| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * kernel/stop_machine.c |
| 4 | * |
| 5 | * Copyright (C) 2008, 2005 IBM Corporation. |
| 6 | * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au |
| 7 | * Copyright (C) 2010 SUSE Linux Products GmbH |
| 8 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> |
| 9 | */ |
| 10 | #include <linux/compiler.h> |
| 11 | #include <linux/completion.h> |
| 12 | #include <linux/cpu.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/kthread.h> |
| 15 | #include <linux/export.h> |
| 16 | #include <linux/percpu.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/stop_machine.h> |
| 19 | #include <linux/interrupt.h> |
| 20 | #include <linux/kallsyms.h> |
| 21 | #include <linux/smpboot.h> |
| 22 | #include <linux/atomic.h> |
| 23 | #include <linux/nmi.h> |
| 24 | #include <linux/sched/wake_q.h> |
| 25 | |
| 26 | /* |
| 27 | * Structure to determine completion condition and record errors. May |
| 28 | * be shared by works on different cpus. |
| 29 | */ |
| 30 | struct cpu_stop_done { |
| 31 | atomic_t nr_todo; /* nr left to execute */ |
| 32 | int ret; /* collected return value */ |
| 33 | struct completion completion; /* fired if nr_todo reaches 0 */ |
| 34 | }; |
| 35 | |
| 36 | /* the actual stopper, one per every possible cpu, enabled on online cpus */ |
| 37 | struct cpu_stopper { |
| 38 | struct task_struct *thread; |
| 39 | |
| 40 | raw_spinlock_t lock; |
| 41 | bool enabled; /* is this stopper enabled? */ |
| 42 | struct list_head works; /* list of pending works */ |
| 43 | |
| 44 | struct cpu_stop_work stop_work; /* for stop_cpus */ |
| 45 | unsigned long caller; |
| 46 | cpu_stop_fn_t fn; |
| 47 | }; |
| 48 | |
| 49 | static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); |
| 50 | static bool stop_machine_initialized = false; |
| 51 | |
| 52 | void print_stop_info(const char *log_lvl, struct task_struct *task) |
| 53 | { |
| 54 | /* |
| 55 | * If @task is a stopper task, it cannot migrate and task_cpu() is |
| 56 | * stable. |
| 57 | */ |
| 58 | struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task)); |
| 59 | |
| 60 | if (task != stopper->thread) |
| 61 | return; |
| 62 | |
| 63 | printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller); |
| 64 | } |
| 65 | |
| 66 | /* static data for stop_cpus */ |
| 67 | static DEFINE_MUTEX(stop_cpus_mutex); |
| 68 | static bool stop_cpus_in_progress; |
| 69 | |
| 70 | static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) |
| 71 | { |
| 72 | memset(done, 0, sizeof(*done)); |
| 73 | atomic_set(&done->nr_todo, nr_todo); |
| 74 | init_completion(&done->completion); |
| 75 | } |
| 76 | |
| 77 | /* signal completion unless @done is NULL */ |
| 78 | static void cpu_stop_signal_done(struct cpu_stop_done *done) |
| 79 | { |
| 80 | if (atomic_dec_and_test(&done->nr_todo)) |
| 81 | complete(&done->completion); |
| 82 | } |
| 83 | |
| 84 | static void __cpu_stop_queue_work(struct cpu_stopper *stopper, |
| 85 | struct cpu_stop_work *work) |
| 86 | { |
| 87 | list_add_tail(&work->list, &stopper->works); |
| 88 | } |
| 89 | |
| 90 | /* queue @work to @stopper. if offline, @work is completed immediately */ |
| 91 | static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) |
| 92 | { |
| 93 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 94 | unsigned long flags; |
| 95 | bool enabled; |
| 96 | |
| 97 | preempt_disable(); |
| 98 | raw_spin_lock_irqsave(&stopper->lock, flags); |
| 99 | enabled = stopper->enabled; |
| 100 | if (enabled) |
| 101 | __cpu_stop_queue_work(stopper, work); |
| 102 | else if (work->done) |
| 103 | cpu_stop_signal_done(work->done); |
| 104 | raw_spin_unlock_irqrestore(&stopper->lock, flags); |
| 105 | |
| 106 | if (enabled) |
| 107 | wake_up_process(stopper->thread); |
| 108 | preempt_enable(); |
| 109 | |
| 110 | return enabled; |
| 111 | } |
| 112 | |
| 113 | /** |
| 114 | * stop_one_cpu - stop a cpu |
| 115 | * @cpu: cpu to stop |
| 116 | * @fn: function to execute |
| 117 | * @arg: argument to @fn |
| 118 | * |
| 119 | * Execute @fn(@arg) on @cpu. @fn is run in a process context with |
| 120 | * the highest priority preempting any task on the cpu and |
| 121 | * monopolizing it. This function returns after the execution is |
| 122 | * complete. |
| 123 | * |
| 124 | * This function doesn't guarantee @cpu stays online till @fn |
| 125 | * completes. If @cpu goes down in the middle, execution may happen |
| 126 | * partially or fully on different cpus. @fn should either be ready |
| 127 | * for that or the caller should ensure that @cpu stays online until |
| 128 | * this function completes. |
| 129 | * |
| 130 | * CONTEXT: |
| 131 | * Might sleep. |
| 132 | * |
| 133 | * RETURNS: |
| 134 | * -ENOENT if @fn(@arg) was not executed because @cpu was offline; |
| 135 | * otherwise, the return value of @fn. |
| 136 | */ |
| 137 | int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) |
| 138 | { |
| 139 | struct cpu_stop_done done; |
| 140 | struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ }; |
| 141 | |
| 142 | cpu_stop_init_done(&done, 1); |
| 143 | if (!cpu_stop_queue_work(cpu, &work)) |
| 144 | return -ENOENT; |
| 145 | /* |
| 146 | * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup |
| 147 | * cycle by doing a preemption: |
| 148 | */ |
| 149 | cond_resched(); |
| 150 | wait_for_completion(&done.completion); |
| 151 | return done.ret; |
| 152 | } |
| 153 | |
| 154 | /* This controls the threads on each CPU. */ |
| 155 | enum multi_stop_state { |
| 156 | /* Dummy starting state for thread. */ |
| 157 | MULTI_STOP_NONE, |
| 158 | /* Awaiting everyone to be scheduled. */ |
| 159 | MULTI_STOP_PREPARE, |
| 160 | /* Disable interrupts. */ |
| 161 | MULTI_STOP_DISABLE_IRQ, |
| 162 | /* Run the function */ |
| 163 | MULTI_STOP_RUN, |
| 164 | /* Exit */ |
| 165 | MULTI_STOP_EXIT, |
| 166 | }; |
| 167 | |
| 168 | struct multi_stop_data { |
| 169 | cpu_stop_fn_t fn; |
| 170 | void *data; |
| 171 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ |
| 172 | unsigned int num_threads; |
| 173 | const struct cpumask *active_cpus; |
| 174 | |
| 175 | enum multi_stop_state state; |
| 176 | atomic_t thread_ack; |
| 177 | }; |
| 178 | |
| 179 | static void set_state(struct multi_stop_data *msdata, |
| 180 | enum multi_stop_state newstate) |
| 181 | { |
| 182 | /* Reset ack counter. */ |
| 183 | atomic_set(&msdata->thread_ack, msdata->num_threads); |
| 184 | smp_wmb(); |
| 185 | WRITE_ONCE(msdata->state, newstate); |
| 186 | } |
| 187 | |
| 188 | /* Last one to ack a state moves to the next state. */ |
| 189 | static void ack_state(struct multi_stop_data *msdata) |
| 190 | { |
| 191 | if (atomic_dec_and_test(&msdata->thread_ack)) |
| 192 | set_state(msdata, msdata->state + 1); |
| 193 | } |
| 194 | |
| 195 | notrace void __weak stop_machine_yield(const struct cpumask *cpumask) |
| 196 | { |
| 197 | cpu_relax(); |
| 198 | } |
| 199 | |
| 200 | /* This is the cpu_stop function which stops the CPU. */ |
| 201 | static int multi_cpu_stop(void *data) |
| 202 | { |
| 203 | struct multi_stop_data *msdata = data; |
| 204 | enum multi_stop_state newstate, curstate = MULTI_STOP_NONE; |
| 205 | int cpu = smp_processor_id(), err = 0; |
| 206 | const struct cpumask *cpumask; |
| 207 | unsigned long flags; |
| 208 | bool is_active; |
| 209 | |
| 210 | /* |
| 211 | * When called from stop_machine_from_inactive_cpu(), irq might |
| 212 | * already be disabled. Save the state and restore it on exit. |
| 213 | */ |
| 214 | local_save_flags(flags); |
| 215 | |
| 216 | if (!msdata->active_cpus) { |
| 217 | cpumask = cpu_online_mask; |
| 218 | is_active = cpu == cpumask_first(cpumask); |
| 219 | } else { |
| 220 | cpumask = msdata->active_cpus; |
| 221 | is_active = cpumask_test_cpu(cpu, cpumask); |
| 222 | } |
| 223 | |
| 224 | /* Simple state machine */ |
| 225 | do { |
| 226 | /* Chill out and ensure we re-read multi_stop_state. */ |
| 227 | stop_machine_yield(cpumask); |
| 228 | newstate = READ_ONCE(msdata->state); |
| 229 | if (newstate != curstate) { |
| 230 | curstate = newstate; |
| 231 | switch (curstate) { |
| 232 | case MULTI_STOP_DISABLE_IRQ: |
| 233 | local_irq_disable(); |
| 234 | hard_irq_disable(); |
| 235 | break; |
| 236 | case MULTI_STOP_RUN: |
| 237 | if (is_active) |
| 238 | err = msdata->fn(msdata->data); |
| 239 | break; |
| 240 | default: |
| 241 | break; |
| 242 | } |
| 243 | ack_state(msdata); |
| 244 | } else if (curstate > MULTI_STOP_PREPARE) { |
| 245 | /* |
| 246 | * At this stage all other CPUs we depend on must spin |
| 247 | * in the same loop. Any reason for hard-lockup should |
| 248 | * be detected and reported on their side. |
| 249 | */ |
| 250 | touch_nmi_watchdog(); |
| 251 | /* Also suppress RCU CPU stall warnings. */ |
| 252 | rcu_momentary_eqs(); |
| 253 | } |
| 254 | } while (curstate != MULTI_STOP_EXIT); |
| 255 | |
| 256 | local_irq_restore(flags); |
| 257 | return err; |
| 258 | } |
| 259 | |
| 260 | static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, |
| 261 | int cpu2, struct cpu_stop_work *work2) |
| 262 | { |
| 263 | struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); |
| 264 | struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); |
| 265 | int err; |
| 266 | |
| 267 | retry: |
| 268 | /* |
| 269 | * The waking up of stopper threads has to happen in the same |
| 270 | * scheduling context as the queueing. Otherwise, there is a |
| 271 | * possibility of one of the above stoppers being woken up by another |
| 272 | * CPU, and preempting us. This will cause us to not wake up the other |
| 273 | * stopper forever. |
| 274 | */ |
| 275 | preempt_disable(); |
| 276 | raw_spin_lock_irq(&stopper1->lock); |
| 277 | raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); |
| 278 | |
| 279 | if (!stopper1->enabled || !stopper2->enabled) { |
| 280 | err = -ENOENT; |
| 281 | goto unlock; |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Ensure that if we race with __stop_cpus() the stoppers won't get |
| 286 | * queued up in reverse order leading to system deadlock. |
| 287 | * |
| 288 | * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has |
| 289 | * queued a work on cpu1 but not on cpu2, we hold both locks. |
| 290 | * |
| 291 | * It can be falsely true but it is safe to spin until it is cleared, |
| 292 | * queue_stop_cpus_work() does everything under preempt_disable(). |
| 293 | */ |
| 294 | if (unlikely(stop_cpus_in_progress)) { |
| 295 | err = -EDEADLK; |
| 296 | goto unlock; |
| 297 | } |
| 298 | |
| 299 | err = 0; |
| 300 | __cpu_stop_queue_work(stopper1, work1); |
| 301 | __cpu_stop_queue_work(stopper2, work2); |
| 302 | |
| 303 | unlock: |
| 304 | raw_spin_unlock(&stopper2->lock); |
| 305 | raw_spin_unlock_irq(&stopper1->lock); |
| 306 | |
| 307 | if (unlikely(err == -EDEADLK)) { |
| 308 | preempt_enable(); |
| 309 | |
| 310 | while (stop_cpus_in_progress) |
| 311 | cpu_relax(); |
| 312 | |
| 313 | goto retry; |
| 314 | } |
| 315 | |
| 316 | if (!err) { |
| 317 | wake_up_process(stopper1->thread); |
| 318 | wake_up_process(stopper2->thread); |
| 319 | } |
| 320 | preempt_enable(); |
| 321 | |
| 322 | return err; |
| 323 | } |
| 324 | /** |
| 325 | * stop_two_cpus - stops two cpus |
| 326 | * @cpu1: the cpu to stop |
| 327 | * @cpu2: the other cpu to stop |
| 328 | * @fn: function to execute |
| 329 | * @arg: argument to @fn |
| 330 | * |
| 331 | * Stops both the current and specified CPU and runs @fn on one of them. |
| 332 | * |
| 333 | * returns when both are completed. |
| 334 | */ |
| 335 | int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) |
| 336 | { |
| 337 | struct cpu_stop_done done; |
| 338 | struct cpu_stop_work work1, work2; |
| 339 | struct multi_stop_data msdata; |
| 340 | |
| 341 | msdata = (struct multi_stop_data){ |
| 342 | .fn = fn, |
| 343 | .data = arg, |
| 344 | .num_threads = 2, |
| 345 | .active_cpus = cpumask_of(cpu1), |
| 346 | }; |
| 347 | |
| 348 | work1 = work2 = (struct cpu_stop_work){ |
| 349 | .fn = multi_cpu_stop, |
| 350 | .arg = &msdata, |
| 351 | .done = &done, |
| 352 | .caller = _RET_IP_, |
| 353 | }; |
| 354 | |
| 355 | cpu_stop_init_done(&done, 2); |
| 356 | set_state(&msdata, MULTI_STOP_PREPARE); |
| 357 | |
| 358 | if (cpu1 > cpu2) |
| 359 | swap(cpu1, cpu2); |
| 360 | if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) |
| 361 | return -ENOENT; |
| 362 | |
| 363 | wait_for_completion(&done.completion); |
| 364 | return done.ret; |
| 365 | } |
| 366 | |
| 367 | /** |
| 368 | * stop_one_cpu_nowait - stop a cpu but don't wait for completion |
| 369 | * @cpu: cpu to stop |
| 370 | * @fn: function to execute |
| 371 | * @arg: argument to @fn |
| 372 | * @work_buf: pointer to cpu_stop_work structure |
| 373 | * |
| 374 | * Similar to stop_one_cpu() but doesn't wait for completion. The |
| 375 | * caller is responsible for ensuring @work_buf is currently unused |
| 376 | * and will remain untouched until stopper starts executing @fn. |
| 377 | * |
| 378 | * CONTEXT: |
| 379 | * Don't care. |
| 380 | * |
| 381 | * RETURNS: |
| 382 | * true if cpu_stop_work was queued successfully and @fn will be called, |
| 383 | * false otherwise. |
| 384 | */ |
| 385 | bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, |
| 386 | struct cpu_stop_work *work_buf) |
| 387 | { |
| 388 | *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, }; |
| 389 | return cpu_stop_queue_work(cpu, work_buf); |
| 390 | } |
| 391 | |
| 392 | static bool queue_stop_cpus_work(const struct cpumask *cpumask, |
| 393 | cpu_stop_fn_t fn, void *arg, |
| 394 | struct cpu_stop_done *done) |
| 395 | { |
| 396 | struct cpu_stop_work *work; |
| 397 | unsigned int cpu; |
| 398 | bool queued = false; |
| 399 | |
| 400 | /* |
| 401 | * Disable preemption while queueing to avoid getting |
| 402 | * preempted by a stopper which might wait for other stoppers |
| 403 | * to enter @fn which can lead to deadlock. |
| 404 | */ |
| 405 | preempt_disable(); |
| 406 | stop_cpus_in_progress = true; |
| 407 | barrier(); |
| 408 | for_each_cpu(cpu, cpumask) { |
| 409 | work = &per_cpu(cpu_stopper.stop_work, cpu); |
| 410 | work->fn = fn; |
| 411 | work->arg = arg; |
| 412 | work->done = done; |
| 413 | work->caller = _RET_IP_; |
| 414 | if (cpu_stop_queue_work(cpu, work)) |
| 415 | queued = true; |
| 416 | } |
| 417 | barrier(); |
| 418 | stop_cpus_in_progress = false; |
| 419 | preempt_enable(); |
| 420 | |
| 421 | return queued; |
| 422 | } |
| 423 | |
| 424 | static int __stop_cpus(const struct cpumask *cpumask, |
| 425 | cpu_stop_fn_t fn, void *arg) |
| 426 | { |
| 427 | struct cpu_stop_done done; |
| 428 | |
| 429 | cpu_stop_init_done(&done, cpumask_weight(cpumask)); |
| 430 | if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) |
| 431 | return -ENOENT; |
| 432 | wait_for_completion(&done.completion); |
| 433 | return done.ret; |
| 434 | } |
| 435 | |
| 436 | /** |
| 437 | * stop_cpus - stop multiple cpus |
| 438 | * @cpumask: cpus to stop |
| 439 | * @fn: function to execute |
| 440 | * @arg: argument to @fn |
| 441 | * |
| 442 | * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, |
| 443 | * @fn is run in a process context with the highest priority |
| 444 | * preempting any task on the cpu and monopolizing it. This function |
| 445 | * returns after all executions are complete. |
| 446 | * |
| 447 | * This function doesn't guarantee the cpus in @cpumask stay online |
| 448 | * till @fn completes. If some cpus go down in the middle, execution |
| 449 | * on the cpu may happen partially or fully on different cpus. @fn |
| 450 | * should either be ready for that or the caller should ensure that |
| 451 | * the cpus stay online until this function completes. |
| 452 | * |
| 453 | * All stop_cpus() calls are serialized making it safe for @fn to wait |
| 454 | * for all cpus to start executing it. |
| 455 | * |
| 456 | * CONTEXT: |
| 457 | * Might sleep. |
| 458 | * |
| 459 | * RETURNS: |
| 460 | * -ENOENT if @fn(@arg) was not executed at all because all cpus in |
| 461 | * @cpumask were offline; otherwise, 0 if all executions of @fn |
| 462 | * returned 0, any non zero return value if any returned non zero. |
| 463 | */ |
| 464 | static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) |
| 465 | { |
| 466 | int ret; |
| 467 | |
| 468 | /* static works are used, process one request at a time */ |
| 469 | mutex_lock(&stop_cpus_mutex); |
| 470 | ret = __stop_cpus(cpumask, fn, arg); |
| 471 | mutex_unlock(&stop_cpus_mutex); |
| 472 | return ret; |
| 473 | } |
| 474 | |
| 475 | static int cpu_stop_should_run(unsigned int cpu) |
| 476 | { |
| 477 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 478 | unsigned long flags; |
| 479 | int run; |
| 480 | |
| 481 | raw_spin_lock_irqsave(&stopper->lock, flags); |
| 482 | run = !list_empty(&stopper->works); |
| 483 | raw_spin_unlock_irqrestore(&stopper->lock, flags); |
| 484 | return run; |
| 485 | } |
| 486 | |
| 487 | static void cpu_stopper_thread(unsigned int cpu) |
| 488 | { |
| 489 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 490 | struct cpu_stop_work *work; |
| 491 | |
| 492 | repeat: |
| 493 | work = NULL; |
| 494 | raw_spin_lock_irq(&stopper->lock); |
| 495 | if (!list_empty(&stopper->works)) { |
| 496 | work = list_first_entry(&stopper->works, |
| 497 | struct cpu_stop_work, list); |
| 498 | list_del_init(&work->list); |
| 499 | } |
| 500 | raw_spin_unlock_irq(&stopper->lock); |
| 501 | |
| 502 | if (work) { |
| 503 | cpu_stop_fn_t fn = work->fn; |
| 504 | void *arg = work->arg; |
| 505 | struct cpu_stop_done *done = work->done; |
| 506 | int ret; |
| 507 | |
| 508 | /* cpu stop callbacks must not sleep, make in_atomic() == T */ |
| 509 | stopper->caller = work->caller; |
| 510 | stopper->fn = fn; |
| 511 | preempt_count_inc(); |
| 512 | ret = fn(arg); |
| 513 | if (done) { |
| 514 | if (ret) |
| 515 | done->ret = ret; |
| 516 | cpu_stop_signal_done(done); |
| 517 | } |
| 518 | preempt_count_dec(); |
| 519 | stopper->fn = NULL; |
| 520 | stopper->caller = 0; |
| 521 | WARN_ONCE(preempt_count(), |
| 522 | "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); |
| 523 | goto repeat; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | void stop_machine_park(int cpu) |
| 528 | { |
| 529 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 530 | /* |
| 531 | * Lockless. cpu_stopper_thread() will take stopper->lock and flush |
| 532 | * the pending works before it parks, until then it is fine to queue |
| 533 | * the new works. |
| 534 | */ |
| 535 | stopper->enabled = false; |
| 536 | kthread_park(stopper->thread); |
| 537 | } |
| 538 | |
| 539 | static void cpu_stop_create(unsigned int cpu) |
| 540 | { |
| 541 | sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); |
| 542 | } |
| 543 | |
| 544 | static void cpu_stop_park(unsigned int cpu) |
| 545 | { |
| 546 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 547 | |
| 548 | WARN_ON(!list_empty(&stopper->works)); |
| 549 | } |
| 550 | |
| 551 | void stop_machine_unpark(int cpu) |
| 552 | { |
| 553 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 554 | |
| 555 | stopper->enabled = true; |
| 556 | kthread_unpark(stopper->thread); |
| 557 | } |
| 558 | |
| 559 | static struct smp_hotplug_thread cpu_stop_threads = { |
| 560 | .store = &cpu_stopper.thread, |
| 561 | .thread_should_run = cpu_stop_should_run, |
| 562 | .thread_fn = cpu_stopper_thread, |
| 563 | .thread_comm = "migration/%u", |
| 564 | .create = cpu_stop_create, |
| 565 | .park = cpu_stop_park, |
| 566 | .selfparking = true, |
| 567 | }; |
| 568 | |
| 569 | static int __init cpu_stop_init(void) |
| 570 | { |
| 571 | unsigned int cpu; |
| 572 | |
| 573 | for_each_possible_cpu(cpu) { |
| 574 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); |
| 575 | |
| 576 | raw_spin_lock_init(&stopper->lock); |
| 577 | INIT_LIST_HEAD(&stopper->works); |
| 578 | } |
| 579 | |
| 580 | BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); |
| 581 | stop_machine_unpark(raw_smp_processor_id()); |
| 582 | stop_machine_initialized = true; |
| 583 | return 0; |
| 584 | } |
| 585 | early_initcall(cpu_stop_init); |
| 586 | |
| 587 | int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, |
| 588 | const struct cpumask *cpus) |
| 589 | { |
| 590 | struct multi_stop_data msdata = { |
| 591 | .fn = fn, |
| 592 | .data = data, |
| 593 | .num_threads = num_online_cpus(), |
| 594 | .active_cpus = cpus, |
| 595 | }; |
| 596 | |
| 597 | lockdep_assert_cpus_held(); |
| 598 | |
| 599 | if (!stop_machine_initialized) { |
| 600 | /* |
| 601 | * Handle the case where stop_machine() is called |
| 602 | * early in boot before stop_machine() has been |
| 603 | * initialized. |
| 604 | */ |
| 605 | unsigned long flags; |
| 606 | int ret; |
| 607 | |
| 608 | WARN_ON_ONCE(msdata.num_threads != 1); |
| 609 | |
| 610 | local_irq_save(flags); |
| 611 | hard_irq_disable(); |
| 612 | ret = (*fn)(data); |
| 613 | local_irq_restore(flags); |
| 614 | |
| 615 | return ret; |
| 616 | } |
| 617 | |
| 618 | /* Set the initial state and stop all online cpus. */ |
| 619 | set_state(&msdata, MULTI_STOP_PREPARE); |
| 620 | return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); |
| 621 | } |
| 622 | |
| 623 | int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) |
| 624 | { |
| 625 | int ret; |
| 626 | |
| 627 | /* No CPUs can come up or down during this. */ |
| 628 | cpus_read_lock(); |
| 629 | ret = stop_machine_cpuslocked(fn, data, cpus); |
| 630 | cpus_read_unlock(); |
| 631 | return ret; |
| 632 | } |
| 633 | EXPORT_SYMBOL_GPL(stop_machine); |
| 634 | |
| 635 | #ifdef CONFIG_SCHED_SMT |
| 636 | int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data) |
| 637 | { |
| 638 | const struct cpumask *smt_mask = cpu_smt_mask(cpu); |
| 639 | |
| 640 | struct multi_stop_data msdata = { |
| 641 | .fn = fn, |
| 642 | .data = data, |
| 643 | .num_threads = cpumask_weight(smt_mask), |
| 644 | .active_cpus = smt_mask, |
| 645 | }; |
| 646 | |
| 647 | lockdep_assert_cpus_held(); |
| 648 | |
| 649 | /* Set the initial state and stop all online cpus. */ |
| 650 | set_state(&msdata, MULTI_STOP_PREPARE); |
| 651 | return stop_cpus(smt_mask, multi_cpu_stop, &msdata); |
| 652 | } |
| 653 | EXPORT_SYMBOL_GPL(stop_core_cpuslocked); |
| 654 | #endif |
| 655 | |
| 656 | /** |
| 657 | * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU |
| 658 | * @fn: the function to run |
| 659 | * @data: the data ptr for the @fn() |
| 660 | * @cpus: the cpus to run the @fn() on (NULL = any online cpu) |
| 661 | * |
| 662 | * This is identical to stop_machine() but can be called from a CPU which |
| 663 | * is not active. The local CPU is in the process of hotplug (so no other |
| 664 | * CPU hotplug can start) and not marked active and doesn't have enough |
| 665 | * context to sleep. |
| 666 | * |
| 667 | * This function provides stop_machine() functionality for such state by |
| 668 | * using busy-wait for synchronization and executing @fn directly for local |
| 669 | * CPU. |
| 670 | * |
| 671 | * CONTEXT: |
| 672 | * Local CPU is inactive. Temporarily stops all active CPUs. |
| 673 | * |
| 674 | * RETURNS: |
| 675 | * 0 if all executions of @fn returned 0, any non zero return value if any |
| 676 | * returned non zero. |
| 677 | */ |
| 678 | int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, |
| 679 | const struct cpumask *cpus) |
| 680 | { |
| 681 | struct multi_stop_data msdata = { .fn = fn, .data = data, |
| 682 | .active_cpus = cpus }; |
| 683 | struct cpu_stop_done done; |
| 684 | int ret; |
| 685 | |
| 686 | /* Local CPU must be inactive and CPU hotplug in progress. */ |
| 687 | BUG_ON(cpu_active(raw_smp_processor_id())); |
| 688 | msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ |
| 689 | |
| 690 | /* No proper task established and can't sleep - busy wait for lock. */ |
| 691 | while (!mutex_trylock(&stop_cpus_mutex)) |
| 692 | cpu_relax(); |
| 693 | |
| 694 | /* Schedule work on other CPUs and execute directly for local CPU */ |
| 695 | set_state(&msdata, MULTI_STOP_PREPARE); |
| 696 | cpu_stop_init_done(&done, num_active_cpus()); |
| 697 | queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, |
| 698 | &done); |
| 699 | ret = multi_cpu_stop(&msdata); |
| 700 | |
| 701 | /* Busy wait for completion. */ |
| 702 | while (!completion_done(&done.completion)) |
| 703 | cpu_relax(); |
| 704 | |
| 705 | mutex_unlock(&stop_cpus_mutex); |
| 706 | return ret ?: done.ret; |
| 707 | } |