| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/kernel/sys.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/mm_inline.h> |
| 11 | #include <linux/utsname.h> |
| 12 | #include <linux/mman.h> |
| 13 | #include <linux/reboot.h> |
| 14 | #include <linux/prctl.h> |
| 15 | #include <linux/highuid.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/kmod.h> |
| 18 | #include <linux/ksm.h> |
| 19 | #include <linux/perf_event.h> |
| 20 | #include <linux/resource.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/workqueue.h> |
| 23 | #include <linux/capability.h> |
| 24 | #include <linux/device.h> |
| 25 | #include <linux/key.h> |
| 26 | #include <linux/times.h> |
| 27 | #include <linux/posix-timers.h> |
| 28 | #include <linux/security.h> |
| 29 | #include <linux/random.h> |
| 30 | #include <linux/suspend.h> |
| 31 | #include <linux/tty.h> |
| 32 | #include <linux/signal.h> |
| 33 | #include <linux/cn_proc.h> |
| 34 | #include <linux/getcpu.h> |
| 35 | #include <linux/task_io_accounting_ops.h> |
| 36 | #include <linux/seccomp.h> |
| 37 | #include <linux/cpu.h> |
| 38 | #include <linux/personality.h> |
| 39 | #include <linux/ptrace.h> |
| 40 | #include <linux/fs_struct.h> |
| 41 | #include <linux/file.h> |
| 42 | #include <linux/mount.h> |
| 43 | #include <linux/gfp.h> |
| 44 | #include <linux/syscore_ops.h> |
| 45 | #include <linux/version.h> |
| 46 | #include <linux/ctype.h> |
| 47 | #include <linux/syscall_user_dispatch.h> |
| 48 | |
| 49 | #include <linux/compat.h> |
| 50 | #include <linux/syscalls.h> |
| 51 | #include <linux/kprobes.h> |
| 52 | #include <linux/user_namespace.h> |
| 53 | #include <linux/time_namespace.h> |
| 54 | #include <linux/binfmts.h> |
| 55 | #include <linux/futex.h> |
| 56 | |
| 57 | #include <linux/sched.h> |
| 58 | #include <linux/sched/autogroup.h> |
| 59 | #include <linux/sched/loadavg.h> |
| 60 | #include <linux/sched/stat.h> |
| 61 | #include <linux/sched/mm.h> |
| 62 | #include <linux/sched/coredump.h> |
| 63 | #include <linux/sched/task.h> |
| 64 | #include <linux/sched/cputime.h> |
| 65 | #include <linux/rcupdate.h> |
| 66 | #include <linux/uidgid.h> |
| 67 | #include <linux/cred.h> |
| 68 | |
| 69 | #include <linux/nospec.h> |
| 70 | |
| 71 | #include <linux/kmsg_dump.h> |
| 72 | /* Move somewhere else to avoid recompiling? */ |
| 73 | #include <generated/utsrelease.h> |
| 74 | |
| 75 | #include <linux/uaccess.h> |
| 76 | #include <asm/io.h> |
| 77 | #include <asm/unistd.h> |
| 78 | |
| 79 | #include <trace/events/task.h> |
| 80 | |
| 81 | #include "uid16.h" |
| 82 | |
| 83 | #ifndef SET_UNALIGN_CTL |
| 84 | # define SET_UNALIGN_CTL(a, b) (-EINVAL) |
| 85 | #endif |
| 86 | #ifndef GET_UNALIGN_CTL |
| 87 | # define GET_UNALIGN_CTL(a, b) (-EINVAL) |
| 88 | #endif |
| 89 | #ifndef SET_FPEMU_CTL |
| 90 | # define SET_FPEMU_CTL(a, b) (-EINVAL) |
| 91 | #endif |
| 92 | #ifndef GET_FPEMU_CTL |
| 93 | # define GET_FPEMU_CTL(a, b) (-EINVAL) |
| 94 | #endif |
| 95 | #ifndef SET_FPEXC_CTL |
| 96 | # define SET_FPEXC_CTL(a, b) (-EINVAL) |
| 97 | #endif |
| 98 | #ifndef GET_FPEXC_CTL |
| 99 | # define GET_FPEXC_CTL(a, b) (-EINVAL) |
| 100 | #endif |
| 101 | #ifndef GET_ENDIAN |
| 102 | # define GET_ENDIAN(a, b) (-EINVAL) |
| 103 | #endif |
| 104 | #ifndef SET_ENDIAN |
| 105 | # define SET_ENDIAN(a, b) (-EINVAL) |
| 106 | #endif |
| 107 | #ifndef GET_TSC_CTL |
| 108 | # define GET_TSC_CTL(a) (-EINVAL) |
| 109 | #endif |
| 110 | #ifndef SET_TSC_CTL |
| 111 | # define SET_TSC_CTL(a) (-EINVAL) |
| 112 | #endif |
| 113 | #ifndef GET_FP_MODE |
| 114 | # define GET_FP_MODE(a) (-EINVAL) |
| 115 | #endif |
| 116 | #ifndef SET_FP_MODE |
| 117 | # define SET_FP_MODE(a,b) (-EINVAL) |
| 118 | #endif |
| 119 | #ifndef SVE_SET_VL |
| 120 | # define SVE_SET_VL(a) (-EINVAL) |
| 121 | #endif |
| 122 | #ifndef SVE_GET_VL |
| 123 | # define SVE_GET_VL() (-EINVAL) |
| 124 | #endif |
| 125 | #ifndef SME_SET_VL |
| 126 | # define SME_SET_VL(a) (-EINVAL) |
| 127 | #endif |
| 128 | #ifndef SME_GET_VL |
| 129 | # define SME_GET_VL() (-EINVAL) |
| 130 | #endif |
| 131 | #ifndef PAC_RESET_KEYS |
| 132 | # define PAC_RESET_KEYS(a, b) (-EINVAL) |
| 133 | #endif |
| 134 | #ifndef PAC_SET_ENABLED_KEYS |
| 135 | # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL) |
| 136 | #endif |
| 137 | #ifndef PAC_GET_ENABLED_KEYS |
| 138 | # define PAC_GET_ENABLED_KEYS(a) (-EINVAL) |
| 139 | #endif |
| 140 | #ifndef SET_TAGGED_ADDR_CTRL |
| 141 | # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL) |
| 142 | #endif |
| 143 | #ifndef GET_TAGGED_ADDR_CTRL |
| 144 | # define GET_TAGGED_ADDR_CTRL() (-EINVAL) |
| 145 | #endif |
| 146 | #ifndef RISCV_V_SET_CONTROL |
| 147 | # define RISCV_V_SET_CONTROL(a) (-EINVAL) |
| 148 | #endif |
| 149 | #ifndef RISCV_V_GET_CONTROL |
| 150 | # define RISCV_V_GET_CONTROL() (-EINVAL) |
| 151 | #endif |
| 152 | #ifndef RISCV_SET_ICACHE_FLUSH_CTX |
| 153 | # define RISCV_SET_ICACHE_FLUSH_CTX(a, b) (-EINVAL) |
| 154 | #endif |
| 155 | #ifndef PPC_GET_DEXCR_ASPECT |
| 156 | # define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL) |
| 157 | #endif |
| 158 | #ifndef PPC_SET_DEXCR_ASPECT |
| 159 | # define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL) |
| 160 | #endif |
| 161 | |
| 162 | /* |
| 163 | * this is where the system-wide overflow UID and GID are defined, for |
| 164 | * architectures that now have 32-bit UID/GID but didn't in the past |
| 165 | */ |
| 166 | |
| 167 | int overflowuid = DEFAULT_OVERFLOWUID; |
| 168 | int overflowgid = DEFAULT_OVERFLOWGID; |
| 169 | |
| 170 | EXPORT_SYMBOL(overflowuid); |
| 171 | EXPORT_SYMBOL(overflowgid); |
| 172 | |
| 173 | /* |
| 174 | * the same as above, but for filesystems which can only store a 16-bit |
| 175 | * UID and GID. as such, this is needed on all architectures |
| 176 | */ |
| 177 | |
| 178 | int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; |
| 179 | int fs_overflowgid = DEFAULT_FS_OVERFLOWGID; |
| 180 | |
| 181 | EXPORT_SYMBOL(fs_overflowuid); |
| 182 | EXPORT_SYMBOL(fs_overflowgid); |
| 183 | |
| 184 | /* |
| 185 | * Returns true if current's euid is same as p's uid or euid, |
| 186 | * or has CAP_SYS_NICE to p's user_ns. |
| 187 | * |
| 188 | * Called with rcu_read_lock, creds are safe |
| 189 | */ |
| 190 | static bool set_one_prio_perm(struct task_struct *p) |
| 191 | { |
| 192 | const struct cred *cred = current_cred(), *pcred = __task_cred(p); |
| 193 | |
| 194 | if (uid_eq(pcred->uid, cred->euid) || |
| 195 | uid_eq(pcred->euid, cred->euid)) |
| 196 | return true; |
| 197 | if (ns_capable(pcred->user_ns, CAP_SYS_NICE)) |
| 198 | return true; |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * set the priority of a task |
| 204 | * - the caller must hold the RCU read lock |
| 205 | */ |
| 206 | static int set_one_prio(struct task_struct *p, int niceval, int error) |
| 207 | { |
| 208 | int no_nice; |
| 209 | |
| 210 | if (!set_one_prio_perm(p)) { |
| 211 | error = -EPERM; |
| 212 | goto out; |
| 213 | } |
| 214 | if (niceval < task_nice(p) && !can_nice(p, niceval)) { |
| 215 | error = -EACCES; |
| 216 | goto out; |
| 217 | } |
| 218 | no_nice = security_task_setnice(p, niceval); |
| 219 | if (no_nice) { |
| 220 | error = no_nice; |
| 221 | goto out; |
| 222 | } |
| 223 | if (error == -ESRCH) |
| 224 | error = 0; |
| 225 | set_user_nice(p, niceval); |
| 226 | out: |
| 227 | return error; |
| 228 | } |
| 229 | |
| 230 | SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) |
| 231 | { |
| 232 | struct task_struct *g, *p; |
| 233 | struct user_struct *user; |
| 234 | const struct cred *cred = current_cred(); |
| 235 | int error = -EINVAL; |
| 236 | struct pid *pgrp; |
| 237 | kuid_t uid; |
| 238 | |
| 239 | if (which > PRIO_USER || which < PRIO_PROCESS) |
| 240 | goto out; |
| 241 | |
| 242 | /* normalize: avoid signed division (rounding problems) */ |
| 243 | error = -ESRCH; |
| 244 | if (niceval < MIN_NICE) |
| 245 | niceval = MIN_NICE; |
| 246 | if (niceval > MAX_NICE) |
| 247 | niceval = MAX_NICE; |
| 248 | |
| 249 | rcu_read_lock(); |
| 250 | switch (which) { |
| 251 | case PRIO_PROCESS: |
| 252 | if (who) |
| 253 | p = find_task_by_vpid(who); |
| 254 | else |
| 255 | p = current; |
| 256 | if (p) |
| 257 | error = set_one_prio(p, niceval, error); |
| 258 | break; |
| 259 | case PRIO_PGRP: |
| 260 | if (who) |
| 261 | pgrp = find_vpid(who); |
| 262 | else |
| 263 | pgrp = task_pgrp(current); |
| 264 | read_lock(&tasklist_lock); |
| 265 | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { |
| 266 | error = set_one_prio(p, niceval, error); |
| 267 | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); |
| 268 | read_unlock(&tasklist_lock); |
| 269 | break; |
| 270 | case PRIO_USER: |
| 271 | uid = make_kuid(cred->user_ns, who); |
| 272 | user = cred->user; |
| 273 | if (!who) |
| 274 | uid = cred->uid; |
| 275 | else if (!uid_eq(uid, cred->uid)) { |
| 276 | user = find_user(uid); |
| 277 | if (!user) |
| 278 | goto out_unlock; /* No processes for this user */ |
| 279 | } |
| 280 | for_each_process_thread(g, p) { |
| 281 | if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) |
| 282 | error = set_one_prio(p, niceval, error); |
| 283 | } |
| 284 | if (!uid_eq(uid, cred->uid)) |
| 285 | free_uid(user); /* For find_user() */ |
| 286 | break; |
| 287 | } |
| 288 | out_unlock: |
| 289 | rcu_read_unlock(); |
| 290 | out: |
| 291 | return error; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Ugh. To avoid negative return values, "getpriority()" will |
| 296 | * not return the normal nice-value, but a negated value that |
| 297 | * has been offset by 20 (ie it returns 40..1 instead of -20..19) |
| 298 | * to stay compatible. |
| 299 | */ |
| 300 | SYSCALL_DEFINE2(getpriority, int, which, int, who) |
| 301 | { |
| 302 | struct task_struct *g, *p; |
| 303 | struct user_struct *user; |
| 304 | const struct cred *cred = current_cred(); |
| 305 | long niceval, retval = -ESRCH; |
| 306 | struct pid *pgrp; |
| 307 | kuid_t uid; |
| 308 | |
| 309 | if (which > PRIO_USER || which < PRIO_PROCESS) |
| 310 | return -EINVAL; |
| 311 | |
| 312 | rcu_read_lock(); |
| 313 | switch (which) { |
| 314 | case PRIO_PROCESS: |
| 315 | if (who) |
| 316 | p = find_task_by_vpid(who); |
| 317 | else |
| 318 | p = current; |
| 319 | if (p) { |
| 320 | niceval = nice_to_rlimit(task_nice(p)); |
| 321 | if (niceval > retval) |
| 322 | retval = niceval; |
| 323 | } |
| 324 | break; |
| 325 | case PRIO_PGRP: |
| 326 | if (who) |
| 327 | pgrp = find_vpid(who); |
| 328 | else |
| 329 | pgrp = task_pgrp(current); |
| 330 | read_lock(&tasklist_lock); |
| 331 | do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { |
| 332 | niceval = nice_to_rlimit(task_nice(p)); |
| 333 | if (niceval > retval) |
| 334 | retval = niceval; |
| 335 | } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); |
| 336 | read_unlock(&tasklist_lock); |
| 337 | break; |
| 338 | case PRIO_USER: |
| 339 | uid = make_kuid(cred->user_ns, who); |
| 340 | user = cred->user; |
| 341 | if (!who) |
| 342 | uid = cred->uid; |
| 343 | else if (!uid_eq(uid, cred->uid)) { |
| 344 | user = find_user(uid); |
| 345 | if (!user) |
| 346 | goto out_unlock; /* No processes for this user */ |
| 347 | } |
| 348 | for_each_process_thread(g, p) { |
| 349 | if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) { |
| 350 | niceval = nice_to_rlimit(task_nice(p)); |
| 351 | if (niceval > retval) |
| 352 | retval = niceval; |
| 353 | } |
| 354 | } |
| 355 | if (!uid_eq(uid, cred->uid)) |
| 356 | free_uid(user); /* for find_user() */ |
| 357 | break; |
| 358 | } |
| 359 | out_unlock: |
| 360 | rcu_read_unlock(); |
| 361 | |
| 362 | return retval; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Unprivileged users may change the real gid to the effective gid |
| 367 | * or vice versa. (BSD-style) |
| 368 | * |
| 369 | * If you set the real gid at all, or set the effective gid to a value not |
| 370 | * equal to the real gid, then the saved gid is set to the new effective gid. |
| 371 | * |
| 372 | * This makes it possible for a setgid program to completely drop its |
| 373 | * privileges, which is often a useful assertion to make when you are doing |
| 374 | * a security audit over a program. |
| 375 | * |
| 376 | * The general idea is that a program which uses just setregid() will be |
| 377 | * 100% compatible with BSD. A program which uses just setgid() will be |
| 378 | * 100% compatible with POSIX with saved IDs. |
| 379 | * |
| 380 | * SMP: There are not races, the GIDs are checked only by filesystem |
| 381 | * operations (as far as semantic preservation is concerned). |
| 382 | */ |
| 383 | #ifdef CONFIG_MULTIUSER |
| 384 | long __sys_setregid(gid_t rgid, gid_t egid) |
| 385 | { |
| 386 | struct user_namespace *ns = current_user_ns(); |
| 387 | const struct cred *old; |
| 388 | struct cred *new; |
| 389 | int retval; |
| 390 | kgid_t krgid, kegid; |
| 391 | |
| 392 | krgid = make_kgid(ns, rgid); |
| 393 | kegid = make_kgid(ns, egid); |
| 394 | |
| 395 | if ((rgid != (gid_t) -1) && !gid_valid(krgid)) |
| 396 | return -EINVAL; |
| 397 | if ((egid != (gid_t) -1) && !gid_valid(kegid)) |
| 398 | return -EINVAL; |
| 399 | |
| 400 | new = prepare_creds(); |
| 401 | if (!new) |
| 402 | return -ENOMEM; |
| 403 | old = current_cred(); |
| 404 | |
| 405 | retval = -EPERM; |
| 406 | if (rgid != (gid_t) -1) { |
| 407 | if (gid_eq(old->gid, krgid) || |
| 408 | gid_eq(old->egid, krgid) || |
| 409 | ns_capable_setid(old->user_ns, CAP_SETGID)) |
| 410 | new->gid = krgid; |
| 411 | else |
| 412 | goto error; |
| 413 | } |
| 414 | if (egid != (gid_t) -1) { |
| 415 | if (gid_eq(old->gid, kegid) || |
| 416 | gid_eq(old->egid, kegid) || |
| 417 | gid_eq(old->sgid, kegid) || |
| 418 | ns_capable_setid(old->user_ns, CAP_SETGID)) |
| 419 | new->egid = kegid; |
| 420 | else |
| 421 | goto error; |
| 422 | } |
| 423 | |
| 424 | if (rgid != (gid_t) -1 || |
| 425 | (egid != (gid_t) -1 && !gid_eq(kegid, old->gid))) |
| 426 | new->sgid = new->egid; |
| 427 | new->fsgid = new->egid; |
| 428 | |
| 429 | retval = security_task_fix_setgid(new, old, LSM_SETID_RE); |
| 430 | if (retval < 0) |
| 431 | goto error; |
| 432 | |
| 433 | return commit_creds(new); |
| 434 | |
| 435 | error: |
| 436 | abort_creds(new); |
| 437 | return retval; |
| 438 | } |
| 439 | |
| 440 | SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) |
| 441 | { |
| 442 | return __sys_setregid(rgid, egid); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * setgid() is implemented like SysV w/ SAVED_IDS |
| 447 | * |
| 448 | * SMP: Same implicit races as above. |
| 449 | */ |
| 450 | long __sys_setgid(gid_t gid) |
| 451 | { |
| 452 | struct user_namespace *ns = current_user_ns(); |
| 453 | const struct cred *old; |
| 454 | struct cred *new; |
| 455 | int retval; |
| 456 | kgid_t kgid; |
| 457 | |
| 458 | kgid = make_kgid(ns, gid); |
| 459 | if (!gid_valid(kgid)) |
| 460 | return -EINVAL; |
| 461 | |
| 462 | new = prepare_creds(); |
| 463 | if (!new) |
| 464 | return -ENOMEM; |
| 465 | old = current_cred(); |
| 466 | |
| 467 | retval = -EPERM; |
| 468 | if (ns_capable_setid(old->user_ns, CAP_SETGID)) |
| 469 | new->gid = new->egid = new->sgid = new->fsgid = kgid; |
| 470 | else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid)) |
| 471 | new->egid = new->fsgid = kgid; |
| 472 | else |
| 473 | goto error; |
| 474 | |
| 475 | retval = security_task_fix_setgid(new, old, LSM_SETID_ID); |
| 476 | if (retval < 0) |
| 477 | goto error; |
| 478 | |
| 479 | return commit_creds(new); |
| 480 | |
| 481 | error: |
| 482 | abort_creds(new); |
| 483 | return retval; |
| 484 | } |
| 485 | |
| 486 | SYSCALL_DEFINE1(setgid, gid_t, gid) |
| 487 | { |
| 488 | return __sys_setgid(gid); |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * change the user struct in a credentials set to match the new UID |
| 493 | */ |
| 494 | static int set_user(struct cred *new) |
| 495 | { |
| 496 | struct user_struct *new_user; |
| 497 | |
| 498 | new_user = alloc_uid(new->uid); |
| 499 | if (!new_user) |
| 500 | return -EAGAIN; |
| 501 | |
| 502 | free_uid(new->user); |
| 503 | new->user = new_user; |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | static void flag_nproc_exceeded(struct cred *new) |
| 508 | { |
| 509 | if (new->ucounts == current_ucounts()) |
| 510 | return; |
| 511 | |
| 512 | /* |
| 513 | * We don't fail in case of NPROC limit excess here because too many |
| 514 | * poorly written programs don't check set*uid() return code, assuming |
| 515 | * it never fails if called by root. We may still enforce NPROC limit |
| 516 | * for programs doing set*uid()+execve() by harmlessly deferring the |
| 517 | * failure to the execve() stage. |
| 518 | */ |
| 519 | if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) && |
| 520 | new->user != INIT_USER) |
| 521 | current->flags |= PF_NPROC_EXCEEDED; |
| 522 | else |
| 523 | current->flags &= ~PF_NPROC_EXCEEDED; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Unprivileged users may change the real uid to the effective uid |
| 528 | * or vice versa. (BSD-style) |
| 529 | * |
| 530 | * If you set the real uid at all, or set the effective uid to a value not |
| 531 | * equal to the real uid, then the saved uid is set to the new effective uid. |
| 532 | * |
| 533 | * This makes it possible for a setuid program to completely drop its |
| 534 | * privileges, which is often a useful assertion to make when you are doing |
| 535 | * a security audit over a program. |
| 536 | * |
| 537 | * The general idea is that a program which uses just setreuid() will be |
| 538 | * 100% compatible with BSD. A program which uses just setuid() will be |
| 539 | * 100% compatible with POSIX with saved IDs. |
| 540 | */ |
| 541 | long __sys_setreuid(uid_t ruid, uid_t euid) |
| 542 | { |
| 543 | struct user_namespace *ns = current_user_ns(); |
| 544 | const struct cred *old; |
| 545 | struct cred *new; |
| 546 | int retval; |
| 547 | kuid_t kruid, keuid; |
| 548 | |
| 549 | kruid = make_kuid(ns, ruid); |
| 550 | keuid = make_kuid(ns, euid); |
| 551 | |
| 552 | if ((ruid != (uid_t) -1) && !uid_valid(kruid)) |
| 553 | return -EINVAL; |
| 554 | if ((euid != (uid_t) -1) && !uid_valid(keuid)) |
| 555 | return -EINVAL; |
| 556 | |
| 557 | new = prepare_creds(); |
| 558 | if (!new) |
| 559 | return -ENOMEM; |
| 560 | old = current_cred(); |
| 561 | |
| 562 | retval = -EPERM; |
| 563 | if (ruid != (uid_t) -1) { |
| 564 | new->uid = kruid; |
| 565 | if (!uid_eq(old->uid, kruid) && |
| 566 | !uid_eq(old->euid, kruid) && |
| 567 | !ns_capable_setid(old->user_ns, CAP_SETUID)) |
| 568 | goto error; |
| 569 | } |
| 570 | |
| 571 | if (euid != (uid_t) -1) { |
| 572 | new->euid = keuid; |
| 573 | if (!uid_eq(old->uid, keuid) && |
| 574 | !uid_eq(old->euid, keuid) && |
| 575 | !uid_eq(old->suid, keuid) && |
| 576 | !ns_capable_setid(old->user_ns, CAP_SETUID)) |
| 577 | goto error; |
| 578 | } |
| 579 | |
| 580 | if (!uid_eq(new->uid, old->uid)) { |
| 581 | retval = set_user(new); |
| 582 | if (retval < 0) |
| 583 | goto error; |
| 584 | } |
| 585 | if (ruid != (uid_t) -1 || |
| 586 | (euid != (uid_t) -1 && !uid_eq(keuid, old->uid))) |
| 587 | new->suid = new->euid; |
| 588 | new->fsuid = new->euid; |
| 589 | |
| 590 | retval = security_task_fix_setuid(new, old, LSM_SETID_RE); |
| 591 | if (retval < 0) |
| 592 | goto error; |
| 593 | |
| 594 | retval = set_cred_ucounts(new); |
| 595 | if (retval < 0) |
| 596 | goto error; |
| 597 | |
| 598 | flag_nproc_exceeded(new); |
| 599 | return commit_creds(new); |
| 600 | |
| 601 | error: |
| 602 | abort_creds(new); |
| 603 | return retval; |
| 604 | } |
| 605 | |
| 606 | SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) |
| 607 | { |
| 608 | return __sys_setreuid(ruid, euid); |
| 609 | } |
| 610 | |
| 611 | /* |
| 612 | * setuid() is implemented like SysV with SAVED_IDS |
| 613 | * |
| 614 | * Note that SAVED_ID's is deficient in that a setuid root program |
| 615 | * like sendmail, for example, cannot set its uid to be a normal |
| 616 | * user and then switch back, because if you're root, setuid() sets |
| 617 | * the saved uid too. If you don't like this, blame the bright people |
| 618 | * in the POSIX committee and/or USG. Note that the BSD-style setreuid() |
| 619 | * will allow a root program to temporarily drop privileges and be able to |
| 620 | * regain them by swapping the real and effective uid. |
| 621 | */ |
| 622 | long __sys_setuid(uid_t uid) |
| 623 | { |
| 624 | struct user_namespace *ns = current_user_ns(); |
| 625 | const struct cred *old; |
| 626 | struct cred *new; |
| 627 | int retval; |
| 628 | kuid_t kuid; |
| 629 | |
| 630 | kuid = make_kuid(ns, uid); |
| 631 | if (!uid_valid(kuid)) |
| 632 | return -EINVAL; |
| 633 | |
| 634 | new = prepare_creds(); |
| 635 | if (!new) |
| 636 | return -ENOMEM; |
| 637 | old = current_cred(); |
| 638 | |
| 639 | retval = -EPERM; |
| 640 | if (ns_capable_setid(old->user_ns, CAP_SETUID)) { |
| 641 | new->suid = new->uid = kuid; |
| 642 | if (!uid_eq(kuid, old->uid)) { |
| 643 | retval = set_user(new); |
| 644 | if (retval < 0) |
| 645 | goto error; |
| 646 | } |
| 647 | } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) { |
| 648 | goto error; |
| 649 | } |
| 650 | |
| 651 | new->fsuid = new->euid = kuid; |
| 652 | |
| 653 | retval = security_task_fix_setuid(new, old, LSM_SETID_ID); |
| 654 | if (retval < 0) |
| 655 | goto error; |
| 656 | |
| 657 | retval = set_cred_ucounts(new); |
| 658 | if (retval < 0) |
| 659 | goto error; |
| 660 | |
| 661 | flag_nproc_exceeded(new); |
| 662 | return commit_creds(new); |
| 663 | |
| 664 | error: |
| 665 | abort_creds(new); |
| 666 | return retval; |
| 667 | } |
| 668 | |
| 669 | SYSCALL_DEFINE1(setuid, uid_t, uid) |
| 670 | { |
| 671 | return __sys_setuid(uid); |
| 672 | } |
| 673 | |
| 674 | |
| 675 | /* |
| 676 | * This function implements a generic ability to update ruid, euid, |
| 677 | * and suid. This allows you to implement the 4.4 compatible seteuid(). |
| 678 | */ |
| 679 | long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) |
| 680 | { |
| 681 | struct user_namespace *ns = current_user_ns(); |
| 682 | const struct cred *old; |
| 683 | struct cred *new; |
| 684 | int retval; |
| 685 | kuid_t kruid, keuid, ksuid; |
| 686 | bool ruid_new, euid_new, suid_new; |
| 687 | |
| 688 | kruid = make_kuid(ns, ruid); |
| 689 | keuid = make_kuid(ns, euid); |
| 690 | ksuid = make_kuid(ns, suid); |
| 691 | |
| 692 | if ((ruid != (uid_t) -1) && !uid_valid(kruid)) |
| 693 | return -EINVAL; |
| 694 | |
| 695 | if ((euid != (uid_t) -1) && !uid_valid(keuid)) |
| 696 | return -EINVAL; |
| 697 | |
| 698 | if ((suid != (uid_t) -1) && !uid_valid(ksuid)) |
| 699 | return -EINVAL; |
| 700 | |
| 701 | old = current_cred(); |
| 702 | |
| 703 | /* check for no-op */ |
| 704 | if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) && |
| 705 | (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) && |
| 706 | uid_eq(keuid, old->fsuid))) && |
| 707 | (suid == (uid_t) -1 || uid_eq(ksuid, old->suid))) |
| 708 | return 0; |
| 709 | |
| 710 | ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) && |
| 711 | !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid); |
| 712 | euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) && |
| 713 | !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid); |
| 714 | suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) && |
| 715 | !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid); |
| 716 | if ((ruid_new || euid_new || suid_new) && |
| 717 | !ns_capable_setid(old->user_ns, CAP_SETUID)) |
| 718 | return -EPERM; |
| 719 | |
| 720 | new = prepare_creds(); |
| 721 | if (!new) |
| 722 | return -ENOMEM; |
| 723 | |
| 724 | if (ruid != (uid_t) -1) { |
| 725 | new->uid = kruid; |
| 726 | if (!uid_eq(kruid, old->uid)) { |
| 727 | retval = set_user(new); |
| 728 | if (retval < 0) |
| 729 | goto error; |
| 730 | } |
| 731 | } |
| 732 | if (euid != (uid_t) -1) |
| 733 | new->euid = keuid; |
| 734 | if (suid != (uid_t) -1) |
| 735 | new->suid = ksuid; |
| 736 | new->fsuid = new->euid; |
| 737 | |
| 738 | retval = security_task_fix_setuid(new, old, LSM_SETID_RES); |
| 739 | if (retval < 0) |
| 740 | goto error; |
| 741 | |
| 742 | retval = set_cred_ucounts(new); |
| 743 | if (retval < 0) |
| 744 | goto error; |
| 745 | |
| 746 | flag_nproc_exceeded(new); |
| 747 | return commit_creds(new); |
| 748 | |
| 749 | error: |
| 750 | abort_creds(new); |
| 751 | return retval; |
| 752 | } |
| 753 | |
| 754 | SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) |
| 755 | { |
| 756 | return __sys_setresuid(ruid, euid, suid); |
| 757 | } |
| 758 | |
| 759 | SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp) |
| 760 | { |
| 761 | const struct cred *cred = current_cred(); |
| 762 | int retval; |
| 763 | uid_t ruid, euid, suid; |
| 764 | |
| 765 | ruid = from_kuid_munged(cred->user_ns, cred->uid); |
| 766 | euid = from_kuid_munged(cred->user_ns, cred->euid); |
| 767 | suid = from_kuid_munged(cred->user_ns, cred->suid); |
| 768 | |
| 769 | retval = put_user(ruid, ruidp); |
| 770 | if (!retval) { |
| 771 | retval = put_user(euid, euidp); |
| 772 | if (!retval) |
| 773 | return put_user(suid, suidp); |
| 774 | } |
| 775 | return retval; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * Same as above, but for rgid, egid, sgid. |
| 780 | */ |
| 781 | long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) |
| 782 | { |
| 783 | struct user_namespace *ns = current_user_ns(); |
| 784 | const struct cred *old; |
| 785 | struct cred *new; |
| 786 | int retval; |
| 787 | kgid_t krgid, kegid, ksgid; |
| 788 | bool rgid_new, egid_new, sgid_new; |
| 789 | |
| 790 | krgid = make_kgid(ns, rgid); |
| 791 | kegid = make_kgid(ns, egid); |
| 792 | ksgid = make_kgid(ns, sgid); |
| 793 | |
| 794 | if ((rgid != (gid_t) -1) && !gid_valid(krgid)) |
| 795 | return -EINVAL; |
| 796 | if ((egid != (gid_t) -1) && !gid_valid(kegid)) |
| 797 | return -EINVAL; |
| 798 | if ((sgid != (gid_t) -1) && !gid_valid(ksgid)) |
| 799 | return -EINVAL; |
| 800 | |
| 801 | old = current_cred(); |
| 802 | |
| 803 | /* check for no-op */ |
| 804 | if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) && |
| 805 | (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) && |
| 806 | gid_eq(kegid, old->fsgid))) && |
| 807 | (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid))) |
| 808 | return 0; |
| 809 | |
| 810 | rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) && |
| 811 | !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid); |
| 812 | egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) && |
| 813 | !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid); |
| 814 | sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) && |
| 815 | !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid); |
| 816 | if ((rgid_new || egid_new || sgid_new) && |
| 817 | !ns_capable_setid(old->user_ns, CAP_SETGID)) |
| 818 | return -EPERM; |
| 819 | |
| 820 | new = prepare_creds(); |
| 821 | if (!new) |
| 822 | return -ENOMEM; |
| 823 | |
| 824 | if (rgid != (gid_t) -1) |
| 825 | new->gid = krgid; |
| 826 | if (egid != (gid_t) -1) |
| 827 | new->egid = kegid; |
| 828 | if (sgid != (gid_t) -1) |
| 829 | new->sgid = ksgid; |
| 830 | new->fsgid = new->egid; |
| 831 | |
| 832 | retval = security_task_fix_setgid(new, old, LSM_SETID_RES); |
| 833 | if (retval < 0) |
| 834 | goto error; |
| 835 | |
| 836 | return commit_creds(new); |
| 837 | |
| 838 | error: |
| 839 | abort_creds(new); |
| 840 | return retval; |
| 841 | } |
| 842 | |
| 843 | SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) |
| 844 | { |
| 845 | return __sys_setresgid(rgid, egid, sgid); |
| 846 | } |
| 847 | |
| 848 | SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp) |
| 849 | { |
| 850 | const struct cred *cred = current_cred(); |
| 851 | int retval; |
| 852 | gid_t rgid, egid, sgid; |
| 853 | |
| 854 | rgid = from_kgid_munged(cred->user_ns, cred->gid); |
| 855 | egid = from_kgid_munged(cred->user_ns, cred->egid); |
| 856 | sgid = from_kgid_munged(cred->user_ns, cred->sgid); |
| 857 | |
| 858 | retval = put_user(rgid, rgidp); |
| 859 | if (!retval) { |
| 860 | retval = put_user(egid, egidp); |
| 861 | if (!retval) |
| 862 | retval = put_user(sgid, sgidp); |
| 863 | } |
| 864 | |
| 865 | return retval; |
| 866 | } |
| 867 | |
| 868 | |
| 869 | /* |
| 870 | * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This |
| 871 | * is used for "access()" and for the NFS daemon (letting nfsd stay at |
| 872 | * whatever uid it wants to). It normally shadows "euid", except when |
| 873 | * explicitly set by setfsuid() or for access.. |
| 874 | */ |
| 875 | long __sys_setfsuid(uid_t uid) |
| 876 | { |
| 877 | const struct cred *old; |
| 878 | struct cred *new; |
| 879 | uid_t old_fsuid; |
| 880 | kuid_t kuid; |
| 881 | |
| 882 | old = current_cred(); |
| 883 | old_fsuid = from_kuid_munged(old->user_ns, old->fsuid); |
| 884 | |
| 885 | kuid = make_kuid(old->user_ns, uid); |
| 886 | if (!uid_valid(kuid)) |
| 887 | return old_fsuid; |
| 888 | |
| 889 | new = prepare_creds(); |
| 890 | if (!new) |
| 891 | return old_fsuid; |
| 892 | |
| 893 | if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) || |
| 894 | uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) || |
| 895 | ns_capable_setid(old->user_ns, CAP_SETUID)) { |
| 896 | if (!uid_eq(kuid, old->fsuid)) { |
| 897 | new->fsuid = kuid; |
| 898 | if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) |
| 899 | goto change_okay; |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | abort_creds(new); |
| 904 | return old_fsuid; |
| 905 | |
| 906 | change_okay: |
| 907 | commit_creds(new); |
| 908 | return old_fsuid; |
| 909 | } |
| 910 | |
| 911 | SYSCALL_DEFINE1(setfsuid, uid_t, uid) |
| 912 | { |
| 913 | return __sys_setfsuid(uid); |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Samma på svenska.. |
| 918 | */ |
| 919 | long __sys_setfsgid(gid_t gid) |
| 920 | { |
| 921 | const struct cred *old; |
| 922 | struct cred *new; |
| 923 | gid_t old_fsgid; |
| 924 | kgid_t kgid; |
| 925 | |
| 926 | old = current_cred(); |
| 927 | old_fsgid = from_kgid_munged(old->user_ns, old->fsgid); |
| 928 | |
| 929 | kgid = make_kgid(old->user_ns, gid); |
| 930 | if (!gid_valid(kgid)) |
| 931 | return old_fsgid; |
| 932 | |
| 933 | new = prepare_creds(); |
| 934 | if (!new) |
| 935 | return old_fsgid; |
| 936 | |
| 937 | if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) || |
| 938 | gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) || |
| 939 | ns_capable_setid(old->user_ns, CAP_SETGID)) { |
| 940 | if (!gid_eq(kgid, old->fsgid)) { |
| 941 | new->fsgid = kgid; |
| 942 | if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0) |
| 943 | goto change_okay; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | abort_creds(new); |
| 948 | return old_fsgid; |
| 949 | |
| 950 | change_okay: |
| 951 | commit_creds(new); |
| 952 | return old_fsgid; |
| 953 | } |
| 954 | |
| 955 | SYSCALL_DEFINE1(setfsgid, gid_t, gid) |
| 956 | { |
| 957 | return __sys_setfsgid(gid); |
| 958 | } |
| 959 | #endif /* CONFIG_MULTIUSER */ |
| 960 | |
| 961 | /** |
| 962 | * sys_getpid - return the thread group id of the current process |
| 963 | * |
| 964 | * Note, despite the name, this returns the tgid not the pid. The tgid and |
| 965 | * the pid are identical unless CLONE_THREAD was specified on clone() in |
| 966 | * which case the tgid is the same in all threads of the same group. |
| 967 | * |
| 968 | * This is SMP safe as current->tgid does not change. |
| 969 | */ |
| 970 | SYSCALL_DEFINE0(getpid) |
| 971 | { |
| 972 | return task_tgid_vnr(current); |
| 973 | } |
| 974 | |
| 975 | /* Thread ID - the internal kernel "pid" */ |
| 976 | SYSCALL_DEFINE0(gettid) |
| 977 | { |
| 978 | return task_pid_vnr(current); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * Accessing ->real_parent is not SMP-safe, it could |
| 983 | * change from under us. However, we can use a stale |
| 984 | * value of ->real_parent under rcu_read_lock(), see |
| 985 | * release_task()->call_rcu(delayed_put_task_struct). |
| 986 | */ |
| 987 | SYSCALL_DEFINE0(getppid) |
| 988 | { |
| 989 | int pid; |
| 990 | |
| 991 | rcu_read_lock(); |
| 992 | pid = task_tgid_vnr(rcu_dereference(current->real_parent)); |
| 993 | rcu_read_unlock(); |
| 994 | |
| 995 | return pid; |
| 996 | } |
| 997 | |
| 998 | SYSCALL_DEFINE0(getuid) |
| 999 | { |
| 1000 | /* Only we change this so SMP safe */ |
| 1001 | return from_kuid_munged(current_user_ns(), current_uid()); |
| 1002 | } |
| 1003 | |
| 1004 | SYSCALL_DEFINE0(geteuid) |
| 1005 | { |
| 1006 | /* Only we change this so SMP safe */ |
| 1007 | return from_kuid_munged(current_user_ns(), current_euid()); |
| 1008 | } |
| 1009 | |
| 1010 | SYSCALL_DEFINE0(getgid) |
| 1011 | { |
| 1012 | /* Only we change this so SMP safe */ |
| 1013 | return from_kgid_munged(current_user_ns(), current_gid()); |
| 1014 | } |
| 1015 | |
| 1016 | SYSCALL_DEFINE0(getegid) |
| 1017 | { |
| 1018 | /* Only we change this so SMP safe */ |
| 1019 | return from_kgid_munged(current_user_ns(), current_egid()); |
| 1020 | } |
| 1021 | |
| 1022 | static void do_sys_times(struct tms *tms) |
| 1023 | { |
| 1024 | u64 tgutime, tgstime, cutime, cstime; |
| 1025 | |
| 1026 | thread_group_cputime_adjusted(current, &tgutime, &tgstime); |
| 1027 | cutime = current->signal->cutime; |
| 1028 | cstime = current->signal->cstime; |
| 1029 | tms->tms_utime = nsec_to_clock_t(tgutime); |
| 1030 | tms->tms_stime = nsec_to_clock_t(tgstime); |
| 1031 | tms->tms_cutime = nsec_to_clock_t(cutime); |
| 1032 | tms->tms_cstime = nsec_to_clock_t(cstime); |
| 1033 | } |
| 1034 | |
| 1035 | SYSCALL_DEFINE1(times, struct tms __user *, tbuf) |
| 1036 | { |
| 1037 | if (tbuf) { |
| 1038 | struct tms tmp; |
| 1039 | |
| 1040 | do_sys_times(&tmp); |
| 1041 | if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) |
| 1042 | return -EFAULT; |
| 1043 | } |
| 1044 | force_successful_syscall_return(); |
| 1045 | return (long) jiffies_64_to_clock_t(get_jiffies_64()); |
| 1046 | } |
| 1047 | |
| 1048 | #ifdef CONFIG_COMPAT |
| 1049 | static compat_clock_t clock_t_to_compat_clock_t(clock_t x) |
| 1050 | { |
| 1051 | return compat_jiffies_to_clock_t(clock_t_to_jiffies(x)); |
| 1052 | } |
| 1053 | |
| 1054 | COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf) |
| 1055 | { |
| 1056 | if (tbuf) { |
| 1057 | struct tms tms; |
| 1058 | struct compat_tms tmp; |
| 1059 | |
| 1060 | do_sys_times(&tms); |
| 1061 | /* Convert our struct tms to the compat version. */ |
| 1062 | tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime); |
| 1063 | tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime); |
| 1064 | tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime); |
| 1065 | tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime); |
| 1066 | if (copy_to_user(tbuf, &tmp, sizeof(tmp))) |
| 1067 | return -EFAULT; |
| 1068 | } |
| 1069 | force_successful_syscall_return(); |
| 1070 | return compat_jiffies_to_clock_t(jiffies); |
| 1071 | } |
| 1072 | #endif |
| 1073 | |
| 1074 | /* |
| 1075 | * This needs some heavy checking ... |
| 1076 | * I just haven't the stomach for it. I also don't fully |
| 1077 | * understand sessions/pgrp etc. Let somebody who does explain it. |
| 1078 | * |
| 1079 | * OK, I think I have the protection semantics right.... this is really |
| 1080 | * only important on a multi-user system anyway, to make sure one user |
| 1081 | * can't send a signal to a process owned by another. -TYT, 12/12/91 |
| 1082 | * |
| 1083 | * !PF_FORKNOEXEC check to conform completely to POSIX. |
| 1084 | */ |
| 1085 | SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) |
| 1086 | { |
| 1087 | struct task_struct *p; |
| 1088 | struct task_struct *group_leader = current->group_leader; |
| 1089 | struct pid *pids[PIDTYPE_MAX] = { 0 }; |
| 1090 | struct pid *pgrp; |
| 1091 | int err; |
| 1092 | |
| 1093 | if (!pid) |
| 1094 | pid = task_pid_vnr(group_leader); |
| 1095 | if (!pgid) |
| 1096 | pgid = pid; |
| 1097 | if (pgid < 0) |
| 1098 | return -EINVAL; |
| 1099 | rcu_read_lock(); |
| 1100 | |
| 1101 | /* From this point forward we keep holding onto the tasklist lock |
| 1102 | * so that our parent does not change from under us. -DaveM |
| 1103 | */ |
| 1104 | write_lock_irq(&tasklist_lock); |
| 1105 | |
| 1106 | err = -ESRCH; |
| 1107 | p = find_task_by_vpid(pid); |
| 1108 | if (!p) |
| 1109 | goto out; |
| 1110 | |
| 1111 | err = -EINVAL; |
| 1112 | if (!thread_group_leader(p)) |
| 1113 | goto out; |
| 1114 | |
| 1115 | if (same_thread_group(p->real_parent, group_leader)) { |
| 1116 | err = -EPERM; |
| 1117 | if (task_session(p) != task_session(group_leader)) |
| 1118 | goto out; |
| 1119 | err = -EACCES; |
| 1120 | if (!(p->flags & PF_FORKNOEXEC)) |
| 1121 | goto out; |
| 1122 | } else { |
| 1123 | err = -ESRCH; |
| 1124 | if (p != group_leader) |
| 1125 | goto out; |
| 1126 | } |
| 1127 | |
| 1128 | err = -EPERM; |
| 1129 | if (p->signal->leader) |
| 1130 | goto out; |
| 1131 | |
| 1132 | pgrp = task_pid(p); |
| 1133 | if (pgid != pid) { |
| 1134 | struct task_struct *g; |
| 1135 | |
| 1136 | pgrp = find_vpid(pgid); |
| 1137 | g = pid_task(pgrp, PIDTYPE_PGID); |
| 1138 | if (!g || task_session(g) != task_session(group_leader)) |
| 1139 | goto out; |
| 1140 | } |
| 1141 | |
| 1142 | err = security_task_setpgid(p, pgid); |
| 1143 | if (err) |
| 1144 | goto out; |
| 1145 | |
| 1146 | if (task_pgrp(p) != pgrp) |
| 1147 | change_pid(pids, p, PIDTYPE_PGID, pgrp); |
| 1148 | |
| 1149 | err = 0; |
| 1150 | out: |
| 1151 | /* All paths lead to here, thus we are safe. -DaveM */ |
| 1152 | write_unlock_irq(&tasklist_lock); |
| 1153 | rcu_read_unlock(); |
| 1154 | free_pids(pids); |
| 1155 | return err; |
| 1156 | } |
| 1157 | |
| 1158 | static int do_getpgid(pid_t pid) |
| 1159 | { |
| 1160 | struct task_struct *p; |
| 1161 | struct pid *grp; |
| 1162 | int retval; |
| 1163 | |
| 1164 | rcu_read_lock(); |
| 1165 | if (!pid) |
| 1166 | grp = task_pgrp(current); |
| 1167 | else { |
| 1168 | retval = -ESRCH; |
| 1169 | p = find_task_by_vpid(pid); |
| 1170 | if (!p) |
| 1171 | goto out; |
| 1172 | grp = task_pgrp(p); |
| 1173 | if (!grp) |
| 1174 | goto out; |
| 1175 | |
| 1176 | retval = security_task_getpgid(p); |
| 1177 | if (retval) |
| 1178 | goto out; |
| 1179 | } |
| 1180 | retval = pid_vnr(grp); |
| 1181 | out: |
| 1182 | rcu_read_unlock(); |
| 1183 | return retval; |
| 1184 | } |
| 1185 | |
| 1186 | SYSCALL_DEFINE1(getpgid, pid_t, pid) |
| 1187 | { |
| 1188 | return do_getpgid(pid); |
| 1189 | } |
| 1190 | |
| 1191 | #ifdef __ARCH_WANT_SYS_GETPGRP |
| 1192 | |
| 1193 | SYSCALL_DEFINE0(getpgrp) |
| 1194 | { |
| 1195 | return do_getpgid(0); |
| 1196 | } |
| 1197 | |
| 1198 | #endif |
| 1199 | |
| 1200 | SYSCALL_DEFINE1(getsid, pid_t, pid) |
| 1201 | { |
| 1202 | struct task_struct *p; |
| 1203 | struct pid *sid; |
| 1204 | int retval; |
| 1205 | |
| 1206 | rcu_read_lock(); |
| 1207 | if (!pid) |
| 1208 | sid = task_session(current); |
| 1209 | else { |
| 1210 | retval = -ESRCH; |
| 1211 | p = find_task_by_vpid(pid); |
| 1212 | if (!p) |
| 1213 | goto out; |
| 1214 | sid = task_session(p); |
| 1215 | if (!sid) |
| 1216 | goto out; |
| 1217 | |
| 1218 | retval = security_task_getsid(p); |
| 1219 | if (retval) |
| 1220 | goto out; |
| 1221 | } |
| 1222 | retval = pid_vnr(sid); |
| 1223 | out: |
| 1224 | rcu_read_unlock(); |
| 1225 | return retval; |
| 1226 | } |
| 1227 | |
| 1228 | static void set_special_pids(struct pid **pids, struct pid *pid) |
| 1229 | { |
| 1230 | struct task_struct *curr = current->group_leader; |
| 1231 | |
| 1232 | if (task_session(curr) != pid) |
| 1233 | change_pid(pids, curr, PIDTYPE_SID, pid); |
| 1234 | |
| 1235 | if (task_pgrp(curr) != pid) |
| 1236 | change_pid(pids, curr, PIDTYPE_PGID, pid); |
| 1237 | } |
| 1238 | |
| 1239 | int ksys_setsid(void) |
| 1240 | { |
| 1241 | struct task_struct *group_leader = current->group_leader; |
| 1242 | struct pid *sid = task_pid(group_leader); |
| 1243 | struct pid *pids[PIDTYPE_MAX] = { 0 }; |
| 1244 | pid_t session = pid_vnr(sid); |
| 1245 | int err = -EPERM; |
| 1246 | |
| 1247 | write_lock_irq(&tasklist_lock); |
| 1248 | /* Fail if I am already a session leader */ |
| 1249 | if (group_leader->signal->leader) |
| 1250 | goto out; |
| 1251 | |
| 1252 | /* Fail if a process group id already exists that equals the |
| 1253 | * proposed session id. |
| 1254 | */ |
| 1255 | if (pid_task(sid, PIDTYPE_PGID)) |
| 1256 | goto out; |
| 1257 | |
| 1258 | group_leader->signal->leader = 1; |
| 1259 | set_special_pids(pids, sid); |
| 1260 | |
| 1261 | proc_clear_tty(group_leader); |
| 1262 | |
| 1263 | err = session; |
| 1264 | out: |
| 1265 | write_unlock_irq(&tasklist_lock); |
| 1266 | free_pids(pids); |
| 1267 | if (err > 0) { |
| 1268 | proc_sid_connector(group_leader); |
| 1269 | sched_autogroup_create_attach(group_leader); |
| 1270 | } |
| 1271 | return err; |
| 1272 | } |
| 1273 | |
| 1274 | SYSCALL_DEFINE0(setsid) |
| 1275 | { |
| 1276 | return ksys_setsid(); |
| 1277 | } |
| 1278 | |
| 1279 | DECLARE_RWSEM(uts_sem); |
| 1280 | |
| 1281 | #ifdef COMPAT_UTS_MACHINE |
| 1282 | #define override_architecture(name) \ |
| 1283 | (personality(current->personality) == PER_LINUX32 && \ |
| 1284 | copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ |
| 1285 | sizeof(COMPAT_UTS_MACHINE))) |
| 1286 | #else |
| 1287 | #define override_architecture(name) 0 |
| 1288 | #endif |
| 1289 | |
| 1290 | /* |
| 1291 | * Work around broken programs that cannot handle "Linux 3.0". |
| 1292 | * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40 |
| 1293 | * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be |
| 1294 | * 2.6.60. |
| 1295 | */ |
| 1296 | static int override_release(char __user *release, size_t len) |
| 1297 | { |
| 1298 | int ret = 0; |
| 1299 | |
| 1300 | if (current->personality & UNAME26) { |
| 1301 | const char *rest = UTS_RELEASE; |
| 1302 | char buf[65] = { 0 }; |
| 1303 | int ndots = 0; |
| 1304 | unsigned v; |
| 1305 | size_t copy; |
| 1306 | |
| 1307 | while (*rest) { |
| 1308 | if (*rest == '.' && ++ndots >= 3) |
| 1309 | break; |
| 1310 | if (!isdigit(*rest) && *rest != '.') |
| 1311 | break; |
| 1312 | rest++; |
| 1313 | } |
| 1314 | v = LINUX_VERSION_PATCHLEVEL + 60; |
| 1315 | copy = clamp_t(size_t, len, 1, sizeof(buf)); |
| 1316 | copy = scnprintf(buf, copy, "2.6.%u%s", v, rest); |
| 1317 | ret = copy_to_user(release, buf, copy + 1); |
| 1318 | } |
| 1319 | return ret; |
| 1320 | } |
| 1321 | |
| 1322 | SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) |
| 1323 | { |
| 1324 | struct new_utsname tmp; |
| 1325 | |
| 1326 | down_read(&uts_sem); |
| 1327 | memcpy(&tmp, utsname(), sizeof(tmp)); |
| 1328 | up_read(&uts_sem); |
| 1329 | if (copy_to_user(name, &tmp, sizeof(tmp))) |
| 1330 | return -EFAULT; |
| 1331 | |
| 1332 | if (override_release(name->release, sizeof(name->release))) |
| 1333 | return -EFAULT; |
| 1334 | if (override_architecture(name)) |
| 1335 | return -EFAULT; |
| 1336 | return 0; |
| 1337 | } |
| 1338 | |
| 1339 | #ifdef __ARCH_WANT_SYS_OLD_UNAME |
| 1340 | /* |
| 1341 | * Old cruft |
| 1342 | */ |
| 1343 | SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) |
| 1344 | { |
| 1345 | struct old_utsname tmp; |
| 1346 | |
| 1347 | if (!name) |
| 1348 | return -EFAULT; |
| 1349 | |
| 1350 | down_read(&uts_sem); |
| 1351 | memcpy(&tmp, utsname(), sizeof(tmp)); |
| 1352 | up_read(&uts_sem); |
| 1353 | if (copy_to_user(name, &tmp, sizeof(tmp))) |
| 1354 | return -EFAULT; |
| 1355 | |
| 1356 | if (override_release(name->release, sizeof(name->release))) |
| 1357 | return -EFAULT; |
| 1358 | if (override_architecture(name)) |
| 1359 | return -EFAULT; |
| 1360 | return 0; |
| 1361 | } |
| 1362 | |
| 1363 | SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) |
| 1364 | { |
| 1365 | struct oldold_utsname tmp; |
| 1366 | |
| 1367 | if (!name) |
| 1368 | return -EFAULT; |
| 1369 | |
| 1370 | memset(&tmp, 0, sizeof(tmp)); |
| 1371 | |
| 1372 | down_read(&uts_sem); |
| 1373 | memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN); |
| 1374 | memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN); |
| 1375 | memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN); |
| 1376 | memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN); |
| 1377 | memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN); |
| 1378 | up_read(&uts_sem); |
| 1379 | if (copy_to_user(name, &tmp, sizeof(tmp))) |
| 1380 | return -EFAULT; |
| 1381 | |
| 1382 | if (override_architecture(name)) |
| 1383 | return -EFAULT; |
| 1384 | if (override_release(name->release, sizeof(name->release))) |
| 1385 | return -EFAULT; |
| 1386 | return 0; |
| 1387 | } |
| 1388 | #endif |
| 1389 | |
| 1390 | SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) |
| 1391 | { |
| 1392 | int errno; |
| 1393 | char tmp[__NEW_UTS_LEN]; |
| 1394 | |
| 1395 | if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) |
| 1396 | return -EPERM; |
| 1397 | |
| 1398 | if (len < 0 || len > __NEW_UTS_LEN) |
| 1399 | return -EINVAL; |
| 1400 | errno = -EFAULT; |
| 1401 | if (!copy_from_user(tmp, name, len)) { |
| 1402 | struct new_utsname *u; |
| 1403 | |
| 1404 | add_device_randomness(tmp, len); |
| 1405 | down_write(&uts_sem); |
| 1406 | u = utsname(); |
| 1407 | memcpy(u->nodename, tmp, len); |
| 1408 | memset(u->nodename + len, 0, sizeof(u->nodename) - len); |
| 1409 | errno = 0; |
| 1410 | uts_proc_notify(UTS_PROC_HOSTNAME); |
| 1411 | up_write(&uts_sem); |
| 1412 | } |
| 1413 | return errno; |
| 1414 | } |
| 1415 | |
| 1416 | #ifdef __ARCH_WANT_SYS_GETHOSTNAME |
| 1417 | |
| 1418 | SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) |
| 1419 | { |
| 1420 | int i; |
| 1421 | struct new_utsname *u; |
| 1422 | char tmp[__NEW_UTS_LEN + 1]; |
| 1423 | |
| 1424 | if (len < 0) |
| 1425 | return -EINVAL; |
| 1426 | down_read(&uts_sem); |
| 1427 | u = utsname(); |
| 1428 | i = 1 + strlen(u->nodename); |
| 1429 | if (i > len) |
| 1430 | i = len; |
| 1431 | memcpy(tmp, u->nodename, i); |
| 1432 | up_read(&uts_sem); |
| 1433 | if (copy_to_user(name, tmp, i)) |
| 1434 | return -EFAULT; |
| 1435 | return 0; |
| 1436 | } |
| 1437 | |
| 1438 | #endif |
| 1439 | |
| 1440 | /* |
| 1441 | * Only setdomainname; getdomainname can be implemented by calling |
| 1442 | * uname() |
| 1443 | */ |
| 1444 | SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) |
| 1445 | { |
| 1446 | int errno; |
| 1447 | char tmp[__NEW_UTS_LEN]; |
| 1448 | |
| 1449 | if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) |
| 1450 | return -EPERM; |
| 1451 | if (len < 0 || len > __NEW_UTS_LEN) |
| 1452 | return -EINVAL; |
| 1453 | |
| 1454 | errno = -EFAULT; |
| 1455 | if (!copy_from_user(tmp, name, len)) { |
| 1456 | struct new_utsname *u; |
| 1457 | |
| 1458 | add_device_randomness(tmp, len); |
| 1459 | down_write(&uts_sem); |
| 1460 | u = utsname(); |
| 1461 | memcpy(u->domainname, tmp, len); |
| 1462 | memset(u->domainname + len, 0, sizeof(u->domainname) - len); |
| 1463 | errno = 0; |
| 1464 | uts_proc_notify(UTS_PROC_DOMAINNAME); |
| 1465 | up_write(&uts_sem); |
| 1466 | } |
| 1467 | return errno; |
| 1468 | } |
| 1469 | |
| 1470 | /* make sure you are allowed to change @tsk limits before calling this */ |
| 1471 | static int do_prlimit(struct task_struct *tsk, unsigned int resource, |
| 1472 | struct rlimit *new_rlim, struct rlimit *old_rlim) |
| 1473 | { |
| 1474 | struct rlimit *rlim; |
| 1475 | int retval = 0; |
| 1476 | |
| 1477 | if (resource >= RLIM_NLIMITS) |
| 1478 | return -EINVAL; |
| 1479 | resource = array_index_nospec(resource, RLIM_NLIMITS); |
| 1480 | |
| 1481 | if (new_rlim) { |
| 1482 | if (new_rlim->rlim_cur > new_rlim->rlim_max) |
| 1483 | return -EINVAL; |
| 1484 | if (resource == RLIMIT_NOFILE && |
| 1485 | new_rlim->rlim_max > sysctl_nr_open) |
| 1486 | return -EPERM; |
| 1487 | } |
| 1488 | |
| 1489 | /* Holding a refcount on tsk protects tsk->signal from disappearing. */ |
| 1490 | rlim = tsk->signal->rlim + resource; |
| 1491 | task_lock(tsk->group_leader); |
| 1492 | if (new_rlim) { |
| 1493 | /* |
| 1494 | * Keep the capable check against init_user_ns until cgroups can |
| 1495 | * contain all limits. |
| 1496 | */ |
| 1497 | if (new_rlim->rlim_max > rlim->rlim_max && |
| 1498 | !capable(CAP_SYS_RESOURCE)) |
| 1499 | retval = -EPERM; |
| 1500 | if (!retval) |
| 1501 | retval = security_task_setrlimit(tsk, resource, new_rlim); |
| 1502 | } |
| 1503 | if (!retval) { |
| 1504 | if (old_rlim) |
| 1505 | *old_rlim = *rlim; |
| 1506 | if (new_rlim) |
| 1507 | *rlim = *new_rlim; |
| 1508 | } |
| 1509 | task_unlock(tsk->group_leader); |
| 1510 | |
| 1511 | /* |
| 1512 | * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not |
| 1513 | * infinite. In case of RLIM_INFINITY the posix CPU timer code |
| 1514 | * ignores the rlimit. |
| 1515 | */ |
| 1516 | if (!retval && new_rlim && resource == RLIMIT_CPU && |
| 1517 | new_rlim->rlim_cur != RLIM_INFINITY && |
| 1518 | IS_ENABLED(CONFIG_POSIX_TIMERS)) { |
| 1519 | /* |
| 1520 | * update_rlimit_cpu can fail if the task is exiting, but there |
| 1521 | * may be other tasks in the thread group that are not exiting, |
| 1522 | * and they need their cpu timers adjusted. |
| 1523 | * |
| 1524 | * The group_leader is the last task to be released, so if we |
| 1525 | * cannot update_rlimit_cpu on it, then the entire process is |
| 1526 | * exiting and we do not need to update at all. |
| 1527 | */ |
| 1528 | update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur); |
| 1529 | } |
| 1530 | |
| 1531 | return retval; |
| 1532 | } |
| 1533 | |
| 1534 | SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) |
| 1535 | { |
| 1536 | struct rlimit value; |
| 1537 | int ret; |
| 1538 | |
| 1539 | ret = do_prlimit(current, resource, NULL, &value); |
| 1540 | if (!ret) |
| 1541 | ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; |
| 1542 | |
| 1543 | return ret; |
| 1544 | } |
| 1545 | |
| 1546 | #ifdef CONFIG_COMPAT |
| 1547 | |
| 1548 | COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource, |
| 1549 | struct compat_rlimit __user *, rlim) |
| 1550 | { |
| 1551 | struct rlimit r; |
| 1552 | struct compat_rlimit r32; |
| 1553 | |
| 1554 | if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit))) |
| 1555 | return -EFAULT; |
| 1556 | |
| 1557 | if (r32.rlim_cur == COMPAT_RLIM_INFINITY) |
| 1558 | r.rlim_cur = RLIM_INFINITY; |
| 1559 | else |
| 1560 | r.rlim_cur = r32.rlim_cur; |
| 1561 | if (r32.rlim_max == COMPAT_RLIM_INFINITY) |
| 1562 | r.rlim_max = RLIM_INFINITY; |
| 1563 | else |
| 1564 | r.rlim_max = r32.rlim_max; |
| 1565 | return do_prlimit(current, resource, &r, NULL); |
| 1566 | } |
| 1567 | |
| 1568 | COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource, |
| 1569 | struct compat_rlimit __user *, rlim) |
| 1570 | { |
| 1571 | struct rlimit r; |
| 1572 | int ret; |
| 1573 | |
| 1574 | ret = do_prlimit(current, resource, NULL, &r); |
| 1575 | if (!ret) { |
| 1576 | struct compat_rlimit r32; |
| 1577 | if (r.rlim_cur > COMPAT_RLIM_INFINITY) |
| 1578 | r32.rlim_cur = COMPAT_RLIM_INFINITY; |
| 1579 | else |
| 1580 | r32.rlim_cur = r.rlim_cur; |
| 1581 | if (r.rlim_max > COMPAT_RLIM_INFINITY) |
| 1582 | r32.rlim_max = COMPAT_RLIM_INFINITY; |
| 1583 | else |
| 1584 | r32.rlim_max = r.rlim_max; |
| 1585 | |
| 1586 | if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit))) |
| 1587 | return -EFAULT; |
| 1588 | } |
| 1589 | return ret; |
| 1590 | } |
| 1591 | |
| 1592 | #endif |
| 1593 | |
| 1594 | #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT |
| 1595 | |
| 1596 | /* |
| 1597 | * Back compatibility for getrlimit. Needed for some apps. |
| 1598 | */ |
| 1599 | SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, |
| 1600 | struct rlimit __user *, rlim) |
| 1601 | { |
| 1602 | struct rlimit x; |
| 1603 | if (resource >= RLIM_NLIMITS) |
| 1604 | return -EINVAL; |
| 1605 | |
| 1606 | resource = array_index_nospec(resource, RLIM_NLIMITS); |
| 1607 | task_lock(current->group_leader); |
| 1608 | x = current->signal->rlim[resource]; |
| 1609 | task_unlock(current->group_leader); |
| 1610 | if (x.rlim_cur > 0x7FFFFFFF) |
| 1611 | x.rlim_cur = 0x7FFFFFFF; |
| 1612 | if (x.rlim_max > 0x7FFFFFFF) |
| 1613 | x.rlim_max = 0x7FFFFFFF; |
| 1614 | return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0; |
| 1615 | } |
| 1616 | |
| 1617 | #ifdef CONFIG_COMPAT |
| 1618 | COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, |
| 1619 | struct compat_rlimit __user *, rlim) |
| 1620 | { |
| 1621 | struct rlimit r; |
| 1622 | |
| 1623 | if (resource >= RLIM_NLIMITS) |
| 1624 | return -EINVAL; |
| 1625 | |
| 1626 | resource = array_index_nospec(resource, RLIM_NLIMITS); |
| 1627 | task_lock(current->group_leader); |
| 1628 | r = current->signal->rlim[resource]; |
| 1629 | task_unlock(current->group_leader); |
| 1630 | if (r.rlim_cur > 0x7FFFFFFF) |
| 1631 | r.rlim_cur = 0x7FFFFFFF; |
| 1632 | if (r.rlim_max > 0x7FFFFFFF) |
| 1633 | r.rlim_max = 0x7FFFFFFF; |
| 1634 | |
| 1635 | if (put_user(r.rlim_cur, &rlim->rlim_cur) || |
| 1636 | put_user(r.rlim_max, &rlim->rlim_max)) |
| 1637 | return -EFAULT; |
| 1638 | return 0; |
| 1639 | } |
| 1640 | #endif |
| 1641 | |
| 1642 | #endif |
| 1643 | |
| 1644 | static inline bool rlim64_is_infinity(__u64 rlim64) |
| 1645 | { |
| 1646 | #if BITS_PER_LONG < 64 |
| 1647 | return rlim64 >= ULONG_MAX; |
| 1648 | #else |
| 1649 | return rlim64 == RLIM64_INFINITY; |
| 1650 | #endif |
| 1651 | } |
| 1652 | |
| 1653 | static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) |
| 1654 | { |
| 1655 | if (rlim->rlim_cur == RLIM_INFINITY) |
| 1656 | rlim64->rlim_cur = RLIM64_INFINITY; |
| 1657 | else |
| 1658 | rlim64->rlim_cur = rlim->rlim_cur; |
| 1659 | if (rlim->rlim_max == RLIM_INFINITY) |
| 1660 | rlim64->rlim_max = RLIM64_INFINITY; |
| 1661 | else |
| 1662 | rlim64->rlim_max = rlim->rlim_max; |
| 1663 | } |
| 1664 | |
| 1665 | static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) |
| 1666 | { |
| 1667 | if (rlim64_is_infinity(rlim64->rlim_cur)) |
| 1668 | rlim->rlim_cur = RLIM_INFINITY; |
| 1669 | else |
| 1670 | rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; |
| 1671 | if (rlim64_is_infinity(rlim64->rlim_max)) |
| 1672 | rlim->rlim_max = RLIM_INFINITY; |
| 1673 | else |
| 1674 | rlim->rlim_max = (unsigned long)rlim64->rlim_max; |
| 1675 | } |
| 1676 | |
| 1677 | /* rcu lock must be held */ |
| 1678 | static int check_prlimit_permission(struct task_struct *task, |
| 1679 | unsigned int flags) |
| 1680 | { |
| 1681 | const struct cred *cred = current_cred(), *tcred; |
| 1682 | bool id_match; |
| 1683 | |
| 1684 | if (current == task) |
| 1685 | return 0; |
| 1686 | |
| 1687 | tcred = __task_cred(task); |
| 1688 | id_match = (uid_eq(cred->uid, tcred->euid) && |
| 1689 | uid_eq(cred->uid, tcred->suid) && |
| 1690 | uid_eq(cred->uid, tcred->uid) && |
| 1691 | gid_eq(cred->gid, tcred->egid) && |
| 1692 | gid_eq(cred->gid, tcred->sgid) && |
| 1693 | gid_eq(cred->gid, tcred->gid)); |
| 1694 | if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE)) |
| 1695 | return -EPERM; |
| 1696 | |
| 1697 | return security_task_prlimit(cred, tcred, flags); |
| 1698 | } |
| 1699 | |
| 1700 | SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, |
| 1701 | const struct rlimit64 __user *, new_rlim, |
| 1702 | struct rlimit64 __user *, old_rlim) |
| 1703 | { |
| 1704 | struct rlimit64 old64, new64; |
| 1705 | struct rlimit old, new; |
| 1706 | struct task_struct *tsk; |
| 1707 | unsigned int checkflags = 0; |
| 1708 | int ret; |
| 1709 | |
| 1710 | if (old_rlim) |
| 1711 | checkflags |= LSM_PRLIMIT_READ; |
| 1712 | |
| 1713 | if (new_rlim) { |
| 1714 | if (copy_from_user(&new64, new_rlim, sizeof(new64))) |
| 1715 | return -EFAULT; |
| 1716 | rlim64_to_rlim(&new64, &new); |
| 1717 | checkflags |= LSM_PRLIMIT_WRITE; |
| 1718 | } |
| 1719 | |
| 1720 | rcu_read_lock(); |
| 1721 | tsk = pid ? find_task_by_vpid(pid) : current; |
| 1722 | if (!tsk) { |
| 1723 | rcu_read_unlock(); |
| 1724 | return -ESRCH; |
| 1725 | } |
| 1726 | ret = check_prlimit_permission(tsk, checkflags); |
| 1727 | if (ret) { |
| 1728 | rcu_read_unlock(); |
| 1729 | return ret; |
| 1730 | } |
| 1731 | get_task_struct(tsk); |
| 1732 | rcu_read_unlock(); |
| 1733 | |
| 1734 | ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, |
| 1735 | old_rlim ? &old : NULL); |
| 1736 | |
| 1737 | if (!ret && old_rlim) { |
| 1738 | rlim_to_rlim64(&old, &old64); |
| 1739 | if (copy_to_user(old_rlim, &old64, sizeof(old64))) |
| 1740 | ret = -EFAULT; |
| 1741 | } |
| 1742 | |
| 1743 | put_task_struct(tsk); |
| 1744 | return ret; |
| 1745 | } |
| 1746 | |
| 1747 | SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) |
| 1748 | { |
| 1749 | struct rlimit new_rlim; |
| 1750 | |
| 1751 | if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) |
| 1752 | return -EFAULT; |
| 1753 | return do_prlimit(current, resource, &new_rlim, NULL); |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | * It would make sense to put struct rusage in the task_struct, |
| 1758 | * except that would make the task_struct be *really big*. After |
| 1759 | * task_struct gets moved into malloc'ed memory, it would |
| 1760 | * make sense to do this. It will make moving the rest of the information |
| 1761 | * a lot simpler! (Which we're not doing right now because we're not |
| 1762 | * measuring them yet). |
| 1763 | * |
| 1764 | * When sampling multiple threads for RUSAGE_SELF, under SMP we might have |
| 1765 | * races with threads incrementing their own counters. But since word |
| 1766 | * reads are atomic, we either get new values or old values and we don't |
| 1767 | * care which for the sums. We always take the siglock to protect reading |
| 1768 | * the c* fields from p->signal from races with exit.c updating those |
| 1769 | * fields when reaping, so a sample either gets all the additions of a |
| 1770 | * given child after it's reaped, or none so this sample is before reaping. |
| 1771 | * |
| 1772 | * Locking: |
| 1773 | * We need to take the siglock for CHILDEREN, SELF and BOTH |
| 1774 | * for the cases current multithreaded, non-current single threaded |
| 1775 | * non-current multithreaded. Thread traversal is now safe with |
| 1776 | * the siglock held. |
| 1777 | * Strictly speaking, we donot need to take the siglock if we are current and |
| 1778 | * single threaded, as no one else can take our signal_struct away, no one |
| 1779 | * else can reap the children to update signal->c* counters, and no one else |
| 1780 | * can race with the signal-> fields. If we do not take any lock, the |
| 1781 | * signal-> fields could be read out of order while another thread was just |
| 1782 | * exiting. So we should place a read memory barrier when we avoid the lock. |
| 1783 | * On the writer side, write memory barrier is implied in __exit_signal |
| 1784 | * as __exit_signal releases the siglock spinlock after updating the signal-> |
| 1785 | * fields. But we don't do this yet to keep things simple. |
| 1786 | * |
| 1787 | */ |
| 1788 | |
| 1789 | static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) |
| 1790 | { |
| 1791 | r->ru_nvcsw += t->nvcsw; |
| 1792 | r->ru_nivcsw += t->nivcsw; |
| 1793 | r->ru_minflt += t->min_flt; |
| 1794 | r->ru_majflt += t->maj_flt; |
| 1795 | r->ru_inblock += task_io_get_inblock(t); |
| 1796 | r->ru_oublock += task_io_get_oublock(t); |
| 1797 | } |
| 1798 | |
| 1799 | void getrusage(struct task_struct *p, int who, struct rusage *r) |
| 1800 | { |
| 1801 | struct task_struct *t; |
| 1802 | unsigned long flags; |
| 1803 | u64 tgutime, tgstime, utime, stime; |
| 1804 | unsigned long maxrss; |
| 1805 | struct mm_struct *mm; |
| 1806 | struct signal_struct *sig = p->signal; |
| 1807 | unsigned int seq = 0; |
| 1808 | |
| 1809 | retry: |
| 1810 | memset(r, 0, sizeof(*r)); |
| 1811 | utime = stime = 0; |
| 1812 | maxrss = 0; |
| 1813 | |
| 1814 | if (who == RUSAGE_THREAD) { |
| 1815 | task_cputime_adjusted(current, &utime, &stime); |
| 1816 | accumulate_thread_rusage(p, r); |
| 1817 | maxrss = sig->maxrss; |
| 1818 | goto out_thread; |
| 1819 | } |
| 1820 | |
| 1821 | flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); |
| 1822 | |
| 1823 | switch (who) { |
| 1824 | case RUSAGE_BOTH: |
| 1825 | case RUSAGE_CHILDREN: |
| 1826 | utime = sig->cutime; |
| 1827 | stime = sig->cstime; |
| 1828 | r->ru_nvcsw = sig->cnvcsw; |
| 1829 | r->ru_nivcsw = sig->cnivcsw; |
| 1830 | r->ru_minflt = sig->cmin_flt; |
| 1831 | r->ru_majflt = sig->cmaj_flt; |
| 1832 | r->ru_inblock = sig->cinblock; |
| 1833 | r->ru_oublock = sig->coublock; |
| 1834 | maxrss = sig->cmaxrss; |
| 1835 | |
| 1836 | if (who == RUSAGE_CHILDREN) |
| 1837 | break; |
| 1838 | fallthrough; |
| 1839 | |
| 1840 | case RUSAGE_SELF: |
| 1841 | r->ru_nvcsw += sig->nvcsw; |
| 1842 | r->ru_nivcsw += sig->nivcsw; |
| 1843 | r->ru_minflt += sig->min_flt; |
| 1844 | r->ru_majflt += sig->maj_flt; |
| 1845 | r->ru_inblock += sig->inblock; |
| 1846 | r->ru_oublock += sig->oublock; |
| 1847 | if (maxrss < sig->maxrss) |
| 1848 | maxrss = sig->maxrss; |
| 1849 | |
| 1850 | rcu_read_lock(); |
| 1851 | __for_each_thread(sig, t) |
| 1852 | accumulate_thread_rusage(t, r); |
| 1853 | rcu_read_unlock(); |
| 1854 | |
| 1855 | break; |
| 1856 | |
| 1857 | default: |
| 1858 | BUG(); |
| 1859 | } |
| 1860 | |
| 1861 | if (need_seqretry(&sig->stats_lock, seq)) { |
| 1862 | seq = 1; |
| 1863 | goto retry; |
| 1864 | } |
| 1865 | done_seqretry_irqrestore(&sig->stats_lock, seq, flags); |
| 1866 | |
| 1867 | if (who == RUSAGE_CHILDREN) |
| 1868 | goto out_children; |
| 1869 | |
| 1870 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
| 1871 | utime += tgutime; |
| 1872 | stime += tgstime; |
| 1873 | |
| 1874 | out_thread: |
| 1875 | mm = get_task_mm(p); |
| 1876 | if (mm) { |
| 1877 | setmax_mm_hiwater_rss(&maxrss, mm); |
| 1878 | mmput(mm); |
| 1879 | } |
| 1880 | |
| 1881 | out_children: |
| 1882 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ |
| 1883 | r->ru_utime = ns_to_kernel_old_timeval(utime); |
| 1884 | r->ru_stime = ns_to_kernel_old_timeval(stime); |
| 1885 | } |
| 1886 | |
| 1887 | SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) |
| 1888 | { |
| 1889 | struct rusage r; |
| 1890 | |
| 1891 | if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && |
| 1892 | who != RUSAGE_THREAD) |
| 1893 | return -EINVAL; |
| 1894 | |
| 1895 | getrusage(current, who, &r); |
| 1896 | return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; |
| 1897 | } |
| 1898 | |
| 1899 | #ifdef CONFIG_COMPAT |
| 1900 | COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru) |
| 1901 | { |
| 1902 | struct rusage r; |
| 1903 | |
| 1904 | if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && |
| 1905 | who != RUSAGE_THREAD) |
| 1906 | return -EINVAL; |
| 1907 | |
| 1908 | getrusage(current, who, &r); |
| 1909 | return put_compat_rusage(&r, ru); |
| 1910 | } |
| 1911 | #endif |
| 1912 | |
| 1913 | SYSCALL_DEFINE1(umask, int, mask) |
| 1914 | { |
| 1915 | mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); |
| 1916 | return mask; |
| 1917 | } |
| 1918 | |
| 1919 | static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd) |
| 1920 | { |
| 1921 | CLASS(fd, exe)(fd); |
| 1922 | struct inode *inode; |
| 1923 | int err; |
| 1924 | |
| 1925 | if (fd_empty(exe)) |
| 1926 | return -EBADF; |
| 1927 | |
| 1928 | inode = file_inode(fd_file(exe)); |
| 1929 | |
| 1930 | /* |
| 1931 | * Because the original mm->exe_file points to executable file, make |
| 1932 | * sure that this one is executable as well, to avoid breaking an |
| 1933 | * overall picture. |
| 1934 | */ |
| 1935 | if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path)) |
| 1936 | return -EACCES; |
| 1937 | |
| 1938 | err = file_permission(fd_file(exe), MAY_EXEC); |
| 1939 | if (err) |
| 1940 | return err; |
| 1941 | |
| 1942 | return replace_mm_exe_file(mm, fd_file(exe)); |
| 1943 | } |
| 1944 | |
| 1945 | /* |
| 1946 | * Check arithmetic relations of passed addresses. |
| 1947 | * |
| 1948 | * WARNING: we don't require any capability here so be very careful |
| 1949 | * in what is allowed for modification from userspace. |
| 1950 | */ |
| 1951 | static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map) |
| 1952 | { |
| 1953 | unsigned long mmap_max_addr = TASK_SIZE; |
| 1954 | int error = -EINVAL, i; |
| 1955 | |
| 1956 | static const unsigned char offsets[] = { |
| 1957 | offsetof(struct prctl_mm_map, start_code), |
| 1958 | offsetof(struct prctl_mm_map, end_code), |
| 1959 | offsetof(struct prctl_mm_map, start_data), |
| 1960 | offsetof(struct prctl_mm_map, end_data), |
| 1961 | offsetof(struct prctl_mm_map, start_brk), |
| 1962 | offsetof(struct prctl_mm_map, brk), |
| 1963 | offsetof(struct prctl_mm_map, start_stack), |
| 1964 | offsetof(struct prctl_mm_map, arg_start), |
| 1965 | offsetof(struct prctl_mm_map, arg_end), |
| 1966 | offsetof(struct prctl_mm_map, env_start), |
| 1967 | offsetof(struct prctl_mm_map, env_end), |
| 1968 | }; |
| 1969 | |
| 1970 | /* |
| 1971 | * Make sure the members are not somewhere outside |
| 1972 | * of allowed address space. |
| 1973 | */ |
| 1974 | for (i = 0; i < ARRAY_SIZE(offsets); i++) { |
| 1975 | u64 val = *(u64 *)((char *)prctl_map + offsets[i]); |
| 1976 | |
| 1977 | if ((unsigned long)val >= mmap_max_addr || |
| 1978 | (unsigned long)val < mmap_min_addr) |
| 1979 | goto out; |
| 1980 | } |
| 1981 | |
| 1982 | /* |
| 1983 | * Make sure the pairs are ordered. |
| 1984 | */ |
| 1985 | #define __prctl_check_order(__m1, __op, __m2) \ |
| 1986 | ((unsigned long)prctl_map->__m1 __op \ |
| 1987 | (unsigned long)prctl_map->__m2) ? 0 : -EINVAL |
| 1988 | error = __prctl_check_order(start_code, <, end_code); |
| 1989 | error |= __prctl_check_order(start_data,<=, end_data); |
| 1990 | error |= __prctl_check_order(start_brk, <=, brk); |
| 1991 | error |= __prctl_check_order(arg_start, <=, arg_end); |
| 1992 | error |= __prctl_check_order(env_start, <=, env_end); |
| 1993 | if (error) |
| 1994 | goto out; |
| 1995 | #undef __prctl_check_order |
| 1996 | |
| 1997 | error = -EINVAL; |
| 1998 | |
| 1999 | /* |
| 2000 | * Neither we should allow to override limits if they set. |
| 2001 | */ |
| 2002 | if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk, |
| 2003 | prctl_map->start_brk, prctl_map->end_data, |
| 2004 | prctl_map->start_data)) |
| 2005 | goto out; |
| 2006 | |
| 2007 | error = 0; |
| 2008 | out: |
| 2009 | return error; |
| 2010 | } |
| 2011 | |
| 2012 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 2013 | static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size) |
| 2014 | { |
| 2015 | struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, }; |
| 2016 | unsigned long user_auxv[AT_VECTOR_SIZE]; |
| 2017 | struct mm_struct *mm = current->mm; |
| 2018 | int error; |
| 2019 | |
| 2020 | BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); |
| 2021 | BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256); |
| 2022 | |
| 2023 | if (opt == PR_SET_MM_MAP_SIZE) |
| 2024 | return put_user((unsigned int)sizeof(prctl_map), |
| 2025 | (unsigned int __user *)addr); |
| 2026 | |
| 2027 | if (data_size != sizeof(prctl_map)) |
| 2028 | return -EINVAL; |
| 2029 | |
| 2030 | if (copy_from_user(&prctl_map, addr, sizeof(prctl_map))) |
| 2031 | return -EFAULT; |
| 2032 | |
| 2033 | error = validate_prctl_map_addr(&prctl_map); |
| 2034 | if (error) |
| 2035 | return error; |
| 2036 | |
| 2037 | if (prctl_map.auxv_size) { |
| 2038 | /* |
| 2039 | * Someone is trying to cheat the auxv vector. |
| 2040 | */ |
| 2041 | if (!prctl_map.auxv || |
| 2042 | prctl_map.auxv_size > sizeof(mm->saved_auxv)) |
| 2043 | return -EINVAL; |
| 2044 | |
| 2045 | memset(user_auxv, 0, sizeof(user_auxv)); |
| 2046 | if (copy_from_user(user_auxv, |
| 2047 | (const void __user *)prctl_map.auxv, |
| 2048 | prctl_map.auxv_size)) |
| 2049 | return -EFAULT; |
| 2050 | |
| 2051 | /* Last entry must be AT_NULL as specification requires */ |
| 2052 | user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL; |
| 2053 | user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL; |
| 2054 | } |
| 2055 | |
| 2056 | if (prctl_map.exe_fd != (u32)-1) { |
| 2057 | /* |
| 2058 | * Check if the current user is checkpoint/restore capable. |
| 2059 | * At the time of this writing, it checks for CAP_SYS_ADMIN |
| 2060 | * or CAP_CHECKPOINT_RESTORE. |
| 2061 | * Note that a user with access to ptrace can masquerade an |
| 2062 | * arbitrary program as any executable, even setuid ones. |
| 2063 | * This may have implications in the tomoyo subsystem. |
| 2064 | */ |
| 2065 | if (!checkpoint_restore_ns_capable(current_user_ns())) |
| 2066 | return -EPERM; |
| 2067 | |
| 2068 | error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd); |
| 2069 | if (error) |
| 2070 | return error; |
| 2071 | } |
| 2072 | |
| 2073 | /* |
| 2074 | * arg_lock protects concurrent updates but we still need mmap_lock for |
| 2075 | * read to exclude races with sys_brk. |
| 2076 | */ |
| 2077 | mmap_read_lock(mm); |
| 2078 | |
| 2079 | /* |
| 2080 | * We don't validate if these members are pointing to |
| 2081 | * real present VMAs because application may have correspond |
| 2082 | * VMAs already unmapped and kernel uses these members for statistics |
| 2083 | * output in procfs mostly, except |
| 2084 | * |
| 2085 | * - @start_brk/@brk which are used in do_brk_flags but kernel lookups |
| 2086 | * for VMAs when updating these members so anything wrong written |
| 2087 | * here cause kernel to swear at userspace program but won't lead |
| 2088 | * to any problem in kernel itself |
| 2089 | */ |
| 2090 | |
| 2091 | spin_lock(&mm->arg_lock); |
| 2092 | mm->start_code = prctl_map.start_code; |
| 2093 | mm->end_code = prctl_map.end_code; |
| 2094 | mm->start_data = prctl_map.start_data; |
| 2095 | mm->end_data = prctl_map.end_data; |
| 2096 | mm->start_brk = prctl_map.start_brk; |
| 2097 | mm->brk = prctl_map.brk; |
| 2098 | mm->start_stack = prctl_map.start_stack; |
| 2099 | mm->arg_start = prctl_map.arg_start; |
| 2100 | mm->arg_end = prctl_map.arg_end; |
| 2101 | mm->env_start = prctl_map.env_start; |
| 2102 | mm->env_end = prctl_map.env_end; |
| 2103 | spin_unlock(&mm->arg_lock); |
| 2104 | |
| 2105 | /* |
| 2106 | * Note this update of @saved_auxv is lockless thus |
| 2107 | * if someone reads this member in procfs while we're |
| 2108 | * updating -- it may get partly updated results. It's |
| 2109 | * known and acceptable trade off: we leave it as is to |
| 2110 | * not introduce additional locks here making the kernel |
| 2111 | * more complex. |
| 2112 | */ |
| 2113 | if (prctl_map.auxv_size) |
| 2114 | memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv)); |
| 2115 | |
| 2116 | mmap_read_unlock(mm); |
| 2117 | return 0; |
| 2118 | } |
| 2119 | #endif /* CONFIG_CHECKPOINT_RESTORE */ |
| 2120 | |
| 2121 | static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr, |
| 2122 | unsigned long len) |
| 2123 | { |
| 2124 | /* |
| 2125 | * This doesn't move the auxiliary vector itself since it's pinned to |
| 2126 | * mm_struct, but it permits filling the vector with new values. It's |
| 2127 | * up to the caller to provide sane values here, otherwise userspace |
| 2128 | * tools which use this vector might be unhappy. |
| 2129 | */ |
| 2130 | unsigned long user_auxv[AT_VECTOR_SIZE] = {}; |
| 2131 | |
| 2132 | if (len > sizeof(user_auxv)) |
| 2133 | return -EINVAL; |
| 2134 | |
| 2135 | if (copy_from_user(user_auxv, (const void __user *)addr, len)) |
| 2136 | return -EFAULT; |
| 2137 | |
| 2138 | /* Make sure the last entry is always AT_NULL */ |
| 2139 | user_auxv[AT_VECTOR_SIZE - 2] = 0; |
| 2140 | user_auxv[AT_VECTOR_SIZE - 1] = 0; |
| 2141 | |
| 2142 | BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv)); |
| 2143 | |
| 2144 | task_lock(current); |
| 2145 | memcpy(mm->saved_auxv, user_auxv, len); |
| 2146 | task_unlock(current); |
| 2147 | |
| 2148 | return 0; |
| 2149 | } |
| 2150 | |
| 2151 | static int prctl_set_mm(int opt, unsigned long addr, |
| 2152 | unsigned long arg4, unsigned long arg5) |
| 2153 | { |
| 2154 | struct mm_struct *mm = current->mm; |
| 2155 | struct prctl_mm_map prctl_map = { |
| 2156 | .auxv = NULL, |
| 2157 | .auxv_size = 0, |
| 2158 | .exe_fd = -1, |
| 2159 | }; |
| 2160 | struct vm_area_struct *vma; |
| 2161 | int error; |
| 2162 | |
| 2163 | if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV && |
| 2164 | opt != PR_SET_MM_MAP && |
| 2165 | opt != PR_SET_MM_MAP_SIZE))) |
| 2166 | return -EINVAL; |
| 2167 | |
| 2168 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 2169 | if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE) |
| 2170 | return prctl_set_mm_map(opt, (const void __user *)addr, arg4); |
| 2171 | #endif |
| 2172 | |
| 2173 | if (!capable(CAP_SYS_RESOURCE)) |
| 2174 | return -EPERM; |
| 2175 | |
| 2176 | if (opt == PR_SET_MM_EXE_FILE) |
| 2177 | return prctl_set_mm_exe_file(mm, (unsigned int)addr); |
| 2178 | |
| 2179 | if (opt == PR_SET_MM_AUXV) |
| 2180 | return prctl_set_auxv(mm, addr, arg4); |
| 2181 | |
| 2182 | if (addr >= TASK_SIZE || addr < mmap_min_addr) |
| 2183 | return -EINVAL; |
| 2184 | |
| 2185 | error = -EINVAL; |
| 2186 | |
| 2187 | /* |
| 2188 | * arg_lock protects concurrent updates of arg boundaries, we need |
| 2189 | * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr |
| 2190 | * validation. |
| 2191 | */ |
| 2192 | mmap_read_lock(mm); |
| 2193 | vma = find_vma(mm, addr); |
| 2194 | |
| 2195 | spin_lock(&mm->arg_lock); |
| 2196 | prctl_map.start_code = mm->start_code; |
| 2197 | prctl_map.end_code = mm->end_code; |
| 2198 | prctl_map.start_data = mm->start_data; |
| 2199 | prctl_map.end_data = mm->end_data; |
| 2200 | prctl_map.start_brk = mm->start_brk; |
| 2201 | prctl_map.brk = mm->brk; |
| 2202 | prctl_map.start_stack = mm->start_stack; |
| 2203 | prctl_map.arg_start = mm->arg_start; |
| 2204 | prctl_map.arg_end = mm->arg_end; |
| 2205 | prctl_map.env_start = mm->env_start; |
| 2206 | prctl_map.env_end = mm->env_end; |
| 2207 | |
| 2208 | switch (opt) { |
| 2209 | case PR_SET_MM_START_CODE: |
| 2210 | prctl_map.start_code = addr; |
| 2211 | break; |
| 2212 | case PR_SET_MM_END_CODE: |
| 2213 | prctl_map.end_code = addr; |
| 2214 | break; |
| 2215 | case PR_SET_MM_START_DATA: |
| 2216 | prctl_map.start_data = addr; |
| 2217 | break; |
| 2218 | case PR_SET_MM_END_DATA: |
| 2219 | prctl_map.end_data = addr; |
| 2220 | break; |
| 2221 | case PR_SET_MM_START_STACK: |
| 2222 | prctl_map.start_stack = addr; |
| 2223 | break; |
| 2224 | case PR_SET_MM_START_BRK: |
| 2225 | prctl_map.start_brk = addr; |
| 2226 | break; |
| 2227 | case PR_SET_MM_BRK: |
| 2228 | prctl_map.brk = addr; |
| 2229 | break; |
| 2230 | case PR_SET_MM_ARG_START: |
| 2231 | prctl_map.arg_start = addr; |
| 2232 | break; |
| 2233 | case PR_SET_MM_ARG_END: |
| 2234 | prctl_map.arg_end = addr; |
| 2235 | break; |
| 2236 | case PR_SET_MM_ENV_START: |
| 2237 | prctl_map.env_start = addr; |
| 2238 | break; |
| 2239 | case PR_SET_MM_ENV_END: |
| 2240 | prctl_map.env_end = addr; |
| 2241 | break; |
| 2242 | default: |
| 2243 | goto out; |
| 2244 | } |
| 2245 | |
| 2246 | error = validate_prctl_map_addr(&prctl_map); |
| 2247 | if (error) |
| 2248 | goto out; |
| 2249 | |
| 2250 | switch (opt) { |
| 2251 | /* |
| 2252 | * If command line arguments and environment |
| 2253 | * are placed somewhere else on stack, we can |
| 2254 | * set them up here, ARG_START/END to setup |
| 2255 | * command line arguments and ENV_START/END |
| 2256 | * for environment. |
| 2257 | */ |
| 2258 | case PR_SET_MM_START_STACK: |
| 2259 | case PR_SET_MM_ARG_START: |
| 2260 | case PR_SET_MM_ARG_END: |
| 2261 | case PR_SET_MM_ENV_START: |
| 2262 | case PR_SET_MM_ENV_END: |
| 2263 | if (!vma) { |
| 2264 | error = -EFAULT; |
| 2265 | goto out; |
| 2266 | } |
| 2267 | } |
| 2268 | |
| 2269 | mm->start_code = prctl_map.start_code; |
| 2270 | mm->end_code = prctl_map.end_code; |
| 2271 | mm->start_data = prctl_map.start_data; |
| 2272 | mm->end_data = prctl_map.end_data; |
| 2273 | mm->start_brk = prctl_map.start_brk; |
| 2274 | mm->brk = prctl_map.brk; |
| 2275 | mm->start_stack = prctl_map.start_stack; |
| 2276 | mm->arg_start = prctl_map.arg_start; |
| 2277 | mm->arg_end = prctl_map.arg_end; |
| 2278 | mm->env_start = prctl_map.env_start; |
| 2279 | mm->env_end = prctl_map.env_end; |
| 2280 | |
| 2281 | error = 0; |
| 2282 | out: |
| 2283 | spin_unlock(&mm->arg_lock); |
| 2284 | mmap_read_unlock(mm); |
| 2285 | return error; |
| 2286 | } |
| 2287 | |
| 2288 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 2289 | static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) |
| 2290 | { |
| 2291 | return put_user(me->clear_child_tid, tid_addr); |
| 2292 | } |
| 2293 | #else |
| 2294 | static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr) |
| 2295 | { |
| 2296 | return -EINVAL; |
| 2297 | } |
| 2298 | #endif |
| 2299 | |
| 2300 | static int propagate_has_child_subreaper(struct task_struct *p, void *data) |
| 2301 | { |
| 2302 | /* |
| 2303 | * If task has has_child_subreaper - all its descendants |
| 2304 | * already have these flag too and new descendants will |
| 2305 | * inherit it on fork, skip them. |
| 2306 | * |
| 2307 | * If we've found child_reaper - skip descendants in |
| 2308 | * it's subtree as they will never get out pidns. |
| 2309 | */ |
| 2310 | if (p->signal->has_child_subreaper || |
| 2311 | is_child_reaper(task_pid(p))) |
| 2312 | return 0; |
| 2313 | |
| 2314 | p->signal->has_child_subreaper = 1; |
| 2315 | return 1; |
| 2316 | } |
| 2317 | |
| 2318 | int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which) |
| 2319 | { |
| 2320 | return -EINVAL; |
| 2321 | } |
| 2322 | |
| 2323 | int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which, |
| 2324 | unsigned long ctrl) |
| 2325 | { |
| 2326 | return -EINVAL; |
| 2327 | } |
| 2328 | |
| 2329 | int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status) |
| 2330 | { |
| 2331 | return -EINVAL; |
| 2332 | } |
| 2333 | |
| 2334 | int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status) |
| 2335 | { |
| 2336 | return -EINVAL; |
| 2337 | } |
| 2338 | |
| 2339 | int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status) |
| 2340 | { |
| 2341 | return -EINVAL; |
| 2342 | } |
| 2343 | |
| 2344 | #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE) |
| 2345 | |
| 2346 | #ifdef CONFIG_ANON_VMA_NAME |
| 2347 | |
| 2348 | #define ANON_VMA_NAME_MAX_LEN 80 |
| 2349 | #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]" |
| 2350 | |
| 2351 | static inline bool is_valid_name_char(char ch) |
| 2352 | { |
| 2353 | /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */ |
| 2354 | return ch > 0x1f && ch < 0x7f && |
| 2355 | !strchr(ANON_VMA_NAME_INVALID_CHARS, ch); |
| 2356 | } |
| 2357 | |
| 2358 | static int prctl_set_vma(unsigned long opt, unsigned long addr, |
| 2359 | unsigned long size, unsigned long arg) |
| 2360 | { |
| 2361 | struct mm_struct *mm = current->mm; |
| 2362 | const char __user *uname; |
| 2363 | struct anon_vma_name *anon_name = NULL; |
| 2364 | int error; |
| 2365 | |
| 2366 | switch (opt) { |
| 2367 | case PR_SET_VMA_ANON_NAME: |
| 2368 | uname = (const char __user *)arg; |
| 2369 | if (uname) { |
| 2370 | char *name, *pch; |
| 2371 | |
| 2372 | name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN); |
| 2373 | if (IS_ERR(name)) |
| 2374 | return PTR_ERR(name); |
| 2375 | |
| 2376 | for (pch = name; *pch != '\0'; pch++) { |
| 2377 | if (!is_valid_name_char(*pch)) { |
| 2378 | kfree(name); |
| 2379 | return -EINVAL; |
| 2380 | } |
| 2381 | } |
| 2382 | /* anon_vma has its own copy */ |
| 2383 | anon_name = anon_vma_name_alloc(name); |
| 2384 | kfree(name); |
| 2385 | if (!anon_name) |
| 2386 | return -ENOMEM; |
| 2387 | |
| 2388 | } |
| 2389 | |
| 2390 | mmap_write_lock(mm); |
| 2391 | error = madvise_set_anon_name(mm, addr, size, anon_name); |
| 2392 | mmap_write_unlock(mm); |
| 2393 | anon_vma_name_put(anon_name); |
| 2394 | break; |
| 2395 | default: |
| 2396 | error = -EINVAL; |
| 2397 | } |
| 2398 | |
| 2399 | return error; |
| 2400 | } |
| 2401 | |
| 2402 | #else /* CONFIG_ANON_VMA_NAME */ |
| 2403 | static int prctl_set_vma(unsigned long opt, unsigned long start, |
| 2404 | unsigned long size, unsigned long arg) |
| 2405 | { |
| 2406 | return -EINVAL; |
| 2407 | } |
| 2408 | #endif /* CONFIG_ANON_VMA_NAME */ |
| 2409 | |
| 2410 | static inline unsigned long get_current_mdwe(void) |
| 2411 | { |
| 2412 | unsigned long ret = 0; |
| 2413 | |
| 2414 | if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags)) |
| 2415 | ret |= PR_MDWE_REFUSE_EXEC_GAIN; |
| 2416 | if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags)) |
| 2417 | ret |= PR_MDWE_NO_INHERIT; |
| 2418 | |
| 2419 | return ret; |
| 2420 | } |
| 2421 | |
| 2422 | static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3, |
| 2423 | unsigned long arg4, unsigned long arg5) |
| 2424 | { |
| 2425 | unsigned long current_bits; |
| 2426 | |
| 2427 | if (arg3 || arg4 || arg5) |
| 2428 | return -EINVAL; |
| 2429 | |
| 2430 | if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT)) |
| 2431 | return -EINVAL; |
| 2432 | |
| 2433 | /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */ |
| 2434 | if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN)) |
| 2435 | return -EINVAL; |
| 2436 | |
| 2437 | /* |
| 2438 | * EOPNOTSUPP might be more appropriate here in principle, but |
| 2439 | * existing userspace depends on EINVAL specifically. |
| 2440 | */ |
| 2441 | if (!arch_memory_deny_write_exec_supported()) |
| 2442 | return -EINVAL; |
| 2443 | |
| 2444 | current_bits = get_current_mdwe(); |
| 2445 | if (current_bits && current_bits != bits) |
| 2446 | return -EPERM; /* Cannot unset the flags */ |
| 2447 | |
| 2448 | if (bits & PR_MDWE_NO_INHERIT) |
| 2449 | set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags); |
| 2450 | if (bits & PR_MDWE_REFUSE_EXEC_GAIN) |
| 2451 | set_bit(MMF_HAS_MDWE, ¤t->mm->flags); |
| 2452 | |
| 2453 | return 0; |
| 2454 | } |
| 2455 | |
| 2456 | static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3, |
| 2457 | unsigned long arg4, unsigned long arg5) |
| 2458 | { |
| 2459 | if (arg2 || arg3 || arg4 || arg5) |
| 2460 | return -EINVAL; |
| 2461 | return get_current_mdwe(); |
| 2462 | } |
| 2463 | |
| 2464 | static int prctl_get_auxv(void __user *addr, unsigned long len) |
| 2465 | { |
| 2466 | struct mm_struct *mm = current->mm; |
| 2467 | unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len); |
| 2468 | |
| 2469 | if (size && copy_to_user(addr, mm->saved_auxv, size)) |
| 2470 | return -EFAULT; |
| 2471 | return sizeof(mm->saved_auxv); |
| 2472 | } |
| 2473 | |
| 2474 | SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, |
| 2475 | unsigned long, arg4, unsigned long, arg5) |
| 2476 | { |
| 2477 | struct task_struct *me = current; |
| 2478 | unsigned char comm[sizeof(me->comm)]; |
| 2479 | long error; |
| 2480 | |
| 2481 | error = security_task_prctl(option, arg2, arg3, arg4, arg5); |
| 2482 | if (error != -ENOSYS) |
| 2483 | return error; |
| 2484 | |
| 2485 | error = 0; |
| 2486 | switch (option) { |
| 2487 | case PR_SET_PDEATHSIG: |
| 2488 | if (!valid_signal(arg2)) { |
| 2489 | error = -EINVAL; |
| 2490 | break; |
| 2491 | } |
| 2492 | me->pdeath_signal = arg2; |
| 2493 | break; |
| 2494 | case PR_GET_PDEATHSIG: |
| 2495 | error = put_user(me->pdeath_signal, (int __user *)arg2); |
| 2496 | break; |
| 2497 | case PR_GET_DUMPABLE: |
| 2498 | error = get_dumpable(me->mm); |
| 2499 | break; |
| 2500 | case PR_SET_DUMPABLE: |
| 2501 | if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) { |
| 2502 | error = -EINVAL; |
| 2503 | break; |
| 2504 | } |
| 2505 | set_dumpable(me->mm, arg2); |
| 2506 | break; |
| 2507 | |
| 2508 | case PR_SET_UNALIGN: |
| 2509 | error = SET_UNALIGN_CTL(me, arg2); |
| 2510 | break; |
| 2511 | case PR_GET_UNALIGN: |
| 2512 | error = GET_UNALIGN_CTL(me, arg2); |
| 2513 | break; |
| 2514 | case PR_SET_FPEMU: |
| 2515 | error = SET_FPEMU_CTL(me, arg2); |
| 2516 | break; |
| 2517 | case PR_GET_FPEMU: |
| 2518 | error = GET_FPEMU_CTL(me, arg2); |
| 2519 | break; |
| 2520 | case PR_SET_FPEXC: |
| 2521 | error = SET_FPEXC_CTL(me, arg2); |
| 2522 | break; |
| 2523 | case PR_GET_FPEXC: |
| 2524 | error = GET_FPEXC_CTL(me, arg2); |
| 2525 | break; |
| 2526 | case PR_GET_TIMING: |
| 2527 | error = PR_TIMING_STATISTICAL; |
| 2528 | break; |
| 2529 | case PR_SET_TIMING: |
| 2530 | if (arg2 != PR_TIMING_STATISTICAL) |
| 2531 | error = -EINVAL; |
| 2532 | break; |
| 2533 | case PR_SET_NAME: |
| 2534 | comm[sizeof(me->comm) - 1] = 0; |
| 2535 | if (strncpy_from_user(comm, (char __user *)arg2, |
| 2536 | sizeof(me->comm) - 1) < 0) |
| 2537 | return -EFAULT; |
| 2538 | set_task_comm(me, comm); |
| 2539 | proc_comm_connector(me); |
| 2540 | break; |
| 2541 | case PR_GET_NAME: |
| 2542 | get_task_comm(comm, me); |
| 2543 | if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) |
| 2544 | return -EFAULT; |
| 2545 | break; |
| 2546 | case PR_GET_ENDIAN: |
| 2547 | error = GET_ENDIAN(me, arg2); |
| 2548 | break; |
| 2549 | case PR_SET_ENDIAN: |
| 2550 | error = SET_ENDIAN(me, arg2); |
| 2551 | break; |
| 2552 | case PR_GET_SECCOMP: |
| 2553 | error = prctl_get_seccomp(); |
| 2554 | break; |
| 2555 | case PR_SET_SECCOMP: |
| 2556 | error = prctl_set_seccomp(arg2, (char __user *)arg3); |
| 2557 | break; |
| 2558 | case PR_GET_TSC: |
| 2559 | error = GET_TSC_CTL(arg2); |
| 2560 | break; |
| 2561 | case PR_SET_TSC: |
| 2562 | error = SET_TSC_CTL(arg2); |
| 2563 | break; |
| 2564 | case PR_TASK_PERF_EVENTS_DISABLE: |
| 2565 | error = perf_event_task_disable(); |
| 2566 | break; |
| 2567 | case PR_TASK_PERF_EVENTS_ENABLE: |
| 2568 | error = perf_event_task_enable(); |
| 2569 | break; |
| 2570 | case PR_GET_TIMERSLACK: |
| 2571 | if (current->timer_slack_ns > ULONG_MAX) |
| 2572 | error = ULONG_MAX; |
| 2573 | else |
| 2574 | error = current->timer_slack_ns; |
| 2575 | break; |
| 2576 | case PR_SET_TIMERSLACK: |
| 2577 | if (rt_or_dl_task_policy(current)) |
| 2578 | break; |
| 2579 | if (arg2 <= 0) |
| 2580 | current->timer_slack_ns = |
| 2581 | current->default_timer_slack_ns; |
| 2582 | else |
| 2583 | current->timer_slack_ns = arg2; |
| 2584 | break; |
| 2585 | case PR_MCE_KILL: |
| 2586 | if (arg4 | arg5) |
| 2587 | return -EINVAL; |
| 2588 | switch (arg2) { |
| 2589 | case PR_MCE_KILL_CLEAR: |
| 2590 | if (arg3 != 0) |
| 2591 | return -EINVAL; |
| 2592 | current->flags &= ~PF_MCE_PROCESS; |
| 2593 | break; |
| 2594 | case PR_MCE_KILL_SET: |
| 2595 | current->flags |= PF_MCE_PROCESS; |
| 2596 | if (arg3 == PR_MCE_KILL_EARLY) |
| 2597 | current->flags |= PF_MCE_EARLY; |
| 2598 | else if (arg3 == PR_MCE_KILL_LATE) |
| 2599 | current->flags &= ~PF_MCE_EARLY; |
| 2600 | else if (arg3 == PR_MCE_KILL_DEFAULT) |
| 2601 | current->flags &= |
| 2602 | ~(PF_MCE_EARLY|PF_MCE_PROCESS); |
| 2603 | else |
| 2604 | return -EINVAL; |
| 2605 | break; |
| 2606 | default: |
| 2607 | return -EINVAL; |
| 2608 | } |
| 2609 | break; |
| 2610 | case PR_MCE_KILL_GET: |
| 2611 | if (arg2 | arg3 | arg4 | arg5) |
| 2612 | return -EINVAL; |
| 2613 | if (current->flags & PF_MCE_PROCESS) |
| 2614 | error = (current->flags & PF_MCE_EARLY) ? |
| 2615 | PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; |
| 2616 | else |
| 2617 | error = PR_MCE_KILL_DEFAULT; |
| 2618 | break; |
| 2619 | case PR_SET_MM: |
| 2620 | error = prctl_set_mm(arg2, arg3, arg4, arg5); |
| 2621 | break; |
| 2622 | case PR_GET_TID_ADDRESS: |
| 2623 | error = prctl_get_tid_address(me, (int __user * __user *)arg2); |
| 2624 | break; |
| 2625 | case PR_SET_CHILD_SUBREAPER: |
| 2626 | me->signal->is_child_subreaper = !!arg2; |
| 2627 | if (!arg2) |
| 2628 | break; |
| 2629 | |
| 2630 | walk_process_tree(me, propagate_has_child_subreaper, NULL); |
| 2631 | break; |
| 2632 | case PR_GET_CHILD_SUBREAPER: |
| 2633 | error = put_user(me->signal->is_child_subreaper, |
| 2634 | (int __user *)arg2); |
| 2635 | break; |
| 2636 | case PR_SET_NO_NEW_PRIVS: |
| 2637 | if (arg2 != 1 || arg3 || arg4 || arg5) |
| 2638 | return -EINVAL; |
| 2639 | |
| 2640 | task_set_no_new_privs(current); |
| 2641 | break; |
| 2642 | case PR_GET_NO_NEW_PRIVS: |
| 2643 | if (arg2 || arg3 || arg4 || arg5) |
| 2644 | return -EINVAL; |
| 2645 | return task_no_new_privs(current) ? 1 : 0; |
| 2646 | case PR_GET_THP_DISABLE: |
| 2647 | if (arg2 || arg3 || arg4 || arg5) |
| 2648 | return -EINVAL; |
| 2649 | error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags); |
| 2650 | break; |
| 2651 | case PR_SET_THP_DISABLE: |
| 2652 | if (arg3 || arg4 || arg5) |
| 2653 | return -EINVAL; |
| 2654 | if (mmap_write_lock_killable(me->mm)) |
| 2655 | return -EINTR; |
| 2656 | if (arg2) |
| 2657 | set_bit(MMF_DISABLE_THP, &me->mm->flags); |
| 2658 | else |
| 2659 | clear_bit(MMF_DISABLE_THP, &me->mm->flags); |
| 2660 | mmap_write_unlock(me->mm); |
| 2661 | break; |
| 2662 | case PR_MPX_ENABLE_MANAGEMENT: |
| 2663 | case PR_MPX_DISABLE_MANAGEMENT: |
| 2664 | /* No longer implemented: */ |
| 2665 | return -EINVAL; |
| 2666 | case PR_SET_FP_MODE: |
| 2667 | error = SET_FP_MODE(me, arg2); |
| 2668 | break; |
| 2669 | case PR_GET_FP_MODE: |
| 2670 | error = GET_FP_MODE(me); |
| 2671 | break; |
| 2672 | case PR_SVE_SET_VL: |
| 2673 | error = SVE_SET_VL(arg2); |
| 2674 | break; |
| 2675 | case PR_SVE_GET_VL: |
| 2676 | error = SVE_GET_VL(); |
| 2677 | break; |
| 2678 | case PR_SME_SET_VL: |
| 2679 | error = SME_SET_VL(arg2); |
| 2680 | break; |
| 2681 | case PR_SME_GET_VL: |
| 2682 | error = SME_GET_VL(); |
| 2683 | break; |
| 2684 | case PR_GET_SPECULATION_CTRL: |
| 2685 | if (arg3 || arg4 || arg5) |
| 2686 | return -EINVAL; |
| 2687 | error = arch_prctl_spec_ctrl_get(me, arg2); |
| 2688 | break; |
| 2689 | case PR_SET_SPECULATION_CTRL: |
| 2690 | if (arg4 || arg5) |
| 2691 | return -EINVAL; |
| 2692 | error = arch_prctl_spec_ctrl_set(me, arg2, arg3); |
| 2693 | break; |
| 2694 | case PR_PAC_RESET_KEYS: |
| 2695 | if (arg3 || arg4 || arg5) |
| 2696 | return -EINVAL; |
| 2697 | error = PAC_RESET_KEYS(me, arg2); |
| 2698 | break; |
| 2699 | case PR_PAC_SET_ENABLED_KEYS: |
| 2700 | if (arg4 || arg5) |
| 2701 | return -EINVAL; |
| 2702 | error = PAC_SET_ENABLED_KEYS(me, arg2, arg3); |
| 2703 | break; |
| 2704 | case PR_PAC_GET_ENABLED_KEYS: |
| 2705 | if (arg2 || arg3 || arg4 || arg5) |
| 2706 | return -EINVAL; |
| 2707 | error = PAC_GET_ENABLED_KEYS(me); |
| 2708 | break; |
| 2709 | case PR_SET_TAGGED_ADDR_CTRL: |
| 2710 | if (arg3 || arg4 || arg5) |
| 2711 | return -EINVAL; |
| 2712 | error = SET_TAGGED_ADDR_CTRL(arg2); |
| 2713 | break; |
| 2714 | case PR_GET_TAGGED_ADDR_CTRL: |
| 2715 | if (arg2 || arg3 || arg4 || arg5) |
| 2716 | return -EINVAL; |
| 2717 | error = GET_TAGGED_ADDR_CTRL(); |
| 2718 | break; |
| 2719 | case PR_SET_IO_FLUSHER: |
| 2720 | if (!capable(CAP_SYS_RESOURCE)) |
| 2721 | return -EPERM; |
| 2722 | |
| 2723 | if (arg3 || arg4 || arg5) |
| 2724 | return -EINVAL; |
| 2725 | |
| 2726 | if (arg2 == 1) |
| 2727 | current->flags |= PR_IO_FLUSHER; |
| 2728 | else if (!arg2) |
| 2729 | current->flags &= ~PR_IO_FLUSHER; |
| 2730 | else |
| 2731 | return -EINVAL; |
| 2732 | break; |
| 2733 | case PR_GET_IO_FLUSHER: |
| 2734 | if (!capable(CAP_SYS_RESOURCE)) |
| 2735 | return -EPERM; |
| 2736 | |
| 2737 | if (arg2 || arg3 || arg4 || arg5) |
| 2738 | return -EINVAL; |
| 2739 | |
| 2740 | error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER; |
| 2741 | break; |
| 2742 | case PR_SET_SYSCALL_USER_DISPATCH: |
| 2743 | error = set_syscall_user_dispatch(arg2, arg3, arg4, |
| 2744 | (char __user *) arg5); |
| 2745 | break; |
| 2746 | #ifdef CONFIG_SCHED_CORE |
| 2747 | case PR_SCHED_CORE: |
| 2748 | error = sched_core_share_pid(arg2, arg3, arg4, arg5); |
| 2749 | break; |
| 2750 | #endif |
| 2751 | case PR_SET_MDWE: |
| 2752 | error = prctl_set_mdwe(arg2, arg3, arg4, arg5); |
| 2753 | break; |
| 2754 | case PR_GET_MDWE: |
| 2755 | error = prctl_get_mdwe(arg2, arg3, arg4, arg5); |
| 2756 | break; |
| 2757 | case PR_PPC_GET_DEXCR: |
| 2758 | if (arg3 || arg4 || arg5) |
| 2759 | return -EINVAL; |
| 2760 | error = PPC_GET_DEXCR_ASPECT(me, arg2); |
| 2761 | break; |
| 2762 | case PR_PPC_SET_DEXCR: |
| 2763 | if (arg4 || arg5) |
| 2764 | return -EINVAL; |
| 2765 | error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3); |
| 2766 | break; |
| 2767 | case PR_SET_VMA: |
| 2768 | error = prctl_set_vma(arg2, arg3, arg4, arg5); |
| 2769 | break; |
| 2770 | case PR_GET_AUXV: |
| 2771 | if (arg4 || arg5) |
| 2772 | return -EINVAL; |
| 2773 | error = prctl_get_auxv((void __user *)arg2, arg3); |
| 2774 | break; |
| 2775 | #ifdef CONFIG_KSM |
| 2776 | case PR_SET_MEMORY_MERGE: |
| 2777 | if (arg3 || arg4 || arg5) |
| 2778 | return -EINVAL; |
| 2779 | if (mmap_write_lock_killable(me->mm)) |
| 2780 | return -EINTR; |
| 2781 | |
| 2782 | if (arg2) |
| 2783 | error = ksm_enable_merge_any(me->mm); |
| 2784 | else |
| 2785 | error = ksm_disable_merge_any(me->mm); |
| 2786 | mmap_write_unlock(me->mm); |
| 2787 | break; |
| 2788 | case PR_GET_MEMORY_MERGE: |
| 2789 | if (arg2 || arg3 || arg4 || arg5) |
| 2790 | return -EINVAL; |
| 2791 | |
| 2792 | error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags); |
| 2793 | break; |
| 2794 | #endif |
| 2795 | case PR_RISCV_V_SET_CONTROL: |
| 2796 | error = RISCV_V_SET_CONTROL(arg2); |
| 2797 | break; |
| 2798 | case PR_RISCV_V_GET_CONTROL: |
| 2799 | error = RISCV_V_GET_CONTROL(); |
| 2800 | break; |
| 2801 | case PR_RISCV_SET_ICACHE_FLUSH_CTX: |
| 2802 | error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3); |
| 2803 | break; |
| 2804 | case PR_GET_SHADOW_STACK_STATUS: |
| 2805 | if (arg3 || arg4 || arg5) |
| 2806 | return -EINVAL; |
| 2807 | error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2); |
| 2808 | break; |
| 2809 | case PR_SET_SHADOW_STACK_STATUS: |
| 2810 | if (arg3 || arg4 || arg5) |
| 2811 | return -EINVAL; |
| 2812 | error = arch_set_shadow_stack_status(me, arg2); |
| 2813 | break; |
| 2814 | case PR_LOCK_SHADOW_STACK_STATUS: |
| 2815 | if (arg3 || arg4 || arg5) |
| 2816 | return -EINVAL; |
| 2817 | error = arch_lock_shadow_stack_status(me, arg2); |
| 2818 | break; |
| 2819 | case PR_TIMER_CREATE_RESTORE_IDS: |
| 2820 | if (arg3 || arg4 || arg5) |
| 2821 | return -EINVAL; |
| 2822 | error = posixtimer_create_prctl(arg2); |
| 2823 | break; |
| 2824 | case PR_FUTEX_HASH: |
| 2825 | error = futex_hash_prctl(arg2, arg3, arg4); |
| 2826 | break; |
| 2827 | default: |
| 2828 | trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5); |
| 2829 | error = -EINVAL; |
| 2830 | break; |
| 2831 | } |
| 2832 | return error; |
| 2833 | } |
| 2834 | |
| 2835 | SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, |
| 2836 | struct getcpu_cache __user *, unused) |
| 2837 | { |
| 2838 | int err = 0; |
| 2839 | int cpu = raw_smp_processor_id(); |
| 2840 | |
| 2841 | if (cpup) |
| 2842 | err |= put_user(cpu, cpup); |
| 2843 | if (nodep) |
| 2844 | err |= put_user(cpu_to_node(cpu), nodep); |
| 2845 | return err ? -EFAULT : 0; |
| 2846 | } |
| 2847 | |
| 2848 | /** |
| 2849 | * do_sysinfo - fill in sysinfo struct |
| 2850 | * @info: pointer to buffer to fill |
| 2851 | */ |
| 2852 | static int do_sysinfo(struct sysinfo *info) |
| 2853 | { |
| 2854 | unsigned long mem_total, sav_total; |
| 2855 | unsigned int mem_unit, bitcount; |
| 2856 | struct timespec64 tp; |
| 2857 | |
| 2858 | memset(info, 0, sizeof(struct sysinfo)); |
| 2859 | |
| 2860 | ktime_get_boottime_ts64(&tp); |
| 2861 | timens_add_boottime(&tp); |
| 2862 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); |
| 2863 | |
| 2864 | get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); |
| 2865 | |
| 2866 | info->procs = nr_threads; |
| 2867 | |
| 2868 | si_meminfo(info); |
| 2869 | si_swapinfo(info); |
| 2870 | |
| 2871 | /* |
| 2872 | * If the sum of all the available memory (i.e. ram + swap) |
| 2873 | * is less than can be stored in a 32 bit unsigned long then |
| 2874 | * we can be binary compatible with 2.2.x kernels. If not, |
| 2875 | * well, in that case 2.2.x was broken anyways... |
| 2876 | * |
| 2877 | * -Erik Andersen <andersee@debian.org> |
| 2878 | */ |
| 2879 | |
| 2880 | mem_total = info->totalram + info->totalswap; |
| 2881 | if (mem_total < info->totalram || mem_total < info->totalswap) |
| 2882 | goto out; |
| 2883 | bitcount = 0; |
| 2884 | mem_unit = info->mem_unit; |
| 2885 | while (mem_unit > 1) { |
| 2886 | bitcount++; |
| 2887 | mem_unit >>= 1; |
| 2888 | sav_total = mem_total; |
| 2889 | mem_total <<= 1; |
| 2890 | if (mem_total < sav_total) |
| 2891 | goto out; |
| 2892 | } |
| 2893 | |
| 2894 | /* |
| 2895 | * If mem_total did not overflow, multiply all memory values by |
| 2896 | * info->mem_unit and set it to 1. This leaves things compatible |
| 2897 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
| 2898 | * kernels... |
| 2899 | */ |
| 2900 | |
| 2901 | info->mem_unit = 1; |
| 2902 | info->totalram <<= bitcount; |
| 2903 | info->freeram <<= bitcount; |
| 2904 | info->sharedram <<= bitcount; |
| 2905 | info->bufferram <<= bitcount; |
| 2906 | info->totalswap <<= bitcount; |
| 2907 | info->freeswap <<= bitcount; |
| 2908 | info->totalhigh <<= bitcount; |
| 2909 | info->freehigh <<= bitcount; |
| 2910 | |
| 2911 | out: |
| 2912 | return 0; |
| 2913 | } |
| 2914 | |
| 2915 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) |
| 2916 | { |
| 2917 | struct sysinfo val; |
| 2918 | |
| 2919 | do_sysinfo(&val); |
| 2920 | |
| 2921 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
| 2922 | return -EFAULT; |
| 2923 | |
| 2924 | return 0; |
| 2925 | } |
| 2926 | |
| 2927 | #ifdef CONFIG_COMPAT |
| 2928 | struct compat_sysinfo { |
| 2929 | s32 uptime; |
| 2930 | u32 loads[3]; |
| 2931 | u32 totalram; |
| 2932 | u32 freeram; |
| 2933 | u32 sharedram; |
| 2934 | u32 bufferram; |
| 2935 | u32 totalswap; |
| 2936 | u32 freeswap; |
| 2937 | u16 procs; |
| 2938 | u16 pad; |
| 2939 | u32 totalhigh; |
| 2940 | u32 freehigh; |
| 2941 | u32 mem_unit; |
| 2942 | char _f[20-2*sizeof(u32)-sizeof(int)]; |
| 2943 | }; |
| 2944 | |
| 2945 | COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info) |
| 2946 | { |
| 2947 | struct sysinfo s; |
| 2948 | struct compat_sysinfo s_32; |
| 2949 | |
| 2950 | do_sysinfo(&s); |
| 2951 | |
| 2952 | /* Check to see if any memory value is too large for 32-bit and scale |
| 2953 | * down if needed |
| 2954 | */ |
| 2955 | if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) { |
| 2956 | int bitcount = 0; |
| 2957 | |
| 2958 | while (s.mem_unit < PAGE_SIZE) { |
| 2959 | s.mem_unit <<= 1; |
| 2960 | bitcount++; |
| 2961 | } |
| 2962 | |
| 2963 | s.totalram >>= bitcount; |
| 2964 | s.freeram >>= bitcount; |
| 2965 | s.sharedram >>= bitcount; |
| 2966 | s.bufferram >>= bitcount; |
| 2967 | s.totalswap >>= bitcount; |
| 2968 | s.freeswap >>= bitcount; |
| 2969 | s.totalhigh >>= bitcount; |
| 2970 | s.freehigh >>= bitcount; |
| 2971 | } |
| 2972 | |
| 2973 | memset(&s_32, 0, sizeof(s_32)); |
| 2974 | s_32.uptime = s.uptime; |
| 2975 | s_32.loads[0] = s.loads[0]; |
| 2976 | s_32.loads[1] = s.loads[1]; |
| 2977 | s_32.loads[2] = s.loads[2]; |
| 2978 | s_32.totalram = s.totalram; |
| 2979 | s_32.freeram = s.freeram; |
| 2980 | s_32.sharedram = s.sharedram; |
| 2981 | s_32.bufferram = s.bufferram; |
| 2982 | s_32.totalswap = s.totalswap; |
| 2983 | s_32.freeswap = s.freeswap; |
| 2984 | s_32.procs = s.procs; |
| 2985 | s_32.totalhigh = s.totalhigh; |
| 2986 | s_32.freehigh = s.freehigh; |
| 2987 | s_32.mem_unit = s.mem_unit; |
| 2988 | if (copy_to_user(info, &s_32, sizeof(s_32))) |
| 2989 | return -EFAULT; |
| 2990 | return 0; |
| 2991 | } |
| 2992 | #endif /* CONFIG_COMPAT */ |