posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
[linux-2.6-block.git] / kernel / time / posix-timers.c
... / ...
CommitLineData
1/*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
37#include <linux/mutex.h>
38#include <linux/sched/task.h>
39
40#include <linux/uaccess.h>
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
44#include <linux/hash.h>
45#include <linux/posix-clock.h>
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50#include <linux/export.h>
51#include <linux/hashtable.h>
52#include <linux/compat.h>
53#include <linux/nospec.h>
54
55#include "timekeeping.h"
56#include "posix-timers.h"
57
58/*
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
65 */
66
67/*
68 * Lets keep our timers in a slab cache :-)
69 */
70static struct kmem_cache *posix_timers_cache;
71
72static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73static DEFINE_SPINLOCK(hash_lock);
74
75static const struct k_clock * const posix_clocks[];
76static const struct k_clock *clockid_to_kclock(const clockid_t id);
77static const struct k_clock clock_realtime, clock_monotonic;
78
79/*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86#endif
87
88/*
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
90 */
91#ifndef ENOTSUP
92# define ENANOSLEEP_NOTSUP EOPNOTSUPP
93#else
94# define ENANOSLEEP_NOTSUP ENOTSUP
95#endif
96
97/*
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
100 *
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
104 */
105
106/*
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
109 * clocks.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
121 *
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135
136#define lock_timer(tid, flags) \
137({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
139 __timr; \
140})
141
142static int hash(struct signal_struct *sig, unsigned int nr)
143{
144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145}
146
147static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 struct signal_struct *sig,
149 timer_t id)
150{
151 struct k_itimer *timer;
152
153 hlist_for_each_entry_rcu(timer, head, t_hash) {
154 if ((timer->it_signal == sig) && (timer->it_id == id))
155 return timer;
156 }
157 return NULL;
158}
159
160static struct k_itimer *posix_timer_by_id(timer_t id)
161{
162 struct signal_struct *sig = current->signal;
163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164
165 return __posix_timers_find(head, sig, id);
166}
167
168static int posix_timer_add(struct k_itimer *timer)
169{
170 struct signal_struct *sig = current->signal;
171 int first_free_id = sig->posix_timer_id;
172 struct hlist_head *head;
173 int ret = -ENOENT;
174
175 do {
176 spin_lock(&hash_lock);
177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 hlist_add_head_rcu(&timer->t_hash, head);
180 ret = sig->posix_timer_id;
181 }
182 if (++sig->posix_timer_id < 0)
183 sig->posix_timer_id = 0;
184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 /* Loop over all possible ids completed */
186 ret = -EAGAIN;
187 spin_unlock(&hash_lock);
188 } while (ret == -ENOENT);
189 return ret;
190}
191
192static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193{
194 spin_unlock_irqrestore(&timr->it_lock, flags);
195}
196
197/* Get clock_realtime */
198static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199{
200 ktime_get_real_ts64(tp);
201 return 0;
202}
203
204/* Set clock_realtime */
205static int posix_clock_realtime_set(const clockid_t which_clock,
206 const struct timespec64 *tp)
207{
208 return do_sys_settimeofday64(tp, NULL);
209}
210
211static int posix_clock_realtime_adj(const clockid_t which_clock,
212 struct timex *t)
213{
214 return do_adjtimex(t);
215}
216
217/*
218 * Get monotonic time for posix timers
219 */
220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221{
222 ktime_get_ts64(tp);
223 return 0;
224}
225
226/*
227 * Get monotonic-raw time for posix timers
228 */
229static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230{
231 getrawmonotonic64(tp);
232 return 0;
233}
234
235
236static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237{
238 *tp = current_kernel_time64();
239 return 0;
240}
241
242static int posix_get_monotonic_coarse(clockid_t which_clock,
243 struct timespec64 *tp)
244{
245 *tp = get_monotonic_coarse64();
246 return 0;
247}
248
249static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250{
251 *tp = ktime_to_timespec64(KTIME_LOW_RES);
252 return 0;
253}
254
255static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
256{
257 timekeeping_clocktai64(tp);
258 return 0;
259}
260
261static int posix_get_monotonic_active(clockid_t which_clock,
262 struct timespec64 *tp)
263{
264 ktime_get_active_ts64(tp);
265 return 0;
266}
267
268static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
269{
270 tp->tv_sec = 0;
271 tp->tv_nsec = hrtimer_resolution;
272 return 0;
273}
274
275/*
276 * Initialize everything, well, just everything in Posix clocks/timers ;)
277 */
278static __init int init_posix_timers(void)
279{
280 posix_timers_cache = kmem_cache_create("posix_timers_cache",
281 sizeof (struct k_itimer), 0, SLAB_PANIC,
282 NULL);
283 return 0;
284}
285__initcall(init_posix_timers);
286
287static void common_hrtimer_rearm(struct k_itimer *timr)
288{
289 struct hrtimer *timer = &timr->it.real.timer;
290
291 if (!timr->it_interval)
292 return;
293
294 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
295 timer->base->get_time(),
296 timr->it_interval);
297 hrtimer_restart(timer);
298}
299
300/*
301 * This function is exported for use by the signal deliver code. It is
302 * called just prior to the info block being released and passes that
303 * block to us. It's function is to update the overrun entry AND to
304 * restart the timer. It should only be called if the timer is to be
305 * restarted (i.e. we have flagged this in the sys_private entry of the
306 * info block).
307 *
308 * To protect against the timer going away while the interrupt is queued,
309 * we require that the it_requeue_pending flag be set.
310 */
311void posixtimer_rearm(struct siginfo *info)
312{
313 struct k_itimer *timr;
314 unsigned long flags;
315
316 timr = lock_timer(info->si_tid, &flags);
317 if (!timr)
318 return;
319
320 if (timr->it_requeue_pending == info->si_sys_private) {
321 timr->kclock->timer_rearm(timr);
322
323 timr->it_active = 1;
324 timr->it_overrun_last = timr->it_overrun;
325 timr->it_overrun = -1;
326 ++timr->it_requeue_pending;
327
328 info->si_overrun += timr->it_overrun_last;
329 }
330
331 unlock_timer(timr, flags);
332}
333
334int posix_timer_event(struct k_itimer *timr, int si_private)
335{
336 struct task_struct *task;
337 int shared, ret = -1;
338 /*
339 * FIXME: if ->sigq is queued we can race with
340 * dequeue_signal()->posixtimer_rearm().
341 *
342 * If dequeue_signal() sees the "right" value of
343 * si_sys_private it calls posixtimer_rearm().
344 * We re-queue ->sigq and drop ->it_lock().
345 * posixtimer_rearm() locks the timer
346 * and re-schedules it while ->sigq is pending.
347 * Not really bad, but not that we want.
348 */
349 timr->sigq->info.si_sys_private = si_private;
350
351 rcu_read_lock();
352 task = pid_task(timr->it_pid, PIDTYPE_PID);
353 if (task) {
354 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
355 ret = send_sigqueue(timr->sigq, task, shared);
356 }
357 rcu_read_unlock();
358 /* If we failed to send the signal the timer stops. */
359 return ret > 0;
360}
361
362/*
363 * This function gets called when a POSIX.1b interval timer expires. It
364 * is used as a callback from the kernel internal timer. The
365 * run_timer_list code ALWAYS calls with interrupts on.
366
367 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
368 */
369static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
370{
371 struct k_itimer *timr;
372 unsigned long flags;
373 int si_private = 0;
374 enum hrtimer_restart ret = HRTIMER_NORESTART;
375
376 timr = container_of(timer, struct k_itimer, it.real.timer);
377 spin_lock_irqsave(&timr->it_lock, flags);
378
379 timr->it_active = 0;
380 if (timr->it_interval != 0)
381 si_private = ++timr->it_requeue_pending;
382
383 if (posix_timer_event(timr, si_private)) {
384 /*
385 * signal was not sent because of sig_ignor
386 * we will not get a call back to restart it AND
387 * it should be restarted.
388 */
389 if (timr->it_interval != 0) {
390 ktime_t now = hrtimer_cb_get_time(timer);
391
392 /*
393 * FIXME: What we really want, is to stop this
394 * timer completely and restart it in case the
395 * SIG_IGN is removed. This is a non trivial
396 * change which involves sighand locking
397 * (sigh !), which we don't want to do late in
398 * the release cycle.
399 *
400 * For now we just let timers with an interval
401 * less than a jiffie expire every jiffie to
402 * avoid softirq starvation in case of SIG_IGN
403 * and a very small interval, which would put
404 * the timer right back on the softirq pending
405 * list. By moving now ahead of time we trick
406 * hrtimer_forward() to expire the timer
407 * later, while we still maintain the overrun
408 * accuracy, but have some inconsistency in
409 * the timer_gettime() case. This is at least
410 * better than a starved softirq. A more
411 * complex fix which solves also another related
412 * inconsistency is already in the pipeline.
413 */
414#ifdef CONFIG_HIGH_RES_TIMERS
415 {
416 ktime_t kj = NSEC_PER_SEC / HZ;
417
418 if (timr->it_interval < kj)
419 now = ktime_add(now, kj);
420 }
421#endif
422 timr->it_overrun += (unsigned int)
423 hrtimer_forward(timer, now,
424 timr->it_interval);
425 ret = HRTIMER_RESTART;
426 ++timr->it_requeue_pending;
427 timr->it_active = 1;
428 }
429 }
430
431 unlock_timer(timr, flags);
432 return ret;
433}
434
435static struct pid *good_sigevent(sigevent_t * event)
436{
437 struct task_struct *rtn = current->group_leader;
438
439 switch (event->sigev_notify) {
440 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
441 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
442 if (!rtn || !same_thread_group(rtn, current))
443 return NULL;
444 /* FALLTHRU */
445 case SIGEV_SIGNAL:
446 case SIGEV_THREAD:
447 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
448 return NULL;
449 /* FALLTHRU */
450 case SIGEV_NONE:
451 return task_pid(rtn);
452 default:
453 return NULL;
454 }
455}
456
457static struct k_itimer * alloc_posix_timer(void)
458{
459 struct k_itimer *tmr;
460 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
461 if (!tmr)
462 return tmr;
463 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
464 kmem_cache_free(posix_timers_cache, tmr);
465 return NULL;
466 }
467 clear_siginfo(&tmr->sigq->info);
468 return tmr;
469}
470
471static void k_itimer_rcu_free(struct rcu_head *head)
472{
473 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
474
475 kmem_cache_free(posix_timers_cache, tmr);
476}
477
478#define IT_ID_SET 1
479#define IT_ID_NOT_SET 0
480static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
481{
482 if (it_id_set) {
483 unsigned long flags;
484 spin_lock_irqsave(&hash_lock, flags);
485 hlist_del_rcu(&tmr->t_hash);
486 spin_unlock_irqrestore(&hash_lock, flags);
487 }
488 put_pid(tmr->it_pid);
489 sigqueue_free(tmr->sigq);
490 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
491}
492
493static int common_timer_create(struct k_itimer *new_timer)
494{
495 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
496 return 0;
497}
498
499/* Create a POSIX.1b interval timer. */
500static int do_timer_create(clockid_t which_clock, struct sigevent *event,
501 timer_t __user *created_timer_id)
502{
503 const struct k_clock *kc = clockid_to_kclock(which_clock);
504 struct k_itimer *new_timer;
505 int error, new_timer_id;
506 int it_id_set = IT_ID_NOT_SET;
507
508 if (!kc)
509 return -EINVAL;
510 if (!kc->timer_create)
511 return -EOPNOTSUPP;
512
513 new_timer = alloc_posix_timer();
514 if (unlikely(!new_timer))
515 return -EAGAIN;
516
517 spin_lock_init(&new_timer->it_lock);
518 new_timer_id = posix_timer_add(new_timer);
519 if (new_timer_id < 0) {
520 error = new_timer_id;
521 goto out;
522 }
523
524 it_id_set = IT_ID_SET;
525 new_timer->it_id = (timer_t) new_timer_id;
526 new_timer->it_clock = which_clock;
527 new_timer->kclock = kc;
528 new_timer->it_overrun = -1;
529
530 if (event) {
531 rcu_read_lock();
532 new_timer->it_pid = get_pid(good_sigevent(event));
533 rcu_read_unlock();
534 if (!new_timer->it_pid) {
535 error = -EINVAL;
536 goto out;
537 }
538 new_timer->it_sigev_notify = event->sigev_notify;
539 new_timer->sigq->info.si_signo = event->sigev_signo;
540 new_timer->sigq->info.si_value = event->sigev_value;
541 } else {
542 new_timer->it_sigev_notify = SIGEV_SIGNAL;
543 new_timer->sigq->info.si_signo = SIGALRM;
544 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
545 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
546 new_timer->it_pid = get_pid(task_tgid(current));
547 }
548
549 new_timer->sigq->info.si_tid = new_timer->it_id;
550 new_timer->sigq->info.si_code = SI_TIMER;
551
552 if (copy_to_user(created_timer_id,
553 &new_timer_id, sizeof (new_timer_id))) {
554 error = -EFAULT;
555 goto out;
556 }
557
558 error = kc->timer_create(new_timer);
559 if (error)
560 goto out;
561
562 spin_lock_irq(&current->sighand->siglock);
563 new_timer->it_signal = current->signal;
564 list_add(&new_timer->list, &current->signal->posix_timers);
565 spin_unlock_irq(&current->sighand->siglock);
566
567 return 0;
568 /*
569 * In the case of the timer belonging to another task, after
570 * the task is unlocked, the timer is owned by the other task
571 * and may cease to exist at any time. Don't use or modify
572 * new_timer after the unlock call.
573 */
574out:
575 release_posix_timer(new_timer, it_id_set);
576 return error;
577}
578
579SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
580 struct sigevent __user *, timer_event_spec,
581 timer_t __user *, created_timer_id)
582{
583 if (timer_event_spec) {
584 sigevent_t event;
585
586 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
587 return -EFAULT;
588 return do_timer_create(which_clock, &event, created_timer_id);
589 }
590 return do_timer_create(which_clock, NULL, created_timer_id);
591}
592
593#ifdef CONFIG_COMPAT
594COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
595 struct compat_sigevent __user *, timer_event_spec,
596 timer_t __user *, created_timer_id)
597{
598 if (timer_event_spec) {
599 sigevent_t event;
600
601 if (get_compat_sigevent(&event, timer_event_spec))
602 return -EFAULT;
603 return do_timer_create(which_clock, &event, created_timer_id);
604 }
605 return do_timer_create(which_clock, NULL, created_timer_id);
606}
607#endif
608
609/*
610 * Locking issues: We need to protect the result of the id look up until
611 * we get the timer locked down so it is not deleted under us. The
612 * removal is done under the idr spinlock so we use that here to bridge
613 * the find to the timer lock. To avoid a dead lock, the timer id MUST
614 * be release with out holding the timer lock.
615 */
616static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
617{
618 struct k_itimer *timr;
619
620 /*
621 * timer_t could be any type >= int and we want to make sure any
622 * @timer_id outside positive int range fails lookup.
623 */
624 if ((unsigned long long)timer_id > INT_MAX)
625 return NULL;
626
627 rcu_read_lock();
628 timr = posix_timer_by_id(timer_id);
629 if (timr) {
630 spin_lock_irqsave(&timr->it_lock, *flags);
631 if (timr->it_signal == current->signal) {
632 rcu_read_unlock();
633 return timr;
634 }
635 spin_unlock_irqrestore(&timr->it_lock, *flags);
636 }
637 rcu_read_unlock();
638
639 return NULL;
640}
641
642static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
643{
644 struct hrtimer *timer = &timr->it.real.timer;
645
646 return __hrtimer_expires_remaining_adjusted(timer, now);
647}
648
649static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
650{
651 struct hrtimer *timer = &timr->it.real.timer;
652
653 return (int)hrtimer_forward(timer, now, timr->it_interval);
654}
655
656/*
657 * Get the time remaining on a POSIX.1b interval timer. This function
658 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
659 * mess with irq.
660 *
661 * We have a couple of messes to clean up here. First there is the case
662 * of a timer that has a requeue pending. These timers should appear to
663 * be in the timer list with an expiry as if we were to requeue them
664 * now.
665 *
666 * The second issue is the SIGEV_NONE timer which may be active but is
667 * not really ever put in the timer list (to save system resources).
668 * This timer may be expired, and if so, we will do it here. Otherwise
669 * it is the same as a requeue pending timer WRT to what we should
670 * report.
671 */
672void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
673{
674 const struct k_clock *kc = timr->kclock;
675 ktime_t now, remaining, iv;
676 struct timespec64 ts64;
677 bool sig_none;
678
679 sig_none = timr->it_sigev_notify == SIGEV_NONE;
680 iv = timr->it_interval;
681
682 /* interval timer ? */
683 if (iv) {
684 cur_setting->it_interval = ktime_to_timespec64(iv);
685 } else if (!timr->it_active) {
686 /*
687 * SIGEV_NONE oneshot timers are never queued. Check them
688 * below.
689 */
690 if (!sig_none)
691 return;
692 }
693
694 /*
695 * The timespec64 based conversion is suboptimal, but it's not
696 * worth to implement yet another callback.
697 */
698 kc->clock_get(timr->it_clock, &ts64);
699 now = timespec64_to_ktime(ts64);
700
701 /*
702 * When a requeue is pending or this is a SIGEV_NONE timer move the
703 * expiry time forward by intervals, so expiry is > now.
704 */
705 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
706 timr->it_overrun += kc->timer_forward(timr, now);
707
708 remaining = kc->timer_remaining(timr, now);
709 /* Return 0 only, when the timer is expired and not pending */
710 if (remaining <= 0) {
711 /*
712 * A single shot SIGEV_NONE timer must return 0, when
713 * it is expired !
714 */
715 if (!sig_none)
716 cur_setting->it_value.tv_nsec = 1;
717 } else {
718 cur_setting->it_value = ktime_to_timespec64(remaining);
719 }
720}
721
722/* Get the time remaining on a POSIX.1b interval timer. */
723static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
724{
725 struct k_itimer *timr;
726 const struct k_clock *kc;
727 unsigned long flags;
728 int ret = 0;
729
730 timr = lock_timer(timer_id, &flags);
731 if (!timr)
732 return -EINVAL;
733
734 memset(setting, 0, sizeof(*setting));
735 kc = timr->kclock;
736 if (WARN_ON_ONCE(!kc || !kc->timer_get))
737 ret = -EINVAL;
738 else
739 kc->timer_get(timr, setting);
740
741 unlock_timer(timr, flags);
742 return ret;
743}
744
745/* Get the time remaining on a POSIX.1b interval timer. */
746SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
747 struct itimerspec __user *, setting)
748{
749 struct itimerspec64 cur_setting;
750
751 int ret = do_timer_gettime(timer_id, &cur_setting);
752 if (!ret) {
753 if (put_itimerspec64(&cur_setting, setting))
754 ret = -EFAULT;
755 }
756 return ret;
757}
758
759#ifdef CONFIG_COMPAT
760COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
761 struct compat_itimerspec __user *, setting)
762{
763 struct itimerspec64 cur_setting;
764
765 int ret = do_timer_gettime(timer_id, &cur_setting);
766 if (!ret) {
767 if (put_compat_itimerspec64(&cur_setting, setting))
768 ret = -EFAULT;
769 }
770 return ret;
771}
772#endif
773
774/*
775 * Get the number of overruns of a POSIX.1b interval timer. This is to
776 * be the overrun of the timer last delivered. At the same time we are
777 * accumulating overruns on the next timer. The overrun is frozen when
778 * the signal is delivered, either at the notify time (if the info block
779 * is not queued) or at the actual delivery time (as we are informed by
780 * the call back to posixtimer_rearm(). So all we need to do is
781 * to pick up the frozen overrun.
782 */
783SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
784{
785 struct k_itimer *timr;
786 int overrun;
787 unsigned long flags;
788
789 timr = lock_timer(timer_id, &flags);
790 if (!timr)
791 return -EINVAL;
792
793 overrun = timr->it_overrun_last;
794 unlock_timer(timr, flags);
795
796 return overrun;
797}
798
799static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
800 bool absolute, bool sigev_none)
801{
802 struct hrtimer *timer = &timr->it.real.timer;
803 enum hrtimer_mode mode;
804
805 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
806 /*
807 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
808 * clock modifications, so they become CLOCK_MONOTONIC based under the
809 * hood. See hrtimer_init(). Update timr->kclock, so the generic
810 * functions which use timr->kclock->clock_get() work.
811 *
812 * Note: it_clock stays unmodified, because the next timer_set() might
813 * use ABSTIME, so it needs to switch back.
814 */
815 if (timr->it_clock == CLOCK_REALTIME)
816 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
817
818 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
819 timr->it.real.timer.function = posix_timer_fn;
820
821 if (!absolute)
822 expires = ktime_add_safe(expires, timer->base->get_time());
823 hrtimer_set_expires(timer, expires);
824
825 if (!sigev_none)
826 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
827}
828
829static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
830{
831 return hrtimer_try_to_cancel(&timr->it.real.timer);
832}
833
834/* Set a POSIX.1b interval timer. */
835int common_timer_set(struct k_itimer *timr, int flags,
836 struct itimerspec64 *new_setting,
837 struct itimerspec64 *old_setting)
838{
839 const struct k_clock *kc = timr->kclock;
840 bool sigev_none;
841 ktime_t expires;
842
843 if (old_setting)
844 common_timer_get(timr, old_setting);
845
846 /* Prevent rearming by clearing the interval */
847 timr->it_interval = 0;
848 /*
849 * Careful here. On SMP systems the timer expiry function could be
850 * active and spinning on timr->it_lock.
851 */
852 if (kc->timer_try_to_cancel(timr) < 0)
853 return TIMER_RETRY;
854
855 timr->it_active = 0;
856 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
857 ~REQUEUE_PENDING;
858 timr->it_overrun_last = 0;
859
860 /* Switch off the timer when it_value is zero */
861 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
862 return 0;
863
864 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
865 expires = timespec64_to_ktime(new_setting->it_value);
866 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
867
868 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
869 timr->it_active = !sigev_none;
870 return 0;
871}
872
873static int do_timer_settime(timer_t timer_id, int flags,
874 struct itimerspec64 *new_spec64,
875 struct itimerspec64 *old_spec64)
876{
877 const struct k_clock *kc;
878 struct k_itimer *timr;
879 unsigned long flag;
880 int error = 0;
881
882 if (!timespec64_valid(&new_spec64->it_interval) ||
883 !timespec64_valid(&new_spec64->it_value))
884 return -EINVAL;
885
886 if (old_spec64)
887 memset(old_spec64, 0, sizeof(*old_spec64));
888retry:
889 timr = lock_timer(timer_id, &flag);
890 if (!timr)
891 return -EINVAL;
892
893 kc = timr->kclock;
894 if (WARN_ON_ONCE(!kc || !kc->timer_set))
895 error = -EINVAL;
896 else
897 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
898
899 unlock_timer(timr, flag);
900 if (error == TIMER_RETRY) {
901 old_spec64 = NULL; // We already got the old time...
902 goto retry;
903 }
904
905 return error;
906}
907
908/* Set a POSIX.1b interval timer */
909SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
910 const struct itimerspec __user *, new_setting,
911 struct itimerspec __user *, old_setting)
912{
913 struct itimerspec64 new_spec, old_spec;
914 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
915 int error = 0;
916
917 if (!new_setting)
918 return -EINVAL;
919
920 if (get_itimerspec64(&new_spec, new_setting))
921 return -EFAULT;
922
923 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
924 if (!error && old_setting) {
925 if (put_itimerspec64(&old_spec, old_setting))
926 error = -EFAULT;
927 }
928 return error;
929}
930
931#ifdef CONFIG_COMPAT
932COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
933 struct compat_itimerspec __user *, new,
934 struct compat_itimerspec __user *, old)
935{
936 struct itimerspec64 new_spec, old_spec;
937 struct itimerspec64 *rtn = old ? &old_spec : NULL;
938 int error = 0;
939
940 if (!new)
941 return -EINVAL;
942 if (get_compat_itimerspec64(&new_spec, new))
943 return -EFAULT;
944
945 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
946 if (!error && old) {
947 if (put_compat_itimerspec64(&old_spec, old))
948 error = -EFAULT;
949 }
950 return error;
951}
952#endif
953
954int common_timer_del(struct k_itimer *timer)
955{
956 const struct k_clock *kc = timer->kclock;
957
958 timer->it_interval = 0;
959 if (kc->timer_try_to_cancel(timer) < 0)
960 return TIMER_RETRY;
961 timer->it_active = 0;
962 return 0;
963}
964
965static inline int timer_delete_hook(struct k_itimer *timer)
966{
967 const struct k_clock *kc = timer->kclock;
968
969 if (WARN_ON_ONCE(!kc || !kc->timer_del))
970 return -EINVAL;
971 return kc->timer_del(timer);
972}
973
974/* Delete a POSIX.1b interval timer. */
975SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
976{
977 struct k_itimer *timer;
978 unsigned long flags;
979
980retry_delete:
981 timer = lock_timer(timer_id, &flags);
982 if (!timer)
983 return -EINVAL;
984
985 if (timer_delete_hook(timer) == TIMER_RETRY) {
986 unlock_timer(timer, flags);
987 goto retry_delete;
988 }
989
990 spin_lock(&current->sighand->siglock);
991 list_del(&timer->list);
992 spin_unlock(&current->sighand->siglock);
993 /*
994 * This keeps any tasks waiting on the spin lock from thinking
995 * they got something (see the lock code above).
996 */
997 timer->it_signal = NULL;
998
999 unlock_timer(timer, flags);
1000 release_posix_timer(timer, IT_ID_SET);
1001 return 0;
1002}
1003
1004/*
1005 * return timer owned by the process, used by exit_itimers
1006 */
1007static void itimer_delete(struct k_itimer *timer)
1008{
1009 unsigned long flags;
1010
1011retry_delete:
1012 spin_lock_irqsave(&timer->it_lock, flags);
1013
1014 if (timer_delete_hook(timer) == TIMER_RETRY) {
1015 unlock_timer(timer, flags);
1016 goto retry_delete;
1017 }
1018 list_del(&timer->list);
1019 /*
1020 * This keeps any tasks waiting on the spin lock from thinking
1021 * they got something (see the lock code above).
1022 */
1023 timer->it_signal = NULL;
1024
1025 unlock_timer(timer, flags);
1026 release_posix_timer(timer, IT_ID_SET);
1027}
1028
1029/*
1030 * This is called by do_exit or de_thread, only when there are no more
1031 * references to the shared signal_struct.
1032 */
1033void exit_itimers(struct signal_struct *sig)
1034{
1035 struct k_itimer *tmr;
1036
1037 while (!list_empty(&sig->posix_timers)) {
1038 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1039 itimer_delete(tmr);
1040 }
1041}
1042
1043SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1044 const struct timespec __user *, tp)
1045{
1046 const struct k_clock *kc = clockid_to_kclock(which_clock);
1047 struct timespec64 new_tp;
1048
1049 if (!kc || !kc->clock_set)
1050 return -EINVAL;
1051
1052 if (get_timespec64(&new_tp, tp))
1053 return -EFAULT;
1054
1055 return kc->clock_set(which_clock, &new_tp);
1056}
1057
1058SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1059 struct timespec __user *,tp)
1060{
1061 const struct k_clock *kc = clockid_to_kclock(which_clock);
1062 struct timespec64 kernel_tp;
1063 int error;
1064
1065 if (!kc)
1066 return -EINVAL;
1067
1068 error = kc->clock_get(which_clock, &kernel_tp);
1069
1070 if (!error && put_timespec64(&kernel_tp, tp))
1071 error = -EFAULT;
1072
1073 return error;
1074}
1075
1076SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1077 struct timex __user *, utx)
1078{
1079 const struct k_clock *kc = clockid_to_kclock(which_clock);
1080 struct timex ktx;
1081 int err;
1082
1083 if (!kc)
1084 return -EINVAL;
1085 if (!kc->clock_adj)
1086 return -EOPNOTSUPP;
1087
1088 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1089 return -EFAULT;
1090
1091 err = kc->clock_adj(which_clock, &ktx);
1092
1093 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1094 return -EFAULT;
1095
1096 return err;
1097}
1098
1099SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1100 struct timespec __user *, tp)
1101{
1102 const struct k_clock *kc = clockid_to_kclock(which_clock);
1103 struct timespec64 rtn_tp;
1104 int error;
1105
1106 if (!kc)
1107 return -EINVAL;
1108
1109 error = kc->clock_getres(which_clock, &rtn_tp);
1110
1111 if (!error && tp && put_timespec64(&rtn_tp, tp))
1112 error = -EFAULT;
1113
1114 return error;
1115}
1116
1117#ifdef CONFIG_COMPAT_32BIT_TIME
1118
1119COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1120 struct compat_timespec __user *, tp)
1121{
1122 const struct k_clock *kc = clockid_to_kclock(which_clock);
1123 struct timespec64 ts;
1124
1125 if (!kc || !kc->clock_set)
1126 return -EINVAL;
1127
1128 if (compat_get_timespec64(&ts, tp))
1129 return -EFAULT;
1130
1131 return kc->clock_set(which_clock, &ts);
1132}
1133
1134COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1135 struct compat_timespec __user *, tp)
1136{
1137 const struct k_clock *kc = clockid_to_kclock(which_clock);
1138 struct timespec64 ts;
1139 int err;
1140
1141 if (!kc)
1142 return -EINVAL;
1143
1144 err = kc->clock_get(which_clock, &ts);
1145
1146 if (!err && compat_put_timespec64(&ts, tp))
1147 err = -EFAULT;
1148
1149 return err;
1150}
1151
1152#endif
1153
1154#ifdef CONFIG_COMPAT
1155
1156COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1157 struct compat_timex __user *, utp)
1158{
1159 const struct k_clock *kc = clockid_to_kclock(which_clock);
1160 struct timex ktx;
1161 int err;
1162
1163 if (!kc)
1164 return -EINVAL;
1165 if (!kc->clock_adj)
1166 return -EOPNOTSUPP;
1167
1168 err = compat_get_timex(&ktx, utp);
1169 if (err)
1170 return err;
1171
1172 err = kc->clock_adj(which_clock, &ktx);
1173
1174 if (err >= 0)
1175 err = compat_put_timex(utp, &ktx);
1176
1177 return err;
1178}
1179
1180#endif
1181
1182#ifdef CONFIG_COMPAT_32BIT_TIME
1183
1184COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1185 struct compat_timespec __user *, tp)
1186{
1187 const struct k_clock *kc = clockid_to_kclock(which_clock);
1188 struct timespec64 ts;
1189 int err;
1190
1191 if (!kc)
1192 return -EINVAL;
1193
1194 err = kc->clock_getres(which_clock, &ts);
1195 if (!err && tp && compat_put_timespec64(&ts, tp))
1196 return -EFAULT;
1197
1198 return err;
1199}
1200
1201#endif
1202
1203/*
1204 * nanosleep for monotonic and realtime clocks
1205 */
1206static int common_nsleep(const clockid_t which_clock, int flags,
1207 const struct timespec64 *rqtp)
1208{
1209 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1210 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1211 which_clock);
1212}
1213
1214SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1215 const struct timespec __user *, rqtp,
1216 struct timespec __user *, rmtp)
1217{
1218 const struct k_clock *kc = clockid_to_kclock(which_clock);
1219 struct timespec64 t;
1220
1221 if (!kc)
1222 return -EINVAL;
1223 if (!kc->nsleep)
1224 return -ENANOSLEEP_NOTSUP;
1225
1226 if (get_timespec64(&t, rqtp))
1227 return -EFAULT;
1228
1229 if (!timespec64_valid(&t))
1230 return -EINVAL;
1231 if (flags & TIMER_ABSTIME)
1232 rmtp = NULL;
1233 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1234 current->restart_block.nanosleep.rmtp = rmtp;
1235
1236 return kc->nsleep(which_clock, flags, &t);
1237}
1238
1239#ifdef CONFIG_COMPAT_32BIT_TIME
1240
1241COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1242 struct compat_timespec __user *, rqtp,
1243 struct compat_timespec __user *, rmtp)
1244{
1245 const struct k_clock *kc = clockid_to_kclock(which_clock);
1246 struct timespec64 t;
1247
1248 if (!kc)
1249 return -EINVAL;
1250 if (!kc->nsleep)
1251 return -ENANOSLEEP_NOTSUP;
1252
1253 if (compat_get_timespec64(&t, rqtp))
1254 return -EFAULT;
1255
1256 if (!timespec64_valid(&t))
1257 return -EINVAL;
1258 if (flags & TIMER_ABSTIME)
1259 rmtp = NULL;
1260 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1261 current->restart_block.nanosleep.compat_rmtp = rmtp;
1262
1263 return kc->nsleep(which_clock, flags, &t);
1264}
1265
1266#endif
1267
1268static const struct k_clock clock_realtime = {
1269 .clock_getres = posix_get_hrtimer_res,
1270 .clock_get = posix_clock_realtime_get,
1271 .clock_set = posix_clock_realtime_set,
1272 .clock_adj = posix_clock_realtime_adj,
1273 .nsleep = common_nsleep,
1274 .timer_create = common_timer_create,
1275 .timer_set = common_timer_set,
1276 .timer_get = common_timer_get,
1277 .timer_del = common_timer_del,
1278 .timer_rearm = common_hrtimer_rearm,
1279 .timer_forward = common_hrtimer_forward,
1280 .timer_remaining = common_hrtimer_remaining,
1281 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1282 .timer_arm = common_hrtimer_arm,
1283};
1284
1285static const struct k_clock clock_monotonic = {
1286 .clock_getres = posix_get_hrtimer_res,
1287 .clock_get = posix_ktime_get_ts,
1288 .nsleep = common_nsleep,
1289 .timer_create = common_timer_create,
1290 .timer_set = common_timer_set,
1291 .timer_get = common_timer_get,
1292 .timer_del = common_timer_del,
1293 .timer_rearm = common_hrtimer_rearm,
1294 .timer_forward = common_hrtimer_forward,
1295 .timer_remaining = common_hrtimer_remaining,
1296 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1297 .timer_arm = common_hrtimer_arm,
1298};
1299
1300static const struct k_clock clock_monotonic_raw = {
1301 .clock_getres = posix_get_hrtimer_res,
1302 .clock_get = posix_get_monotonic_raw,
1303};
1304
1305static const struct k_clock clock_realtime_coarse = {
1306 .clock_getres = posix_get_coarse_res,
1307 .clock_get = posix_get_realtime_coarse,
1308};
1309
1310static const struct k_clock clock_monotonic_coarse = {
1311 .clock_getres = posix_get_coarse_res,
1312 .clock_get = posix_get_monotonic_coarse,
1313};
1314
1315static const struct k_clock clock_tai = {
1316 .clock_getres = posix_get_hrtimer_res,
1317 .clock_get = posix_get_tai,
1318 .nsleep = common_nsleep,
1319 .timer_create = common_timer_create,
1320 .timer_set = common_timer_set,
1321 .timer_get = common_timer_get,
1322 .timer_del = common_timer_del,
1323 .timer_rearm = common_hrtimer_rearm,
1324 .timer_forward = common_hrtimer_forward,
1325 .timer_remaining = common_hrtimer_remaining,
1326 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1327 .timer_arm = common_hrtimer_arm,
1328};
1329
1330static const struct k_clock clock_monotonic_active = {
1331 .clock_getres = posix_get_hrtimer_res,
1332 .clock_get = posix_get_monotonic_active,
1333};
1334
1335static const struct k_clock * const posix_clocks[] = {
1336 [CLOCK_REALTIME] = &clock_realtime,
1337 [CLOCK_MONOTONIC] = &clock_monotonic,
1338 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1339 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1340 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1341 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1342 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1343 [CLOCK_BOOTTIME] = &clock_monotonic,
1344 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1345 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1346 [CLOCK_TAI] = &clock_tai,
1347 [CLOCK_MONOTONIC_ACTIVE] = &clock_monotonic_active,
1348};
1349
1350static const struct k_clock *clockid_to_kclock(const clockid_t id)
1351{
1352 clockid_t idx = id;
1353
1354 if (id < 0) {
1355 return (id & CLOCKFD_MASK) == CLOCKFD ?
1356 &clock_posix_dynamic : &clock_posix_cpu;
1357 }
1358
1359 if (id >= ARRAY_SIZE(posix_clocks))
1360 return NULL;
1361
1362 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1363}