| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Generic helpers for smp ipi calls |
| 4 | * |
| 5 | * (C) Jens Axboe <jens.axboe@oracle.com> 2008 |
| 6 | */ |
| 7 | |
| 8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 9 | |
| 10 | #include <linux/irq_work.h> |
| 11 | #include <linux/rcupdate.h> |
| 12 | #include <linux/rculist.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/export.h> |
| 15 | #include <linux/percpu.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/gfp.h> |
| 19 | #include <linux/smp.h> |
| 20 | #include <linux/cpu.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/sched/idle.h> |
| 23 | #include <linux/hypervisor.h> |
| 24 | #include <linux/sched/clock.h> |
| 25 | #include <linux/nmi.h> |
| 26 | #include <linux/sched/debug.h> |
| 27 | #include <linux/jump_label.h> |
| 28 | #include <linux/string_choices.h> |
| 29 | |
| 30 | #include <trace/events/ipi.h> |
| 31 | #define CREATE_TRACE_POINTS |
| 32 | #include <trace/events/csd.h> |
| 33 | #undef CREATE_TRACE_POINTS |
| 34 | |
| 35 | #include "smpboot.h" |
| 36 | #include "sched/smp.h" |
| 37 | |
| 38 | #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK) |
| 39 | |
| 40 | struct call_function_data { |
| 41 | call_single_data_t __percpu *csd; |
| 42 | cpumask_var_t cpumask; |
| 43 | cpumask_var_t cpumask_ipi; |
| 44 | }; |
| 45 | |
| 46 | static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data); |
| 47 | |
| 48 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue); |
| 49 | |
| 50 | static DEFINE_PER_CPU(atomic_t, trigger_backtrace) = ATOMIC_INIT(1); |
| 51 | |
| 52 | static void __flush_smp_call_function_queue(bool warn_cpu_offline); |
| 53 | |
| 54 | int smpcfd_prepare_cpu(unsigned int cpu) |
| 55 | { |
| 56 | struct call_function_data *cfd = &per_cpu(cfd_data, cpu); |
| 57 | |
| 58 | if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL, |
| 59 | cpu_to_node(cpu))) |
| 60 | return -ENOMEM; |
| 61 | if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL, |
| 62 | cpu_to_node(cpu))) { |
| 63 | free_cpumask_var(cfd->cpumask); |
| 64 | return -ENOMEM; |
| 65 | } |
| 66 | cfd->csd = alloc_percpu(call_single_data_t); |
| 67 | if (!cfd->csd) { |
| 68 | free_cpumask_var(cfd->cpumask); |
| 69 | free_cpumask_var(cfd->cpumask_ipi); |
| 70 | return -ENOMEM; |
| 71 | } |
| 72 | |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | int smpcfd_dead_cpu(unsigned int cpu) |
| 77 | { |
| 78 | struct call_function_data *cfd = &per_cpu(cfd_data, cpu); |
| 79 | |
| 80 | free_cpumask_var(cfd->cpumask); |
| 81 | free_cpumask_var(cfd->cpumask_ipi); |
| 82 | free_percpu(cfd->csd); |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | int smpcfd_dying_cpu(unsigned int cpu) |
| 87 | { |
| 88 | /* |
| 89 | * The IPIs for the smp-call-function callbacks queued by other |
| 90 | * CPUs might arrive late, either due to hardware latencies or |
| 91 | * because this CPU disabled interrupts (inside stop-machine) |
| 92 | * before the IPIs were sent. So flush out any pending callbacks |
| 93 | * explicitly (without waiting for the IPIs to arrive), to |
| 94 | * ensure that the outgoing CPU doesn't go offline with work |
| 95 | * still pending. |
| 96 | */ |
| 97 | __flush_smp_call_function_queue(false); |
| 98 | irq_work_run(); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | void __init call_function_init(void) |
| 103 | { |
| 104 | int i; |
| 105 | |
| 106 | for_each_possible_cpu(i) |
| 107 | init_llist_head(&per_cpu(call_single_queue, i)); |
| 108 | |
| 109 | smpcfd_prepare_cpu(smp_processor_id()); |
| 110 | } |
| 111 | |
| 112 | static __always_inline void |
| 113 | send_call_function_single_ipi(int cpu) |
| 114 | { |
| 115 | if (call_function_single_prep_ipi(cpu)) { |
| 116 | trace_ipi_send_cpu(cpu, _RET_IP_, |
| 117 | generic_smp_call_function_single_interrupt); |
| 118 | arch_send_call_function_single_ipi(cpu); |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | static __always_inline void |
| 123 | send_call_function_ipi_mask(struct cpumask *mask) |
| 124 | { |
| 125 | trace_ipi_send_cpumask(mask, _RET_IP_, |
| 126 | generic_smp_call_function_single_interrupt); |
| 127 | arch_send_call_function_ipi_mask(mask); |
| 128 | } |
| 129 | |
| 130 | static __always_inline void |
| 131 | csd_do_func(smp_call_func_t func, void *info, call_single_data_t *csd) |
| 132 | { |
| 133 | trace_csd_function_entry(func, csd); |
| 134 | func(info); |
| 135 | trace_csd_function_exit(func, csd); |
| 136 | } |
| 137 | |
| 138 | #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG |
| 139 | |
| 140 | static DEFINE_STATIC_KEY_MAYBE(CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT, csdlock_debug_enabled); |
| 141 | |
| 142 | /* |
| 143 | * Parse the csdlock_debug= kernel boot parameter. |
| 144 | * |
| 145 | * If you need to restore the old "ext" value that once provided |
| 146 | * additional debugging information, reapply the following commits: |
| 147 | * |
| 148 | * de7b09ef658d ("locking/csd_lock: Prepare more CSD lock debugging") |
| 149 | * a5aabace5fb8 ("locking/csd_lock: Add more data to CSD lock debugging") |
| 150 | */ |
| 151 | static int __init csdlock_debug(char *str) |
| 152 | { |
| 153 | int ret; |
| 154 | unsigned int val = 0; |
| 155 | |
| 156 | ret = get_option(&str, &val); |
| 157 | if (ret) { |
| 158 | if (val) |
| 159 | static_branch_enable(&csdlock_debug_enabled); |
| 160 | else |
| 161 | static_branch_disable(&csdlock_debug_enabled); |
| 162 | } |
| 163 | |
| 164 | return 1; |
| 165 | } |
| 166 | __setup("csdlock_debug=", csdlock_debug); |
| 167 | |
| 168 | static DEFINE_PER_CPU(call_single_data_t *, cur_csd); |
| 169 | static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func); |
| 170 | static DEFINE_PER_CPU(void *, cur_csd_info); |
| 171 | |
| 172 | static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */ |
| 173 | module_param(csd_lock_timeout, ulong, 0644); |
| 174 | static int panic_on_ipistall; /* CSD panic timeout in milliseconds, 300000 for five minutes. */ |
| 175 | module_param(panic_on_ipistall, int, 0644); |
| 176 | |
| 177 | static atomic_t csd_bug_count = ATOMIC_INIT(0); |
| 178 | |
| 179 | /* Record current CSD work for current CPU, NULL to erase. */ |
| 180 | static void __csd_lock_record(call_single_data_t *csd) |
| 181 | { |
| 182 | if (!csd) { |
| 183 | smp_mb(); /* NULL cur_csd after unlock. */ |
| 184 | __this_cpu_write(cur_csd, NULL); |
| 185 | return; |
| 186 | } |
| 187 | __this_cpu_write(cur_csd_func, csd->func); |
| 188 | __this_cpu_write(cur_csd_info, csd->info); |
| 189 | smp_wmb(); /* func and info before csd. */ |
| 190 | __this_cpu_write(cur_csd, csd); |
| 191 | smp_mb(); /* Update cur_csd before function call. */ |
| 192 | /* Or before unlock, as the case may be. */ |
| 193 | } |
| 194 | |
| 195 | static __always_inline void csd_lock_record(call_single_data_t *csd) |
| 196 | { |
| 197 | if (static_branch_unlikely(&csdlock_debug_enabled)) |
| 198 | __csd_lock_record(csd); |
| 199 | } |
| 200 | |
| 201 | static int csd_lock_wait_getcpu(call_single_data_t *csd) |
| 202 | { |
| 203 | unsigned int csd_type; |
| 204 | |
| 205 | csd_type = CSD_TYPE(csd); |
| 206 | if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC) |
| 207 | return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */ |
| 208 | return -1; |
| 209 | } |
| 210 | |
| 211 | static atomic_t n_csd_lock_stuck; |
| 212 | |
| 213 | /** |
| 214 | * csd_lock_is_stuck - Has a CSD-lock acquisition been stuck too long? |
| 215 | * |
| 216 | * Returns @true if a CSD-lock acquisition is stuck and has been stuck |
| 217 | * long enough for a "non-responsive CSD lock" message to be printed. |
| 218 | */ |
| 219 | bool csd_lock_is_stuck(void) |
| 220 | { |
| 221 | return !!atomic_read(&n_csd_lock_stuck); |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Complain if too much time spent waiting. Note that only |
| 226 | * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU, |
| 227 | * so waiting on other types gets much less information. |
| 228 | */ |
| 229 | static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, int *bug_id, unsigned long *nmessages) |
| 230 | { |
| 231 | int cpu = -1; |
| 232 | int cpux; |
| 233 | bool firsttime; |
| 234 | u64 ts2, ts_delta; |
| 235 | call_single_data_t *cpu_cur_csd; |
| 236 | unsigned int flags = READ_ONCE(csd->node.u_flags); |
| 237 | unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC; |
| 238 | |
| 239 | if (!(flags & CSD_FLAG_LOCK)) { |
| 240 | if (!unlikely(*bug_id)) |
| 241 | return true; |
| 242 | cpu = csd_lock_wait_getcpu(csd); |
| 243 | pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n", |
| 244 | *bug_id, raw_smp_processor_id(), cpu); |
| 245 | atomic_dec(&n_csd_lock_stuck); |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | ts2 = ktime_get_mono_fast_ns(); |
| 250 | /* How long since we last checked for a stuck CSD lock.*/ |
| 251 | ts_delta = ts2 - *ts1; |
| 252 | if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) * |
| 253 | (!*nmessages ? 1 : (ilog2(num_online_cpus()) / 2 + 1)) || |
| 254 | csd_lock_timeout_ns == 0)) |
| 255 | return false; |
| 256 | |
| 257 | if (ts0 > ts2) { |
| 258 | /* Our own sched_clock went backward; don't blame another CPU. */ |
| 259 | ts_delta = ts0 - ts2; |
| 260 | pr_alert("sched_clock on CPU %d went backward by %llu ns\n", raw_smp_processor_id(), ts_delta); |
| 261 | *ts1 = ts2; |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | firsttime = !*bug_id; |
| 266 | if (firsttime) |
| 267 | *bug_id = atomic_inc_return(&csd_bug_count); |
| 268 | cpu = csd_lock_wait_getcpu(csd); |
| 269 | if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu)) |
| 270 | cpux = 0; |
| 271 | else |
| 272 | cpux = cpu; |
| 273 | cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */ |
| 274 | /* How long since this CSD lock was stuck. */ |
| 275 | ts_delta = ts2 - ts0; |
| 276 | pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %lld ns for CPU#%02d %pS(%ps).\n", |
| 277 | firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), (s64)ts_delta, |
| 278 | cpu, csd->func, csd->info); |
| 279 | (*nmessages)++; |
| 280 | if (firsttime) |
| 281 | atomic_inc(&n_csd_lock_stuck); |
| 282 | /* |
| 283 | * If the CSD lock is still stuck after 5 minutes, it is unlikely |
| 284 | * to become unstuck. Use a signed comparison to avoid triggering |
| 285 | * on underflows when the TSC is out of sync between sockets. |
| 286 | */ |
| 287 | BUG_ON(panic_on_ipistall > 0 && (s64)ts_delta > ((s64)panic_on_ipistall * NSEC_PER_MSEC)); |
| 288 | if (cpu_cur_csd && csd != cpu_cur_csd) { |
| 289 | pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n", |
| 290 | *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)), |
| 291 | READ_ONCE(per_cpu(cur_csd_info, cpux))); |
| 292 | } else { |
| 293 | pr_alert("\tcsd: CSD lock (#%d) %s.\n", |
| 294 | *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request"); |
| 295 | } |
| 296 | if (cpu >= 0) { |
| 297 | if (atomic_cmpxchg_acquire(&per_cpu(trigger_backtrace, cpu), 1, 0)) |
| 298 | dump_cpu_task(cpu); |
| 299 | if (!cpu_cur_csd) { |
| 300 | pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu); |
| 301 | arch_send_call_function_single_ipi(cpu); |
| 302 | } |
| 303 | } |
| 304 | if (firsttime) |
| 305 | dump_stack(); |
| 306 | *ts1 = ts2; |
| 307 | |
| 308 | return false; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * csd_lock/csd_unlock used to serialize access to per-cpu csd resources |
| 313 | * |
| 314 | * For non-synchronous ipi calls the csd can still be in use by the |
| 315 | * previous function call. For multi-cpu calls its even more interesting |
| 316 | * as we'll have to ensure no other cpu is observing our csd. |
| 317 | */ |
| 318 | static void __csd_lock_wait(call_single_data_t *csd) |
| 319 | { |
| 320 | unsigned long nmessages = 0; |
| 321 | int bug_id = 0; |
| 322 | u64 ts0, ts1; |
| 323 | |
| 324 | ts1 = ts0 = ktime_get_mono_fast_ns(); |
| 325 | for (;;) { |
| 326 | if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages)) |
| 327 | break; |
| 328 | cpu_relax(); |
| 329 | } |
| 330 | smp_acquire__after_ctrl_dep(); |
| 331 | } |
| 332 | |
| 333 | static __always_inline void csd_lock_wait(call_single_data_t *csd) |
| 334 | { |
| 335 | if (static_branch_unlikely(&csdlock_debug_enabled)) { |
| 336 | __csd_lock_wait(csd); |
| 337 | return; |
| 338 | } |
| 339 | |
| 340 | smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); |
| 341 | } |
| 342 | #else |
| 343 | static void csd_lock_record(call_single_data_t *csd) |
| 344 | { |
| 345 | } |
| 346 | |
| 347 | static __always_inline void csd_lock_wait(call_single_data_t *csd) |
| 348 | { |
| 349 | smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK)); |
| 350 | } |
| 351 | #endif |
| 352 | |
| 353 | static __always_inline void csd_lock(call_single_data_t *csd) |
| 354 | { |
| 355 | csd_lock_wait(csd); |
| 356 | csd->node.u_flags |= CSD_FLAG_LOCK; |
| 357 | |
| 358 | /* |
| 359 | * prevent CPU from reordering the above assignment |
| 360 | * to ->flags with any subsequent assignments to other |
| 361 | * fields of the specified call_single_data_t structure: |
| 362 | */ |
| 363 | smp_wmb(); |
| 364 | } |
| 365 | |
| 366 | static __always_inline void csd_unlock(call_single_data_t *csd) |
| 367 | { |
| 368 | WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK)); |
| 369 | |
| 370 | /* |
| 371 | * ensure we're all done before releasing data: |
| 372 | */ |
| 373 | smp_store_release(&csd->node.u_flags, 0); |
| 374 | } |
| 375 | |
| 376 | static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data); |
| 377 | |
| 378 | void __smp_call_single_queue(int cpu, struct llist_node *node) |
| 379 | { |
| 380 | /* |
| 381 | * We have to check the type of the CSD before queueing it, because |
| 382 | * once queued it can have its flags cleared by |
| 383 | * flush_smp_call_function_queue() |
| 384 | * even if we haven't sent the smp_call IPI yet (e.g. the stopper |
| 385 | * executes migration_cpu_stop() on the remote CPU). |
| 386 | */ |
| 387 | if (trace_csd_queue_cpu_enabled()) { |
| 388 | call_single_data_t *csd; |
| 389 | smp_call_func_t func; |
| 390 | |
| 391 | csd = container_of(node, call_single_data_t, node.llist); |
| 392 | func = CSD_TYPE(csd) == CSD_TYPE_TTWU ? |
| 393 | sched_ttwu_pending : csd->func; |
| 394 | |
| 395 | trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * The list addition should be visible to the target CPU when it pops |
| 400 | * the head of the list to pull the entry off it in the IPI handler |
| 401 | * because of normal cache coherency rules implied by the underlying |
| 402 | * llist ops. |
| 403 | * |
| 404 | * If IPIs can go out of order to the cache coherency protocol |
| 405 | * in an architecture, sufficient synchronisation should be added |
| 406 | * to arch code to make it appear to obey cache coherency WRT |
| 407 | * locking and barrier primitives. Generic code isn't really |
| 408 | * equipped to do the right thing... |
| 409 | */ |
| 410 | if (llist_add(node, &per_cpu(call_single_queue, cpu))) |
| 411 | send_call_function_single_ipi(cpu); |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * Insert a previously allocated call_single_data_t element |
| 416 | * for execution on the given CPU. data must already have |
| 417 | * ->func, ->info, and ->flags set. |
| 418 | */ |
| 419 | static int generic_exec_single(int cpu, call_single_data_t *csd) |
| 420 | { |
| 421 | if (cpu == smp_processor_id()) { |
| 422 | smp_call_func_t func = csd->func; |
| 423 | void *info = csd->info; |
| 424 | unsigned long flags; |
| 425 | |
| 426 | /* |
| 427 | * We can unlock early even for the synchronous on-stack case, |
| 428 | * since we're doing this from the same CPU.. |
| 429 | */ |
| 430 | csd_lock_record(csd); |
| 431 | csd_unlock(csd); |
| 432 | local_irq_save(flags); |
| 433 | csd_do_func(func, info, NULL); |
| 434 | csd_lock_record(NULL); |
| 435 | local_irq_restore(flags); |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) { |
| 440 | csd_unlock(csd); |
| 441 | return -ENXIO; |
| 442 | } |
| 443 | |
| 444 | __smp_call_single_queue(cpu, &csd->node.llist); |
| 445 | |
| 446 | return 0; |
| 447 | } |
| 448 | |
| 449 | /** |
| 450 | * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks |
| 451 | * |
| 452 | * Invoked by arch to handle an IPI for call function single. |
| 453 | * Must be called with interrupts disabled. |
| 454 | */ |
| 455 | void generic_smp_call_function_single_interrupt(void) |
| 456 | { |
| 457 | __flush_smp_call_function_queue(true); |
| 458 | } |
| 459 | |
| 460 | /** |
| 461 | * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks |
| 462 | * |
| 463 | * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an |
| 464 | * offline CPU. Skip this check if set to 'false'. |
| 465 | * |
| 466 | * Flush any pending smp-call-function callbacks queued on this CPU. This is |
| 467 | * invoked by the generic IPI handler, as well as by a CPU about to go offline, |
| 468 | * to ensure that all pending IPI callbacks are run before it goes completely |
| 469 | * offline. |
| 470 | * |
| 471 | * Loop through the call_single_queue and run all the queued callbacks. |
| 472 | * Must be called with interrupts disabled. |
| 473 | */ |
| 474 | static void __flush_smp_call_function_queue(bool warn_cpu_offline) |
| 475 | { |
| 476 | call_single_data_t *csd, *csd_next; |
| 477 | struct llist_node *entry, *prev; |
| 478 | struct llist_head *head; |
| 479 | static bool warned; |
| 480 | atomic_t *tbt; |
| 481 | |
| 482 | lockdep_assert_irqs_disabled(); |
| 483 | |
| 484 | /* Allow waiters to send backtrace NMI from here onwards */ |
| 485 | tbt = this_cpu_ptr(&trigger_backtrace); |
| 486 | atomic_set_release(tbt, 1); |
| 487 | |
| 488 | head = this_cpu_ptr(&call_single_queue); |
| 489 | entry = llist_del_all(head); |
| 490 | entry = llist_reverse_order(entry); |
| 491 | |
| 492 | /* There shouldn't be any pending callbacks on an offline CPU. */ |
| 493 | if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) && |
| 494 | !warned && entry != NULL)) { |
| 495 | warned = true; |
| 496 | WARN(1, "IPI on offline CPU %d\n", smp_processor_id()); |
| 497 | |
| 498 | /* |
| 499 | * We don't have to use the _safe() variant here |
| 500 | * because we are not invoking the IPI handlers yet. |
| 501 | */ |
| 502 | llist_for_each_entry(csd, entry, node.llist) { |
| 503 | switch (CSD_TYPE(csd)) { |
| 504 | case CSD_TYPE_ASYNC: |
| 505 | case CSD_TYPE_SYNC: |
| 506 | case CSD_TYPE_IRQ_WORK: |
| 507 | pr_warn("IPI callback %pS sent to offline CPU\n", |
| 508 | csd->func); |
| 509 | break; |
| 510 | |
| 511 | case CSD_TYPE_TTWU: |
| 512 | pr_warn("IPI task-wakeup sent to offline CPU\n"); |
| 513 | break; |
| 514 | |
| 515 | default: |
| 516 | pr_warn("IPI callback, unknown type %d, sent to offline CPU\n", |
| 517 | CSD_TYPE(csd)); |
| 518 | break; |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * First; run all SYNC callbacks, people are waiting for us. |
| 525 | */ |
| 526 | prev = NULL; |
| 527 | llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { |
| 528 | /* Do we wait until *after* callback? */ |
| 529 | if (CSD_TYPE(csd) == CSD_TYPE_SYNC) { |
| 530 | smp_call_func_t func = csd->func; |
| 531 | void *info = csd->info; |
| 532 | |
| 533 | if (prev) { |
| 534 | prev->next = &csd_next->node.llist; |
| 535 | } else { |
| 536 | entry = &csd_next->node.llist; |
| 537 | } |
| 538 | |
| 539 | csd_lock_record(csd); |
| 540 | csd_do_func(func, info, csd); |
| 541 | csd_unlock(csd); |
| 542 | csd_lock_record(NULL); |
| 543 | } else { |
| 544 | prev = &csd->node.llist; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | if (!entry) |
| 549 | return; |
| 550 | |
| 551 | /* |
| 552 | * Second; run all !SYNC callbacks. |
| 553 | */ |
| 554 | prev = NULL; |
| 555 | llist_for_each_entry_safe(csd, csd_next, entry, node.llist) { |
| 556 | int type = CSD_TYPE(csd); |
| 557 | |
| 558 | if (type != CSD_TYPE_TTWU) { |
| 559 | if (prev) { |
| 560 | prev->next = &csd_next->node.llist; |
| 561 | } else { |
| 562 | entry = &csd_next->node.llist; |
| 563 | } |
| 564 | |
| 565 | if (type == CSD_TYPE_ASYNC) { |
| 566 | smp_call_func_t func = csd->func; |
| 567 | void *info = csd->info; |
| 568 | |
| 569 | csd_lock_record(csd); |
| 570 | csd_unlock(csd); |
| 571 | csd_do_func(func, info, csd); |
| 572 | csd_lock_record(NULL); |
| 573 | } else if (type == CSD_TYPE_IRQ_WORK) { |
| 574 | irq_work_single(csd); |
| 575 | } |
| 576 | |
| 577 | } else { |
| 578 | prev = &csd->node.llist; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Third; only CSD_TYPE_TTWU is left, issue those. |
| 584 | */ |
| 585 | if (entry) { |
| 586 | csd = llist_entry(entry, typeof(*csd), node.llist); |
| 587 | csd_do_func(sched_ttwu_pending, entry, csd); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | |
| 592 | /** |
| 593 | * flush_smp_call_function_queue - Flush pending smp-call-function callbacks |
| 594 | * from task context (idle, migration thread) |
| 595 | * |
| 596 | * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it |
| 597 | * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by |
| 598 | * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to |
| 599 | * handle queued SMP function calls before scheduling. |
| 600 | * |
| 601 | * The migration thread has to ensure that an eventually pending wakeup has |
| 602 | * been handled before it migrates a task. |
| 603 | */ |
| 604 | void flush_smp_call_function_queue(void) |
| 605 | { |
| 606 | unsigned int was_pending; |
| 607 | unsigned long flags; |
| 608 | |
| 609 | if (llist_empty(this_cpu_ptr(&call_single_queue))) |
| 610 | return; |
| 611 | |
| 612 | local_irq_save(flags); |
| 613 | /* Get the already pending soft interrupts for RT enabled kernels */ |
| 614 | was_pending = local_softirq_pending(); |
| 615 | __flush_smp_call_function_queue(true); |
| 616 | if (local_softirq_pending()) |
| 617 | do_softirq_post_smp_call_flush(was_pending); |
| 618 | |
| 619 | local_irq_restore(flags); |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * smp_call_function_single - Run a function on a specific CPU |
| 624 | * @func: The function to run. This must be fast and non-blocking. |
| 625 | * @info: An arbitrary pointer to pass to the function. |
| 626 | * @wait: If true, wait until function has completed on other CPUs. |
| 627 | * |
| 628 | * Returns 0 on success, else a negative status code. |
| 629 | */ |
| 630 | int smp_call_function_single(int cpu, smp_call_func_t func, void *info, |
| 631 | int wait) |
| 632 | { |
| 633 | call_single_data_t *csd; |
| 634 | call_single_data_t csd_stack = { |
| 635 | .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, }, |
| 636 | }; |
| 637 | int this_cpu; |
| 638 | int err; |
| 639 | |
| 640 | /* |
| 641 | * prevent preemption and reschedule on another processor, |
| 642 | * as well as CPU removal |
| 643 | */ |
| 644 | this_cpu = get_cpu(); |
| 645 | |
| 646 | /* |
| 647 | * Can deadlock when called with interrupts disabled. |
| 648 | * We allow cpu's that are not yet online though, as no one else can |
| 649 | * send smp call function interrupt to this cpu and as such deadlocks |
| 650 | * can't happen. |
| 651 | */ |
| 652 | WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled() |
| 653 | && !oops_in_progress); |
| 654 | |
| 655 | /* |
| 656 | * When @wait we can deadlock when we interrupt between llist_add() and |
| 657 | * arch_send_call_function_ipi*(); when !@wait we can deadlock due to |
| 658 | * csd_lock() on because the interrupt context uses the same csd |
| 659 | * storage. |
| 660 | */ |
| 661 | WARN_ON_ONCE(!in_task()); |
| 662 | |
| 663 | csd = &csd_stack; |
| 664 | if (!wait) { |
| 665 | csd = this_cpu_ptr(&csd_data); |
| 666 | csd_lock(csd); |
| 667 | } |
| 668 | |
| 669 | csd->func = func; |
| 670 | csd->info = info; |
| 671 | #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG |
| 672 | csd->node.src = smp_processor_id(); |
| 673 | csd->node.dst = cpu; |
| 674 | #endif |
| 675 | |
| 676 | err = generic_exec_single(cpu, csd); |
| 677 | |
| 678 | if (wait) |
| 679 | csd_lock_wait(csd); |
| 680 | |
| 681 | put_cpu(); |
| 682 | |
| 683 | return err; |
| 684 | } |
| 685 | EXPORT_SYMBOL(smp_call_function_single); |
| 686 | |
| 687 | /** |
| 688 | * smp_call_function_single_async() - Run an asynchronous function on a |
| 689 | * specific CPU. |
| 690 | * @cpu: The CPU to run on. |
| 691 | * @csd: Pre-allocated and setup data structure |
| 692 | * |
| 693 | * Like smp_call_function_single(), but the call is asynchonous and |
| 694 | * can thus be done from contexts with disabled interrupts. |
| 695 | * |
| 696 | * The caller passes his own pre-allocated data structure |
| 697 | * (ie: embedded in an object) and is responsible for synchronizing it |
| 698 | * such that the IPIs performed on the @csd are strictly serialized. |
| 699 | * |
| 700 | * If the function is called with one csd which has not yet been |
| 701 | * processed by previous call to smp_call_function_single_async(), the |
| 702 | * function will return immediately with -EBUSY showing that the csd |
| 703 | * object is still in progress. |
| 704 | * |
| 705 | * NOTE: Be careful, there is unfortunately no current debugging facility to |
| 706 | * validate the correctness of this serialization. |
| 707 | * |
| 708 | * Return: %0 on success or negative errno value on error |
| 709 | */ |
| 710 | int smp_call_function_single_async(int cpu, call_single_data_t *csd) |
| 711 | { |
| 712 | int err = 0; |
| 713 | |
| 714 | preempt_disable(); |
| 715 | |
| 716 | if (csd->node.u_flags & CSD_FLAG_LOCK) { |
| 717 | err = -EBUSY; |
| 718 | goto out; |
| 719 | } |
| 720 | |
| 721 | csd->node.u_flags = CSD_FLAG_LOCK; |
| 722 | smp_wmb(); |
| 723 | |
| 724 | err = generic_exec_single(cpu, csd); |
| 725 | |
| 726 | out: |
| 727 | preempt_enable(); |
| 728 | |
| 729 | return err; |
| 730 | } |
| 731 | EXPORT_SYMBOL_GPL(smp_call_function_single_async); |
| 732 | |
| 733 | /* |
| 734 | * smp_call_function_any - Run a function on any of the given cpus |
| 735 | * @mask: The mask of cpus it can run on. |
| 736 | * @func: The function to run. This must be fast and non-blocking. |
| 737 | * @info: An arbitrary pointer to pass to the function. |
| 738 | * @wait: If true, wait until function has completed. |
| 739 | * |
| 740 | * Returns 0 on success, else a negative status code (if no cpus were online). |
| 741 | * |
| 742 | * Selection preference: |
| 743 | * 1) current cpu if in @mask |
| 744 | * 2) any cpu of current node if in @mask |
| 745 | * 3) any other online cpu in @mask |
| 746 | */ |
| 747 | int smp_call_function_any(const struct cpumask *mask, |
| 748 | smp_call_func_t func, void *info, int wait) |
| 749 | { |
| 750 | unsigned int cpu; |
| 751 | const struct cpumask *nodemask; |
| 752 | int ret; |
| 753 | |
| 754 | /* Try for same CPU (cheapest) */ |
| 755 | cpu = get_cpu(); |
| 756 | if (cpumask_test_cpu(cpu, mask)) |
| 757 | goto call; |
| 758 | |
| 759 | /* Try for same node. */ |
| 760 | nodemask = cpumask_of_node(cpu_to_node(cpu)); |
| 761 | for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids; |
| 762 | cpu = cpumask_next_and(cpu, nodemask, mask)) { |
| 763 | if (cpu_online(cpu)) |
| 764 | goto call; |
| 765 | } |
| 766 | |
| 767 | /* Any online will do: smp_call_function_single handles nr_cpu_ids. */ |
| 768 | cpu = cpumask_any_and(mask, cpu_online_mask); |
| 769 | call: |
| 770 | ret = smp_call_function_single(cpu, func, info, wait); |
| 771 | put_cpu(); |
| 772 | return ret; |
| 773 | } |
| 774 | EXPORT_SYMBOL_GPL(smp_call_function_any); |
| 775 | |
| 776 | /* |
| 777 | * Flags to be used as scf_flags argument of smp_call_function_many_cond(). |
| 778 | * |
| 779 | * %SCF_WAIT: Wait until function execution is completed |
| 780 | * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask |
| 781 | */ |
| 782 | #define SCF_WAIT (1U << 0) |
| 783 | #define SCF_RUN_LOCAL (1U << 1) |
| 784 | |
| 785 | static void smp_call_function_many_cond(const struct cpumask *mask, |
| 786 | smp_call_func_t func, void *info, |
| 787 | unsigned int scf_flags, |
| 788 | smp_cond_func_t cond_func) |
| 789 | { |
| 790 | int cpu, last_cpu, this_cpu = smp_processor_id(); |
| 791 | struct call_function_data *cfd; |
| 792 | bool wait = scf_flags & SCF_WAIT; |
| 793 | int nr_cpus = 0; |
| 794 | bool run_remote = false; |
| 795 | bool run_local = false; |
| 796 | |
| 797 | lockdep_assert_preemption_disabled(); |
| 798 | |
| 799 | /* |
| 800 | * Can deadlock when called with interrupts disabled. |
| 801 | * We allow cpu's that are not yet online though, as no one else can |
| 802 | * send smp call function interrupt to this cpu and as such deadlocks |
| 803 | * can't happen. |
| 804 | */ |
| 805 | if (cpu_online(this_cpu) && !oops_in_progress && |
| 806 | !early_boot_irqs_disabled) |
| 807 | lockdep_assert_irqs_enabled(); |
| 808 | |
| 809 | /* |
| 810 | * When @wait we can deadlock when we interrupt between llist_add() and |
| 811 | * arch_send_call_function_ipi*(); when !@wait we can deadlock due to |
| 812 | * csd_lock() on because the interrupt context uses the same csd |
| 813 | * storage. |
| 814 | */ |
| 815 | WARN_ON_ONCE(!in_task()); |
| 816 | |
| 817 | /* Check if we need local execution. */ |
| 818 | if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask) && |
| 819 | (!cond_func || cond_func(this_cpu, info))) |
| 820 | run_local = true; |
| 821 | |
| 822 | /* Check if we need remote execution, i.e., any CPU excluding this one. */ |
| 823 | cpu = cpumask_first_and(mask, cpu_online_mask); |
| 824 | if (cpu == this_cpu) |
| 825 | cpu = cpumask_next_and(cpu, mask, cpu_online_mask); |
| 826 | if (cpu < nr_cpu_ids) |
| 827 | run_remote = true; |
| 828 | |
| 829 | if (run_remote) { |
| 830 | cfd = this_cpu_ptr(&cfd_data); |
| 831 | cpumask_and(cfd->cpumask, mask, cpu_online_mask); |
| 832 | __cpumask_clear_cpu(this_cpu, cfd->cpumask); |
| 833 | |
| 834 | cpumask_clear(cfd->cpumask_ipi); |
| 835 | for_each_cpu(cpu, cfd->cpumask) { |
| 836 | call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu); |
| 837 | |
| 838 | if (cond_func && !cond_func(cpu, info)) { |
| 839 | __cpumask_clear_cpu(cpu, cfd->cpumask); |
| 840 | continue; |
| 841 | } |
| 842 | |
| 843 | csd_lock(csd); |
| 844 | if (wait) |
| 845 | csd->node.u_flags |= CSD_TYPE_SYNC; |
| 846 | csd->func = func; |
| 847 | csd->info = info; |
| 848 | #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG |
| 849 | csd->node.src = smp_processor_id(); |
| 850 | csd->node.dst = cpu; |
| 851 | #endif |
| 852 | trace_csd_queue_cpu(cpu, _RET_IP_, func, csd); |
| 853 | |
| 854 | if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) { |
| 855 | __cpumask_set_cpu(cpu, cfd->cpumask_ipi); |
| 856 | nr_cpus++; |
| 857 | last_cpu = cpu; |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Choose the most efficient way to send an IPI. Note that the |
| 863 | * number of CPUs might be zero due to concurrent changes to the |
| 864 | * provided mask. |
| 865 | */ |
| 866 | if (nr_cpus == 1) |
| 867 | send_call_function_single_ipi(last_cpu); |
| 868 | else if (likely(nr_cpus > 1)) |
| 869 | send_call_function_ipi_mask(cfd->cpumask_ipi); |
| 870 | } |
| 871 | |
| 872 | if (run_local) { |
| 873 | unsigned long flags; |
| 874 | |
| 875 | local_irq_save(flags); |
| 876 | csd_do_func(func, info, NULL); |
| 877 | local_irq_restore(flags); |
| 878 | } |
| 879 | |
| 880 | if (run_remote && wait) { |
| 881 | for_each_cpu(cpu, cfd->cpumask) { |
| 882 | call_single_data_t *csd; |
| 883 | |
| 884 | csd = per_cpu_ptr(cfd->csd, cpu); |
| 885 | csd_lock_wait(csd); |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | /** |
| 891 | * smp_call_function_many(): Run a function on a set of CPUs. |
| 892 | * @mask: The set of cpus to run on (only runs on online subset). |
| 893 | * @func: The function to run. This must be fast and non-blocking. |
| 894 | * @info: An arbitrary pointer to pass to the function. |
| 895 | * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait |
| 896 | * (atomically) until function has completed on other CPUs. If |
| 897 | * %SCF_RUN_LOCAL is set, the function will also be run locally |
| 898 | * if the local CPU is set in the @cpumask. |
| 899 | * |
| 900 | * If @wait is true, then returns once @func has returned. |
| 901 | * |
| 902 | * You must not call this function with disabled interrupts or from a |
| 903 | * hardware interrupt handler or from a bottom half handler. Preemption |
| 904 | * must be disabled when calling this function. |
| 905 | */ |
| 906 | void smp_call_function_many(const struct cpumask *mask, |
| 907 | smp_call_func_t func, void *info, bool wait) |
| 908 | { |
| 909 | smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL); |
| 910 | } |
| 911 | EXPORT_SYMBOL(smp_call_function_many); |
| 912 | |
| 913 | /** |
| 914 | * smp_call_function(): Run a function on all other CPUs. |
| 915 | * @func: The function to run. This must be fast and non-blocking. |
| 916 | * @info: An arbitrary pointer to pass to the function. |
| 917 | * @wait: If true, wait (atomically) until function has completed |
| 918 | * on other CPUs. |
| 919 | * |
| 920 | * Returns 0. |
| 921 | * |
| 922 | * If @wait is true, then returns once @func has returned; otherwise |
| 923 | * it returns just before the target cpu calls @func. |
| 924 | * |
| 925 | * You must not call this function with disabled interrupts or from a |
| 926 | * hardware interrupt handler or from a bottom half handler. |
| 927 | */ |
| 928 | void smp_call_function(smp_call_func_t func, void *info, int wait) |
| 929 | { |
| 930 | preempt_disable(); |
| 931 | smp_call_function_many(cpu_online_mask, func, info, wait); |
| 932 | preempt_enable(); |
| 933 | } |
| 934 | EXPORT_SYMBOL(smp_call_function); |
| 935 | |
| 936 | /* Setup configured maximum number of CPUs to activate */ |
| 937 | unsigned int setup_max_cpus = NR_CPUS; |
| 938 | EXPORT_SYMBOL(setup_max_cpus); |
| 939 | |
| 940 | |
| 941 | /* |
| 942 | * Setup routine for controlling SMP activation |
| 943 | * |
| 944 | * Command-line option of "nosmp" or "maxcpus=0" will disable SMP |
| 945 | * activation entirely (the MPS table probe still happens, though). |
| 946 | * |
| 947 | * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer |
| 948 | * greater than 0, limits the maximum number of CPUs activated in |
| 949 | * SMP mode to <NUM>. |
| 950 | */ |
| 951 | |
| 952 | void __weak __init arch_disable_smp_support(void) { } |
| 953 | |
| 954 | static int __init nosmp(char *str) |
| 955 | { |
| 956 | setup_max_cpus = 0; |
| 957 | arch_disable_smp_support(); |
| 958 | |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | early_param("nosmp", nosmp); |
| 963 | |
| 964 | /* this is hard limit */ |
| 965 | static int __init nrcpus(char *str) |
| 966 | { |
| 967 | int nr_cpus; |
| 968 | |
| 969 | if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids) |
| 970 | set_nr_cpu_ids(nr_cpus); |
| 971 | |
| 972 | return 0; |
| 973 | } |
| 974 | |
| 975 | early_param("nr_cpus", nrcpus); |
| 976 | |
| 977 | static int __init maxcpus(char *str) |
| 978 | { |
| 979 | get_option(&str, &setup_max_cpus); |
| 980 | if (setup_max_cpus == 0) |
| 981 | arch_disable_smp_support(); |
| 982 | |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | early_param("maxcpus", maxcpus); |
| 987 | |
| 988 | #if (NR_CPUS > 1) && !defined(CONFIG_FORCE_NR_CPUS) |
| 989 | /* Setup number of possible processor ids */ |
| 990 | unsigned int nr_cpu_ids __read_mostly = NR_CPUS; |
| 991 | EXPORT_SYMBOL(nr_cpu_ids); |
| 992 | #endif |
| 993 | |
| 994 | /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */ |
| 995 | void __init setup_nr_cpu_ids(void) |
| 996 | { |
| 997 | set_nr_cpu_ids(find_last_bit(cpumask_bits(cpu_possible_mask), NR_CPUS) + 1); |
| 998 | } |
| 999 | |
| 1000 | /* Called by boot processor to activate the rest. */ |
| 1001 | void __init smp_init(void) |
| 1002 | { |
| 1003 | int num_nodes, num_cpus; |
| 1004 | |
| 1005 | idle_threads_init(); |
| 1006 | cpuhp_threads_init(); |
| 1007 | |
| 1008 | pr_info("Bringing up secondary CPUs ...\n"); |
| 1009 | |
| 1010 | bringup_nonboot_cpus(setup_max_cpus); |
| 1011 | |
| 1012 | num_nodes = num_online_nodes(); |
| 1013 | num_cpus = num_online_cpus(); |
| 1014 | pr_info("Brought up %d node%s, %d CPU%s\n", |
| 1015 | num_nodes, str_plural(num_nodes), num_cpus, str_plural(num_cpus)); |
| 1016 | |
| 1017 | /* Any cleanup work */ |
| 1018 | smp_cpus_done(setup_max_cpus); |
| 1019 | } |
| 1020 | |
| 1021 | /* |
| 1022 | * on_each_cpu_cond(): Call a function on each processor for which |
| 1023 | * the supplied function cond_func returns true, optionally waiting |
| 1024 | * for all the required CPUs to finish. This may include the local |
| 1025 | * processor. |
| 1026 | * @cond_func: A callback function that is passed a cpu id and |
| 1027 | * the info parameter. The function is called |
| 1028 | * with preemption disabled. The function should |
| 1029 | * return a blooean value indicating whether to IPI |
| 1030 | * the specified CPU. |
| 1031 | * @func: The function to run on all applicable CPUs. |
| 1032 | * This must be fast and non-blocking. |
| 1033 | * @info: An arbitrary pointer to pass to both functions. |
| 1034 | * @wait: If true, wait (atomically) until function has |
| 1035 | * completed on other CPUs. |
| 1036 | * |
| 1037 | * Preemption is disabled to protect against CPUs going offline but not online. |
| 1038 | * CPUs going online during the call will not be seen or sent an IPI. |
| 1039 | * |
| 1040 | * You must not call this function with disabled interrupts or |
| 1041 | * from a hardware interrupt handler or from a bottom half handler. |
| 1042 | */ |
| 1043 | void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func, |
| 1044 | void *info, bool wait, const struct cpumask *mask) |
| 1045 | { |
| 1046 | unsigned int scf_flags = SCF_RUN_LOCAL; |
| 1047 | |
| 1048 | if (wait) |
| 1049 | scf_flags |= SCF_WAIT; |
| 1050 | |
| 1051 | preempt_disable(); |
| 1052 | smp_call_function_many_cond(mask, func, info, scf_flags, cond_func); |
| 1053 | preempt_enable(); |
| 1054 | } |
| 1055 | EXPORT_SYMBOL(on_each_cpu_cond_mask); |
| 1056 | |
| 1057 | static void do_nothing(void *unused) |
| 1058 | { |
| 1059 | } |
| 1060 | |
| 1061 | /** |
| 1062 | * kick_all_cpus_sync - Force all cpus out of idle |
| 1063 | * |
| 1064 | * Used to synchronize the update of pm_idle function pointer. It's |
| 1065 | * called after the pointer is updated and returns after the dummy |
| 1066 | * callback function has been executed on all cpus. The execution of |
| 1067 | * the function can only happen on the remote cpus after they have |
| 1068 | * left the idle function which had been called via pm_idle function |
| 1069 | * pointer. So it's guaranteed that nothing uses the previous pointer |
| 1070 | * anymore. |
| 1071 | */ |
| 1072 | void kick_all_cpus_sync(void) |
| 1073 | { |
| 1074 | /* Make sure the change is visible before we kick the cpus */ |
| 1075 | smp_mb(); |
| 1076 | smp_call_function(do_nothing, NULL, 1); |
| 1077 | } |
| 1078 | EXPORT_SYMBOL_GPL(kick_all_cpus_sync); |
| 1079 | |
| 1080 | /** |
| 1081 | * wake_up_all_idle_cpus - break all cpus out of idle |
| 1082 | * wake_up_all_idle_cpus try to break all cpus which is in idle state even |
| 1083 | * including idle polling cpus, for non-idle cpus, we will do nothing |
| 1084 | * for them. |
| 1085 | */ |
| 1086 | void wake_up_all_idle_cpus(void) |
| 1087 | { |
| 1088 | int cpu; |
| 1089 | |
| 1090 | for_each_possible_cpu(cpu) { |
| 1091 | preempt_disable(); |
| 1092 | if (cpu != smp_processor_id() && cpu_online(cpu)) |
| 1093 | wake_up_if_idle(cpu); |
| 1094 | preempt_enable(); |
| 1095 | } |
| 1096 | } |
| 1097 | EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus); |
| 1098 | |
| 1099 | /** |
| 1100 | * struct smp_call_on_cpu_struct - Call a function on a specific CPU |
| 1101 | * @work: &work_struct |
| 1102 | * @done: &completion to signal |
| 1103 | * @func: function to call |
| 1104 | * @data: function's data argument |
| 1105 | * @ret: return value from @func |
| 1106 | * @cpu: target CPU (%-1 for any CPU) |
| 1107 | * |
| 1108 | * Used to call a function on a specific cpu and wait for it to return. |
| 1109 | * Optionally make sure the call is done on a specified physical cpu via vcpu |
| 1110 | * pinning in order to support virtualized environments. |
| 1111 | */ |
| 1112 | struct smp_call_on_cpu_struct { |
| 1113 | struct work_struct work; |
| 1114 | struct completion done; |
| 1115 | int (*func)(void *); |
| 1116 | void *data; |
| 1117 | int ret; |
| 1118 | int cpu; |
| 1119 | }; |
| 1120 | |
| 1121 | static void smp_call_on_cpu_callback(struct work_struct *work) |
| 1122 | { |
| 1123 | struct smp_call_on_cpu_struct *sscs; |
| 1124 | |
| 1125 | sscs = container_of(work, struct smp_call_on_cpu_struct, work); |
| 1126 | if (sscs->cpu >= 0) |
| 1127 | hypervisor_pin_vcpu(sscs->cpu); |
| 1128 | sscs->ret = sscs->func(sscs->data); |
| 1129 | if (sscs->cpu >= 0) |
| 1130 | hypervisor_pin_vcpu(-1); |
| 1131 | |
| 1132 | complete(&sscs->done); |
| 1133 | } |
| 1134 | |
| 1135 | int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys) |
| 1136 | { |
| 1137 | struct smp_call_on_cpu_struct sscs = { |
| 1138 | .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done), |
| 1139 | .func = func, |
| 1140 | .data = par, |
| 1141 | .cpu = phys ? cpu : -1, |
| 1142 | }; |
| 1143 | |
| 1144 | INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback); |
| 1145 | |
| 1146 | if (cpu >= nr_cpu_ids || !cpu_online(cpu)) |
| 1147 | return -ENXIO; |
| 1148 | |
| 1149 | queue_work_on(cpu, system_wq, &sscs.work); |
| 1150 | wait_for_completion(&sscs.done); |
| 1151 | destroy_work_on_stack(&sscs.work); |
| 1152 | |
| 1153 | return sscs.ret; |
| 1154 | } |
| 1155 | EXPORT_SYMBOL_GPL(smp_call_on_cpu); |