sched: debug: update exec_clock only when SCHED_DEBUG
[linux-2.6-block.git] / kernel / sched_fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23/*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
59/*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81extern struct sched_class fair_sched_class;
82
83/**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87#ifdef CONFIG_FAIR_GROUP_SCHED
88
89/* cpu runqueue to which this cfs_rq is attached */
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
92 return cfs_rq->rq;
93}
94
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
97
98#else /* CONFIG_FAIR_GROUP_SCHED */
99
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
102 return container_of(cfs_rq, struct rq, cfs);
103}
104
105#define entity_is_task(se) 1
106
107#endif /* CONFIG_FAIR_GROUP_SCHED */
108
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111 return container_of(se, struct task_struct, se);
112}
113
114
115/**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119static inline void
120set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121{
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 if ((se->vruntime > cfs_rq->min_vruntime) ||
128 (cfs_rq->min_vruntime > (1ULL << 61) &&
129 se->vruntime < (1ULL << 50)))
130 cfs_rq->min_vruntime = se->vruntime;
131 }
132}
133
134s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
135{
136 return se->fair_key - cfs_rq->min_vruntime;
137}
138
139/*
140 * Enqueue an entity into the rb-tree:
141 */
142static void
143__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
144{
145 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
146 struct rb_node *parent = NULL;
147 struct sched_entity *entry;
148 s64 key = entity_key(cfs_rq, se);
149 int leftmost = 1;
150
151 /*
152 * Find the right place in the rbtree:
153 */
154 while (*link) {
155 parent = *link;
156 entry = rb_entry(parent, struct sched_entity, run_node);
157 /*
158 * We dont care about collisions. Nodes with
159 * the same key stay together.
160 */
161 if (key < entity_key(cfs_rq, entry)) {
162 link = &parent->rb_left;
163 } else {
164 link = &parent->rb_right;
165 leftmost = 0;
166 }
167 }
168
169 /*
170 * Maintain a cache of leftmost tree entries (it is frequently
171 * used):
172 */
173 if (leftmost)
174 set_leftmost(cfs_rq, &se->run_node);
175
176 rb_link_node(&se->run_node, parent, link);
177 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
178 update_load_add(&cfs_rq->load, se->load.weight);
179 cfs_rq->nr_running++;
180 se->on_rq = 1;
181
182 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
183}
184
185static void
186__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
187{
188 if (cfs_rq->rb_leftmost == &se->run_node)
189 set_leftmost(cfs_rq, rb_next(&se->run_node));
190
191 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
192 update_load_sub(&cfs_rq->load, se->load.weight);
193 cfs_rq->nr_running--;
194 se->on_rq = 0;
195
196 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
197}
198
199static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
200{
201 return cfs_rq->rb_leftmost;
202}
203
204static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
205{
206 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
207}
208
209static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
210{
211 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
212 struct sched_entity *se = NULL;
213 struct rb_node *parent;
214
215 while (*link) {
216 parent = *link;
217 se = rb_entry(parent, struct sched_entity, run_node);
218 link = &parent->rb_right;
219 }
220
221 return se;
222}
223
224/**************************************************************
225 * Scheduling class statistics methods:
226 */
227
228static u64 __sched_period(unsigned long nr_running)
229{
230 u64 period = sysctl_sched_latency;
231 unsigned long nr_latency =
232 sysctl_sched_latency / sysctl_sched_min_granularity;
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240}
241
242static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
243{
244 u64 period = __sched_period(cfs_rq->nr_running);
245
246 period *= se->load.weight;
247 do_div(period, cfs_rq->load.weight);
248
249 return period;
250}
251
252static inline void
253limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
254{
255 long limit = sysctl_sched_runtime_limit;
256
257 /*
258 * Niced tasks have the same history dynamic range as
259 * non-niced tasks:
260 */
261 if (unlikely(se->wait_runtime > limit)) {
262 se->wait_runtime = limit;
263 schedstat_inc(se, wait_runtime_overruns);
264 schedstat_inc(cfs_rq, wait_runtime_overruns);
265 }
266 if (unlikely(se->wait_runtime < -limit)) {
267 se->wait_runtime = -limit;
268 schedstat_inc(se, wait_runtime_underruns);
269 schedstat_inc(cfs_rq, wait_runtime_underruns);
270 }
271}
272
273static inline void
274__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
275{
276 se->wait_runtime += delta;
277 schedstat_add(se, sum_wait_runtime, delta);
278 limit_wait_runtime(cfs_rq, se);
279}
280
281static void
282add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
283{
284 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
285 __add_wait_runtime(cfs_rq, se, delta);
286 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
287}
288
289/*
290 * Update the current task's runtime statistics. Skip current tasks that
291 * are not in our scheduling class.
292 */
293static inline void
294__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
295 unsigned long delta_exec)
296{
297 unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
298 struct load_weight *lw = &cfs_rq->load;
299 unsigned long load = lw->weight;
300
301 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
302
303 curr->sum_exec_runtime += delta_exec;
304 schedstat_add(cfs_rq, exec_clock, delta_exec);
305 delta_exec_weighted = delta_exec;
306 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
307 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
308 &curr->load);
309 }
310 curr->vruntime += delta_exec_weighted;
311
312 if (!sched_feat(FAIR_SLEEPERS))
313 return;
314
315 if (unlikely(!load))
316 return;
317
318 delta_fair = calc_delta_fair(delta_exec, lw);
319 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
320
321 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
322 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
323 delta = min(delta, (unsigned long)(
324 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
325 cfs_rq->sleeper_bonus -= delta;
326 delta_mine -= delta;
327 }
328
329 cfs_rq->fair_clock += delta_fair;
330 /*
331 * We executed delta_exec amount of time on the CPU,
332 * but we were only entitled to delta_mine amount of
333 * time during that period (if nr_running == 1 then
334 * the two values are equal)
335 * [Note: delta_mine - delta_exec is negative]:
336 */
337 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
338}
339
340static void update_curr(struct cfs_rq *cfs_rq)
341{
342 struct sched_entity *curr = cfs_rq->curr;
343 u64 now = rq_of(cfs_rq)->clock;
344 unsigned long delta_exec;
345
346 if (unlikely(!curr))
347 return;
348
349 /*
350 * Get the amount of time the current task was running
351 * since the last time we changed load (this cannot
352 * overflow on 32 bits):
353 */
354 delta_exec = (unsigned long)(now - curr->exec_start);
355
356 __update_curr(cfs_rq, curr, delta_exec);
357 curr->exec_start = now;
358}
359
360static inline void
361update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
362{
363 se->wait_start_fair = cfs_rq->fair_clock;
364 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
365}
366
367static inline unsigned long
368calc_weighted(unsigned long delta, struct sched_entity *se)
369{
370 unsigned long weight = se->load.weight;
371
372 if (unlikely(weight != NICE_0_LOAD))
373 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
374 else
375 return delta;
376}
377
378/*
379 * Task is being enqueued - update stats:
380 */
381static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
382{
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq->curr)
388 update_stats_wait_start(cfs_rq, se);
389 /*
390 * Update the key:
391 */
392 se->fair_key = se->vruntime;
393}
394
395/*
396 * Note: must be called with a freshly updated rq->fair_clock.
397 */
398static inline void
399__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
400 unsigned long delta_fair)
401{
402 schedstat_set(se->wait_max, max(se->wait_max,
403 rq_of(cfs_rq)->clock - se->wait_start));
404
405 delta_fair = calc_weighted(delta_fair, se);
406
407 add_wait_runtime(cfs_rq, se, delta_fair);
408}
409
410static void
411update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
412{
413 unsigned long delta_fair;
414
415 if (unlikely(!se->wait_start_fair))
416 return;
417
418 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
419 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
420
421 __update_stats_wait_end(cfs_rq, se, delta_fair);
422
423 se->wait_start_fair = 0;
424 schedstat_set(se->wait_start, 0);
425}
426
427static inline void
428update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
429{
430 update_curr(cfs_rq);
431 /*
432 * Mark the end of the wait period if dequeueing a
433 * waiting task:
434 */
435 if (se != cfs_rq->curr)
436 update_stats_wait_end(cfs_rq, se);
437}
438
439/*
440 * We are picking a new current task - update its stats:
441 */
442static inline void
443update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
444{
445 /*
446 * We are starting a new run period:
447 */
448 se->exec_start = rq_of(cfs_rq)->clock;
449}
450
451/*
452 * We are descheduling a task - update its stats:
453 */
454static inline void
455update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
456{
457 se->exec_start = 0;
458}
459
460/**************************************************
461 * Scheduling class queueing methods:
462 */
463
464static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
465 unsigned long delta_fair)
466{
467 unsigned long load = cfs_rq->load.weight;
468 long prev_runtime;
469
470 /*
471 * Do not boost sleepers if there's too much bonus 'in flight'
472 * already:
473 */
474 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
475 return;
476
477 if (sched_feat(SLEEPER_LOAD_AVG))
478 load = rq_of(cfs_rq)->cpu_load[2];
479
480 /*
481 * Fix up delta_fair with the effect of us running
482 * during the whole sleep period:
483 */
484 if (sched_feat(SLEEPER_AVG))
485 delta_fair = div64_likely32((u64)delta_fair * load,
486 load + se->load.weight);
487
488 delta_fair = calc_weighted(delta_fair, se);
489
490 prev_runtime = se->wait_runtime;
491 __add_wait_runtime(cfs_rq, se, delta_fair);
492 delta_fair = se->wait_runtime - prev_runtime;
493
494 /*
495 * Track the amount of bonus we've given to sleepers:
496 */
497 cfs_rq->sleeper_bonus += delta_fair;
498}
499
500static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
501{
502 struct task_struct *tsk = task_of(se);
503 unsigned long delta_fair;
504
505 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
506 !sched_feat(FAIR_SLEEPERS))
507 return;
508
509 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
510 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
511
512 __enqueue_sleeper(cfs_rq, se, delta_fair);
513
514 se->sleep_start_fair = 0;
515
516#ifdef CONFIG_SCHEDSTATS
517 if (se->sleep_start) {
518 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
519
520 if ((s64)delta < 0)
521 delta = 0;
522
523 if (unlikely(delta > se->sleep_max))
524 se->sleep_max = delta;
525
526 se->sleep_start = 0;
527 se->sum_sleep_runtime += delta;
528 }
529 if (se->block_start) {
530 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
531
532 if ((s64)delta < 0)
533 delta = 0;
534
535 if (unlikely(delta > se->block_max))
536 se->block_max = delta;
537
538 se->block_start = 0;
539 se->sum_sleep_runtime += delta;
540
541 /*
542 * Blocking time is in units of nanosecs, so shift by 20 to
543 * get a milliseconds-range estimation of the amount of
544 * time that the task spent sleeping:
545 */
546 if (unlikely(prof_on == SLEEP_PROFILING)) {
547 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
548 delta >> 20);
549 }
550 }
551#endif
552}
553
554static void
555place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
556{
557 u64 min_runtime, latency;
558
559 min_runtime = cfs_rq->min_vruntime;
560
561 if (sched_feat(USE_TREE_AVG)) {
562 struct sched_entity *last = __pick_last_entity(cfs_rq);
563 if (last) {
564 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
565 min_runtime += last->vruntime;
566 min_runtime >>= 1;
567 }
568 } else if (sched_feat(APPROX_AVG))
569 min_runtime += sysctl_sched_latency/2;
570
571 if (initial && sched_feat(START_DEBIT))
572 min_runtime += sched_slice(cfs_rq, se);
573
574 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
575 latency = sysctl_sched_latency;
576 if (min_runtime > latency)
577 min_runtime -= latency;
578 else
579 min_runtime = 0;
580 }
581
582 se->vruntime = max(se->vruntime, min_runtime);
583}
584
585static void
586enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
587{
588 /*
589 * Update the fair clock.
590 */
591 update_curr(cfs_rq);
592
593 if (wakeup) {
594 place_entity(cfs_rq, se, 0);
595 enqueue_sleeper(cfs_rq, se);
596 }
597
598 update_stats_enqueue(cfs_rq, se);
599 __enqueue_entity(cfs_rq, se);
600}
601
602static void
603dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
604{
605 update_stats_dequeue(cfs_rq, se);
606 if (sleep) {
607 se->sleep_start_fair = cfs_rq->fair_clock;
608#ifdef CONFIG_SCHEDSTATS
609 if (entity_is_task(se)) {
610 struct task_struct *tsk = task_of(se);
611
612 if (tsk->state & TASK_INTERRUPTIBLE)
613 se->sleep_start = rq_of(cfs_rq)->clock;
614 if (tsk->state & TASK_UNINTERRUPTIBLE)
615 se->block_start = rq_of(cfs_rq)->clock;
616 }
617#endif
618 }
619 __dequeue_entity(cfs_rq, se);
620}
621
622/*
623 * Preempt the current task with a newly woken task if needed:
624 */
625static void
626check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
627{
628 unsigned long ideal_runtime, delta_exec;
629
630 ideal_runtime = sched_slice(cfs_rq, curr);
631 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
632 if (delta_exec > ideal_runtime)
633 resched_task(rq_of(cfs_rq)->curr);
634}
635
636static inline void
637set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
638{
639 /*
640 * Any task has to be enqueued before it get to execute on
641 * a CPU. So account for the time it spent waiting on the
642 * runqueue. (note, here we rely on pick_next_task() having
643 * done a put_prev_task_fair() shortly before this, which
644 * updated rq->fair_clock - used by update_stats_wait_end())
645 */
646 update_stats_wait_end(cfs_rq, se);
647 update_stats_curr_start(cfs_rq, se);
648 cfs_rq->curr = se;
649#ifdef CONFIG_SCHEDSTATS
650 /*
651 * Track our maximum slice length, if the CPU's load is at
652 * least twice that of our own weight (i.e. dont track it
653 * when there are only lesser-weight tasks around):
654 */
655 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
656 se->slice_max = max(se->slice_max,
657 se->sum_exec_runtime - se->prev_sum_exec_runtime);
658 }
659#endif
660 se->prev_sum_exec_runtime = se->sum_exec_runtime;
661}
662
663static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
664{
665 struct sched_entity *se = __pick_next_entity(cfs_rq);
666
667 set_next_entity(cfs_rq, se);
668
669 return se;
670}
671
672static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
673{
674 /*
675 * If still on the runqueue then deactivate_task()
676 * was not called and update_curr() has to be done:
677 */
678 if (prev->on_rq)
679 update_curr(cfs_rq);
680
681 update_stats_curr_end(cfs_rq, prev);
682
683 if (prev->on_rq)
684 update_stats_wait_start(cfs_rq, prev);
685 cfs_rq->curr = NULL;
686}
687
688static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
689{
690 /*
691 * Dequeue and enqueue the task to update its
692 * position within the tree:
693 */
694 dequeue_entity(cfs_rq, curr, 0);
695 enqueue_entity(cfs_rq, curr, 0);
696
697 if (cfs_rq->nr_running > 1)
698 check_preempt_tick(cfs_rq, curr);
699}
700
701/**************************************************
702 * CFS operations on tasks:
703 */
704
705#ifdef CONFIG_FAIR_GROUP_SCHED
706
707/* Walk up scheduling entities hierarchy */
708#define for_each_sched_entity(se) \
709 for (; se; se = se->parent)
710
711static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
712{
713 return p->se.cfs_rq;
714}
715
716/* runqueue on which this entity is (to be) queued */
717static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
718{
719 return se->cfs_rq;
720}
721
722/* runqueue "owned" by this group */
723static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
724{
725 return grp->my_q;
726}
727
728/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
729 * another cpu ('this_cpu')
730 */
731static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
732{
733 /* A later patch will take group into account */
734 return &cpu_rq(this_cpu)->cfs;
735}
736
737/* Iterate thr' all leaf cfs_rq's on a runqueue */
738#define for_each_leaf_cfs_rq(rq, cfs_rq) \
739 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
740
741/* Do the two (enqueued) tasks belong to the same group ? */
742static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
743{
744 if (curr->se.cfs_rq == p->se.cfs_rq)
745 return 1;
746
747 return 0;
748}
749
750#else /* CONFIG_FAIR_GROUP_SCHED */
751
752#define for_each_sched_entity(se) \
753 for (; se; se = NULL)
754
755static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
756{
757 return &task_rq(p)->cfs;
758}
759
760static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
761{
762 struct task_struct *p = task_of(se);
763 struct rq *rq = task_rq(p);
764
765 return &rq->cfs;
766}
767
768/* runqueue "owned" by this group */
769static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
770{
771 return NULL;
772}
773
774static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
775{
776 return &cpu_rq(this_cpu)->cfs;
777}
778
779#define for_each_leaf_cfs_rq(rq, cfs_rq) \
780 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
781
782static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
783{
784 return 1;
785}
786
787#endif /* CONFIG_FAIR_GROUP_SCHED */
788
789/*
790 * The enqueue_task method is called before nr_running is
791 * increased. Here we update the fair scheduling stats and
792 * then put the task into the rbtree:
793 */
794static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
795{
796 struct cfs_rq *cfs_rq;
797 struct sched_entity *se = &p->se;
798
799 for_each_sched_entity(se) {
800 if (se->on_rq)
801 break;
802 cfs_rq = cfs_rq_of(se);
803 enqueue_entity(cfs_rq, se, wakeup);
804 }
805}
806
807/*
808 * The dequeue_task method is called before nr_running is
809 * decreased. We remove the task from the rbtree and
810 * update the fair scheduling stats:
811 */
812static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
813{
814 struct cfs_rq *cfs_rq;
815 struct sched_entity *se = &p->se;
816
817 for_each_sched_entity(se) {
818 cfs_rq = cfs_rq_of(se);
819 dequeue_entity(cfs_rq, se, sleep);
820 /* Don't dequeue parent if it has other entities besides us */
821 if (cfs_rq->load.weight)
822 break;
823 }
824}
825
826/*
827 * sched_yield() support is very simple - we dequeue and enqueue.
828 *
829 * If compat_yield is turned on then we requeue to the end of the tree.
830 */
831static void yield_task_fair(struct rq *rq, struct task_struct *p)
832{
833 struct cfs_rq *cfs_rq = task_cfs_rq(p);
834 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
835 struct sched_entity *rightmost, *se = &p->se;
836 struct rb_node *parent;
837
838 /*
839 * Are we the only task in the tree?
840 */
841 if (unlikely(cfs_rq->nr_running == 1))
842 return;
843
844 if (likely(!sysctl_sched_compat_yield)) {
845 __update_rq_clock(rq);
846 /*
847 * Dequeue and enqueue the task to update its
848 * position within the tree:
849 */
850 dequeue_entity(cfs_rq, &p->se, 0);
851 enqueue_entity(cfs_rq, &p->se, 0);
852
853 return;
854 }
855 /*
856 * Find the rightmost entry in the rbtree:
857 */
858 do {
859 parent = *link;
860 link = &parent->rb_right;
861 } while (*link);
862
863 rightmost = rb_entry(parent, struct sched_entity, run_node);
864 /*
865 * Already in the rightmost position?
866 */
867 if (unlikely(rightmost == se))
868 return;
869
870 /*
871 * Minimally necessary key value to be last in the tree:
872 */
873 se->fair_key = rightmost->fair_key + 1;
874
875 if (cfs_rq->rb_leftmost == &se->run_node)
876 cfs_rq->rb_leftmost = rb_next(&se->run_node);
877 /*
878 * Relink the task to the rightmost position:
879 */
880 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
881 rb_link_node(&se->run_node, parent, link);
882 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
883}
884
885/*
886 * Preempt the current task with a newly woken task if needed:
887 */
888static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
889{
890 struct task_struct *curr = rq->curr;
891 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
892
893 if (unlikely(rt_prio(p->prio))) {
894 update_rq_clock(rq);
895 update_curr(cfs_rq);
896 resched_task(curr);
897 return;
898 }
899 if (is_same_group(curr, p)) {
900 s64 delta = curr->se.vruntime - p->se.vruntime;
901
902 if (delta > (s64)sysctl_sched_wakeup_granularity)
903 resched_task(curr);
904 }
905}
906
907static struct task_struct *pick_next_task_fair(struct rq *rq)
908{
909 struct cfs_rq *cfs_rq = &rq->cfs;
910 struct sched_entity *se;
911
912 if (unlikely(!cfs_rq->nr_running))
913 return NULL;
914
915 do {
916 se = pick_next_entity(cfs_rq);
917 cfs_rq = group_cfs_rq(se);
918 } while (cfs_rq);
919
920 return task_of(se);
921}
922
923/*
924 * Account for a descheduled task:
925 */
926static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
927{
928 struct sched_entity *se = &prev->se;
929 struct cfs_rq *cfs_rq;
930
931 for_each_sched_entity(se) {
932 cfs_rq = cfs_rq_of(se);
933 put_prev_entity(cfs_rq, se);
934 }
935}
936
937/**************************************************
938 * Fair scheduling class load-balancing methods:
939 */
940
941/*
942 * Load-balancing iterator. Note: while the runqueue stays locked
943 * during the whole iteration, the current task might be
944 * dequeued so the iterator has to be dequeue-safe. Here we
945 * achieve that by always pre-iterating before returning
946 * the current task:
947 */
948static inline struct task_struct *
949__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
950{
951 struct task_struct *p;
952
953 if (!curr)
954 return NULL;
955
956 p = rb_entry(curr, struct task_struct, se.run_node);
957 cfs_rq->rb_load_balance_curr = rb_next(curr);
958
959 return p;
960}
961
962static struct task_struct *load_balance_start_fair(void *arg)
963{
964 struct cfs_rq *cfs_rq = arg;
965
966 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
967}
968
969static struct task_struct *load_balance_next_fair(void *arg)
970{
971 struct cfs_rq *cfs_rq = arg;
972
973 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
974}
975
976#ifdef CONFIG_FAIR_GROUP_SCHED
977static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
978{
979 struct sched_entity *curr;
980 struct task_struct *p;
981
982 if (!cfs_rq->nr_running)
983 return MAX_PRIO;
984
985 curr = __pick_next_entity(cfs_rq);
986 p = task_of(curr);
987
988 return p->prio;
989}
990#endif
991
992static unsigned long
993load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
994 unsigned long max_nr_move, unsigned long max_load_move,
995 struct sched_domain *sd, enum cpu_idle_type idle,
996 int *all_pinned, int *this_best_prio)
997{
998 struct cfs_rq *busy_cfs_rq;
999 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1000 long rem_load_move = max_load_move;
1001 struct rq_iterator cfs_rq_iterator;
1002
1003 cfs_rq_iterator.start = load_balance_start_fair;
1004 cfs_rq_iterator.next = load_balance_next_fair;
1005
1006 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1007#ifdef CONFIG_FAIR_GROUP_SCHED
1008 struct cfs_rq *this_cfs_rq;
1009 long imbalance;
1010 unsigned long maxload;
1011
1012 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1013
1014 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1015 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1016 if (imbalance <= 0)
1017 continue;
1018
1019 /* Don't pull more than imbalance/2 */
1020 imbalance /= 2;
1021 maxload = min(rem_load_move, imbalance);
1022
1023 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1024#else
1025# define maxload rem_load_move
1026#endif
1027 /* pass busy_cfs_rq argument into
1028 * load_balance_[start|next]_fair iterators
1029 */
1030 cfs_rq_iterator.arg = busy_cfs_rq;
1031 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1032 max_nr_move, maxload, sd, idle, all_pinned,
1033 &load_moved, this_best_prio, &cfs_rq_iterator);
1034
1035 total_nr_moved += nr_moved;
1036 max_nr_move -= nr_moved;
1037 rem_load_move -= load_moved;
1038
1039 if (max_nr_move <= 0 || rem_load_move <= 0)
1040 break;
1041 }
1042
1043 return max_load_move - rem_load_move;
1044}
1045
1046/*
1047 * scheduler tick hitting a task of our scheduling class:
1048 */
1049static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1050{
1051 struct cfs_rq *cfs_rq;
1052 struct sched_entity *se = &curr->se;
1053
1054 for_each_sched_entity(se) {
1055 cfs_rq = cfs_rq_of(se);
1056 entity_tick(cfs_rq, se);
1057 }
1058}
1059
1060#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1061
1062/*
1063 * Share the fairness runtime between parent and child, thus the
1064 * total amount of pressure for CPU stays equal - new tasks
1065 * get a chance to run but frequent forkers are not allowed to
1066 * monopolize the CPU. Note: the parent runqueue is locked,
1067 * the child is not running yet.
1068 */
1069static void task_new_fair(struct rq *rq, struct task_struct *p)
1070{
1071 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1072 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1073
1074 sched_info_queued(p);
1075
1076 update_curr(cfs_rq);
1077 place_entity(cfs_rq, se, 1);
1078
1079 /*
1080 * The statistical average of wait_runtime is about
1081 * -granularity/2, so initialize the task with that:
1082 */
1083 if (sched_feat(START_DEBIT))
1084 se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
1085
1086 if (sysctl_sched_child_runs_first &&
1087 curr->vruntime < se->vruntime) {
1088
1089 dequeue_entity(cfs_rq, curr, 0);
1090 swap(curr->vruntime, se->vruntime);
1091 enqueue_entity(cfs_rq, curr, 0);
1092 }
1093
1094 update_stats_enqueue(cfs_rq, se);
1095 __enqueue_entity(cfs_rq, se);
1096 resched_task(rq->curr);
1097}
1098
1099#ifdef CONFIG_FAIR_GROUP_SCHED
1100/* Account for a task changing its policy or group.
1101 *
1102 * This routine is mostly called to set cfs_rq->curr field when a task
1103 * migrates between groups/classes.
1104 */
1105static void set_curr_task_fair(struct rq *rq)
1106{
1107 struct sched_entity *se = &rq->curr->se;
1108
1109 for_each_sched_entity(se)
1110 set_next_entity(cfs_rq_of(se), se);
1111}
1112#else
1113static void set_curr_task_fair(struct rq *rq)
1114{
1115}
1116#endif
1117
1118/*
1119 * All the scheduling class methods:
1120 */
1121struct sched_class fair_sched_class __read_mostly = {
1122 .enqueue_task = enqueue_task_fair,
1123 .dequeue_task = dequeue_task_fair,
1124 .yield_task = yield_task_fair,
1125
1126 .check_preempt_curr = check_preempt_wakeup,
1127
1128 .pick_next_task = pick_next_task_fair,
1129 .put_prev_task = put_prev_task_fair,
1130
1131 .load_balance = load_balance_fair,
1132
1133 .set_curr_task = set_curr_task_fair,
1134 .task_tick = task_tick_fair,
1135 .task_new = task_new_fair,
1136};
1137
1138#ifdef CONFIG_SCHED_DEBUG
1139static void print_cfs_stats(struct seq_file *m, int cpu)
1140{
1141 struct cfs_rq *cfs_rq;
1142
1143 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1144 print_cfs_rq(m, cpu, cfs_rq);
1145}
1146#endif