC) |
| 2493 | return -EINVAL; |
| 2494 | } else { |
| 2495 | if (txc->time.tv_usec >= USEC_PER_SEC) |
| 2496 | return -EINVAL; |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | /* |
| 2501 | * Check for potential multiplication overflows that can |
| 2502 | * only happen on 64-bit systems: |
| 2503 | */ |
| 2504 | if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { |
| 2505 | if (LLONG_MIN / PPM_SCALE > txc->freq) |
| 2506 | return -EINVAL; |
| 2507 | if (LLONG_MAX / PPM_SCALE < txc->freq) |
| 2508 | return -EINVAL; |
| 2509 | } |
| 2510 | |
| 2511 | return 0; |
| 2512 | } |
| 2513 | |
| 2514 | /** |
| 2515 | * random_get_entropy_fallback - Returns the raw clock source value, |
| 2516 | * used by random.c for platforms with no valid random_get_entropy(). |
| 2517 | */ |
| 2518 | unsigned long random_get_entropy_fallback(void) |
| 2519 | { |
| 2520 | struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; |
| 2521 | struct clocksource *clock = READ_ONCE(tkr->clock); |
| 2522 | |
| 2523 | if (unlikely(timekeeping_suspended || !clock)) |
| 2524 | return 0; |
| 2525 | return clock->read(clock); |
| 2526 | } |
| 2527 | EXPORT_SYMBOL_GPL(random_get_entropy_fallback); |
| 2528 | |
| 2529 | /** |
| 2530 | * do_adjtimex() - Accessor function to NTP __do_adjtimex function |
| 2531 | * @txc: Pointer to kernel_timex structure containing NTP parameters |
| 2532 | */ |
| 2533 | int do_adjtimex(struct __kernel_timex *txc) |
| 2534 | { |
| 2535 | struct audit_ntp_data ad; |
| 2536 | bool offset_set = false; |
| 2537 | bool clock_set = false; |
| 2538 | struct timespec64 ts; |
| 2539 | int ret; |
| 2540 | |
| 2541 | /* Validate the data before disabling interrupts */ |
| 2542 | ret = timekeeping_validate_timex(txc); |
| 2543 | if (ret) |
| 2544 | return ret; |
| 2545 | add_device_randomness(txc, sizeof(*txc)); |
| 2546 | |
| 2547 | if (txc->modes & ADJ_SETOFFSET) { |
| 2548 | struct timespec64 delta; |
| 2549 | |
| 2550 | delta.tv_sec = txc->time.tv_sec; |
| 2551 | delta.tv_nsec = txc->time.tv_usec; |
| 2552 | if (!(txc->modes & ADJ_NANO)) |
| 2553 | delta.tv_nsec *= 1000; |
| 2554 | ret = timekeeping_inject_offset(&delta); |
| 2555 | if (ret) |
| 2556 | return ret; |
| 2557 | |
| 2558 | offset_set = delta.tv_sec != 0; |
| 2559 | audit_tk_injoffset(delta); |
| 2560 | } |
| 2561 | |
| 2562 | audit_ntp_init(&ad); |
| 2563 | |
| 2564 | ktime_get_real_ts64(&ts); |
| 2565 | add_device_randomness(&ts, sizeof(ts)); |
| 2566 | |
| 2567 | scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { |
| 2568 | struct timekeeper *tks = &tk_core.shadow_timekeeper; |
| 2569 | s32 orig_tai, tai; |
| 2570 | |
| 2571 | orig_tai = tai = tks->tai_offset; |
| 2572 | ret = __do_adjtimex(txc, &ts, &tai, &ad); |
| 2573 | |
| 2574 | if (tai != orig_tai) { |
| 2575 | __timekeeping_set_tai_offset(tks, tai); |
| 2576 | timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); |
| 2577 | clock_set = true; |
| 2578 | } else { |
| 2579 | tk_update_leap_state_all(&tk_core); |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | audit_ntp_log(&ad); |
| 2584 | |
| 2585 | /* Update the multiplier immediately if frequency was set directly */ |
| 2586 | if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) |
| 2587 | clock_set |= timekeeping_advance(TK_ADV_FREQ); |
| 2588 | |
| 2589 | if (clock_set) |
| 2590 | clock_was_set(CLOCK_SET_WALL); |
| 2591 | |
| 2592 | ntp_notify_cmos_timer(offset_set); |
| 2593 | |
| 2594 | return ret; |
| 2595 | } |
| 2596 | |
| 2597 | #ifdef CONFIG_NTP_PPS |
| 2598 | /** |
| 2599 | * hardpps() - Accessor function to NTP __hardpps function |
| 2600 | * @phase_ts: Pointer to timespec64 structure representing phase timestamp |
| 2601 | * @raw_ts: Pointer to timespec64 structure representing raw timestamp |
| 2602 | */ |
| 2603 | void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) |
| 2604 | { |
| 2605 | guard(raw_spinlock_irqsave)(&tk_core.lock); |
| 2606 | __hardpps(phase_ts, raw_ts); |
| 2607 | } |
| 2608 | EXPORT_SYMBOL(hardpps); |
| 2609 | #endif /* CONFIG_NTP_PPS */ |