| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * Scheduler internal types and methods: |
| 4 | */ |
| 5 | #ifndef _KERNEL_SCHED_SCHED_H |
| 6 | #define _KERNEL_SCHED_SCHED_H |
| 7 | |
| 8 | #include <linux/sched/affinity.h> |
| 9 | #include <linux/sched/autogroup.h> |
| 10 | #include <linux/sched/cpufreq.h> |
| 11 | #include <linux/sched/deadline.h> |
| 12 | #include <linux/sched.h> |
| 13 | #include <linux/sched/loadavg.h> |
| 14 | #include <linux/sched/mm.h> |
| 15 | #include <linux/sched/rseq_api.h> |
| 16 | #include <linux/sched/signal.h> |
| 17 | #include <linux/sched/smt.h> |
| 18 | #include <linux/sched/stat.h> |
| 19 | #include <linux/sched/sysctl.h> |
| 20 | #include <linux/sched/task_flags.h> |
| 21 | #include <linux/sched/task.h> |
| 22 | #include <linux/sched/topology.h> |
| 23 | |
| 24 | #include <linux/atomic.h> |
| 25 | #include <linux/bitmap.h> |
| 26 | #include <linux/bug.h> |
| 27 | #include <linux/capability.h> |
| 28 | #include <linux/cgroup_api.h> |
| 29 | #include <linux/cgroup.h> |
| 30 | #include <linux/context_tracking.h> |
| 31 | #include <linux/cpufreq.h> |
| 32 | #include <linux/cpumask_api.h> |
| 33 | #include <linux/ctype.h> |
| 34 | #include <linux/file.h> |
| 35 | #include <linux/fs_api.h> |
| 36 | #include <linux/hrtimer_api.h> |
| 37 | #include <linux/interrupt.h> |
| 38 | #include <linux/irq_work.h> |
| 39 | #include <linux/jiffies.h> |
| 40 | #include <linux/kref_api.h> |
| 41 | #include <linux/kthread.h> |
| 42 | #include <linux/ktime_api.h> |
| 43 | #include <linux/lockdep_api.h> |
| 44 | #include <linux/lockdep.h> |
| 45 | #include <linux/minmax.h> |
| 46 | #include <linux/mm.h> |
| 47 | #include <linux/module.h> |
| 48 | #include <linux/mutex_api.h> |
| 49 | #include <linux/plist.h> |
| 50 | #include <linux/poll.h> |
| 51 | #include <linux/proc_fs.h> |
| 52 | #include <linux/profile.h> |
| 53 | #include <linux/psi.h> |
| 54 | #include <linux/rcupdate.h> |
| 55 | #include <linux/seq_file.h> |
| 56 | #include <linux/seqlock.h> |
| 57 | #include <linux/softirq.h> |
| 58 | #include <linux/spinlock_api.h> |
| 59 | #include <linux/static_key.h> |
| 60 | #include <linux/stop_machine.h> |
| 61 | #include <linux/syscalls_api.h> |
| 62 | #include <linux/syscalls.h> |
| 63 | #include <linux/tick.h> |
| 64 | #include <linux/topology.h> |
| 65 | #include <linux/types.h> |
| 66 | #include <linux/u64_stats_sync_api.h> |
| 67 | #include <linux/uaccess.h> |
| 68 | #include <linux/wait_api.h> |
| 69 | #include <linux/wait_bit.h> |
| 70 | #include <linux/workqueue_api.h> |
| 71 | #include <linux/delayacct.h> |
| 72 | |
| 73 | #include <trace/events/power.h> |
| 74 | #include <trace/events/sched.h> |
| 75 | |
| 76 | #include "../workqueue_internal.h" |
| 77 | |
| 78 | struct rq; |
| 79 | struct cfs_rq; |
| 80 | struct rt_rq; |
| 81 | struct sched_group; |
| 82 | struct cpuidle_state; |
| 83 | |
| 84 | #ifdef CONFIG_PARAVIRT |
| 85 | # include <asm/paravirt.h> |
| 86 | # include <asm/paravirt_api_clock.h> |
| 87 | #endif |
| 88 | |
| 89 | #include <asm/barrier.h> |
| 90 | |
| 91 | #include "cpupri.h" |
| 92 | #include "cpudeadline.h" |
| 93 | |
| 94 | /* task_struct::on_rq states: */ |
| 95 | #define TASK_ON_RQ_QUEUED 1 |
| 96 | #define TASK_ON_RQ_MIGRATING 2 |
| 97 | |
| 98 | extern __read_mostly int scheduler_running; |
| 99 | |
| 100 | extern unsigned long calc_load_update; |
| 101 | extern atomic_long_t calc_load_tasks; |
| 102 | |
| 103 | extern void calc_global_load_tick(struct rq *this_rq); |
| 104 | extern long calc_load_fold_active(struct rq *this_rq, long adjust); |
| 105 | |
| 106 | extern void call_trace_sched_update_nr_running(struct rq *rq, int count); |
| 107 | |
| 108 | extern int sysctl_sched_rt_period; |
| 109 | extern int sysctl_sched_rt_runtime; |
| 110 | extern int sched_rr_timeslice; |
| 111 | |
| 112 | /* |
| 113 | * Asymmetric CPU capacity bits |
| 114 | */ |
| 115 | struct asym_cap_data { |
| 116 | struct list_head link; |
| 117 | struct rcu_head rcu; |
| 118 | unsigned long capacity; |
| 119 | unsigned long cpus[]; |
| 120 | }; |
| 121 | |
| 122 | extern struct list_head asym_cap_list; |
| 123 | |
| 124 | #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) |
| 125 | |
| 126 | /* |
| 127 | * Helpers for converting nanosecond timing to jiffy resolution |
| 128 | */ |
| 129 | #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) |
| 130 | |
| 131 | /* |
| 132 | * Increase resolution of nice-level calculations for 64-bit architectures. |
| 133 | * The extra resolution improves shares distribution and load balancing of |
| 134 | * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group |
| 135 | * hierarchies, especially on larger systems. This is not a user-visible change |
| 136 | * and does not change the user-interface for setting shares/weights. |
| 137 | * |
| 138 | * We increase resolution only if we have enough bits to allow this increased |
| 139 | * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit |
| 140 | * are pretty high and the returns do not justify the increased costs. |
| 141 | * |
| 142 | * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to |
| 143 | * increase coverage and consistency always enable it on 64-bit platforms. |
| 144 | */ |
| 145 | #ifdef CONFIG_64BIT |
| 146 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) |
| 147 | # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) |
| 148 | # define scale_load_down(w) \ |
| 149 | ({ \ |
| 150 | unsigned long __w = (w); \ |
| 151 | \ |
| 152 | if (__w) \ |
| 153 | __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ |
| 154 | __w; \ |
| 155 | }) |
| 156 | #else |
| 157 | # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) |
| 158 | # define scale_load(w) (w) |
| 159 | # define scale_load_down(w) (w) |
| 160 | #endif |
| 161 | |
| 162 | /* |
| 163 | * Task weight (visible to users) and its load (invisible to users) have |
| 164 | * independent resolution, but they should be well calibrated. We use |
| 165 | * scale_load() and scale_load_down(w) to convert between them. The |
| 166 | * following must be true: |
| 167 | * |
| 168 | * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD |
| 169 | * |
| 170 | */ |
| 171 | #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) |
| 172 | |
| 173 | /* |
| 174 | * Single value that decides SCHED_DEADLINE internal math precision. |
| 175 | * 10 -> just above 1us |
| 176 | * 9 -> just above 0.5us |
| 177 | */ |
| 178 | #define DL_SCALE 10 |
| 179 | |
| 180 | /* |
| 181 | * Single value that denotes runtime == period, ie unlimited time. |
| 182 | */ |
| 183 | #define RUNTIME_INF ((u64)~0ULL) |
| 184 | |
| 185 | static inline int idle_policy(int policy) |
| 186 | { |
| 187 | return policy == SCHED_IDLE; |
| 188 | } |
| 189 | |
| 190 | static inline int normal_policy(int policy) |
| 191 | { |
| 192 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 193 | if (policy == SCHED_EXT) |
| 194 | return true; |
| 195 | #endif |
| 196 | return policy == SCHED_NORMAL; |
| 197 | } |
| 198 | |
| 199 | static inline int fair_policy(int policy) |
| 200 | { |
| 201 | return normal_policy(policy) || policy == SCHED_BATCH; |
| 202 | } |
| 203 | |
| 204 | static inline int rt_policy(int policy) |
| 205 | { |
| 206 | return policy == SCHED_FIFO || policy == SCHED_RR; |
| 207 | } |
| 208 | |
| 209 | static inline int dl_policy(int policy) |
| 210 | { |
| 211 | return policy == SCHED_DEADLINE; |
| 212 | } |
| 213 | |
| 214 | static inline bool valid_policy(int policy) |
| 215 | { |
| 216 | return idle_policy(policy) || fair_policy(policy) || |
| 217 | rt_policy(policy) || dl_policy(policy); |
| 218 | } |
| 219 | |
| 220 | static inline int task_has_idle_policy(struct task_struct *p) |
| 221 | { |
| 222 | return idle_policy(p->policy); |
| 223 | } |
| 224 | |
| 225 | static inline int task_has_rt_policy(struct task_struct *p) |
| 226 | { |
| 227 | return rt_policy(p->policy); |
| 228 | } |
| 229 | |
| 230 | static inline int task_has_dl_policy(struct task_struct *p) |
| 231 | { |
| 232 | return dl_policy(p->policy); |
| 233 | } |
| 234 | |
| 235 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
| 236 | |
| 237 | static inline void update_avg(u64 *avg, u64 sample) |
| 238 | { |
| 239 | s64 diff = sample - *avg; |
| 240 | |
| 241 | *avg += diff / 8; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * Shifting a value by an exponent greater *or equal* to the size of said value |
| 246 | * is UB; cap at size-1. |
| 247 | */ |
| 248 | #define shr_bound(val, shift) \ |
| 249 | (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) |
| 250 | |
| 251 | /* |
| 252 | * cgroup weight knobs should use the common MIN, DFL and MAX values which are |
| 253 | * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it |
| 254 | * maps pretty well onto the shares value used by scheduler and the round-trip |
| 255 | * conversions preserve the original value over the entire range. |
| 256 | */ |
| 257 | static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) |
| 258 | { |
| 259 | return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); |
| 260 | } |
| 261 | |
| 262 | static inline unsigned long sched_weight_to_cgroup(unsigned long weight) |
| 263 | { |
| 264 | return clamp_t(unsigned long, |
| 265 | DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), |
| 266 | CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * !! For sched_setattr_nocheck() (kernel) only !! |
| 271 | * |
| 272 | * This is actually gross. :( |
| 273 | * |
| 274 | * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE |
| 275 | * tasks, but still be able to sleep. We need this on platforms that cannot |
| 276 | * atomically change clock frequency. Remove once fast switching will be |
| 277 | * available on such platforms. |
| 278 | * |
| 279 | * SUGOV stands for SchedUtil GOVernor. |
| 280 | */ |
| 281 | #define SCHED_FLAG_SUGOV 0x10000000 |
| 282 | |
| 283 | #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) |
| 284 | |
| 285 | static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) |
| 286 | { |
| 287 | #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL |
| 288 | return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); |
| 289 | #else |
| 290 | return false; |
| 291 | #endif |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * Tells if entity @a should preempt entity @b. |
| 296 | */ |
| 297 | static inline bool dl_entity_preempt(const struct sched_dl_entity *a, |
| 298 | const struct sched_dl_entity *b) |
| 299 | { |
| 300 | return dl_entity_is_special(a) || |
| 301 | dl_time_before(a->deadline, b->deadline); |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * This is the priority-queue data structure of the RT scheduling class: |
| 306 | */ |
| 307 | struct rt_prio_array { |
| 308 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| 309 | struct list_head queue[MAX_RT_PRIO]; |
| 310 | }; |
| 311 | |
| 312 | struct rt_bandwidth { |
| 313 | /* nests inside the rq lock: */ |
| 314 | raw_spinlock_t rt_runtime_lock; |
| 315 | ktime_t rt_period; |
| 316 | u64 rt_runtime; |
| 317 | struct hrtimer rt_period_timer; |
| 318 | unsigned int rt_period_active; |
| 319 | }; |
| 320 | |
| 321 | static inline int dl_bandwidth_enabled(void) |
| 322 | { |
| 323 | return sysctl_sched_rt_runtime >= 0; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * To keep the bandwidth of -deadline tasks under control |
| 328 | * we need some place where: |
| 329 | * - store the maximum -deadline bandwidth of each cpu; |
| 330 | * - cache the fraction of bandwidth that is currently allocated in |
| 331 | * each root domain; |
| 332 | * |
| 333 | * This is all done in the data structure below. It is similar to the |
| 334 | * one used for RT-throttling (rt_bandwidth), with the main difference |
| 335 | * that, since here we are only interested in admission control, we |
| 336 | * do not decrease any runtime while the group "executes", neither we |
| 337 | * need a timer to replenish it. |
| 338 | * |
| 339 | * With respect to SMP, bandwidth is given on a per root domain basis, |
| 340 | * meaning that: |
| 341 | * - bw (< 100%) is the deadline bandwidth of each CPU; |
| 342 | * - total_bw is the currently allocated bandwidth in each root domain; |
| 343 | */ |
| 344 | struct dl_bw { |
| 345 | raw_spinlock_t lock; |
| 346 | u64 bw; |
| 347 | u64 total_bw; |
| 348 | }; |
| 349 | |
| 350 | extern void init_dl_bw(struct dl_bw *dl_b); |
| 351 | extern int sched_dl_global_validate(void); |
| 352 | extern void sched_dl_do_global(void); |
| 353 | extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); |
| 354 | extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); |
| 355 | extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); |
| 356 | extern bool __checkparam_dl(const struct sched_attr *attr); |
| 357 | extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); |
| 358 | extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| 359 | extern int dl_bw_deactivate(int cpu); |
| 360 | extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); |
| 361 | /* |
| 362 | * SCHED_DEADLINE supports servers (nested scheduling) with the following |
| 363 | * interface: |
| 364 | * |
| 365 | * dl_se::rq -- runqueue we belong to. |
| 366 | * |
| 367 | * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the |
| 368 | * server when it runs out of tasks to run. |
| 369 | * |
| 370 | * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this |
| 371 | * returns NULL. |
| 372 | * |
| 373 | * dl_server_update() -- called from update_curr_common(), propagates runtime |
| 374 | * to the server. |
| 375 | * |
| 376 | * dl_server_start() |
| 377 | * dl_server_stop() -- start/stop the server when it has (no) tasks. |
| 378 | * |
| 379 | * dl_server_init() -- initializes the server. |
| 380 | */ |
| 381 | extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); |
| 382 | extern void dl_server_start(struct sched_dl_entity *dl_se); |
| 383 | extern void dl_server_stop(struct sched_dl_entity *dl_se); |
| 384 | extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, |
| 385 | dl_server_has_tasks_f has_tasks, |
| 386 | dl_server_pick_f pick_task); |
| 387 | |
| 388 | extern void dl_server_update_idle_time(struct rq *rq, |
| 389 | struct task_struct *p); |
| 390 | extern void fair_server_init(struct rq *rq); |
| 391 | extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); |
| 392 | extern int dl_server_apply_params(struct sched_dl_entity *dl_se, |
| 393 | u64 runtime, u64 period, bool init); |
| 394 | |
| 395 | static inline bool dl_server_active(struct sched_dl_entity *dl_se) |
| 396 | { |
| 397 | return dl_se->dl_server_active; |
| 398 | } |
| 399 | |
| 400 | #ifdef CONFIG_CGROUP_SCHED |
| 401 | |
| 402 | extern struct list_head task_groups; |
| 403 | |
| 404 | struct cfs_bandwidth { |
| 405 | #ifdef CONFIG_CFS_BANDWIDTH |
| 406 | raw_spinlock_t lock; |
| 407 | ktime_t period; |
| 408 | u64 quota; |
| 409 | u64 runtime; |
| 410 | u64 burst; |
| 411 | u64 runtime_snap; |
| 412 | s64 hierarchical_quota; |
| 413 | |
| 414 | u8 idle; |
| 415 | u8 period_active; |
| 416 | u8 slack_started; |
| 417 | struct hrtimer period_timer; |
| 418 | struct hrtimer slack_timer; |
| 419 | struct list_head throttled_cfs_rq; |
| 420 | |
| 421 | /* Statistics: */ |
| 422 | int nr_periods; |
| 423 | int nr_throttled; |
| 424 | int nr_burst; |
| 425 | u64 throttled_time; |
| 426 | u64 burst_time; |
| 427 | #endif |
| 428 | }; |
| 429 | |
| 430 | /* Task group related information */ |
| 431 | struct task_group { |
| 432 | struct cgroup_subsys_state css; |
| 433 | |
| 434 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 435 | /* A positive value indicates that this is a SCHED_IDLE group. */ |
| 436 | int idle; |
| 437 | #endif |
| 438 | |
| 439 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 440 | /* schedulable entities of this group on each CPU */ |
| 441 | struct sched_entity **se; |
| 442 | /* runqueue "owned" by this group on each CPU */ |
| 443 | struct cfs_rq **cfs_rq; |
| 444 | unsigned long shares; |
| 445 | #ifdef CONFIG_SMP |
| 446 | /* |
| 447 | * load_avg can be heavily contended at clock tick time, so put |
| 448 | * it in its own cache-line separated from the fields above which |
| 449 | * will also be accessed at each tick. |
| 450 | */ |
| 451 | atomic_long_t load_avg ____cacheline_aligned; |
| 452 | #endif |
| 453 | #endif |
| 454 | |
| 455 | #ifdef CONFIG_RT_GROUP_SCHED |
| 456 | struct sched_rt_entity **rt_se; |
| 457 | struct rt_rq **rt_rq; |
| 458 | |
| 459 | struct rt_bandwidth rt_bandwidth; |
| 460 | #endif |
| 461 | |
| 462 | #ifdef CONFIG_EXT_GROUP_SCHED |
| 463 | u32 scx_flags; /* SCX_TG_* */ |
| 464 | u32 scx_weight; |
| 465 | #endif |
| 466 | |
| 467 | struct rcu_head rcu; |
| 468 | struct list_head list; |
| 469 | |
| 470 | struct task_group *parent; |
| 471 | struct list_head siblings; |
| 472 | struct list_head children; |
| 473 | |
| 474 | #ifdef CONFIG_SCHED_AUTOGROUP |
| 475 | struct autogroup *autogroup; |
| 476 | #endif |
| 477 | |
| 478 | struct cfs_bandwidth cfs_bandwidth; |
| 479 | |
| 480 | #ifdef CONFIG_UCLAMP_TASK_GROUP |
| 481 | /* The two decimal precision [%] value requested from user-space */ |
| 482 | unsigned int uclamp_pct[UCLAMP_CNT]; |
| 483 | /* Clamp values requested for a task group */ |
| 484 | struct uclamp_se uclamp_req[UCLAMP_CNT]; |
| 485 | /* Effective clamp values used for a task group */ |
| 486 | struct uclamp_se uclamp[UCLAMP_CNT]; |
| 487 | #endif |
| 488 | |
| 489 | }; |
| 490 | |
| 491 | #ifdef CONFIG_GROUP_SCHED_WEIGHT |
| 492 | #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| 493 | |
| 494 | /* |
| 495 | * A weight of 0 or 1 can cause arithmetics problems. |
| 496 | * A weight of a cfs_rq is the sum of weights of which entities |
| 497 | * are queued on this cfs_rq, so a weight of a entity should not be |
| 498 | * too large, so as the shares value of a task group. |
| 499 | * (The default weight is 1024 - so there's no practical |
| 500 | * limitation from this.) |
| 501 | */ |
| 502 | #define MIN_SHARES (1UL << 1) |
| 503 | #define MAX_SHARES (1UL << 18) |
| 504 | #endif |
| 505 | |
| 506 | typedef int (*tg_visitor)(struct task_group *, void *); |
| 507 | |
| 508 | extern int walk_tg_tree_from(struct task_group *from, |
| 509 | tg_visitor down, tg_visitor up, void *data); |
| 510 | |
| 511 | /* |
| 512 | * Iterate the full tree, calling @down when first entering a node and @up when |
| 513 | * leaving it for the final time. |
| 514 | * |
| 515 | * Caller must hold rcu_lock or sufficient equivalent. |
| 516 | */ |
| 517 | static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| 518 | { |
| 519 | return walk_tg_tree_from(&root_task_group, down, up, data); |
| 520 | } |
| 521 | |
| 522 | static inline struct task_group *css_tg(struct cgroup_subsys_state *css) |
| 523 | { |
| 524 | return css ? container_of(css, struct task_group, css) : NULL; |
| 525 | } |
| 526 | |
| 527 | extern int tg_nop(struct task_group *tg, void *data); |
| 528 | |
| 529 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 530 | extern void free_fair_sched_group(struct task_group *tg); |
| 531 | extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| 532 | extern void online_fair_sched_group(struct task_group *tg); |
| 533 | extern void unregister_fair_sched_group(struct task_group *tg); |
| 534 | #else |
| 535 | static inline void free_fair_sched_group(struct task_group *tg) { } |
| 536 | static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
| 537 | { |
| 538 | return 1; |
| 539 | } |
| 540 | static inline void online_fair_sched_group(struct task_group *tg) { } |
| 541 | static inline void unregister_fair_sched_group(struct task_group *tg) { } |
| 542 | #endif |
| 543 | |
| 544 | extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| 545 | struct sched_entity *se, int cpu, |
| 546 | struct sched_entity *parent); |
| 547 | extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); |
| 548 | |
| 549 | extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| 550 | extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| 551 | extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| 552 | extern bool cfs_task_bw_constrained(struct task_struct *p); |
| 553 | |
| 554 | extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| 555 | struct sched_rt_entity *rt_se, int cpu, |
| 556 | struct sched_rt_entity *parent); |
| 557 | extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); |
| 558 | extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); |
| 559 | extern long sched_group_rt_runtime(struct task_group *tg); |
| 560 | extern long sched_group_rt_period(struct task_group *tg); |
| 561 | extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); |
| 562 | |
| 563 | extern struct task_group *sched_create_group(struct task_group *parent); |
| 564 | extern void sched_online_group(struct task_group *tg, |
| 565 | struct task_group *parent); |
| 566 | extern void sched_destroy_group(struct task_group *tg); |
| 567 | extern void sched_release_group(struct task_group *tg); |
| 568 | |
| 569 | extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); |
| 570 | |
| 571 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 572 | extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| 573 | |
| 574 | extern int sched_group_set_idle(struct task_group *tg, long idle); |
| 575 | |
| 576 | #ifdef CONFIG_SMP |
| 577 | extern void set_task_rq_fair(struct sched_entity *se, |
| 578 | struct cfs_rq *prev, struct cfs_rq *next); |
| 579 | #else /* !CONFIG_SMP */ |
| 580 | static inline void set_task_rq_fair(struct sched_entity *se, |
| 581 | struct cfs_rq *prev, struct cfs_rq *next) { } |
| 582 | #endif /* CONFIG_SMP */ |
| 583 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
| 584 | static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } |
| 585 | static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } |
| 586 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 587 | |
| 588 | #else /* CONFIG_CGROUP_SCHED */ |
| 589 | |
| 590 | struct cfs_bandwidth { }; |
| 591 | |
| 592 | static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } |
| 593 | |
| 594 | #endif /* CONFIG_CGROUP_SCHED */ |
| 595 | |
| 596 | extern void unregister_rt_sched_group(struct task_group *tg); |
| 597 | extern void free_rt_sched_group(struct task_group *tg); |
| 598 | extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| 599 | |
| 600 | /* |
| 601 | * u64_u32_load/u64_u32_store |
| 602 | * |
| 603 | * Use a copy of a u64 value to protect against data race. This is only |
| 604 | * applicable for 32-bits architectures. |
| 605 | */ |
| 606 | #ifdef CONFIG_64BIT |
| 607 | # define u64_u32_load_copy(var, copy) var |
| 608 | # define u64_u32_store_copy(var, copy, val) (var = val) |
| 609 | #else |
| 610 | # define u64_u32_load_copy(var, copy) \ |
| 611 | ({ \ |
| 612 | u64 __val, __val_copy; \ |
| 613 | do { \ |
| 614 | __val_copy = copy; \ |
| 615 | /* \ |
| 616 | * paired with u64_u32_store_copy(), ordering access \ |
| 617 | * to var and copy. \ |
| 618 | */ \ |
| 619 | smp_rmb(); \ |
| 620 | __val = var; \ |
| 621 | } while (__val != __val_copy); \ |
| 622 | __val; \ |
| 623 | }) |
| 624 | # define u64_u32_store_copy(var, copy, val) \ |
| 625 | do { \ |
| 626 | typeof(val) __val = (val); \ |
| 627 | var = __val; \ |
| 628 | /* \ |
| 629 | * paired with u64_u32_load_copy(), ordering access to var and \ |
| 630 | * copy. \ |
| 631 | */ \ |
| 632 | smp_wmb(); \ |
| 633 | copy = __val; \ |
| 634 | } while (0) |
| 635 | #endif |
| 636 | # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) |
| 637 | # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) |
| 638 | |
| 639 | struct balance_callback { |
| 640 | struct balance_callback *next; |
| 641 | void (*func)(struct rq *rq); |
| 642 | }; |
| 643 | |
| 644 | /* CFS-related fields in a runqueue */ |
| 645 | struct cfs_rq { |
| 646 | struct load_weight load; |
| 647 | unsigned int nr_queued; |
| 648 | unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ |
| 649 | unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ |
| 650 | unsigned int h_nr_idle; /* SCHED_IDLE */ |
| 651 | |
| 652 | s64 avg_vruntime; |
| 653 | u64 avg_load; |
| 654 | |
| 655 | u64 min_vruntime; |
| 656 | #ifdef CONFIG_SCHED_CORE |
| 657 | unsigned int forceidle_seq; |
| 658 | u64 min_vruntime_fi; |
| 659 | #endif |
| 660 | |
| 661 | struct rb_root_cached tasks_timeline; |
| 662 | |
| 663 | /* |
| 664 | * 'curr' points to currently running entity on this cfs_rq. |
| 665 | * It is set to NULL otherwise (i.e when none are currently running). |
| 666 | */ |
| 667 | struct sched_entity *curr; |
| 668 | struct sched_entity *next; |
| 669 | |
| 670 | #ifdef CONFIG_SMP |
| 671 | /* |
| 672 | * CFS load tracking |
| 673 | */ |
| 674 | struct sched_avg avg; |
| 675 | #ifndef CONFIG_64BIT |
| 676 | u64 last_update_time_copy; |
| 677 | #endif |
| 678 | struct { |
| 679 | raw_spinlock_t lock ____cacheline_aligned; |
| 680 | int nr; |
| 681 | unsigned long load_avg; |
| 682 | unsigned long util_avg; |
| 683 | unsigned long runnable_avg; |
| 684 | } removed; |
| 685 | |
| 686 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 687 | u64 last_update_tg_load_avg; |
| 688 | unsigned long tg_load_avg_contrib; |
| 689 | long propagate; |
| 690 | long prop_runnable_sum; |
| 691 | |
| 692 | /* |
| 693 | * h_load = weight * f(tg) |
| 694 | * |
| 695 | * Where f(tg) is the recursive weight fraction assigned to |
| 696 | * this group. |
| 697 | */ |
| 698 | unsigned long h_load; |
| 699 | u64 last_h_load_update; |
| 700 | struct sched_entity *h_load_next; |
| 701 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 702 | #endif /* CONFIG_SMP */ |
| 703 | |
| 704 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 705 | struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ |
| 706 | |
| 707 | /* |
| 708 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| 709 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| 710 | * (like users, containers etc.) |
| 711 | * |
| 712 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. |
| 713 | * This list is used during load balance. |
| 714 | */ |
| 715 | int on_list; |
| 716 | struct list_head leaf_cfs_rq_list; |
| 717 | struct task_group *tg; /* group that "owns" this runqueue */ |
| 718 | |
| 719 | /* Locally cached copy of our task_group's idle value */ |
| 720 | int idle; |
| 721 | |
| 722 | #ifdef CONFIG_CFS_BANDWIDTH |
| 723 | int runtime_enabled; |
| 724 | s64 runtime_remaining; |
| 725 | |
| 726 | u64 throttled_pelt_idle; |
| 727 | #ifndef CONFIG_64BIT |
| 728 | u64 throttled_pelt_idle_copy; |
| 729 | #endif |
| 730 | u64 throttled_clock; |
| 731 | u64 throttled_clock_pelt; |
| 732 | u64 throttled_clock_pelt_time; |
| 733 | u64 throttled_clock_self; |
| 734 | u64 throttled_clock_self_time; |
| 735 | int throttled; |
| 736 | int throttle_count; |
| 737 | struct list_head throttled_list; |
| 738 | struct list_head throttled_csd_list; |
| 739 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 740 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 741 | }; |
| 742 | |
| 743 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 744 | /* scx_rq->flags, protected by the rq lock */ |
| 745 | enum scx_rq_flags { |
| 746 | /* |
| 747 | * A hotplugged CPU starts scheduling before rq_online_scx(). Track |
| 748 | * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called |
| 749 | * only while the BPF scheduler considers the CPU to be online. |
| 750 | */ |
| 751 | SCX_RQ_ONLINE = 1 << 0, |
| 752 | SCX_RQ_CAN_STOP_TICK = 1 << 1, |
| 753 | SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ |
| 754 | SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ |
| 755 | SCX_RQ_BYPASSING = 1 << 4, |
| 756 | SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ |
| 757 | |
| 758 | SCX_RQ_IN_WAKEUP = 1 << 16, |
| 759 | SCX_RQ_IN_BALANCE = 1 << 17, |
| 760 | }; |
| 761 | |
| 762 | struct scx_rq { |
| 763 | struct scx_dispatch_q local_dsq; |
| 764 | struct list_head runnable_list; /* runnable tasks on this rq */ |
| 765 | struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ |
| 766 | unsigned long ops_qseq; |
| 767 | u64 extra_enq_flags; /* see move_task_to_local_dsq() */ |
| 768 | u32 nr_running; |
| 769 | u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ |
| 770 | bool cpu_released; |
| 771 | u32 flags; |
| 772 | u64 clock; /* current per-rq clock -- see scx_bpf_now() */ |
| 773 | cpumask_var_t cpus_to_kick; |
| 774 | cpumask_var_t cpus_to_kick_if_idle; |
| 775 | cpumask_var_t cpus_to_preempt; |
| 776 | cpumask_var_t cpus_to_wait; |
| 777 | unsigned long pnt_seq; |
| 778 | struct balance_callback deferred_bal_cb; |
| 779 | struct irq_work deferred_irq_work; |
| 780 | struct irq_work kick_cpus_irq_work; |
| 781 | }; |
| 782 | #endif /* CONFIG_SCHED_CLASS_EXT */ |
| 783 | |
| 784 | static inline int rt_bandwidth_enabled(void) |
| 785 | { |
| 786 | return sysctl_sched_rt_runtime >= 0; |
| 787 | } |
| 788 | |
| 789 | /* RT IPI pull logic requires IRQ_WORK */ |
| 790 | #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) |
| 791 | # define HAVE_RT_PUSH_IPI |
| 792 | #endif |
| 793 | |
| 794 | /* Real-Time classes' related field in a runqueue: */ |
| 795 | struct rt_rq { |
| 796 | struct rt_prio_array active; |
| 797 | unsigned int rt_nr_running; |
| 798 | unsigned int rr_nr_running; |
| 799 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 800 | struct { |
| 801 | int curr; /* highest queued rt task prio */ |
| 802 | #ifdef CONFIG_SMP |
| 803 | int next; /* next highest */ |
| 804 | #endif |
| 805 | } highest_prio; |
| 806 | #endif |
| 807 | #ifdef CONFIG_SMP |
| 808 | bool overloaded; |
| 809 | struct plist_head pushable_tasks; |
| 810 | |
| 811 | #endif /* CONFIG_SMP */ |
| 812 | int rt_queued; |
| 813 | |
| 814 | #ifdef CONFIG_RT_GROUP_SCHED |
| 815 | int rt_throttled; |
| 816 | u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ |
| 817 | u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ |
| 818 | /* Nests inside the rq lock: */ |
| 819 | raw_spinlock_t rt_runtime_lock; |
| 820 | |
| 821 | unsigned int rt_nr_boosted; |
| 822 | |
| 823 | struct rq *rq; /* this is always top-level rq, cache? */ |
| 824 | #endif |
| 825 | #ifdef CONFIG_CGROUP_SCHED |
| 826 | struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ |
| 827 | #endif |
| 828 | }; |
| 829 | |
| 830 | static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) |
| 831 | { |
| 832 | return rt_rq->rt_queued && rt_rq->rt_nr_running; |
| 833 | } |
| 834 | |
| 835 | /* Deadline class' related fields in a runqueue */ |
| 836 | struct dl_rq { |
| 837 | /* runqueue is an rbtree, ordered by deadline */ |
| 838 | struct rb_root_cached root; |
| 839 | |
| 840 | unsigned int dl_nr_running; |
| 841 | |
| 842 | #ifdef CONFIG_SMP |
| 843 | /* |
| 844 | * Deadline values of the currently executing and the |
| 845 | * earliest ready task on this rq. Caching these facilitates |
| 846 | * the decision whether or not a ready but not running task |
| 847 | * should migrate somewhere else. |
| 848 | */ |
| 849 | struct { |
| 850 | u64 curr; |
| 851 | u64 next; |
| 852 | } earliest_dl; |
| 853 | |
| 854 | bool overloaded; |
| 855 | |
| 856 | /* |
| 857 | * Tasks on this rq that can be pushed away. They are kept in |
| 858 | * an rb-tree, ordered by tasks' deadlines, with caching |
| 859 | * of the leftmost (earliest deadline) element. |
| 860 | */ |
| 861 | struct rb_root_cached pushable_dl_tasks_root; |
| 862 | #else |
| 863 | struct dl_bw dl_bw; |
| 864 | #endif |
| 865 | /* |
| 866 | * "Active utilization" for this runqueue: increased when a |
| 867 | * task wakes up (becomes TASK_RUNNING) and decreased when a |
| 868 | * task blocks |
| 869 | */ |
| 870 | u64 running_bw; |
| 871 | |
| 872 | /* |
| 873 | * Utilization of the tasks "assigned" to this runqueue (including |
| 874 | * the tasks that are in runqueue and the tasks that executed on this |
| 875 | * CPU and blocked). Increased when a task moves to this runqueue, and |
| 876 | * decreased when the task moves away (migrates, changes scheduling |
| 877 | * policy, or terminates). |
| 878 | * This is needed to compute the "inactive utilization" for the |
| 879 | * runqueue (inactive utilization = this_bw - running_bw). |
| 880 | */ |
| 881 | u64 this_bw; |
| 882 | u64 extra_bw; |
| 883 | |
| 884 | /* |
| 885 | * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM |
| 886 | * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). |
| 887 | */ |
| 888 | u64 max_bw; |
| 889 | |
| 890 | /* |
| 891 | * Inverse of the fraction of CPU utilization that can be reclaimed |
| 892 | * by the GRUB algorithm. |
| 893 | */ |
| 894 | u64 bw_ratio; |
| 895 | }; |
| 896 | |
| 897 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 898 | |
| 899 | /* An entity is a task if it doesn't "own" a runqueue */ |
| 900 | #define entity_is_task(se) (!se->my_q) |
| 901 | |
| 902 | static inline void se_update_runnable(struct sched_entity *se) |
| 903 | { |
| 904 | if (!entity_is_task(se)) |
| 905 | se->runnable_weight = se->my_q->h_nr_runnable; |
| 906 | } |
| 907 | |
| 908 | static inline long se_runnable(struct sched_entity *se) |
| 909 | { |
| 910 | if (se->sched_delayed) |
| 911 | return false; |
| 912 | |
| 913 | if (entity_is_task(se)) |
| 914 | return !!se->on_rq; |
| 915 | else |
| 916 | return se->runnable_weight; |
| 917 | } |
| 918 | |
| 919 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ |
| 920 | |
| 921 | #define entity_is_task(se) 1 |
| 922 | |
| 923 | static inline void se_update_runnable(struct sched_entity *se) { } |
| 924 | |
| 925 | static inline long se_runnable(struct sched_entity *se) |
| 926 | { |
| 927 | if (se->sched_delayed) |
| 928 | return false; |
| 929 | |
| 930 | return !!se->on_rq; |
| 931 | } |
| 932 | |
| 933 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ |
| 934 | |
| 935 | #ifdef CONFIG_SMP |
| 936 | /* |
| 937 | * XXX we want to get rid of these helpers and use the full load resolution. |
| 938 | */ |
| 939 | static inline long se_weight(struct sched_entity *se) |
| 940 | { |
| 941 | return scale_load_down(se->load.weight); |
| 942 | } |
| 943 | |
| 944 | |
| 945 | static inline bool sched_asym_prefer(int a, int b) |
| 946 | { |
| 947 | return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); |
| 948 | } |
| 949 | |
| 950 | struct perf_domain { |
| 951 | struct em_perf_domain *em_pd; |
| 952 | struct perf_domain *next; |
| 953 | struct rcu_head rcu; |
| 954 | }; |
| 955 | |
| 956 | /* |
| 957 | * We add the notion of a root-domain which will be used to define per-domain |
| 958 | * variables. Each exclusive cpuset essentially defines an island domain by |
| 959 | * fully partitioning the member CPUs from any other cpuset. Whenever a new |
| 960 | * exclusive cpuset is created, we also create and attach a new root-domain |
| 961 | * object. |
| 962 | * |
| 963 | */ |
| 964 | struct root_domain { |
| 965 | atomic_t refcount; |
| 966 | atomic_t rto_count; |
| 967 | struct rcu_head rcu; |
| 968 | cpumask_var_t span; |
| 969 | cpumask_var_t online; |
| 970 | |
| 971 | /* |
| 972 | * Indicate pullable load on at least one CPU, e.g: |
| 973 | * - More than one runnable task |
| 974 | * - Running task is misfit |
| 975 | */ |
| 976 | bool overloaded; |
| 977 | |
| 978 | /* Indicate one or more CPUs over-utilized (tipping point) */ |
| 979 | bool overutilized; |
| 980 | |
| 981 | /* |
| 982 | * The bit corresponding to a CPU gets set here if such CPU has more |
| 983 | * than one runnable -deadline task (as it is below for RT tasks). |
| 984 | */ |
| 985 | cpumask_var_t dlo_mask; |
| 986 | atomic_t dlo_count; |
| 987 | struct dl_bw dl_bw; |
| 988 | struct cpudl cpudl; |
| 989 | |
| 990 | /* |
| 991 | * Indicate whether a root_domain's dl_bw has been checked or |
| 992 | * updated. It's monotonously increasing value. |
| 993 | * |
| 994 | * Also, some corner cases, like 'wrap around' is dangerous, but given |
| 995 | * that u64 is 'big enough'. So that shouldn't be a concern. |
| 996 | */ |
| 997 | u64 visit_cookie; |
| 998 | |
| 999 | #ifdef HAVE_RT_PUSH_IPI |
| 1000 | /* |
| 1001 | * For IPI pull requests, loop across the rto_mask. |
| 1002 | */ |
| 1003 | struct irq_work rto_push_work; |
| 1004 | raw_spinlock_t rto_lock; |
| 1005 | /* These are only updated and read within rto_lock */ |
| 1006 | int rto_loop; |
| 1007 | int rto_cpu; |
| 1008 | /* These atomics are updated outside of a lock */ |
| 1009 | atomic_t rto_loop_next; |
| 1010 | atomic_t rto_loop_start; |
| 1011 | #endif |
| 1012 | /* |
| 1013 | * The "RT overload" flag: it gets set if a CPU has more than |
| 1014 | * one runnable RT task. |
| 1015 | */ |
| 1016 | cpumask_var_t rto_mask; |
| 1017 | struct cpupri cpupri; |
| 1018 | |
| 1019 | /* |
| 1020 | * NULL-terminated list of performance domains intersecting with the |
| 1021 | * CPUs of the rd. Protected by RCU. |
| 1022 | */ |
| 1023 | struct perf_domain __rcu *pd; |
| 1024 | }; |
| 1025 | |
| 1026 | extern void init_defrootdomain(void); |
| 1027 | extern int sched_init_domains(const struct cpumask *cpu_map); |
| 1028 | extern void rq_attach_root(struct rq *rq, struct root_domain *rd); |
| 1029 | extern void sched_get_rd(struct root_domain *rd); |
| 1030 | extern void sched_put_rd(struct root_domain *rd); |
| 1031 | |
| 1032 | static inline int get_rd_overloaded(struct root_domain *rd) |
| 1033 | { |
| 1034 | return READ_ONCE(rd->overloaded); |
| 1035 | } |
| 1036 | |
| 1037 | static inline void set_rd_overloaded(struct root_domain *rd, int status) |
| 1038 | { |
| 1039 | if (get_rd_overloaded(rd) != status) |
| 1040 | WRITE_ONCE(rd->overloaded, status); |
| 1041 | } |
| 1042 | |
| 1043 | #ifdef HAVE_RT_PUSH_IPI |
| 1044 | extern void rto_push_irq_work_func(struct irq_work *work); |
| 1045 | #endif |
| 1046 | #endif /* CONFIG_SMP */ |
| 1047 | |
| 1048 | #ifdef CONFIG_UCLAMP_TASK |
| 1049 | /* |
| 1050 | * struct uclamp_bucket - Utilization clamp bucket |
| 1051 | * @value: utilization clamp value for tasks on this clamp bucket |
| 1052 | * @tasks: number of RUNNABLE tasks on this clamp bucket |
| 1053 | * |
| 1054 | * Keep track of how many tasks are RUNNABLE for a given utilization |
| 1055 | * clamp value. |
| 1056 | */ |
| 1057 | struct uclamp_bucket { |
| 1058 | unsigned long value : bits_per(SCHED_CAPACITY_SCALE); |
| 1059 | unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); |
| 1060 | }; |
| 1061 | |
| 1062 | /* |
| 1063 | * struct uclamp_rq - rq's utilization clamp |
| 1064 | * @value: currently active clamp values for a rq |
| 1065 | * @bucket: utilization clamp buckets affecting a rq |
| 1066 | * |
| 1067 | * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. |
| 1068 | * A clamp value is affecting a rq when there is at least one task RUNNABLE |
| 1069 | * (or actually running) with that value. |
| 1070 | * |
| 1071 | * There are up to UCLAMP_CNT possible different clamp values, currently there |
| 1072 | * are only two: minimum utilization and maximum utilization. |
| 1073 | * |
| 1074 | * All utilization clamping values are MAX aggregated, since: |
| 1075 | * - for util_min: we want to run the CPU at least at the max of the minimum |
| 1076 | * utilization required by its currently RUNNABLE tasks. |
| 1077 | * - for util_max: we want to allow the CPU to run up to the max of the |
| 1078 | * maximum utilization allowed by its currently RUNNABLE tasks. |
| 1079 | * |
| 1080 | * Since on each system we expect only a limited number of different |
| 1081 | * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track |
| 1082 | * the metrics required to compute all the per-rq utilization clamp values. |
| 1083 | */ |
| 1084 | struct uclamp_rq { |
| 1085 | unsigned int value; |
| 1086 | struct uclamp_bucket bucket[UCLAMP_BUCKETS]; |
| 1087 | }; |
| 1088 | |
| 1089 | DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); |
| 1090 | #endif /* CONFIG_UCLAMP_TASK */ |
| 1091 | |
| 1092 | /* |
| 1093 | * This is the main, per-CPU runqueue data structure. |
| 1094 | * |
| 1095 | * Locking rule: those places that want to lock multiple runqueues |
| 1096 | * (such as the load balancing or the thread migration code), lock |
| 1097 | * acquire operations must be ordered by ascending &runqueue. |
| 1098 | */ |
| 1099 | struct rq { |
| 1100 | /* runqueue lock: */ |
| 1101 | raw_spinlock_t __lock; |
| 1102 | |
| 1103 | unsigned int nr_running; |
| 1104 | #ifdef CONFIG_NUMA_BALANCING |
| 1105 | unsigned int nr_numa_running; |
| 1106 | unsigned int nr_preferred_running; |
| 1107 | unsigned int numa_migrate_on; |
| 1108 | #endif |
| 1109 | #ifdef CONFIG_NO_HZ_COMMON |
| 1110 | #ifdef CONFIG_SMP |
| 1111 | unsigned long last_blocked_load_update_tick; |
| 1112 | unsigned int has_blocked_load; |
| 1113 | call_single_data_t nohz_csd; |
| 1114 | #endif /* CONFIG_SMP */ |
| 1115 | unsigned int nohz_tick_stopped; |
| 1116 | atomic_t nohz_flags; |
| 1117 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 1118 | |
| 1119 | #ifdef CONFIG_SMP |
| 1120 | unsigned int ttwu_pending; |
| 1121 | #endif |
| 1122 | u64 nr_switches; |
| 1123 | |
| 1124 | #ifdef CONFIG_UCLAMP_TASK |
| 1125 | /* Utilization clamp values based on CPU's RUNNABLE tasks */ |
| 1126 | struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; |
| 1127 | unsigned int uclamp_flags; |
| 1128 | #define UCLAMP_FLAG_IDLE 0x01 |
| 1129 | #endif |
| 1130 | |
| 1131 | struct cfs_rq cfs; |
| 1132 | struct rt_rq rt; |
| 1133 | struct dl_rq dl; |
| 1134 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 1135 | struct scx_rq scx; |
| 1136 | #endif |
| 1137 | |
| 1138 | struct sched_dl_entity fair_server; |
| 1139 | |
| 1140 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1141 | /* list of leaf cfs_rq on this CPU: */ |
| 1142 | struct list_head leaf_cfs_rq_list; |
| 1143 | struct list_head *tmp_alone_branch; |
| 1144 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 1145 | |
| 1146 | /* |
| 1147 | * This is part of a global counter where only the total sum |
| 1148 | * over all CPUs matters. A task can increase this counter on |
| 1149 | * one CPU and if it got migrated afterwards it may decrease |
| 1150 | * it on another CPU. Always updated under the runqueue lock: |
| 1151 | */ |
| 1152 | unsigned int nr_uninterruptible; |
| 1153 | |
| 1154 | union { |
| 1155 | struct task_struct __rcu *donor; /* Scheduler context */ |
| 1156 | struct task_struct __rcu *curr; /* Execution context */ |
| 1157 | }; |
| 1158 | struct sched_dl_entity *dl_server; |
| 1159 | struct task_struct *idle; |
| 1160 | struct task_struct *stop; |
| 1161 | unsigned long next_balance; |
| 1162 | struct mm_struct *prev_mm; |
| 1163 | |
| 1164 | unsigned int clock_update_flags; |
| 1165 | u64 clock; |
| 1166 | /* Ensure that all clocks are in the same cache line */ |
| 1167 | u64 clock_task ____cacheline_aligned; |
| 1168 | u64 clock_pelt; |
| 1169 | unsigned long lost_idle_time; |
| 1170 | u64 clock_pelt_idle; |
| 1171 | u64 clock_idle; |
| 1172 | #ifndef CONFIG_64BIT |
| 1173 | u64 clock_pelt_idle_copy; |
| 1174 | u64 clock_idle_copy; |
| 1175 | #endif |
| 1176 | |
| 1177 | atomic_t nr_iowait; |
| 1178 | |
| 1179 | u64 last_seen_need_resched_ns; |
| 1180 | int ticks_without_resched; |
| 1181 | |
| 1182 | #ifdef CONFIG_MEMBARRIER |
| 1183 | int membarrier_state; |
| 1184 | #endif |
| 1185 | |
| 1186 | #ifdef CONFIG_SMP |
| 1187 | struct root_domain *rd; |
| 1188 | struct sched_domain __rcu *sd; |
| 1189 | |
| 1190 | unsigned long cpu_capacity; |
| 1191 | |
| 1192 | struct balance_callback *balance_callback; |
| 1193 | |
| 1194 | unsigned char nohz_idle_balance; |
| 1195 | unsigned char idle_balance; |
| 1196 | |
| 1197 | unsigned long misfit_task_load; |
| 1198 | |
| 1199 | /* For active balancing */ |
| 1200 | int active_balance; |
| 1201 | int push_cpu; |
| 1202 | struct cpu_stop_work active_balance_work; |
| 1203 | |
| 1204 | /* CPU of this runqueue: */ |
| 1205 | int cpu; |
| 1206 | int online; |
| 1207 | |
| 1208 | struct list_head cfs_tasks; |
| 1209 | |
| 1210 | struct sched_avg avg_rt; |
| 1211 | struct sched_avg avg_dl; |
| 1212 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| 1213 | struct sched_avg avg_irq; |
| 1214 | #endif |
| 1215 | #ifdef CONFIG_SCHED_HW_PRESSURE |
| 1216 | struct sched_avg avg_hw; |
| 1217 | #endif |
| 1218 | u64 idle_stamp; |
| 1219 | u64 avg_idle; |
| 1220 | |
| 1221 | /* This is used to determine avg_idle's max value */ |
| 1222 | u64 max_idle_balance_cost; |
| 1223 | |
| 1224 | #ifdef CONFIG_HOTPLUG_CPU |
| 1225 | struct rcuwait hotplug_wait; |
| 1226 | #endif |
| 1227 | #endif /* CONFIG_SMP */ |
| 1228 | |
| 1229 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 1230 | u64 prev_irq_time; |
| 1231 | u64 psi_irq_time; |
| 1232 | #endif |
| 1233 | #ifdef CONFIG_PARAVIRT |
| 1234 | u64 prev_steal_time; |
| 1235 | #endif |
| 1236 | #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| 1237 | u64 prev_steal_time_rq; |
| 1238 | #endif |
| 1239 | |
| 1240 | /* calc_load related fields */ |
| 1241 | unsigned long calc_load_update; |
| 1242 | long calc_load_active; |
| 1243 | |
| 1244 | #ifdef CONFIG_SCHED_HRTICK |
| 1245 | #ifdef CONFIG_SMP |
| 1246 | call_single_data_t hrtick_csd; |
| 1247 | #endif |
| 1248 | struct hrtimer hrtick_timer; |
| 1249 | ktime_t hrtick_time; |
| 1250 | #endif |
| 1251 | |
| 1252 | #ifdef CONFIG_SCHEDSTATS |
| 1253 | /* latency stats */ |
| 1254 | struct sched_info rq_sched_info; |
| 1255 | unsigned long long rq_cpu_time; |
| 1256 | |
| 1257 | /* sys_sched_yield() stats */ |
| 1258 | unsigned int yld_count; |
| 1259 | |
| 1260 | /* schedule() stats */ |
| 1261 | unsigned int sched_count; |
| 1262 | unsigned int sched_goidle; |
| 1263 | |
| 1264 | /* try_to_wake_up() stats */ |
| 1265 | unsigned int ttwu_count; |
| 1266 | unsigned int ttwu_local; |
| 1267 | #endif |
| 1268 | |
| 1269 | #ifdef CONFIG_CPU_IDLE |
| 1270 | /* Must be inspected within a RCU lock section */ |
| 1271 | struct cpuidle_state *idle_state; |
| 1272 | #endif |
| 1273 | |
| 1274 | #ifdef CONFIG_SMP |
| 1275 | unsigned int nr_pinned; |
| 1276 | #endif |
| 1277 | unsigned int push_busy; |
| 1278 | struct cpu_stop_work push_work; |
| 1279 | |
| 1280 | #ifdef CONFIG_SCHED_CORE |
| 1281 | /* per rq */ |
| 1282 | struct rq *core; |
| 1283 | struct task_struct *core_pick; |
| 1284 | struct sched_dl_entity *core_dl_server; |
| 1285 | unsigned int core_enabled; |
| 1286 | unsigned int core_sched_seq; |
| 1287 | struct rb_root core_tree; |
| 1288 | |
| 1289 | /* shared state -- careful with sched_core_cpu_deactivate() */ |
| 1290 | unsigned int core_task_seq; |
| 1291 | unsigned int core_pick_seq; |
| 1292 | unsigned long core_cookie; |
| 1293 | unsigned int core_forceidle_count; |
| 1294 | unsigned int core_forceidle_seq; |
| 1295 | unsigned int core_forceidle_occupation; |
| 1296 | u64 core_forceidle_start; |
| 1297 | #endif |
| 1298 | |
| 1299 | /* Scratch cpumask to be temporarily used under rq_lock */ |
| 1300 | cpumask_var_t scratch_mask; |
| 1301 | |
| 1302 | #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) |
| 1303 | call_single_data_t cfsb_csd; |
| 1304 | struct list_head cfsb_csd_list; |
| 1305 | #endif |
| 1306 | }; |
| 1307 | |
| 1308 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1309 | |
| 1310 | /* CPU runqueue to which this cfs_rq is attached */ |
| 1311 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
| 1312 | { |
| 1313 | return cfs_rq->rq; |
| 1314 | } |
| 1315 | |
| 1316 | #else |
| 1317 | |
| 1318 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
| 1319 | { |
| 1320 | return container_of(cfs_rq, struct rq, cfs); |
| 1321 | } |
| 1322 | #endif |
| 1323 | |
| 1324 | static inline int cpu_of(struct rq *rq) |
| 1325 | { |
| 1326 | #ifdef CONFIG_SMP |
| 1327 | return rq->cpu; |
| 1328 | #else |
| 1329 | return 0; |
| 1330 | #endif |
| 1331 | } |
| 1332 | |
| 1333 | #define MDF_PUSH 0x01 |
| 1334 | |
| 1335 | static inline bool is_migration_disabled(struct task_struct *p) |
| 1336 | { |
| 1337 | #ifdef CONFIG_SMP |
| 1338 | return p->migration_disabled; |
| 1339 | #else |
| 1340 | return false; |
| 1341 | #endif |
| 1342 | } |
| 1343 | |
| 1344 | DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| 1345 | |
| 1346 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| 1347 | #define this_rq() this_cpu_ptr(&runqueues) |
| 1348 | #define task_rq(p) cpu_rq(task_cpu(p)) |
| 1349 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| 1350 | #define raw_rq() raw_cpu_ptr(&runqueues) |
| 1351 | |
| 1352 | static inline void rq_set_donor(struct rq *rq, struct task_struct *t) |
| 1353 | { |
| 1354 | /* Do nothing */ |
| 1355 | } |
| 1356 | |
| 1357 | #ifdef CONFIG_SCHED_CORE |
| 1358 | static inline struct cpumask *sched_group_span(struct sched_group *sg); |
| 1359 | |
| 1360 | DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); |
| 1361 | |
| 1362 | static inline bool sched_core_enabled(struct rq *rq) |
| 1363 | { |
| 1364 | return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; |
| 1365 | } |
| 1366 | |
| 1367 | static inline bool sched_core_disabled(void) |
| 1368 | { |
| 1369 | return !static_branch_unlikely(&__sched_core_enabled); |
| 1370 | } |
| 1371 | |
| 1372 | /* |
| 1373 | * Be careful with this function; not for general use. The return value isn't |
| 1374 | * stable unless you actually hold a relevant rq->__lock. |
| 1375 | */ |
| 1376 | static inline raw_spinlock_t *rq_lockp(struct rq *rq) |
| 1377 | { |
| 1378 | if (sched_core_enabled(rq)) |
| 1379 | return &rq->core->__lock; |
| 1380 | |
| 1381 | return &rq->__lock; |
| 1382 | } |
| 1383 | |
| 1384 | static inline raw_spinlock_t *__rq_lockp(struct rq *rq) |
| 1385 | { |
| 1386 | if (rq->core_enabled) |
| 1387 | return &rq->core->__lock; |
| 1388 | |
| 1389 | return &rq->__lock; |
| 1390 | } |
| 1391 | |
| 1392 | extern bool |
| 1393 | cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); |
| 1394 | |
| 1395 | extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); |
| 1396 | |
| 1397 | /* |
| 1398 | * Helpers to check if the CPU's core cookie matches with the task's cookie |
| 1399 | * when core scheduling is enabled. |
| 1400 | * A special case is that the task's cookie always matches with CPU's core |
| 1401 | * cookie if the CPU is in an idle core. |
| 1402 | */ |
| 1403 | static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) |
| 1404 | { |
| 1405 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ |
| 1406 | if (!sched_core_enabled(rq)) |
| 1407 | return true; |
| 1408 | |
| 1409 | return rq->core->core_cookie == p->core_cookie; |
| 1410 | } |
| 1411 | |
| 1412 | static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) |
| 1413 | { |
| 1414 | bool idle_core = true; |
| 1415 | int cpu; |
| 1416 | |
| 1417 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ |
| 1418 | if (!sched_core_enabled(rq)) |
| 1419 | return true; |
| 1420 | |
| 1421 | for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { |
| 1422 | if (!available_idle_cpu(cpu)) { |
| 1423 | idle_core = false; |
| 1424 | break; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * A CPU in an idle core is always the best choice for tasks with |
| 1430 | * cookies. |
| 1431 | */ |
| 1432 | return idle_core || rq->core->core_cookie == p->core_cookie; |
| 1433 | } |
| 1434 | |
| 1435 | static inline bool sched_group_cookie_match(struct rq *rq, |
| 1436 | struct task_struct *p, |
| 1437 | struct sched_group *group) |
| 1438 | { |
| 1439 | int cpu; |
| 1440 | |
| 1441 | /* Ignore cookie match if core scheduler is not enabled on the CPU. */ |
| 1442 | if (!sched_core_enabled(rq)) |
| 1443 | return true; |
| 1444 | |
| 1445 | for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { |
| 1446 | if (sched_core_cookie_match(cpu_rq(cpu), p)) |
| 1447 | return true; |
| 1448 | } |
| 1449 | return false; |
| 1450 | } |
| 1451 | |
| 1452 | static inline bool sched_core_enqueued(struct task_struct *p) |
| 1453 | { |
| 1454 | return !RB_EMPTY_NODE(&p->core_node); |
| 1455 | } |
| 1456 | |
| 1457 | extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); |
| 1458 | extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); |
| 1459 | |
| 1460 | extern void sched_core_get(void); |
| 1461 | extern void sched_core_put(void); |
| 1462 | |
| 1463 | #else /* !CONFIG_SCHED_CORE: */ |
| 1464 | |
| 1465 | static inline bool sched_core_enabled(struct rq *rq) |
| 1466 | { |
| 1467 | return false; |
| 1468 | } |
| 1469 | |
| 1470 | static inline bool sched_core_disabled(void) |
| 1471 | { |
| 1472 | return true; |
| 1473 | } |
| 1474 | |
| 1475 | static inline raw_spinlock_t *rq_lockp(struct rq *rq) |
| 1476 | { |
| 1477 | return &rq->__lock; |
| 1478 | } |
| 1479 | |
| 1480 | static inline raw_spinlock_t *__rq_lockp(struct rq *rq) |
| 1481 | { |
| 1482 | return &rq->__lock; |
| 1483 | } |
| 1484 | |
| 1485 | static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) |
| 1486 | { |
| 1487 | return true; |
| 1488 | } |
| 1489 | |
| 1490 | static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) |
| 1491 | { |
| 1492 | return true; |
| 1493 | } |
| 1494 | |
| 1495 | static inline bool sched_group_cookie_match(struct rq *rq, |
| 1496 | struct task_struct *p, |
| 1497 | struct sched_group *group) |
| 1498 | { |
| 1499 | return true; |
| 1500 | } |
| 1501 | |
| 1502 | #endif /* !CONFIG_SCHED_CORE */ |
| 1503 | #ifdef CONFIG_RT_GROUP_SCHED |
| 1504 | # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED |
| 1505 | DECLARE_STATIC_KEY_FALSE(rt_group_sched); |
| 1506 | static inline bool rt_group_sched_enabled(void) |
| 1507 | { |
| 1508 | return static_branch_unlikely(&rt_group_sched); |
| 1509 | } |
| 1510 | # else |
| 1511 | DECLARE_STATIC_KEY_TRUE(rt_group_sched); |
| 1512 | static inline bool rt_group_sched_enabled(void) |
| 1513 | { |
| 1514 | return static_branch_likely(&rt_group_sched); |
| 1515 | } |
| 1516 | # endif /* CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ |
| 1517 | #else |
| 1518 | # define rt_group_sched_enabled() false |
| 1519 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 1520 | |
| 1521 | static inline void lockdep_assert_rq_held(struct rq *rq) |
| 1522 | { |
| 1523 | lockdep_assert_held(__rq_lockp(rq)); |
| 1524 | } |
| 1525 | |
| 1526 | extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); |
| 1527 | extern bool raw_spin_rq_trylock(struct rq *rq); |
| 1528 | extern void raw_spin_rq_unlock(struct rq *rq); |
| 1529 | |
| 1530 | static inline void raw_spin_rq_lock(struct rq *rq) |
| 1531 | { |
| 1532 | raw_spin_rq_lock_nested(rq, 0); |
| 1533 | } |
| 1534 | |
| 1535 | static inline void raw_spin_rq_lock_irq(struct rq *rq) |
| 1536 | { |
| 1537 | local_irq_disable(); |
| 1538 | raw_spin_rq_lock(rq); |
| 1539 | } |
| 1540 | |
| 1541 | static inline void raw_spin_rq_unlock_irq(struct rq *rq) |
| 1542 | { |
| 1543 | raw_spin_rq_unlock(rq); |
| 1544 | local_irq_enable(); |
| 1545 | } |
| 1546 | |
| 1547 | static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) |
| 1548 | { |
| 1549 | unsigned long flags; |
| 1550 | |
| 1551 | local_irq_save(flags); |
| 1552 | raw_spin_rq_lock(rq); |
| 1553 | |
| 1554 | return flags; |
| 1555 | } |
| 1556 | |
| 1557 | static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) |
| 1558 | { |
| 1559 | raw_spin_rq_unlock(rq); |
| 1560 | local_irq_restore(flags); |
| 1561 | } |
| 1562 | |
| 1563 | #define raw_spin_rq_lock_irqsave(rq, flags) \ |
| 1564 | do { \ |
| 1565 | flags = _raw_spin_rq_lock_irqsave(rq); \ |
| 1566 | } while (0) |
| 1567 | |
| 1568 | #ifdef CONFIG_SCHED_SMT |
| 1569 | extern void __update_idle_core(struct rq *rq); |
| 1570 | |
| 1571 | static inline void update_idle_core(struct rq *rq) |
| 1572 | { |
| 1573 | if (static_branch_unlikely(&sched_smt_present)) |
| 1574 | __update_idle_core(rq); |
| 1575 | } |
| 1576 | |
| 1577 | #else |
| 1578 | static inline void update_idle_core(struct rq *rq) { } |
| 1579 | #endif |
| 1580 | |
| 1581 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 1582 | |
| 1583 | static inline struct task_struct *task_of(struct sched_entity *se) |
| 1584 | { |
| 1585 | WARN_ON_ONCE(!entity_is_task(se)); |
| 1586 | return container_of(se, struct task_struct, se); |
| 1587 | } |
| 1588 | |
| 1589 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
| 1590 | { |
| 1591 | return p->se.cfs_rq; |
| 1592 | } |
| 1593 | |
| 1594 | /* runqueue on which this entity is (to be) queued */ |
| 1595 | static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) |
| 1596 | { |
| 1597 | return se->cfs_rq; |
| 1598 | } |
| 1599 | |
| 1600 | /* runqueue "owned" by this group */ |
| 1601 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
| 1602 | { |
| 1603 | return grp->my_q; |
| 1604 | } |
| 1605 | |
| 1606 | #else /* !CONFIG_FAIR_GROUP_SCHED: */ |
| 1607 | |
| 1608 | #define task_of(_se) container_of(_se, struct task_struct, se) |
| 1609 | |
| 1610 | static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) |
| 1611 | { |
| 1612 | return &task_rq(p)->cfs; |
| 1613 | } |
| 1614 | |
| 1615 | static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) |
| 1616 | { |
| 1617 | const struct task_struct *p = task_of(se); |
| 1618 | struct rq *rq = task_rq(p); |
| 1619 | |
| 1620 | return &rq->cfs; |
| 1621 | } |
| 1622 | |
| 1623 | /* runqueue "owned" by this group */ |
| 1624 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
| 1625 | { |
| 1626 | return NULL; |
| 1627 | } |
| 1628 | |
| 1629 | #endif /* !CONFIG_FAIR_GROUP_SCHED */ |
| 1630 | |
| 1631 | extern void update_rq_clock(struct rq *rq); |
| 1632 | |
| 1633 | /* |
| 1634 | * rq::clock_update_flags bits |
| 1635 | * |
| 1636 | * %RQCF_REQ_SKIP - will request skipping of clock update on the next |
| 1637 | * call to __schedule(). This is an optimisation to avoid |
| 1638 | * neighbouring rq clock updates. |
| 1639 | * |
| 1640 | * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is |
| 1641 | * in effect and calls to update_rq_clock() are being ignored. |
| 1642 | * |
| 1643 | * %RQCF_UPDATED - is a debug flag that indicates whether a call has been |
| 1644 | * made to update_rq_clock() since the last time rq::lock was pinned. |
| 1645 | * |
| 1646 | * If inside of __schedule(), clock_update_flags will have been |
| 1647 | * shifted left (a left shift is a cheap operation for the fast path |
| 1648 | * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, |
| 1649 | * |
| 1650 | * if (rq-clock_update_flags >= RQCF_UPDATED) |
| 1651 | * |
| 1652 | * to check if %RQCF_UPDATED is set. It'll never be shifted more than |
| 1653 | * one position though, because the next rq_unpin_lock() will shift it |
| 1654 | * back. |
| 1655 | */ |
| 1656 | #define RQCF_REQ_SKIP 0x01 |
| 1657 | #define RQCF_ACT_SKIP 0x02 |
| 1658 | #define RQCF_UPDATED 0x04 |
| 1659 | |
| 1660 | static inline void assert_clock_updated(struct rq *rq) |
| 1661 | { |
| 1662 | /* |
| 1663 | * The only reason for not seeing a clock update since the |
| 1664 | * last rq_pin_lock() is if we're currently skipping updates. |
| 1665 | */ |
| 1666 | WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); |
| 1667 | } |
| 1668 | |
| 1669 | static inline u64 rq_clock(struct rq *rq) |
| 1670 | { |
| 1671 | lockdep_assert_rq_held(rq); |
| 1672 | assert_clock_updated(rq); |
| 1673 | |
| 1674 | return rq->clock; |
| 1675 | } |
| 1676 | |
| 1677 | static inline u64 rq_clock_task(struct rq *rq) |
| 1678 | { |
| 1679 | lockdep_assert_rq_held(rq); |
| 1680 | assert_clock_updated(rq); |
| 1681 | |
| 1682 | return rq->clock_task; |
| 1683 | } |
| 1684 | |
| 1685 | static inline void rq_clock_skip_update(struct rq *rq) |
| 1686 | { |
| 1687 | lockdep_assert_rq_held(rq); |
| 1688 | rq->clock_update_flags |= RQCF_REQ_SKIP; |
| 1689 | } |
| 1690 | |
| 1691 | /* |
| 1692 | * See rt task throttling, which is the only time a skip |
| 1693 | * request is canceled. |
| 1694 | */ |
| 1695 | static inline void rq_clock_cancel_skipupdate(struct rq *rq) |
| 1696 | { |
| 1697 | lockdep_assert_rq_held(rq); |
| 1698 | rq->clock_update_flags &= ~RQCF_REQ_SKIP; |
| 1699 | } |
| 1700 | |
| 1701 | /* |
| 1702 | * During cpu offlining and rq wide unthrottling, we can trigger |
| 1703 | * an update_rq_clock() for several cfs and rt runqueues (Typically |
| 1704 | * when using list_for_each_entry_*) |
| 1705 | * rq_clock_start_loop_update() can be called after updating the clock |
| 1706 | * once and before iterating over the list to prevent multiple update. |
| 1707 | * After the iterative traversal, we need to call rq_clock_stop_loop_update() |
| 1708 | * to clear RQCF_ACT_SKIP of rq->clock_update_flags. |
| 1709 | */ |
| 1710 | static inline void rq_clock_start_loop_update(struct rq *rq) |
| 1711 | { |
| 1712 | lockdep_assert_rq_held(rq); |
| 1713 | WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); |
| 1714 | rq->clock_update_flags |= RQCF_ACT_SKIP; |
| 1715 | } |
| 1716 | |
| 1717 | static inline void rq_clock_stop_loop_update(struct rq *rq) |
| 1718 | { |
| 1719 | lockdep_assert_rq_held(rq); |
| 1720 | rq->clock_update_flags &= ~RQCF_ACT_SKIP; |
| 1721 | } |
| 1722 | |
| 1723 | struct rq_flags { |
| 1724 | unsigned long flags; |
| 1725 | struct pin_cookie cookie; |
| 1726 | /* |
| 1727 | * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the |
| 1728 | * current pin context is stashed here in case it needs to be |
| 1729 | * restored in rq_repin_lock(). |
| 1730 | */ |
| 1731 | unsigned int clock_update_flags; |
| 1732 | }; |
| 1733 | |
| 1734 | extern struct balance_callback balance_push_callback; |
| 1735 | |
| 1736 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 1737 | extern const struct sched_class ext_sched_class; |
| 1738 | |
| 1739 | DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ |
| 1740 | DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ |
| 1741 | |
| 1742 | #define scx_enabled() static_branch_unlikely(&__scx_enabled) |
| 1743 | #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) |
| 1744 | |
| 1745 | static inline void scx_rq_clock_update(struct rq *rq, u64 clock) |
| 1746 | { |
| 1747 | if (!scx_enabled()) |
| 1748 | return; |
| 1749 | WRITE_ONCE(rq->scx.clock, clock); |
| 1750 | smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); |
| 1751 | } |
| 1752 | |
| 1753 | static inline void scx_rq_clock_invalidate(struct rq *rq) |
| 1754 | { |
| 1755 | if (!scx_enabled()) |
| 1756 | return; |
| 1757 | WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); |
| 1758 | } |
| 1759 | |
| 1760 | #else /* !CONFIG_SCHED_CLASS_EXT */ |
| 1761 | #define scx_enabled() false |
| 1762 | #define scx_switched_all() false |
| 1763 | |
| 1764 | static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} |
| 1765 | static inline void scx_rq_clock_invalidate(struct rq *rq) {} |
| 1766 | #endif /* !CONFIG_SCHED_CLASS_EXT */ |
| 1767 | |
| 1768 | /* |
| 1769 | * Lockdep annotation that avoids accidental unlocks; it's like a |
| 1770 | * sticky/continuous lockdep_assert_held(). |
| 1771 | * |
| 1772 | * This avoids code that has access to 'struct rq *rq' (basically everything in |
| 1773 | * the scheduler) from accidentally unlocking the rq if they do not also have a |
| 1774 | * copy of the (on-stack) 'struct rq_flags rf'. |
| 1775 | * |
| 1776 | * Also see Documentation/locking/lockdep-design.rst. |
| 1777 | */ |
| 1778 | static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) |
| 1779 | { |
| 1780 | rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); |
| 1781 | |
| 1782 | rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); |
| 1783 | rf->clock_update_flags = 0; |
| 1784 | #ifdef CONFIG_SMP |
| 1785 | WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); |
| 1786 | #endif |
| 1787 | } |
| 1788 | |
| 1789 | static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) |
| 1790 | { |
| 1791 | if (rq->clock_update_flags > RQCF_ACT_SKIP) |
| 1792 | rf->clock_update_flags = RQCF_UPDATED; |
| 1793 | |
| 1794 | scx_rq_clock_invalidate(rq); |
| 1795 | lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); |
| 1796 | } |
| 1797 | |
| 1798 | static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) |
| 1799 | { |
| 1800 | lockdep_repin_lock(__rq_lockp(rq), rf->cookie); |
| 1801 | |
| 1802 | /* |
| 1803 | * Restore the value we stashed in @rf for this pin context. |
| 1804 | */ |
| 1805 | rq->clock_update_flags |= rf->clock_update_flags; |
| 1806 | } |
| 1807 | |
| 1808 | extern |
| 1809 | struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 1810 | __acquires(rq->lock); |
| 1811 | |
| 1812 | extern |
| 1813 | struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| 1814 | __acquires(p->pi_lock) |
| 1815 | __acquires(rq->lock); |
| 1816 | |
| 1817 | static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) |
| 1818 | __releases(rq->lock) |
| 1819 | { |
| 1820 | rq_unpin_lock(rq, rf); |
| 1821 | raw_spin_rq_unlock(rq); |
| 1822 | } |
| 1823 | |
| 1824 | static inline void |
| 1825 | task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
| 1826 | __releases(rq->lock) |
| 1827 | __releases(p->pi_lock) |
| 1828 | { |
| 1829 | rq_unpin_lock(rq, rf); |
| 1830 | raw_spin_rq_unlock(rq); |
| 1831 | raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| 1832 | } |
| 1833 | |
| 1834 | DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, |
| 1835 | _T->rq = task_rq_lock(_T->lock, &_T->rf), |
| 1836 | task_rq_unlock(_T->rq, _T->lock, &_T->rf), |
| 1837 | struct rq *rq; struct rq_flags rf) |
| 1838 | |
| 1839 | static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) |
| 1840 | __acquires(rq->lock) |
| 1841 | { |
| 1842 | raw_spin_rq_lock_irqsave(rq, rf->flags); |
| 1843 | rq_pin_lock(rq, rf); |
| 1844 | } |
| 1845 | |
| 1846 | static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) |
| 1847 | __acquires(rq->lock) |
| 1848 | { |
| 1849 | raw_spin_rq_lock_irq(rq); |
| 1850 | rq_pin_lock(rq, rf); |
| 1851 | } |
| 1852 | |
| 1853 | static inline void rq_lock(struct rq *rq, struct rq_flags *rf) |
| 1854 | __acquires(rq->lock) |
| 1855 | { |
| 1856 | raw_spin_rq_lock(rq); |
| 1857 | rq_pin_lock(rq, rf); |
| 1858 | } |
| 1859 | |
| 1860 | static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) |
| 1861 | __releases(rq->lock) |
| 1862 | { |
| 1863 | rq_unpin_lock(rq, rf); |
| 1864 | raw_spin_rq_unlock_irqrestore(rq, rf->flags); |
| 1865 | } |
| 1866 | |
| 1867 | static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) |
| 1868 | __releases(rq->lock) |
| 1869 | { |
| 1870 | rq_unpin_lock(rq, rf); |
| 1871 | raw_spin_rq_unlock_irq(rq); |
| 1872 | } |
| 1873 | |
| 1874 | static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) |
| 1875 | __releases(rq->lock) |
| 1876 | { |
| 1877 | rq_unpin_lock(rq, rf); |
| 1878 | raw_spin_rq_unlock(rq); |
| 1879 | } |
| 1880 | |
| 1881 | DEFINE_LOCK_GUARD_1(rq_lock, struct rq, |
| 1882 | rq_lock(_T->lock, &_T->rf), |
| 1883 | rq_unlock(_T->lock, &_T->rf), |
| 1884 | struct rq_flags rf) |
| 1885 | |
| 1886 | DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, |
| 1887 | rq_lock_irq(_T->lock, &_T->rf), |
| 1888 | rq_unlock_irq(_T->lock, &_T->rf), |
| 1889 | struct rq_flags rf) |
| 1890 | |
| 1891 | DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, |
| 1892 | rq_lock_irqsave(_T->lock, &_T->rf), |
| 1893 | rq_unlock_irqrestore(_T->lock, &_T->rf), |
| 1894 | struct rq_flags rf) |
| 1895 | |
| 1896 | static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) |
| 1897 | __acquires(rq->lock) |
| 1898 | { |
| 1899 | struct rq *rq; |
| 1900 | |
| 1901 | local_irq_disable(); |
| 1902 | rq = this_rq(); |
| 1903 | rq_lock(rq, rf); |
| 1904 | |
| 1905 | return rq; |
| 1906 | } |
| 1907 | |
| 1908 | #ifdef CONFIG_NUMA |
| 1909 | |
| 1910 | enum numa_topology_type { |
| 1911 | NUMA_DIRECT, |
| 1912 | NUMA_GLUELESS_MESH, |
| 1913 | NUMA_BACKPLANE, |
| 1914 | }; |
| 1915 | |
| 1916 | extern enum numa_topology_type sched_numa_topology_type; |
| 1917 | extern int sched_max_numa_distance; |
| 1918 | extern bool find_numa_distance(int distance); |
| 1919 | extern void sched_init_numa(int offline_node); |
| 1920 | extern void sched_update_numa(int cpu, bool online); |
| 1921 | extern void sched_domains_numa_masks_set(unsigned int cpu); |
| 1922 | extern void sched_domains_numa_masks_clear(unsigned int cpu); |
| 1923 | extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); |
| 1924 | |
| 1925 | #else /* !CONFIG_NUMA: */ |
| 1926 | |
| 1927 | static inline void sched_init_numa(int offline_node) { } |
| 1928 | static inline void sched_update_numa(int cpu, bool online) { } |
| 1929 | static inline void sched_domains_numa_masks_set(unsigned int cpu) { } |
| 1930 | static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } |
| 1931 | |
| 1932 | static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) |
| 1933 | { |
| 1934 | return nr_cpu_ids; |
| 1935 | } |
| 1936 | |
| 1937 | #endif /* !CONFIG_NUMA */ |
| 1938 | |
| 1939 | #ifdef CONFIG_NUMA_BALANCING |
| 1940 | |
| 1941 | /* The regions in numa_faults array from task_struct */ |
| 1942 | enum numa_faults_stats { |
| 1943 | NUMA_MEM = 0, |
| 1944 | NUMA_CPU, |
| 1945 | NUMA_MEMBUF, |
| 1946 | NUMA_CPUBUF |
| 1947 | }; |
| 1948 | |
| 1949 | extern void sched_setnuma(struct task_struct *p, int node); |
| 1950 | extern int migrate_task_to(struct task_struct *p, int cpu); |
| 1951 | extern int migrate_swap(struct task_struct *p, struct task_struct *t, |
| 1952 | int cpu, int scpu); |
| 1953 | extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); |
| 1954 | |
| 1955 | #else /* !CONFIG_NUMA_BALANCING: */ |
| 1956 | |
| 1957 | static inline void |
| 1958 | init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
| 1959 | { |
| 1960 | } |
| 1961 | |
| 1962 | #endif /* !CONFIG_NUMA_BALANCING */ |
| 1963 | |
| 1964 | #ifdef CONFIG_SMP |
| 1965 | |
| 1966 | static inline void |
| 1967 | queue_balance_callback(struct rq *rq, |
| 1968 | struct balance_callback *head, |
| 1969 | void (*func)(struct rq *rq)) |
| 1970 | { |
| 1971 | lockdep_assert_rq_held(rq); |
| 1972 | |
| 1973 | /* |
| 1974 | * Don't (re)queue an already queued item; nor queue anything when |
| 1975 | * balance_push() is active, see the comment with |
| 1976 | * balance_push_callback. |
| 1977 | */ |
| 1978 | if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) |
| 1979 | return; |
| 1980 | |
| 1981 | head->func = func; |
| 1982 | head->next = rq->balance_callback; |
| 1983 | rq->balance_callback = head; |
| 1984 | } |
| 1985 | |
| 1986 | #define rcu_dereference_check_sched_domain(p) \ |
| 1987 | rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) |
| 1988 | |
| 1989 | /* |
| 1990 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| 1991 | * See destroy_sched_domains: call_rcu for details. |
| 1992 | * |
| 1993 | * The domain tree of any CPU may only be accessed from within |
| 1994 | * preempt-disabled sections. |
| 1995 | */ |
| 1996 | #define for_each_domain(cpu, __sd) \ |
| 1997 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| 1998 | __sd; __sd = __sd->parent) |
| 1999 | |
| 2000 | /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ |
| 2001 | #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | |
| 2002 | static const unsigned int SD_SHARED_CHILD_MASK = |
| 2003 | #include <linux/sched/sd_flags.h> |
| 2004 | 0; |
| 2005 | #undef SD_FLAG |
| 2006 | |
| 2007 | /** |
| 2008 | * highest_flag_domain - Return highest sched_domain containing flag. |
| 2009 | * @cpu: The CPU whose highest level of sched domain is to |
| 2010 | * be returned. |
| 2011 | * @flag: The flag to check for the highest sched_domain |
| 2012 | * for the given CPU. |
| 2013 | * |
| 2014 | * Returns the highest sched_domain of a CPU which contains @flag. If @flag has |
| 2015 | * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. |
| 2016 | */ |
| 2017 | static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| 2018 | { |
| 2019 | struct sched_domain *sd, *hsd = NULL; |
| 2020 | |
| 2021 | for_each_domain(cpu, sd) { |
| 2022 | if (sd->flags & flag) { |
| 2023 | hsd = sd; |
| 2024 | continue; |
| 2025 | } |
| 2026 | |
| 2027 | /* |
| 2028 | * Stop the search if @flag is known to be shared at lower |
| 2029 | * levels. It will not be found further up. |
| 2030 | */ |
| 2031 | if (flag & SD_SHARED_CHILD_MASK) |
| 2032 | break; |
| 2033 | } |
| 2034 | |
| 2035 | return hsd; |
| 2036 | } |
| 2037 | |
| 2038 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
| 2039 | { |
| 2040 | struct sched_domain *sd; |
| 2041 | |
| 2042 | for_each_domain(cpu, sd) { |
| 2043 | if (sd->flags & flag) |
| 2044 | break; |
| 2045 | } |
| 2046 | |
| 2047 | return sd; |
| 2048 | } |
| 2049 | |
| 2050 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); |
| 2051 | DECLARE_PER_CPU(int, sd_llc_size); |
| 2052 | DECLARE_PER_CPU(int, sd_llc_id); |
| 2053 | DECLARE_PER_CPU(int, sd_share_id); |
| 2054 | DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); |
| 2055 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); |
| 2056 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); |
| 2057 | DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); |
| 2058 | |
| 2059 | extern struct static_key_false sched_asym_cpucapacity; |
| 2060 | extern struct static_key_false sched_cluster_active; |
| 2061 | |
| 2062 | static __always_inline bool sched_asym_cpucap_active(void) |
| 2063 | { |
| 2064 | return static_branch_unlikely(&sched_asym_cpucapacity); |
| 2065 | } |
| 2066 | |
| 2067 | struct sched_group_capacity { |
| 2068 | atomic_t ref; |
| 2069 | /* |
| 2070 | * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity |
| 2071 | * for a single CPU. |
| 2072 | */ |
| 2073 | unsigned long capacity; |
| 2074 | unsigned long min_capacity; /* Min per-CPU capacity in group */ |
| 2075 | unsigned long max_capacity; /* Max per-CPU capacity in group */ |
| 2076 | unsigned long next_update; |
| 2077 | int imbalance; /* XXX unrelated to capacity but shared group state */ |
| 2078 | |
| 2079 | int id; |
| 2080 | |
| 2081 | unsigned long cpumask[]; /* Balance mask */ |
| 2082 | }; |
| 2083 | |
| 2084 | struct sched_group { |
| 2085 | struct sched_group *next; /* Must be a circular list */ |
| 2086 | atomic_t ref; |
| 2087 | |
| 2088 | unsigned int group_weight; |
| 2089 | unsigned int cores; |
| 2090 | struct sched_group_capacity *sgc; |
| 2091 | int asym_prefer_cpu; /* CPU of highest priority in group */ |
| 2092 | int flags; |
| 2093 | |
| 2094 | /* |
| 2095 | * The CPUs this group covers. |
| 2096 | * |
| 2097 | * NOTE: this field is variable length. (Allocated dynamically |
| 2098 | * by attaching extra space to the end of the structure, |
| 2099 | * depending on how many CPUs the kernel has booted up with) |
| 2100 | */ |
| 2101 | unsigned long cpumask[]; |
| 2102 | }; |
| 2103 | |
| 2104 | static inline struct cpumask *sched_group_span(struct sched_group *sg) |
| 2105 | { |
| 2106 | return to_cpumask(sg->cpumask); |
| 2107 | } |
| 2108 | |
| 2109 | /* |
| 2110 | * See build_balance_mask(). |
| 2111 | */ |
| 2112 | static inline struct cpumask *group_balance_mask(struct sched_group *sg) |
| 2113 | { |
| 2114 | return to_cpumask(sg->sgc->cpumask); |
| 2115 | } |
| 2116 | |
| 2117 | extern int group_balance_cpu(struct sched_group *sg); |
| 2118 | |
| 2119 | extern void update_sched_domain_debugfs(void); |
| 2120 | extern void dirty_sched_domain_sysctl(int cpu); |
| 2121 | |
| 2122 | extern int sched_update_scaling(void); |
| 2123 | |
| 2124 | static inline const struct cpumask *task_user_cpus(struct task_struct *p) |
| 2125 | { |
| 2126 | if (!p->user_cpus_ptr) |
| 2127 | return cpu_possible_mask; /* &init_task.cpus_mask */ |
| 2128 | return p->user_cpus_ptr; |
| 2129 | } |
| 2130 | |
| 2131 | #endif /* CONFIG_SMP */ |
| 2132 | |
| 2133 | #ifdef CONFIG_CGROUP_SCHED |
| 2134 | |
| 2135 | /* |
| 2136 | * Return the group to which this tasks belongs. |
| 2137 | * |
| 2138 | * We cannot use task_css() and friends because the cgroup subsystem |
| 2139 | * changes that value before the cgroup_subsys::attach() method is called, |
| 2140 | * therefore we cannot pin it and might observe the wrong value. |
| 2141 | * |
| 2142 | * The same is true for autogroup's p->signal->autogroup->tg, the autogroup |
| 2143 | * core changes this before calling sched_move_task(). |
| 2144 | * |
| 2145 | * Instead we use a 'copy' which is updated from sched_move_task() while |
| 2146 | * holding both task_struct::pi_lock and rq::lock. |
| 2147 | */ |
| 2148 | static inline struct task_group *task_group(struct task_struct *p) |
| 2149 | { |
| 2150 | return p->sched_task_group; |
| 2151 | } |
| 2152 | |
| 2153 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| 2154 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| 2155 | { |
| 2156 | #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| 2157 | struct task_group *tg = task_group(p); |
| 2158 | #endif |
| 2159 | |
| 2160 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 2161 | set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); |
| 2162 | p->se.cfs_rq = tg->cfs_rq[cpu]; |
| 2163 | p->se.parent = tg->se[cpu]; |
| 2164 | p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; |
| 2165 | #endif |
| 2166 | |
| 2167 | #ifdef CONFIG_RT_GROUP_SCHED |
| 2168 | /* |
| 2169 | * p->rt.rt_rq is NULL initially and it is easier to assign |
| 2170 | * root_task_group's rt_rq than switching in rt_rq_of_se() |
| 2171 | * Clobbers tg(!) |
| 2172 | */ |
| 2173 | if (!rt_group_sched_enabled()) |
| 2174 | tg = &root_task_group; |
| 2175 | p->rt.rt_rq = tg->rt_rq[cpu]; |
| 2176 | p->rt.parent = tg->rt_se[cpu]; |
| 2177 | #endif |
| 2178 | } |
| 2179 | |
| 2180 | #else /* !CONFIG_CGROUP_SCHED: */ |
| 2181 | |
| 2182 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| 2183 | |
| 2184 | static inline struct task_group *task_group(struct task_struct *p) |
| 2185 | { |
| 2186 | return NULL; |
| 2187 | } |
| 2188 | |
| 2189 | #endif /* !CONFIG_CGROUP_SCHED */ |
| 2190 | |
| 2191 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 2192 | { |
| 2193 | set_task_rq(p, cpu); |
| 2194 | #ifdef CONFIG_SMP |
| 2195 | /* |
| 2196 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| 2197 | * successfully executed on another CPU. We must ensure that updates of |
| 2198 | * per-task data have been completed by this moment. |
| 2199 | */ |
| 2200 | smp_wmb(); |
| 2201 | WRITE_ONCE(task_thread_info(p)->cpu, cpu); |
| 2202 | p->wake_cpu = cpu; |
| 2203 | #endif |
| 2204 | } |
| 2205 | |
| 2206 | /* |
| 2207 | * Tunables: |
| 2208 | */ |
| 2209 | |
| 2210 | #define SCHED_FEAT(name, enabled) \ |
| 2211 | __SCHED_FEAT_##name , |
| 2212 | |
| 2213 | enum { |
| 2214 | #include "features.h" |
| 2215 | __SCHED_FEAT_NR, |
| 2216 | }; |
| 2217 | |
| 2218 | #undef SCHED_FEAT |
| 2219 | |
| 2220 | /* |
| 2221 | * To support run-time toggling of sched features, all the translation units |
| 2222 | * (but core.c) reference the sysctl_sched_features defined in core.c. |
| 2223 | */ |
| 2224 | extern __read_mostly unsigned int sysctl_sched_features; |
| 2225 | |
| 2226 | #ifdef CONFIG_JUMP_LABEL |
| 2227 | |
| 2228 | #define SCHED_FEAT(name, enabled) \ |
| 2229 | static __always_inline bool static_branch_##name(struct static_key *key) \ |
| 2230 | { \ |
| 2231 | return static_key_##enabled(key); \ |
| 2232 | } |
| 2233 | |
| 2234 | #include "features.h" |
| 2235 | #undef SCHED_FEAT |
| 2236 | |
| 2237 | extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
| 2238 | #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| 2239 | |
| 2240 | #else /* !CONFIG_JUMP_LABEL: */ |
| 2241 | |
| 2242 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| 2243 | |
| 2244 | #endif /* !CONFIG_JUMP_LABEL */ |
| 2245 | |
| 2246 | extern struct static_key_false sched_numa_balancing; |
| 2247 | extern struct static_key_false sched_schedstats; |
| 2248 | |
| 2249 | static inline u64 global_rt_period(void) |
| 2250 | { |
| 2251 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| 2252 | } |
| 2253 | |
| 2254 | static inline u64 global_rt_runtime(void) |
| 2255 | { |
| 2256 | if (sysctl_sched_rt_runtime < 0) |
| 2257 | return RUNTIME_INF; |
| 2258 | |
| 2259 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * Is p the current execution context? |
| 2264 | */ |
| 2265 | static inline int task_current(struct rq *rq, struct task_struct *p) |
| 2266 | { |
| 2267 | return rq->curr == p; |
| 2268 | } |
| 2269 | |
| 2270 | /* |
| 2271 | * Is p the current scheduling context? |
| 2272 | * |
| 2273 | * Note that it might be the current execution context at the same time if |
| 2274 | * rq->curr == rq->donor == p. |
| 2275 | */ |
| 2276 | static inline int task_current_donor(struct rq *rq, struct task_struct *p) |
| 2277 | { |
| 2278 | return rq->donor == p; |
| 2279 | } |
| 2280 | |
| 2281 | static inline int task_on_cpu(struct rq *rq, struct task_struct *p) |
| 2282 | { |
| 2283 | #ifdef CONFIG_SMP |
| 2284 | return p->on_cpu; |
| 2285 | #else |
| 2286 | return task_current(rq, p); |
| 2287 | #endif |
| 2288 | } |
| 2289 | |
| 2290 | static inline int task_on_rq_queued(struct task_struct *p) |
| 2291 | { |
| 2292 | return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; |
| 2293 | } |
| 2294 | |
| 2295 | static inline int task_on_rq_migrating(struct task_struct *p) |
| 2296 | { |
| 2297 | return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; |
| 2298 | } |
| 2299 | |
| 2300 | /* Wake flags. The first three directly map to some SD flag value */ |
| 2301 | #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ |
| 2302 | #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ |
| 2303 | #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ |
| 2304 | |
| 2305 | #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ |
| 2306 | #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ |
| 2307 | #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ |
| 2308 | #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ |
| 2309 | |
| 2310 | #ifdef CONFIG_SMP |
| 2311 | static_assert(WF_EXEC == SD_BALANCE_EXEC); |
| 2312 | static_assert(WF_FORK == SD_BALANCE_FORK); |
| 2313 | static_assert(WF_TTWU == SD_BALANCE_WAKE); |
| 2314 | #endif |
| 2315 | |
| 2316 | /* |
| 2317 | * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| 2318 | * of tasks with abnormal "nice" values across CPUs the contribution that |
| 2319 | * each task makes to its run queue's load is weighted according to its |
| 2320 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| 2321 | * scaled version of the new time slice allocation that they receive on time |
| 2322 | * slice expiry etc. |
| 2323 | */ |
| 2324 | |
| 2325 | #define WEIGHT_IDLEPRIO 3 |
| 2326 | #define WMULT_IDLEPRIO 1431655765 |
| 2327 | |
| 2328 | extern const int sched_prio_to_weight[40]; |
| 2329 | extern const u32 sched_prio_to_wmult[40]; |
| 2330 | |
| 2331 | /* |
| 2332 | * {de,en}queue flags: |
| 2333 | * |
| 2334 | * DEQUEUE_SLEEP - task is no longer runnable |
| 2335 | * ENQUEUE_WAKEUP - task just became runnable |
| 2336 | * |
| 2337 | * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks |
| 2338 | * are in a known state which allows modification. Such pairs |
| 2339 | * should preserve as much state as possible. |
| 2340 | * |
| 2341 | * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location |
| 2342 | * in the runqueue. |
| 2343 | * |
| 2344 | * NOCLOCK - skip the update_rq_clock() (avoids double updates) |
| 2345 | * |
| 2346 | * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) |
| 2347 | * |
| 2348 | * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) |
| 2349 | * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) |
| 2350 | * ENQUEUE_MIGRATED - the task was migrated during wakeup |
| 2351 | * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called |
| 2352 | * |
| 2353 | */ |
| 2354 | |
| 2355 | #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ |
| 2356 | #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ |
| 2357 | #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ |
| 2358 | #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ |
| 2359 | #define DEQUEUE_SPECIAL 0x10 |
| 2360 | #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ |
| 2361 | #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ |
| 2362 | |
| 2363 | #define ENQUEUE_WAKEUP 0x01 |
| 2364 | #define ENQUEUE_RESTORE 0x02 |
| 2365 | #define ENQUEUE_MOVE 0x04 |
| 2366 | #define ENQUEUE_NOCLOCK 0x08 |
| 2367 | |
| 2368 | #define ENQUEUE_HEAD 0x10 |
| 2369 | #define ENQUEUE_REPLENISH 0x20 |
| 2370 | #ifdef CONFIG_SMP |
| 2371 | #define ENQUEUE_MIGRATED 0x40 |
| 2372 | #else |
| 2373 | #define ENQUEUE_MIGRATED 0x00 |
| 2374 | #endif |
| 2375 | #define ENQUEUE_INITIAL 0x80 |
| 2376 | #define ENQUEUE_MIGRATING 0x100 |
| 2377 | #define ENQUEUE_DELAYED 0x200 |
| 2378 | #define ENQUEUE_RQ_SELECTED 0x400 |
| 2379 | |
| 2380 | #define RETRY_TASK ((void *)-1UL) |
| 2381 | |
| 2382 | struct affinity_context { |
| 2383 | const struct cpumask *new_mask; |
| 2384 | struct cpumask *user_mask; |
| 2385 | unsigned int flags; |
| 2386 | }; |
| 2387 | |
| 2388 | extern s64 update_curr_common(struct rq *rq); |
| 2389 | |
| 2390 | struct sched_class { |
| 2391 | |
| 2392 | #ifdef CONFIG_UCLAMP_TASK |
| 2393 | int uclamp_enabled; |
| 2394 | #endif |
| 2395 | |
| 2396 | void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
| 2397 | bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); |
| 2398 | void (*yield_task) (struct rq *rq); |
| 2399 | bool (*yield_to_task)(struct rq *rq, struct task_struct *p); |
| 2400 | |
| 2401 | void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); |
| 2402 | |
| 2403 | int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); |
| 2404 | struct task_struct *(*pick_task)(struct rq *rq); |
| 2405 | /* |
| 2406 | * Optional! When implemented pick_next_task() should be equivalent to: |
| 2407 | * |
| 2408 | * next = pick_task(); |
| 2409 | * if (next) { |
| 2410 | * put_prev_task(prev); |
| 2411 | * set_next_task_first(next); |
| 2412 | * } |
| 2413 | */ |
| 2414 | struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); |
| 2415 | |
| 2416 | void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); |
| 2417 | void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); |
| 2418 | |
| 2419 | #ifdef CONFIG_SMP |
| 2420 | int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); |
| 2421 | |
| 2422 | void (*migrate_task_rq)(struct task_struct *p, int new_cpu); |
| 2423 | |
| 2424 | void (*task_woken)(struct rq *this_rq, struct task_struct *task); |
| 2425 | |
| 2426 | void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); |
| 2427 | |
| 2428 | void (*rq_online)(struct rq *rq); |
| 2429 | void (*rq_offline)(struct rq *rq); |
| 2430 | |
| 2431 | struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); |
| 2432 | #endif |
| 2433 | |
| 2434 | void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); |
| 2435 | void (*task_fork)(struct task_struct *p); |
| 2436 | void (*task_dead)(struct task_struct *p); |
| 2437 | |
| 2438 | /* |
| 2439 | * The switched_from() call is allowed to drop rq->lock, therefore we |
| 2440 | * cannot assume the switched_from/switched_to pair is serialized by |
| 2441 | * rq->lock. They are however serialized by p->pi_lock. |
| 2442 | */ |
| 2443 | void (*switching_to) (struct rq *this_rq, struct task_struct *task); |
| 2444 | void (*switched_from)(struct rq *this_rq, struct task_struct *task); |
| 2445 | void (*switched_to) (struct rq *this_rq, struct task_struct *task); |
| 2446 | void (*reweight_task)(struct rq *this_rq, struct task_struct *task, |
| 2447 | const struct load_weight *lw); |
| 2448 | void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
| 2449 | int oldprio); |
| 2450 | |
| 2451 | unsigned int (*get_rr_interval)(struct rq *rq, |
| 2452 | struct task_struct *task); |
| 2453 | |
| 2454 | void (*update_curr)(struct rq *rq); |
| 2455 | |
| 2456 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 2457 | void (*task_change_group)(struct task_struct *p); |
| 2458 | #endif |
| 2459 | |
| 2460 | #ifdef CONFIG_SCHED_CORE |
| 2461 | int (*task_is_throttled)(struct task_struct *p, int cpu); |
| 2462 | #endif |
| 2463 | }; |
| 2464 | |
| 2465 | static inline void put_prev_task(struct rq *rq, struct task_struct *prev) |
| 2466 | { |
| 2467 | WARN_ON_ONCE(rq->donor != prev); |
| 2468 | prev->sched_class->put_prev_task(rq, prev, NULL); |
| 2469 | } |
| 2470 | |
| 2471 | static inline void set_next_task(struct rq *rq, struct task_struct *next) |
| 2472 | { |
| 2473 | next->sched_class->set_next_task(rq, next, false); |
| 2474 | } |
| 2475 | |
| 2476 | static inline void |
| 2477 | __put_prev_set_next_dl_server(struct rq *rq, |
| 2478 | struct task_struct *prev, |
| 2479 | struct task_struct *next) |
| 2480 | { |
| 2481 | prev->dl_server = NULL; |
| 2482 | next->dl_server = rq->dl_server; |
| 2483 | rq->dl_server = NULL; |
| 2484 | } |
| 2485 | |
| 2486 | static inline void put_prev_set_next_task(struct rq *rq, |
| 2487 | struct task_struct *prev, |
| 2488 | struct task_struct *next) |
| 2489 | { |
| 2490 | WARN_ON_ONCE(rq->curr != prev); |
| 2491 | |
| 2492 | __put_prev_set_next_dl_server(rq, prev, next); |
| 2493 | |
| 2494 | if (next == prev) |
| 2495 | return; |
| 2496 | |
| 2497 | prev->sched_class->put_prev_task(rq, prev, next); |
| 2498 | next->sched_class->set_next_task(rq, next, true); |
| 2499 | } |
| 2500 | |
| 2501 | /* |
| 2502 | * Helper to define a sched_class instance; each one is placed in a separate |
| 2503 | * section which is ordered by the linker script: |
| 2504 | * |
| 2505 | * include/asm-generic/vmlinux.lds.h |
| 2506 | * |
| 2507 | * *CAREFUL* they are laid out in *REVERSE* order!!! |
| 2508 | * |
| 2509 | * Also enforce alignment on the instance, not the type, to guarantee layout. |
| 2510 | */ |
| 2511 | #define DEFINE_SCHED_CLASS(name) \ |
| 2512 | const struct sched_class name##_sched_class \ |
| 2513 | __aligned(__alignof__(struct sched_class)) \ |
| 2514 | __section("__" #name "_sched_class") |
| 2515 | |
| 2516 | /* Defined in include/asm-generic/vmlinux.lds.h */ |
| 2517 | extern struct sched_class __sched_class_highest[]; |
| 2518 | extern struct sched_class __sched_class_lowest[]; |
| 2519 | |
| 2520 | extern const struct sched_class stop_sched_class; |
| 2521 | extern const struct sched_class dl_sched_class; |
| 2522 | extern const struct sched_class rt_sched_class; |
| 2523 | extern const struct sched_class fair_sched_class; |
| 2524 | extern const struct sched_class idle_sched_class; |
| 2525 | |
| 2526 | /* |
| 2527 | * Iterate only active classes. SCX can take over all fair tasks or be |
| 2528 | * completely disabled. If the former, skip fair. If the latter, skip SCX. |
| 2529 | */ |
| 2530 | static inline const struct sched_class *next_active_class(const struct sched_class *class) |
| 2531 | { |
| 2532 | class++; |
| 2533 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 2534 | if (scx_switched_all() && class == &fair_sched_class) |
| 2535 | class++; |
| 2536 | if (!scx_enabled() && class == &ext_sched_class) |
| 2537 | class++; |
| 2538 | #endif |
| 2539 | return class; |
| 2540 | } |
| 2541 | |
| 2542 | #define for_class_range(class, _from, _to) \ |
| 2543 | for (class = (_from); class < (_to); class++) |
| 2544 | |
| 2545 | #define for_each_class(class) \ |
| 2546 | for_class_range(class, __sched_class_highest, __sched_class_lowest) |
| 2547 | |
| 2548 | #define for_active_class_range(class, _from, _to) \ |
| 2549 | for (class = (_from); class != (_to); class = next_active_class(class)) |
| 2550 | |
| 2551 | #define for_each_active_class(class) \ |
| 2552 | for_active_class_range(class, __sched_class_highest, __sched_class_lowest) |
| 2553 | |
| 2554 | #define sched_class_above(_a, _b) ((_a) < (_b)) |
| 2555 | |
| 2556 | static inline bool sched_stop_runnable(struct rq *rq) |
| 2557 | { |
| 2558 | return rq->stop && task_on_rq_queued(rq->stop); |
| 2559 | } |
| 2560 | |
| 2561 | static inline bool sched_dl_runnable(struct rq *rq) |
| 2562 | { |
| 2563 | return rq->dl.dl_nr_running > 0; |
| 2564 | } |
| 2565 | |
| 2566 | static inline bool sched_rt_runnable(struct rq *rq) |
| 2567 | { |
| 2568 | return rq->rt.rt_queued > 0; |
| 2569 | } |
| 2570 | |
| 2571 | static inline bool sched_fair_runnable(struct rq *rq) |
| 2572 | { |
| 2573 | return rq->cfs.nr_queued > 0; |
| 2574 | } |
| 2575 | |
| 2576 | extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); |
| 2577 | extern struct task_struct *pick_task_idle(struct rq *rq); |
| 2578 | |
| 2579 | #define SCA_CHECK 0x01 |
| 2580 | #define SCA_MIGRATE_DISABLE 0x02 |
| 2581 | #define SCA_MIGRATE_ENABLE 0x04 |
| 2582 | #define SCA_USER 0x08 |
| 2583 | |
| 2584 | #ifdef CONFIG_SMP |
| 2585 | |
| 2586 | extern void update_group_capacity(struct sched_domain *sd, int cpu); |
| 2587 | |
| 2588 | extern void sched_balance_trigger(struct rq *rq); |
| 2589 | |
| 2590 | extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); |
| 2591 | extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); |
| 2592 | |
| 2593 | static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) |
| 2594 | { |
| 2595 | /* When not in the task's cpumask, no point in looking further. */ |
| 2596 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
| 2597 | return false; |
| 2598 | |
| 2599 | /* Can @cpu run a user thread? */ |
| 2600 | if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) |
| 2601 | return false; |
| 2602 | |
| 2603 | return true; |
| 2604 | } |
| 2605 | |
| 2606 | static inline cpumask_t *alloc_user_cpus_ptr(int node) |
| 2607 | { |
| 2608 | /* |
| 2609 | * See do_set_cpus_allowed() above for the rcu_head usage. |
| 2610 | */ |
| 2611 | int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); |
| 2612 | |
| 2613 | return kmalloc_node(size, GFP_KERNEL, node); |
| 2614 | } |
| 2615 | |
| 2616 | static inline struct task_struct *get_push_task(struct rq *rq) |
| 2617 | { |
| 2618 | struct task_struct *p = rq->donor; |
| 2619 | |
| 2620 | lockdep_assert_rq_held(rq); |
| 2621 | |
| 2622 | if (rq->push_busy) |
| 2623 | return NULL; |
| 2624 | |
| 2625 | if (p->nr_cpus_allowed == 1) |
| 2626 | return NULL; |
| 2627 | |
| 2628 | if (p->migration_disabled) |
| 2629 | return NULL; |
| 2630 | |
| 2631 | rq->push_busy = true; |
| 2632 | return get_task_struct(p); |
| 2633 | } |
| 2634 | |
| 2635 | extern int push_cpu_stop(void *arg); |
| 2636 | |
| 2637 | #else /* !CONFIG_SMP: */ |
| 2638 | |
| 2639 | static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) |
| 2640 | { |
| 2641 | return true; |
| 2642 | } |
| 2643 | |
| 2644 | static inline int __set_cpus_allowed_ptr(struct task_struct *p, |
| 2645 | struct affinity_context *ctx) |
| 2646 | { |
| 2647 | return set_cpus_allowed_ptr(p, ctx->new_mask); |
| 2648 | } |
| 2649 | |
| 2650 | static inline cpumask_t *alloc_user_cpus_ptr(int node) |
| 2651 | { |
| 2652 | return NULL; |
| 2653 | } |
| 2654 | |
| 2655 | #endif /* !CONFIG_SMP */ |
| 2656 | |
| 2657 | #ifdef CONFIG_CPU_IDLE |
| 2658 | |
| 2659 | static inline void idle_set_state(struct rq *rq, |
| 2660 | struct cpuidle_state *idle_state) |
| 2661 | { |
| 2662 | rq->idle_state = idle_state; |
| 2663 | } |
| 2664 | |
| 2665 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| 2666 | { |
| 2667 | WARN_ON_ONCE(!rcu_read_lock_held()); |
| 2668 | |
| 2669 | return rq->idle_state; |
| 2670 | } |
| 2671 | |
| 2672 | #else /* !CONFIG_CPU_IDLE: */ |
| 2673 | |
| 2674 | static inline void idle_set_state(struct rq *rq, |
| 2675 | struct cpuidle_state *idle_state) |
| 2676 | { |
| 2677 | } |
| 2678 | |
| 2679 | static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| 2680 | { |
| 2681 | return NULL; |
| 2682 | } |
| 2683 | |
| 2684 | #endif /* !CONFIG_CPU_IDLE */ |
| 2685 | |
| 2686 | extern void schedule_idle(void); |
| 2687 | asmlinkage void schedule_user(void); |
| 2688 | |
| 2689 | extern void sysrq_sched_debug_show(void); |
| 2690 | extern void sched_init_granularity(void); |
| 2691 | extern void update_max_interval(void); |
| 2692 | |
| 2693 | extern void init_sched_dl_class(void); |
| 2694 | extern void init_sched_rt_class(void); |
| 2695 | extern void init_sched_fair_class(void); |
| 2696 | |
| 2697 | extern void resched_curr(struct rq *rq); |
| 2698 | extern void resched_curr_lazy(struct rq *rq); |
| 2699 | extern void resched_cpu(int cpu); |
| 2700 | |
| 2701 | extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| 2702 | extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); |
| 2703 | |
| 2704 | extern void init_dl_entity(struct sched_dl_entity *dl_se); |
| 2705 | |
| 2706 | #define BW_SHIFT 20 |
| 2707 | #define BW_UNIT (1 << BW_SHIFT) |
| 2708 | #define RATIO_SHIFT 8 |
| 2709 | #define MAX_BW_BITS (64 - BW_SHIFT) |
| 2710 | #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) |
| 2711 | |
| 2712 | extern unsigned long to_ratio(u64 period, u64 runtime); |
| 2713 | |
| 2714 | extern void init_entity_runnable_average(struct sched_entity *se); |
| 2715 | extern void post_init_entity_util_avg(struct task_struct *p); |
| 2716 | |
| 2717 | #ifdef CONFIG_NO_HZ_FULL |
| 2718 | extern bool sched_can_stop_tick(struct rq *rq); |
| 2719 | extern int __init sched_tick_offload_init(void); |
| 2720 | |
| 2721 | /* |
| 2722 | * Tick may be needed by tasks in the runqueue depending on their policy and |
| 2723 | * requirements. If tick is needed, lets send the target an IPI to kick it out of |
| 2724 | * nohz mode if necessary. |
| 2725 | */ |
| 2726 | static inline void sched_update_tick_dependency(struct rq *rq) |
| 2727 | { |
| 2728 | int cpu = cpu_of(rq); |
| 2729 | |
| 2730 | if (!tick_nohz_full_cpu(cpu)) |
| 2731 | return; |
| 2732 | |
| 2733 | if (sched_can_stop_tick(rq)) |
| 2734 | tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); |
| 2735 | else |
| 2736 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); |
| 2737 | } |
| 2738 | #else /* !CONFIG_NO_HZ_FULL: */ |
| 2739 | static inline int sched_tick_offload_init(void) { return 0; } |
| 2740 | static inline void sched_update_tick_dependency(struct rq *rq) { } |
| 2741 | #endif /* !CONFIG_NO_HZ_FULL */ |
| 2742 | |
| 2743 | static inline void add_nr_running(struct rq *rq, unsigned count) |
| 2744 | { |
| 2745 | unsigned prev_nr = rq->nr_running; |
| 2746 | |
| 2747 | rq->nr_running = prev_nr + count; |
| 2748 | if (trace_sched_update_nr_running_tp_enabled()) { |
| 2749 | call_trace_sched_update_nr_running(rq, count); |
| 2750 | } |
| 2751 | |
| 2752 | #ifdef CONFIG_SMP |
| 2753 | if (prev_nr < 2 && rq->nr_running >= 2) |
| 2754 | set_rd_overloaded(rq->rd, 1); |
| 2755 | #endif |
| 2756 | |
| 2757 | sched_update_tick_dependency(rq); |
| 2758 | } |
| 2759 | |
| 2760 | static inline void sub_nr_running(struct rq *rq, unsigned count) |
| 2761 | { |
| 2762 | rq->nr_running -= count; |
| 2763 | if (trace_sched_update_nr_running_tp_enabled()) { |
| 2764 | call_trace_sched_update_nr_running(rq, -count); |
| 2765 | } |
| 2766 | |
| 2767 | /* Check if we still need preemption */ |
| 2768 | sched_update_tick_dependency(rq); |
| 2769 | } |
| 2770 | |
| 2771 | static inline void __block_task(struct rq *rq, struct task_struct *p) |
| 2772 | { |
| 2773 | if (p->sched_contributes_to_load) |
| 2774 | rq->nr_uninterruptible++; |
| 2775 | |
| 2776 | if (p->in_iowait) { |
| 2777 | atomic_inc(&rq->nr_iowait); |
| 2778 | delayacct_blkio_start(); |
| 2779 | } |
| 2780 | |
| 2781 | ASSERT_EXCLUSIVE_WRITER(p->on_rq); |
| 2782 | |
| 2783 | /* |
| 2784 | * The moment this write goes through, ttwu() can swoop in and migrate |
| 2785 | * this task, rendering our rq->__lock ineffective. |
| 2786 | * |
| 2787 | * __schedule() try_to_wake_up() |
| 2788 | * LOCK rq->__lock LOCK p->pi_lock |
| 2789 | * pick_next_task() |
| 2790 | * pick_next_task_fair() |
| 2791 | * pick_next_entity() |
| 2792 | * dequeue_entities() |
| 2793 | * __block_task() |
| 2794 | * RELEASE p->on_rq = 0 if (p->on_rq && ...) |
| 2795 | * break; |
| 2796 | * |
| 2797 | * ACQUIRE (after ctrl-dep) |
| 2798 | * |
| 2799 | * cpu = select_task_rq(); |
| 2800 | * set_task_cpu(p, cpu); |
| 2801 | * ttwu_queue() |
| 2802 | * ttwu_do_activate() |
| 2803 | * LOCK rq->__lock |
| 2804 | * activate_task() |
| 2805 | * STORE p->on_rq = 1 |
| 2806 | * UNLOCK rq->__lock |
| 2807 | * |
| 2808 | * Callers must ensure to not reference @p after this -- we no longer |
| 2809 | * own it. |
| 2810 | */ |
| 2811 | smp_store_release(&p->on_rq, 0); |
| 2812 | } |
| 2813 | |
| 2814 | extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| 2815 | extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| 2816 | |
| 2817 | extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); |
| 2818 | |
| 2819 | #ifdef CONFIG_PREEMPT_RT |
| 2820 | # define SCHED_NR_MIGRATE_BREAK 8 |
| 2821 | #else |
| 2822 | # define SCHED_NR_MIGRATE_BREAK 32 |
| 2823 | #endif |
| 2824 | |
| 2825 | extern __read_mostly unsigned int sysctl_sched_nr_migrate; |
| 2826 | extern __read_mostly unsigned int sysctl_sched_migration_cost; |
| 2827 | |
| 2828 | extern unsigned int sysctl_sched_base_slice; |
| 2829 | |
| 2830 | extern int sysctl_resched_latency_warn_ms; |
| 2831 | extern int sysctl_resched_latency_warn_once; |
| 2832 | |
| 2833 | extern unsigned int sysctl_sched_tunable_scaling; |
| 2834 | |
| 2835 | extern unsigned int sysctl_numa_balancing_scan_delay; |
| 2836 | extern unsigned int sysctl_numa_balancing_scan_period_min; |
| 2837 | extern unsigned int sysctl_numa_balancing_scan_period_max; |
| 2838 | extern unsigned int sysctl_numa_balancing_scan_size; |
| 2839 | extern unsigned int sysctl_numa_balancing_hot_threshold; |
| 2840 | |
| 2841 | #ifdef CONFIG_SCHED_HRTICK |
| 2842 | |
| 2843 | /* |
| 2844 | * Use hrtick when: |
| 2845 | * - enabled by features |
| 2846 | * - hrtimer is actually high res |
| 2847 | */ |
| 2848 | static inline int hrtick_enabled(struct rq *rq) |
| 2849 | { |
| 2850 | if (!cpu_active(cpu_of(rq))) |
| 2851 | return 0; |
| 2852 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
| 2853 | } |
| 2854 | |
| 2855 | static inline int hrtick_enabled_fair(struct rq *rq) |
| 2856 | { |
| 2857 | if (!sched_feat(HRTICK)) |
| 2858 | return 0; |
| 2859 | return hrtick_enabled(rq); |
| 2860 | } |
| 2861 | |
| 2862 | static inline int hrtick_enabled_dl(struct rq *rq) |
| 2863 | { |
| 2864 | if (!sched_feat(HRTICK_DL)) |
| 2865 | return 0; |
| 2866 | return hrtick_enabled(rq); |
| 2867 | } |
| 2868 | |
| 2869 | extern void hrtick_start(struct rq *rq, u64 delay); |
| 2870 | |
| 2871 | #else /* !CONFIG_SCHED_HRTICK: */ |
| 2872 | |
| 2873 | static inline int hrtick_enabled_fair(struct rq *rq) |
| 2874 | { |
| 2875 | return 0; |
| 2876 | } |
| 2877 | |
| 2878 | static inline int hrtick_enabled_dl(struct rq *rq) |
| 2879 | { |
| 2880 | return 0; |
| 2881 | } |
| 2882 | |
| 2883 | static inline int hrtick_enabled(struct rq *rq) |
| 2884 | { |
| 2885 | return 0; |
| 2886 | } |
| 2887 | |
| 2888 | #endif /* !CONFIG_SCHED_HRTICK */ |
| 2889 | |
| 2890 | #ifndef arch_scale_freq_tick |
| 2891 | static __always_inline void arch_scale_freq_tick(void) { } |
| 2892 | #endif |
| 2893 | |
| 2894 | #ifndef arch_scale_freq_capacity |
| 2895 | /** |
| 2896 | * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. |
| 2897 | * @cpu: the CPU in question. |
| 2898 | * |
| 2899 | * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. |
| 2900 | * |
| 2901 | * f_curr |
| 2902 | * ------ * SCHED_CAPACITY_SCALE |
| 2903 | * f_max |
| 2904 | */ |
| 2905 | static __always_inline |
| 2906 | unsigned long arch_scale_freq_capacity(int cpu) |
| 2907 | { |
| 2908 | return SCHED_CAPACITY_SCALE; |
| 2909 | } |
| 2910 | #endif |
| 2911 | |
| 2912 | /* |
| 2913 | * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to |
| 2914 | * acquire rq lock instead of rq_lock(). So at the end of these two functions |
| 2915 | * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of |
| 2916 | * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. |
| 2917 | */ |
| 2918 | static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) |
| 2919 | { |
| 2920 | rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); |
| 2921 | /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ |
| 2922 | #ifdef CONFIG_SMP |
| 2923 | rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); |
| 2924 | #endif |
| 2925 | } |
| 2926 | |
| 2927 | #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ |
| 2928 | __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ |
| 2929 | static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ |
| 2930 | { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ |
| 2931 | _lock; return _t; } |
| 2932 | |
| 2933 | #ifdef CONFIG_SMP |
| 2934 | |
| 2935 | static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) |
| 2936 | { |
| 2937 | #ifdef CONFIG_SCHED_CORE |
| 2938 | /* |
| 2939 | * In order to not have {0,2},{1,3} turn into into an AB-BA, |
| 2940 | * order by core-id first and cpu-id second. |
| 2941 | * |
| 2942 | * Notably: |
| 2943 | * |
| 2944 | * double_rq_lock(0,3); will take core-0, core-1 lock |
| 2945 | * double_rq_lock(1,2); will take core-1, core-0 lock |
| 2946 | * |
| 2947 | * when only cpu-id is considered. |
| 2948 | */ |
| 2949 | if (rq1->core->cpu < rq2->core->cpu) |
| 2950 | return true; |
| 2951 | if (rq1->core->cpu > rq2->core->cpu) |
| 2952 | return false; |
| 2953 | |
| 2954 | /* |
| 2955 | * __sched_core_flip() relies on SMT having cpu-id lock order. |
| 2956 | */ |
| 2957 | #endif |
| 2958 | return rq1->cpu < rq2->cpu; |
| 2959 | } |
| 2960 | |
| 2961 | extern void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| 2962 | |
| 2963 | #ifdef CONFIG_PREEMPTION |
| 2964 | |
| 2965 | /* |
| 2966 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| 2967 | * way at the expense of forcing extra atomic operations in all |
| 2968 | * invocations. This assures that the double_lock is acquired using the |
| 2969 | * same underlying policy as the spinlock_t on this architecture, which |
| 2970 | * reduces latency compared to the unfair variant below. However, it |
| 2971 | * also adds more overhead and therefore may reduce throughput. |
| 2972 | */ |
| 2973 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 2974 | __releases(this_rq->lock) |
| 2975 | __acquires(busiest->lock) |
| 2976 | __acquires(this_rq->lock) |
| 2977 | { |
| 2978 | raw_spin_rq_unlock(this_rq); |
| 2979 | double_rq_lock(this_rq, busiest); |
| 2980 | |
| 2981 | return 1; |
| 2982 | } |
| 2983 | |
| 2984 | #else /* !CONFIG_PREEMPTION: */ |
| 2985 | /* |
| 2986 | * Unfair double_lock_balance: Optimizes throughput at the expense of |
| 2987 | * latency by eliminating extra atomic operations when the locks are |
| 2988 | * already in proper order on entry. This favors lower CPU-ids and will |
| 2989 | * grant the double lock to lower CPUs over higher ids under contention, |
| 2990 | * regardless of entry order into the function. |
| 2991 | */ |
| 2992 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 2993 | __releases(this_rq->lock) |
| 2994 | __acquires(busiest->lock) |
| 2995 | __acquires(this_rq->lock) |
| 2996 | { |
| 2997 | if (__rq_lockp(this_rq) == __rq_lockp(busiest) || |
| 2998 | likely(raw_spin_rq_trylock(busiest))) { |
| 2999 | double_rq_clock_clear_update(this_rq, busiest); |
| 3000 | return 0; |
| 3001 | } |
| 3002 | |
| 3003 | if (rq_order_less(this_rq, busiest)) { |
| 3004 | raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); |
| 3005 | double_rq_clock_clear_update(this_rq, busiest); |
| 3006 | return 0; |
| 3007 | } |
| 3008 | |
| 3009 | raw_spin_rq_unlock(this_rq); |
| 3010 | double_rq_lock(this_rq, busiest); |
| 3011 | |
| 3012 | return 1; |
| 3013 | } |
| 3014 | |
| 3015 | #endif /* !CONFIG_PREEMPTION */ |
| 3016 | |
| 3017 | /* |
| 3018 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| 3019 | */ |
| 3020 | static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| 3021 | { |
| 3022 | lockdep_assert_irqs_disabled(); |
| 3023 | |
| 3024 | return _double_lock_balance(this_rq, busiest); |
| 3025 | } |
| 3026 | |
| 3027 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| 3028 | __releases(busiest->lock) |
| 3029 | { |
| 3030 | if (__rq_lockp(this_rq) != __rq_lockp(busiest)) |
| 3031 | raw_spin_rq_unlock(busiest); |
| 3032 | lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); |
| 3033 | } |
| 3034 | |
| 3035 | static inline void double_lock(spinlock_t *l1, spinlock_t *l2) |
| 3036 | { |
| 3037 | if (l1 > l2) |
| 3038 | swap(l1, l2); |
| 3039 | |
| 3040 | spin_lock(l1); |
| 3041 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 3042 | } |
| 3043 | |
| 3044 | static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) |
| 3045 | { |
| 3046 | if (l1 > l2) |
| 3047 | swap(l1, l2); |
| 3048 | |
| 3049 | spin_lock_irq(l1); |
| 3050 | spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 3051 | } |
| 3052 | |
| 3053 | static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
| 3054 | { |
| 3055 | if (l1 > l2) |
| 3056 | swap(l1, l2); |
| 3057 | |
| 3058 | raw_spin_lock(l1); |
| 3059 | raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| 3060 | } |
| 3061 | |
| 3062 | static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
| 3063 | { |
| 3064 | raw_spin_unlock(l1); |
| 3065 | raw_spin_unlock(l2); |
| 3066 | } |
| 3067 | |
| 3068 | DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, |
| 3069 | double_raw_lock(_T->lock, _T->lock2), |
| 3070 | double_raw_unlock(_T->lock, _T->lock2)) |
| 3071 | |
| 3072 | /* |
| 3073 | * double_rq_unlock - safely unlock two runqueues |
| 3074 | * |
| 3075 | * Note this does not restore interrupts like task_rq_unlock, |
| 3076 | * you need to do so manually after calling. |
| 3077 | */ |
| 3078 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 3079 | __releases(rq1->lock) |
| 3080 | __releases(rq2->lock) |
| 3081 | { |
| 3082 | if (__rq_lockp(rq1) != __rq_lockp(rq2)) |
| 3083 | raw_spin_rq_unlock(rq2); |
| 3084 | else |
| 3085 | __release(rq2->lock); |
| 3086 | raw_spin_rq_unlock(rq1); |
| 3087 | } |
| 3088 | |
| 3089 | extern void set_rq_online (struct rq *rq); |
| 3090 | extern void set_rq_offline(struct rq *rq); |
| 3091 | |
| 3092 | extern bool sched_smp_initialized; |
| 3093 | |
| 3094 | #else /* !CONFIG_SMP: */ |
| 3095 | |
| 3096 | /* |
| 3097 | * double_rq_lock - safely lock two runqueues |
| 3098 | * |
| 3099 | * Note this does not disable interrupts like task_rq_lock, |
| 3100 | * you need to do so manually before calling. |
| 3101 | */ |
| 3102 | static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| 3103 | __acquires(rq1->lock) |
| 3104 | __acquires(rq2->lock) |
| 3105 | { |
| 3106 | WARN_ON_ONCE(!irqs_disabled()); |
| 3107 | WARN_ON_ONCE(rq1 != rq2); |
| 3108 | raw_spin_rq_lock(rq1); |
| 3109 | __acquire(rq2->lock); /* Fake it out ;) */ |
| 3110 | double_rq_clock_clear_update(rq1, rq2); |
| 3111 | } |
| 3112 | |
| 3113 | /* |
| 3114 | * double_rq_unlock - safely unlock two runqueues |
| 3115 | * |
| 3116 | * Note this does not restore interrupts like task_rq_unlock, |
| 3117 | * you need to do so manually after calling. |
| 3118 | */ |
| 3119 | static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| 3120 | __releases(rq1->lock) |
| 3121 | __releases(rq2->lock) |
| 3122 | { |
| 3123 | WARN_ON_ONCE(rq1 != rq2); |
| 3124 | raw_spin_rq_unlock(rq1); |
| 3125 | __release(rq2->lock); |
| 3126 | } |
| 3127 | |
| 3128 | #endif /* !CONFIG_SMP */ |
| 3129 | |
| 3130 | DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, |
| 3131 | double_rq_lock(_T->lock, _T->lock2), |
| 3132 | double_rq_unlock(_T->lock, _T->lock2)) |
| 3133 | |
| 3134 | extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); |
| 3135 | extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| 3136 | extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| 3137 | |
| 3138 | extern bool sched_debug_verbose; |
| 3139 | |
| 3140 | extern void print_cfs_stats(struct seq_file *m, int cpu); |
| 3141 | extern void print_rt_stats(struct seq_file *m, int cpu); |
| 3142 | extern void print_dl_stats(struct seq_file *m, int cpu); |
| 3143 | extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); |
| 3144 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); |
| 3145 | extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); |
| 3146 | |
| 3147 | extern void resched_latency_warn(int cpu, u64 latency); |
| 3148 | #ifdef CONFIG_NUMA_BALANCING |
| 3149 | extern void show_numa_stats(struct task_struct *p, struct seq_file *m); |
| 3150 | extern void |
| 3151 | print_numa_stats(struct seq_file *m, int node, unsigned long tsf, |
| 3152 | unsigned long tpf, unsigned long gsf, unsigned long gpf); |
| 3153 | #endif /* CONFIG_NUMA_BALANCING */ |
| 3154 | |
| 3155 | extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| 3156 | extern void init_rt_rq(struct rt_rq *rt_rq); |
| 3157 | extern void init_dl_rq(struct dl_rq *dl_rq); |
| 3158 | |
| 3159 | extern void cfs_bandwidth_usage_inc(void); |
| 3160 | extern void cfs_bandwidth_usage_dec(void); |
| 3161 | |
| 3162 | #ifdef CONFIG_NO_HZ_COMMON |
| 3163 | |
| 3164 | #define NOHZ_BALANCE_KICK_BIT 0 |
| 3165 | #define NOHZ_STATS_KICK_BIT 1 |
| 3166 | #define NOHZ_NEWILB_KICK_BIT 2 |
| 3167 | #define NOHZ_NEXT_KICK_BIT 3 |
| 3168 | |
| 3169 | /* Run sched_balance_domains() */ |
| 3170 | #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) |
| 3171 | /* Update blocked load */ |
| 3172 | #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) |
| 3173 | /* Update blocked load when entering idle */ |
| 3174 | #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) |
| 3175 | /* Update nohz.next_balance */ |
| 3176 | #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) |
| 3177 | |
| 3178 | #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) |
| 3179 | |
| 3180 | #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| 3181 | |
| 3182 | extern void nohz_balance_exit_idle(struct rq *rq); |
| 3183 | #else /* !CONFIG_NO_HZ_COMMON: */ |
| 3184 | static inline void nohz_balance_exit_idle(struct rq *rq) { } |
| 3185 | #endif /* !CONFIG_NO_HZ_COMMON */ |
| 3186 | |
| 3187 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| 3188 | extern void nohz_run_idle_balance(int cpu); |
| 3189 | #else |
| 3190 | static inline void nohz_run_idle_balance(int cpu) { } |
| 3191 | #endif |
| 3192 | |
| 3193 | #include "stats.h" |
| 3194 | |
| 3195 | #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) |
| 3196 | |
| 3197 | extern void __sched_core_account_forceidle(struct rq *rq); |
| 3198 | |
| 3199 | static inline void sched_core_account_forceidle(struct rq *rq) |
| 3200 | { |
| 3201 | if (schedstat_enabled()) |
| 3202 | __sched_core_account_forceidle(rq); |
| 3203 | } |
| 3204 | |
| 3205 | extern void __sched_core_tick(struct rq *rq); |
| 3206 | |
| 3207 | static inline void sched_core_tick(struct rq *rq) |
| 3208 | { |
| 3209 | if (sched_core_enabled(rq) && schedstat_enabled()) |
| 3210 | __sched_core_tick(rq); |
| 3211 | } |
| 3212 | |
| 3213 | #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ |
| 3214 | |
| 3215 | static inline void sched_core_account_forceidle(struct rq *rq) { } |
| 3216 | |
| 3217 | static inline void sched_core_tick(struct rq *rq) { } |
| 3218 | |
| 3219 | #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ |
| 3220 | |
| 3221 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| 3222 | |
| 3223 | struct irqtime { |
| 3224 | u64 total; |
| 3225 | u64 tick_delta; |
| 3226 | u64 irq_start_time; |
| 3227 | struct u64_stats_sync sync; |
| 3228 | }; |
| 3229 | |
| 3230 | DECLARE_PER_CPU(struct irqtime, cpu_irqtime); |
| 3231 | extern int sched_clock_irqtime; |
| 3232 | |
| 3233 | static inline int irqtime_enabled(void) |
| 3234 | { |
| 3235 | return sched_clock_irqtime; |
| 3236 | } |
| 3237 | |
| 3238 | /* |
| 3239 | * Returns the irqtime minus the softirq time computed by ksoftirqd. |
| 3240 | * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime |
| 3241 | * and never move forward. |
| 3242 | */ |
| 3243 | static inline u64 irq_time_read(int cpu) |
| 3244 | { |
| 3245 | struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); |
| 3246 | unsigned int seq; |
| 3247 | u64 total; |
| 3248 | |
| 3249 | do { |
| 3250 | seq = __u64_stats_fetch_begin(&irqtime->sync); |
| 3251 | total = irqtime->total; |
| 3252 | } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); |
| 3253 | |
| 3254 | return total; |
| 3255 | } |
| 3256 | |
| 3257 | #else |
| 3258 | |
| 3259 | static inline int irqtime_enabled(void) |
| 3260 | { |
| 3261 | return 0; |
| 3262 | } |
| 3263 | |
| 3264 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| 3265 | |
| 3266 | #ifdef CONFIG_CPU_FREQ |
| 3267 | |
| 3268 | DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); |
| 3269 | |
| 3270 | /** |
| 3271 | * cpufreq_update_util - Take a note about CPU utilization changes. |
| 3272 | * @rq: Runqueue to carry out the update for. |
| 3273 | * @flags: Update reason flags. |
| 3274 | * |
| 3275 | * This function is called by the scheduler on the CPU whose utilization is |
| 3276 | * being updated. |
| 3277 | * |
| 3278 | * It can only be called from RCU-sched read-side critical sections. |
| 3279 | * |
| 3280 | * The way cpufreq is currently arranged requires it to evaluate the CPU |
| 3281 | * performance state (frequency/voltage) on a regular basis to prevent it from |
| 3282 | * being stuck in a completely inadequate performance level for too long. |
| 3283 | * That is not guaranteed to happen if the updates are only triggered from CFS |
| 3284 | * and DL, though, because they may not be coming in if only RT tasks are |
| 3285 | * active all the time (or there are RT tasks only). |
| 3286 | * |
| 3287 | * As a workaround for that issue, this function is called periodically by the |
| 3288 | * RT sched class to trigger extra cpufreq updates to prevent it from stalling, |
| 3289 | * but that really is a band-aid. Going forward it should be replaced with |
| 3290 | * solutions targeted more specifically at RT tasks. |
| 3291 | */ |
| 3292 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) |
| 3293 | { |
| 3294 | struct update_util_data *data; |
| 3295 | |
| 3296 | data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, |
| 3297 | cpu_of(rq))); |
| 3298 | if (data) |
| 3299 | data->func(data, rq_clock(rq), flags); |
| 3300 | } |
| 3301 | #else /* !CONFIG_CPU_FREQ: */ |
| 3302 | static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } |
| 3303 | #endif /* !CONFIG_CPU_FREQ */ |
| 3304 | |
| 3305 | #ifdef arch_scale_freq_capacity |
| 3306 | # ifndef arch_scale_freq_invariant |
| 3307 | # define arch_scale_freq_invariant() true |
| 3308 | # endif |
| 3309 | #else |
| 3310 | # define arch_scale_freq_invariant() false |
| 3311 | #endif |
| 3312 | |
| 3313 | #ifdef CONFIG_SMP |
| 3314 | |
| 3315 | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, |
| 3316 | unsigned long *min, |
| 3317 | unsigned long *max); |
| 3318 | |
| 3319 | unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, |
| 3320 | unsigned long min, |
| 3321 | unsigned long max); |
| 3322 | |
| 3323 | |
| 3324 | /* |
| 3325 | * Verify the fitness of task @p to run on @cpu taking into account the |
| 3326 | * CPU original capacity and the runtime/deadline ratio of the task. |
| 3327 | * |
| 3328 | * The function will return true if the original capacity of @cpu is |
| 3329 | * greater than or equal to task's deadline density right shifted by |
| 3330 | * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. |
| 3331 | */ |
| 3332 | static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) |
| 3333 | { |
| 3334 | unsigned long cap = arch_scale_cpu_capacity(cpu); |
| 3335 | |
| 3336 | return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); |
| 3337 | } |
| 3338 | |
| 3339 | static inline unsigned long cpu_bw_dl(struct rq *rq) |
| 3340 | { |
| 3341 | return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; |
| 3342 | } |
| 3343 | |
| 3344 | static inline unsigned long cpu_util_dl(struct rq *rq) |
| 3345 | { |
| 3346 | return READ_ONCE(rq->avg_dl.util_avg); |
| 3347 | } |
| 3348 | |
| 3349 | |
| 3350 | extern unsigned long cpu_util_cfs(int cpu); |
| 3351 | extern unsigned long cpu_util_cfs_boost(int cpu); |
| 3352 | |
| 3353 | static inline unsigned long cpu_util_rt(struct rq *rq) |
| 3354 | { |
| 3355 | return READ_ONCE(rq->avg_rt.util_avg); |
| 3356 | } |
| 3357 | |
| 3358 | #else /* !CONFIG_SMP */ |
| 3359 | static inline bool update_other_load_avgs(struct rq *rq) { return false; } |
| 3360 | #endif /* CONFIG_SMP */ |
| 3361 | |
| 3362 | #ifdef CONFIG_UCLAMP_TASK |
| 3363 | |
| 3364 | unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); |
| 3365 | |
| 3366 | /* |
| 3367 | * When uclamp is compiled in, the aggregation at rq level is 'turned off' |
| 3368 | * by default in the fast path and only gets turned on once userspace performs |
| 3369 | * an operation that requires it. |
| 3370 | * |
| 3371 | * Returns true if userspace opted-in to use uclamp and aggregation at rq level |
| 3372 | * hence is active. |
| 3373 | */ |
| 3374 | static inline bool uclamp_is_used(void) |
| 3375 | { |
| 3376 | return static_branch_likely(&sched_uclamp_used); |
| 3377 | } |
| 3378 | |
| 3379 | /* |
| 3380 | * Enabling static branches would get the cpus_read_lock(), |
| 3381 | * check whether uclamp_is_used before enable it to avoid always |
| 3382 | * calling cpus_read_lock(). Because we never disable this |
| 3383 | * static key once enable it. |
| 3384 | */ |
| 3385 | static inline void sched_uclamp_enable(void) |
| 3386 | { |
| 3387 | if (!uclamp_is_used()) |
| 3388 | static_branch_enable(&sched_uclamp_used); |
| 3389 | } |
| 3390 | |
| 3391 | static inline unsigned long uclamp_rq_get(struct rq *rq, |
| 3392 | enum uclamp_id clamp_id) |
| 3393 | { |
| 3394 | return READ_ONCE(rq->uclamp[clamp_id].value); |
| 3395 | } |
| 3396 | |
| 3397 | static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, |
| 3398 | unsigned int value) |
| 3399 | { |
| 3400 | WRITE_ONCE(rq->uclamp[clamp_id].value, value); |
| 3401 | } |
| 3402 | |
| 3403 | static inline bool uclamp_rq_is_idle(struct rq *rq) |
| 3404 | { |
| 3405 | return rq->uclamp_flags & UCLAMP_FLAG_IDLE; |
| 3406 | } |
| 3407 | |
| 3408 | /* Is the rq being capped/throttled by uclamp_max? */ |
| 3409 | static inline bool uclamp_rq_is_capped(struct rq *rq) |
| 3410 | { |
| 3411 | unsigned long rq_util; |
| 3412 | unsigned long max_util; |
| 3413 | |
| 3414 | if (!uclamp_is_used()) |
| 3415 | return false; |
| 3416 | |
| 3417 | rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); |
| 3418 | max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); |
| 3419 | |
| 3420 | return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; |
| 3421 | } |
| 3422 | |
| 3423 | #define for_each_clamp_id(clamp_id) \ |
| 3424 | for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) |
| 3425 | |
| 3426 | extern unsigned int sysctl_sched_uclamp_util_min_rt_default; |
| 3427 | |
| 3428 | |
| 3429 | static inline unsigned int uclamp_none(enum uclamp_id clamp_id) |
| 3430 | { |
| 3431 | if (clamp_id == UCLAMP_MIN) |
| 3432 | return 0; |
| 3433 | return SCHED_CAPACITY_SCALE; |
| 3434 | } |
| 3435 | |
| 3436 | /* Integer rounded range for each bucket */ |
| 3437 | #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) |
| 3438 | |
| 3439 | static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) |
| 3440 | { |
| 3441 | return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); |
| 3442 | } |
| 3443 | |
| 3444 | static inline void |
| 3445 | uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) |
| 3446 | { |
| 3447 | uc_se->value = value; |
| 3448 | uc_se->bucket_id = uclamp_bucket_id(value); |
| 3449 | uc_se->user_defined = user_defined; |
| 3450 | } |
| 3451 | |
| 3452 | #else /* !CONFIG_UCLAMP_TASK: */ |
| 3453 | |
| 3454 | static inline unsigned long |
| 3455 | uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) |
| 3456 | { |
| 3457 | if (clamp_id == UCLAMP_MIN) |
| 3458 | return 0; |
| 3459 | |
| 3460 | return SCHED_CAPACITY_SCALE; |
| 3461 | } |
| 3462 | |
| 3463 | static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } |
| 3464 | |
| 3465 | static inline bool uclamp_is_used(void) |
| 3466 | { |
| 3467 | return false; |
| 3468 | } |
| 3469 | |
| 3470 | static inline void sched_uclamp_enable(void) {} |
| 3471 | |
| 3472 | static inline unsigned long |
| 3473 | uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) |
| 3474 | { |
| 3475 | if (clamp_id == UCLAMP_MIN) |
| 3476 | return 0; |
| 3477 | |
| 3478 | return SCHED_CAPACITY_SCALE; |
| 3479 | } |
| 3480 | |
| 3481 | static inline void |
| 3482 | uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) |
| 3483 | { |
| 3484 | } |
| 3485 | |
| 3486 | static inline bool uclamp_rq_is_idle(struct rq *rq) |
| 3487 | { |
| 3488 | return false; |
| 3489 | } |
| 3490 | |
| 3491 | #endif /* !CONFIG_UCLAMP_TASK */ |
| 3492 | |
| 3493 | #ifdef CONFIG_HAVE_SCHED_AVG_IRQ |
| 3494 | |
| 3495 | static inline unsigned long cpu_util_irq(struct rq *rq) |
| 3496 | { |
| 3497 | return READ_ONCE(rq->avg_irq.util_avg); |
| 3498 | } |
| 3499 | |
| 3500 | static inline |
| 3501 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| 3502 | { |
| 3503 | util *= (max - irq); |
| 3504 | util /= max; |
| 3505 | |
| 3506 | return util; |
| 3507 | |
| 3508 | } |
| 3509 | |
| 3510 | #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ |
| 3511 | |
| 3512 | static inline unsigned long cpu_util_irq(struct rq *rq) |
| 3513 | { |
| 3514 | return 0; |
| 3515 | } |
| 3516 | |
| 3517 | static inline |
| 3518 | unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| 3519 | { |
| 3520 | return util; |
| 3521 | } |
| 3522 | |
| 3523 | #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ |
| 3524 | |
| 3525 | extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); |
| 3526 | |
| 3527 | #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) |
| 3528 | |
| 3529 | #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) |
| 3530 | |
| 3531 | DECLARE_STATIC_KEY_FALSE(sched_energy_present); |
| 3532 | |
| 3533 | static inline bool sched_energy_enabled(void) |
| 3534 | { |
| 3535 | return static_branch_unlikely(&sched_energy_present); |
| 3536 | } |
| 3537 | |
| 3538 | #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ |
| 3539 | |
| 3540 | #define perf_domain_span(pd) NULL |
| 3541 | |
| 3542 | static inline bool sched_energy_enabled(void) { return false; } |
| 3543 | |
| 3544 | #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ |
| 3545 | |
| 3546 | #ifdef CONFIG_MEMBARRIER |
| 3547 | |
| 3548 | /* |
| 3549 | * The scheduler provides memory barriers required by membarrier between: |
| 3550 | * - prior user-space memory accesses and store to rq->membarrier_state, |
| 3551 | * - store to rq->membarrier_state and following user-space memory accesses. |
| 3552 | * In the same way it provides those guarantees around store to rq->curr. |
| 3553 | */ |
| 3554 | static inline void membarrier_switch_mm(struct rq *rq, |
| 3555 | struct mm_struct *prev_mm, |
| 3556 | struct mm_struct *next_mm) |
| 3557 | { |
| 3558 | int membarrier_state; |
| 3559 | |
| 3560 | if (prev_mm == next_mm) |
| 3561 | return; |
| 3562 | |
| 3563 | membarrier_state = atomic_read(&next_mm->membarrier_state); |
| 3564 | if (READ_ONCE(rq->membarrier_state) == membarrier_state) |
| 3565 | return; |
| 3566 | |
| 3567 | WRITE_ONCE(rq->membarrier_state, membarrier_state); |
| 3568 | } |
| 3569 | |
| 3570 | #else /* !CONFIG_MEMBARRIER :*/ |
| 3571 | |
| 3572 | static inline void membarrier_switch_mm(struct rq *rq, |
| 3573 | struct mm_struct *prev_mm, |
| 3574 | struct mm_struct *next_mm) |
| 3575 | { |
| 3576 | } |
| 3577 | |
| 3578 | #endif /* !CONFIG_MEMBARRIER */ |
| 3579 | |
| 3580 | #ifdef CONFIG_SMP |
| 3581 | static inline bool is_per_cpu_kthread(struct task_struct *p) |
| 3582 | { |
| 3583 | if (!(p->flags & PF_KTHREAD)) |
| 3584 | return false; |
| 3585 | |
| 3586 | if (p->nr_cpus_allowed != 1) |
| 3587 | return false; |
| 3588 | |
| 3589 | return true; |
| 3590 | } |
| 3591 | #endif |
| 3592 | |
| 3593 | extern void swake_up_all_locked(struct swait_queue_head *q); |
| 3594 | extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); |
| 3595 | |
| 3596 | extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); |
| 3597 | |
| 3598 | #ifdef CONFIG_PREEMPT_DYNAMIC |
| 3599 | extern int preempt_dynamic_mode; |
| 3600 | extern int sched_dynamic_mode(const char *str); |
| 3601 | extern void sched_dynamic_update(int mode); |
| 3602 | #endif |
| 3603 | extern const char *preempt_modes[]; |
| 3604 | |
| 3605 | #ifdef CONFIG_SCHED_MM_CID |
| 3606 | |
| 3607 | #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ |
| 3608 | #define MM_CID_SCAN_DELAY 100 /* 100ms */ |
| 3609 | |
| 3610 | extern raw_spinlock_t cid_lock; |
| 3611 | extern int use_cid_lock; |
| 3612 | |
| 3613 | extern void sched_mm_cid_migrate_from(struct task_struct *t); |
| 3614 | extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); |
| 3615 | extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); |
| 3616 | extern void init_sched_mm_cid(struct task_struct *t); |
| 3617 | |
| 3618 | static inline void __mm_cid_put(struct mm_struct *mm, int cid) |
| 3619 | { |
| 3620 | if (cid < 0) |
| 3621 | return; |
| 3622 | cpumask_clear_cpu(cid, mm_cidmask(mm)); |
| 3623 | } |
| 3624 | |
| 3625 | /* |
| 3626 | * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to |
| 3627 | * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to |
| 3628 | * be held to transition to other states. |
| 3629 | * |
| 3630 | * State transitions synchronized with cmpxchg or try_cmpxchg need to be |
| 3631 | * consistent across CPUs, which prevents use of this_cpu_cmpxchg. |
| 3632 | */ |
| 3633 | static inline void mm_cid_put_lazy(struct task_struct *t) |
| 3634 | { |
| 3635 | struct mm_struct *mm = t->mm; |
| 3636 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; |
| 3637 | int cid; |
| 3638 | |
| 3639 | lockdep_assert_irqs_disabled(); |
| 3640 | cid = __this_cpu_read(pcpu_cid->cid); |
| 3641 | if (!mm_cid_is_lazy_put(cid) || |
| 3642 | !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) |
| 3643 | return; |
| 3644 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); |
| 3645 | } |
| 3646 | |
| 3647 | static inline int mm_cid_pcpu_unset(struct mm_struct *mm) |
| 3648 | { |
| 3649 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; |
| 3650 | int cid, res; |
| 3651 | |
| 3652 | lockdep_assert_irqs_disabled(); |
| 3653 | cid = __this_cpu_read(pcpu_cid->cid); |
| 3654 | for (;;) { |
| 3655 | if (mm_cid_is_unset(cid)) |
| 3656 | return MM_CID_UNSET; |
| 3657 | /* |
| 3658 | * Attempt transition from valid or lazy-put to unset. |
| 3659 | */ |
| 3660 | res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); |
| 3661 | if (res == cid) |
| 3662 | break; |
| 3663 | cid = res; |
| 3664 | } |
| 3665 | return cid; |
| 3666 | } |
| 3667 | |
| 3668 | static inline void mm_cid_put(struct mm_struct *mm) |
| 3669 | { |
| 3670 | int cid; |
| 3671 | |
| 3672 | lockdep_assert_irqs_disabled(); |
| 3673 | cid = mm_cid_pcpu_unset(mm); |
| 3674 | if (cid == MM_CID_UNSET) |
| 3675 | return; |
| 3676 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); |
| 3677 | } |
| 3678 | |
| 3679 | static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) |
| 3680 | { |
| 3681 | struct cpumask *cidmask = mm_cidmask(mm); |
| 3682 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; |
| 3683 | int cid, max_nr_cid, allowed_max_nr_cid; |
| 3684 | |
| 3685 | /* |
| 3686 | * After shrinking the number of threads or reducing the number |
| 3687 | * of allowed cpus, reduce the value of max_nr_cid so expansion |
| 3688 | * of cid allocation will preserve cache locality if the number |
| 3689 | * of threads or allowed cpus increase again. |
| 3690 | */ |
| 3691 | max_nr_cid = atomic_read(&mm->max_nr_cid); |
| 3692 | while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), |
| 3693 | atomic_read(&mm->mm_users))), |
| 3694 | max_nr_cid > allowed_max_nr_cid) { |
| 3695 | /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ |
| 3696 | if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { |
| 3697 | max_nr_cid = allowed_max_nr_cid; |
| 3698 | break; |
| 3699 | } |
| 3700 | } |
| 3701 | /* Try to re-use recent cid. This improves cache locality. */ |
| 3702 | cid = __this_cpu_read(pcpu_cid->recent_cid); |
| 3703 | if (!mm_cid_is_unset(cid) && cid < max_nr_cid && |
| 3704 | !cpumask_test_and_set_cpu(cid, cidmask)) |
| 3705 | return cid; |
| 3706 | /* |
| 3707 | * Expand cid allocation if the maximum number of concurrency |
| 3708 | * IDs allocated (max_nr_cid) is below the number cpus allowed |
| 3709 | * and number of threads. Expanding cid allocation as much as |
| 3710 | * possible improves cache locality. |
| 3711 | */ |
| 3712 | cid = max_nr_cid; |
| 3713 | while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { |
| 3714 | /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ |
| 3715 | if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) |
| 3716 | continue; |
| 3717 | if (!cpumask_test_and_set_cpu(cid, cidmask)) |
| 3718 | return cid; |
| 3719 | } |
| 3720 | /* |
| 3721 | * Find the first available concurrency id. |
| 3722 | * Retry finding first zero bit if the mask is temporarily |
| 3723 | * filled. This only happens during concurrent remote-clear |
| 3724 | * which owns a cid without holding a rq lock. |
| 3725 | */ |
| 3726 | for (;;) { |
| 3727 | cid = cpumask_first_zero(cidmask); |
| 3728 | if (cid < READ_ONCE(mm->nr_cpus_allowed)) |
| 3729 | break; |
| 3730 | cpu_relax(); |
| 3731 | } |
| 3732 | if (cpumask_test_and_set_cpu(cid, cidmask)) |
| 3733 | return -1; |
| 3734 | |
| 3735 | return cid; |
| 3736 | } |
| 3737 | |
| 3738 | /* |
| 3739 | * Save a snapshot of the current runqueue time of this cpu |
| 3740 | * with the per-cpu cid value, allowing to estimate how recently it was used. |
| 3741 | */ |
| 3742 | static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) |
| 3743 | { |
| 3744 | struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); |
| 3745 | |
| 3746 | lockdep_assert_rq_held(rq); |
| 3747 | WRITE_ONCE(pcpu_cid->time, rq->clock); |
| 3748 | } |
| 3749 | |
| 3750 | static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, |
| 3751 | struct mm_struct *mm) |
| 3752 | { |
| 3753 | int cid; |
| 3754 | |
| 3755 | /* |
| 3756 | * All allocations (even those using the cid_lock) are lock-free. If |
| 3757 | * use_cid_lock is set, hold the cid_lock to perform cid allocation to |
| 3758 | * guarantee forward progress. |
| 3759 | */ |
| 3760 | if (!READ_ONCE(use_cid_lock)) { |
| 3761 | cid = __mm_cid_try_get(t, mm); |
| 3762 | if (cid >= 0) |
| 3763 | goto end; |
| 3764 | raw_spin_lock(&cid_lock); |
| 3765 | } else { |
| 3766 | raw_spin_lock(&cid_lock); |
| 3767 | cid = __mm_cid_try_get(t, mm); |
| 3768 | if (cid >= 0) |
| 3769 | goto unlock; |
| 3770 | } |
| 3771 | |
| 3772 | /* |
| 3773 | * cid concurrently allocated. Retry while forcing following |
| 3774 | * allocations to use the cid_lock to ensure forward progress. |
| 3775 | */ |
| 3776 | WRITE_ONCE(use_cid_lock, 1); |
| 3777 | /* |
| 3778 | * Set use_cid_lock before allocation. Only care about program order |
| 3779 | * because this is only required for forward progress. |
| 3780 | */ |
| 3781 | barrier(); |
| 3782 | /* |
| 3783 | * Retry until it succeeds. It is guaranteed to eventually succeed once |
| 3784 | * all newcoming allocations observe the use_cid_lock flag set. |
| 3785 | */ |
| 3786 | do { |
| 3787 | cid = __mm_cid_try_get(t, mm); |
| 3788 | cpu_relax(); |
| 3789 | } while (cid < 0); |
| 3790 | /* |
| 3791 | * Allocate before clearing use_cid_lock. Only care about |
| 3792 | * program order because this is for forward progress. |
| 3793 | */ |
| 3794 | barrier(); |
| 3795 | WRITE_ONCE(use_cid_lock, 0); |
| 3796 | unlock: |
| 3797 | raw_spin_unlock(&cid_lock); |
| 3798 | end: |
| 3799 | mm_cid_snapshot_time(rq, mm); |
| 3800 | |
| 3801 | return cid; |
| 3802 | } |
| 3803 | |
| 3804 | static inline int mm_cid_get(struct rq *rq, struct task_struct *t, |
| 3805 | struct mm_struct *mm) |
| 3806 | { |
| 3807 | struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; |
| 3808 | struct cpumask *cpumask; |
| 3809 | int cid; |
| 3810 | |
| 3811 | lockdep_assert_rq_held(rq); |
| 3812 | cpumask = mm_cidmask(mm); |
| 3813 | cid = __this_cpu_read(pcpu_cid->cid); |
| 3814 | if (mm_cid_is_valid(cid)) { |
| 3815 | mm_cid_snapshot_time(rq, mm); |
| 3816 | return cid; |
| 3817 | } |
| 3818 | if (mm_cid_is_lazy_put(cid)) { |
| 3819 | if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) |
| 3820 | __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); |
| 3821 | } |
| 3822 | cid = __mm_cid_get(rq, t, mm); |
| 3823 | __this_cpu_write(pcpu_cid->cid, cid); |
| 3824 | __this_cpu_write(pcpu_cid->recent_cid, cid); |
| 3825 | |
| 3826 | return cid; |
| 3827 | } |
| 3828 | |
| 3829 | static inline void switch_mm_cid(struct rq *rq, |
| 3830 | struct task_struct *prev, |
| 3831 | struct task_struct *next) |
| 3832 | { |
| 3833 | /* |
| 3834 | * Provide a memory barrier between rq->curr store and load of |
| 3835 | * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. |
| 3836 | * |
| 3837 | * Should be adapted if context_switch() is modified. |
| 3838 | */ |
| 3839 | if (!next->mm) { // to kernel |
| 3840 | /* |
| 3841 | * user -> kernel transition does not guarantee a barrier, but |
| 3842 | * we can use the fact that it performs an atomic operation in |
| 3843 | * mmgrab(). |
| 3844 | */ |
| 3845 | if (prev->mm) // from user |
| 3846 | smp_mb__after_mmgrab(); |
| 3847 | /* |
| 3848 | * kernel -> kernel transition does not change rq->curr->mm |
| 3849 | * state. It stays NULL. |
| 3850 | */ |
| 3851 | } else { // to user |
| 3852 | /* |
| 3853 | * kernel -> user transition does not provide a barrier |
| 3854 | * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. |
| 3855 | * Provide it here. |
| 3856 | */ |
| 3857 | if (!prev->mm) { // from kernel |
| 3858 | smp_mb(); |
| 3859 | } else { // from user |
| 3860 | /* |
| 3861 | * user->user transition relies on an implicit |
| 3862 | * memory barrier in switch_mm() when |
| 3863 | * current->mm changes. If the architecture |
| 3864 | * switch_mm() does not have an implicit memory |
| 3865 | * barrier, it is emitted here. If current->mm |
| 3866 | * is unchanged, no barrier is needed. |
| 3867 | */ |
| 3868 | smp_mb__after_switch_mm(); |
| 3869 | } |
| 3870 | } |
| 3871 | if (prev->mm_cid_active) { |
| 3872 | mm_cid_snapshot_time(rq, prev->mm); |
| 3873 | mm_cid_put_lazy(prev); |
| 3874 | prev->mm_cid = -1; |
| 3875 | } |
| 3876 | if (next->mm_cid_active) |
| 3877 | next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); |
| 3878 | } |
| 3879 | |
| 3880 | #else /* !CONFIG_SCHED_MM_CID: */ |
| 3881 | static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } |
| 3882 | static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } |
| 3883 | static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } |
| 3884 | static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } |
| 3885 | static inline void init_sched_mm_cid(struct task_struct *t) { } |
| 3886 | #endif /* !CONFIG_SCHED_MM_CID */ |
| 3887 | |
| 3888 | extern u64 avg_vruntime(struct cfs_rq *cfs_rq); |
| 3889 | extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); |
| 3890 | #ifdef CONFIG_SMP |
| 3891 | static inline |
| 3892 | void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) |
| 3893 | { |
| 3894 | lockdep_assert_rq_held(src_rq); |
| 3895 | lockdep_assert_rq_held(dst_rq); |
| 3896 | |
| 3897 | deactivate_task(src_rq, task, 0); |
| 3898 | set_task_cpu(task, dst_rq->cpu); |
| 3899 | activate_task(dst_rq, task, 0); |
| 3900 | } |
| 3901 | |
| 3902 | static inline |
| 3903 | bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) |
| 3904 | { |
| 3905 | if (!task_on_cpu(rq, p) && |
| 3906 | cpumask_test_cpu(cpu, &p->cpus_mask)) |
| 3907 | return true; |
| 3908 | |
| 3909 | return false; |
| 3910 | } |
| 3911 | #endif |
| 3912 | |
| 3913 | #ifdef CONFIG_RT_MUTEXES |
| 3914 | |
| 3915 | static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) |
| 3916 | { |
| 3917 | if (pi_task) |
| 3918 | prio = min(prio, pi_task->prio); |
| 3919 | |
| 3920 | return prio; |
| 3921 | } |
| 3922 | |
| 3923 | static inline int rt_effective_prio(struct task_struct *p, int prio) |
| 3924 | { |
| 3925 | struct task_struct *pi_task = rt_mutex_get_top_task(p); |
| 3926 | |
| 3927 | return __rt_effective_prio(pi_task, prio); |
| 3928 | } |
| 3929 | |
| 3930 | #else /* !CONFIG_RT_MUTEXES: */ |
| 3931 | |
| 3932 | static inline int rt_effective_prio(struct task_struct *p, int prio) |
| 3933 | { |
| 3934 | return prio; |
| 3935 | } |
| 3936 | |
| 3937 | #endif /* !CONFIG_RT_MUTEXES */ |
| 3938 | |
| 3939 | extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); |
| 3940 | extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); |
| 3941 | extern const struct sched_class *__setscheduler_class(int policy, int prio); |
| 3942 | extern void set_load_weight(struct task_struct *p, bool update_load); |
| 3943 | extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); |
| 3944 | extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); |
| 3945 | |
| 3946 | extern void check_class_changing(struct rq *rq, struct task_struct *p, |
| 3947 | const struct sched_class *prev_class); |
| 3948 | extern void check_class_changed(struct rq *rq, struct task_struct *p, |
| 3949 | const struct sched_class *prev_class, |
| 3950 | int oldprio); |
| 3951 | |
| 3952 | #ifdef CONFIG_SMP |
| 3953 | extern struct balance_callback *splice_balance_callbacks(struct rq *rq); |
| 3954 | extern void balance_callbacks(struct rq *rq, struct balance_callback *head); |
| 3955 | #else |
| 3956 | |
| 3957 | static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) |
| 3958 | { |
| 3959 | return NULL; |
| 3960 | } |
| 3961 | |
| 3962 | static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) |
| 3963 | { |
| 3964 | } |
| 3965 | |
| 3966 | #endif |
| 3967 | |
| 3968 | #ifdef CONFIG_SCHED_CLASS_EXT |
| 3969 | /* |
| 3970 | * Used by SCX in the enable/disable paths to move tasks between sched_classes |
| 3971 | * and establish invariants. |
| 3972 | */ |
| 3973 | struct sched_enq_and_set_ctx { |
| 3974 | struct task_struct *p; |
| 3975 | int queue_flags; |
| 3976 | bool queued; |
| 3977 | bool running; |
| 3978 | }; |
| 3979 | |
| 3980 | void sched_deq_and_put_task(struct task_struct *p, int queue_flags, |
| 3981 | struct sched_enq_and_set_ctx *ctx); |
| 3982 | void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); |
| 3983 | |
| 3984 | #endif /* CONFIG_SCHED_CLASS_EXT */ |
| 3985 | |
| 3986 | #include "ext.h" |
| 3987 | |
| 3988 | #endif /* _KERNEL_SCHED_SCHED_H */ |