| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This file contains the base functions to manage periodic tick |
| 4 | * related events. |
| 5 | * |
| 6 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| 7 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| 8 | * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner |
| 9 | */ |
| 10 | #include <linux/compiler.h> |
| 11 | #include <linux/cpu.h> |
| 12 | #include <linux/err.h> |
| 13 | #include <linux/hrtimer.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/nmi.h> |
| 16 | #include <linux/percpu.h> |
| 17 | #include <linux/profile.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <trace/events/power.h> |
| 21 | |
| 22 | #include <asm/irq_regs.h> |
| 23 | |
| 24 | #include "tick-internal.h" |
| 25 | |
| 26 | /* |
| 27 | * Tick devices |
| 28 | */ |
| 29 | DEFINE_PER_CPU(struct tick_device, tick_cpu_device); |
| 30 | /* |
| 31 | * Tick next event: keeps track of the tick time. It's updated by the |
| 32 | * CPU which handles the tick and protected by jiffies_lock. There is |
| 33 | * no requirement to write hold the jiffies seqcount for it. |
| 34 | */ |
| 35 | ktime_t tick_next_period; |
| 36 | |
| 37 | /* |
| 38 | * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR |
| 39 | * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This |
| 40 | * variable has two functions: |
| 41 | * |
| 42 | * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the |
| 43 | * timekeeping lock all at once. Only the CPU which is assigned to do the |
| 44 | * update is handling it. |
| 45 | * |
| 46 | * 2) Hand off the duty in the NOHZ idle case by setting the value to |
| 47 | * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks |
| 48 | * at it will take over and keep the time keeping alive. The handover |
| 49 | * procedure also covers cpu hotplug. |
| 50 | */ |
| 51 | int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; |
| 52 | #ifdef CONFIG_NO_HZ_FULL |
| 53 | /* |
| 54 | * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns |
| 55 | * tick_do_timer_cpu and it should be taken over by an eligible secondary |
| 56 | * when one comes online. |
| 57 | */ |
| 58 | static int tick_do_timer_boot_cpu __read_mostly = -1; |
| 59 | #endif |
| 60 | |
| 61 | /* |
| 62 | * Debugging: see timer_list.c |
| 63 | */ |
| 64 | struct tick_device *tick_get_device(int cpu) |
| 65 | { |
| 66 | return &per_cpu(tick_cpu_device, cpu); |
| 67 | } |
| 68 | |
| 69 | /** |
| 70 | * tick_is_oneshot_available - check for a oneshot capable event device |
| 71 | */ |
| 72 | int tick_is_oneshot_available(void) |
| 73 | { |
| 74 | struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); |
| 75 | |
| 76 | if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) |
| 77 | return 0; |
| 78 | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 79 | return 1; |
| 80 | return tick_broadcast_oneshot_available(); |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Periodic tick |
| 85 | */ |
| 86 | static void tick_periodic(int cpu) |
| 87 | { |
| 88 | if (READ_ONCE(tick_do_timer_cpu) == cpu) { |
| 89 | raw_spin_lock(&jiffies_lock); |
| 90 | write_seqcount_begin(&jiffies_seq); |
| 91 | |
| 92 | /* Keep track of the next tick event */ |
| 93 | tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); |
| 94 | |
| 95 | do_timer(1); |
| 96 | write_seqcount_end(&jiffies_seq); |
| 97 | raw_spin_unlock(&jiffies_lock); |
| 98 | update_wall_time(); |
| 99 | } |
| 100 | |
| 101 | update_process_times(user_mode(get_irq_regs())); |
| 102 | profile_tick(CPU_PROFILING); |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Event handler for periodic ticks |
| 107 | */ |
| 108 | void tick_handle_periodic(struct clock_event_device *dev) |
| 109 | { |
| 110 | int cpu = smp_processor_id(); |
| 111 | ktime_t next = dev->next_event; |
| 112 | |
| 113 | tick_periodic(cpu); |
| 114 | |
| 115 | /* |
| 116 | * The cpu might have transitioned to HIGHRES or NOHZ mode via |
| 117 | * update_process_times() -> run_local_timers() -> |
| 118 | * hrtimer_run_queues(). |
| 119 | */ |
| 120 | if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) |
| 121 | return; |
| 122 | |
| 123 | if (!clockevent_state_oneshot(dev)) |
| 124 | return; |
| 125 | for (;;) { |
| 126 | /* |
| 127 | * Setup the next period for devices, which do not have |
| 128 | * periodic mode: |
| 129 | */ |
| 130 | next = ktime_add_ns(next, TICK_NSEC); |
| 131 | |
| 132 | if (!clockevents_program_event(dev, next, false)) |
| 133 | return; |
| 134 | /* |
| 135 | * Have to be careful here. If we're in oneshot mode, |
| 136 | * before we call tick_periodic() in a loop, we need |
| 137 | * to be sure we're using a real hardware clocksource. |
| 138 | * Otherwise we could get trapped in an infinite |
| 139 | * loop, as the tick_periodic() increments jiffies, |
| 140 | * which then will increment time, possibly causing |
| 141 | * the loop to trigger again and again. |
| 142 | */ |
| 143 | if (timekeeping_valid_for_hres()) |
| 144 | tick_periodic(cpu); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Setup the device for a periodic tick |
| 150 | */ |
| 151 | void tick_setup_periodic(struct clock_event_device *dev, int broadcast) |
| 152 | { |
| 153 | tick_set_periodic_handler(dev, broadcast); |
| 154 | |
| 155 | /* Broadcast setup ? */ |
| 156 | if (!tick_device_is_functional(dev)) |
| 157 | return; |
| 158 | |
| 159 | if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && |
| 160 | !tick_broadcast_oneshot_active()) { |
| 161 | clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); |
| 162 | } else { |
| 163 | unsigned int seq; |
| 164 | ktime_t next; |
| 165 | |
| 166 | do { |
| 167 | seq = read_seqcount_begin(&jiffies_seq); |
| 168 | next = tick_next_period; |
| 169 | } while (read_seqcount_retry(&jiffies_seq, seq)); |
| 170 | |
| 171 | clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); |
| 172 | |
| 173 | for (;;) { |
| 174 | if (!clockevents_program_event(dev, next, false)) |
| 175 | return; |
| 176 | next = ktime_add_ns(next, TICK_NSEC); |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * Setup the tick device |
| 183 | */ |
| 184 | static void tick_setup_device(struct tick_device *td, |
| 185 | struct clock_event_device *newdev, int cpu, |
| 186 | const struct cpumask *cpumask) |
| 187 | { |
| 188 | void (*handler)(struct clock_event_device *) = NULL; |
| 189 | ktime_t next_event = 0; |
| 190 | |
| 191 | /* |
| 192 | * First device setup ? |
| 193 | */ |
| 194 | if (!td->evtdev) { |
| 195 | /* |
| 196 | * If no cpu took the do_timer update, assign it to |
| 197 | * this cpu: |
| 198 | */ |
| 199 | if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) { |
| 200 | WRITE_ONCE(tick_do_timer_cpu, cpu); |
| 201 | tick_next_period = ktime_get(); |
| 202 | #ifdef CONFIG_NO_HZ_FULL |
| 203 | /* |
| 204 | * The boot CPU may be nohz_full, in which case the |
| 205 | * first housekeeping secondary will take do_timer() |
| 206 | * from it. |
| 207 | */ |
| 208 | if (tick_nohz_full_cpu(cpu)) |
| 209 | tick_do_timer_boot_cpu = cpu; |
| 210 | |
| 211 | } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) { |
| 212 | tick_do_timer_boot_cpu = -1; |
| 213 | /* |
| 214 | * The boot CPU will stay in periodic (NOHZ disabled) |
| 215 | * mode until clocksource_done_booting() called after |
| 216 | * smp_init() selects a high resolution clocksource and |
| 217 | * timekeeping_notify() kicks the NOHZ stuff alive. |
| 218 | * |
| 219 | * So this WRITE_ONCE can only race with the READ_ONCE |
| 220 | * check in tick_periodic() but this race is harmless. |
| 221 | */ |
| 222 | WRITE_ONCE(tick_do_timer_cpu, cpu); |
| 223 | #endif |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Startup in periodic mode first. |
| 228 | */ |
| 229 | td->mode = TICKDEV_MODE_PERIODIC; |
| 230 | } else { |
| 231 | handler = td->evtdev->event_handler; |
| 232 | next_event = td->evtdev->next_event; |
| 233 | td->evtdev->event_handler = clockevents_handle_noop; |
| 234 | } |
| 235 | |
| 236 | td->evtdev = newdev; |
| 237 | |
| 238 | /* |
| 239 | * When the device is not per cpu, pin the interrupt to the |
| 240 | * current cpu: |
| 241 | */ |
| 242 | if (!cpumask_equal(newdev->cpumask, cpumask)) |
| 243 | irq_set_affinity(newdev->irq, cpumask); |
| 244 | |
| 245 | /* |
| 246 | * When global broadcasting is active, check if the current |
| 247 | * device is registered as a placeholder for broadcast mode. |
| 248 | * This allows us to handle this x86 misfeature in a generic |
| 249 | * way. This function also returns !=0 when we keep the |
| 250 | * current active broadcast state for this CPU. |
| 251 | */ |
| 252 | if (tick_device_uses_broadcast(newdev, cpu)) |
| 253 | return; |
| 254 | |
| 255 | if (td->mode == TICKDEV_MODE_PERIODIC) |
| 256 | tick_setup_periodic(newdev, 0); |
| 257 | else |
| 258 | tick_setup_oneshot(newdev, handler, next_event); |
| 259 | } |
| 260 | |
| 261 | void tick_install_replacement(struct clock_event_device *newdev) |
| 262 | { |
| 263 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 264 | int cpu = smp_processor_id(); |
| 265 | |
| 266 | clockevents_exchange_device(td->evtdev, newdev); |
| 267 | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); |
| 268 | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) |
| 269 | tick_oneshot_notify(); |
| 270 | } |
| 271 | |
| 272 | static bool tick_check_percpu(struct clock_event_device *curdev, |
| 273 | struct clock_event_device *newdev, int cpu) |
| 274 | { |
| 275 | if (!cpumask_test_cpu(cpu, newdev->cpumask)) |
| 276 | return false; |
| 277 | if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) |
| 278 | return true; |
| 279 | /* Check if irq affinity can be set */ |
| 280 | if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) |
| 281 | return false; |
| 282 | /* Prefer an existing cpu local device */ |
| 283 | if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) |
| 284 | return false; |
| 285 | return true; |
| 286 | } |
| 287 | |
| 288 | static bool tick_check_preferred(struct clock_event_device *curdev, |
| 289 | struct clock_event_device *newdev) |
| 290 | { |
| 291 | /* Prefer oneshot capable device */ |
| 292 | if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { |
| 293 | if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) |
| 294 | return false; |
| 295 | if (tick_oneshot_mode_active()) |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Use the higher rated one, but prefer a CPU local device with a lower |
| 301 | * rating than a non-CPU local device |
| 302 | */ |
| 303 | return !curdev || |
| 304 | newdev->rating > curdev->rating || |
| 305 | !cpumask_equal(curdev->cpumask, newdev->cpumask); |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Check whether the new device is a better fit than curdev. curdev |
| 310 | * can be NULL ! |
| 311 | */ |
| 312 | bool tick_check_replacement(struct clock_event_device *curdev, |
| 313 | struct clock_event_device *newdev) |
| 314 | { |
| 315 | if (!tick_check_percpu(curdev, newdev, smp_processor_id())) |
| 316 | return false; |
| 317 | |
| 318 | return tick_check_preferred(curdev, newdev); |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * Check, if the new registered device should be used. Called with |
| 323 | * clockevents_lock held and interrupts disabled. |
| 324 | */ |
| 325 | void tick_check_new_device(struct clock_event_device *newdev) |
| 326 | { |
| 327 | struct clock_event_device *curdev; |
| 328 | struct tick_device *td; |
| 329 | int cpu; |
| 330 | |
| 331 | cpu = smp_processor_id(); |
| 332 | td = &per_cpu(tick_cpu_device, cpu); |
| 333 | curdev = td->evtdev; |
| 334 | |
| 335 | if (!tick_check_replacement(curdev, newdev)) |
| 336 | goto out_bc; |
| 337 | |
| 338 | if (!try_module_get(newdev->owner)) |
| 339 | return; |
| 340 | |
| 341 | /* |
| 342 | * Replace the eventually existing device by the new |
| 343 | * device. If the current device is the broadcast device, do |
| 344 | * not give it back to the clockevents layer ! |
| 345 | */ |
| 346 | if (tick_is_broadcast_device(curdev)) { |
| 347 | clockevents_shutdown(curdev); |
| 348 | curdev = NULL; |
| 349 | } |
| 350 | clockevents_exchange_device(curdev, newdev); |
| 351 | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); |
| 352 | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) |
| 353 | tick_oneshot_notify(); |
| 354 | return; |
| 355 | |
| 356 | out_bc: |
| 357 | /* |
| 358 | * Can the new device be used as a broadcast device ? |
| 359 | */ |
| 360 | tick_install_broadcast_device(newdev, cpu); |
| 361 | } |
| 362 | |
| 363 | /** |
| 364 | * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode |
| 365 | * @state: The target state (enter/exit) |
| 366 | * |
| 367 | * The system enters/leaves a state, where affected devices might stop |
| 368 | * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. |
| 369 | * |
| 370 | * Called with interrupts disabled, so clockevents_lock is not |
| 371 | * required here because the local clock event device cannot go away |
| 372 | * under us. |
| 373 | */ |
| 374 | int tick_broadcast_oneshot_control(enum tick_broadcast_state state) |
| 375 | { |
| 376 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 377 | |
| 378 | if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 379 | return 0; |
| 380 | |
| 381 | return __tick_broadcast_oneshot_control(state); |
| 382 | } |
| 383 | EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); |
| 384 | |
| 385 | #ifdef CONFIG_HOTPLUG_CPU |
| 386 | void tick_assert_timekeeping_handover(void) |
| 387 | { |
| 388 | WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); |
| 389 | } |
| 390 | /* |
| 391 | * Stop the tick and transfer the timekeeping job away from a dying cpu. |
| 392 | */ |
| 393 | int tick_cpu_dying(unsigned int dying_cpu) |
| 394 | { |
| 395 | /* |
| 396 | * If the current CPU is the timekeeper, it's the only one that can |
| 397 | * safely hand over its duty. Also all online CPUs are in stop |
| 398 | * machine, guaranteed not to be idle, therefore there is no |
| 399 | * concurrency and it's safe to pick any online successor. |
| 400 | */ |
| 401 | if (tick_do_timer_cpu == dying_cpu) |
| 402 | tick_do_timer_cpu = cpumask_first(cpu_online_mask); |
| 403 | |
| 404 | /* Make sure the CPU won't try to retake the timekeeping duty */ |
| 405 | tick_sched_timer_dying(dying_cpu); |
| 406 | |
| 407 | /* Remove CPU from timer broadcasting */ |
| 408 | tick_offline_cpu(dying_cpu); |
| 409 | |
| 410 | return 0; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * Shutdown an event device on a given cpu: |
| 415 | * |
| 416 | * This is called on a life CPU, when a CPU is dead. So we cannot |
| 417 | * access the hardware device itself. |
| 418 | * We just set the mode and remove it from the lists. |
| 419 | */ |
| 420 | void tick_shutdown(unsigned int cpu) |
| 421 | { |
| 422 | struct tick_device *td = &per_cpu(tick_cpu_device, cpu); |
| 423 | struct clock_event_device *dev = td->evtdev; |
| 424 | |
| 425 | td->mode = TICKDEV_MODE_PERIODIC; |
| 426 | if (dev) { |
| 427 | /* |
| 428 | * Prevent that the clock events layer tries to call |
| 429 | * the set mode function! |
| 430 | */ |
| 431 | clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); |
| 432 | clockevents_exchange_device(dev, NULL); |
| 433 | dev->event_handler = clockevents_handle_noop; |
| 434 | td->evtdev = NULL; |
| 435 | } |
| 436 | } |
| 437 | #endif |
| 438 | |
| 439 | /** |
| 440 | * tick_suspend_local - Suspend the local tick device |
| 441 | * |
| 442 | * Called from the local cpu for freeze with interrupts disabled. |
| 443 | * |
| 444 | * No locks required. Nothing can change the per cpu device. |
| 445 | */ |
| 446 | void tick_suspend_local(void) |
| 447 | { |
| 448 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 449 | |
| 450 | clockevents_shutdown(td->evtdev); |
| 451 | } |
| 452 | |
| 453 | /** |
| 454 | * tick_resume_local - Resume the local tick device |
| 455 | * |
| 456 | * Called from the local CPU for unfreeze or XEN resume magic. |
| 457 | * |
| 458 | * No locks required. Nothing can change the per cpu device. |
| 459 | */ |
| 460 | void tick_resume_local(void) |
| 461 | { |
| 462 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 463 | bool broadcast = tick_resume_check_broadcast(); |
| 464 | |
| 465 | clockevents_tick_resume(td->evtdev); |
| 466 | if (!broadcast) { |
| 467 | if (td->mode == TICKDEV_MODE_PERIODIC) |
| 468 | tick_setup_periodic(td->evtdev, 0); |
| 469 | else |
| 470 | tick_resume_oneshot(); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * Ensure that hrtimers are up to date and the clockevents device |
| 475 | * is reprogrammed correctly when high resolution timers are |
| 476 | * enabled. |
| 477 | */ |
| 478 | hrtimers_resume_local(); |
| 479 | } |
| 480 | |
| 481 | /** |
| 482 | * tick_suspend - Suspend the tick and the broadcast device |
| 483 | * |
| 484 | * Called from syscore_suspend() via timekeeping_suspend with only one |
| 485 | * CPU online and interrupts disabled or from tick_unfreeze() under |
| 486 | * tick_freeze_lock. |
| 487 | * |
| 488 | * No locks required. Nothing can change the per cpu device. |
| 489 | */ |
| 490 | void tick_suspend(void) |
| 491 | { |
| 492 | tick_suspend_local(); |
| 493 | tick_suspend_broadcast(); |
| 494 | } |
| 495 | |
| 496 | /** |
| 497 | * tick_resume - Resume the tick and the broadcast device |
| 498 | * |
| 499 | * Called from syscore_resume() via timekeeping_resume with only one |
| 500 | * CPU online and interrupts disabled. |
| 501 | * |
| 502 | * No locks required. Nothing can change the per cpu device. |
| 503 | */ |
| 504 | void tick_resume(void) |
| 505 | { |
| 506 | tick_resume_broadcast(); |
| 507 | tick_resume_local(); |
| 508 | } |
| 509 | |
| 510 | #ifdef CONFIG_SUSPEND |
| 511 | static DEFINE_RAW_SPINLOCK(tick_freeze_lock); |
| 512 | static DEFINE_WAIT_OVERRIDE_MAP(tick_freeze_map, LD_WAIT_SLEEP); |
| 513 | static unsigned int tick_freeze_depth; |
| 514 | |
| 515 | /** |
| 516 | * tick_freeze - Suspend the local tick and (possibly) timekeeping. |
| 517 | * |
| 518 | * Check if this is the last online CPU executing the function and if so, |
| 519 | * suspend timekeeping. Otherwise suspend the local tick. |
| 520 | * |
| 521 | * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). |
| 522 | * Interrupts must not be enabled before the subsequent %tick_unfreeze(). |
| 523 | */ |
| 524 | void tick_freeze(void) |
| 525 | { |
| 526 | raw_spin_lock(&tick_freeze_lock); |
| 527 | |
| 528 | tick_freeze_depth++; |
| 529 | if (tick_freeze_depth == num_online_cpus()) { |
| 530 | trace_suspend_resume(TPS("timekeeping_freeze"), |
| 531 | smp_processor_id(), true); |
| 532 | /* |
| 533 | * All other CPUs have their interrupts disabled and are |
| 534 | * suspended to idle. Other tasks have been frozen so there |
| 535 | * is no scheduling happening. This means that there is no |
| 536 | * concurrency in the system at this point. Therefore it is |
| 537 | * okay to acquire a sleeping lock on PREEMPT_RT, such as a |
| 538 | * spinlock, because the lock cannot be held by other CPUs |
| 539 | * or threads and acquiring it cannot block. |
| 540 | * |
| 541 | * Inform lockdep about the situation. |
| 542 | */ |
| 543 | lock_map_acquire_try(&tick_freeze_map); |
| 544 | system_state = SYSTEM_SUSPEND; |
| 545 | sched_clock_suspend(); |
| 546 | timekeeping_suspend(); |
| 547 | lock_map_release(&tick_freeze_map); |
| 548 | } else { |
| 549 | tick_suspend_local(); |
| 550 | } |
| 551 | |
| 552 | raw_spin_unlock(&tick_freeze_lock); |
| 553 | } |
| 554 | |
| 555 | /** |
| 556 | * tick_unfreeze - Resume the local tick and (possibly) timekeeping. |
| 557 | * |
| 558 | * Check if this is the first CPU executing the function and if so, resume |
| 559 | * timekeeping. Otherwise resume the local tick. |
| 560 | * |
| 561 | * Call with interrupts disabled. Must be balanced with %tick_freeze(). |
| 562 | * Interrupts must not be enabled after the preceding %tick_freeze(). |
| 563 | */ |
| 564 | void tick_unfreeze(void) |
| 565 | { |
| 566 | raw_spin_lock(&tick_freeze_lock); |
| 567 | |
| 568 | if (tick_freeze_depth == num_online_cpus()) { |
| 569 | /* |
| 570 | * Similar to tick_freeze(). On resumption the first CPU may |
| 571 | * acquire uncontended sleeping locks while other CPUs block on |
| 572 | * tick_freeze_lock. |
| 573 | */ |
| 574 | lock_map_acquire_try(&tick_freeze_map); |
| 575 | timekeeping_resume(); |
| 576 | sched_clock_resume(); |
| 577 | lock_map_release(&tick_freeze_map); |
| 578 | |
| 579 | system_state = SYSTEM_RUNNING; |
| 580 | trace_suspend_resume(TPS("timekeeping_freeze"), |
| 581 | smp_processor_id(), false); |
| 582 | } else { |
| 583 | touch_softlockup_watchdog(); |
| 584 | tick_resume_local(); |
| 585 | } |
| 586 | |
| 587 | tick_freeze_depth--; |
| 588 | |
| 589 | raw_spin_unlock(&tick_freeze_lock); |
| 590 | } |
| 591 | #endif /* CONFIG_SUSPEND */ |
| 592 | |
| 593 | /** |
| 594 | * tick_init - initialize the tick control |
| 595 | */ |
| 596 | void __init tick_init(void) |
| 597 | { |
| 598 | tick_broadcast_init(); |
| 599 | tick_nohz_init(); |
| 600 | } |