| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR |
| 4 | * policies) |
| 5 | */ |
| 6 | |
| 7 | int sched_rr_timeslice = RR_TIMESLICE; |
| 8 | /* More than 4 hours if BW_SHIFT equals 20. */ |
| 9 | static const u64 max_rt_runtime = MAX_BW; |
| 10 | |
| 11 | /* |
| 12 | * period over which we measure -rt task CPU usage in us. |
| 13 | * default: 1s |
| 14 | */ |
| 15 | int sysctl_sched_rt_period = 1000000; |
| 16 | |
| 17 | /* |
| 18 | * part of the period that we allow rt tasks to run in us. |
| 19 | * default: 0.95s |
| 20 | */ |
| 21 | int sysctl_sched_rt_runtime = 950000; |
| 22 | |
| 23 | #ifdef CONFIG_SYSCTL |
| 24 | static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; |
| 25 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, |
| 26 | size_t *lenp, loff_t *ppos); |
| 27 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, |
| 28 | size_t *lenp, loff_t *ppos); |
| 29 | static const struct ctl_table sched_rt_sysctls[] = { |
| 30 | { |
| 31 | .procname = "sched_rt_period_us", |
| 32 | .data = &sysctl_sched_rt_period, |
| 33 | .maxlen = sizeof(int), |
| 34 | .mode = 0644, |
| 35 | .proc_handler = sched_rt_handler, |
| 36 | .extra1 = SYSCTL_ONE, |
| 37 | .extra2 = SYSCTL_INT_MAX, |
| 38 | }, |
| 39 | { |
| 40 | .procname = "sched_rt_runtime_us", |
| 41 | .data = &sysctl_sched_rt_runtime, |
| 42 | .maxlen = sizeof(int), |
| 43 | .mode = 0644, |
| 44 | .proc_handler = sched_rt_handler, |
| 45 | .extra1 = SYSCTL_NEG_ONE, |
| 46 | .extra2 = (void *)&sysctl_sched_rt_period, |
| 47 | }, |
| 48 | { |
| 49 | .procname = "sched_rr_timeslice_ms", |
| 50 | .data = &sysctl_sched_rr_timeslice, |
| 51 | .maxlen = sizeof(int), |
| 52 | .mode = 0644, |
| 53 | .proc_handler = sched_rr_handler, |
| 54 | }, |
| 55 | }; |
| 56 | |
| 57 | static int __init sched_rt_sysctl_init(void) |
| 58 | { |
| 59 | register_sysctl_init("kernel", sched_rt_sysctls); |
| 60 | return 0; |
| 61 | } |
| 62 | late_initcall(sched_rt_sysctl_init); |
| 63 | #endif |
| 64 | |
| 65 | void init_rt_rq(struct rt_rq *rt_rq) |
| 66 | { |
| 67 | struct rt_prio_array *array; |
| 68 | int i; |
| 69 | |
| 70 | array = &rt_rq->active; |
| 71 | for (i = 0; i < MAX_RT_PRIO; i++) { |
| 72 | INIT_LIST_HEAD(array->queue + i); |
| 73 | __clear_bit(i, array->bitmap); |
| 74 | } |
| 75 | /* delimiter for bitsearch: */ |
| 76 | __set_bit(MAX_RT_PRIO, array->bitmap); |
| 77 | |
| 78 | #if defined CONFIG_SMP |
| 79 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
| 80 | rt_rq->highest_prio.next = MAX_RT_PRIO-1; |
| 81 | rt_rq->overloaded = 0; |
| 82 | plist_head_init(&rt_rq->pushable_tasks); |
| 83 | #endif /* CONFIG_SMP */ |
| 84 | /* We start is dequeued state, because no RT tasks are queued */ |
| 85 | rt_rq->rt_queued = 0; |
| 86 | |
| 87 | #ifdef CONFIG_RT_GROUP_SCHED |
| 88 | rt_rq->rt_time = 0; |
| 89 | rt_rq->rt_throttled = 0; |
| 90 | rt_rq->rt_runtime = 0; |
| 91 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); |
| 92 | rt_rq->tg = &root_task_group; |
| 93 | #endif |
| 94 | } |
| 95 | |
| 96 | #ifdef CONFIG_RT_GROUP_SCHED |
| 97 | |
| 98 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
| 99 | |
| 100 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
| 101 | { |
| 102 | struct rt_bandwidth *rt_b = |
| 103 | container_of(timer, struct rt_bandwidth, rt_period_timer); |
| 104 | int idle = 0; |
| 105 | int overrun; |
| 106 | |
| 107 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 108 | for (;;) { |
| 109 | overrun = hrtimer_forward_now(timer, rt_b->rt_period); |
| 110 | if (!overrun) |
| 111 | break; |
| 112 | |
| 113 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 114 | idle = do_sched_rt_period_timer(rt_b, overrun); |
| 115 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 116 | } |
| 117 | if (idle) |
| 118 | rt_b->rt_period_active = 0; |
| 119 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 120 | |
| 121 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
| 122 | } |
| 123 | |
| 124 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) |
| 125 | { |
| 126 | rt_b->rt_period = ns_to_ktime(period); |
| 127 | rt_b->rt_runtime = runtime; |
| 128 | |
| 129 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
| 130 | |
| 131 | hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC, |
| 132 | HRTIMER_MODE_REL_HARD); |
| 133 | } |
| 134 | |
| 135 | static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) |
| 136 | { |
| 137 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 138 | if (!rt_b->rt_period_active) { |
| 139 | rt_b->rt_period_active = 1; |
| 140 | /* |
| 141 | * SCHED_DEADLINE updates the bandwidth, as a run away |
| 142 | * RT task with a DL task could hog a CPU. But DL does |
| 143 | * not reset the period. If a deadline task was running |
| 144 | * without an RT task running, it can cause RT tasks to |
| 145 | * throttle when they start up. Kick the timer right away |
| 146 | * to update the period. |
| 147 | */ |
| 148 | hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); |
| 149 | hrtimer_start_expires(&rt_b->rt_period_timer, |
| 150 | HRTIMER_MODE_ABS_PINNED_HARD); |
| 151 | } |
| 152 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 153 | } |
| 154 | |
| 155 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
| 156 | { |
| 157 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
| 158 | return; |
| 159 | |
| 160 | do_start_rt_bandwidth(rt_b); |
| 161 | } |
| 162 | |
| 163 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
| 164 | { |
| 165 | hrtimer_cancel(&rt_b->rt_period_timer); |
| 166 | } |
| 167 | |
| 168 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) |
| 169 | |
| 170 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
| 171 | { |
| 172 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); |
| 173 | |
| 174 | return container_of(rt_se, struct task_struct, rt); |
| 175 | } |
| 176 | |
| 177 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
| 178 | { |
| 179 | /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */ |
| 180 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); |
| 181 | return rt_rq->rq; |
| 182 | } |
| 183 | |
| 184 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) |
| 185 | { |
| 186 | WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group); |
| 187 | return rt_se->rt_rq; |
| 188 | } |
| 189 | |
| 190 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
| 191 | { |
| 192 | struct rt_rq *rt_rq = rt_se->rt_rq; |
| 193 | |
| 194 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); |
| 195 | return rt_rq->rq; |
| 196 | } |
| 197 | |
| 198 | void unregister_rt_sched_group(struct task_group *tg) |
| 199 | { |
| 200 | if (!rt_group_sched_enabled()) |
| 201 | return; |
| 202 | |
| 203 | if (tg->rt_se) |
| 204 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
| 205 | } |
| 206 | |
| 207 | void free_rt_sched_group(struct task_group *tg) |
| 208 | { |
| 209 | int i; |
| 210 | |
| 211 | if (!rt_group_sched_enabled()) |
| 212 | return; |
| 213 | |
| 214 | for_each_possible_cpu(i) { |
| 215 | if (tg->rt_rq) |
| 216 | kfree(tg->rt_rq[i]); |
| 217 | if (tg->rt_se) |
| 218 | kfree(tg->rt_se[i]); |
| 219 | } |
| 220 | |
| 221 | kfree(tg->rt_rq); |
| 222 | kfree(tg->rt_se); |
| 223 | } |
| 224 | |
| 225 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| 226 | struct sched_rt_entity *rt_se, int cpu, |
| 227 | struct sched_rt_entity *parent) |
| 228 | { |
| 229 | struct rq *rq = cpu_rq(cpu); |
| 230 | |
| 231 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
| 232 | rt_rq->rt_nr_boosted = 0; |
| 233 | rt_rq->rq = rq; |
| 234 | rt_rq->tg = tg; |
| 235 | |
| 236 | tg->rt_rq[cpu] = rt_rq; |
| 237 | tg->rt_se[cpu] = rt_se; |
| 238 | |
| 239 | if (!rt_se) |
| 240 | return; |
| 241 | |
| 242 | if (!parent) |
| 243 | rt_se->rt_rq = &rq->rt; |
| 244 | else |
| 245 | rt_se->rt_rq = parent->my_q; |
| 246 | |
| 247 | rt_se->my_q = rt_rq; |
| 248 | rt_se->parent = parent; |
| 249 | INIT_LIST_HEAD(&rt_se->run_list); |
| 250 | } |
| 251 | |
| 252 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
| 253 | { |
| 254 | struct rt_rq *rt_rq; |
| 255 | struct sched_rt_entity *rt_se; |
| 256 | int i; |
| 257 | |
| 258 | if (!rt_group_sched_enabled()) |
| 259 | return 1; |
| 260 | |
| 261 | tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); |
| 262 | if (!tg->rt_rq) |
| 263 | goto err; |
| 264 | tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); |
| 265 | if (!tg->rt_se) |
| 266 | goto err; |
| 267 | |
| 268 | init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); |
| 269 | |
| 270 | for_each_possible_cpu(i) { |
| 271 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
| 272 | GFP_KERNEL, cpu_to_node(i)); |
| 273 | if (!rt_rq) |
| 274 | goto err; |
| 275 | |
| 276 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
| 277 | GFP_KERNEL, cpu_to_node(i)); |
| 278 | if (!rt_se) |
| 279 | goto err_free_rq; |
| 280 | |
| 281 | init_rt_rq(rt_rq); |
| 282 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
| 283 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); |
| 284 | } |
| 285 | |
| 286 | return 1; |
| 287 | |
| 288 | err_free_rq: |
| 289 | kfree(rt_rq); |
| 290 | err: |
| 291 | return 0; |
| 292 | } |
| 293 | |
| 294 | #else /* CONFIG_RT_GROUP_SCHED */ |
| 295 | |
| 296 | #define rt_entity_is_task(rt_se) (1) |
| 297 | |
| 298 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
| 299 | { |
| 300 | return container_of(rt_se, struct task_struct, rt); |
| 301 | } |
| 302 | |
| 303 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
| 304 | { |
| 305 | return container_of(rt_rq, struct rq, rt); |
| 306 | } |
| 307 | |
| 308 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
| 309 | { |
| 310 | struct task_struct *p = rt_task_of(rt_se); |
| 311 | |
| 312 | return task_rq(p); |
| 313 | } |
| 314 | |
| 315 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) |
| 316 | { |
| 317 | struct rq *rq = rq_of_rt_se(rt_se); |
| 318 | |
| 319 | return &rq->rt; |
| 320 | } |
| 321 | |
| 322 | void unregister_rt_sched_group(struct task_group *tg) { } |
| 323 | |
| 324 | void free_rt_sched_group(struct task_group *tg) { } |
| 325 | |
| 326 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
| 327 | { |
| 328 | return 1; |
| 329 | } |
| 330 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 331 | |
| 332 | #ifdef CONFIG_SMP |
| 333 | |
| 334 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) |
| 335 | { |
| 336 | /* Try to pull RT tasks here if we lower this rq's prio */ |
| 337 | return rq->online && rq->rt.highest_prio.curr > prev->prio; |
| 338 | } |
| 339 | |
| 340 | static inline int rt_overloaded(struct rq *rq) |
| 341 | { |
| 342 | return atomic_read(&rq->rd->rto_count); |
| 343 | } |
| 344 | |
| 345 | static inline void rt_set_overload(struct rq *rq) |
| 346 | { |
| 347 | if (!rq->online) |
| 348 | return; |
| 349 | |
| 350 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
| 351 | /* |
| 352 | * Make sure the mask is visible before we set |
| 353 | * the overload count. That is checked to determine |
| 354 | * if we should look at the mask. It would be a shame |
| 355 | * if we looked at the mask, but the mask was not |
| 356 | * updated yet. |
| 357 | * |
| 358 | * Matched by the barrier in pull_rt_task(). |
| 359 | */ |
| 360 | smp_wmb(); |
| 361 | atomic_inc(&rq->rd->rto_count); |
| 362 | } |
| 363 | |
| 364 | static inline void rt_clear_overload(struct rq *rq) |
| 365 | { |
| 366 | if (!rq->online) |
| 367 | return; |
| 368 | |
| 369 | /* the order here really doesn't matter */ |
| 370 | atomic_dec(&rq->rd->rto_count); |
| 371 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
| 372 | } |
| 373 | |
| 374 | static inline int has_pushable_tasks(struct rq *rq) |
| 375 | { |
| 376 | return !plist_head_empty(&rq->rt.pushable_tasks); |
| 377 | } |
| 378 | |
| 379 | static DEFINE_PER_CPU(struct balance_callback, rt_push_head); |
| 380 | static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); |
| 381 | |
| 382 | static void push_rt_tasks(struct rq *); |
| 383 | static void pull_rt_task(struct rq *); |
| 384 | |
| 385 | static inline void rt_queue_push_tasks(struct rq *rq) |
| 386 | { |
| 387 | if (!has_pushable_tasks(rq)) |
| 388 | return; |
| 389 | |
| 390 | queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); |
| 391 | } |
| 392 | |
| 393 | static inline void rt_queue_pull_task(struct rq *rq) |
| 394 | { |
| 395 | queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); |
| 396 | } |
| 397 | |
| 398 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
| 399 | { |
| 400 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
| 401 | plist_node_init(&p->pushable_tasks, p->prio); |
| 402 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); |
| 403 | |
| 404 | /* Update the highest prio pushable task */ |
| 405 | if (p->prio < rq->rt.highest_prio.next) |
| 406 | rq->rt.highest_prio.next = p->prio; |
| 407 | |
| 408 | if (!rq->rt.overloaded) { |
| 409 | rt_set_overload(rq); |
| 410 | rq->rt.overloaded = 1; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
| 415 | { |
| 416 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); |
| 417 | |
| 418 | /* Update the new highest prio pushable task */ |
| 419 | if (has_pushable_tasks(rq)) { |
| 420 | p = plist_first_entry(&rq->rt.pushable_tasks, |
| 421 | struct task_struct, pushable_tasks); |
| 422 | rq->rt.highest_prio.next = p->prio; |
| 423 | } else { |
| 424 | rq->rt.highest_prio.next = MAX_RT_PRIO-1; |
| 425 | |
| 426 | if (rq->rt.overloaded) { |
| 427 | rt_clear_overload(rq); |
| 428 | rq->rt.overloaded = 0; |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | #else |
| 434 | |
| 435 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
| 436 | { |
| 437 | } |
| 438 | |
| 439 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
| 440 | { |
| 441 | } |
| 442 | |
| 443 | static inline void rt_queue_push_tasks(struct rq *rq) |
| 444 | { |
| 445 | } |
| 446 | #endif /* CONFIG_SMP */ |
| 447 | |
| 448 | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); |
| 449 | static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); |
| 450 | |
| 451 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
| 452 | { |
| 453 | return rt_se->on_rq; |
| 454 | } |
| 455 | |
| 456 | #ifdef CONFIG_UCLAMP_TASK |
| 457 | /* |
| 458 | * Verify the fitness of task @p to run on @cpu taking into account the uclamp |
| 459 | * settings. |
| 460 | * |
| 461 | * This check is only important for heterogeneous systems where uclamp_min value |
| 462 | * is higher than the capacity of a @cpu. For non-heterogeneous system this |
| 463 | * function will always return true. |
| 464 | * |
| 465 | * The function will return true if the capacity of the @cpu is >= the |
| 466 | * uclamp_min and false otherwise. |
| 467 | * |
| 468 | * Note that uclamp_min will be clamped to uclamp_max if uclamp_min |
| 469 | * > uclamp_max. |
| 470 | */ |
| 471 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) |
| 472 | { |
| 473 | unsigned int min_cap; |
| 474 | unsigned int max_cap; |
| 475 | unsigned int cpu_cap; |
| 476 | |
| 477 | /* Only heterogeneous systems can benefit from this check */ |
| 478 | if (!sched_asym_cpucap_active()) |
| 479 | return true; |
| 480 | |
| 481 | min_cap = uclamp_eff_value(p, UCLAMP_MIN); |
| 482 | max_cap = uclamp_eff_value(p, UCLAMP_MAX); |
| 483 | |
| 484 | cpu_cap = arch_scale_cpu_capacity(cpu); |
| 485 | |
| 486 | return cpu_cap >= min(min_cap, max_cap); |
| 487 | } |
| 488 | #else |
| 489 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) |
| 490 | { |
| 491 | return true; |
| 492 | } |
| 493 | #endif |
| 494 | |
| 495 | #ifdef CONFIG_RT_GROUP_SCHED |
| 496 | |
| 497 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
| 498 | { |
| 499 | return rt_rq->rt_runtime; |
| 500 | } |
| 501 | |
| 502 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) |
| 503 | { |
| 504 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); |
| 505 | } |
| 506 | |
| 507 | typedef struct task_group *rt_rq_iter_t; |
| 508 | |
| 509 | static inline struct task_group *next_task_group(struct task_group *tg) |
| 510 | { |
| 511 | if (!rt_group_sched_enabled()) { |
| 512 | WARN_ON(tg != &root_task_group); |
| 513 | return NULL; |
| 514 | } |
| 515 | |
| 516 | do { |
| 517 | tg = list_entry_rcu(tg->list.next, |
| 518 | typeof(struct task_group), list); |
| 519 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); |
| 520 | |
| 521 | if (&tg->list == &task_groups) |
| 522 | tg = NULL; |
| 523 | |
| 524 | return tg; |
| 525 | } |
| 526 | |
| 527 | #define for_each_rt_rq(rt_rq, iter, rq) \ |
| 528 | for (iter = &root_task_group; \ |
| 529 | iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \ |
| 530 | iter = next_task_group(iter)) |
| 531 | |
| 532 | #define for_each_sched_rt_entity(rt_se) \ |
| 533 | for (; rt_se; rt_se = rt_se->parent) |
| 534 | |
| 535 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) |
| 536 | { |
| 537 | return rt_se->my_q; |
| 538 | } |
| 539 | |
| 540 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); |
| 541 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); |
| 542 | |
| 543 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
| 544 | { |
| 545 | struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor; |
| 546 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 547 | struct sched_rt_entity *rt_se; |
| 548 | |
| 549 | int cpu = cpu_of(rq); |
| 550 | |
| 551 | rt_se = rt_rq->tg->rt_se[cpu]; |
| 552 | |
| 553 | if (rt_rq->rt_nr_running) { |
| 554 | if (!rt_se) |
| 555 | enqueue_top_rt_rq(rt_rq); |
| 556 | else if (!on_rt_rq(rt_se)) |
| 557 | enqueue_rt_entity(rt_se, 0); |
| 558 | |
| 559 | if (rt_rq->highest_prio.curr < donor->prio) |
| 560 | resched_curr(rq); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
| 565 | { |
| 566 | struct sched_rt_entity *rt_se; |
| 567 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); |
| 568 | |
| 569 | rt_se = rt_rq->tg->rt_se[cpu]; |
| 570 | |
| 571 | if (!rt_se) { |
| 572 | dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); |
| 573 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ |
| 574 | cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); |
| 575 | } |
| 576 | else if (on_rt_rq(rt_se)) |
| 577 | dequeue_rt_entity(rt_se, 0); |
| 578 | } |
| 579 | |
| 580 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
| 581 | { |
| 582 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; |
| 583 | } |
| 584 | |
| 585 | static int rt_se_boosted(struct sched_rt_entity *rt_se) |
| 586 | { |
| 587 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
| 588 | struct task_struct *p; |
| 589 | |
| 590 | if (rt_rq) |
| 591 | return !!rt_rq->rt_nr_boosted; |
| 592 | |
| 593 | p = rt_task_of(rt_se); |
| 594 | return p->prio != p->normal_prio; |
| 595 | } |
| 596 | |
| 597 | #ifdef CONFIG_SMP |
| 598 | static inline const struct cpumask *sched_rt_period_mask(void) |
| 599 | { |
| 600 | return this_rq()->rd->span; |
| 601 | } |
| 602 | #else |
| 603 | static inline const struct cpumask *sched_rt_period_mask(void) |
| 604 | { |
| 605 | return cpu_online_mask; |
| 606 | } |
| 607 | #endif |
| 608 | |
| 609 | static inline |
| 610 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) |
| 611 | { |
| 612 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
| 613 | } |
| 614 | |
| 615 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
| 616 | { |
| 617 | return &rt_rq->tg->rt_bandwidth; |
| 618 | } |
| 619 | |
| 620 | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) |
| 621 | { |
| 622 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
| 623 | |
| 624 | return (hrtimer_active(&rt_b->rt_period_timer) || |
| 625 | rt_rq->rt_time < rt_b->rt_runtime); |
| 626 | } |
| 627 | |
| 628 | #ifdef CONFIG_SMP |
| 629 | /* |
| 630 | * We ran out of runtime, see if we can borrow some from our neighbours. |
| 631 | */ |
| 632 | static void do_balance_runtime(struct rt_rq *rt_rq) |
| 633 | { |
| 634 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
| 635 | struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; |
| 636 | int i, weight; |
| 637 | u64 rt_period; |
| 638 | |
| 639 | weight = cpumask_weight(rd->span); |
| 640 | |
| 641 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 642 | rt_period = ktime_to_ns(rt_b->rt_period); |
| 643 | for_each_cpu(i, rd->span) { |
| 644 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
| 645 | s64 diff; |
| 646 | |
| 647 | if (iter == rt_rq) |
| 648 | continue; |
| 649 | |
| 650 | raw_spin_lock(&iter->rt_runtime_lock); |
| 651 | /* |
| 652 | * Either all rqs have inf runtime and there's nothing to steal |
| 653 | * or __disable_runtime() below sets a specific rq to inf to |
| 654 | * indicate its been disabled and disallow stealing. |
| 655 | */ |
| 656 | if (iter->rt_runtime == RUNTIME_INF) |
| 657 | goto next; |
| 658 | |
| 659 | /* |
| 660 | * From runqueues with spare time, take 1/n part of their |
| 661 | * spare time, but no more than our period. |
| 662 | */ |
| 663 | diff = iter->rt_runtime - iter->rt_time; |
| 664 | if (diff > 0) { |
| 665 | diff = div_u64((u64)diff, weight); |
| 666 | if (rt_rq->rt_runtime + diff > rt_period) |
| 667 | diff = rt_period - rt_rq->rt_runtime; |
| 668 | iter->rt_runtime -= diff; |
| 669 | rt_rq->rt_runtime += diff; |
| 670 | if (rt_rq->rt_runtime == rt_period) { |
| 671 | raw_spin_unlock(&iter->rt_runtime_lock); |
| 672 | break; |
| 673 | } |
| 674 | } |
| 675 | next: |
| 676 | raw_spin_unlock(&iter->rt_runtime_lock); |
| 677 | } |
| 678 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 679 | } |
| 680 | |
| 681 | /* |
| 682 | * Ensure this RQ takes back all the runtime it lend to its neighbours. |
| 683 | */ |
| 684 | static void __disable_runtime(struct rq *rq) |
| 685 | { |
| 686 | struct root_domain *rd = rq->rd; |
| 687 | rt_rq_iter_t iter; |
| 688 | struct rt_rq *rt_rq; |
| 689 | |
| 690 | if (unlikely(!scheduler_running)) |
| 691 | return; |
| 692 | |
| 693 | for_each_rt_rq(rt_rq, iter, rq) { |
| 694 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
| 695 | s64 want; |
| 696 | int i; |
| 697 | |
| 698 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 699 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 700 | /* |
| 701 | * Either we're all inf and nobody needs to borrow, or we're |
| 702 | * already disabled and thus have nothing to do, or we have |
| 703 | * exactly the right amount of runtime to take out. |
| 704 | */ |
| 705 | if (rt_rq->rt_runtime == RUNTIME_INF || |
| 706 | rt_rq->rt_runtime == rt_b->rt_runtime) |
| 707 | goto balanced; |
| 708 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 709 | |
| 710 | /* |
| 711 | * Calculate the difference between what we started out with |
| 712 | * and what we current have, that's the amount of runtime |
| 713 | * we lend and now have to reclaim. |
| 714 | */ |
| 715 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
| 716 | |
| 717 | /* |
| 718 | * Greedy reclaim, take back as much as we can. |
| 719 | */ |
| 720 | for_each_cpu(i, rd->span) { |
| 721 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
| 722 | s64 diff; |
| 723 | |
| 724 | /* |
| 725 | * Can't reclaim from ourselves or disabled runqueues. |
| 726 | */ |
| 727 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
| 728 | continue; |
| 729 | |
| 730 | raw_spin_lock(&iter->rt_runtime_lock); |
| 731 | if (want > 0) { |
| 732 | diff = min_t(s64, iter->rt_runtime, want); |
| 733 | iter->rt_runtime -= diff; |
| 734 | want -= diff; |
| 735 | } else { |
| 736 | iter->rt_runtime -= want; |
| 737 | want -= want; |
| 738 | } |
| 739 | raw_spin_unlock(&iter->rt_runtime_lock); |
| 740 | |
| 741 | if (!want) |
| 742 | break; |
| 743 | } |
| 744 | |
| 745 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 746 | /* |
| 747 | * We cannot be left wanting - that would mean some runtime |
| 748 | * leaked out of the system. |
| 749 | */ |
| 750 | WARN_ON_ONCE(want); |
| 751 | balanced: |
| 752 | /* |
| 753 | * Disable all the borrow logic by pretending we have inf |
| 754 | * runtime - in which case borrowing doesn't make sense. |
| 755 | */ |
| 756 | rt_rq->rt_runtime = RUNTIME_INF; |
| 757 | rt_rq->rt_throttled = 0; |
| 758 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 759 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 760 | |
| 761 | /* Make rt_rq available for pick_next_task() */ |
| 762 | sched_rt_rq_enqueue(rt_rq); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | static void __enable_runtime(struct rq *rq) |
| 767 | { |
| 768 | rt_rq_iter_t iter; |
| 769 | struct rt_rq *rt_rq; |
| 770 | |
| 771 | if (unlikely(!scheduler_running)) |
| 772 | return; |
| 773 | |
| 774 | /* |
| 775 | * Reset each runqueue's bandwidth settings |
| 776 | */ |
| 777 | for_each_rt_rq(rt_rq, iter, rq) { |
| 778 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
| 779 | |
| 780 | raw_spin_lock(&rt_b->rt_runtime_lock); |
| 781 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 782 | rt_rq->rt_runtime = rt_b->rt_runtime; |
| 783 | rt_rq->rt_time = 0; |
| 784 | rt_rq->rt_throttled = 0; |
| 785 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 786 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | static void balance_runtime(struct rt_rq *rt_rq) |
| 791 | { |
| 792 | if (!sched_feat(RT_RUNTIME_SHARE)) |
| 793 | return; |
| 794 | |
| 795 | if (rt_rq->rt_time > rt_rq->rt_runtime) { |
| 796 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 797 | do_balance_runtime(rt_rq); |
| 798 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 799 | } |
| 800 | } |
| 801 | #else /* !CONFIG_SMP */ |
| 802 | static inline void balance_runtime(struct rt_rq *rt_rq) {} |
| 803 | #endif /* CONFIG_SMP */ |
| 804 | |
| 805 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
| 806 | { |
| 807 | int i, idle = 1, throttled = 0; |
| 808 | const struct cpumask *span; |
| 809 | |
| 810 | span = sched_rt_period_mask(); |
| 811 | |
| 812 | /* |
| 813 | * FIXME: isolated CPUs should really leave the root task group, |
| 814 | * whether they are isolcpus or were isolated via cpusets, lest |
| 815 | * the timer run on a CPU which does not service all runqueues, |
| 816 | * potentially leaving other CPUs indefinitely throttled. If |
| 817 | * isolation is really required, the user will turn the throttle |
| 818 | * off to kill the perturbations it causes anyway. Meanwhile, |
| 819 | * this maintains functionality for boot and/or troubleshooting. |
| 820 | */ |
| 821 | if (rt_b == &root_task_group.rt_bandwidth) |
| 822 | span = cpu_online_mask; |
| 823 | |
| 824 | for_each_cpu(i, span) { |
| 825 | int enqueue = 0; |
| 826 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); |
| 827 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 828 | struct rq_flags rf; |
| 829 | int skip; |
| 830 | |
| 831 | /* |
| 832 | * When span == cpu_online_mask, taking each rq->lock |
| 833 | * can be time-consuming. Try to avoid it when possible. |
| 834 | */ |
| 835 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 836 | if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) |
| 837 | rt_rq->rt_runtime = rt_b->rt_runtime; |
| 838 | skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; |
| 839 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 840 | if (skip) |
| 841 | continue; |
| 842 | |
| 843 | rq_lock(rq, &rf); |
| 844 | update_rq_clock(rq); |
| 845 | |
| 846 | if (rt_rq->rt_time) { |
| 847 | u64 runtime; |
| 848 | |
| 849 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 850 | if (rt_rq->rt_throttled) |
| 851 | balance_runtime(rt_rq); |
| 852 | runtime = rt_rq->rt_runtime; |
| 853 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); |
| 854 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { |
| 855 | rt_rq->rt_throttled = 0; |
| 856 | enqueue = 1; |
| 857 | |
| 858 | /* |
| 859 | * When we're idle and a woken (rt) task is |
| 860 | * throttled wakeup_preempt() will set |
| 861 | * skip_update and the time between the wakeup |
| 862 | * and this unthrottle will get accounted as |
| 863 | * 'runtime'. |
| 864 | */ |
| 865 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) |
| 866 | rq_clock_cancel_skipupdate(rq); |
| 867 | } |
| 868 | if (rt_rq->rt_time || rt_rq->rt_nr_running) |
| 869 | idle = 0; |
| 870 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 871 | } else if (rt_rq->rt_nr_running) { |
| 872 | idle = 0; |
| 873 | if (!rt_rq_throttled(rt_rq)) |
| 874 | enqueue = 1; |
| 875 | } |
| 876 | if (rt_rq->rt_throttled) |
| 877 | throttled = 1; |
| 878 | |
| 879 | if (enqueue) |
| 880 | sched_rt_rq_enqueue(rt_rq); |
| 881 | rq_unlock(rq, &rf); |
| 882 | } |
| 883 | |
| 884 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) |
| 885 | return 1; |
| 886 | |
| 887 | return idle; |
| 888 | } |
| 889 | |
| 890 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
| 891 | { |
| 892 | u64 runtime = sched_rt_runtime(rt_rq); |
| 893 | |
| 894 | if (rt_rq->rt_throttled) |
| 895 | return rt_rq_throttled(rt_rq); |
| 896 | |
| 897 | if (runtime >= sched_rt_period(rt_rq)) |
| 898 | return 0; |
| 899 | |
| 900 | balance_runtime(rt_rq); |
| 901 | runtime = sched_rt_runtime(rt_rq); |
| 902 | if (runtime == RUNTIME_INF) |
| 903 | return 0; |
| 904 | |
| 905 | if (rt_rq->rt_time > runtime) { |
| 906 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
| 907 | |
| 908 | /* |
| 909 | * Don't actually throttle groups that have no runtime assigned |
| 910 | * but accrue some time due to boosting. |
| 911 | */ |
| 912 | if (likely(rt_b->rt_runtime)) { |
| 913 | rt_rq->rt_throttled = 1; |
| 914 | printk_deferred_once("sched: RT throttling activated\n"); |
| 915 | } else { |
| 916 | /* |
| 917 | * In case we did anyway, make it go away, |
| 918 | * replenishment is a joke, since it will replenish us |
| 919 | * with exactly 0 ns. |
| 920 | */ |
| 921 | rt_rq->rt_time = 0; |
| 922 | } |
| 923 | |
| 924 | if (rt_rq_throttled(rt_rq)) { |
| 925 | sched_rt_rq_dequeue(rt_rq); |
| 926 | return 1; |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | #else /* !CONFIG_RT_GROUP_SCHED */ |
| 934 | |
| 935 | typedef struct rt_rq *rt_rq_iter_t; |
| 936 | |
| 937 | #define for_each_rt_rq(rt_rq, iter, rq) \ |
| 938 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) |
| 939 | |
| 940 | #define for_each_sched_rt_entity(rt_se) \ |
| 941 | for (; rt_se; rt_se = NULL) |
| 942 | |
| 943 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) |
| 944 | { |
| 945 | return NULL; |
| 946 | } |
| 947 | |
| 948 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
| 949 | { |
| 950 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 951 | |
| 952 | if (!rt_rq->rt_nr_running) |
| 953 | return; |
| 954 | |
| 955 | enqueue_top_rt_rq(rt_rq); |
| 956 | resched_curr(rq); |
| 957 | } |
| 958 | |
| 959 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
| 960 | { |
| 961 | dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); |
| 962 | } |
| 963 | |
| 964 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
| 965 | { |
| 966 | return false; |
| 967 | } |
| 968 | |
| 969 | static inline const struct cpumask *sched_rt_period_mask(void) |
| 970 | { |
| 971 | return cpu_online_mask; |
| 972 | } |
| 973 | |
| 974 | static inline |
| 975 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) |
| 976 | { |
| 977 | return &cpu_rq(cpu)->rt; |
| 978 | } |
| 979 | |
| 980 | #ifdef CONFIG_SMP |
| 981 | static void __enable_runtime(struct rq *rq) { } |
| 982 | static void __disable_runtime(struct rq *rq) { } |
| 983 | #endif |
| 984 | |
| 985 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 986 | |
| 987 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
| 988 | { |
| 989 | #ifdef CONFIG_RT_GROUP_SCHED |
| 990 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
| 991 | |
| 992 | if (rt_rq) |
| 993 | return rt_rq->highest_prio.curr; |
| 994 | #endif |
| 995 | |
| 996 | return rt_task_of(rt_se)->prio; |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * Update the current task's runtime statistics. Skip current tasks that |
| 1001 | * are not in our scheduling class. |
| 1002 | */ |
| 1003 | static void update_curr_rt(struct rq *rq) |
| 1004 | { |
| 1005 | struct task_struct *donor = rq->donor; |
| 1006 | s64 delta_exec; |
| 1007 | |
| 1008 | if (donor->sched_class != &rt_sched_class) |
| 1009 | return; |
| 1010 | |
| 1011 | delta_exec = update_curr_common(rq); |
| 1012 | if (unlikely(delta_exec <= 0)) |
| 1013 | return; |
| 1014 | |
| 1015 | #ifdef CONFIG_RT_GROUP_SCHED |
| 1016 | struct sched_rt_entity *rt_se = &donor->rt; |
| 1017 | |
| 1018 | if (!rt_bandwidth_enabled()) |
| 1019 | return; |
| 1020 | |
| 1021 | for_each_sched_rt_entity(rt_se) { |
| 1022 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
| 1023 | int exceeded; |
| 1024 | |
| 1025 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
| 1026 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 1027 | rt_rq->rt_time += delta_exec; |
| 1028 | exceeded = sched_rt_runtime_exceeded(rt_rq); |
| 1029 | if (exceeded) |
| 1030 | resched_curr(rq); |
| 1031 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 1032 | if (exceeded) |
| 1033 | do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); |
| 1034 | } |
| 1035 | } |
| 1036 | #endif |
| 1037 | } |
| 1038 | |
| 1039 | static void |
| 1040 | dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) |
| 1041 | { |
| 1042 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 1043 | |
| 1044 | BUG_ON(&rq->rt != rt_rq); |
| 1045 | |
| 1046 | if (!rt_rq->rt_queued) |
| 1047 | return; |
| 1048 | |
| 1049 | BUG_ON(!rq->nr_running); |
| 1050 | |
| 1051 | sub_nr_running(rq, count); |
| 1052 | rt_rq->rt_queued = 0; |
| 1053 | |
| 1054 | } |
| 1055 | |
| 1056 | static void |
| 1057 | enqueue_top_rt_rq(struct rt_rq *rt_rq) |
| 1058 | { |
| 1059 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 1060 | |
| 1061 | BUG_ON(&rq->rt != rt_rq); |
| 1062 | |
| 1063 | if (rt_rq->rt_queued) |
| 1064 | return; |
| 1065 | |
| 1066 | if (rt_rq_throttled(rt_rq)) |
| 1067 | return; |
| 1068 | |
| 1069 | if (rt_rq->rt_nr_running) { |
| 1070 | add_nr_running(rq, rt_rq->rt_nr_running); |
| 1071 | rt_rq->rt_queued = 1; |
| 1072 | } |
| 1073 | |
| 1074 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ |
| 1075 | cpufreq_update_util(rq, 0); |
| 1076 | } |
| 1077 | |
| 1078 | #if defined CONFIG_SMP |
| 1079 | |
| 1080 | static void |
| 1081 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
| 1082 | { |
| 1083 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 1084 | |
| 1085 | /* |
| 1086 | * Change rq's cpupri only if rt_rq is the top queue. |
| 1087 | */ |
| 1088 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) |
| 1089 | return; |
| 1090 | |
| 1091 | if (rq->online && prio < prev_prio) |
| 1092 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
| 1093 | } |
| 1094 | |
| 1095 | static void |
| 1096 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) |
| 1097 | { |
| 1098 | struct rq *rq = rq_of_rt_rq(rt_rq); |
| 1099 | |
| 1100 | /* |
| 1101 | * Change rq's cpupri only if rt_rq is the top queue. |
| 1102 | */ |
| 1103 | if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) |
| 1104 | return; |
| 1105 | |
| 1106 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
| 1107 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); |
| 1108 | } |
| 1109 | |
| 1110 | #else /* CONFIG_SMP */ |
| 1111 | |
| 1112 | static inline |
| 1113 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 1114 | static inline |
| 1115 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
| 1116 | |
| 1117 | #endif /* CONFIG_SMP */ |
| 1118 | |
| 1119 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| 1120 | static void |
| 1121 | inc_rt_prio(struct rt_rq *rt_rq, int prio) |
| 1122 | { |
| 1123 | int prev_prio = rt_rq->highest_prio.curr; |
| 1124 | |
| 1125 | if (prio < prev_prio) |
| 1126 | rt_rq->highest_prio.curr = prio; |
| 1127 | |
| 1128 | inc_rt_prio_smp(rt_rq, prio, prev_prio); |
| 1129 | } |
| 1130 | |
| 1131 | static void |
| 1132 | dec_rt_prio(struct rt_rq *rt_rq, int prio) |
| 1133 | { |
| 1134 | int prev_prio = rt_rq->highest_prio.curr; |
| 1135 | |
| 1136 | if (rt_rq->rt_nr_running) { |
| 1137 | |
| 1138 | WARN_ON(prio < prev_prio); |
| 1139 | |
| 1140 | /* |
| 1141 | * This may have been our highest task, and therefore |
| 1142 | * we may have some re-computation to do |
| 1143 | */ |
| 1144 | if (prio == prev_prio) { |
| 1145 | struct rt_prio_array *array = &rt_rq->active; |
| 1146 | |
| 1147 | rt_rq->highest_prio.curr = |
| 1148 | sched_find_first_bit(array->bitmap); |
| 1149 | } |
| 1150 | |
| 1151 | } else { |
| 1152 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
| 1153 | } |
| 1154 | |
| 1155 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
| 1156 | } |
| 1157 | |
| 1158 | #else |
| 1159 | |
| 1160 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 1161 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} |
| 1162 | |
| 1163 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ |
| 1164 | |
| 1165 | #ifdef CONFIG_RT_GROUP_SCHED |
| 1166 | |
| 1167 | static void |
| 1168 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 1169 | { |
| 1170 | if (rt_se_boosted(rt_se)) |
| 1171 | rt_rq->rt_nr_boosted++; |
| 1172 | |
| 1173 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); |
| 1174 | } |
| 1175 | |
| 1176 | static void |
| 1177 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 1178 | { |
| 1179 | if (rt_se_boosted(rt_se)) |
| 1180 | rt_rq->rt_nr_boosted--; |
| 1181 | |
| 1182 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); |
| 1183 | } |
| 1184 | |
| 1185 | #else /* CONFIG_RT_GROUP_SCHED */ |
| 1186 | |
| 1187 | static void |
| 1188 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 1189 | { |
| 1190 | } |
| 1191 | |
| 1192 | static inline |
| 1193 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} |
| 1194 | |
| 1195 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 1196 | |
| 1197 | static inline |
| 1198 | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) |
| 1199 | { |
| 1200 | struct rt_rq *group_rq = group_rt_rq(rt_se); |
| 1201 | |
| 1202 | if (group_rq) |
| 1203 | return group_rq->rt_nr_running; |
| 1204 | else |
| 1205 | return 1; |
| 1206 | } |
| 1207 | |
| 1208 | static inline |
| 1209 | unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) |
| 1210 | { |
| 1211 | struct rt_rq *group_rq = group_rt_rq(rt_se); |
| 1212 | struct task_struct *tsk; |
| 1213 | |
| 1214 | if (group_rq) |
| 1215 | return group_rq->rr_nr_running; |
| 1216 | |
| 1217 | tsk = rt_task_of(rt_se); |
| 1218 | |
| 1219 | return (tsk->policy == SCHED_RR) ? 1 : 0; |
| 1220 | } |
| 1221 | |
| 1222 | static inline |
| 1223 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 1224 | { |
| 1225 | int prio = rt_se_prio(rt_se); |
| 1226 | |
| 1227 | WARN_ON(!rt_prio(prio)); |
| 1228 | rt_rq->rt_nr_running += rt_se_nr_running(rt_se); |
| 1229 | rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); |
| 1230 | |
| 1231 | inc_rt_prio(rt_rq, prio); |
| 1232 | inc_rt_group(rt_se, rt_rq); |
| 1233 | } |
| 1234 | |
| 1235 | static inline |
| 1236 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
| 1237 | { |
| 1238 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); |
| 1239 | WARN_ON(!rt_rq->rt_nr_running); |
| 1240 | rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); |
| 1241 | rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); |
| 1242 | |
| 1243 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); |
| 1244 | dec_rt_group(rt_se, rt_rq); |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * Change rt_se->run_list location unless SAVE && !MOVE |
| 1249 | * |
| 1250 | * assumes ENQUEUE/DEQUEUE flags match |
| 1251 | */ |
| 1252 | static inline bool move_entity(unsigned int flags) |
| 1253 | { |
| 1254 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) |
| 1255 | return false; |
| 1256 | |
| 1257 | return true; |
| 1258 | } |
| 1259 | |
| 1260 | static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) |
| 1261 | { |
| 1262 | list_del_init(&rt_se->run_list); |
| 1263 | |
| 1264 | if (list_empty(array->queue + rt_se_prio(rt_se))) |
| 1265 | __clear_bit(rt_se_prio(rt_se), array->bitmap); |
| 1266 | |
| 1267 | rt_se->on_list = 0; |
| 1268 | } |
| 1269 | |
| 1270 | static inline struct sched_statistics * |
| 1271 | __schedstats_from_rt_se(struct sched_rt_entity *rt_se) |
| 1272 | { |
| 1273 | /* schedstats is not supported for rt group. */ |
| 1274 | if (!rt_entity_is_task(rt_se)) |
| 1275 | return NULL; |
| 1276 | |
| 1277 | return &rt_task_of(rt_se)->stats; |
| 1278 | } |
| 1279 | |
| 1280 | static inline void |
| 1281 | update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) |
| 1282 | { |
| 1283 | struct sched_statistics *stats; |
| 1284 | struct task_struct *p = NULL; |
| 1285 | |
| 1286 | if (!schedstat_enabled()) |
| 1287 | return; |
| 1288 | |
| 1289 | if (rt_entity_is_task(rt_se)) |
| 1290 | p = rt_task_of(rt_se); |
| 1291 | |
| 1292 | stats = __schedstats_from_rt_se(rt_se); |
| 1293 | if (!stats) |
| 1294 | return; |
| 1295 | |
| 1296 | __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); |
| 1297 | } |
| 1298 | |
| 1299 | static inline void |
| 1300 | update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) |
| 1301 | { |
| 1302 | struct sched_statistics *stats; |
| 1303 | struct task_struct *p = NULL; |
| 1304 | |
| 1305 | if (!schedstat_enabled()) |
| 1306 | return; |
| 1307 | |
| 1308 | if (rt_entity_is_task(rt_se)) |
| 1309 | p = rt_task_of(rt_se); |
| 1310 | |
| 1311 | stats = __schedstats_from_rt_se(rt_se); |
| 1312 | if (!stats) |
| 1313 | return; |
| 1314 | |
| 1315 | __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); |
| 1316 | } |
| 1317 | |
| 1318 | static inline void |
| 1319 | update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, |
| 1320 | int flags) |
| 1321 | { |
| 1322 | if (!schedstat_enabled()) |
| 1323 | return; |
| 1324 | |
| 1325 | if (flags & ENQUEUE_WAKEUP) |
| 1326 | update_stats_enqueue_sleeper_rt(rt_rq, rt_se); |
| 1327 | } |
| 1328 | |
| 1329 | static inline void |
| 1330 | update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) |
| 1331 | { |
| 1332 | struct sched_statistics *stats; |
| 1333 | struct task_struct *p = NULL; |
| 1334 | |
| 1335 | if (!schedstat_enabled()) |
| 1336 | return; |
| 1337 | |
| 1338 | if (rt_entity_is_task(rt_se)) |
| 1339 | p = rt_task_of(rt_se); |
| 1340 | |
| 1341 | stats = __schedstats_from_rt_se(rt_se); |
| 1342 | if (!stats) |
| 1343 | return; |
| 1344 | |
| 1345 | __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); |
| 1346 | } |
| 1347 | |
| 1348 | static inline void |
| 1349 | update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, |
| 1350 | int flags) |
| 1351 | { |
| 1352 | struct task_struct *p = NULL; |
| 1353 | |
| 1354 | if (!schedstat_enabled()) |
| 1355 | return; |
| 1356 | |
| 1357 | if (rt_entity_is_task(rt_se)) |
| 1358 | p = rt_task_of(rt_se); |
| 1359 | |
| 1360 | if ((flags & DEQUEUE_SLEEP) && p) { |
| 1361 | unsigned int state; |
| 1362 | |
| 1363 | state = READ_ONCE(p->__state); |
| 1364 | if (state & TASK_INTERRUPTIBLE) |
| 1365 | __schedstat_set(p->stats.sleep_start, |
| 1366 | rq_clock(rq_of_rt_rq(rt_rq))); |
| 1367 | |
| 1368 | if (state & TASK_UNINTERRUPTIBLE) |
| 1369 | __schedstat_set(p->stats.block_start, |
| 1370 | rq_clock(rq_of_rt_rq(rt_rq))); |
| 1371 | } |
| 1372 | } |
| 1373 | |
| 1374 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
| 1375 | { |
| 1376 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
| 1377 | struct rt_prio_array *array = &rt_rq->active; |
| 1378 | struct rt_rq *group_rq = group_rt_rq(rt_se); |
| 1379 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
| 1380 | |
| 1381 | /* |
| 1382 | * Don't enqueue the group if its throttled, or when empty. |
| 1383 | * The latter is a consequence of the former when a child group |
| 1384 | * get throttled and the current group doesn't have any other |
| 1385 | * active members. |
| 1386 | */ |
| 1387 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { |
| 1388 | if (rt_se->on_list) |
| 1389 | __delist_rt_entity(rt_se, array); |
| 1390 | return; |
| 1391 | } |
| 1392 | |
| 1393 | if (move_entity(flags)) { |
| 1394 | WARN_ON_ONCE(rt_se->on_list); |
| 1395 | if (flags & ENQUEUE_HEAD) |
| 1396 | list_add(&rt_se->run_list, queue); |
| 1397 | else |
| 1398 | list_add_tail(&rt_se->run_list, queue); |
| 1399 | |
| 1400 | __set_bit(rt_se_prio(rt_se), array->bitmap); |
| 1401 | rt_se->on_list = 1; |
| 1402 | } |
| 1403 | rt_se->on_rq = 1; |
| 1404 | |
| 1405 | inc_rt_tasks(rt_se, rt_rq); |
| 1406 | } |
| 1407 | |
| 1408 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
| 1409 | { |
| 1410 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
| 1411 | struct rt_prio_array *array = &rt_rq->active; |
| 1412 | |
| 1413 | if (move_entity(flags)) { |
| 1414 | WARN_ON_ONCE(!rt_se->on_list); |
| 1415 | __delist_rt_entity(rt_se, array); |
| 1416 | } |
| 1417 | rt_se->on_rq = 0; |
| 1418 | |
| 1419 | dec_rt_tasks(rt_se, rt_rq); |
| 1420 | } |
| 1421 | |
| 1422 | /* |
| 1423 | * Because the prio of an upper entry depends on the lower |
| 1424 | * entries, we must remove entries top - down. |
| 1425 | */ |
| 1426 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) |
| 1427 | { |
| 1428 | struct sched_rt_entity *back = NULL; |
| 1429 | unsigned int rt_nr_running; |
| 1430 | |
| 1431 | for_each_sched_rt_entity(rt_se) { |
| 1432 | rt_se->back = back; |
| 1433 | back = rt_se; |
| 1434 | } |
| 1435 | |
| 1436 | rt_nr_running = rt_rq_of_se(back)->rt_nr_running; |
| 1437 | |
| 1438 | for (rt_se = back; rt_se; rt_se = rt_se->back) { |
| 1439 | if (on_rt_rq(rt_se)) |
| 1440 | __dequeue_rt_entity(rt_se, flags); |
| 1441 | } |
| 1442 | |
| 1443 | dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); |
| 1444 | } |
| 1445 | |
| 1446 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
| 1447 | { |
| 1448 | struct rq *rq = rq_of_rt_se(rt_se); |
| 1449 | |
| 1450 | update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); |
| 1451 | |
| 1452 | dequeue_rt_stack(rt_se, flags); |
| 1453 | for_each_sched_rt_entity(rt_se) |
| 1454 | __enqueue_rt_entity(rt_se, flags); |
| 1455 | enqueue_top_rt_rq(&rq->rt); |
| 1456 | } |
| 1457 | |
| 1458 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
| 1459 | { |
| 1460 | struct rq *rq = rq_of_rt_se(rt_se); |
| 1461 | |
| 1462 | update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); |
| 1463 | |
| 1464 | dequeue_rt_stack(rt_se, flags); |
| 1465 | |
| 1466 | for_each_sched_rt_entity(rt_se) { |
| 1467 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
| 1468 | |
| 1469 | if (rt_rq && rt_rq->rt_nr_running) |
| 1470 | __enqueue_rt_entity(rt_se, flags); |
| 1471 | } |
| 1472 | enqueue_top_rt_rq(&rq->rt); |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Adding/removing a task to/from a priority array: |
| 1477 | */ |
| 1478 | static void |
| 1479 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
| 1480 | { |
| 1481 | struct sched_rt_entity *rt_se = &p->rt; |
| 1482 | |
| 1483 | if (flags & ENQUEUE_WAKEUP) |
| 1484 | rt_se->timeout = 0; |
| 1485 | |
| 1486 | check_schedstat_required(); |
| 1487 | update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); |
| 1488 | |
| 1489 | enqueue_rt_entity(rt_se, flags); |
| 1490 | |
| 1491 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
| 1492 | enqueue_pushable_task(rq, p); |
| 1493 | } |
| 1494 | |
| 1495 | static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
| 1496 | { |
| 1497 | struct sched_rt_entity *rt_se = &p->rt; |
| 1498 | |
| 1499 | update_curr_rt(rq); |
| 1500 | dequeue_rt_entity(rt_se, flags); |
| 1501 | |
| 1502 | dequeue_pushable_task(rq, p); |
| 1503 | |
| 1504 | return true; |
| 1505 | } |
| 1506 | |
| 1507 | /* |
| 1508 | * Put task to the head or the end of the run list without the overhead of |
| 1509 | * dequeue followed by enqueue. |
| 1510 | */ |
| 1511 | static void |
| 1512 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) |
| 1513 | { |
| 1514 | if (on_rt_rq(rt_se)) { |
| 1515 | struct rt_prio_array *array = &rt_rq->active; |
| 1516 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
| 1517 | |
| 1518 | if (head) |
| 1519 | list_move(&rt_se->run_list, queue); |
| 1520 | else |
| 1521 | list_move_tail(&rt_se->run_list, queue); |
| 1522 | } |
| 1523 | } |
| 1524 | |
| 1525 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
| 1526 | { |
| 1527 | struct sched_rt_entity *rt_se = &p->rt; |
| 1528 | struct rt_rq *rt_rq; |
| 1529 | |
| 1530 | for_each_sched_rt_entity(rt_se) { |
| 1531 | rt_rq = rt_rq_of_se(rt_se); |
| 1532 | requeue_rt_entity(rt_rq, rt_se, head); |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | static void yield_task_rt(struct rq *rq) |
| 1537 | { |
| 1538 | requeue_task_rt(rq, rq->curr, 0); |
| 1539 | } |
| 1540 | |
| 1541 | #ifdef CONFIG_SMP |
| 1542 | static int find_lowest_rq(struct task_struct *task); |
| 1543 | |
| 1544 | static int |
| 1545 | select_task_rq_rt(struct task_struct *p, int cpu, int flags) |
| 1546 | { |
| 1547 | struct task_struct *curr, *donor; |
| 1548 | struct rq *rq; |
| 1549 | bool test; |
| 1550 | |
| 1551 | /* For anything but wake ups, just return the task_cpu */ |
| 1552 | if (!(flags & (WF_TTWU | WF_FORK))) |
| 1553 | goto out; |
| 1554 | |
| 1555 | rq = cpu_rq(cpu); |
| 1556 | |
| 1557 | rcu_read_lock(); |
| 1558 | curr = READ_ONCE(rq->curr); /* unlocked access */ |
| 1559 | donor = READ_ONCE(rq->donor); |
| 1560 | |
| 1561 | /* |
| 1562 | * If the current task on @p's runqueue is an RT task, then |
| 1563 | * try to see if we can wake this RT task up on another |
| 1564 | * runqueue. Otherwise simply start this RT task |
| 1565 | * on its current runqueue. |
| 1566 | * |
| 1567 | * We want to avoid overloading runqueues. If the woken |
| 1568 | * task is a higher priority, then it will stay on this CPU |
| 1569 | * and the lower prio task should be moved to another CPU. |
| 1570 | * Even though this will probably make the lower prio task |
| 1571 | * lose its cache, we do not want to bounce a higher task |
| 1572 | * around just because it gave up its CPU, perhaps for a |
| 1573 | * lock? |
| 1574 | * |
| 1575 | * For equal prio tasks, we just let the scheduler sort it out. |
| 1576 | * |
| 1577 | * Otherwise, just let it ride on the affine RQ and the |
| 1578 | * post-schedule router will push the preempted task away |
| 1579 | * |
| 1580 | * This test is optimistic, if we get it wrong the load-balancer |
| 1581 | * will have to sort it out. |
| 1582 | * |
| 1583 | * We take into account the capacity of the CPU to ensure it fits the |
| 1584 | * requirement of the task - which is only important on heterogeneous |
| 1585 | * systems like big.LITTLE. |
| 1586 | */ |
| 1587 | test = curr && |
| 1588 | unlikely(rt_task(donor)) && |
| 1589 | (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio); |
| 1590 | |
| 1591 | if (test || !rt_task_fits_capacity(p, cpu)) { |
| 1592 | int target = find_lowest_rq(p); |
| 1593 | |
| 1594 | /* |
| 1595 | * Bail out if we were forcing a migration to find a better |
| 1596 | * fitting CPU but our search failed. |
| 1597 | */ |
| 1598 | if (!test && target != -1 && !rt_task_fits_capacity(p, target)) |
| 1599 | goto out_unlock; |
| 1600 | |
| 1601 | /* |
| 1602 | * Don't bother moving it if the destination CPU is |
| 1603 | * not running a lower priority task. |
| 1604 | */ |
| 1605 | if (target != -1 && |
| 1606 | p->prio < cpu_rq(target)->rt.highest_prio.curr) |
| 1607 | cpu = target; |
| 1608 | } |
| 1609 | |
| 1610 | out_unlock: |
| 1611 | rcu_read_unlock(); |
| 1612 | |
| 1613 | out: |
| 1614 | return cpu; |
| 1615 | } |
| 1616 | |
| 1617 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) |
| 1618 | { |
| 1619 | if (rq->curr->nr_cpus_allowed == 1 || |
| 1620 | !cpupri_find(&rq->rd->cpupri, rq->donor, NULL)) |
| 1621 | return; |
| 1622 | |
| 1623 | /* |
| 1624 | * p is migratable, so let's not schedule it and |
| 1625 | * see if it is pushed or pulled somewhere else. |
| 1626 | */ |
| 1627 | if (p->nr_cpus_allowed != 1 && |
| 1628 | cpupri_find(&rq->rd->cpupri, p, NULL)) |
| 1629 | return; |
| 1630 | |
| 1631 | /* |
| 1632 | * There appear to be other CPUs that can accept |
| 1633 | * the current task but none can run 'p', so lets reschedule |
| 1634 | * to try and push the current task away: |
| 1635 | */ |
| 1636 | requeue_task_rt(rq, p, 1); |
| 1637 | resched_curr(rq); |
| 1638 | } |
| 1639 | |
| 1640 | static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
| 1641 | { |
| 1642 | if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { |
| 1643 | /* |
| 1644 | * This is OK, because current is on_cpu, which avoids it being |
| 1645 | * picked for load-balance and preemption/IRQs are still |
| 1646 | * disabled avoiding further scheduler activity on it and we've |
| 1647 | * not yet started the picking loop. |
| 1648 | */ |
| 1649 | rq_unpin_lock(rq, rf); |
| 1650 | pull_rt_task(rq); |
| 1651 | rq_repin_lock(rq, rf); |
| 1652 | } |
| 1653 | |
| 1654 | return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); |
| 1655 | } |
| 1656 | #endif /* CONFIG_SMP */ |
| 1657 | |
| 1658 | /* |
| 1659 | * Preempt the current task with a newly woken task if needed: |
| 1660 | */ |
| 1661 | static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) |
| 1662 | { |
| 1663 | struct task_struct *donor = rq->donor; |
| 1664 | |
| 1665 | if (p->prio < donor->prio) { |
| 1666 | resched_curr(rq); |
| 1667 | return; |
| 1668 | } |
| 1669 | |
| 1670 | #ifdef CONFIG_SMP |
| 1671 | /* |
| 1672 | * If: |
| 1673 | * |
| 1674 | * - the newly woken task is of equal priority to the current task |
| 1675 | * - the newly woken task is non-migratable while current is migratable |
| 1676 | * - current will be preempted on the next reschedule |
| 1677 | * |
| 1678 | * we should check to see if current can readily move to a different |
| 1679 | * cpu. If so, we will reschedule to allow the push logic to try |
| 1680 | * to move current somewhere else, making room for our non-migratable |
| 1681 | * task. |
| 1682 | */ |
| 1683 | if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr)) |
| 1684 | check_preempt_equal_prio(rq, p); |
| 1685 | #endif |
| 1686 | } |
| 1687 | |
| 1688 | static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) |
| 1689 | { |
| 1690 | struct sched_rt_entity *rt_se = &p->rt; |
| 1691 | struct rt_rq *rt_rq = &rq->rt; |
| 1692 | |
| 1693 | p->se.exec_start = rq_clock_task(rq); |
| 1694 | if (on_rt_rq(&p->rt)) |
| 1695 | update_stats_wait_end_rt(rt_rq, rt_se); |
| 1696 | |
| 1697 | /* The running task is never eligible for pushing */ |
| 1698 | dequeue_pushable_task(rq, p); |
| 1699 | |
| 1700 | if (!first) |
| 1701 | return; |
| 1702 | |
| 1703 | /* |
| 1704 | * If prev task was rt, put_prev_task() has already updated the |
| 1705 | * utilization. We only care of the case where we start to schedule a |
| 1706 | * rt task |
| 1707 | */ |
| 1708 | if (rq->donor->sched_class != &rt_sched_class) |
| 1709 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); |
| 1710 | |
| 1711 | rt_queue_push_tasks(rq); |
| 1712 | } |
| 1713 | |
| 1714 | static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) |
| 1715 | { |
| 1716 | struct rt_prio_array *array = &rt_rq->active; |
| 1717 | struct sched_rt_entity *next = NULL; |
| 1718 | struct list_head *queue; |
| 1719 | int idx; |
| 1720 | |
| 1721 | idx = sched_find_first_bit(array->bitmap); |
| 1722 | BUG_ON(idx >= MAX_RT_PRIO); |
| 1723 | |
| 1724 | queue = array->queue + idx; |
| 1725 | if (WARN_ON_ONCE(list_empty(queue))) |
| 1726 | return NULL; |
| 1727 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
| 1728 | |
| 1729 | return next; |
| 1730 | } |
| 1731 | |
| 1732 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
| 1733 | { |
| 1734 | struct sched_rt_entity *rt_se; |
| 1735 | struct rt_rq *rt_rq = &rq->rt; |
| 1736 | |
| 1737 | do { |
| 1738 | rt_se = pick_next_rt_entity(rt_rq); |
| 1739 | if (unlikely(!rt_se)) |
| 1740 | return NULL; |
| 1741 | rt_rq = group_rt_rq(rt_se); |
| 1742 | } while (rt_rq); |
| 1743 | |
| 1744 | return rt_task_of(rt_se); |
| 1745 | } |
| 1746 | |
| 1747 | static struct task_struct *pick_task_rt(struct rq *rq) |
| 1748 | { |
| 1749 | struct task_struct *p; |
| 1750 | |
| 1751 | if (!sched_rt_runnable(rq)) |
| 1752 | return NULL; |
| 1753 | |
| 1754 | p = _pick_next_task_rt(rq); |
| 1755 | |
| 1756 | return p; |
| 1757 | } |
| 1758 | |
| 1759 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) |
| 1760 | { |
| 1761 | struct sched_rt_entity *rt_se = &p->rt; |
| 1762 | struct rt_rq *rt_rq = &rq->rt; |
| 1763 | |
| 1764 | if (on_rt_rq(&p->rt)) |
| 1765 | update_stats_wait_start_rt(rt_rq, rt_se); |
| 1766 | |
| 1767 | update_curr_rt(rq); |
| 1768 | |
| 1769 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
| 1770 | |
| 1771 | /* |
| 1772 | * The previous task needs to be made eligible for pushing |
| 1773 | * if it is still active |
| 1774 | */ |
| 1775 | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) |
| 1776 | enqueue_pushable_task(rq, p); |
| 1777 | } |
| 1778 | |
| 1779 | #ifdef CONFIG_SMP |
| 1780 | |
| 1781 | /* Only try algorithms three times */ |
| 1782 | #define RT_MAX_TRIES 3 |
| 1783 | |
| 1784 | /* |
| 1785 | * Return the highest pushable rq's task, which is suitable to be executed |
| 1786 | * on the CPU, NULL otherwise |
| 1787 | */ |
| 1788 | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) |
| 1789 | { |
| 1790 | struct plist_head *head = &rq->rt.pushable_tasks; |
| 1791 | struct task_struct *p; |
| 1792 | |
| 1793 | if (!has_pushable_tasks(rq)) |
| 1794 | return NULL; |
| 1795 | |
| 1796 | plist_for_each_entry(p, head, pushable_tasks) { |
| 1797 | if (task_is_pushable(rq, p, cpu)) |
| 1798 | return p; |
| 1799 | } |
| 1800 | |
| 1801 | return NULL; |
| 1802 | } |
| 1803 | |
| 1804 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
| 1805 | |
| 1806 | static int find_lowest_rq(struct task_struct *task) |
| 1807 | { |
| 1808 | struct sched_domain *sd; |
| 1809 | struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); |
| 1810 | int this_cpu = smp_processor_id(); |
| 1811 | int cpu = task_cpu(task); |
| 1812 | int ret; |
| 1813 | |
| 1814 | /* Make sure the mask is initialized first */ |
| 1815 | if (unlikely(!lowest_mask)) |
| 1816 | return -1; |
| 1817 | |
| 1818 | if (task->nr_cpus_allowed == 1) |
| 1819 | return -1; /* No other targets possible */ |
| 1820 | |
| 1821 | /* |
| 1822 | * If we're on asym system ensure we consider the different capacities |
| 1823 | * of the CPUs when searching for the lowest_mask. |
| 1824 | */ |
| 1825 | if (sched_asym_cpucap_active()) { |
| 1826 | |
| 1827 | ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, |
| 1828 | task, lowest_mask, |
| 1829 | rt_task_fits_capacity); |
| 1830 | } else { |
| 1831 | |
| 1832 | ret = cpupri_find(&task_rq(task)->rd->cpupri, |
| 1833 | task, lowest_mask); |
| 1834 | } |
| 1835 | |
| 1836 | if (!ret) |
| 1837 | return -1; /* No targets found */ |
| 1838 | |
| 1839 | /* |
| 1840 | * At this point we have built a mask of CPUs representing the |
| 1841 | * lowest priority tasks in the system. Now we want to elect |
| 1842 | * the best one based on our affinity and topology. |
| 1843 | * |
| 1844 | * We prioritize the last CPU that the task executed on since |
| 1845 | * it is most likely cache-hot in that location. |
| 1846 | */ |
| 1847 | if (cpumask_test_cpu(cpu, lowest_mask)) |
| 1848 | return cpu; |
| 1849 | |
| 1850 | /* |
| 1851 | * Otherwise, we consult the sched_domains span maps to figure |
| 1852 | * out which CPU is logically closest to our hot cache data. |
| 1853 | */ |
| 1854 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
| 1855 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ |
| 1856 | |
| 1857 | rcu_read_lock(); |
| 1858 | for_each_domain(cpu, sd) { |
| 1859 | if (sd->flags & SD_WAKE_AFFINE) { |
| 1860 | int best_cpu; |
| 1861 | |
| 1862 | /* |
| 1863 | * "this_cpu" is cheaper to preempt than a |
| 1864 | * remote processor. |
| 1865 | */ |
| 1866 | if (this_cpu != -1 && |
| 1867 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
| 1868 | rcu_read_unlock(); |
| 1869 | return this_cpu; |
| 1870 | } |
| 1871 | |
| 1872 | best_cpu = cpumask_any_and_distribute(lowest_mask, |
| 1873 | sched_domain_span(sd)); |
| 1874 | if (best_cpu < nr_cpu_ids) { |
| 1875 | rcu_read_unlock(); |
| 1876 | return best_cpu; |
| 1877 | } |
| 1878 | } |
| 1879 | } |
| 1880 | rcu_read_unlock(); |
| 1881 | |
| 1882 | /* |
| 1883 | * And finally, if there were no matches within the domains |
| 1884 | * just give the caller *something* to work with from the compatible |
| 1885 | * locations. |
| 1886 | */ |
| 1887 | if (this_cpu != -1) |
| 1888 | return this_cpu; |
| 1889 | |
| 1890 | cpu = cpumask_any_distribute(lowest_mask); |
| 1891 | if (cpu < nr_cpu_ids) |
| 1892 | return cpu; |
| 1893 | |
| 1894 | return -1; |
| 1895 | } |
| 1896 | |
| 1897 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
| 1898 | { |
| 1899 | struct task_struct *p; |
| 1900 | |
| 1901 | if (!has_pushable_tasks(rq)) |
| 1902 | return NULL; |
| 1903 | |
| 1904 | p = plist_first_entry(&rq->rt.pushable_tasks, |
| 1905 | struct task_struct, pushable_tasks); |
| 1906 | |
| 1907 | BUG_ON(rq->cpu != task_cpu(p)); |
| 1908 | BUG_ON(task_current(rq, p)); |
| 1909 | BUG_ON(task_current_donor(rq, p)); |
| 1910 | BUG_ON(p->nr_cpus_allowed <= 1); |
| 1911 | |
| 1912 | BUG_ON(!task_on_rq_queued(p)); |
| 1913 | BUG_ON(!rt_task(p)); |
| 1914 | |
| 1915 | return p; |
| 1916 | } |
| 1917 | |
| 1918 | /* Will lock the rq it finds */ |
| 1919 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
| 1920 | { |
| 1921 | struct rq *lowest_rq = NULL; |
| 1922 | int tries; |
| 1923 | int cpu; |
| 1924 | |
| 1925 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
| 1926 | cpu = find_lowest_rq(task); |
| 1927 | |
| 1928 | if ((cpu == -1) || (cpu == rq->cpu)) |
| 1929 | break; |
| 1930 | |
| 1931 | lowest_rq = cpu_rq(cpu); |
| 1932 | |
| 1933 | if (lowest_rq->rt.highest_prio.curr <= task->prio) { |
| 1934 | /* |
| 1935 | * Target rq has tasks of equal or higher priority, |
| 1936 | * retrying does not release any lock and is unlikely |
| 1937 | * to yield a different result. |
| 1938 | */ |
| 1939 | lowest_rq = NULL; |
| 1940 | break; |
| 1941 | } |
| 1942 | |
| 1943 | /* if the prio of this runqueue changed, try again */ |
| 1944 | if (double_lock_balance(rq, lowest_rq)) { |
| 1945 | /* |
| 1946 | * We had to unlock the run queue. In |
| 1947 | * the mean time, task could have |
| 1948 | * migrated already or had its affinity changed, |
| 1949 | * therefore check if the task is still at the |
| 1950 | * head of the pushable tasks list. |
| 1951 | * It is possible the task was scheduled, set |
| 1952 | * "migrate_disabled" and then got preempted, so we must |
| 1953 | * check the task migration disable flag here too. |
| 1954 | */ |
| 1955 | if (unlikely(is_migration_disabled(task) || |
| 1956 | !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || |
| 1957 | task != pick_next_pushable_task(rq))) { |
| 1958 | |
| 1959 | double_unlock_balance(rq, lowest_rq); |
| 1960 | lowest_rq = NULL; |
| 1961 | break; |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | /* If this rq is still suitable use it. */ |
| 1966 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
| 1967 | break; |
| 1968 | |
| 1969 | /* try again */ |
| 1970 | double_unlock_balance(rq, lowest_rq); |
| 1971 | lowest_rq = NULL; |
| 1972 | } |
| 1973 | |
| 1974 | return lowest_rq; |
| 1975 | } |
| 1976 | |
| 1977 | /* |
| 1978 | * If the current CPU has more than one RT task, see if the non |
| 1979 | * running task can migrate over to a CPU that is running a task |
| 1980 | * of lesser priority. |
| 1981 | */ |
| 1982 | static int push_rt_task(struct rq *rq, bool pull) |
| 1983 | { |
| 1984 | struct task_struct *next_task; |
| 1985 | struct rq *lowest_rq; |
| 1986 | int ret = 0; |
| 1987 | |
| 1988 | if (!rq->rt.overloaded) |
| 1989 | return 0; |
| 1990 | |
| 1991 | next_task = pick_next_pushable_task(rq); |
| 1992 | if (!next_task) |
| 1993 | return 0; |
| 1994 | |
| 1995 | retry: |
| 1996 | /* |
| 1997 | * It's possible that the next_task slipped in of |
| 1998 | * higher priority than current. If that's the case |
| 1999 | * just reschedule current. |
| 2000 | */ |
| 2001 | if (unlikely(next_task->prio < rq->donor->prio)) { |
| 2002 | resched_curr(rq); |
| 2003 | return 0; |
| 2004 | } |
| 2005 | |
| 2006 | if (is_migration_disabled(next_task)) { |
| 2007 | struct task_struct *push_task = NULL; |
| 2008 | int cpu; |
| 2009 | |
| 2010 | if (!pull || rq->push_busy) |
| 2011 | return 0; |
| 2012 | |
| 2013 | /* |
| 2014 | * Invoking find_lowest_rq() on anything but an RT task doesn't |
| 2015 | * make sense. Per the above priority check, curr has to |
| 2016 | * be of higher priority than next_task, so no need to |
| 2017 | * reschedule when bailing out. |
| 2018 | * |
| 2019 | * Note that the stoppers are masqueraded as SCHED_FIFO |
| 2020 | * (cf. sched_set_stop_task()), so we can't rely on rt_task(). |
| 2021 | */ |
| 2022 | if (rq->donor->sched_class != &rt_sched_class) |
| 2023 | return 0; |
| 2024 | |
| 2025 | cpu = find_lowest_rq(rq->curr); |
| 2026 | if (cpu == -1 || cpu == rq->cpu) |
| 2027 | return 0; |
| 2028 | |
| 2029 | /* |
| 2030 | * Given we found a CPU with lower priority than @next_task, |
| 2031 | * therefore it should be running. However we cannot migrate it |
| 2032 | * to this other CPU, instead attempt to push the current |
| 2033 | * running task on this CPU away. |
| 2034 | */ |
| 2035 | push_task = get_push_task(rq); |
| 2036 | if (push_task) { |
| 2037 | preempt_disable(); |
| 2038 | raw_spin_rq_unlock(rq); |
| 2039 | stop_one_cpu_nowait(rq->cpu, push_cpu_stop, |
| 2040 | push_task, &rq->push_work); |
| 2041 | preempt_enable(); |
| 2042 | raw_spin_rq_lock(rq); |
| 2043 | } |
| 2044 | |
| 2045 | return 0; |
| 2046 | } |
| 2047 | |
| 2048 | if (WARN_ON(next_task == rq->curr)) |
| 2049 | return 0; |
| 2050 | |
| 2051 | /* We might release rq lock */ |
| 2052 | get_task_struct(next_task); |
| 2053 | |
| 2054 | /* find_lock_lowest_rq locks the rq if found */ |
| 2055 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
| 2056 | if (!lowest_rq) { |
| 2057 | struct task_struct *task; |
| 2058 | /* |
| 2059 | * find_lock_lowest_rq releases rq->lock |
| 2060 | * so it is possible that next_task has migrated. |
| 2061 | * |
| 2062 | * We need to make sure that the task is still on the same |
| 2063 | * run-queue and is also still the next task eligible for |
| 2064 | * pushing. |
| 2065 | */ |
| 2066 | task = pick_next_pushable_task(rq); |
| 2067 | if (task == next_task) { |
| 2068 | /* |
| 2069 | * The task hasn't migrated, and is still the next |
| 2070 | * eligible task, but we failed to find a run-queue |
| 2071 | * to push it to. Do not retry in this case, since |
| 2072 | * other CPUs will pull from us when ready. |
| 2073 | */ |
| 2074 | goto out; |
| 2075 | } |
| 2076 | |
| 2077 | if (!task) |
| 2078 | /* No more tasks, just exit */ |
| 2079 | goto out; |
| 2080 | |
| 2081 | /* |
| 2082 | * Something has shifted, try again. |
| 2083 | */ |
| 2084 | put_task_struct(next_task); |
| 2085 | next_task = task; |
| 2086 | goto retry; |
| 2087 | } |
| 2088 | |
| 2089 | move_queued_task_locked(rq, lowest_rq, next_task); |
| 2090 | resched_curr(lowest_rq); |
| 2091 | ret = 1; |
| 2092 | |
| 2093 | double_unlock_balance(rq, lowest_rq); |
| 2094 | out: |
| 2095 | put_task_struct(next_task); |
| 2096 | |
| 2097 | return ret; |
| 2098 | } |
| 2099 | |
| 2100 | static void push_rt_tasks(struct rq *rq) |
| 2101 | { |
| 2102 | /* push_rt_task will return true if it moved an RT */ |
| 2103 | while (push_rt_task(rq, false)) |
| 2104 | ; |
| 2105 | } |
| 2106 | |
| 2107 | #ifdef HAVE_RT_PUSH_IPI |
| 2108 | |
| 2109 | /* |
| 2110 | * When a high priority task schedules out from a CPU and a lower priority |
| 2111 | * task is scheduled in, a check is made to see if there's any RT tasks |
| 2112 | * on other CPUs that are waiting to run because a higher priority RT task |
| 2113 | * is currently running on its CPU. In this case, the CPU with multiple RT |
| 2114 | * tasks queued on it (overloaded) needs to be notified that a CPU has opened |
| 2115 | * up that may be able to run one of its non-running queued RT tasks. |
| 2116 | * |
| 2117 | * All CPUs with overloaded RT tasks need to be notified as there is currently |
| 2118 | * no way to know which of these CPUs have the highest priority task waiting |
| 2119 | * to run. Instead of trying to take a spinlock on each of these CPUs, |
| 2120 | * which has shown to cause large latency when done on machines with many |
| 2121 | * CPUs, sending an IPI to the CPUs to have them push off the overloaded |
| 2122 | * RT tasks waiting to run. |
| 2123 | * |
| 2124 | * Just sending an IPI to each of the CPUs is also an issue, as on large |
| 2125 | * count CPU machines, this can cause an IPI storm on a CPU, especially |
| 2126 | * if its the only CPU with multiple RT tasks queued, and a large number |
| 2127 | * of CPUs scheduling a lower priority task at the same time. |
| 2128 | * |
| 2129 | * Each root domain has its own IRQ work function that can iterate over |
| 2130 | * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT |
| 2131 | * task must be checked if there's one or many CPUs that are lowering |
| 2132 | * their priority, there's a single IRQ work iterator that will try to |
| 2133 | * push off RT tasks that are waiting to run. |
| 2134 | * |
| 2135 | * When a CPU schedules a lower priority task, it will kick off the |
| 2136 | * IRQ work iterator that will jump to each CPU with overloaded RT tasks. |
| 2137 | * As it only takes the first CPU that schedules a lower priority task |
| 2138 | * to start the process, the rto_start variable is incremented and if |
| 2139 | * the atomic result is one, then that CPU will try to take the rto_lock. |
| 2140 | * This prevents high contention on the lock as the process handles all |
| 2141 | * CPUs scheduling lower priority tasks. |
| 2142 | * |
| 2143 | * All CPUs that are scheduling a lower priority task will increment the |
| 2144 | * rt_loop_next variable. This will make sure that the IRQ work iterator |
| 2145 | * checks all RT overloaded CPUs whenever a CPU schedules a new lower |
| 2146 | * priority task, even if the iterator is in the middle of a scan. Incrementing |
| 2147 | * the rt_loop_next will cause the iterator to perform another scan. |
| 2148 | * |
| 2149 | */ |
| 2150 | static int rto_next_cpu(struct root_domain *rd) |
| 2151 | { |
| 2152 | int next; |
| 2153 | int cpu; |
| 2154 | |
| 2155 | /* |
| 2156 | * When starting the IPI RT pushing, the rto_cpu is set to -1, |
| 2157 | * rt_next_cpu() will simply return the first CPU found in |
| 2158 | * the rto_mask. |
| 2159 | * |
| 2160 | * If rto_next_cpu() is called with rto_cpu is a valid CPU, it |
| 2161 | * will return the next CPU found in the rto_mask. |
| 2162 | * |
| 2163 | * If there are no more CPUs left in the rto_mask, then a check is made |
| 2164 | * against rto_loop and rto_loop_next. rto_loop is only updated with |
| 2165 | * the rto_lock held, but any CPU may increment the rto_loop_next |
| 2166 | * without any locking. |
| 2167 | */ |
| 2168 | for (;;) { |
| 2169 | |
| 2170 | /* When rto_cpu is -1 this acts like cpumask_first() */ |
| 2171 | cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); |
| 2172 | |
| 2173 | rd->rto_cpu = cpu; |
| 2174 | |
| 2175 | if (cpu < nr_cpu_ids) |
| 2176 | return cpu; |
| 2177 | |
| 2178 | rd->rto_cpu = -1; |
| 2179 | |
| 2180 | /* |
| 2181 | * ACQUIRE ensures we see the @rto_mask changes |
| 2182 | * made prior to the @next value observed. |
| 2183 | * |
| 2184 | * Matches WMB in rt_set_overload(). |
| 2185 | */ |
| 2186 | next = atomic_read_acquire(&rd->rto_loop_next); |
| 2187 | |
| 2188 | if (rd->rto_loop == next) |
| 2189 | break; |
| 2190 | |
| 2191 | rd->rto_loop = next; |
| 2192 | } |
| 2193 | |
| 2194 | return -1; |
| 2195 | } |
| 2196 | |
| 2197 | static inline bool rto_start_trylock(atomic_t *v) |
| 2198 | { |
| 2199 | return !atomic_cmpxchg_acquire(v, 0, 1); |
| 2200 | } |
| 2201 | |
| 2202 | static inline void rto_start_unlock(atomic_t *v) |
| 2203 | { |
| 2204 | atomic_set_release(v, 0); |
| 2205 | } |
| 2206 | |
| 2207 | static void tell_cpu_to_push(struct rq *rq) |
| 2208 | { |
| 2209 | int cpu = -1; |
| 2210 | |
| 2211 | /* Keep the loop going if the IPI is currently active */ |
| 2212 | atomic_inc(&rq->rd->rto_loop_next); |
| 2213 | |
| 2214 | /* Only one CPU can initiate a loop at a time */ |
| 2215 | if (!rto_start_trylock(&rq->rd->rto_loop_start)) |
| 2216 | return; |
| 2217 | |
| 2218 | raw_spin_lock(&rq->rd->rto_lock); |
| 2219 | |
| 2220 | /* |
| 2221 | * The rto_cpu is updated under the lock, if it has a valid CPU |
| 2222 | * then the IPI is still running and will continue due to the |
| 2223 | * update to loop_next, and nothing needs to be done here. |
| 2224 | * Otherwise it is finishing up and an IPI needs to be sent. |
| 2225 | */ |
| 2226 | if (rq->rd->rto_cpu < 0) |
| 2227 | cpu = rto_next_cpu(rq->rd); |
| 2228 | |
| 2229 | raw_spin_unlock(&rq->rd->rto_lock); |
| 2230 | |
| 2231 | rto_start_unlock(&rq->rd->rto_loop_start); |
| 2232 | |
| 2233 | if (cpu >= 0) { |
| 2234 | /* Make sure the rd does not get freed while pushing */ |
| 2235 | sched_get_rd(rq->rd); |
| 2236 | irq_work_queue_on(&rq->rd->rto_push_work, cpu); |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | /* Called from hardirq context */ |
| 2241 | void rto_push_irq_work_func(struct irq_work *work) |
| 2242 | { |
| 2243 | struct root_domain *rd = |
| 2244 | container_of(work, struct root_domain, rto_push_work); |
| 2245 | struct rq *rq; |
| 2246 | int cpu; |
| 2247 | |
| 2248 | rq = this_rq(); |
| 2249 | |
| 2250 | /* |
| 2251 | * We do not need to grab the lock to check for has_pushable_tasks. |
| 2252 | * When it gets updated, a check is made if a push is possible. |
| 2253 | */ |
| 2254 | if (has_pushable_tasks(rq)) { |
| 2255 | raw_spin_rq_lock(rq); |
| 2256 | while (push_rt_task(rq, true)) |
| 2257 | ; |
| 2258 | raw_spin_rq_unlock(rq); |
| 2259 | } |
| 2260 | |
| 2261 | raw_spin_lock(&rd->rto_lock); |
| 2262 | |
| 2263 | /* Pass the IPI to the next rt overloaded queue */ |
| 2264 | cpu = rto_next_cpu(rd); |
| 2265 | |
| 2266 | raw_spin_unlock(&rd->rto_lock); |
| 2267 | |
| 2268 | if (cpu < 0) { |
| 2269 | sched_put_rd(rd); |
| 2270 | return; |
| 2271 | } |
| 2272 | |
| 2273 | /* Try the next RT overloaded CPU */ |
| 2274 | irq_work_queue_on(&rd->rto_push_work, cpu); |
| 2275 | } |
| 2276 | #endif /* HAVE_RT_PUSH_IPI */ |
| 2277 | |
| 2278 | static void pull_rt_task(struct rq *this_rq) |
| 2279 | { |
| 2280 | int this_cpu = this_rq->cpu, cpu; |
| 2281 | bool resched = false; |
| 2282 | struct task_struct *p, *push_task; |
| 2283 | struct rq *src_rq; |
| 2284 | int rt_overload_count = rt_overloaded(this_rq); |
| 2285 | |
| 2286 | if (likely(!rt_overload_count)) |
| 2287 | return; |
| 2288 | |
| 2289 | /* |
| 2290 | * Match the barrier from rt_set_overloaded; this guarantees that if we |
| 2291 | * see overloaded we must also see the rto_mask bit. |
| 2292 | */ |
| 2293 | smp_rmb(); |
| 2294 | |
| 2295 | /* If we are the only overloaded CPU do nothing */ |
| 2296 | if (rt_overload_count == 1 && |
| 2297 | cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) |
| 2298 | return; |
| 2299 | |
| 2300 | #ifdef HAVE_RT_PUSH_IPI |
| 2301 | if (sched_feat(RT_PUSH_IPI)) { |
| 2302 | tell_cpu_to_push(this_rq); |
| 2303 | return; |
| 2304 | } |
| 2305 | #endif |
| 2306 | |
| 2307 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
| 2308 | if (this_cpu == cpu) |
| 2309 | continue; |
| 2310 | |
| 2311 | src_rq = cpu_rq(cpu); |
| 2312 | |
| 2313 | /* |
| 2314 | * Don't bother taking the src_rq->lock if the next highest |
| 2315 | * task is known to be lower-priority than our current task. |
| 2316 | * This may look racy, but if this value is about to go |
| 2317 | * logically higher, the src_rq will push this task away. |
| 2318 | * And if its going logically lower, we do not care |
| 2319 | */ |
| 2320 | if (src_rq->rt.highest_prio.next >= |
| 2321 | this_rq->rt.highest_prio.curr) |
| 2322 | continue; |
| 2323 | |
| 2324 | /* |
| 2325 | * We can potentially drop this_rq's lock in |
| 2326 | * double_lock_balance, and another CPU could |
| 2327 | * alter this_rq |
| 2328 | */ |
| 2329 | push_task = NULL; |
| 2330 | double_lock_balance(this_rq, src_rq); |
| 2331 | |
| 2332 | /* |
| 2333 | * We can pull only a task, which is pushable |
| 2334 | * on its rq, and no others. |
| 2335 | */ |
| 2336 | p = pick_highest_pushable_task(src_rq, this_cpu); |
| 2337 | |
| 2338 | /* |
| 2339 | * Do we have an RT task that preempts |
| 2340 | * the to-be-scheduled task? |
| 2341 | */ |
| 2342 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
| 2343 | WARN_ON(p == src_rq->curr); |
| 2344 | WARN_ON(!task_on_rq_queued(p)); |
| 2345 | |
| 2346 | /* |
| 2347 | * There's a chance that p is higher in priority |
| 2348 | * than what's currently running on its CPU. |
| 2349 | * This is just that p is waking up and hasn't |
| 2350 | * had a chance to schedule. We only pull |
| 2351 | * p if it is lower in priority than the |
| 2352 | * current task on the run queue |
| 2353 | */ |
| 2354 | if (p->prio < src_rq->donor->prio) |
| 2355 | goto skip; |
| 2356 | |
| 2357 | if (is_migration_disabled(p)) { |
| 2358 | push_task = get_push_task(src_rq); |
| 2359 | } else { |
| 2360 | move_queued_task_locked(src_rq, this_rq, p); |
| 2361 | resched = true; |
| 2362 | } |
| 2363 | /* |
| 2364 | * We continue with the search, just in |
| 2365 | * case there's an even higher prio task |
| 2366 | * in another runqueue. (low likelihood |
| 2367 | * but possible) |
| 2368 | */ |
| 2369 | } |
| 2370 | skip: |
| 2371 | double_unlock_balance(this_rq, src_rq); |
| 2372 | |
| 2373 | if (push_task) { |
| 2374 | preempt_disable(); |
| 2375 | raw_spin_rq_unlock(this_rq); |
| 2376 | stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, |
| 2377 | push_task, &src_rq->push_work); |
| 2378 | preempt_enable(); |
| 2379 | raw_spin_rq_lock(this_rq); |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | if (resched) |
| 2384 | resched_curr(this_rq); |
| 2385 | } |
| 2386 | |
| 2387 | /* |
| 2388 | * If we are not running and we are not going to reschedule soon, we should |
| 2389 | * try to push tasks away now |
| 2390 | */ |
| 2391 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
| 2392 | { |
| 2393 | bool need_to_push = !task_on_cpu(rq, p) && |
| 2394 | !test_tsk_need_resched(rq->curr) && |
| 2395 | p->nr_cpus_allowed > 1 && |
| 2396 | (dl_task(rq->donor) || rt_task(rq->donor)) && |
| 2397 | (rq->curr->nr_cpus_allowed < 2 || |
| 2398 | rq->donor->prio <= p->prio); |
| 2399 | |
| 2400 | if (need_to_push) |
| 2401 | push_rt_tasks(rq); |
| 2402 | } |
| 2403 | |
| 2404 | /* Assumes rq->lock is held */ |
| 2405 | static void rq_online_rt(struct rq *rq) |
| 2406 | { |
| 2407 | if (rq->rt.overloaded) |
| 2408 | rt_set_overload(rq); |
| 2409 | |
| 2410 | __enable_runtime(rq); |
| 2411 | |
| 2412 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
| 2413 | } |
| 2414 | |
| 2415 | /* Assumes rq->lock is held */ |
| 2416 | static void rq_offline_rt(struct rq *rq) |
| 2417 | { |
| 2418 | if (rq->rt.overloaded) |
| 2419 | rt_clear_overload(rq); |
| 2420 | |
| 2421 | __disable_runtime(rq); |
| 2422 | |
| 2423 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
| 2424 | } |
| 2425 | |
| 2426 | /* |
| 2427 | * When switch from the rt queue, we bring ourselves to a position |
| 2428 | * that we might want to pull RT tasks from other runqueues. |
| 2429 | */ |
| 2430 | static void switched_from_rt(struct rq *rq, struct task_struct *p) |
| 2431 | { |
| 2432 | /* |
| 2433 | * If there are other RT tasks then we will reschedule |
| 2434 | * and the scheduling of the other RT tasks will handle |
| 2435 | * the balancing. But if we are the last RT task |
| 2436 | * we may need to handle the pulling of RT tasks |
| 2437 | * now. |
| 2438 | */ |
| 2439 | if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) |
| 2440 | return; |
| 2441 | |
| 2442 | rt_queue_pull_task(rq); |
| 2443 | } |
| 2444 | |
| 2445 | void __init init_sched_rt_class(void) |
| 2446 | { |
| 2447 | unsigned int i; |
| 2448 | |
| 2449 | for_each_possible_cpu(i) { |
| 2450 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
| 2451 | GFP_KERNEL, cpu_to_node(i)); |
| 2452 | } |
| 2453 | } |
| 2454 | #endif /* CONFIG_SMP */ |
| 2455 | |
| 2456 | /* |
| 2457 | * When switching a task to RT, we may overload the runqueue |
| 2458 | * with RT tasks. In this case we try to push them off to |
| 2459 | * other runqueues. |
| 2460 | */ |
| 2461 | static void switched_to_rt(struct rq *rq, struct task_struct *p) |
| 2462 | { |
| 2463 | /* |
| 2464 | * If we are running, update the avg_rt tracking, as the running time |
| 2465 | * will now on be accounted into the latter. |
| 2466 | */ |
| 2467 | if (task_current(rq, p)) { |
| 2468 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); |
| 2469 | return; |
| 2470 | } |
| 2471 | |
| 2472 | /* |
| 2473 | * If we are not running we may need to preempt the current |
| 2474 | * running task. If that current running task is also an RT task |
| 2475 | * then see if we can move to another run queue. |
| 2476 | */ |
| 2477 | if (task_on_rq_queued(p)) { |
| 2478 | #ifdef CONFIG_SMP |
| 2479 | if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) |
| 2480 | rt_queue_push_tasks(rq); |
| 2481 | #endif /* CONFIG_SMP */ |
| 2482 | if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq))) |
| 2483 | resched_curr(rq); |
| 2484 | } |
| 2485 | } |
| 2486 | |
| 2487 | /* |
| 2488 | * Priority of the task has changed. This may cause |
| 2489 | * us to initiate a push or pull. |
| 2490 | */ |
| 2491 | static void |
| 2492 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) |
| 2493 | { |
| 2494 | if (!task_on_rq_queued(p)) |
| 2495 | return; |
| 2496 | |
| 2497 | if (task_current_donor(rq, p)) { |
| 2498 | #ifdef CONFIG_SMP |
| 2499 | /* |
| 2500 | * If our priority decreases while running, we |
| 2501 | * may need to pull tasks to this runqueue. |
| 2502 | */ |
| 2503 | if (oldprio < p->prio) |
| 2504 | rt_queue_pull_task(rq); |
| 2505 | |
| 2506 | /* |
| 2507 | * If there's a higher priority task waiting to run |
| 2508 | * then reschedule. |
| 2509 | */ |
| 2510 | if (p->prio > rq->rt.highest_prio.curr) |
| 2511 | resched_curr(rq); |
| 2512 | #else |
| 2513 | /* For UP simply resched on drop of prio */ |
| 2514 | if (oldprio < p->prio) |
| 2515 | resched_curr(rq); |
| 2516 | #endif /* CONFIG_SMP */ |
| 2517 | } else { |
| 2518 | /* |
| 2519 | * This task is not running, but if it is |
| 2520 | * greater than the current running task |
| 2521 | * then reschedule. |
| 2522 | */ |
| 2523 | if (p->prio < rq->donor->prio) |
| 2524 | resched_curr(rq); |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | #ifdef CONFIG_POSIX_TIMERS |
| 2529 | static void watchdog(struct rq *rq, struct task_struct *p) |
| 2530 | { |
| 2531 | unsigned long soft, hard; |
| 2532 | |
| 2533 | /* max may change after cur was read, this will be fixed next tick */ |
| 2534 | soft = task_rlimit(p, RLIMIT_RTTIME); |
| 2535 | hard = task_rlimit_max(p, RLIMIT_RTTIME); |
| 2536 | |
| 2537 | if (soft != RLIM_INFINITY) { |
| 2538 | unsigned long next; |
| 2539 | |
| 2540 | if (p->rt.watchdog_stamp != jiffies) { |
| 2541 | p->rt.timeout++; |
| 2542 | p->rt.watchdog_stamp = jiffies; |
| 2543 | } |
| 2544 | |
| 2545 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); |
| 2546 | if (p->rt.timeout > next) { |
| 2547 | posix_cputimers_rt_watchdog(&p->posix_cputimers, |
| 2548 | p->se.sum_exec_runtime); |
| 2549 | } |
| 2550 | } |
| 2551 | } |
| 2552 | #else |
| 2553 | static inline void watchdog(struct rq *rq, struct task_struct *p) { } |
| 2554 | #endif |
| 2555 | |
| 2556 | /* |
| 2557 | * scheduler tick hitting a task of our scheduling class. |
| 2558 | * |
| 2559 | * NOTE: This function can be called remotely by the tick offload that |
| 2560 | * goes along full dynticks. Therefore no local assumption can be made |
| 2561 | * and everything must be accessed through the @rq and @curr passed in |
| 2562 | * parameters. |
| 2563 | */ |
| 2564 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
| 2565 | { |
| 2566 | struct sched_rt_entity *rt_se = &p->rt; |
| 2567 | |
| 2568 | update_curr_rt(rq); |
| 2569 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
| 2570 | |
| 2571 | watchdog(rq, p); |
| 2572 | |
| 2573 | /* |
| 2574 | * RR tasks need a special form of time-slice management. |
| 2575 | * FIFO tasks have no timeslices. |
| 2576 | */ |
| 2577 | if (p->policy != SCHED_RR) |
| 2578 | return; |
| 2579 | |
| 2580 | if (--p->rt.time_slice) |
| 2581 | return; |
| 2582 | |
| 2583 | p->rt.time_slice = sched_rr_timeslice; |
| 2584 | |
| 2585 | /* |
| 2586 | * Requeue to the end of queue if we (and all of our ancestors) are not |
| 2587 | * the only element on the queue |
| 2588 | */ |
| 2589 | for_each_sched_rt_entity(rt_se) { |
| 2590 | if (rt_se->run_list.prev != rt_se->run_list.next) { |
| 2591 | requeue_task_rt(rq, p, 0); |
| 2592 | resched_curr(rq); |
| 2593 | return; |
| 2594 | } |
| 2595 | } |
| 2596 | } |
| 2597 | |
| 2598 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
| 2599 | { |
| 2600 | /* |
| 2601 | * Time slice is 0 for SCHED_FIFO tasks |
| 2602 | */ |
| 2603 | if (task->policy == SCHED_RR) |
| 2604 | return sched_rr_timeslice; |
| 2605 | else |
| 2606 | return 0; |
| 2607 | } |
| 2608 | |
| 2609 | #ifdef CONFIG_SCHED_CORE |
| 2610 | static int task_is_throttled_rt(struct task_struct *p, int cpu) |
| 2611 | { |
| 2612 | struct rt_rq *rt_rq; |
| 2613 | |
| 2614 | #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq |
| 2615 | rt_rq = task_group(p)->rt_rq[cpu]; |
| 2616 | WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); |
| 2617 | #else |
| 2618 | rt_rq = &cpu_rq(cpu)->rt; |
| 2619 | #endif |
| 2620 | |
| 2621 | return rt_rq_throttled(rt_rq); |
| 2622 | } |
| 2623 | #endif |
| 2624 | |
| 2625 | DEFINE_SCHED_CLASS(rt) = { |
| 2626 | |
| 2627 | .enqueue_task = enqueue_task_rt, |
| 2628 | .dequeue_task = dequeue_task_rt, |
| 2629 | .yield_task = yield_task_rt, |
| 2630 | |
| 2631 | .wakeup_preempt = wakeup_preempt_rt, |
| 2632 | |
| 2633 | .pick_task = pick_task_rt, |
| 2634 | .put_prev_task = put_prev_task_rt, |
| 2635 | .set_next_task = set_next_task_rt, |
| 2636 | |
| 2637 | #ifdef CONFIG_SMP |
| 2638 | .balance = balance_rt, |
| 2639 | .select_task_rq = select_task_rq_rt, |
| 2640 | .set_cpus_allowed = set_cpus_allowed_common, |
| 2641 | .rq_online = rq_online_rt, |
| 2642 | .rq_offline = rq_offline_rt, |
| 2643 | .task_woken = task_woken_rt, |
| 2644 | .switched_from = switched_from_rt, |
| 2645 | .find_lock_rq = find_lock_lowest_rq, |
| 2646 | #endif |
| 2647 | |
| 2648 | .task_tick = task_tick_rt, |
| 2649 | |
| 2650 | .get_rr_interval = get_rr_interval_rt, |
| 2651 | |
| 2652 | .prio_changed = prio_changed_rt, |
| 2653 | .switched_to = switched_to_rt, |
| 2654 | |
| 2655 | .update_curr = update_curr_rt, |
| 2656 | |
| 2657 | #ifdef CONFIG_SCHED_CORE |
| 2658 | .task_is_throttled = task_is_throttled_rt, |
| 2659 | #endif |
| 2660 | |
| 2661 | #ifdef CONFIG_UCLAMP_TASK |
| 2662 | .uclamp_enabled = 1, |
| 2663 | #endif |
| 2664 | }; |
| 2665 | |
| 2666 | #ifdef CONFIG_RT_GROUP_SCHED |
| 2667 | /* |
| 2668 | * Ensure that the real time constraints are schedulable. |
| 2669 | */ |
| 2670 | static DEFINE_MUTEX(rt_constraints_mutex); |
| 2671 | |
| 2672 | static inline int tg_has_rt_tasks(struct task_group *tg) |
| 2673 | { |
| 2674 | struct task_struct *task; |
| 2675 | struct css_task_iter it; |
| 2676 | int ret = 0; |
| 2677 | |
| 2678 | /* |
| 2679 | * Autogroups do not have RT tasks; see autogroup_create(). |
| 2680 | */ |
| 2681 | if (task_group_is_autogroup(tg)) |
| 2682 | return 0; |
| 2683 | |
| 2684 | css_task_iter_start(&tg->css, 0, &it); |
| 2685 | while (!ret && (task = css_task_iter_next(&it))) |
| 2686 | ret |= rt_task(task); |
| 2687 | css_task_iter_end(&it); |
| 2688 | |
| 2689 | return ret; |
| 2690 | } |
| 2691 | |
| 2692 | struct rt_schedulable_data { |
| 2693 | struct task_group *tg; |
| 2694 | u64 rt_period; |
| 2695 | u64 rt_runtime; |
| 2696 | }; |
| 2697 | |
| 2698 | static int tg_rt_schedulable(struct task_group *tg, void *data) |
| 2699 | { |
| 2700 | struct rt_schedulable_data *d = data; |
| 2701 | struct task_group *child; |
| 2702 | unsigned long total, sum = 0; |
| 2703 | u64 period, runtime; |
| 2704 | |
| 2705 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| 2706 | runtime = tg->rt_bandwidth.rt_runtime; |
| 2707 | |
| 2708 | if (tg == d->tg) { |
| 2709 | period = d->rt_period; |
| 2710 | runtime = d->rt_runtime; |
| 2711 | } |
| 2712 | |
| 2713 | /* |
| 2714 | * Cannot have more runtime than the period. |
| 2715 | */ |
| 2716 | if (runtime > period && runtime != RUNTIME_INF) |
| 2717 | return -EINVAL; |
| 2718 | |
| 2719 | /* |
| 2720 | * Ensure we don't starve existing RT tasks if runtime turns zero. |
| 2721 | */ |
| 2722 | if (rt_bandwidth_enabled() && !runtime && |
| 2723 | tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) |
| 2724 | return -EBUSY; |
| 2725 | |
| 2726 | if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group)) |
| 2727 | return -EBUSY; |
| 2728 | |
| 2729 | total = to_ratio(period, runtime); |
| 2730 | |
| 2731 | /* |
| 2732 | * Nobody can have more than the global setting allows. |
| 2733 | */ |
| 2734 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) |
| 2735 | return -EINVAL; |
| 2736 | |
| 2737 | /* |
| 2738 | * The sum of our children's runtime should not exceed our own. |
| 2739 | */ |
| 2740 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
| 2741 | period = ktime_to_ns(child->rt_bandwidth.rt_period); |
| 2742 | runtime = child->rt_bandwidth.rt_runtime; |
| 2743 | |
| 2744 | if (child == d->tg) { |
| 2745 | period = d->rt_period; |
| 2746 | runtime = d->rt_runtime; |
| 2747 | } |
| 2748 | |
| 2749 | sum += to_ratio(period, runtime); |
| 2750 | } |
| 2751 | |
| 2752 | if (sum > total) |
| 2753 | return -EINVAL; |
| 2754 | |
| 2755 | return 0; |
| 2756 | } |
| 2757 | |
| 2758 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
| 2759 | { |
| 2760 | int ret; |
| 2761 | |
| 2762 | struct rt_schedulable_data data = { |
| 2763 | .tg = tg, |
| 2764 | .rt_period = period, |
| 2765 | .rt_runtime = runtime, |
| 2766 | }; |
| 2767 | |
| 2768 | rcu_read_lock(); |
| 2769 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); |
| 2770 | rcu_read_unlock(); |
| 2771 | |
| 2772 | return ret; |
| 2773 | } |
| 2774 | |
| 2775 | static int tg_set_rt_bandwidth(struct task_group *tg, |
| 2776 | u64 rt_period, u64 rt_runtime) |
| 2777 | { |
| 2778 | int i, err = 0; |
| 2779 | |
| 2780 | /* |
| 2781 | * Disallowing the root group RT runtime is BAD, it would disallow the |
| 2782 | * kernel creating (and or operating) RT threads. |
| 2783 | */ |
| 2784 | if (tg == &root_task_group && rt_runtime == 0) |
| 2785 | return -EINVAL; |
| 2786 | |
| 2787 | /* No period doesn't make any sense. */ |
| 2788 | if (rt_period == 0) |
| 2789 | return -EINVAL; |
| 2790 | |
| 2791 | /* |
| 2792 | * Bound quota to defend quota against overflow during bandwidth shift. |
| 2793 | */ |
| 2794 | if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) |
| 2795 | return -EINVAL; |
| 2796 | |
| 2797 | mutex_lock(&rt_constraints_mutex); |
| 2798 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
| 2799 | if (err) |
| 2800 | goto unlock; |
| 2801 | |
| 2802 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
| 2803 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
| 2804 | tg->rt_bandwidth.rt_runtime = rt_runtime; |
| 2805 | |
| 2806 | for_each_possible_cpu(i) { |
| 2807 | struct rt_rq *rt_rq = tg->rt_rq[i]; |
| 2808 | |
| 2809 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
| 2810 | rt_rq->rt_runtime = rt_runtime; |
| 2811 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
| 2812 | } |
| 2813 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
| 2814 | unlock: |
| 2815 | mutex_unlock(&rt_constraints_mutex); |
| 2816 | |
| 2817 | return err; |
| 2818 | } |
| 2819 | |
| 2820 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
| 2821 | { |
| 2822 | u64 rt_runtime, rt_period; |
| 2823 | |
| 2824 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| 2825 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; |
| 2826 | if (rt_runtime_us < 0) |
| 2827 | rt_runtime = RUNTIME_INF; |
| 2828 | else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) |
| 2829 | return -EINVAL; |
| 2830 | |
| 2831 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
| 2832 | } |
| 2833 | |
| 2834 | long sched_group_rt_runtime(struct task_group *tg) |
| 2835 | { |
| 2836 | u64 rt_runtime_us; |
| 2837 | |
| 2838 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
| 2839 | return -1; |
| 2840 | |
| 2841 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
| 2842 | do_div(rt_runtime_us, NSEC_PER_USEC); |
| 2843 | return rt_runtime_us; |
| 2844 | } |
| 2845 | |
| 2846 | int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) |
| 2847 | { |
| 2848 | u64 rt_runtime, rt_period; |
| 2849 | |
| 2850 | if (rt_period_us > U64_MAX / NSEC_PER_USEC) |
| 2851 | return -EINVAL; |
| 2852 | |
| 2853 | rt_period = rt_period_us * NSEC_PER_USEC; |
| 2854 | rt_runtime = tg->rt_bandwidth.rt_runtime; |
| 2855 | |
| 2856 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); |
| 2857 | } |
| 2858 | |
| 2859 | long sched_group_rt_period(struct task_group *tg) |
| 2860 | { |
| 2861 | u64 rt_period_us; |
| 2862 | |
| 2863 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); |
| 2864 | do_div(rt_period_us, NSEC_PER_USEC); |
| 2865 | return rt_period_us; |
| 2866 | } |
| 2867 | |
| 2868 | #ifdef CONFIG_SYSCTL |
| 2869 | static int sched_rt_global_constraints(void) |
| 2870 | { |
| 2871 | int ret = 0; |
| 2872 | |
| 2873 | mutex_lock(&rt_constraints_mutex); |
| 2874 | ret = __rt_schedulable(NULL, 0, 0); |
| 2875 | mutex_unlock(&rt_constraints_mutex); |
| 2876 | |
| 2877 | return ret; |
| 2878 | } |
| 2879 | #endif /* CONFIG_SYSCTL */ |
| 2880 | |
| 2881 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) |
| 2882 | { |
| 2883 | /* Don't accept real-time tasks when there is no way for them to run */ |
| 2884 | if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) |
| 2885 | return 0; |
| 2886 | |
| 2887 | return 1; |
| 2888 | } |
| 2889 | |
| 2890 | #else /* !CONFIG_RT_GROUP_SCHED */ |
| 2891 | |
| 2892 | #ifdef CONFIG_SYSCTL |
| 2893 | static int sched_rt_global_constraints(void) |
| 2894 | { |
| 2895 | return 0; |
| 2896 | } |
| 2897 | #endif /* CONFIG_SYSCTL */ |
| 2898 | #endif /* CONFIG_RT_GROUP_SCHED */ |
| 2899 | |
| 2900 | #ifdef CONFIG_SYSCTL |
| 2901 | static int sched_rt_global_validate(void) |
| 2902 | { |
| 2903 | if ((sysctl_sched_rt_runtime != RUNTIME_INF) && |
| 2904 | ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || |
| 2905 | ((u64)sysctl_sched_rt_runtime * |
| 2906 | NSEC_PER_USEC > max_rt_runtime))) |
| 2907 | return -EINVAL; |
| 2908 | |
| 2909 | return 0; |
| 2910 | } |
| 2911 | |
| 2912 | static void sched_rt_do_global(void) |
| 2913 | { |
| 2914 | } |
| 2915 | |
| 2916 | static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, |
| 2917 | size_t *lenp, loff_t *ppos) |
| 2918 | { |
| 2919 | int old_period, old_runtime; |
| 2920 | static DEFINE_MUTEX(mutex); |
| 2921 | int ret; |
| 2922 | |
| 2923 | mutex_lock(&mutex); |
| 2924 | sched_domains_mutex_lock(); |
| 2925 | old_period = sysctl_sched_rt_period; |
| 2926 | old_runtime = sysctl_sched_rt_runtime; |
| 2927 | |
| 2928 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 2929 | |
| 2930 | if (!ret && write) { |
| 2931 | ret = sched_rt_global_validate(); |
| 2932 | if (ret) |
| 2933 | goto undo; |
| 2934 | |
| 2935 | ret = sched_dl_global_validate(); |
| 2936 | if (ret) |
| 2937 | goto undo; |
| 2938 | |
| 2939 | ret = sched_rt_global_constraints(); |
| 2940 | if (ret) |
| 2941 | goto undo; |
| 2942 | |
| 2943 | sched_rt_do_global(); |
| 2944 | sched_dl_do_global(); |
| 2945 | } |
| 2946 | if (0) { |
| 2947 | undo: |
| 2948 | sysctl_sched_rt_period = old_period; |
| 2949 | sysctl_sched_rt_runtime = old_runtime; |
| 2950 | } |
| 2951 | sched_domains_mutex_unlock(); |
| 2952 | mutex_unlock(&mutex); |
| 2953 | |
| 2954 | return ret; |
| 2955 | } |
| 2956 | |
| 2957 | static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, |
| 2958 | size_t *lenp, loff_t *ppos) |
| 2959 | { |
| 2960 | int ret; |
| 2961 | static DEFINE_MUTEX(mutex); |
| 2962 | |
| 2963 | mutex_lock(&mutex); |
| 2964 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
| 2965 | /* |
| 2966 | * Make sure that internally we keep jiffies. |
| 2967 | * Also, writing zero resets the time-slice to default: |
| 2968 | */ |
| 2969 | if (!ret && write) { |
| 2970 | sched_rr_timeslice = |
| 2971 | sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : |
| 2972 | msecs_to_jiffies(sysctl_sched_rr_timeslice); |
| 2973 | |
| 2974 | if (sysctl_sched_rr_timeslice <= 0) |
| 2975 | sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); |
| 2976 | } |
| 2977 | mutex_unlock(&mutex); |
| 2978 | |
| 2979 | return ret; |
| 2980 | } |
| 2981 | #endif /* CONFIG_SYSCTL */ |
| 2982 | |
| 2983 | void print_rt_stats(struct seq_file *m, int cpu) |
| 2984 | { |
| 2985 | rt_rq_iter_t iter; |
| 2986 | struct rt_rq *rt_rq; |
| 2987 | |
| 2988 | rcu_read_lock(); |
| 2989 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) |
| 2990 | print_rt_rq(m, cpu, rt_rq); |
| 2991 | rcu_read_unlock(); |
| 2992 | } |