signals: clean dequeue_signal from excess checks and assignments
[linux-block.git] / kernel / signal.c
... / ...
CommitLineData
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/capability.h>
26#include <linux/freezer.h>
27#include <linux/pid_namespace.h>
28#include <linux/nsproxy.h>
29
30#include <asm/param.h>
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
33#include <asm/siginfo.h>
34#include "audit.h" /* audit_signal_info() */
35
36/*
37 * SLAB caches for signal bits.
38 */
39
40static struct kmem_cache *sigqueue_cachep;
41
42static int __sig_ignored(struct task_struct *t, int sig)
43{
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51}
52
53static int sig_ignored(struct task_struct *t, int sig)
54{
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70}
71
72/*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77{
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100}
101
102#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104static int recalc_sigpending_tsk(struct task_struct *t)
105{
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118}
119
120/*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124void recalc_sigpending_and_wake(struct task_struct *t)
125{
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128}
129
130void recalc_sigpending(void)
131{
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135}
136
137/* Given the mask, find the first available signal that should be serviced. */
138
139int next_signal(struct sigpending *pending, sigset_t *mask)
140{
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170}
171
172static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174{
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197}
198
199static void __sigqueue_free(struct sigqueue *q)
200{
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206}
207
208void flush_sigqueue(struct sigpending *queue)
209{
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218}
219
220/*
221 * Flush all pending signals for a task.
222 */
223void flush_signals(struct task_struct *t)
224{
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232}
233
234void ignore_signals(struct task_struct *t)
235{
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242}
243
244/*
245 * Flush all handlers for a task.
246 */
247
248void
249flush_signal_handlers(struct task_struct *t, int force_default)
250{
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260}
261
262int unhandled_signal(struct task_struct *tsk, int sig)
263{
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270}
271
272
273/* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281void
282block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283{
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291}
292
293/* Notify the system that blocking has ended. */
294
295void
296unblock_all_signals(void)
297{
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305}
306
307static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308{
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348}
349
350static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352{
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370}
371
372/*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379{
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446}
447
448/*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459void signal_wake_up(struct task_struct *t, int resume)
460{
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477}
478
479/*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489{
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505}
506/*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512static int rm_from_queue(unsigned long mask, struct sigpending *s)
513{
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528}
529
530/*
531 * Bad permissions for sending the signal
532 */
533static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535{
536 int error = -EINVAL;
537 if (!valid_signal(sig))
538 return error;
539
540 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
541 error = audit_signal_info(sig, t); /* Let audit system see the signal */
542 if (error)
543 return error;
544 error = -EPERM;
545 if (((sig != SIGCONT) ||
546 (task_session_nr(current) != task_session_nr(t)))
547 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
548 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
549 && !capable(CAP_KILL))
550 return error;
551 }
552
553 return security_task_kill(t, info, sig, 0);
554}
555
556/* forward decl */
557static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
558
559/*
560 * Handle magic process-wide effects of stop/continue signals.
561 * Unlike the signal actions, these happen immediately at signal-generation
562 * time regardless of blocking, ignoring, or handling. This does the
563 * actual continuing for SIGCONT, but not the actual stopping for stop
564 * signals. The process stop is done as a signal action for SIG_DFL.
565 */
566static void handle_stop_signal(int sig, struct task_struct *p)
567{
568 struct task_struct *t;
569
570 if (p->signal->flags & SIGNAL_GROUP_EXIT)
571 /*
572 * The process is in the middle of dying already.
573 */
574 return;
575
576 if (sig_kernel_stop(sig)) {
577 /*
578 * This is a stop signal. Remove SIGCONT from all queues.
579 */
580 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
581 t = p;
582 do {
583 rm_from_queue(sigmask(SIGCONT), &t->pending);
584 t = next_thread(t);
585 } while (t != p);
586 } else if (sig == SIGCONT) {
587 /*
588 * Remove all stop signals from all queues,
589 * and wake all threads.
590 */
591 if (unlikely(p->signal->group_stop_count > 0)) {
592 /*
593 * There was a group stop in progress. We'll
594 * pretend it finished before we got here. We are
595 * obliged to report it to the parent: if the
596 * SIGSTOP happened "after" this SIGCONT, then it
597 * would have cleared this pending SIGCONT. If it
598 * happened "before" this SIGCONT, then the parent
599 * got the SIGCHLD about the stop finishing before
600 * the continue happened. We do the notification
601 * now, and it's as if the stop had finished and
602 * the SIGCHLD was pending on entry to this kill.
603 */
604 p->signal->group_stop_count = 0;
605 p->signal->flags = SIGNAL_STOP_CONTINUED;
606 spin_unlock(&p->sighand->siglock);
607 do_notify_parent_cldstop(p, CLD_STOPPED);
608 spin_lock(&p->sighand->siglock);
609 }
610 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
611 t = p;
612 do {
613 unsigned int state;
614 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
615
616 /*
617 * If there is a handler for SIGCONT, we must make
618 * sure that no thread returns to user mode before
619 * we post the signal, in case it was the only
620 * thread eligible to run the signal handler--then
621 * it must not do anything between resuming and
622 * running the handler. With the TIF_SIGPENDING
623 * flag set, the thread will pause and acquire the
624 * siglock that we hold now and until we've queued
625 * the pending signal.
626 *
627 * Wake up the stopped thread _after_ setting
628 * TIF_SIGPENDING
629 */
630 state = __TASK_STOPPED;
631 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
632 set_tsk_thread_flag(t, TIF_SIGPENDING);
633 state |= TASK_INTERRUPTIBLE;
634 }
635 wake_up_state(t, state);
636
637 t = next_thread(t);
638 } while (t != p);
639
640 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
641 /*
642 * We were in fact stopped, and are now continued.
643 * Notify the parent with CLD_CONTINUED.
644 */
645 p->signal->flags = SIGNAL_STOP_CONTINUED;
646 p->signal->group_exit_code = 0;
647 spin_unlock(&p->sighand->siglock);
648 do_notify_parent_cldstop(p, CLD_CONTINUED);
649 spin_lock(&p->sighand->siglock);
650 } else {
651 /*
652 * We are not stopped, but there could be a stop
653 * signal in the middle of being processed after
654 * being removed from the queue. Clear that too.
655 */
656 p->signal->flags = 0;
657 }
658 } else if (sig == SIGKILL) {
659 /*
660 * Make sure that any pending stop signal already dequeued
661 * is undone by the wakeup for SIGKILL.
662 */
663 p->signal->flags = 0;
664 }
665}
666
667static inline int legacy_queue(struct sigpending *signals, int sig)
668{
669 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
670}
671
672static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
673 struct sigpending *signals)
674{
675 struct sigqueue * q = NULL;
676
677 /*
678 * Short-circuit ignored signals and support queuing
679 * exactly one non-rt signal, so that we can get more
680 * detailed information about the cause of the signal.
681 */
682 if (sig_ignored(t, sig) || legacy_queue(signals, sig))
683 return 0;
684
685 /*
686 * Deliver the signal to listening signalfds. This must be called
687 * with the sighand lock held.
688 */
689 signalfd_notify(t, sig);
690
691 /*
692 * fast-pathed signals for kernel-internal things like SIGSTOP
693 * or SIGKILL.
694 */
695 if (info == SEND_SIG_FORCED)
696 goto out_set;
697
698 /* Real-time signals must be queued if sent by sigqueue, or
699 some other real-time mechanism. It is implementation
700 defined whether kill() does so. We attempt to do so, on
701 the principle of least surprise, but since kill is not
702 allowed to fail with EAGAIN when low on memory we just
703 make sure at least one signal gets delivered and don't
704 pass on the info struct. */
705
706 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
707 (is_si_special(info) ||
708 info->si_code >= 0)));
709 if (q) {
710 list_add_tail(&q->list, &signals->list);
711 switch ((unsigned long) info) {
712 case (unsigned long) SEND_SIG_NOINFO:
713 q->info.si_signo = sig;
714 q->info.si_errno = 0;
715 q->info.si_code = SI_USER;
716 q->info.si_pid = task_pid_vnr(current);
717 q->info.si_uid = current->uid;
718 break;
719 case (unsigned long) SEND_SIG_PRIV:
720 q->info.si_signo = sig;
721 q->info.si_errno = 0;
722 q->info.si_code = SI_KERNEL;
723 q->info.si_pid = 0;
724 q->info.si_uid = 0;
725 break;
726 default:
727 copy_siginfo(&q->info, info);
728 break;
729 }
730 } else if (!is_si_special(info)) {
731 if (sig >= SIGRTMIN && info->si_code != SI_USER)
732 /*
733 * Queue overflow, abort. We may abort if the signal was rt
734 * and sent by user using something other than kill().
735 */
736 return -EAGAIN;
737 }
738
739out_set:
740 sigaddset(&signals->signal, sig);
741 return 1;
742}
743
744int print_fatal_signals;
745
746static void print_fatal_signal(struct pt_regs *regs, int signr)
747{
748 printk("%s/%d: potentially unexpected fatal signal %d.\n",
749 current->comm, task_pid_nr(current), signr);
750
751#if defined(__i386__) && !defined(__arch_um__)
752 printk("code at %08lx: ", regs->ip);
753 {
754 int i;
755 for (i = 0; i < 16; i++) {
756 unsigned char insn;
757
758 __get_user(insn, (unsigned char *)(regs->ip + i));
759 printk("%02x ", insn);
760 }
761 }
762#endif
763 printk("\n");
764 show_regs(regs);
765}
766
767static int __init setup_print_fatal_signals(char *str)
768{
769 get_option (&str, &print_fatal_signals);
770
771 return 1;
772}
773
774__setup("print-fatal-signals=", setup_print_fatal_signals);
775
776static int
777specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
778{
779 int ret;
780
781 BUG_ON(!irqs_disabled());
782 assert_spin_locked(&t->sighand->siglock);
783
784 ret = send_signal(sig, info, t, &t->pending);
785 if (ret <= 0)
786 return ret;
787
788 if (!sigismember(&t->blocked, sig))
789 signal_wake_up(t, sig == SIGKILL);
790 return 0;
791}
792
793/*
794 * Force a signal that the process can't ignore: if necessary
795 * we unblock the signal and change any SIG_IGN to SIG_DFL.
796 *
797 * Note: If we unblock the signal, we always reset it to SIG_DFL,
798 * since we do not want to have a signal handler that was blocked
799 * be invoked when user space had explicitly blocked it.
800 *
801 * We don't want to have recursive SIGSEGV's etc, for example.
802 */
803int
804force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
805{
806 unsigned long int flags;
807 int ret, blocked, ignored;
808 struct k_sigaction *action;
809
810 spin_lock_irqsave(&t->sighand->siglock, flags);
811 action = &t->sighand->action[sig-1];
812 ignored = action->sa.sa_handler == SIG_IGN;
813 blocked = sigismember(&t->blocked, sig);
814 if (blocked || ignored) {
815 action->sa.sa_handler = SIG_DFL;
816 if (blocked) {
817 sigdelset(&t->blocked, sig);
818 recalc_sigpending_and_wake(t);
819 }
820 }
821 ret = specific_send_sig_info(sig, info, t);
822 spin_unlock_irqrestore(&t->sighand->siglock, flags);
823
824 return ret;
825}
826
827void
828force_sig_specific(int sig, struct task_struct *t)
829{
830 force_sig_info(sig, SEND_SIG_FORCED, t);
831}
832
833/*
834 * Test if P wants to take SIG. After we've checked all threads with this,
835 * it's equivalent to finding no threads not blocking SIG. Any threads not
836 * blocking SIG were ruled out because they are not running and already
837 * have pending signals. Such threads will dequeue from the shared queue
838 * as soon as they're available, so putting the signal on the shared queue
839 * will be equivalent to sending it to one such thread.
840 */
841static inline int wants_signal(int sig, struct task_struct *p)
842{
843 if (sigismember(&p->blocked, sig))
844 return 0;
845 if (p->flags & PF_EXITING)
846 return 0;
847 if (sig == SIGKILL)
848 return 1;
849 if (task_is_stopped_or_traced(p))
850 return 0;
851 return task_curr(p) || !signal_pending(p);
852}
853
854static void
855__group_complete_signal(int sig, struct task_struct *p)
856{
857 struct task_struct *t;
858
859 /*
860 * Now find a thread we can wake up to take the signal off the queue.
861 *
862 * If the main thread wants the signal, it gets first crack.
863 * Probably the least surprising to the average bear.
864 */
865 if (wants_signal(sig, p))
866 t = p;
867 else if (thread_group_empty(p))
868 /*
869 * There is just one thread and it does not need to be woken.
870 * It will dequeue unblocked signals before it runs again.
871 */
872 return;
873 else {
874 /*
875 * Otherwise try to find a suitable thread.
876 */
877 t = p->signal->curr_target;
878 if (t == NULL)
879 /* restart balancing at this thread */
880 t = p->signal->curr_target = p;
881
882 while (!wants_signal(sig, t)) {
883 t = next_thread(t);
884 if (t == p->signal->curr_target)
885 /*
886 * No thread needs to be woken.
887 * Any eligible threads will see
888 * the signal in the queue soon.
889 */
890 return;
891 }
892 p->signal->curr_target = t;
893 }
894
895 /*
896 * Found a killable thread. If the signal will be fatal,
897 * then start taking the whole group down immediately.
898 */
899 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
900 !sigismember(&t->real_blocked, sig) &&
901 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
902 /*
903 * This signal will be fatal to the whole group.
904 */
905 if (!sig_kernel_coredump(sig)) {
906 /*
907 * Start a group exit and wake everybody up.
908 * This way we don't have other threads
909 * running and doing things after a slower
910 * thread has the fatal signal pending.
911 */
912 p->signal->flags = SIGNAL_GROUP_EXIT;
913 p->signal->group_exit_code = sig;
914 p->signal->group_stop_count = 0;
915 t = p;
916 do {
917 sigaddset(&t->pending.signal, SIGKILL);
918 signal_wake_up(t, 1);
919 } while_each_thread(p, t);
920 return;
921 }
922 }
923
924 /*
925 * The signal is already in the shared-pending queue.
926 * Tell the chosen thread to wake up and dequeue it.
927 */
928 signal_wake_up(t, sig == SIGKILL);
929 return;
930}
931
932int
933__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
934{
935 int ret;
936
937 assert_spin_locked(&p->sighand->siglock);
938 handle_stop_signal(sig, p);
939
940 /*
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
944 */
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 if (ret <= 0)
947 return ret;
948
949 __group_complete_signal(sig, p);
950 return 0;
951}
952
953/*
954 * Nuke all other threads in the group.
955 */
956void zap_other_threads(struct task_struct *p)
957{
958 struct task_struct *t;
959
960 p->signal->group_stop_count = 0;
961
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
963 /*
964 * Don't bother with already dead threads
965 */
966 if (t->exit_state)
967 continue;
968
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
972 }
973}
974
975int __fatal_signal_pending(struct task_struct *tsk)
976{
977 return sigismember(&tsk->pending.signal, SIGKILL);
978}
979EXPORT_SYMBOL(__fatal_signal_pending);
980
981struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
982{
983 struct sighand_struct *sighand;
984
985 rcu_read_lock();
986 for (;;) {
987 sighand = rcu_dereference(tsk->sighand);
988 if (unlikely(sighand == NULL))
989 break;
990
991 spin_lock_irqsave(&sighand->siglock, *flags);
992 if (likely(sighand == tsk->sighand))
993 break;
994 spin_unlock_irqrestore(&sighand->siglock, *flags);
995 }
996 rcu_read_unlock();
997
998 return sighand;
999}
1000
1001int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1002{
1003 unsigned long flags;
1004 int ret;
1005
1006 ret = check_kill_permission(sig, info, p);
1007
1008 if (!ret && sig) {
1009 ret = -ESRCH;
1010 if (lock_task_sighand(p, &flags)) {
1011 ret = __group_send_sig_info(sig, info, p);
1012 unlock_task_sighand(p, &flags);
1013 }
1014 }
1015
1016 return ret;
1017}
1018
1019/*
1020 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1021 * control characters do (^C, ^Z etc)
1022 */
1023
1024int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1025{
1026 struct task_struct *p = NULL;
1027 int retval, success;
1028
1029 success = 0;
1030 retval = -ESRCH;
1031 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1032 int err = group_send_sig_info(sig, info, p);
1033 success |= !err;
1034 retval = err;
1035 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1036 return success ? 0 : retval;
1037}
1038
1039int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1040{
1041 int error = -ESRCH;
1042 struct task_struct *p;
1043
1044 rcu_read_lock();
1045 if (unlikely(sig_needs_tasklist(sig)))
1046 read_lock(&tasklist_lock);
1047
1048retry:
1049 p = pid_task(pid, PIDTYPE_PID);
1050 if (p) {
1051 error = group_send_sig_info(sig, info, p);
1052 if (unlikely(error == -ESRCH))
1053 /*
1054 * The task was unhashed in between, try again.
1055 * If it is dead, pid_task() will return NULL,
1056 * if we race with de_thread() it will find the
1057 * new leader.
1058 */
1059 goto retry;
1060 }
1061
1062 if (unlikely(sig_needs_tasklist(sig)))
1063 read_unlock(&tasklist_lock);
1064 rcu_read_unlock();
1065 return error;
1066}
1067
1068int
1069kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1070{
1071 int error;
1072 rcu_read_lock();
1073 error = kill_pid_info(sig, info, find_vpid(pid));
1074 rcu_read_unlock();
1075 return error;
1076}
1077
1078/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1079int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1080 uid_t uid, uid_t euid, u32 secid)
1081{
1082 int ret = -EINVAL;
1083 struct task_struct *p;
1084
1085 if (!valid_signal(sig))
1086 return ret;
1087
1088 read_lock(&tasklist_lock);
1089 p = pid_task(pid, PIDTYPE_PID);
1090 if (!p) {
1091 ret = -ESRCH;
1092 goto out_unlock;
1093 }
1094 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1095 && (euid != p->suid) && (euid != p->uid)
1096 && (uid != p->suid) && (uid != p->uid)) {
1097 ret = -EPERM;
1098 goto out_unlock;
1099 }
1100 ret = security_task_kill(p, info, sig, secid);
1101 if (ret)
1102 goto out_unlock;
1103 if (sig && p->sighand) {
1104 unsigned long flags;
1105 spin_lock_irqsave(&p->sighand->siglock, flags);
1106 ret = __group_send_sig_info(sig, info, p);
1107 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1108 }
1109out_unlock:
1110 read_unlock(&tasklist_lock);
1111 return ret;
1112}
1113EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1114
1115/*
1116 * kill_something_info() interprets pid in interesting ways just like kill(2).
1117 *
1118 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1119 * is probably wrong. Should make it like BSD or SYSV.
1120 */
1121
1122static int kill_something_info(int sig, struct siginfo *info, int pid)
1123{
1124 int ret;
1125
1126 if (pid > 0) {
1127 rcu_read_lock();
1128 ret = kill_pid_info(sig, info, find_vpid(pid));
1129 rcu_read_unlock();
1130 return ret;
1131 }
1132
1133 read_lock(&tasklist_lock);
1134 if (pid != -1) {
1135 ret = __kill_pgrp_info(sig, info,
1136 pid ? find_vpid(-pid) : task_pgrp(current));
1137 } else {
1138 int retval = 0, count = 0;
1139 struct task_struct * p;
1140
1141 for_each_process(p) {
1142 if (p->pid > 1 && !same_thread_group(p, current)) {
1143 int err = group_send_sig_info(sig, info, p);
1144 ++count;
1145 if (err != -EPERM)
1146 retval = err;
1147 }
1148 }
1149 ret = count ? retval : -ESRCH;
1150 }
1151 read_unlock(&tasklist_lock);
1152
1153 return ret;
1154}
1155
1156/*
1157 * These are for backward compatibility with the rest of the kernel source.
1158 */
1159
1160/*
1161 * These two are the most common entry points. They send a signal
1162 * just to the specific thread.
1163 */
1164int
1165send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1166{
1167 int ret;
1168 unsigned long flags;
1169
1170 /*
1171 * Make sure legacy kernel users don't send in bad values
1172 * (normal paths check this in check_kill_permission).
1173 */
1174 if (!valid_signal(sig))
1175 return -EINVAL;
1176
1177 /*
1178 * We need the tasklist lock even for the specific
1179 * thread case (when we don't need to follow the group
1180 * lists) in order to avoid races with "p->sighand"
1181 * going away or changing from under us.
1182 */
1183 read_lock(&tasklist_lock);
1184 spin_lock_irqsave(&p->sighand->siglock, flags);
1185 ret = specific_send_sig_info(sig, info, p);
1186 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1187 read_unlock(&tasklist_lock);
1188 return ret;
1189}
1190
1191#define __si_special(priv) \
1192 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1193
1194int
1195send_sig(int sig, struct task_struct *p, int priv)
1196{
1197 return send_sig_info(sig, __si_special(priv), p);
1198}
1199
1200void
1201force_sig(int sig, struct task_struct *p)
1202{
1203 force_sig_info(sig, SEND_SIG_PRIV, p);
1204}
1205
1206/*
1207 * When things go south during signal handling, we
1208 * will force a SIGSEGV. And if the signal that caused
1209 * the problem was already a SIGSEGV, we'll want to
1210 * make sure we don't even try to deliver the signal..
1211 */
1212int
1213force_sigsegv(int sig, struct task_struct *p)
1214{
1215 if (sig == SIGSEGV) {
1216 unsigned long flags;
1217 spin_lock_irqsave(&p->sighand->siglock, flags);
1218 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1219 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1220 }
1221 force_sig(SIGSEGV, p);
1222 return 0;
1223}
1224
1225int kill_pgrp(struct pid *pid, int sig, int priv)
1226{
1227 int ret;
1228
1229 read_lock(&tasklist_lock);
1230 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1231 read_unlock(&tasklist_lock);
1232
1233 return ret;
1234}
1235EXPORT_SYMBOL(kill_pgrp);
1236
1237int kill_pid(struct pid *pid, int sig, int priv)
1238{
1239 return kill_pid_info(sig, __si_special(priv), pid);
1240}
1241EXPORT_SYMBOL(kill_pid);
1242
1243int
1244kill_proc(pid_t pid, int sig, int priv)
1245{
1246 int ret;
1247
1248 rcu_read_lock();
1249 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1250 rcu_read_unlock();
1251 return ret;
1252}
1253
1254/*
1255 * These functions support sending signals using preallocated sigqueue
1256 * structures. This is needed "because realtime applications cannot
1257 * afford to lose notifications of asynchronous events, like timer
1258 * expirations or I/O completions". In the case of Posix Timers
1259 * we allocate the sigqueue structure from the timer_create. If this
1260 * allocation fails we are able to report the failure to the application
1261 * with an EAGAIN error.
1262 */
1263
1264struct sigqueue *sigqueue_alloc(void)
1265{
1266 struct sigqueue *q;
1267
1268 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1269 q->flags |= SIGQUEUE_PREALLOC;
1270 return(q);
1271}
1272
1273void sigqueue_free(struct sigqueue *q)
1274{
1275 unsigned long flags;
1276 spinlock_t *lock = &current->sighand->siglock;
1277
1278 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1279 /*
1280 * If the signal is still pending remove it from the
1281 * pending queue. We must hold ->siglock while testing
1282 * q->list to serialize with collect_signal().
1283 */
1284 spin_lock_irqsave(lock, flags);
1285 if (!list_empty(&q->list))
1286 list_del_init(&q->list);
1287 spin_unlock_irqrestore(lock, flags);
1288
1289 q->flags &= ~SIGQUEUE_PREALLOC;
1290 __sigqueue_free(q);
1291}
1292
1293int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1294{
1295 unsigned long flags;
1296 int ret = 0;
1297
1298 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1299
1300 /*
1301 * The rcu based delayed sighand destroy makes it possible to
1302 * run this without tasklist lock held. The task struct itself
1303 * cannot go away as create_timer did get_task_struct().
1304 *
1305 * We return -1, when the task is marked exiting, so
1306 * posix_timer_event can redirect it to the group leader
1307 */
1308 rcu_read_lock();
1309
1310 if (!likely(lock_task_sighand(p, &flags))) {
1311 ret = -1;
1312 goto out_err;
1313 }
1314
1315 if (unlikely(!list_empty(&q->list))) {
1316 /*
1317 * If an SI_TIMER entry is already queue just increment
1318 * the overrun count.
1319 */
1320 BUG_ON(q->info.si_code != SI_TIMER);
1321 q->info.si_overrun++;
1322 goto out;
1323 }
1324 /* Short-circuit ignored signals. */
1325 if (sig_ignored(p, sig)) {
1326 ret = 1;
1327 goto out;
1328 }
1329 /*
1330 * Deliver the signal to listening signalfds. This must be called
1331 * with the sighand lock held.
1332 */
1333 signalfd_notify(p, sig);
1334
1335 list_add_tail(&q->list, &p->pending.list);
1336 sigaddset(&p->pending.signal, sig);
1337 if (!sigismember(&p->blocked, sig))
1338 signal_wake_up(p, sig == SIGKILL);
1339
1340out:
1341 unlock_task_sighand(p, &flags);
1342out_err:
1343 rcu_read_unlock();
1344
1345 return ret;
1346}
1347
1348int
1349send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1350{
1351 unsigned long flags;
1352 int ret = 0;
1353
1354 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1355
1356 read_lock(&tasklist_lock);
1357 /* Since it_lock is held, p->sighand cannot be NULL. */
1358 spin_lock_irqsave(&p->sighand->siglock, flags);
1359 handle_stop_signal(sig, p);
1360
1361 /* Short-circuit ignored signals. */
1362 if (sig_ignored(p, sig)) {
1363 ret = 1;
1364 goto out;
1365 }
1366
1367 if (unlikely(!list_empty(&q->list))) {
1368 /*
1369 * If an SI_TIMER entry is already queue just increment
1370 * the overrun count. Other uses should not try to
1371 * send the signal multiple times.
1372 */
1373 BUG_ON(q->info.si_code != SI_TIMER);
1374 q->info.si_overrun++;
1375 goto out;
1376 }
1377 /*
1378 * Deliver the signal to listening signalfds. This must be called
1379 * with the sighand lock held.
1380 */
1381 signalfd_notify(p, sig);
1382
1383 /*
1384 * Put this signal on the shared-pending queue.
1385 * We always use the shared queue for process-wide signals,
1386 * to avoid several races.
1387 */
1388 list_add_tail(&q->list, &p->signal->shared_pending.list);
1389 sigaddset(&p->signal->shared_pending.signal, sig);
1390
1391 __group_complete_signal(sig, p);
1392out:
1393 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1394 read_unlock(&tasklist_lock);
1395 return ret;
1396}
1397
1398/*
1399 * Wake up any threads in the parent blocked in wait* syscalls.
1400 */
1401static inline void __wake_up_parent(struct task_struct *p,
1402 struct task_struct *parent)
1403{
1404 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1405}
1406
1407/*
1408 * Let a parent know about the death of a child.
1409 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1410 */
1411
1412void do_notify_parent(struct task_struct *tsk, int sig)
1413{
1414 struct siginfo info;
1415 unsigned long flags;
1416 struct sighand_struct *psig;
1417
1418 BUG_ON(sig == -1);
1419
1420 /* do_notify_parent_cldstop should have been called instead. */
1421 BUG_ON(task_is_stopped_or_traced(tsk));
1422
1423 BUG_ON(!tsk->ptrace &&
1424 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1425
1426 info.si_signo = sig;
1427 info.si_errno = 0;
1428 /*
1429 * we are under tasklist_lock here so our parent is tied to
1430 * us and cannot exit and release its namespace.
1431 *
1432 * the only it can is to switch its nsproxy with sys_unshare,
1433 * bu uncharing pid namespaces is not allowed, so we'll always
1434 * see relevant namespace
1435 *
1436 * write_lock() currently calls preempt_disable() which is the
1437 * same as rcu_read_lock(), but according to Oleg, this is not
1438 * correct to rely on this
1439 */
1440 rcu_read_lock();
1441 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1442 rcu_read_unlock();
1443
1444 info.si_uid = tsk->uid;
1445
1446 /* FIXME: find out whether or not this is supposed to be c*time. */
1447 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1448 tsk->signal->utime));
1449 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1450 tsk->signal->stime));
1451
1452 info.si_status = tsk->exit_code & 0x7f;
1453 if (tsk->exit_code & 0x80)
1454 info.si_code = CLD_DUMPED;
1455 else if (tsk->exit_code & 0x7f)
1456 info.si_code = CLD_KILLED;
1457 else {
1458 info.si_code = CLD_EXITED;
1459 info.si_status = tsk->exit_code >> 8;
1460 }
1461
1462 psig = tsk->parent->sighand;
1463 spin_lock_irqsave(&psig->siglock, flags);
1464 if (!tsk->ptrace && sig == SIGCHLD &&
1465 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1466 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1467 /*
1468 * We are exiting and our parent doesn't care. POSIX.1
1469 * defines special semantics for setting SIGCHLD to SIG_IGN
1470 * or setting the SA_NOCLDWAIT flag: we should be reaped
1471 * automatically and not left for our parent's wait4 call.
1472 * Rather than having the parent do it as a magic kind of
1473 * signal handler, we just set this to tell do_exit that we
1474 * can be cleaned up without becoming a zombie. Note that
1475 * we still call __wake_up_parent in this case, because a
1476 * blocked sys_wait4 might now return -ECHILD.
1477 *
1478 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1479 * is implementation-defined: we do (if you don't want
1480 * it, just use SIG_IGN instead).
1481 */
1482 tsk->exit_signal = -1;
1483 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1484 sig = 0;
1485 }
1486 if (valid_signal(sig) && sig > 0)
1487 __group_send_sig_info(sig, &info, tsk->parent);
1488 __wake_up_parent(tsk, tsk->parent);
1489 spin_unlock_irqrestore(&psig->siglock, flags);
1490}
1491
1492static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1493{
1494 struct siginfo info;
1495 unsigned long flags;
1496 struct task_struct *parent;
1497 struct sighand_struct *sighand;
1498
1499 if (tsk->ptrace & PT_PTRACED)
1500 parent = tsk->parent;
1501 else {
1502 tsk = tsk->group_leader;
1503 parent = tsk->real_parent;
1504 }
1505
1506 info.si_signo = SIGCHLD;
1507 info.si_errno = 0;
1508 /*
1509 * see comment in do_notify_parent() abot the following 3 lines
1510 */
1511 rcu_read_lock();
1512 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1513 rcu_read_unlock();
1514
1515 info.si_uid = tsk->uid;
1516
1517 /* FIXME: find out whether or not this is supposed to be c*time. */
1518 info.si_utime = cputime_to_jiffies(tsk->utime);
1519 info.si_stime = cputime_to_jiffies(tsk->stime);
1520
1521 info.si_code = why;
1522 switch (why) {
1523 case CLD_CONTINUED:
1524 info.si_status = SIGCONT;
1525 break;
1526 case CLD_STOPPED:
1527 info.si_status = tsk->signal->group_exit_code & 0x7f;
1528 break;
1529 case CLD_TRAPPED:
1530 info.si_status = tsk->exit_code & 0x7f;
1531 break;
1532 default:
1533 BUG();
1534 }
1535
1536 sighand = parent->sighand;
1537 spin_lock_irqsave(&sighand->siglock, flags);
1538 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1539 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1540 __group_send_sig_info(SIGCHLD, &info, parent);
1541 /*
1542 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1543 */
1544 __wake_up_parent(tsk, parent);
1545 spin_unlock_irqrestore(&sighand->siglock, flags);
1546}
1547
1548static inline int may_ptrace_stop(void)
1549{
1550 if (!likely(current->ptrace & PT_PTRACED))
1551 return 0;
1552 /*
1553 * Are we in the middle of do_coredump?
1554 * If so and our tracer is also part of the coredump stopping
1555 * is a deadlock situation, and pointless because our tracer
1556 * is dead so don't allow us to stop.
1557 * If SIGKILL was already sent before the caller unlocked
1558 * ->siglock we must see ->core_waiters != 0. Otherwise it
1559 * is safe to enter schedule().
1560 */
1561 if (unlikely(current->mm->core_waiters) &&
1562 unlikely(current->mm == current->parent->mm))
1563 return 0;
1564
1565 return 1;
1566}
1567
1568/*
1569 * Return nonzero if there is a SIGKILL that should be waking us up.
1570 * Called with the siglock held.
1571 */
1572static int sigkill_pending(struct task_struct *tsk)
1573{
1574 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1575 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1576 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1577}
1578
1579/*
1580 * This must be called with current->sighand->siglock held.
1581 *
1582 * This should be the path for all ptrace stops.
1583 * We always set current->last_siginfo while stopped here.
1584 * That makes it a way to test a stopped process for
1585 * being ptrace-stopped vs being job-control-stopped.
1586 *
1587 * If we actually decide not to stop at all because the tracer
1588 * is gone, we keep current->exit_code unless clear_code.
1589 */
1590static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1591{
1592 int killed = 0;
1593
1594 if (arch_ptrace_stop_needed(exit_code, info)) {
1595 /*
1596 * The arch code has something special to do before a
1597 * ptrace stop. This is allowed to block, e.g. for faults
1598 * on user stack pages. We can't keep the siglock while
1599 * calling arch_ptrace_stop, so we must release it now.
1600 * To preserve proper semantics, we must do this before
1601 * any signal bookkeeping like checking group_stop_count.
1602 * Meanwhile, a SIGKILL could come in before we retake the
1603 * siglock. That must prevent us from sleeping in TASK_TRACED.
1604 * So after regaining the lock, we must check for SIGKILL.
1605 */
1606 spin_unlock_irq(&current->sighand->siglock);
1607 arch_ptrace_stop(exit_code, info);
1608 spin_lock_irq(&current->sighand->siglock);
1609 killed = sigkill_pending(current);
1610 }
1611
1612 /*
1613 * If there is a group stop in progress,
1614 * we must participate in the bookkeeping.
1615 */
1616 if (current->signal->group_stop_count > 0)
1617 --current->signal->group_stop_count;
1618
1619 current->last_siginfo = info;
1620 current->exit_code = exit_code;
1621
1622 /* Let the debugger run. */
1623 __set_current_state(TASK_TRACED);
1624 spin_unlock_irq(&current->sighand->siglock);
1625 read_lock(&tasklist_lock);
1626 if (!unlikely(killed) && may_ptrace_stop()) {
1627 do_notify_parent_cldstop(current, CLD_TRAPPED);
1628 read_unlock(&tasklist_lock);
1629 schedule();
1630 } else {
1631 /*
1632 * By the time we got the lock, our tracer went away.
1633 * Don't drop the lock yet, another tracer may come.
1634 */
1635 __set_current_state(TASK_RUNNING);
1636 if (clear_code)
1637 current->exit_code = 0;
1638 read_unlock(&tasklist_lock);
1639 }
1640
1641 /*
1642 * While in TASK_TRACED, we were considered "frozen enough".
1643 * Now that we woke up, it's crucial if we're supposed to be
1644 * frozen that we freeze now before running anything substantial.
1645 */
1646 try_to_freeze();
1647
1648 /*
1649 * We are back. Now reacquire the siglock before touching
1650 * last_siginfo, so that we are sure to have synchronized with
1651 * any signal-sending on another CPU that wants to examine it.
1652 */
1653 spin_lock_irq(&current->sighand->siglock);
1654 current->last_siginfo = NULL;
1655
1656 /*
1657 * Queued signals ignored us while we were stopped for tracing.
1658 * So check for any that we should take before resuming user mode.
1659 * This sets TIF_SIGPENDING, but never clears it.
1660 */
1661 recalc_sigpending_tsk(current);
1662}
1663
1664void ptrace_notify(int exit_code)
1665{
1666 siginfo_t info;
1667
1668 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1669
1670 memset(&info, 0, sizeof info);
1671 info.si_signo = SIGTRAP;
1672 info.si_code = exit_code;
1673 info.si_pid = task_pid_vnr(current);
1674 info.si_uid = current->uid;
1675
1676 /* Let the debugger run. */
1677 spin_lock_irq(&current->sighand->siglock);
1678 ptrace_stop(exit_code, 1, &info);
1679 spin_unlock_irq(&current->sighand->siglock);
1680}
1681
1682static void
1683finish_stop(int stop_count)
1684{
1685 /*
1686 * If there are no other threads in the group, or if there is
1687 * a group stop in progress and we are the last to stop,
1688 * report to the parent. When ptraced, every thread reports itself.
1689 */
1690 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1691 read_lock(&tasklist_lock);
1692 do_notify_parent_cldstop(current, CLD_STOPPED);
1693 read_unlock(&tasklist_lock);
1694 }
1695
1696 do {
1697 schedule();
1698 } while (try_to_freeze());
1699 /*
1700 * Now we don't run again until continued.
1701 */
1702 current->exit_code = 0;
1703}
1704
1705/*
1706 * This performs the stopping for SIGSTOP and other stop signals.
1707 * We have to stop all threads in the thread group.
1708 * Returns nonzero if we've actually stopped and released the siglock.
1709 * Returns zero if we didn't stop and still hold the siglock.
1710 */
1711static int do_signal_stop(int signr)
1712{
1713 struct signal_struct *sig = current->signal;
1714 int stop_count;
1715
1716 if (sig->group_stop_count > 0) {
1717 /*
1718 * There is a group stop in progress. We don't need to
1719 * start another one.
1720 */
1721 stop_count = --sig->group_stop_count;
1722 } else {
1723 struct task_struct *t;
1724
1725 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1726 unlikely(signal_group_exit(sig)))
1727 return 0;
1728 /*
1729 * There is no group stop already in progress.
1730 * We must initiate one now.
1731 */
1732 sig->group_exit_code = signr;
1733
1734 stop_count = 0;
1735 for (t = next_thread(current); t != current; t = next_thread(t))
1736 /*
1737 * Setting state to TASK_STOPPED for a group
1738 * stop is always done with the siglock held,
1739 * so this check has no races.
1740 */
1741 if (!(t->flags & PF_EXITING) &&
1742 !task_is_stopped_or_traced(t)) {
1743 stop_count++;
1744 signal_wake_up(t, 0);
1745 }
1746 sig->group_stop_count = stop_count;
1747 }
1748
1749 if (stop_count == 0)
1750 sig->flags = SIGNAL_STOP_STOPPED;
1751 current->exit_code = sig->group_exit_code;
1752 __set_current_state(TASK_STOPPED);
1753
1754 spin_unlock_irq(&current->sighand->siglock);
1755 finish_stop(stop_count);
1756 return 1;
1757}
1758
1759static int ptrace_signal(int signr, siginfo_t *info,
1760 struct pt_regs *regs, void *cookie)
1761{
1762 if (!(current->ptrace & PT_PTRACED))
1763 return signr;
1764
1765 ptrace_signal_deliver(regs, cookie);
1766
1767 /* Let the debugger run. */
1768 ptrace_stop(signr, 0, info);
1769
1770 /* We're back. Did the debugger cancel the sig? */
1771 signr = current->exit_code;
1772 if (signr == 0)
1773 return signr;
1774
1775 current->exit_code = 0;
1776
1777 /* Update the siginfo structure if the signal has
1778 changed. If the debugger wanted something
1779 specific in the siginfo structure then it should
1780 have updated *info via PTRACE_SETSIGINFO. */
1781 if (signr != info->si_signo) {
1782 info->si_signo = signr;
1783 info->si_errno = 0;
1784 info->si_code = SI_USER;
1785 info->si_pid = task_pid_vnr(current->parent);
1786 info->si_uid = current->parent->uid;
1787 }
1788
1789 /* If the (new) signal is now blocked, requeue it. */
1790 if (sigismember(&current->blocked, signr)) {
1791 specific_send_sig_info(signr, info, current);
1792 signr = 0;
1793 }
1794
1795 return signr;
1796}
1797
1798int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1799 struct pt_regs *regs, void *cookie)
1800{
1801 sigset_t *mask = &current->blocked;
1802 int signr = 0;
1803
1804relock:
1805 /*
1806 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1807 * While in TASK_STOPPED, we were considered "frozen enough".
1808 * Now that we woke up, it's crucial if we're supposed to be
1809 * frozen that we freeze now before running anything substantial.
1810 */
1811 try_to_freeze();
1812
1813 spin_lock_irq(&current->sighand->siglock);
1814 for (;;) {
1815 struct k_sigaction *ka;
1816
1817 if (unlikely(current->signal->group_stop_count > 0) &&
1818 do_signal_stop(0))
1819 goto relock;
1820
1821 signr = dequeue_signal(current, mask, info);
1822
1823 if (!signr)
1824 break; /* will return 0 */
1825
1826 if (signr != SIGKILL) {
1827 signr = ptrace_signal(signr, info, regs, cookie);
1828 if (!signr)
1829 continue;
1830 }
1831
1832 ka = &current->sighand->action[signr-1];
1833 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1834 continue;
1835 if (ka->sa.sa_handler != SIG_DFL) {
1836 /* Run the handler. */
1837 *return_ka = *ka;
1838
1839 if (ka->sa.sa_flags & SA_ONESHOT)
1840 ka->sa.sa_handler = SIG_DFL;
1841
1842 break; /* will return non-zero "signr" value */
1843 }
1844
1845 /*
1846 * Now we are doing the default action for this signal.
1847 */
1848 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1849 continue;
1850
1851 /*
1852 * Global init gets no signals it doesn't want.
1853 */
1854 if (is_global_init(current))
1855 continue;
1856
1857 if (sig_kernel_stop(signr)) {
1858 /*
1859 * The default action is to stop all threads in
1860 * the thread group. The job control signals
1861 * do nothing in an orphaned pgrp, but SIGSTOP
1862 * always works. Note that siglock needs to be
1863 * dropped during the call to is_orphaned_pgrp()
1864 * because of lock ordering with tasklist_lock.
1865 * This allows an intervening SIGCONT to be posted.
1866 * We need to check for that and bail out if necessary.
1867 */
1868 if (signr != SIGSTOP) {
1869 spin_unlock_irq(&current->sighand->siglock);
1870
1871 /* signals can be posted during this window */
1872
1873 if (is_current_pgrp_orphaned())
1874 goto relock;
1875
1876 spin_lock_irq(&current->sighand->siglock);
1877 }
1878
1879 if (likely(do_signal_stop(signr))) {
1880 /* It released the siglock. */
1881 goto relock;
1882 }
1883
1884 /*
1885 * We didn't actually stop, due to a race
1886 * with SIGCONT or something like that.
1887 */
1888 continue;
1889 }
1890
1891 spin_unlock_irq(&current->sighand->siglock);
1892
1893 /*
1894 * Anything else is fatal, maybe with a core dump.
1895 */
1896 current->flags |= PF_SIGNALED;
1897 if ((signr != SIGKILL) && print_fatal_signals)
1898 print_fatal_signal(regs, signr);
1899 if (sig_kernel_coredump(signr)) {
1900 /*
1901 * If it was able to dump core, this kills all
1902 * other threads in the group and synchronizes with
1903 * their demise. If we lost the race with another
1904 * thread getting here, it set group_exit_code
1905 * first and our do_group_exit call below will use
1906 * that value and ignore the one we pass it.
1907 */
1908 do_coredump((long)signr, signr, regs);
1909 }
1910
1911 /*
1912 * Death signals, no core dump.
1913 */
1914 do_group_exit(signr);
1915 /* NOTREACHED */
1916 }
1917 spin_unlock_irq(&current->sighand->siglock);
1918 return signr;
1919}
1920
1921void exit_signals(struct task_struct *tsk)
1922{
1923 int group_stop = 0;
1924 struct task_struct *t;
1925
1926 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1927 tsk->flags |= PF_EXITING;
1928 return;
1929 }
1930
1931 spin_lock_irq(&tsk->sighand->siglock);
1932 /*
1933 * From now this task is not visible for group-wide signals,
1934 * see wants_signal(), do_signal_stop().
1935 */
1936 tsk->flags |= PF_EXITING;
1937 if (!signal_pending(tsk))
1938 goto out;
1939
1940 /* It could be that __group_complete_signal() choose us to
1941 * notify about group-wide signal. Another thread should be
1942 * woken now to take the signal since we will not.
1943 */
1944 for (t = tsk; (t = next_thread(t)) != tsk; )
1945 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1946 recalc_sigpending_and_wake(t);
1947
1948 if (unlikely(tsk->signal->group_stop_count) &&
1949 !--tsk->signal->group_stop_count) {
1950 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1951 group_stop = 1;
1952 }
1953out:
1954 spin_unlock_irq(&tsk->sighand->siglock);
1955
1956 if (unlikely(group_stop)) {
1957 read_lock(&tasklist_lock);
1958 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1959 read_unlock(&tasklist_lock);
1960 }
1961}
1962
1963EXPORT_SYMBOL(recalc_sigpending);
1964EXPORT_SYMBOL_GPL(dequeue_signal);
1965EXPORT_SYMBOL(flush_signals);
1966EXPORT_SYMBOL(force_sig);
1967EXPORT_SYMBOL(kill_proc);
1968EXPORT_SYMBOL(ptrace_notify);
1969EXPORT_SYMBOL(send_sig);
1970EXPORT_SYMBOL(send_sig_info);
1971EXPORT_SYMBOL(sigprocmask);
1972EXPORT_SYMBOL(block_all_signals);
1973EXPORT_SYMBOL(unblock_all_signals);
1974
1975
1976/*
1977 * System call entry points.
1978 */
1979
1980asmlinkage long sys_restart_syscall(void)
1981{
1982 struct restart_block *restart = &current_thread_info()->restart_block;
1983 return restart->fn(restart);
1984}
1985
1986long do_no_restart_syscall(struct restart_block *param)
1987{
1988 return -EINTR;
1989}
1990
1991/*
1992 * We don't need to get the kernel lock - this is all local to this
1993 * particular thread.. (and that's good, because this is _heavily_
1994 * used by various programs)
1995 */
1996
1997/*
1998 * This is also useful for kernel threads that want to temporarily
1999 * (or permanently) block certain signals.
2000 *
2001 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2002 * interface happily blocks "unblockable" signals like SIGKILL
2003 * and friends.
2004 */
2005int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2006{
2007 int error;
2008
2009 spin_lock_irq(&current->sighand->siglock);
2010 if (oldset)
2011 *oldset = current->blocked;
2012
2013 error = 0;
2014 switch (how) {
2015 case SIG_BLOCK:
2016 sigorsets(&current->blocked, &current->blocked, set);
2017 break;
2018 case SIG_UNBLOCK:
2019 signandsets(&current->blocked, &current->blocked, set);
2020 break;
2021 case SIG_SETMASK:
2022 current->blocked = *set;
2023 break;
2024 default:
2025 error = -EINVAL;
2026 }
2027 recalc_sigpending();
2028 spin_unlock_irq(&current->sighand->siglock);
2029
2030 return error;
2031}
2032
2033asmlinkage long
2034sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2035{
2036 int error = -EINVAL;
2037 sigset_t old_set, new_set;
2038
2039 /* XXX: Don't preclude handling different sized sigset_t's. */
2040 if (sigsetsize != sizeof(sigset_t))
2041 goto out;
2042
2043 if (set) {
2044 error = -EFAULT;
2045 if (copy_from_user(&new_set, set, sizeof(*set)))
2046 goto out;
2047 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2048
2049 error = sigprocmask(how, &new_set, &old_set);
2050 if (error)
2051 goto out;
2052 if (oset)
2053 goto set_old;
2054 } else if (oset) {
2055 spin_lock_irq(&current->sighand->siglock);
2056 old_set = current->blocked;
2057 spin_unlock_irq(&current->sighand->siglock);
2058
2059 set_old:
2060 error = -EFAULT;
2061 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2062 goto out;
2063 }
2064 error = 0;
2065out:
2066 return error;
2067}
2068
2069long do_sigpending(void __user *set, unsigned long sigsetsize)
2070{
2071 long error = -EINVAL;
2072 sigset_t pending;
2073
2074 if (sigsetsize > sizeof(sigset_t))
2075 goto out;
2076
2077 spin_lock_irq(&current->sighand->siglock);
2078 sigorsets(&pending, &current->pending.signal,
2079 &current->signal->shared_pending.signal);
2080 spin_unlock_irq(&current->sighand->siglock);
2081
2082 /* Outside the lock because only this thread touches it. */
2083 sigandsets(&pending, &current->blocked, &pending);
2084
2085 error = -EFAULT;
2086 if (!copy_to_user(set, &pending, sigsetsize))
2087 error = 0;
2088
2089out:
2090 return error;
2091}
2092
2093asmlinkage long
2094sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2095{
2096 return do_sigpending(set, sigsetsize);
2097}
2098
2099#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2100
2101int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2102{
2103 int err;
2104
2105 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2106 return -EFAULT;
2107 if (from->si_code < 0)
2108 return __copy_to_user(to, from, sizeof(siginfo_t))
2109 ? -EFAULT : 0;
2110 /*
2111 * If you change siginfo_t structure, please be sure
2112 * this code is fixed accordingly.
2113 * Please remember to update the signalfd_copyinfo() function
2114 * inside fs/signalfd.c too, in case siginfo_t changes.
2115 * It should never copy any pad contained in the structure
2116 * to avoid security leaks, but must copy the generic
2117 * 3 ints plus the relevant union member.
2118 */
2119 err = __put_user(from->si_signo, &to->si_signo);
2120 err |= __put_user(from->si_errno, &to->si_errno);
2121 err |= __put_user((short)from->si_code, &to->si_code);
2122 switch (from->si_code & __SI_MASK) {
2123 case __SI_KILL:
2124 err |= __put_user(from->si_pid, &to->si_pid);
2125 err |= __put_user(from->si_uid, &to->si_uid);
2126 break;
2127 case __SI_TIMER:
2128 err |= __put_user(from->si_tid, &to->si_tid);
2129 err |= __put_user(from->si_overrun, &to->si_overrun);
2130 err |= __put_user(from->si_ptr, &to->si_ptr);
2131 break;
2132 case __SI_POLL:
2133 err |= __put_user(from->si_band, &to->si_band);
2134 err |= __put_user(from->si_fd, &to->si_fd);
2135 break;
2136 case __SI_FAULT:
2137 err |= __put_user(from->si_addr, &to->si_addr);
2138#ifdef __ARCH_SI_TRAPNO
2139 err |= __put_user(from->si_trapno, &to->si_trapno);
2140#endif
2141 break;
2142 case __SI_CHLD:
2143 err |= __put_user(from->si_pid, &to->si_pid);
2144 err |= __put_user(from->si_uid, &to->si_uid);
2145 err |= __put_user(from->si_status, &to->si_status);
2146 err |= __put_user(from->si_utime, &to->si_utime);
2147 err |= __put_user(from->si_stime, &to->si_stime);
2148 break;
2149 case __SI_RT: /* This is not generated by the kernel as of now. */
2150 case __SI_MESGQ: /* But this is */
2151 err |= __put_user(from->si_pid, &to->si_pid);
2152 err |= __put_user(from->si_uid, &to->si_uid);
2153 err |= __put_user(from->si_ptr, &to->si_ptr);
2154 break;
2155 default: /* this is just in case for now ... */
2156 err |= __put_user(from->si_pid, &to->si_pid);
2157 err |= __put_user(from->si_uid, &to->si_uid);
2158 break;
2159 }
2160 return err;
2161}
2162
2163#endif
2164
2165asmlinkage long
2166sys_rt_sigtimedwait(const sigset_t __user *uthese,
2167 siginfo_t __user *uinfo,
2168 const struct timespec __user *uts,
2169 size_t sigsetsize)
2170{
2171 int ret, sig;
2172 sigset_t these;
2173 struct timespec ts;
2174 siginfo_t info;
2175 long timeout = 0;
2176
2177 /* XXX: Don't preclude handling different sized sigset_t's. */
2178 if (sigsetsize != sizeof(sigset_t))
2179 return -EINVAL;
2180
2181 if (copy_from_user(&these, uthese, sizeof(these)))
2182 return -EFAULT;
2183
2184 /*
2185 * Invert the set of allowed signals to get those we
2186 * want to block.
2187 */
2188 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2189 signotset(&these);
2190
2191 if (uts) {
2192 if (copy_from_user(&ts, uts, sizeof(ts)))
2193 return -EFAULT;
2194 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2195 || ts.tv_sec < 0)
2196 return -EINVAL;
2197 }
2198
2199 spin_lock_irq(&current->sighand->siglock);
2200 sig = dequeue_signal(current, &these, &info);
2201 if (!sig) {
2202 timeout = MAX_SCHEDULE_TIMEOUT;
2203 if (uts)
2204 timeout = (timespec_to_jiffies(&ts)
2205 + (ts.tv_sec || ts.tv_nsec));
2206
2207 if (timeout) {
2208 /* None ready -- temporarily unblock those we're
2209 * interested while we are sleeping in so that we'll
2210 * be awakened when they arrive. */
2211 current->real_blocked = current->blocked;
2212 sigandsets(&current->blocked, &current->blocked, &these);
2213 recalc_sigpending();
2214 spin_unlock_irq(&current->sighand->siglock);
2215
2216 timeout = schedule_timeout_interruptible(timeout);
2217
2218 spin_lock_irq(&current->sighand->siglock);
2219 sig = dequeue_signal(current, &these, &info);
2220 current->blocked = current->real_blocked;
2221 siginitset(&current->real_blocked, 0);
2222 recalc_sigpending();
2223 }
2224 }
2225 spin_unlock_irq(&current->sighand->siglock);
2226
2227 if (sig) {
2228 ret = sig;
2229 if (uinfo) {
2230 if (copy_siginfo_to_user(uinfo, &info))
2231 ret = -EFAULT;
2232 }
2233 } else {
2234 ret = -EAGAIN;
2235 if (timeout)
2236 ret = -EINTR;
2237 }
2238
2239 return ret;
2240}
2241
2242asmlinkage long
2243sys_kill(int pid, int sig)
2244{
2245 struct siginfo info;
2246
2247 info.si_signo = sig;
2248 info.si_errno = 0;
2249 info.si_code = SI_USER;
2250 info.si_pid = task_tgid_vnr(current);
2251 info.si_uid = current->uid;
2252
2253 return kill_something_info(sig, &info, pid);
2254}
2255
2256static int do_tkill(int tgid, int pid, int sig)
2257{
2258 int error;
2259 struct siginfo info;
2260 struct task_struct *p;
2261
2262 error = -ESRCH;
2263 info.si_signo = sig;
2264 info.si_errno = 0;
2265 info.si_code = SI_TKILL;
2266 info.si_pid = task_tgid_vnr(current);
2267 info.si_uid = current->uid;
2268
2269 read_lock(&tasklist_lock);
2270 p = find_task_by_vpid(pid);
2271 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2272 error = check_kill_permission(sig, &info, p);
2273 /*
2274 * The null signal is a permissions and process existence
2275 * probe. No signal is actually delivered.
2276 */
2277 if (!error && sig && p->sighand) {
2278 spin_lock_irq(&p->sighand->siglock);
2279 handle_stop_signal(sig, p);
2280 error = specific_send_sig_info(sig, &info, p);
2281 spin_unlock_irq(&p->sighand->siglock);
2282 }
2283 }
2284 read_unlock(&tasklist_lock);
2285
2286 return error;
2287}
2288
2289/**
2290 * sys_tgkill - send signal to one specific thread
2291 * @tgid: the thread group ID of the thread
2292 * @pid: the PID of the thread
2293 * @sig: signal to be sent
2294 *
2295 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2296 * exists but it's not belonging to the target process anymore. This
2297 * method solves the problem of threads exiting and PIDs getting reused.
2298 */
2299asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2300{
2301 /* This is only valid for single tasks */
2302 if (pid <= 0 || tgid <= 0)
2303 return -EINVAL;
2304
2305 return do_tkill(tgid, pid, sig);
2306}
2307
2308/*
2309 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2310 */
2311asmlinkage long
2312sys_tkill(int pid, int sig)
2313{
2314 /* This is only valid for single tasks */
2315 if (pid <= 0)
2316 return -EINVAL;
2317
2318 return do_tkill(0, pid, sig);
2319}
2320
2321asmlinkage long
2322sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2323{
2324 siginfo_t info;
2325
2326 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2327 return -EFAULT;
2328
2329 /* Not even root can pretend to send signals from the kernel.
2330 Nor can they impersonate a kill(), which adds source info. */
2331 if (info.si_code >= 0)
2332 return -EPERM;
2333 info.si_signo = sig;
2334
2335 /* POSIX.1b doesn't mention process groups. */
2336 return kill_proc_info(sig, &info, pid);
2337}
2338
2339int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2340{
2341 struct task_struct *t = current;
2342 struct k_sigaction *k;
2343 sigset_t mask;
2344
2345 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2346 return -EINVAL;
2347
2348 k = &t->sighand->action[sig-1];
2349
2350 spin_lock_irq(&current->sighand->siglock);
2351 if (oact)
2352 *oact = *k;
2353
2354 if (act) {
2355 sigdelsetmask(&act->sa.sa_mask,
2356 sigmask(SIGKILL) | sigmask(SIGSTOP));
2357 *k = *act;
2358 /*
2359 * POSIX 3.3.1.3:
2360 * "Setting a signal action to SIG_IGN for a signal that is
2361 * pending shall cause the pending signal to be discarded,
2362 * whether or not it is blocked."
2363 *
2364 * "Setting a signal action to SIG_DFL for a signal that is
2365 * pending and whose default action is to ignore the signal
2366 * (for example, SIGCHLD), shall cause the pending signal to
2367 * be discarded, whether or not it is blocked"
2368 */
2369 if (__sig_ignored(t, sig)) {
2370 sigemptyset(&mask);
2371 sigaddset(&mask, sig);
2372 rm_from_queue_full(&mask, &t->signal->shared_pending);
2373 do {
2374 rm_from_queue_full(&mask, &t->pending);
2375 t = next_thread(t);
2376 } while (t != current);
2377 }
2378 }
2379
2380 spin_unlock_irq(&current->sighand->siglock);
2381 return 0;
2382}
2383
2384int
2385do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2386{
2387 stack_t oss;
2388 int error;
2389
2390 if (uoss) {
2391 oss.ss_sp = (void __user *) current->sas_ss_sp;
2392 oss.ss_size = current->sas_ss_size;
2393 oss.ss_flags = sas_ss_flags(sp);
2394 }
2395
2396 if (uss) {
2397 void __user *ss_sp;
2398 size_t ss_size;
2399 int ss_flags;
2400
2401 error = -EFAULT;
2402 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2403 || __get_user(ss_sp, &uss->ss_sp)
2404 || __get_user(ss_flags, &uss->ss_flags)
2405 || __get_user(ss_size, &uss->ss_size))
2406 goto out;
2407
2408 error = -EPERM;
2409 if (on_sig_stack(sp))
2410 goto out;
2411
2412 error = -EINVAL;
2413 /*
2414 *
2415 * Note - this code used to test ss_flags incorrectly
2416 * old code may have been written using ss_flags==0
2417 * to mean ss_flags==SS_ONSTACK (as this was the only
2418 * way that worked) - this fix preserves that older
2419 * mechanism
2420 */
2421 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2422 goto out;
2423
2424 if (ss_flags == SS_DISABLE) {
2425 ss_size = 0;
2426 ss_sp = NULL;
2427 } else {
2428 error = -ENOMEM;
2429 if (ss_size < MINSIGSTKSZ)
2430 goto out;
2431 }
2432
2433 current->sas_ss_sp = (unsigned long) ss_sp;
2434 current->sas_ss_size = ss_size;
2435 }
2436
2437 if (uoss) {
2438 error = -EFAULT;
2439 if (copy_to_user(uoss, &oss, sizeof(oss)))
2440 goto out;
2441 }
2442
2443 error = 0;
2444out:
2445 return error;
2446}
2447
2448#ifdef __ARCH_WANT_SYS_SIGPENDING
2449
2450asmlinkage long
2451sys_sigpending(old_sigset_t __user *set)
2452{
2453 return do_sigpending(set, sizeof(*set));
2454}
2455
2456#endif
2457
2458#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2459/* Some platforms have their own version with special arguments others
2460 support only sys_rt_sigprocmask. */
2461
2462asmlinkage long
2463sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2464{
2465 int error;
2466 old_sigset_t old_set, new_set;
2467
2468 if (set) {
2469 error = -EFAULT;
2470 if (copy_from_user(&new_set, set, sizeof(*set)))
2471 goto out;
2472 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2473
2474 spin_lock_irq(&current->sighand->siglock);
2475 old_set = current->blocked.sig[0];
2476
2477 error = 0;
2478 switch (how) {
2479 default:
2480 error = -EINVAL;
2481 break;
2482 case SIG_BLOCK:
2483 sigaddsetmask(&current->blocked, new_set);
2484 break;
2485 case SIG_UNBLOCK:
2486 sigdelsetmask(&current->blocked, new_set);
2487 break;
2488 case SIG_SETMASK:
2489 current->blocked.sig[0] = new_set;
2490 break;
2491 }
2492
2493 recalc_sigpending();
2494 spin_unlock_irq(&current->sighand->siglock);
2495 if (error)
2496 goto out;
2497 if (oset)
2498 goto set_old;
2499 } else if (oset) {
2500 old_set = current->blocked.sig[0];
2501 set_old:
2502 error = -EFAULT;
2503 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2504 goto out;
2505 }
2506 error = 0;
2507out:
2508 return error;
2509}
2510#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2511
2512#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2513asmlinkage long
2514sys_rt_sigaction(int sig,
2515 const struct sigaction __user *act,
2516 struct sigaction __user *oact,
2517 size_t sigsetsize)
2518{
2519 struct k_sigaction new_sa, old_sa;
2520 int ret = -EINVAL;
2521
2522 /* XXX: Don't preclude handling different sized sigset_t's. */
2523 if (sigsetsize != sizeof(sigset_t))
2524 goto out;
2525
2526 if (act) {
2527 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2528 return -EFAULT;
2529 }
2530
2531 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2532
2533 if (!ret && oact) {
2534 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2535 return -EFAULT;
2536 }
2537out:
2538 return ret;
2539}
2540#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2541
2542#ifdef __ARCH_WANT_SYS_SGETMASK
2543
2544/*
2545 * For backwards compatibility. Functionality superseded by sigprocmask.
2546 */
2547asmlinkage long
2548sys_sgetmask(void)
2549{
2550 /* SMP safe */
2551 return current->blocked.sig[0];
2552}
2553
2554asmlinkage long
2555sys_ssetmask(int newmask)
2556{
2557 int old;
2558
2559 spin_lock_irq(&current->sighand->siglock);
2560 old = current->blocked.sig[0];
2561
2562 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2563 sigmask(SIGSTOP)));
2564 recalc_sigpending();
2565 spin_unlock_irq(&current->sighand->siglock);
2566
2567 return old;
2568}
2569#endif /* __ARCH_WANT_SGETMASK */
2570
2571#ifdef __ARCH_WANT_SYS_SIGNAL
2572/*
2573 * For backwards compatibility. Functionality superseded by sigaction.
2574 */
2575asmlinkage unsigned long
2576sys_signal(int sig, __sighandler_t handler)
2577{
2578 struct k_sigaction new_sa, old_sa;
2579 int ret;
2580
2581 new_sa.sa.sa_handler = handler;
2582 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2583 sigemptyset(&new_sa.sa.sa_mask);
2584
2585 ret = do_sigaction(sig, &new_sa, &old_sa);
2586
2587 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2588}
2589#endif /* __ARCH_WANT_SYS_SIGNAL */
2590
2591#ifdef __ARCH_WANT_SYS_PAUSE
2592
2593asmlinkage long
2594sys_pause(void)
2595{
2596 current->state = TASK_INTERRUPTIBLE;
2597 schedule();
2598 return -ERESTARTNOHAND;
2599}
2600
2601#endif
2602
2603#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2604asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2605{
2606 sigset_t newset;
2607
2608 /* XXX: Don't preclude handling different sized sigset_t's. */
2609 if (sigsetsize != sizeof(sigset_t))
2610 return -EINVAL;
2611
2612 if (copy_from_user(&newset, unewset, sizeof(newset)))
2613 return -EFAULT;
2614 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2615
2616 spin_lock_irq(&current->sighand->siglock);
2617 current->saved_sigmask = current->blocked;
2618 current->blocked = newset;
2619 recalc_sigpending();
2620 spin_unlock_irq(&current->sighand->siglock);
2621
2622 current->state = TASK_INTERRUPTIBLE;
2623 schedule();
2624 set_thread_flag(TIF_RESTORE_SIGMASK);
2625 return -ERESTARTNOHAND;
2626}
2627#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2628
2629__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2630{
2631 return NULL;
2632}
2633
2634void __init signals_init(void)
2635{
2636 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2637}