| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) |
| 4 | * |
| 5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 6 | * |
| 7 | * Interactivity improvements by Mike Galbraith |
| 8 | * (C) 2007 Mike Galbraith <efault@gmx.de> |
| 9 | * |
| 10 | * Various enhancements by Dmitry Adamushko. |
| 11 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> |
| 12 | * |
| 13 | * Group scheduling enhancements by Srivatsa Vaddagiri |
| 14 | * Copyright IBM Corporation, 2007 |
| 15 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> |
| 16 | * |
| 17 | * Scaled math optimizations by Thomas Gleixner |
| 18 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> |
| 19 | * |
| 20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra |
| 21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
| 22 | */ |
| 23 | #include <linux/energy_model.h> |
| 24 | #include <linux/mmap_lock.h> |
| 25 | #include <linux/hugetlb_inline.h> |
| 26 | #include <linux/jiffies.h> |
| 27 | #include <linux/mm_api.h> |
| 28 | #include <linux/highmem.h> |
| 29 | #include <linux/spinlock_api.h> |
| 30 | #include <linux/cpumask_api.h> |
| 31 | #include <linux/lockdep_api.h> |
| 32 | #include <linux/softirq.h> |
| 33 | #include <linux/refcount_api.h> |
| 34 | #include <linux/topology.h> |
| 35 | #include <linux/sched/clock.h> |
| 36 | #include <linux/sched/cond_resched.h> |
| 37 | #include <linux/sched/cputime.h> |
| 38 | #include <linux/sched/isolation.h> |
| 39 | #include <linux/sched/nohz.h> |
| 40 | #include <linux/sched/prio.h> |
| 41 | |
| 42 | #include <linux/cpuidle.h> |
| 43 | #include <linux/interrupt.h> |
| 44 | #include <linux/memory-tiers.h> |
| 45 | #include <linux/mempolicy.h> |
| 46 | #include <linux/mutex_api.h> |
| 47 | #include <linux/profile.h> |
| 48 | #include <linux/psi.h> |
| 49 | #include <linux/ratelimit.h> |
| 50 | #include <linux/task_work.h> |
| 51 | #include <linux/rbtree_augmented.h> |
| 52 | |
| 53 | #include <asm/switch_to.h> |
| 54 | |
| 55 | #include <uapi/linux/sched/types.h> |
| 56 | |
| 57 | #include "sched.h" |
| 58 | #include "stats.h" |
| 59 | #include "autogroup.h" |
| 60 | |
| 61 | /* |
| 62 | * The initial- and re-scaling of tunables is configurable |
| 63 | * |
| 64 | * Options are: |
| 65 | * |
| 66 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 |
| 67 | * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) |
| 68 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus |
| 69 | * |
| 70 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) |
| 71 | */ |
| 72 | unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; |
| 73 | |
| 74 | /* |
| 75 | * Minimal preemption granularity for CPU-bound tasks: |
| 76 | * |
| 77 | * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) |
| 78 | */ |
| 79 | unsigned int sysctl_sched_base_slice = 700000ULL; |
| 80 | static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; |
| 81 | |
| 82 | __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; |
| 83 | |
| 84 | static int __init setup_sched_thermal_decay_shift(char *str) |
| 85 | { |
| 86 | pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); |
| 87 | return 1; |
| 88 | } |
| 89 | __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); |
| 90 | |
| 91 | #ifdef CONFIG_SMP |
| 92 | /* |
| 93 | * For asym packing, by default the lower numbered CPU has higher priority. |
| 94 | */ |
| 95 | int __weak arch_asym_cpu_priority(int cpu) |
| 96 | { |
| 97 | return -cpu; |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * The margin used when comparing utilization with CPU capacity. |
| 102 | * |
| 103 | * (default: ~20%) |
| 104 | */ |
| 105 | #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) |
| 106 | |
| 107 | /* |
| 108 | * The margin used when comparing CPU capacities. |
| 109 | * is 'cap1' noticeably greater than 'cap2' |
| 110 | * |
| 111 | * (default: ~5%) |
| 112 | */ |
| 113 | #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) |
| 114 | #endif |
| 115 | |
| 116 | #ifdef CONFIG_CFS_BANDWIDTH |
| 117 | /* |
| 118 | * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool |
| 119 | * each time a cfs_rq requests quota. |
| 120 | * |
| 121 | * Note: in the case that the slice exceeds the runtime remaining (either due |
| 122 | * to consumption or the quota being specified to be smaller than the slice) |
| 123 | * we will always only issue the remaining available time. |
| 124 | * |
| 125 | * (default: 5 msec, units: microseconds) |
| 126 | */ |
| 127 | static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; |
| 128 | #endif |
| 129 | |
| 130 | #ifdef CONFIG_NUMA_BALANCING |
| 131 | /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ |
| 132 | static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; |
| 133 | #endif |
| 134 | |
| 135 | #ifdef CONFIG_SYSCTL |
| 136 | static const struct ctl_table sched_fair_sysctls[] = { |
| 137 | #ifdef CONFIG_CFS_BANDWIDTH |
| 138 | { |
| 139 | .procname = "sched_cfs_bandwidth_slice_us", |
| 140 | .data = &sysctl_sched_cfs_bandwidth_slice, |
| 141 | .maxlen = sizeof(unsigned int), |
| 142 | .mode = 0644, |
| 143 | .proc_handler = proc_dointvec_minmax, |
| 144 | .extra1 = SYSCTL_ONE, |
| 145 | }, |
| 146 | #endif |
| 147 | #ifdef CONFIG_NUMA_BALANCING |
| 148 | { |
| 149 | .procname = "numa_balancing_promote_rate_limit_MBps", |
| 150 | .data = &sysctl_numa_balancing_promote_rate_limit, |
| 151 | .maxlen = sizeof(unsigned int), |
| 152 | .mode = 0644, |
| 153 | .proc_handler = proc_dointvec_minmax, |
| 154 | .extra1 = SYSCTL_ZERO, |
| 155 | }, |
| 156 | #endif /* CONFIG_NUMA_BALANCING */ |
| 157 | }; |
| 158 | |
| 159 | static int __init sched_fair_sysctl_init(void) |
| 160 | { |
| 161 | register_sysctl_init("kernel", sched_fair_sysctls); |
| 162 | return 0; |
| 163 | } |
| 164 | late_initcall(sched_fair_sysctl_init); |
| 165 | #endif |
| 166 | |
| 167 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
| 168 | { |
| 169 | lw->weight += inc; |
| 170 | lw->inv_weight = 0; |
| 171 | } |
| 172 | |
| 173 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
| 174 | { |
| 175 | lw->weight -= dec; |
| 176 | lw->inv_weight = 0; |
| 177 | } |
| 178 | |
| 179 | static inline void update_load_set(struct load_weight *lw, unsigned long w) |
| 180 | { |
| 181 | lw->weight = w; |
| 182 | lw->inv_weight = 0; |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | * Increase the granularity value when there are more CPUs, |
| 187 | * because with more CPUs the 'effective latency' as visible |
| 188 | * to users decreases. But the relationship is not linear, |
| 189 | * so pick a second-best guess by going with the log2 of the |
| 190 | * number of CPUs. |
| 191 | * |
| 192 | * This idea comes from the SD scheduler of Con Kolivas: |
| 193 | */ |
| 194 | static unsigned int get_update_sysctl_factor(void) |
| 195 | { |
| 196 | unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); |
| 197 | unsigned int factor; |
| 198 | |
| 199 | switch (sysctl_sched_tunable_scaling) { |
| 200 | case SCHED_TUNABLESCALING_NONE: |
| 201 | factor = 1; |
| 202 | break; |
| 203 | case SCHED_TUNABLESCALING_LINEAR: |
| 204 | factor = cpus; |
| 205 | break; |
| 206 | case SCHED_TUNABLESCALING_LOG: |
| 207 | default: |
| 208 | factor = 1 + ilog2(cpus); |
| 209 | break; |
| 210 | } |
| 211 | |
| 212 | return factor; |
| 213 | } |
| 214 | |
| 215 | static void update_sysctl(void) |
| 216 | { |
| 217 | unsigned int factor = get_update_sysctl_factor(); |
| 218 | |
| 219 | #define SET_SYSCTL(name) \ |
| 220 | (sysctl_##name = (factor) * normalized_sysctl_##name) |
| 221 | SET_SYSCTL(sched_base_slice); |
| 222 | #undef SET_SYSCTL |
| 223 | } |
| 224 | |
| 225 | void __init sched_init_granularity(void) |
| 226 | { |
| 227 | update_sysctl(); |
| 228 | } |
| 229 | |
| 230 | #define WMULT_CONST (~0U) |
| 231 | #define WMULT_SHIFT 32 |
| 232 | |
| 233 | static void __update_inv_weight(struct load_weight *lw) |
| 234 | { |
| 235 | unsigned long w; |
| 236 | |
| 237 | if (likely(lw->inv_weight)) |
| 238 | return; |
| 239 | |
| 240 | w = scale_load_down(lw->weight); |
| 241 | |
| 242 | if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) |
| 243 | lw->inv_weight = 1; |
| 244 | else if (unlikely(!w)) |
| 245 | lw->inv_weight = WMULT_CONST; |
| 246 | else |
| 247 | lw->inv_weight = WMULT_CONST / w; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * delta_exec * weight / lw.weight |
| 252 | * OR |
| 253 | * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT |
| 254 | * |
| 255 | * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case |
| 256 | * we're guaranteed shift stays positive because inv_weight is guaranteed to |
| 257 | * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. |
| 258 | * |
| 259 | * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus |
| 260 | * weight/lw.weight <= 1, and therefore our shift will also be positive. |
| 261 | */ |
| 262 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) |
| 263 | { |
| 264 | u64 fact = scale_load_down(weight); |
| 265 | u32 fact_hi = (u32)(fact >> 32); |
| 266 | int shift = WMULT_SHIFT; |
| 267 | int fs; |
| 268 | |
| 269 | __update_inv_weight(lw); |
| 270 | |
| 271 | if (unlikely(fact_hi)) { |
| 272 | fs = fls(fact_hi); |
| 273 | shift -= fs; |
| 274 | fact >>= fs; |
| 275 | } |
| 276 | |
| 277 | fact = mul_u32_u32(fact, lw->inv_weight); |
| 278 | |
| 279 | fact_hi = (u32)(fact >> 32); |
| 280 | if (fact_hi) { |
| 281 | fs = fls(fact_hi); |
| 282 | shift -= fs; |
| 283 | fact >>= fs; |
| 284 | } |
| 285 | |
| 286 | return mul_u64_u32_shr(delta_exec, fact, shift); |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * delta /= w |
| 291 | */ |
| 292 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) |
| 293 | { |
| 294 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
| 295 | delta = __calc_delta(delta, NICE_0_LOAD, &se->load); |
| 296 | |
| 297 | return delta; |
| 298 | } |
| 299 | |
| 300 | const struct sched_class fair_sched_class; |
| 301 | |
| 302 | /************************************************************** |
| 303 | * CFS operations on generic schedulable entities: |
| 304 | */ |
| 305 | |
| 306 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 307 | |
| 308 | /* Walk up scheduling entities hierarchy */ |
| 309 | #define for_each_sched_entity(se) \ |
| 310 | for (; se; se = se->parent) |
| 311 | |
| 312 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 313 | { |
| 314 | struct rq *rq = rq_of(cfs_rq); |
| 315 | int cpu = cpu_of(rq); |
| 316 | |
| 317 | if (cfs_rq->on_list) |
| 318 | return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; |
| 319 | |
| 320 | cfs_rq->on_list = 1; |
| 321 | |
| 322 | /* |
| 323 | * Ensure we either appear before our parent (if already |
| 324 | * enqueued) or force our parent to appear after us when it is |
| 325 | * enqueued. The fact that we always enqueue bottom-up |
| 326 | * reduces this to two cases and a special case for the root |
| 327 | * cfs_rq. Furthermore, it also means that we will always reset |
| 328 | * tmp_alone_branch either when the branch is connected |
| 329 | * to a tree or when we reach the top of the tree |
| 330 | */ |
| 331 | if (cfs_rq->tg->parent && |
| 332 | cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { |
| 333 | /* |
| 334 | * If parent is already on the list, we add the child |
| 335 | * just before. Thanks to circular linked property of |
| 336 | * the list, this means to put the child at the tail |
| 337 | * of the list that starts by parent. |
| 338 | */ |
| 339 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
| 340 | &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); |
| 341 | /* |
| 342 | * The branch is now connected to its tree so we can |
| 343 | * reset tmp_alone_branch to the beginning of the |
| 344 | * list. |
| 345 | */ |
| 346 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; |
| 347 | return true; |
| 348 | } |
| 349 | |
| 350 | if (!cfs_rq->tg->parent) { |
| 351 | /* |
| 352 | * cfs rq without parent should be put |
| 353 | * at the tail of the list. |
| 354 | */ |
| 355 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
| 356 | &rq->leaf_cfs_rq_list); |
| 357 | /* |
| 358 | * We have reach the top of a tree so we can reset |
| 359 | * tmp_alone_branch to the beginning of the list. |
| 360 | */ |
| 361 | rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; |
| 362 | return true; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * The parent has not already been added so we want to |
| 367 | * make sure that it will be put after us. |
| 368 | * tmp_alone_branch points to the begin of the branch |
| 369 | * where we will add parent. |
| 370 | */ |
| 371 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); |
| 372 | /* |
| 373 | * update tmp_alone_branch to points to the new begin |
| 374 | * of the branch |
| 375 | */ |
| 376 | rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; |
| 377 | return false; |
| 378 | } |
| 379 | |
| 380 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 381 | { |
| 382 | if (cfs_rq->on_list) { |
| 383 | struct rq *rq = rq_of(cfs_rq); |
| 384 | |
| 385 | /* |
| 386 | * With cfs_rq being unthrottled/throttled during an enqueue, |
| 387 | * it can happen the tmp_alone_branch points to the leaf that |
| 388 | * we finally want to delete. In this case, tmp_alone_branch moves |
| 389 | * to the prev element but it will point to rq->leaf_cfs_rq_list |
| 390 | * at the end of the enqueue. |
| 391 | */ |
| 392 | if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) |
| 393 | rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; |
| 394 | |
| 395 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
| 396 | cfs_rq->on_list = 0; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
| 401 | { |
| 402 | WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); |
| 403 | } |
| 404 | |
| 405 | /* Iterate through all leaf cfs_rq's on a runqueue */ |
| 406 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
| 407 | list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ |
| 408 | leaf_cfs_rq_list) |
| 409 | |
| 410 | /* Do the two (enqueued) entities belong to the same group ? */ |
| 411 | static inline struct cfs_rq * |
| 412 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
| 413 | { |
| 414 | if (se->cfs_rq == pse->cfs_rq) |
| 415 | return se->cfs_rq; |
| 416 | |
| 417 | return NULL; |
| 418 | } |
| 419 | |
| 420 | static inline struct sched_entity *parent_entity(const struct sched_entity *se) |
| 421 | { |
| 422 | return se->parent; |
| 423 | } |
| 424 | |
| 425 | static void |
| 426 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
| 427 | { |
| 428 | int se_depth, pse_depth; |
| 429 | |
| 430 | /* |
| 431 | * preemption test can be made between sibling entities who are in the |
| 432 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of |
| 433 | * both tasks until we find their ancestors who are siblings of common |
| 434 | * parent. |
| 435 | */ |
| 436 | |
| 437 | /* First walk up until both entities are at same depth */ |
| 438 | se_depth = (*se)->depth; |
| 439 | pse_depth = (*pse)->depth; |
| 440 | |
| 441 | while (se_depth > pse_depth) { |
| 442 | se_depth--; |
| 443 | *se = parent_entity(*se); |
| 444 | } |
| 445 | |
| 446 | while (pse_depth > se_depth) { |
| 447 | pse_depth--; |
| 448 | *pse = parent_entity(*pse); |
| 449 | } |
| 450 | |
| 451 | while (!is_same_group(*se, *pse)) { |
| 452 | *se = parent_entity(*se); |
| 453 | *pse = parent_entity(*pse); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | static int tg_is_idle(struct task_group *tg) |
| 458 | { |
| 459 | return tg->idle > 0; |
| 460 | } |
| 461 | |
| 462 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) |
| 463 | { |
| 464 | return cfs_rq->idle > 0; |
| 465 | } |
| 466 | |
| 467 | static int se_is_idle(struct sched_entity *se) |
| 468 | { |
| 469 | if (entity_is_task(se)) |
| 470 | return task_has_idle_policy(task_of(se)); |
| 471 | return cfs_rq_is_idle(group_cfs_rq(se)); |
| 472 | } |
| 473 | |
| 474 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
| 475 | |
| 476 | #define for_each_sched_entity(se) \ |
| 477 | for (; se; se = NULL) |
| 478 | |
| 479 | static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 480 | { |
| 481 | return true; |
| 482 | } |
| 483 | |
| 484 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
| 485 | { |
| 486 | } |
| 487 | |
| 488 | static inline void assert_list_leaf_cfs_rq(struct rq *rq) |
| 489 | { |
| 490 | } |
| 491 | |
| 492 | #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ |
| 493 | for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) |
| 494 | |
| 495 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
| 496 | { |
| 497 | return NULL; |
| 498 | } |
| 499 | |
| 500 | static inline void |
| 501 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
| 502 | { |
| 503 | } |
| 504 | |
| 505 | static inline int tg_is_idle(struct task_group *tg) |
| 506 | { |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) |
| 511 | { |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | static int se_is_idle(struct sched_entity *se) |
| 516 | { |
| 517 | return task_has_idle_policy(task_of(se)); |
| 518 | } |
| 519 | |
| 520 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 521 | |
| 522 | static __always_inline |
| 523 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); |
| 524 | |
| 525 | /************************************************************** |
| 526 | * Scheduling class tree data structure manipulation methods: |
| 527 | */ |
| 528 | |
| 529 | static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) |
| 530 | { |
| 531 | s64 delta = (s64)(vruntime - max_vruntime); |
| 532 | if (delta > 0) |
| 533 | max_vruntime = vruntime; |
| 534 | |
| 535 | return max_vruntime; |
| 536 | } |
| 537 | |
| 538 | static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
| 539 | { |
| 540 | s64 delta = (s64)(vruntime - min_vruntime); |
| 541 | if (delta < 0) |
| 542 | min_vruntime = vruntime; |
| 543 | |
| 544 | return min_vruntime; |
| 545 | } |
| 546 | |
| 547 | static inline bool entity_before(const struct sched_entity *a, |
| 548 | const struct sched_entity *b) |
| 549 | { |
| 550 | /* |
| 551 | * Tiebreak on vruntime seems unnecessary since it can |
| 552 | * hardly happen. |
| 553 | */ |
| 554 | return (s64)(a->deadline - b->deadline) < 0; |
| 555 | } |
| 556 | |
| 557 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 558 | { |
| 559 | return (s64)(se->vruntime - cfs_rq->min_vruntime); |
| 560 | } |
| 561 | |
| 562 | #define __node_2_se(node) \ |
| 563 | rb_entry((node), struct sched_entity, run_node) |
| 564 | |
| 565 | /* |
| 566 | * Compute virtual time from the per-task service numbers: |
| 567 | * |
| 568 | * Fair schedulers conserve lag: |
| 569 | * |
| 570 | * \Sum lag_i = 0 |
| 571 | * |
| 572 | * Where lag_i is given by: |
| 573 | * |
| 574 | * lag_i = S - s_i = w_i * (V - v_i) |
| 575 | * |
| 576 | * Where S is the ideal service time and V is it's virtual time counterpart. |
| 577 | * Therefore: |
| 578 | * |
| 579 | * \Sum lag_i = 0 |
| 580 | * \Sum w_i * (V - v_i) = 0 |
| 581 | * \Sum w_i * V - w_i * v_i = 0 |
| 582 | * |
| 583 | * From which we can solve an expression for V in v_i (which we have in |
| 584 | * se->vruntime): |
| 585 | * |
| 586 | * \Sum v_i * w_i \Sum v_i * w_i |
| 587 | * V = -------------- = -------------- |
| 588 | * \Sum w_i W |
| 589 | * |
| 590 | * Specifically, this is the weighted average of all entity virtual runtimes. |
| 591 | * |
| 592 | * [[ NOTE: this is only equal to the ideal scheduler under the condition |
| 593 | * that join/leave operations happen at lag_i = 0, otherwise the |
| 594 | * virtual time has non-contiguous motion equivalent to: |
| 595 | * |
| 596 | * V +-= lag_i / W |
| 597 | * |
| 598 | * Also see the comment in place_entity() that deals with this. ]] |
| 599 | * |
| 600 | * However, since v_i is u64, and the multiplication could easily overflow |
| 601 | * transform it into a relative form that uses smaller quantities: |
| 602 | * |
| 603 | * Substitute: v_i == (v_i - v0) + v0 |
| 604 | * |
| 605 | * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i |
| 606 | * V = ---------------------------- = --------------------- + v0 |
| 607 | * W W |
| 608 | * |
| 609 | * Which we track using: |
| 610 | * |
| 611 | * v0 := cfs_rq->min_vruntime |
| 612 | * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime |
| 613 | * \Sum w_i := cfs_rq->avg_load |
| 614 | * |
| 615 | * Since min_vruntime is a monotonic increasing variable that closely tracks |
| 616 | * the per-task service, these deltas: (v_i - v), will be in the order of the |
| 617 | * maximal (virtual) lag induced in the system due to quantisation. |
| 618 | * |
| 619 | * Also, we use scale_load_down() to reduce the size. |
| 620 | * |
| 621 | * As measured, the max (key * weight) value was ~44 bits for a kernel build. |
| 622 | */ |
| 623 | static void |
| 624 | avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 625 | { |
| 626 | unsigned long weight = scale_load_down(se->load.weight); |
| 627 | s64 key = entity_key(cfs_rq, se); |
| 628 | |
| 629 | cfs_rq->avg_vruntime += key * weight; |
| 630 | cfs_rq->avg_load += weight; |
| 631 | } |
| 632 | |
| 633 | static void |
| 634 | avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 635 | { |
| 636 | unsigned long weight = scale_load_down(se->load.weight); |
| 637 | s64 key = entity_key(cfs_rq, se); |
| 638 | |
| 639 | cfs_rq->avg_vruntime -= key * weight; |
| 640 | cfs_rq->avg_load -= weight; |
| 641 | } |
| 642 | |
| 643 | static inline |
| 644 | void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) |
| 645 | { |
| 646 | /* |
| 647 | * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load |
| 648 | */ |
| 649 | cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Specifically: avg_runtime() + 0 must result in entity_eligible() := true |
| 654 | * For this to be so, the result of this function must have a left bias. |
| 655 | */ |
| 656 | u64 avg_vruntime(struct cfs_rq *cfs_rq) |
| 657 | { |
| 658 | struct sched_entity *curr = cfs_rq->curr; |
| 659 | s64 avg = cfs_rq->avg_vruntime; |
| 660 | long load = cfs_rq->avg_load; |
| 661 | |
| 662 | if (curr && curr->on_rq) { |
| 663 | unsigned long weight = scale_load_down(curr->load.weight); |
| 664 | |
| 665 | avg += entity_key(cfs_rq, curr) * weight; |
| 666 | load += weight; |
| 667 | } |
| 668 | |
| 669 | if (load) { |
| 670 | /* sign flips effective floor / ceiling */ |
| 671 | if (avg < 0) |
| 672 | avg -= (load - 1); |
| 673 | avg = div_s64(avg, load); |
| 674 | } |
| 675 | |
| 676 | return cfs_rq->min_vruntime + avg; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * lag_i = S - s_i = w_i * (V - v_i) |
| 681 | * |
| 682 | * However, since V is approximated by the weighted average of all entities it |
| 683 | * is possible -- by addition/removal/reweight to the tree -- to move V around |
| 684 | * and end up with a larger lag than we started with. |
| 685 | * |
| 686 | * Limit this to either double the slice length with a minimum of TICK_NSEC |
| 687 | * since that is the timing granularity. |
| 688 | * |
| 689 | * EEVDF gives the following limit for a steady state system: |
| 690 | * |
| 691 | * -r_max < lag < max(r_max, q) |
| 692 | * |
| 693 | * XXX could add max_slice to the augmented data to track this. |
| 694 | */ |
| 695 | static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 696 | { |
| 697 | s64 vlag, limit; |
| 698 | |
| 699 | WARN_ON_ONCE(!se->on_rq); |
| 700 | |
| 701 | vlag = avg_vruntime(cfs_rq) - se->vruntime; |
| 702 | limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); |
| 703 | |
| 704 | se->vlag = clamp(vlag, -limit, limit); |
| 705 | } |
| 706 | |
| 707 | /* |
| 708 | * Entity is eligible once it received less service than it ought to have, |
| 709 | * eg. lag >= 0. |
| 710 | * |
| 711 | * lag_i = S - s_i = w_i*(V - v_i) |
| 712 | * |
| 713 | * lag_i >= 0 -> V >= v_i |
| 714 | * |
| 715 | * \Sum (v_i - v)*w_i |
| 716 | * V = ------------------ + v |
| 717 | * \Sum w_i |
| 718 | * |
| 719 | * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) |
| 720 | * |
| 721 | * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due |
| 722 | * to the loss in precision caused by the division. |
| 723 | */ |
| 724 | static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) |
| 725 | { |
| 726 | struct sched_entity *curr = cfs_rq->curr; |
| 727 | s64 avg = cfs_rq->avg_vruntime; |
| 728 | long load = cfs_rq->avg_load; |
| 729 | |
| 730 | if (curr && curr->on_rq) { |
| 731 | unsigned long weight = scale_load_down(curr->load.weight); |
| 732 | |
| 733 | avg += entity_key(cfs_rq, curr) * weight; |
| 734 | load += weight; |
| 735 | } |
| 736 | |
| 737 | return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; |
| 738 | } |
| 739 | |
| 740 | int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 741 | { |
| 742 | return vruntime_eligible(cfs_rq, se->vruntime); |
| 743 | } |
| 744 | |
| 745 | static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) |
| 746 | { |
| 747 | u64 min_vruntime = cfs_rq->min_vruntime; |
| 748 | /* |
| 749 | * open coded max_vruntime() to allow updating avg_vruntime |
| 750 | */ |
| 751 | s64 delta = (s64)(vruntime - min_vruntime); |
| 752 | if (delta > 0) { |
| 753 | avg_vruntime_update(cfs_rq, delta); |
| 754 | min_vruntime = vruntime; |
| 755 | } |
| 756 | return min_vruntime; |
| 757 | } |
| 758 | |
| 759 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
| 760 | { |
| 761 | struct sched_entity *se = __pick_root_entity(cfs_rq); |
| 762 | struct sched_entity *curr = cfs_rq->curr; |
| 763 | u64 vruntime = cfs_rq->min_vruntime; |
| 764 | |
| 765 | if (curr) { |
| 766 | if (curr->on_rq) |
| 767 | vruntime = curr->vruntime; |
| 768 | else |
| 769 | curr = NULL; |
| 770 | } |
| 771 | |
| 772 | if (se) { |
| 773 | if (!curr) |
| 774 | vruntime = se->min_vruntime; |
| 775 | else |
| 776 | vruntime = min_vruntime(vruntime, se->min_vruntime); |
| 777 | } |
| 778 | |
| 779 | /* ensure we never gain time by being placed backwards. */ |
| 780 | cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); |
| 781 | } |
| 782 | |
| 783 | static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) |
| 784 | { |
| 785 | struct sched_entity *root = __pick_root_entity(cfs_rq); |
| 786 | struct sched_entity *curr = cfs_rq->curr; |
| 787 | u64 min_slice = ~0ULL; |
| 788 | |
| 789 | if (curr && curr->on_rq) |
| 790 | min_slice = curr->slice; |
| 791 | |
| 792 | if (root) |
| 793 | min_slice = min(min_slice, root->min_slice); |
| 794 | |
| 795 | return min_slice; |
| 796 | } |
| 797 | |
| 798 | static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) |
| 799 | { |
| 800 | return entity_before(__node_2_se(a), __node_2_se(b)); |
| 801 | } |
| 802 | |
| 803 | #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) |
| 804 | |
| 805 | static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) |
| 806 | { |
| 807 | if (node) { |
| 808 | struct sched_entity *rse = __node_2_se(node); |
| 809 | if (vruntime_gt(min_vruntime, se, rse)) |
| 810 | se->min_vruntime = rse->min_vruntime; |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) |
| 815 | { |
| 816 | if (node) { |
| 817 | struct sched_entity *rse = __node_2_se(node); |
| 818 | if (rse->min_slice < se->min_slice) |
| 819 | se->min_slice = rse->min_slice; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | /* |
| 824 | * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) |
| 825 | */ |
| 826 | static inline bool min_vruntime_update(struct sched_entity *se, bool exit) |
| 827 | { |
| 828 | u64 old_min_vruntime = se->min_vruntime; |
| 829 | u64 old_min_slice = se->min_slice; |
| 830 | struct rb_node *node = &se->run_node; |
| 831 | |
| 832 | se->min_vruntime = se->vruntime; |
| 833 | __min_vruntime_update(se, node->rb_right); |
| 834 | __min_vruntime_update(se, node->rb_left); |
| 835 | |
| 836 | se->min_slice = se->slice; |
| 837 | __min_slice_update(se, node->rb_right); |
| 838 | __min_slice_update(se, node->rb_left); |
| 839 | |
| 840 | return se->min_vruntime == old_min_vruntime && |
| 841 | se->min_slice == old_min_slice; |
| 842 | } |
| 843 | |
| 844 | RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, |
| 845 | run_node, min_vruntime, min_vruntime_update); |
| 846 | |
| 847 | /* |
| 848 | * Enqueue an entity into the rb-tree: |
| 849 | */ |
| 850 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 851 | { |
| 852 | avg_vruntime_add(cfs_rq, se); |
| 853 | se->min_vruntime = se->vruntime; |
| 854 | se->min_slice = se->slice; |
| 855 | rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
| 856 | __entity_less, &min_vruntime_cb); |
| 857 | } |
| 858 | |
| 859 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 860 | { |
| 861 | rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, |
| 862 | &min_vruntime_cb); |
| 863 | avg_vruntime_sub(cfs_rq, se); |
| 864 | } |
| 865 | |
| 866 | struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) |
| 867 | { |
| 868 | struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; |
| 869 | |
| 870 | if (!root) |
| 871 | return NULL; |
| 872 | |
| 873 | return __node_2_se(root); |
| 874 | } |
| 875 | |
| 876 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) |
| 877 | { |
| 878 | struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); |
| 879 | |
| 880 | if (!left) |
| 881 | return NULL; |
| 882 | |
| 883 | return __node_2_se(left); |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | * HACK, stash a copy of deadline at the point of pick in vlag, |
| 888 | * which isn't used until dequeue. |
| 889 | */ |
| 890 | static inline void set_protect_slice(struct sched_entity *se) |
| 891 | { |
| 892 | se->vlag = se->deadline; |
| 893 | } |
| 894 | |
| 895 | static inline bool protect_slice(struct sched_entity *se) |
| 896 | { |
| 897 | return se->vlag == se->deadline; |
| 898 | } |
| 899 | |
| 900 | static inline void cancel_protect_slice(struct sched_entity *se) |
| 901 | { |
| 902 | if (protect_slice(se)) |
| 903 | se->vlag = se->deadline + 1; |
| 904 | } |
| 905 | |
| 906 | /* |
| 907 | * Earliest Eligible Virtual Deadline First |
| 908 | * |
| 909 | * In order to provide latency guarantees for different request sizes |
| 910 | * EEVDF selects the best runnable task from two criteria: |
| 911 | * |
| 912 | * 1) the task must be eligible (must be owed service) |
| 913 | * |
| 914 | * 2) from those tasks that meet 1), we select the one |
| 915 | * with the earliest virtual deadline. |
| 916 | * |
| 917 | * We can do this in O(log n) time due to an augmented RB-tree. The |
| 918 | * tree keeps the entries sorted on deadline, but also functions as a |
| 919 | * heap based on the vruntime by keeping: |
| 920 | * |
| 921 | * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) |
| 922 | * |
| 923 | * Which allows tree pruning through eligibility. |
| 924 | */ |
| 925 | static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) |
| 926 | { |
| 927 | struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; |
| 928 | struct sched_entity *se = __pick_first_entity(cfs_rq); |
| 929 | struct sched_entity *curr = cfs_rq->curr; |
| 930 | struct sched_entity *best = NULL; |
| 931 | |
| 932 | /* |
| 933 | * We can safely skip eligibility check if there is only one entity |
| 934 | * in this cfs_rq, saving some cycles. |
| 935 | */ |
| 936 | if (cfs_rq->nr_queued == 1) |
| 937 | return curr && curr->on_rq ? curr : se; |
| 938 | |
| 939 | if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) |
| 940 | curr = NULL; |
| 941 | |
| 942 | if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) |
| 943 | return curr; |
| 944 | |
| 945 | /* Pick the leftmost entity if it's eligible */ |
| 946 | if (se && entity_eligible(cfs_rq, se)) { |
| 947 | best = se; |
| 948 | goto found; |
| 949 | } |
| 950 | |
| 951 | /* Heap search for the EEVD entity */ |
| 952 | while (node) { |
| 953 | struct rb_node *left = node->rb_left; |
| 954 | |
| 955 | /* |
| 956 | * Eligible entities in left subtree are always better |
| 957 | * choices, since they have earlier deadlines. |
| 958 | */ |
| 959 | if (left && vruntime_eligible(cfs_rq, |
| 960 | __node_2_se(left)->min_vruntime)) { |
| 961 | node = left; |
| 962 | continue; |
| 963 | } |
| 964 | |
| 965 | se = __node_2_se(node); |
| 966 | |
| 967 | /* |
| 968 | * The left subtree either is empty or has no eligible |
| 969 | * entity, so check the current node since it is the one |
| 970 | * with earliest deadline that might be eligible. |
| 971 | */ |
| 972 | if (entity_eligible(cfs_rq, se)) { |
| 973 | best = se; |
| 974 | break; |
| 975 | } |
| 976 | |
| 977 | node = node->rb_right; |
| 978 | } |
| 979 | found: |
| 980 | if (!best || (curr && entity_before(curr, best))) |
| 981 | best = curr; |
| 982 | |
| 983 | return best; |
| 984 | } |
| 985 | |
| 986 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
| 987 | { |
| 988 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); |
| 989 | |
| 990 | if (!last) |
| 991 | return NULL; |
| 992 | |
| 993 | return __node_2_se(last); |
| 994 | } |
| 995 | |
| 996 | /************************************************************** |
| 997 | * Scheduling class statistics methods: |
| 998 | */ |
| 999 | #ifdef CONFIG_SMP |
| 1000 | int sched_update_scaling(void) |
| 1001 | { |
| 1002 | unsigned int factor = get_update_sysctl_factor(); |
| 1003 | |
| 1004 | #define WRT_SYSCTL(name) \ |
| 1005 | (normalized_sysctl_##name = sysctl_##name / (factor)) |
| 1006 | WRT_SYSCTL(sched_base_slice); |
| 1007 | #undef WRT_SYSCTL |
| 1008 | |
| 1009 | return 0; |
| 1010 | } |
| 1011 | #endif |
| 1012 | |
| 1013 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); |
| 1014 | |
| 1015 | /* |
| 1016 | * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i |
| 1017 | * this is probably good enough. |
| 1018 | */ |
| 1019 | static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 1020 | { |
| 1021 | if ((s64)(se->vruntime - se->deadline) < 0) |
| 1022 | return false; |
| 1023 | |
| 1024 | /* |
| 1025 | * For EEVDF the virtual time slope is determined by w_i (iow. |
| 1026 | * nice) while the request time r_i is determined by |
| 1027 | * sysctl_sched_base_slice. |
| 1028 | */ |
| 1029 | if (!se->custom_slice) |
| 1030 | se->slice = sysctl_sched_base_slice; |
| 1031 | |
| 1032 | /* |
| 1033 | * EEVDF: vd_i = ve_i + r_i / w_i |
| 1034 | */ |
| 1035 | se->deadline = se->vruntime + calc_delta_fair(se->slice, se); |
| 1036 | |
| 1037 | /* |
| 1038 | * The task has consumed its request, reschedule. |
| 1039 | */ |
| 1040 | return true; |
| 1041 | } |
| 1042 | |
| 1043 | #include "pelt.h" |
| 1044 | #ifdef CONFIG_SMP |
| 1045 | |
| 1046 | static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); |
| 1047 | static unsigned long task_h_load(struct task_struct *p); |
| 1048 | static unsigned long capacity_of(int cpu); |
| 1049 | |
| 1050 | /* Give new sched_entity start runnable values to heavy its load in infant time */ |
| 1051 | void init_entity_runnable_average(struct sched_entity *se) |
| 1052 | { |
| 1053 | struct sched_avg *sa = &se->avg; |
| 1054 | |
| 1055 | memset(sa, 0, sizeof(*sa)); |
| 1056 | |
| 1057 | /* |
| 1058 | * Tasks are initialized with full load to be seen as heavy tasks until |
| 1059 | * they get a chance to stabilize to their real load level. |
| 1060 | * Group entities are initialized with zero load to reflect the fact that |
| 1061 | * nothing has been attached to the task group yet. |
| 1062 | */ |
| 1063 | if (entity_is_task(se)) |
| 1064 | sa->load_avg = scale_load_down(se->load.weight); |
| 1065 | |
| 1066 | /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ |
| 1067 | } |
| 1068 | |
| 1069 | /* |
| 1070 | * With new tasks being created, their initial util_avgs are extrapolated |
| 1071 | * based on the cfs_rq's current util_avg: |
| 1072 | * |
| 1073 | * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) |
| 1074 | * * se_weight(se) |
| 1075 | * |
| 1076 | * However, in many cases, the above util_avg does not give a desired |
| 1077 | * value. Moreover, the sum of the util_avgs may be divergent, such |
| 1078 | * as when the series is a harmonic series. |
| 1079 | * |
| 1080 | * To solve this problem, we also cap the util_avg of successive tasks to |
| 1081 | * only 1/2 of the left utilization budget: |
| 1082 | * |
| 1083 | * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n |
| 1084 | * |
| 1085 | * where n denotes the nth task and cpu_scale the CPU capacity. |
| 1086 | * |
| 1087 | * For example, for a CPU with 1024 of capacity, a simplest series from |
| 1088 | * the beginning would be like: |
| 1089 | * |
| 1090 | * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... |
| 1091 | * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... |
| 1092 | * |
| 1093 | * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) |
| 1094 | * if util_avg > util_avg_cap. |
| 1095 | */ |
| 1096 | void post_init_entity_util_avg(struct task_struct *p) |
| 1097 | { |
| 1098 | struct sched_entity *se = &p->se; |
| 1099 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 1100 | struct sched_avg *sa = &se->avg; |
| 1101 | long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); |
| 1102 | long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; |
| 1103 | |
| 1104 | if (p->sched_class != &fair_sched_class) { |
| 1105 | /* |
| 1106 | * For !fair tasks do: |
| 1107 | * |
| 1108 | update_cfs_rq_load_avg(now, cfs_rq); |
| 1109 | attach_entity_load_avg(cfs_rq, se); |
| 1110 | switched_from_fair(rq, p); |
| 1111 | * |
| 1112 | * such that the next switched_to_fair() has the |
| 1113 | * expected state. |
| 1114 | */ |
| 1115 | se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); |
| 1116 | return; |
| 1117 | } |
| 1118 | |
| 1119 | if (cap > 0) { |
| 1120 | if (cfs_rq->avg.util_avg != 0) { |
| 1121 | sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); |
| 1122 | sa->util_avg /= (cfs_rq->avg.load_avg + 1); |
| 1123 | |
| 1124 | if (sa->util_avg > cap) |
| 1125 | sa->util_avg = cap; |
| 1126 | } else { |
| 1127 | sa->util_avg = cap; |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | sa->runnable_avg = sa->util_avg; |
| 1132 | } |
| 1133 | |
| 1134 | #else /* !CONFIG_SMP */ |
| 1135 | void init_entity_runnable_average(struct sched_entity *se) |
| 1136 | { |
| 1137 | } |
| 1138 | void post_init_entity_util_avg(struct task_struct *p) |
| 1139 | { |
| 1140 | } |
| 1141 | static void update_tg_load_avg(struct cfs_rq *cfs_rq) |
| 1142 | { |
| 1143 | } |
| 1144 | #endif /* CONFIG_SMP */ |
| 1145 | |
| 1146 | static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) |
| 1147 | { |
| 1148 | u64 now = rq_clock_task(rq); |
| 1149 | s64 delta_exec; |
| 1150 | |
| 1151 | delta_exec = now - curr->exec_start; |
| 1152 | if (unlikely(delta_exec <= 0)) |
| 1153 | return delta_exec; |
| 1154 | |
| 1155 | curr->exec_start = now; |
| 1156 | curr->sum_exec_runtime += delta_exec; |
| 1157 | |
| 1158 | if (schedstat_enabled()) { |
| 1159 | struct sched_statistics *stats; |
| 1160 | |
| 1161 | stats = __schedstats_from_se(curr); |
| 1162 | __schedstat_set(stats->exec_max, |
| 1163 | max(delta_exec, stats->exec_max)); |
| 1164 | } |
| 1165 | |
| 1166 | return delta_exec; |
| 1167 | } |
| 1168 | |
| 1169 | static inline void update_curr_task(struct task_struct *p, s64 delta_exec) |
| 1170 | { |
| 1171 | trace_sched_stat_runtime(p, delta_exec); |
| 1172 | account_group_exec_runtime(p, delta_exec); |
| 1173 | cgroup_account_cputime(p, delta_exec); |
| 1174 | } |
| 1175 | |
| 1176 | static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
| 1177 | { |
| 1178 | if (!sched_feat(PREEMPT_SHORT)) |
| 1179 | return false; |
| 1180 | |
| 1181 | if (curr->vlag == curr->deadline) |
| 1182 | return false; |
| 1183 | |
| 1184 | return !entity_eligible(cfs_rq, curr); |
| 1185 | } |
| 1186 | |
| 1187 | static inline bool do_preempt_short(struct cfs_rq *cfs_rq, |
| 1188 | struct sched_entity *pse, struct sched_entity *se) |
| 1189 | { |
| 1190 | if (!sched_feat(PREEMPT_SHORT)) |
| 1191 | return false; |
| 1192 | |
| 1193 | if (pse->slice >= se->slice) |
| 1194 | return false; |
| 1195 | |
| 1196 | if (!entity_eligible(cfs_rq, pse)) |
| 1197 | return false; |
| 1198 | |
| 1199 | if (entity_before(pse, se)) |
| 1200 | return true; |
| 1201 | |
| 1202 | if (!entity_eligible(cfs_rq, se)) |
| 1203 | return true; |
| 1204 | |
| 1205 | return false; |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * Used by other classes to account runtime. |
| 1210 | */ |
| 1211 | s64 update_curr_common(struct rq *rq) |
| 1212 | { |
| 1213 | struct task_struct *donor = rq->donor; |
| 1214 | s64 delta_exec; |
| 1215 | |
| 1216 | delta_exec = update_curr_se(rq, &donor->se); |
| 1217 | if (likely(delta_exec > 0)) |
| 1218 | update_curr_task(donor, delta_exec); |
| 1219 | |
| 1220 | return delta_exec; |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * Update the current task's runtime statistics. |
| 1225 | */ |
| 1226 | static void update_curr(struct cfs_rq *cfs_rq) |
| 1227 | { |
| 1228 | struct sched_entity *curr = cfs_rq->curr; |
| 1229 | struct rq *rq = rq_of(cfs_rq); |
| 1230 | s64 delta_exec; |
| 1231 | bool resched; |
| 1232 | |
| 1233 | if (unlikely(!curr)) |
| 1234 | return; |
| 1235 | |
| 1236 | delta_exec = update_curr_se(rq, curr); |
| 1237 | if (unlikely(delta_exec <= 0)) |
| 1238 | return; |
| 1239 | |
| 1240 | curr->vruntime += calc_delta_fair(delta_exec, curr); |
| 1241 | resched = update_deadline(cfs_rq, curr); |
| 1242 | update_min_vruntime(cfs_rq); |
| 1243 | |
| 1244 | if (entity_is_task(curr)) { |
| 1245 | struct task_struct *p = task_of(curr); |
| 1246 | |
| 1247 | update_curr_task(p, delta_exec); |
| 1248 | |
| 1249 | /* |
| 1250 | * If the fair_server is active, we need to account for the |
| 1251 | * fair_server time whether or not the task is running on |
| 1252 | * behalf of fair_server or not: |
| 1253 | * - If the task is running on behalf of fair_server, we need |
| 1254 | * to limit its time based on the assigned runtime. |
| 1255 | * - Fair task that runs outside of fair_server should account |
| 1256 | * against fair_server such that it can account for this time |
| 1257 | * and possibly avoid running this period. |
| 1258 | */ |
| 1259 | if (dl_server_active(&rq->fair_server)) |
| 1260 | dl_server_update(&rq->fair_server, delta_exec); |
| 1261 | } |
| 1262 | |
| 1263 | account_cfs_rq_runtime(cfs_rq, delta_exec); |
| 1264 | |
| 1265 | if (cfs_rq->nr_queued == 1) |
| 1266 | return; |
| 1267 | |
| 1268 | if (resched || did_preempt_short(cfs_rq, curr)) { |
| 1269 | resched_curr_lazy(rq); |
| 1270 | clear_buddies(cfs_rq, curr); |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | static void update_curr_fair(struct rq *rq) |
| 1275 | { |
| 1276 | update_curr(cfs_rq_of(&rq->donor->se)); |
| 1277 | } |
| 1278 | |
| 1279 | static inline void |
| 1280 | update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 1281 | { |
| 1282 | struct sched_statistics *stats; |
| 1283 | struct task_struct *p = NULL; |
| 1284 | |
| 1285 | if (!schedstat_enabled()) |
| 1286 | return; |
| 1287 | |
| 1288 | stats = __schedstats_from_se(se); |
| 1289 | |
| 1290 | if (entity_is_task(se)) |
| 1291 | p = task_of(se); |
| 1292 | |
| 1293 | __update_stats_wait_start(rq_of(cfs_rq), p, stats); |
| 1294 | } |
| 1295 | |
| 1296 | static inline void |
| 1297 | update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 1298 | { |
| 1299 | struct sched_statistics *stats; |
| 1300 | struct task_struct *p = NULL; |
| 1301 | |
| 1302 | if (!schedstat_enabled()) |
| 1303 | return; |
| 1304 | |
| 1305 | stats = __schedstats_from_se(se); |
| 1306 | |
| 1307 | /* |
| 1308 | * When the sched_schedstat changes from 0 to 1, some sched se |
| 1309 | * maybe already in the runqueue, the se->statistics.wait_start |
| 1310 | * will be 0.So it will let the delta wrong. We need to avoid this |
| 1311 | * scenario. |
| 1312 | */ |
| 1313 | if (unlikely(!schedstat_val(stats->wait_start))) |
| 1314 | return; |
| 1315 | |
| 1316 | if (entity_is_task(se)) |
| 1317 | p = task_of(se); |
| 1318 | |
| 1319 | __update_stats_wait_end(rq_of(cfs_rq), p, stats); |
| 1320 | } |
| 1321 | |
| 1322 | static inline void |
| 1323 | update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 1324 | { |
| 1325 | struct sched_statistics *stats; |
| 1326 | struct task_struct *tsk = NULL; |
| 1327 | |
| 1328 | if (!schedstat_enabled()) |
| 1329 | return; |
| 1330 | |
| 1331 | stats = __schedstats_from_se(se); |
| 1332 | |
| 1333 | if (entity_is_task(se)) |
| 1334 | tsk = task_of(se); |
| 1335 | |
| 1336 | __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); |
| 1337 | } |
| 1338 | |
| 1339 | /* |
| 1340 | * Task is being enqueued - update stats: |
| 1341 | */ |
| 1342 | static inline void |
| 1343 | update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 1344 | { |
| 1345 | if (!schedstat_enabled()) |
| 1346 | return; |
| 1347 | |
| 1348 | /* |
| 1349 | * Are we enqueueing a waiting task? (for current tasks |
| 1350 | * a dequeue/enqueue event is a NOP) |
| 1351 | */ |
| 1352 | if (se != cfs_rq->curr) |
| 1353 | update_stats_wait_start_fair(cfs_rq, se); |
| 1354 | |
| 1355 | if (flags & ENQUEUE_WAKEUP) |
| 1356 | update_stats_enqueue_sleeper_fair(cfs_rq, se); |
| 1357 | } |
| 1358 | |
| 1359 | static inline void |
| 1360 | update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 1361 | { |
| 1362 | |
| 1363 | if (!schedstat_enabled()) |
| 1364 | return; |
| 1365 | |
| 1366 | /* |
| 1367 | * Mark the end of the wait period if dequeueing a |
| 1368 | * waiting task: |
| 1369 | */ |
| 1370 | if (se != cfs_rq->curr) |
| 1371 | update_stats_wait_end_fair(cfs_rq, se); |
| 1372 | |
| 1373 | if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { |
| 1374 | struct task_struct *tsk = task_of(se); |
| 1375 | unsigned int state; |
| 1376 | |
| 1377 | /* XXX racy against TTWU */ |
| 1378 | state = READ_ONCE(tsk->__state); |
| 1379 | if (state & TASK_INTERRUPTIBLE) |
| 1380 | __schedstat_set(tsk->stats.sleep_start, |
| 1381 | rq_clock(rq_of(cfs_rq))); |
| 1382 | if (state & TASK_UNINTERRUPTIBLE) |
| 1383 | __schedstat_set(tsk->stats.block_start, |
| 1384 | rq_clock(rq_of(cfs_rq))); |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | /* |
| 1389 | * We are picking a new current task - update its stats: |
| 1390 | */ |
| 1391 | static inline void |
| 1392 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 1393 | { |
| 1394 | /* |
| 1395 | * We are starting a new run period: |
| 1396 | */ |
| 1397 | se->exec_start = rq_clock_task(rq_of(cfs_rq)); |
| 1398 | } |
| 1399 | |
| 1400 | /************************************************** |
| 1401 | * Scheduling class queueing methods: |
| 1402 | */ |
| 1403 | |
| 1404 | static inline bool is_core_idle(int cpu) |
| 1405 | { |
| 1406 | #ifdef CONFIG_SCHED_SMT |
| 1407 | int sibling; |
| 1408 | |
| 1409 | for_each_cpu(sibling, cpu_smt_mask(cpu)) { |
| 1410 | if (cpu == sibling) |
| 1411 | continue; |
| 1412 | |
| 1413 | if (!idle_cpu(sibling)) |
| 1414 | return false; |
| 1415 | } |
| 1416 | #endif |
| 1417 | |
| 1418 | return true; |
| 1419 | } |
| 1420 | |
| 1421 | #ifdef CONFIG_NUMA |
| 1422 | #define NUMA_IMBALANCE_MIN 2 |
| 1423 | |
| 1424 | static inline long |
| 1425 | adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) |
| 1426 | { |
| 1427 | /* |
| 1428 | * Allow a NUMA imbalance if busy CPUs is less than the maximum |
| 1429 | * threshold. Above this threshold, individual tasks may be contending |
| 1430 | * for both memory bandwidth and any shared HT resources. This is an |
| 1431 | * approximation as the number of running tasks may not be related to |
| 1432 | * the number of busy CPUs due to sched_setaffinity. |
| 1433 | */ |
| 1434 | if (dst_running > imb_numa_nr) |
| 1435 | return imbalance; |
| 1436 | |
| 1437 | /* |
| 1438 | * Allow a small imbalance based on a simple pair of communicating |
| 1439 | * tasks that remain local when the destination is lightly loaded. |
| 1440 | */ |
| 1441 | if (imbalance <= NUMA_IMBALANCE_MIN) |
| 1442 | return 0; |
| 1443 | |
| 1444 | return imbalance; |
| 1445 | } |
| 1446 | #endif /* CONFIG_NUMA */ |
| 1447 | |
| 1448 | #ifdef CONFIG_NUMA_BALANCING |
| 1449 | /* |
| 1450 | * Approximate time to scan a full NUMA task in ms. The task scan period is |
| 1451 | * calculated based on the tasks virtual memory size and |
| 1452 | * numa_balancing_scan_size. |
| 1453 | */ |
| 1454 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; |
| 1455 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; |
| 1456 | |
| 1457 | /* Portion of address space to scan in MB */ |
| 1458 | unsigned int sysctl_numa_balancing_scan_size = 256; |
| 1459 | |
| 1460 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ |
| 1461 | unsigned int sysctl_numa_balancing_scan_delay = 1000; |
| 1462 | |
| 1463 | /* The page with hint page fault latency < threshold in ms is considered hot */ |
| 1464 | unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; |
| 1465 | |
| 1466 | struct numa_group { |
| 1467 | refcount_t refcount; |
| 1468 | |
| 1469 | spinlock_t lock; /* nr_tasks, tasks */ |
| 1470 | int nr_tasks; |
| 1471 | pid_t gid; |
| 1472 | int active_nodes; |
| 1473 | |
| 1474 | struct rcu_head rcu; |
| 1475 | unsigned long total_faults; |
| 1476 | unsigned long max_faults_cpu; |
| 1477 | /* |
| 1478 | * faults[] array is split into two regions: faults_mem and faults_cpu. |
| 1479 | * |
| 1480 | * Faults_cpu is used to decide whether memory should move |
| 1481 | * towards the CPU. As a consequence, these stats are weighted |
| 1482 | * more by CPU use than by memory faults. |
| 1483 | */ |
| 1484 | unsigned long faults[]; |
| 1485 | }; |
| 1486 | |
| 1487 | /* |
| 1488 | * For functions that can be called in multiple contexts that permit reading |
| 1489 | * ->numa_group (see struct task_struct for locking rules). |
| 1490 | */ |
| 1491 | static struct numa_group *deref_task_numa_group(struct task_struct *p) |
| 1492 | { |
| 1493 | return rcu_dereference_check(p->numa_group, p == current || |
| 1494 | (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); |
| 1495 | } |
| 1496 | |
| 1497 | static struct numa_group *deref_curr_numa_group(struct task_struct *p) |
| 1498 | { |
| 1499 | return rcu_dereference_protected(p->numa_group, p == current); |
| 1500 | } |
| 1501 | |
| 1502 | static inline unsigned long group_faults_priv(struct numa_group *ng); |
| 1503 | static inline unsigned long group_faults_shared(struct numa_group *ng); |
| 1504 | |
| 1505 | static unsigned int task_nr_scan_windows(struct task_struct *p) |
| 1506 | { |
| 1507 | unsigned long rss = 0; |
| 1508 | unsigned long nr_scan_pages; |
| 1509 | |
| 1510 | /* |
| 1511 | * Calculations based on RSS as non-present and empty pages are skipped |
| 1512 | * by the PTE scanner and NUMA hinting faults should be trapped based |
| 1513 | * on resident pages |
| 1514 | */ |
| 1515 | nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); |
| 1516 | rss = get_mm_rss(p->mm); |
| 1517 | if (!rss) |
| 1518 | rss = nr_scan_pages; |
| 1519 | |
| 1520 | rss = round_up(rss, nr_scan_pages); |
| 1521 | return rss / nr_scan_pages; |
| 1522 | } |
| 1523 | |
| 1524 | /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ |
| 1525 | #define MAX_SCAN_WINDOW 2560 |
| 1526 | |
| 1527 | static unsigned int task_scan_min(struct task_struct *p) |
| 1528 | { |
| 1529 | unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); |
| 1530 | unsigned int scan, floor; |
| 1531 | unsigned int windows = 1; |
| 1532 | |
| 1533 | if (scan_size < MAX_SCAN_WINDOW) |
| 1534 | windows = MAX_SCAN_WINDOW / scan_size; |
| 1535 | floor = 1000 / windows; |
| 1536 | |
| 1537 | scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); |
| 1538 | return max_t(unsigned int, floor, scan); |
| 1539 | } |
| 1540 | |
| 1541 | static unsigned int task_scan_start(struct task_struct *p) |
| 1542 | { |
| 1543 | unsigned long smin = task_scan_min(p); |
| 1544 | unsigned long period = smin; |
| 1545 | struct numa_group *ng; |
| 1546 | |
| 1547 | /* Scale the maximum scan period with the amount of shared memory. */ |
| 1548 | rcu_read_lock(); |
| 1549 | ng = rcu_dereference(p->numa_group); |
| 1550 | if (ng) { |
| 1551 | unsigned long shared = group_faults_shared(ng); |
| 1552 | unsigned long private = group_faults_priv(ng); |
| 1553 | |
| 1554 | period *= refcount_read(&ng->refcount); |
| 1555 | period *= shared + 1; |
| 1556 | period /= private + shared + 1; |
| 1557 | } |
| 1558 | rcu_read_unlock(); |
| 1559 | |
| 1560 | return max(smin, period); |
| 1561 | } |
| 1562 | |
| 1563 | static unsigned int task_scan_max(struct task_struct *p) |
| 1564 | { |
| 1565 | unsigned long smin = task_scan_min(p); |
| 1566 | unsigned long smax; |
| 1567 | struct numa_group *ng; |
| 1568 | |
| 1569 | /* Watch for min being lower than max due to floor calculations */ |
| 1570 | smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); |
| 1571 | |
| 1572 | /* Scale the maximum scan period with the amount of shared memory. */ |
| 1573 | ng = deref_curr_numa_group(p); |
| 1574 | if (ng) { |
| 1575 | unsigned long shared = group_faults_shared(ng); |
| 1576 | unsigned long private = group_faults_priv(ng); |
| 1577 | unsigned long period = smax; |
| 1578 | |
| 1579 | period *= refcount_read(&ng->refcount); |
| 1580 | period *= shared + 1; |
| 1581 | period /= private + shared + 1; |
| 1582 | |
| 1583 | smax = max(smax, period); |
| 1584 | } |
| 1585 | |
| 1586 | return max(smin, smax); |
| 1587 | } |
| 1588 | |
| 1589 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
| 1590 | { |
| 1591 | rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); |
| 1592 | rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); |
| 1593 | } |
| 1594 | |
| 1595 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) |
| 1596 | { |
| 1597 | rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); |
| 1598 | rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); |
| 1599 | } |
| 1600 | |
| 1601 | /* Shared or private faults. */ |
| 1602 | #define NR_NUMA_HINT_FAULT_TYPES 2 |
| 1603 | |
| 1604 | /* Memory and CPU locality */ |
| 1605 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) |
| 1606 | |
| 1607 | /* Averaged statistics, and temporary buffers. */ |
| 1608 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) |
| 1609 | |
| 1610 | pid_t task_numa_group_id(struct task_struct *p) |
| 1611 | { |
| 1612 | struct numa_group *ng; |
| 1613 | pid_t gid = 0; |
| 1614 | |
| 1615 | rcu_read_lock(); |
| 1616 | ng = rcu_dereference(p->numa_group); |
| 1617 | if (ng) |
| 1618 | gid = ng->gid; |
| 1619 | rcu_read_unlock(); |
| 1620 | |
| 1621 | return gid; |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * The averaged statistics, shared & private, memory & CPU, |
| 1626 | * occupy the first half of the array. The second half of the |
| 1627 | * array is for current counters, which are averaged into the |
| 1628 | * first set by task_numa_placement. |
| 1629 | */ |
| 1630 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) |
| 1631 | { |
| 1632 | return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; |
| 1633 | } |
| 1634 | |
| 1635 | static inline unsigned long task_faults(struct task_struct *p, int nid) |
| 1636 | { |
| 1637 | if (!p->numa_faults) |
| 1638 | return 0; |
| 1639 | |
| 1640 | return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
| 1641 | p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; |
| 1642 | } |
| 1643 | |
| 1644 | static inline unsigned long group_faults(struct task_struct *p, int nid) |
| 1645 | { |
| 1646 | struct numa_group *ng = deref_task_numa_group(p); |
| 1647 | |
| 1648 | if (!ng) |
| 1649 | return 0; |
| 1650 | |
| 1651 | return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + |
| 1652 | ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; |
| 1653 | } |
| 1654 | |
| 1655 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) |
| 1656 | { |
| 1657 | return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + |
| 1658 | group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; |
| 1659 | } |
| 1660 | |
| 1661 | static inline unsigned long group_faults_priv(struct numa_group *ng) |
| 1662 | { |
| 1663 | unsigned long faults = 0; |
| 1664 | int node; |
| 1665 | |
| 1666 | for_each_online_node(node) { |
| 1667 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; |
| 1668 | } |
| 1669 | |
| 1670 | return faults; |
| 1671 | } |
| 1672 | |
| 1673 | static inline unsigned long group_faults_shared(struct numa_group *ng) |
| 1674 | { |
| 1675 | unsigned long faults = 0; |
| 1676 | int node; |
| 1677 | |
| 1678 | for_each_online_node(node) { |
| 1679 | faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; |
| 1680 | } |
| 1681 | |
| 1682 | return faults; |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * A node triggering more than 1/3 as many NUMA faults as the maximum is |
| 1687 | * considered part of a numa group's pseudo-interleaving set. Migrations |
| 1688 | * between these nodes are slowed down, to allow things to settle down. |
| 1689 | */ |
| 1690 | #define ACTIVE_NODE_FRACTION 3 |
| 1691 | |
| 1692 | static bool numa_is_active_node(int nid, struct numa_group *ng) |
| 1693 | { |
| 1694 | return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; |
| 1695 | } |
| 1696 | |
| 1697 | /* Handle placement on systems where not all nodes are directly connected. */ |
| 1698 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, |
| 1699 | int lim_dist, bool task) |
| 1700 | { |
| 1701 | unsigned long score = 0; |
| 1702 | int node, max_dist; |
| 1703 | |
| 1704 | /* |
| 1705 | * All nodes are directly connected, and the same distance |
| 1706 | * from each other. No need for fancy placement algorithms. |
| 1707 | */ |
| 1708 | if (sched_numa_topology_type == NUMA_DIRECT) |
| 1709 | return 0; |
| 1710 | |
| 1711 | /* sched_max_numa_distance may be changed in parallel. */ |
| 1712 | max_dist = READ_ONCE(sched_max_numa_distance); |
| 1713 | /* |
| 1714 | * This code is called for each node, introducing N^2 complexity, |
| 1715 | * which should be OK given the number of nodes rarely exceeds 8. |
| 1716 | */ |
| 1717 | for_each_online_node(node) { |
| 1718 | unsigned long faults; |
| 1719 | int dist = node_distance(nid, node); |
| 1720 | |
| 1721 | /* |
| 1722 | * The furthest away nodes in the system are not interesting |
| 1723 | * for placement; nid was already counted. |
| 1724 | */ |
| 1725 | if (dist >= max_dist || node == nid) |
| 1726 | continue; |
| 1727 | |
| 1728 | /* |
| 1729 | * On systems with a backplane NUMA topology, compare groups |
| 1730 | * of nodes, and move tasks towards the group with the most |
| 1731 | * memory accesses. When comparing two nodes at distance |
| 1732 | * "hoplimit", only nodes closer by than "hoplimit" are part |
| 1733 | * of each group. Skip other nodes. |
| 1734 | */ |
| 1735 | if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) |
| 1736 | continue; |
| 1737 | |
| 1738 | /* Add up the faults from nearby nodes. */ |
| 1739 | if (task) |
| 1740 | faults = task_faults(p, node); |
| 1741 | else |
| 1742 | faults = group_faults(p, node); |
| 1743 | |
| 1744 | /* |
| 1745 | * On systems with a glueless mesh NUMA topology, there are |
| 1746 | * no fixed "groups of nodes". Instead, nodes that are not |
| 1747 | * directly connected bounce traffic through intermediate |
| 1748 | * nodes; a numa_group can occupy any set of nodes. |
| 1749 | * The further away a node is, the less the faults count. |
| 1750 | * This seems to result in good task placement. |
| 1751 | */ |
| 1752 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { |
| 1753 | faults *= (max_dist - dist); |
| 1754 | faults /= (max_dist - LOCAL_DISTANCE); |
| 1755 | } |
| 1756 | |
| 1757 | score += faults; |
| 1758 | } |
| 1759 | |
| 1760 | return score; |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * These return the fraction of accesses done by a particular task, or |
| 1765 | * task group, on a particular numa node. The group weight is given a |
| 1766 | * larger multiplier, in order to group tasks together that are almost |
| 1767 | * evenly spread out between numa nodes. |
| 1768 | */ |
| 1769 | static inline unsigned long task_weight(struct task_struct *p, int nid, |
| 1770 | int dist) |
| 1771 | { |
| 1772 | unsigned long faults, total_faults; |
| 1773 | |
| 1774 | if (!p->numa_faults) |
| 1775 | return 0; |
| 1776 | |
| 1777 | total_faults = p->total_numa_faults; |
| 1778 | |
| 1779 | if (!total_faults) |
| 1780 | return 0; |
| 1781 | |
| 1782 | faults = task_faults(p, nid); |
| 1783 | faults += score_nearby_nodes(p, nid, dist, true); |
| 1784 | |
| 1785 | return 1000 * faults / total_faults; |
| 1786 | } |
| 1787 | |
| 1788 | static inline unsigned long group_weight(struct task_struct *p, int nid, |
| 1789 | int dist) |
| 1790 | { |
| 1791 | struct numa_group *ng = deref_task_numa_group(p); |
| 1792 | unsigned long faults, total_faults; |
| 1793 | |
| 1794 | if (!ng) |
| 1795 | return 0; |
| 1796 | |
| 1797 | total_faults = ng->total_faults; |
| 1798 | |
| 1799 | if (!total_faults) |
| 1800 | return 0; |
| 1801 | |
| 1802 | faults = group_faults(p, nid); |
| 1803 | faults += score_nearby_nodes(p, nid, dist, false); |
| 1804 | |
| 1805 | return 1000 * faults / total_faults; |
| 1806 | } |
| 1807 | |
| 1808 | /* |
| 1809 | * If memory tiering mode is enabled, cpupid of slow memory page is |
| 1810 | * used to record scan time instead of CPU and PID. When tiering mode |
| 1811 | * is disabled at run time, the scan time (in cpupid) will be |
| 1812 | * interpreted as CPU and PID. So CPU needs to be checked to avoid to |
| 1813 | * access out of array bound. |
| 1814 | */ |
| 1815 | static inline bool cpupid_valid(int cpupid) |
| 1816 | { |
| 1817 | return cpupid_to_cpu(cpupid) < nr_cpu_ids; |
| 1818 | } |
| 1819 | |
| 1820 | /* |
| 1821 | * For memory tiering mode, if there are enough free pages (more than |
| 1822 | * enough watermark defined here) in fast memory node, to take full |
| 1823 | * advantage of fast memory capacity, all recently accessed slow |
| 1824 | * memory pages will be migrated to fast memory node without |
| 1825 | * considering hot threshold. |
| 1826 | */ |
| 1827 | static bool pgdat_free_space_enough(struct pglist_data *pgdat) |
| 1828 | { |
| 1829 | int z; |
| 1830 | unsigned long enough_wmark; |
| 1831 | |
| 1832 | enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, |
| 1833 | pgdat->node_present_pages >> 4); |
| 1834 | for (z = pgdat->nr_zones - 1; z >= 0; z--) { |
| 1835 | struct zone *zone = pgdat->node_zones + z; |
| 1836 | |
| 1837 | if (!populated_zone(zone)) |
| 1838 | continue; |
| 1839 | |
| 1840 | if (zone_watermark_ok(zone, 0, |
| 1841 | promo_wmark_pages(zone) + enough_wmark, |
| 1842 | ZONE_MOVABLE, 0)) |
| 1843 | return true; |
| 1844 | } |
| 1845 | return false; |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * For memory tiering mode, when page tables are scanned, the scan |
| 1850 | * time will be recorded in struct page in addition to make page |
| 1851 | * PROT_NONE for slow memory page. So when the page is accessed, in |
| 1852 | * hint page fault handler, the hint page fault latency is calculated |
| 1853 | * via, |
| 1854 | * |
| 1855 | * hint page fault latency = hint page fault time - scan time |
| 1856 | * |
| 1857 | * The smaller the hint page fault latency, the higher the possibility |
| 1858 | * for the page to be hot. |
| 1859 | */ |
| 1860 | static int numa_hint_fault_latency(struct folio *folio) |
| 1861 | { |
| 1862 | int last_time, time; |
| 1863 | |
| 1864 | time = jiffies_to_msecs(jiffies); |
| 1865 | last_time = folio_xchg_access_time(folio, time); |
| 1866 | |
| 1867 | return (time - last_time) & PAGE_ACCESS_TIME_MASK; |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * For memory tiering mode, too high promotion/demotion throughput may |
| 1872 | * hurt application latency. So we provide a mechanism to rate limit |
| 1873 | * the number of pages that are tried to be promoted. |
| 1874 | */ |
| 1875 | static bool numa_promotion_rate_limit(struct pglist_data *pgdat, |
| 1876 | unsigned long rate_limit, int nr) |
| 1877 | { |
| 1878 | unsigned long nr_cand; |
| 1879 | unsigned int now, start; |
| 1880 | |
| 1881 | now = jiffies_to_msecs(jiffies); |
| 1882 | mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); |
| 1883 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); |
| 1884 | start = pgdat->nbp_rl_start; |
| 1885 | if (now - start > MSEC_PER_SEC && |
| 1886 | cmpxchg(&pgdat->nbp_rl_start, start, now) == start) |
| 1887 | pgdat->nbp_rl_nr_cand = nr_cand; |
| 1888 | if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) |
| 1889 | return true; |
| 1890 | return false; |
| 1891 | } |
| 1892 | |
| 1893 | #define NUMA_MIGRATION_ADJUST_STEPS 16 |
| 1894 | |
| 1895 | static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, |
| 1896 | unsigned long rate_limit, |
| 1897 | unsigned int ref_th) |
| 1898 | { |
| 1899 | unsigned int now, start, th_period, unit_th, th; |
| 1900 | unsigned long nr_cand, ref_cand, diff_cand; |
| 1901 | |
| 1902 | now = jiffies_to_msecs(jiffies); |
| 1903 | th_period = sysctl_numa_balancing_scan_period_max; |
| 1904 | start = pgdat->nbp_th_start; |
| 1905 | if (now - start > th_period && |
| 1906 | cmpxchg(&pgdat->nbp_th_start, start, now) == start) { |
| 1907 | ref_cand = rate_limit * |
| 1908 | sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; |
| 1909 | nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); |
| 1910 | diff_cand = nr_cand - pgdat->nbp_th_nr_cand; |
| 1911 | unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; |
| 1912 | th = pgdat->nbp_threshold ? : ref_th; |
| 1913 | if (diff_cand > ref_cand * 11 / 10) |
| 1914 | th = max(th - unit_th, unit_th); |
| 1915 | else if (diff_cand < ref_cand * 9 / 10) |
| 1916 | th = min(th + unit_th, ref_th * 2); |
| 1917 | pgdat->nbp_th_nr_cand = nr_cand; |
| 1918 | pgdat->nbp_threshold = th; |
| 1919 | } |
| 1920 | } |
| 1921 | |
| 1922 | bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, |
| 1923 | int src_nid, int dst_cpu) |
| 1924 | { |
| 1925 | struct numa_group *ng = deref_curr_numa_group(p); |
| 1926 | int dst_nid = cpu_to_node(dst_cpu); |
| 1927 | int last_cpupid, this_cpupid; |
| 1928 | |
| 1929 | /* |
| 1930 | * Cannot migrate to memoryless nodes. |
| 1931 | */ |
| 1932 | if (!node_state(dst_nid, N_MEMORY)) |
| 1933 | return false; |
| 1934 | |
| 1935 | /* |
| 1936 | * The pages in slow memory node should be migrated according |
| 1937 | * to hot/cold instead of private/shared. |
| 1938 | */ |
| 1939 | if (folio_use_access_time(folio)) { |
| 1940 | struct pglist_data *pgdat; |
| 1941 | unsigned long rate_limit; |
| 1942 | unsigned int latency, th, def_th; |
| 1943 | |
| 1944 | pgdat = NODE_DATA(dst_nid); |
| 1945 | if (pgdat_free_space_enough(pgdat)) { |
| 1946 | /* workload changed, reset hot threshold */ |
| 1947 | pgdat->nbp_threshold = 0; |
| 1948 | return true; |
| 1949 | } |
| 1950 | |
| 1951 | def_th = sysctl_numa_balancing_hot_threshold; |
| 1952 | rate_limit = sysctl_numa_balancing_promote_rate_limit << \ |
| 1953 | (20 - PAGE_SHIFT); |
| 1954 | numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); |
| 1955 | |
| 1956 | th = pgdat->nbp_threshold ? : def_th; |
| 1957 | latency = numa_hint_fault_latency(folio); |
| 1958 | if (latency >= th) |
| 1959 | return false; |
| 1960 | |
| 1961 | return !numa_promotion_rate_limit(pgdat, rate_limit, |
| 1962 | folio_nr_pages(folio)); |
| 1963 | } |
| 1964 | |
| 1965 | this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); |
| 1966 | last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); |
| 1967 | |
| 1968 | if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && |
| 1969 | !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) |
| 1970 | return false; |
| 1971 | |
| 1972 | /* |
| 1973 | * Allow first faults or private faults to migrate immediately early in |
| 1974 | * the lifetime of a task. The magic number 4 is based on waiting for |
| 1975 | * two full passes of the "multi-stage node selection" test that is |
| 1976 | * executed below. |
| 1977 | */ |
| 1978 | if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && |
| 1979 | (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) |
| 1980 | return true; |
| 1981 | |
| 1982 | /* |
| 1983 | * Multi-stage node selection is used in conjunction with a periodic |
| 1984 | * migration fault to build a temporal task<->page relation. By using |
| 1985 | * a two-stage filter we remove short/unlikely relations. |
| 1986 | * |
| 1987 | * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate |
| 1988 | * a task's usage of a particular page (n_p) per total usage of this |
| 1989 | * page (n_t) (in a given time-span) to a probability. |
| 1990 | * |
| 1991 | * Our periodic faults will sample this probability and getting the |
| 1992 | * same result twice in a row, given these samples are fully |
| 1993 | * independent, is then given by P(n)^2, provided our sample period |
| 1994 | * is sufficiently short compared to the usage pattern. |
| 1995 | * |
| 1996 | * This quadric squishes small probabilities, making it less likely we |
| 1997 | * act on an unlikely task<->page relation. |
| 1998 | */ |
| 1999 | if (!cpupid_pid_unset(last_cpupid) && |
| 2000 | cpupid_to_nid(last_cpupid) != dst_nid) |
| 2001 | return false; |
| 2002 | |
| 2003 | /* Always allow migrate on private faults */ |
| 2004 | if (cpupid_match_pid(p, last_cpupid)) |
| 2005 | return true; |
| 2006 | |
| 2007 | /* A shared fault, but p->numa_group has not been set up yet. */ |
| 2008 | if (!ng) |
| 2009 | return true; |
| 2010 | |
| 2011 | /* |
| 2012 | * Destination node is much more heavily used than the source |
| 2013 | * node? Allow migration. |
| 2014 | */ |
| 2015 | if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * |
| 2016 | ACTIVE_NODE_FRACTION) |
| 2017 | return true; |
| 2018 | |
| 2019 | /* |
| 2020 | * Distribute memory according to CPU & memory use on each node, |
| 2021 | * with 3/4 hysteresis to avoid unnecessary memory migrations: |
| 2022 | * |
| 2023 | * faults_cpu(dst) 3 faults_cpu(src) |
| 2024 | * --------------- * - > --------------- |
| 2025 | * faults_mem(dst) 4 faults_mem(src) |
| 2026 | */ |
| 2027 | return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > |
| 2028 | group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | * 'numa_type' describes the node at the moment of load balancing. |
| 2033 | */ |
| 2034 | enum numa_type { |
| 2035 | /* The node has spare capacity that can be used to run more tasks. */ |
| 2036 | node_has_spare = 0, |
| 2037 | /* |
| 2038 | * The node is fully used and the tasks don't compete for more CPU |
| 2039 | * cycles. Nevertheless, some tasks might wait before running. |
| 2040 | */ |
| 2041 | node_fully_busy, |
| 2042 | /* |
| 2043 | * The node is overloaded and can't provide expected CPU cycles to all |
| 2044 | * tasks. |
| 2045 | */ |
| 2046 | node_overloaded |
| 2047 | }; |
| 2048 | |
| 2049 | /* Cached statistics for all CPUs within a node */ |
| 2050 | struct numa_stats { |
| 2051 | unsigned long load; |
| 2052 | unsigned long runnable; |
| 2053 | unsigned long util; |
| 2054 | /* Total compute capacity of CPUs on a node */ |
| 2055 | unsigned long compute_capacity; |
| 2056 | unsigned int nr_running; |
| 2057 | unsigned int weight; |
| 2058 | enum numa_type node_type; |
| 2059 | int idle_cpu; |
| 2060 | }; |
| 2061 | |
| 2062 | struct task_numa_env { |
| 2063 | struct task_struct *p; |
| 2064 | |
| 2065 | int src_cpu, src_nid; |
| 2066 | int dst_cpu, dst_nid; |
| 2067 | int imb_numa_nr; |
| 2068 | |
| 2069 | struct numa_stats src_stats, dst_stats; |
| 2070 | |
| 2071 | int imbalance_pct; |
| 2072 | int dist; |
| 2073 | |
| 2074 | struct task_struct *best_task; |
| 2075 | long best_imp; |
| 2076 | int best_cpu; |
| 2077 | }; |
| 2078 | |
| 2079 | static unsigned long cpu_load(struct rq *rq); |
| 2080 | static unsigned long cpu_runnable(struct rq *rq); |
| 2081 | |
| 2082 | static inline enum |
| 2083 | numa_type numa_classify(unsigned int imbalance_pct, |
| 2084 | struct numa_stats *ns) |
| 2085 | { |
| 2086 | if ((ns->nr_running > ns->weight) && |
| 2087 | (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || |
| 2088 | ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) |
| 2089 | return node_overloaded; |
| 2090 | |
| 2091 | if ((ns->nr_running < ns->weight) || |
| 2092 | (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && |
| 2093 | ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) |
| 2094 | return node_has_spare; |
| 2095 | |
| 2096 | return node_fully_busy; |
| 2097 | } |
| 2098 | |
| 2099 | #ifdef CONFIG_SCHED_SMT |
| 2100 | /* Forward declarations of select_idle_sibling helpers */ |
| 2101 | static inline bool test_idle_cores(int cpu); |
| 2102 | static inline int numa_idle_core(int idle_core, int cpu) |
| 2103 | { |
| 2104 | if (!static_branch_likely(&sched_smt_present) || |
| 2105 | idle_core >= 0 || !test_idle_cores(cpu)) |
| 2106 | return idle_core; |
| 2107 | |
| 2108 | /* |
| 2109 | * Prefer cores instead of packing HT siblings |
| 2110 | * and triggering future load balancing. |
| 2111 | */ |
| 2112 | if (is_core_idle(cpu)) |
| 2113 | idle_core = cpu; |
| 2114 | |
| 2115 | return idle_core; |
| 2116 | } |
| 2117 | #else |
| 2118 | static inline int numa_idle_core(int idle_core, int cpu) |
| 2119 | { |
| 2120 | return idle_core; |
| 2121 | } |
| 2122 | #endif |
| 2123 | |
| 2124 | /* |
| 2125 | * Gather all necessary information to make NUMA balancing placement |
| 2126 | * decisions that are compatible with standard load balancer. This |
| 2127 | * borrows code and logic from update_sg_lb_stats but sharing a |
| 2128 | * common implementation is impractical. |
| 2129 | */ |
| 2130 | static void update_numa_stats(struct task_numa_env *env, |
| 2131 | struct numa_stats *ns, int nid, |
| 2132 | bool find_idle) |
| 2133 | { |
| 2134 | int cpu, idle_core = -1; |
| 2135 | |
| 2136 | memset(ns, 0, sizeof(*ns)); |
| 2137 | ns->idle_cpu = -1; |
| 2138 | |
| 2139 | rcu_read_lock(); |
| 2140 | for_each_cpu(cpu, cpumask_of_node(nid)) { |
| 2141 | struct rq *rq = cpu_rq(cpu); |
| 2142 | |
| 2143 | ns->load += cpu_load(rq); |
| 2144 | ns->runnable += cpu_runnable(rq); |
| 2145 | ns->util += cpu_util_cfs(cpu); |
| 2146 | ns->nr_running += rq->cfs.h_nr_runnable; |
| 2147 | ns->compute_capacity += capacity_of(cpu); |
| 2148 | |
| 2149 | if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { |
| 2150 | if (READ_ONCE(rq->numa_migrate_on) || |
| 2151 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
| 2152 | continue; |
| 2153 | |
| 2154 | if (ns->idle_cpu == -1) |
| 2155 | ns->idle_cpu = cpu; |
| 2156 | |
| 2157 | idle_core = numa_idle_core(idle_core, cpu); |
| 2158 | } |
| 2159 | } |
| 2160 | rcu_read_unlock(); |
| 2161 | |
| 2162 | ns->weight = cpumask_weight(cpumask_of_node(nid)); |
| 2163 | |
| 2164 | ns->node_type = numa_classify(env->imbalance_pct, ns); |
| 2165 | |
| 2166 | if (idle_core >= 0) |
| 2167 | ns->idle_cpu = idle_core; |
| 2168 | } |
| 2169 | |
| 2170 | static void task_numa_assign(struct task_numa_env *env, |
| 2171 | struct task_struct *p, long imp) |
| 2172 | { |
| 2173 | struct rq *rq = cpu_rq(env->dst_cpu); |
| 2174 | |
| 2175 | /* Check if run-queue part of active NUMA balance. */ |
| 2176 | if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { |
| 2177 | int cpu; |
| 2178 | int start = env->dst_cpu; |
| 2179 | |
| 2180 | /* Find alternative idle CPU. */ |
| 2181 | for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { |
| 2182 | if (cpu == env->best_cpu || !idle_cpu(cpu) || |
| 2183 | !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { |
| 2184 | continue; |
| 2185 | } |
| 2186 | |
| 2187 | env->dst_cpu = cpu; |
| 2188 | rq = cpu_rq(env->dst_cpu); |
| 2189 | if (!xchg(&rq->numa_migrate_on, 1)) |
| 2190 | goto assign; |
| 2191 | } |
| 2192 | |
| 2193 | /* Failed to find an alternative idle CPU */ |
| 2194 | return; |
| 2195 | } |
| 2196 | |
| 2197 | assign: |
| 2198 | /* |
| 2199 | * Clear previous best_cpu/rq numa-migrate flag, since task now |
| 2200 | * found a better CPU to move/swap. |
| 2201 | */ |
| 2202 | if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { |
| 2203 | rq = cpu_rq(env->best_cpu); |
| 2204 | WRITE_ONCE(rq->numa_migrate_on, 0); |
| 2205 | } |
| 2206 | |
| 2207 | if (env->best_task) |
| 2208 | put_task_struct(env->best_task); |
| 2209 | if (p) |
| 2210 | get_task_struct(p); |
| 2211 | |
| 2212 | env->best_task = p; |
| 2213 | env->best_imp = imp; |
| 2214 | env->best_cpu = env->dst_cpu; |
| 2215 | } |
| 2216 | |
| 2217 | static bool load_too_imbalanced(long src_load, long dst_load, |
| 2218 | struct task_numa_env *env) |
| 2219 | { |
| 2220 | long imb, old_imb; |
| 2221 | long orig_src_load, orig_dst_load; |
| 2222 | long src_capacity, dst_capacity; |
| 2223 | |
| 2224 | /* |
| 2225 | * The load is corrected for the CPU capacity available on each node. |
| 2226 | * |
| 2227 | * src_load dst_load |
| 2228 | * ------------ vs --------- |
| 2229 | * src_capacity dst_capacity |
| 2230 | */ |
| 2231 | src_capacity = env->src_stats.compute_capacity; |
| 2232 | dst_capacity = env->dst_stats.compute_capacity; |
| 2233 | |
| 2234 | imb = abs(dst_load * src_capacity - src_load * dst_capacity); |
| 2235 | |
| 2236 | orig_src_load = env->src_stats.load; |
| 2237 | orig_dst_load = env->dst_stats.load; |
| 2238 | |
| 2239 | old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); |
| 2240 | |
| 2241 | /* Would this change make things worse? */ |
| 2242 | return (imb > old_imb); |
| 2243 | } |
| 2244 | |
| 2245 | /* |
| 2246 | * Maximum NUMA importance can be 1998 (2*999); |
| 2247 | * SMALLIMP @ 30 would be close to 1998/64. |
| 2248 | * Used to deter task migration. |
| 2249 | */ |
| 2250 | #define SMALLIMP 30 |
| 2251 | |
| 2252 | /* |
| 2253 | * This checks if the overall compute and NUMA accesses of the system would |
| 2254 | * be improved if the source tasks was migrated to the target dst_cpu taking |
| 2255 | * into account that it might be best if task running on the dst_cpu should |
| 2256 | * be exchanged with the source task |
| 2257 | */ |
| 2258 | static bool task_numa_compare(struct task_numa_env *env, |
| 2259 | long taskimp, long groupimp, bool maymove) |
| 2260 | { |
| 2261 | struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); |
| 2262 | struct rq *dst_rq = cpu_rq(env->dst_cpu); |
| 2263 | long imp = p_ng ? groupimp : taskimp; |
| 2264 | struct task_struct *cur; |
| 2265 | long src_load, dst_load; |
| 2266 | int dist = env->dist; |
| 2267 | long moveimp = imp; |
| 2268 | long load; |
| 2269 | bool stopsearch = false; |
| 2270 | |
| 2271 | if (READ_ONCE(dst_rq->numa_migrate_on)) |
| 2272 | return false; |
| 2273 | |
| 2274 | rcu_read_lock(); |
| 2275 | cur = rcu_dereference(dst_rq->curr); |
| 2276 | if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || |
| 2277 | !cur->mm)) |
| 2278 | cur = NULL; |
| 2279 | |
| 2280 | /* |
| 2281 | * Because we have preemption enabled we can get migrated around and |
| 2282 | * end try selecting ourselves (current == env->p) as a swap candidate. |
| 2283 | */ |
| 2284 | if (cur == env->p) { |
| 2285 | stopsearch = true; |
| 2286 | goto unlock; |
| 2287 | } |
| 2288 | |
| 2289 | if (!cur) { |
| 2290 | if (maymove && moveimp >= env->best_imp) |
| 2291 | goto assign; |
| 2292 | else |
| 2293 | goto unlock; |
| 2294 | } |
| 2295 | |
| 2296 | /* Skip this swap candidate if cannot move to the source cpu. */ |
| 2297 | if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) |
| 2298 | goto unlock; |
| 2299 | |
| 2300 | /* |
| 2301 | * Skip this swap candidate if it is not moving to its preferred |
| 2302 | * node and the best task is. |
| 2303 | */ |
| 2304 | if (env->best_task && |
| 2305 | env->best_task->numa_preferred_nid == env->src_nid && |
| 2306 | cur->numa_preferred_nid != env->src_nid) { |
| 2307 | goto unlock; |
| 2308 | } |
| 2309 | |
| 2310 | /* |
| 2311 | * "imp" is the fault differential for the source task between the |
| 2312 | * source and destination node. Calculate the total differential for |
| 2313 | * the source task and potential destination task. The more negative |
| 2314 | * the value is, the more remote accesses that would be expected to |
| 2315 | * be incurred if the tasks were swapped. |
| 2316 | * |
| 2317 | * If dst and source tasks are in the same NUMA group, or not |
| 2318 | * in any group then look only at task weights. |
| 2319 | */ |
| 2320 | cur_ng = rcu_dereference(cur->numa_group); |
| 2321 | if (cur_ng == p_ng) { |
| 2322 | /* |
| 2323 | * Do not swap within a group or between tasks that have |
| 2324 | * no group if there is spare capacity. Swapping does |
| 2325 | * not address the load imbalance and helps one task at |
| 2326 | * the cost of punishing another. |
| 2327 | */ |
| 2328 | if (env->dst_stats.node_type == node_has_spare) |
| 2329 | goto unlock; |
| 2330 | |
| 2331 | imp = taskimp + task_weight(cur, env->src_nid, dist) - |
| 2332 | task_weight(cur, env->dst_nid, dist); |
| 2333 | /* |
| 2334 | * Add some hysteresis to prevent swapping the |
| 2335 | * tasks within a group over tiny differences. |
| 2336 | */ |
| 2337 | if (cur_ng) |
| 2338 | imp -= imp / 16; |
| 2339 | } else { |
| 2340 | /* |
| 2341 | * Compare the group weights. If a task is all by itself |
| 2342 | * (not part of a group), use the task weight instead. |
| 2343 | */ |
| 2344 | if (cur_ng && p_ng) |
| 2345 | imp += group_weight(cur, env->src_nid, dist) - |
| 2346 | group_weight(cur, env->dst_nid, dist); |
| 2347 | else |
| 2348 | imp += task_weight(cur, env->src_nid, dist) - |
| 2349 | task_weight(cur, env->dst_nid, dist); |
| 2350 | } |
| 2351 | |
| 2352 | /* Discourage picking a task already on its preferred node */ |
| 2353 | if (cur->numa_preferred_nid == env->dst_nid) |
| 2354 | imp -= imp / 16; |
| 2355 | |
| 2356 | /* |
| 2357 | * Encourage picking a task that moves to its preferred node. |
| 2358 | * This potentially makes imp larger than it's maximum of |
| 2359 | * 1998 (see SMALLIMP and task_weight for why) but in this |
| 2360 | * case, it does not matter. |
| 2361 | */ |
| 2362 | if (cur->numa_preferred_nid == env->src_nid) |
| 2363 | imp += imp / 8; |
| 2364 | |
| 2365 | if (maymove && moveimp > imp && moveimp > env->best_imp) { |
| 2366 | imp = moveimp; |
| 2367 | cur = NULL; |
| 2368 | goto assign; |
| 2369 | } |
| 2370 | |
| 2371 | /* |
| 2372 | * Prefer swapping with a task moving to its preferred node over a |
| 2373 | * task that is not. |
| 2374 | */ |
| 2375 | if (env->best_task && cur->numa_preferred_nid == env->src_nid && |
| 2376 | env->best_task->numa_preferred_nid != env->src_nid) { |
| 2377 | goto assign; |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * If the NUMA importance is less than SMALLIMP, |
| 2382 | * task migration might only result in ping pong |
| 2383 | * of tasks and also hurt performance due to cache |
| 2384 | * misses. |
| 2385 | */ |
| 2386 | if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) |
| 2387 | goto unlock; |
| 2388 | |
| 2389 | /* |
| 2390 | * In the overloaded case, try and keep the load balanced. |
| 2391 | */ |
| 2392 | load = task_h_load(env->p) - task_h_load(cur); |
| 2393 | if (!load) |
| 2394 | goto assign; |
| 2395 | |
| 2396 | dst_load = env->dst_stats.load + load; |
| 2397 | src_load = env->src_stats.load - load; |
| 2398 | |
| 2399 | if (load_too_imbalanced(src_load, dst_load, env)) |
| 2400 | goto unlock; |
| 2401 | |
| 2402 | assign: |
| 2403 | /* Evaluate an idle CPU for a task numa move. */ |
| 2404 | if (!cur) { |
| 2405 | int cpu = env->dst_stats.idle_cpu; |
| 2406 | |
| 2407 | /* Nothing cached so current CPU went idle since the search. */ |
| 2408 | if (cpu < 0) |
| 2409 | cpu = env->dst_cpu; |
| 2410 | |
| 2411 | /* |
| 2412 | * If the CPU is no longer truly idle and the previous best CPU |
| 2413 | * is, keep using it. |
| 2414 | */ |
| 2415 | if (!idle_cpu(cpu) && env->best_cpu >= 0 && |
| 2416 | idle_cpu(env->best_cpu)) { |
| 2417 | cpu = env->best_cpu; |
| 2418 | } |
| 2419 | |
| 2420 | env->dst_cpu = cpu; |
| 2421 | } |
| 2422 | |
| 2423 | task_numa_assign(env, cur, imp); |
| 2424 | |
| 2425 | /* |
| 2426 | * If a move to idle is allowed because there is capacity or load |
| 2427 | * balance improves then stop the search. While a better swap |
| 2428 | * candidate may exist, a search is not free. |
| 2429 | */ |
| 2430 | if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) |
| 2431 | stopsearch = true; |
| 2432 | |
| 2433 | /* |
| 2434 | * If a swap candidate must be identified and the current best task |
| 2435 | * moves its preferred node then stop the search. |
| 2436 | */ |
| 2437 | if (!maymove && env->best_task && |
| 2438 | env->best_task->numa_preferred_nid == env->src_nid) { |
| 2439 | stopsearch = true; |
| 2440 | } |
| 2441 | unlock: |
| 2442 | rcu_read_unlock(); |
| 2443 | |
| 2444 | return stopsearch; |
| 2445 | } |
| 2446 | |
| 2447 | static void task_numa_find_cpu(struct task_numa_env *env, |
| 2448 | long taskimp, long groupimp) |
| 2449 | { |
| 2450 | bool maymove = false; |
| 2451 | int cpu; |
| 2452 | |
| 2453 | /* |
| 2454 | * If dst node has spare capacity, then check if there is an |
| 2455 | * imbalance that would be overruled by the load balancer. |
| 2456 | */ |
| 2457 | if (env->dst_stats.node_type == node_has_spare) { |
| 2458 | unsigned int imbalance; |
| 2459 | int src_running, dst_running; |
| 2460 | |
| 2461 | /* |
| 2462 | * Would movement cause an imbalance? Note that if src has |
| 2463 | * more running tasks that the imbalance is ignored as the |
| 2464 | * move improves the imbalance from the perspective of the |
| 2465 | * CPU load balancer. |
| 2466 | * */ |
| 2467 | src_running = env->src_stats.nr_running - 1; |
| 2468 | dst_running = env->dst_stats.nr_running + 1; |
| 2469 | imbalance = max(0, dst_running - src_running); |
| 2470 | imbalance = adjust_numa_imbalance(imbalance, dst_running, |
| 2471 | env->imb_numa_nr); |
| 2472 | |
| 2473 | /* Use idle CPU if there is no imbalance */ |
| 2474 | if (!imbalance) { |
| 2475 | maymove = true; |
| 2476 | if (env->dst_stats.idle_cpu >= 0) { |
| 2477 | env->dst_cpu = env->dst_stats.idle_cpu; |
| 2478 | task_numa_assign(env, NULL, 0); |
| 2479 | return; |
| 2480 | } |
| 2481 | } |
| 2482 | } else { |
| 2483 | long src_load, dst_load, load; |
| 2484 | /* |
| 2485 | * If the improvement from just moving env->p direction is better |
| 2486 | * than swapping tasks around, check if a move is possible. |
| 2487 | */ |
| 2488 | load = task_h_load(env->p); |
| 2489 | dst_load = env->dst_stats.load + load; |
| 2490 | src_load = env->src_stats.load - load; |
| 2491 | maymove = !load_too_imbalanced(src_load, dst_load, env); |
| 2492 | } |
| 2493 | |
| 2494 | for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { |
| 2495 | /* Skip this CPU if the source task cannot migrate */ |
| 2496 | if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) |
| 2497 | continue; |
| 2498 | |
| 2499 | env->dst_cpu = cpu; |
| 2500 | if (task_numa_compare(env, taskimp, groupimp, maymove)) |
| 2501 | break; |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | static int task_numa_migrate(struct task_struct *p) |
| 2506 | { |
| 2507 | struct task_numa_env env = { |
| 2508 | .p = p, |
| 2509 | |
| 2510 | .src_cpu = task_cpu(p), |
| 2511 | .src_nid = task_node(p), |
| 2512 | |
| 2513 | .imbalance_pct = 112, |
| 2514 | |
| 2515 | .best_task = NULL, |
| 2516 | .best_imp = 0, |
| 2517 | .best_cpu = -1, |
| 2518 | }; |
| 2519 | unsigned long taskweight, groupweight; |
| 2520 | struct sched_domain *sd; |
| 2521 | long taskimp, groupimp; |
| 2522 | struct numa_group *ng; |
| 2523 | struct rq *best_rq; |
| 2524 | int nid, ret, dist; |
| 2525 | |
| 2526 | /* |
| 2527 | * Pick the lowest SD_NUMA domain, as that would have the smallest |
| 2528 | * imbalance and would be the first to start moving tasks about. |
| 2529 | * |
| 2530 | * And we want to avoid any moving of tasks about, as that would create |
| 2531 | * random movement of tasks -- counter the numa conditions we're trying |
| 2532 | * to satisfy here. |
| 2533 | */ |
| 2534 | rcu_read_lock(); |
| 2535 | sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); |
| 2536 | if (sd) { |
| 2537 | env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; |
| 2538 | env.imb_numa_nr = sd->imb_numa_nr; |
| 2539 | } |
| 2540 | rcu_read_unlock(); |
| 2541 | |
| 2542 | /* |
| 2543 | * Cpusets can break the scheduler domain tree into smaller |
| 2544 | * balance domains, some of which do not cross NUMA boundaries. |
| 2545 | * Tasks that are "trapped" in such domains cannot be migrated |
| 2546 | * elsewhere, so there is no point in (re)trying. |
| 2547 | */ |
| 2548 | if (unlikely(!sd)) { |
| 2549 | sched_setnuma(p, task_node(p)); |
| 2550 | return -EINVAL; |
| 2551 | } |
| 2552 | |
| 2553 | env.dst_nid = p->numa_preferred_nid; |
| 2554 | dist = env.dist = node_distance(env.src_nid, env.dst_nid); |
| 2555 | taskweight = task_weight(p, env.src_nid, dist); |
| 2556 | groupweight = group_weight(p, env.src_nid, dist); |
| 2557 | update_numa_stats(&env, &env.src_stats, env.src_nid, false); |
| 2558 | taskimp = task_weight(p, env.dst_nid, dist) - taskweight; |
| 2559 | groupimp = group_weight(p, env.dst_nid, dist) - groupweight; |
| 2560 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
| 2561 | |
| 2562 | /* Try to find a spot on the preferred nid. */ |
| 2563 | task_numa_find_cpu(&env, taskimp, groupimp); |
| 2564 | |
| 2565 | /* |
| 2566 | * Look at other nodes in these cases: |
| 2567 | * - there is no space available on the preferred_nid |
| 2568 | * - the task is part of a numa_group that is interleaved across |
| 2569 | * multiple NUMA nodes; in order to better consolidate the group, |
| 2570 | * we need to check other locations. |
| 2571 | */ |
| 2572 | ng = deref_curr_numa_group(p); |
| 2573 | if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { |
| 2574 | for_each_node_state(nid, N_CPU) { |
| 2575 | if (nid == env.src_nid || nid == p->numa_preferred_nid) |
| 2576 | continue; |
| 2577 | |
| 2578 | dist = node_distance(env.src_nid, env.dst_nid); |
| 2579 | if (sched_numa_topology_type == NUMA_BACKPLANE && |
| 2580 | dist != env.dist) { |
| 2581 | taskweight = task_weight(p, env.src_nid, dist); |
| 2582 | groupweight = group_weight(p, env.src_nid, dist); |
| 2583 | } |
| 2584 | |
| 2585 | /* Only consider nodes where both task and groups benefit */ |
| 2586 | taskimp = task_weight(p, nid, dist) - taskweight; |
| 2587 | groupimp = group_weight(p, nid, dist) - groupweight; |
| 2588 | if (taskimp < 0 && groupimp < 0) |
| 2589 | continue; |
| 2590 | |
| 2591 | env.dist = dist; |
| 2592 | env.dst_nid = nid; |
| 2593 | update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); |
| 2594 | task_numa_find_cpu(&env, taskimp, groupimp); |
| 2595 | } |
| 2596 | } |
| 2597 | |
| 2598 | /* |
| 2599 | * If the task is part of a workload that spans multiple NUMA nodes, |
| 2600 | * and is migrating into one of the workload's active nodes, remember |
| 2601 | * this node as the task's preferred numa node, so the workload can |
| 2602 | * settle down. |
| 2603 | * A task that migrated to a second choice node will be better off |
| 2604 | * trying for a better one later. Do not set the preferred node here. |
| 2605 | */ |
| 2606 | if (ng) { |
| 2607 | if (env.best_cpu == -1) |
| 2608 | nid = env.src_nid; |
| 2609 | else |
| 2610 | nid = cpu_to_node(env.best_cpu); |
| 2611 | |
| 2612 | if (nid != p->numa_preferred_nid) |
| 2613 | sched_setnuma(p, nid); |
| 2614 | } |
| 2615 | |
| 2616 | /* No better CPU than the current one was found. */ |
| 2617 | if (env.best_cpu == -1) { |
| 2618 | trace_sched_stick_numa(p, env.src_cpu, NULL, -1); |
| 2619 | return -EAGAIN; |
| 2620 | } |
| 2621 | |
| 2622 | best_rq = cpu_rq(env.best_cpu); |
| 2623 | if (env.best_task == NULL) { |
| 2624 | ret = migrate_task_to(p, env.best_cpu); |
| 2625 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
| 2626 | if (ret != 0) |
| 2627 | trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); |
| 2628 | return ret; |
| 2629 | } |
| 2630 | |
| 2631 | ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); |
| 2632 | WRITE_ONCE(best_rq->numa_migrate_on, 0); |
| 2633 | |
| 2634 | if (ret != 0) |
| 2635 | trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); |
| 2636 | put_task_struct(env.best_task); |
| 2637 | return ret; |
| 2638 | } |
| 2639 | |
| 2640 | /* Attempt to migrate a task to a CPU on the preferred node. */ |
| 2641 | static void numa_migrate_preferred(struct task_struct *p) |
| 2642 | { |
| 2643 | unsigned long interval = HZ; |
| 2644 | |
| 2645 | /* This task has no NUMA fault statistics yet */ |
| 2646 | if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) |
| 2647 | return; |
| 2648 | |
| 2649 | /* Periodically retry migrating the task to the preferred node */ |
| 2650 | interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); |
| 2651 | p->numa_migrate_retry = jiffies + interval; |
| 2652 | |
| 2653 | /* Success if task is already running on preferred CPU */ |
| 2654 | if (task_node(p) == p->numa_preferred_nid) |
| 2655 | return; |
| 2656 | |
| 2657 | /* Otherwise, try migrate to a CPU on the preferred node */ |
| 2658 | task_numa_migrate(p); |
| 2659 | } |
| 2660 | |
| 2661 | /* |
| 2662 | * Find out how many nodes the workload is actively running on. Do this by |
| 2663 | * tracking the nodes from which NUMA hinting faults are triggered. This can |
| 2664 | * be different from the set of nodes where the workload's memory is currently |
| 2665 | * located. |
| 2666 | */ |
| 2667 | static void numa_group_count_active_nodes(struct numa_group *numa_group) |
| 2668 | { |
| 2669 | unsigned long faults, max_faults = 0; |
| 2670 | int nid, active_nodes = 0; |
| 2671 | |
| 2672 | for_each_node_state(nid, N_CPU) { |
| 2673 | faults = group_faults_cpu(numa_group, nid); |
| 2674 | if (faults > max_faults) |
| 2675 | max_faults = faults; |
| 2676 | } |
| 2677 | |
| 2678 | for_each_node_state(nid, N_CPU) { |
| 2679 | faults = group_faults_cpu(numa_group, nid); |
| 2680 | if (faults * ACTIVE_NODE_FRACTION > max_faults) |
| 2681 | active_nodes++; |
| 2682 | } |
| 2683 | |
| 2684 | numa_group->max_faults_cpu = max_faults; |
| 2685 | numa_group->active_nodes = active_nodes; |
| 2686 | } |
| 2687 | |
| 2688 | /* |
| 2689 | * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS |
| 2690 | * increments. The more local the fault statistics are, the higher the scan |
| 2691 | * period will be for the next scan window. If local/(local+remote) ratio is |
| 2692 | * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) |
| 2693 | * the scan period will decrease. Aim for 70% local accesses. |
| 2694 | */ |
| 2695 | #define NUMA_PERIOD_SLOTS 10 |
| 2696 | #define NUMA_PERIOD_THRESHOLD 7 |
| 2697 | |
| 2698 | /* |
| 2699 | * Increase the scan period (slow down scanning) if the majority of |
| 2700 | * our memory is already on our local node, or if the majority of |
| 2701 | * the page accesses are shared with other processes. |
| 2702 | * Otherwise, decrease the scan period. |
| 2703 | */ |
| 2704 | static void update_task_scan_period(struct task_struct *p, |
| 2705 | unsigned long shared, unsigned long private) |
| 2706 | { |
| 2707 | unsigned int period_slot; |
| 2708 | int lr_ratio, ps_ratio; |
| 2709 | int diff; |
| 2710 | |
| 2711 | unsigned long remote = p->numa_faults_locality[0]; |
| 2712 | unsigned long local = p->numa_faults_locality[1]; |
| 2713 | |
| 2714 | /* |
| 2715 | * If there were no record hinting faults then either the task is |
| 2716 | * completely idle or all activity is in areas that are not of interest |
| 2717 | * to automatic numa balancing. Related to that, if there were failed |
| 2718 | * migration then it implies we are migrating too quickly or the local |
| 2719 | * node is overloaded. In either case, scan slower |
| 2720 | */ |
| 2721 | if (local + shared == 0 || p->numa_faults_locality[2]) { |
| 2722 | p->numa_scan_period = min(p->numa_scan_period_max, |
| 2723 | p->numa_scan_period << 1); |
| 2724 | |
| 2725 | p->mm->numa_next_scan = jiffies + |
| 2726 | msecs_to_jiffies(p->numa_scan_period); |
| 2727 | |
| 2728 | return; |
| 2729 | } |
| 2730 | |
| 2731 | /* |
| 2732 | * Prepare to scale scan period relative to the current period. |
| 2733 | * == NUMA_PERIOD_THRESHOLD scan period stays the same |
| 2734 | * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) |
| 2735 | * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) |
| 2736 | */ |
| 2737 | period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); |
| 2738 | lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); |
| 2739 | ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); |
| 2740 | |
| 2741 | if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { |
| 2742 | /* |
| 2743 | * Most memory accesses are local. There is no need to |
| 2744 | * do fast NUMA scanning, since memory is already local. |
| 2745 | */ |
| 2746 | int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; |
| 2747 | if (!slot) |
| 2748 | slot = 1; |
| 2749 | diff = slot * period_slot; |
| 2750 | } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { |
| 2751 | /* |
| 2752 | * Most memory accesses are shared with other tasks. |
| 2753 | * There is no point in continuing fast NUMA scanning, |
| 2754 | * since other tasks may just move the memory elsewhere. |
| 2755 | */ |
| 2756 | int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; |
| 2757 | if (!slot) |
| 2758 | slot = 1; |
| 2759 | diff = slot * period_slot; |
| 2760 | } else { |
| 2761 | /* |
| 2762 | * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, |
| 2763 | * yet they are not on the local NUMA node. Speed up |
| 2764 | * NUMA scanning to get the memory moved over. |
| 2765 | */ |
| 2766 | int ratio = max(lr_ratio, ps_ratio); |
| 2767 | diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; |
| 2768 | } |
| 2769 | |
| 2770 | p->numa_scan_period = clamp(p->numa_scan_period + diff, |
| 2771 | task_scan_min(p), task_scan_max(p)); |
| 2772 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
| 2773 | } |
| 2774 | |
| 2775 | /* |
| 2776 | * Get the fraction of time the task has been running since the last |
| 2777 | * NUMA placement cycle. The scheduler keeps similar statistics, but |
| 2778 | * decays those on a 32ms period, which is orders of magnitude off |
| 2779 | * from the dozens-of-seconds NUMA balancing period. Use the scheduler |
| 2780 | * stats only if the task is so new there are no NUMA statistics yet. |
| 2781 | */ |
| 2782 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) |
| 2783 | { |
| 2784 | u64 runtime, delta, now; |
| 2785 | /* Use the start of this time slice to avoid calculations. */ |
| 2786 | now = p->se.exec_start; |
| 2787 | runtime = p->se.sum_exec_runtime; |
| 2788 | |
| 2789 | if (p->last_task_numa_placement) { |
| 2790 | delta = runtime - p->last_sum_exec_runtime; |
| 2791 | *period = now - p->last_task_numa_placement; |
| 2792 | |
| 2793 | /* Avoid time going backwards, prevent potential divide error: */ |
| 2794 | if (unlikely((s64)*period < 0)) |
| 2795 | *period = 0; |
| 2796 | } else { |
| 2797 | delta = p->se.avg.load_sum; |
| 2798 | *period = LOAD_AVG_MAX; |
| 2799 | } |
| 2800 | |
| 2801 | p->last_sum_exec_runtime = runtime; |
| 2802 | p->last_task_numa_placement = now; |
| 2803 | |
| 2804 | return delta; |
| 2805 | } |
| 2806 | |
| 2807 | /* |
| 2808 | * Determine the preferred nid for a task in a numa_group. This needs to |
| 2809 | * be done in a way that produces consistent results with group_weight, |
| 2810 | * otherwise workloads might not converge. |
| 2811 | */ |
| 2812 | static int preferred_group_nid(struct task_struct *p, int nid) |
| 2813 | { |
| 2814 | nodemask_t nodes; |
| 2815 | int dist; |
| 2816 | |
| 2817 | /* Direct connections between all NUMA nodes. */ |
| 2818 | if (sched_numa_topology_type == NUMA_DIRECT) |
| 2819 | return nid; |
| 2820 | |
| 2821 | /* |
| 2822 | * On a system with glueless mesh NUMA topology, group_weight |
| 2823 | * scores nodes according to the number of NUMA hinting faults on |
| 2824 | * both the node itself, and on nearby nodes. |
| 2825 | */ |
| 2826 | if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { |
| 2827 | unsigned long score, max_score = 0; |
| 2828 | int node, max_node = nid; |
| 2829 | |
| 2830 | dist = sched_max_numa_distance; |
| 2831 | |
| 2832 | for_each_node_state(node, N_CPU) { |
| 2833 | score = group_weight(p, node, dist); |
| 2834 | if (score > max_score) { |
| 2835 | max_score = score; |
| 2836 | max_node = node; |
| 2837 | } |
| 2838 | } |
| 2839 | return max_node; |
| 2840 | } |
| 2841 | |
| 2842 | /* |
| 2843 | * Finding the preferred nid in a system with NUMA backplane |
| 2844 | * interconnect topology is more involved. The goal is to locate |
| 2845 | * tasks from numa_groups near each other in the system, and |
| 2846 | * untangle workloads from different sides of the system. This requires |
| 2847 | * searching down the hierarchy of node groups, recursively searching |
| 2848 | * inside the highest scoring group of nodes. The nodemask tricks |
| 2849 | * keep the complexity of the search down. |
| 2850 | */ |
| 2851 | nodes = node_states[N_CPU]; |
| 2852 | for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { |
| 2853 | unsigned long max_faults = 0; |
| 2854 | nodemask_t max_group = NODE_MASK_NONE; |
| 2855 | int a, b; |
| 2856 | |
| 2857 | /* Are there nodes at this distance from each other? */ |
| 2858 | if (!find_numa_distance(dist)) |
| 2859 | continue; |
| 2860 | |
| 2861 | for_each_node_mask(a, nodes) { |
| 2862 | unsigned long faults = 0; |
| 2863 | nodemask_t this_group; |
| 2864 | nodes_clear(this_group); |
| 2865 | |
| 2866 | /* Sum group's NUMA faults; includes a==b case. */ |
| 2867 | for_each_node_mask(b, nodes) { |
| 2868 | if (node_distance(a, b) < dist) { |
| 2869 | faults += group_faults(p, b); |
| 2870 | node_set(b, this_group); |
| 2871 | node_clear(b, nodes); |
| 2872 | } |
| 2873 | } |
| 2874 | |
| 2875 | /* Remember the top group. */ |
| 2876 | if (faults > max_faults) { |
| 2877 | max_faults = faults; |
| 2878 | max_group = this_group; |
| 2879 | /* |
| 2880 | * subtle: at the smallest distance there is |
| 2881 | * just one node left in each "group", the |
| 2882 | * winner is the preferred nid. |
| 2883 | */ |
| 2884 | nid = a; |
| 2885 | } |
| 2886 | } |
| 2887 | /* Next round, evaluate the nodes within max_group. */ |
| 2888 | if (!max_faults) |
| 2889 | break; |
| 2890 | nodes = max_group; |
| 2891 | } |
| 2892 | return nid; |
| 2893 | } |
| 2894 | |
| 2895 | static void task_numa_placement(struct task_struct *p) |
| 2896 | { |
| 2897 | int seq, nid, max_nid = NUMA_NO_NODE; |
| 2898 | unsigned long max_faults = 0; |
| 2899 | unsigned long fault_types[2] = { 0, 0 }; |
| 2900 | unsigned long total_faults; |
| 2901 | u64 runtime, period; |
| 2902 | spinlock_t *group_lock = NULL; |
| 2903 | struct numa_group *ng; |
| 2904 | |
| 2905 | /* |
| 2906 | * The p->mm->numa_scan_seq field gets updated without |
| 2907 | * exclusive access. Use READ_ONCE() here to ensure |
| 2908 | * that the field is read in a single access: |
| 2909 | */ |
| 2910 | seq = READ_ONCE(p->mm->numa_scan_seq); |
| 2911 | if (p->numa_scan_seq == seq) |
| 2912 | return; |
| 2913 | p->numa_scan_seq = seq; |
| 2914 | p->numa_scan_period_max = task_scan_max(p); |
| 2915 | |
| 2916 | total_faults = p->numa_faults_locality[0] + |
| 2917 | p->numa_faults_locality[1]; |
| 2918 | runtime = numa_get_avg_runtime(p, &period); |
| 2919 | |
| 2920 | /* If the task is part of a group prevent parallel updates to group stats */ |
| 2921 | ng = deref_curr_numa_group(p); |
| 2922 | if (ng) { |
| 2923 | group_lock = &ng->lock; |
| 2924 | spin_lock_irq(group_lock); |
| 2925 | } |
| 2926 | |
| 2927 | /* Find the node with the highest number of faults */ |
| 2928 | for_each_online_node(nid) { |
| 2929 | /* Keep track of the offsets in numa_faults array */ |
| 2930 | int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; |
| 2931 | unsigned long faults = 0, group_faults = 0; |
| 2932 | int priv; |
| 2933 | |
| 2934 | for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { |
| 2935 | long diff, f_diff, f_weight; |
| 2936 | |
| 2937 | mem_idx = task_faults_idx(NUMA_MEM, nid, priv); |
| 2938 | membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); |
| 2939 | cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); |
| 2940 | cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); |
| 2941 | |
| 2942 | /* Decay existing window, copy faults since last scan */ |
| 2943 | diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; |
| 2944 | fault_types[priv] += p->numa_faults[membuf_idx]; |
| 2945 | p->numa_faults[membuf_idx] = 0; |
| 2946 | |
| 2947 | /* |
| 2948 | * Normalize the faults_from, so all tasks in a group |
| 2949 | * count according to CPU use, instead of by the raw |
| 2950 | * number of faults. Tasks with little runtime have |
| 2951 | * little over-all impact on throughput, and thus their |
| 2952 | * faults are less important. |
| 2953 | */ |
| 2954 | f_weight = div64_u64(runtime << 16, period + 1); |
| 2955 | f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / |
| 2956 | (total_faults + 1); |
| 2957 | f_diff = f_weight - p->numa_faults[cpu_idx] / 2; |
| 2958 | p->numa_faults[cpubuf_idx] = 0; |
| 2959 | |
| 2960 | p->numa_faults[mem_idx] += diff; |
| 2961 | p->numa_faults[cpu_idx] += f_diff; |
| 2962 | faults += p->numa_faults[mem_idx]; |
| 2963 | p->total_numa_faults += diff; |
| 2964 | if (ng) { |
| 2965 | /* |
| 2966 | * safe because we can only change our own group |
| 2967 | * |
| 2968 | * mem_idx represents the offset for a given |
| 2969 | * nid and priv in a specific region because it |
| 2970 | * is at the beginning of the numa_faults array. |
| 2971 | */ |
| 2972 | ng->faults[mem_idx] += diff; |
| 2973 | ng->faults[cpu_idx] += f_diff; |
| 2974 | ng->total_faults += diff; |
| 2975 | group_faults += ng->faults[mem_idx]; |
| 2976 | } |
| 2977 | } |
| 2978 | |
| 2979 | if (!ng) { |
| 2980 | if (faults > max_faults) { |
| 2981 | max_faults = faults; |
| 2982 | max_nid = nid; |
| 2983 | } |
| 2984 | } else if (group_faults > max_faults) { |
| 2985 | max_faults = group_faults; |
| 2986 | max_nid = nid; |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | /* Cannot migrate task to CPU-less node */ |
| 2991 | max_nid = numa_nearest_node(max_nid, N_CPU); |
| 2992 | |
| 2993 | if (ng) { |
| 2994 | numa_group_count_active_nodes(ng); |
| 2995 | spin_unlock_irq(group_lock); |
| 2996 | max_nid = preferred_group_nid(p, max_nid); |
| 2997 | } |
| 2998 | |
| 2999 | if (max_faults) { |
| 3000 | /* Set the new preferred node */ |
| 3001 | if (max_nid != p->numa_preferred_nid) |
| 3002 | sched_setnuma(p, max_nid); |
| 3003 | } |
| 3004 | |
| 3005 | update_task_scan_period(p, fault_types[0], fault_types[1]); |
| 3006 | } |
| 3007 | |
| 3008 | static inline int get_numa_group(struct numa_group *grp) |
| 3009 | { |
| 3010 | return refcount_inc_not_zero(&grp->refcount); |
| 3011 | } |
| 3012 | |
| 3013 | static inline void put_numa_group(struct numa_group *grp) |
| 3014 | { |
| 3015 | if (refcount_dec_and_test(&grp->refcount)) |
| 3016 | kfree_rcu(grp, rcu); |
| 3017 | } |
| 3018 | |
| 3019 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, |
| 3020 | int *priv) |
| 3021 | { |
| 3022 | struct numa_group *grp, *my_grp; |
| 3023 | struct task_struct *tsk; |
| 3024 | bool join = false; |
| 3025 | int cpu = cpupid_to_cpu(cpupid); |
| 3026 | int i; |
| 3027 | |
| 3028 | if (unlikely(!deref_curr_numa_group(p))) { |
| 3029 | unsigned int size = sizeof(struct numa_group) + |
| 3030 | NR_NUMA_HINT_FAULT_STATS * |
| 3031 | nr_node_ids * sizeof(unsigned long); |
| 3032 | |
| 3033 | grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); |
| 3034 | if (!grp) |
| 3035 | return; |
| 3036 | |
| 3037 | refcount_set(&grp->refcount, 1); |
| 3038 | grp->active_nodes = 1; |
| 3039 | grp->max_faults_cpu = 0; |
| 3040 | spin_lock_init(&grp->lock); |
| 3041 | grp->gid = p->pid; |
| 3042 | |
| 3043 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
| 3044 | grp->faults[i] = p->numa_faults[i]; |
| 3045 | |
| 3046 | grp->total_faults = p->total_numa_faults; |
| 3047 | |
| 3048 | grp->nr_tasks++; |
| 3049 | rcu_assign_pointer(p->numa_group, grp); |
| 3050 | } |
| 3051 | |
| 3052 | rcu_read_lock(); |
| 3053 | tsk = READ_ONCE(cpu_rq(cpu)->curr); |
| 3054 | |
| 3055 | if (!cpupid_match_pid(tsk, cpupid)) |
| 3056 | goto no_join; |
| 3057 | |
| 3058 | grp = rcu_dereference(tsk->numa_group); |
| 3059 | if (!grp) |
| 3060 | goto no_join; |
| 3061 | |
| 3062 | my_grp = deref_curr_numa_group(p); |
| 3063 | if (grp == my_grp) |
| 3064 | goto no_join; |
| 3065 | |
| 3066 | /* |
| 3067 | * Only join the other group if its bigger; if we're the bigger group, |
| 3068 | * the other task will join us. |
| 3069 | */ |
| 3070 | if (my_grp->nr_tasks > grp->nr_tasks) |
| 3071 | goto no_join; |
| 3072 | |
| 3073 | /* |
| 3074 | * Tie-break on the grp address. |
| 3075 | */ |
| 3076 | if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) |
| 3077 | goto no_join; |
| 3078 | |
| 3079 | /* Always join threads in the same process. */ |
| 3080 | if (tsk->mm == current->mm) |
| 3081 | join = true; |
| 3082 | |
| 3083 | /* Simple filter to avoid false positives due to PID collisions */ |
| 3084 | if (flags & TNF_SHARED) |
| 3085 | join = true; |
| 3086 | |
| 3087 | /* Update priv based on whether false sharing was detected */ |
| 3088 | *priv = !join; |
| 3089 | |
| 3090 | if (join && !get_numa_group(grp)) |
| 3091 | goto no_join; |
| 3092 | |
| 3093 | rcu_read_unlock(); |
| 3094 | |
| 3095 | if (!join) |
| 3096 | return; |
| 3097 | |
| 3098 | WARN_ON_ONCE(irqs_disabled()); |
| 3099 | double_lock_irq(&my_grp->lock, &grp->lock); |
| 3100 | |
| 3101 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { |
| 3102 | my_grp->faults[i] -= p->numa_faults[i]; |
| 3103 | grp->faults[i] += p->numa_faults[i]; |
| 3104 | } |
| 3105 | my_grp->total_faults -= p->total_numa_faults; |
| 3106 | grp->total_faults += p->total_numa_faults; |
| 3107 | |
| 3108 | my_grp->nr_tasks--; |
| 3109 | grp->nr_tasks++; |
| 3110 | |
| 3111 | spin_unlock(&my_grp->lock); |
| 3112 | spin_unlock_irq(&grp->lock); |
| 3113 | |
| 3114 | rcu_assign_pointer(p->numa_group, grp); |
| 3115 | |
| 3116 | put_numa_group(my_grp); |
| 3117 | return; |
| 3118 | |
| 3119 | no_join: |
| 3120 | rcu_read_unlock(); |
| 3121 | return; |
| 3122 | } |
| 3123 | |
| 3124 | /* |
| 3125 | * Get rid of NUMA statistics associated with a task (either current or dead). |
| 3126 | * If @final is set, the task is dead and has reached refcount zero, so we can |
| 3127 | * safely free all relevant data structures. Otherwise, there might be |
| 3128 | * concurrent reads from places like load balancing and procfs, and we should |
| 3129 | * reset the data back to default state without freeing ->numa_faults. |
| 3130 | */ |
| 3131 | void task_numa_free(struct task_struct *p, bool final) |
| 3132 | { |
| 3133 | /* safe: p either is current or is being freed by current */ |
| 3134 | struct numa_group *grp = rcu_dereference_raw(p->numa_group); |
| 3135 | unsigned long *numa_faults = p->numa_faults; |
| 3136 | unsigned long flags; |
| 3137 | int i; |
| 3138 | |
| 3139 | if (!numa_faults) |
| 3140 | return; |
| 3141 | |
| 3142 | if (grp) { |
| 3143 | spin_lock_irqsave(&grp->lock, flags); |
| 3144 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
| 3145 | grp->faults[i] -= p->numa_faults[i]; |
| 3146 | grp->total_faults -= p->total_numa_faults; |
| 3147 | |
| 3148 | grp->nr_tasks--; |
| 3149 | spin_unlock_irqrestore(&grp->lock, flags); |
| 3150 | RCU_INIT_POINTER(p->numa_group, NULL); |
| 3151 | put_numa_group(grp); |
| 3152 | } |
| 3153 | |
| 3154 | if (final) { |
| 3155 | p->numa_faults = NULL; |
| 3156 | kfree(numa_faults); |
| 3157 | } else { |
| 3158 | p->total_numa_faults = 0; |
| 3159 | for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) |
| 3160 | numa_faults[i] = 0; |
| 3161 | } |
| 3162 | } |
| 3163 | |
| 3164 | /* |
| 3165 | * Got a PROT_NONE fault for a page on @node. |
| 3166 | */ |
| 3167 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) |
| 3168 | { |
| 3169 | struct task_struct *p = current; |
| 3170 | bool migrated = flags & TNF_MIGRATED; |
| 3171 | int cpu_node = task_node(current); |
| 3172 | int local = !!(flags & TNF_FAULT_LOCAL); |
| 3173 | struct numa_group *ng; |
| 3174 | int priv; |
| 3175 | |
| 3176 | if (!static_branch_likely(&sched_numa_balancing)) |
| 3177 | return; |
| 3178 | |
| 3179 | /* for example, ksmd faulting in a user's mm */ |
| 3180 | if (!p->mm) |
| 3181 | return; |
| 3182 | |
| 3183 | /* |
| 3184 | * NUMA faults statistics are unnecessary for the slow memory |
| 3185 | * node for memory tiering mode. |
| 3186 | */ |
| 3187 | if (!node_is_toptier(mem_node) && |
| 3188 | (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || |
| 3189 | !cpupid_valid(last_cpupid))) |
| 3190 | return; |
| 3191 | |
| 3192 | /* Allocate buffer to track faults on a per-node basis */ |
| 3193 | if (unlikely(!p->numa_faults)) { |
| 3194 | int size = sizeof(*p->numa_faults) * |
| 3195 | NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; |
| 3196 | |
| 3197 | p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); |
| 3198 | if (!p->numa_faults) |
| 3199 | return; |
| 3200 | |
| 3201 | p->total_numa_faults = 0; |
| 3202 | memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); |
| 3203 | } |
| 3204 | |
| 3205 | /* |
| 3206 | * First accesses are treated as private, otherwise consider accesses |
| 3207 | * to be private if the accessing pid has not changed |
| 3208 | */ |
| 3209 | if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { |
| 3210 | priv = 1; |
| 3211 | } else { |
| 3212 | priv = cpupid_match_pid(p, last_cpupid); |
| 3213 | if (!priv && !(flags & TNF_NO_GROUP)) |
| 3214 | task_numa_group(p, last_cpupid, flags, &priv); |
| 3215 | } |
| 3216 | |
| 3217 | /* |
| 3218 | * If a workload spans multiple NUMA nodes, a shared fault that |
| 3219 | * occurs wholly within the set of nodes that the workload is |
| 3220 | * actively using should be counted as local. This allows the |
| 3221 | * scan rate to slow down when a workload has settled down. |
| 3222 | */ |
| 3223 | ng = deref_curr_numa_group(p); |
| 3224 | if (!priv && !local && ng && ng->active_nodes > 1 && |
| 3225 | numa_is_active_node(cpu_node, ng) && |
| 3226 | numa_is_active_node(mem_node, ng)) |
| 3227 | local = 1; |
| 3228 | |
| 3229 | /* |
| 3230 | * Retry to migrate task to preferred node periodically, in case it |
| 3231 | * previously failed, or the scheduler moved us. |
| 3232 | */ |
| 3233 | if (time_after(jiffies, p->numa_migrate_retry)) { |
| 3234 | task_numa_placement(p); |
| 3235 | numa_migrate_preferred(p); |
| 3236 | } |
| 3237 | |
| 3238 | if (migrated) |
| 3239 | p->numa_pages_migrated += pages; |
| 3240 | if (flags & TNF_MIGRATE_FAIL) |
| 3241 | p->numa_faults_locality[2] += pages; |
| 3242 | |
| 3243 | p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; |
| 3244 | p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; |
| 3245 | p->numa_faults_locality[local] += pages; |
| 3246 | } |
| 3247 | |
| 3248 | static void reset_ptenuma_scan(struct task_struct *p) |
| 3249 | { |
| 3250 | /* |
| 3251 | * We only did a read acquisition of the mmap sem, so |
| 3252 | * p->mm->numa_scan_seq is written to without exclusive access |
| 3253 | * and the update is not guaranteed to be atomic. That's not |
| 3254 | * much of an issue though, since this is just used for |
| 3255 | * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not |
| 3256 | * expensive, to avoid any form of compiler optimizations: |
| 3257 | */ |
| 3258 | WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); |
| 3259 | p->mm->numa_scan_offset = 0; |
| 3260 | } |
| 3261 | |
| 3262 | static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) |
| 3263 | { |
| 3264 | unsigned long pids; |
| 3265 | /* |
| 3266 | * Allow unconditional access first two times, so that all the (pages) |
| 3267 | * of VMAs get prot_none fault introduced irrespective of accesses. |
| 3268 | * This is also done to avoid any side effect of task scanning |
| 3269 | * amplifying the unfairness of disjoint set of VMAs' access. |
| 3270 | */ |
| 3271 | if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) |
| 3272 | return true; |
| 3273 | |
| 3274 | pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; |
| 3275 | if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) |
| 3276 | return true; |
| 3277 | |
| 3278 | /* |
| 3279 | * Complete a scan that has already started regardless of PID access, or |
| 3280 | * some VMAs may never be scanned in multi-threaded applications: |
| 3281 | */ |
| 3282 | if (mm->numa_scan_offset > vma->vm_start) { |
| 3283 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); |
| 3284 | return true; |
| 3285 | } |
| 3286 | |
| 3287 | /* |
| 3288 | * This vma has not been accessed for a while, and if the number |
| 3289 | * the threads in the same process is low, which means no other |
| 3290 | * threads can help scan this vma, force a vma scan. |
| 3291 | */ |
| 3292 | if (READ_ONCE(mm->numa_scan_seq) > |
| 3293 | (vma->numab_state->prev_scan_seq + get_nr_threads(current))) |
| 3294 | return true; |
| 3295 | |
| 3296 | return false; |
| 3297 | } |
| 3298 | |
| 3299 | #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) |
| 3300 | |
| 3301 | /* |
| 3302 | * The expensive part of numa migration is done from task_work context. |
| 3303 | * Triggered from task_tick_numa(). |
| 3304 | */ |
| 3305 | static void task_numa_work(struct callback_head *work) |
| 3306 | { |
| 3307 | unsigned long migrate, next_scan, now = jiffies; |
| 3308 | struct task_struct *p = current; |
| 3309 | struct mm_struct *mm = p->mm; |
| 3310 | u64 runtime = p->se.sum_exec_runtime; |
| 3311 | struct vm_area_struct *vma; |
| 3312 | unsigned long start, end; |
| 3313 | unsigned long nr_pte_updates = 0; |
| 3314 | long pages, virtpages; |
| 3315 | struct vma_iterator vmi; |
| 3316 | bool vma_pids_skipped; |
| 3317 | bool vma_pids_forced = false; |
| 3318 | |
| 3319 | WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); |
| 3320 | |
| 3321 | work->next = work; |
| 3322 | /* |
| 3323 | * Who cares about NUMA placement when they're dying. |
| 3324 | * |
| 3325 | * NOTE: make sure not to dereference p->mm before this check, |
| 3326 | * exit_task_work() happens _after_ exit_mm() so we could be called |
| 3327 | * without p->mm even though we still had it when we enqueued this |
| 3328 | * work. |
| 3329 | */ |
| 3330 | if (p->flags & PF_EXITING) |
| 3331 | return; |
| 3332 | |
| 3333 | /* |
| 3334 | * Memory is pinned to only one NUMA node via cpuset.mems, naturally |
| 3335 | * no page can be migrated. |
| 3336 | */ |
| 3337 | if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { |
| 3338 | trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); |
| 3339 | return; |
| 3340 | } |
| 3341 | |
| 3342 | if (!mm->numa_next_scan) { |
| 3343 | mm->numa_next_scan = now + |
| 3344 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); |
| 3345 | } |
| 3346 | |
| 3347 | /* |
| 3348 | * Enforce maximal scan/migration frequency.. |
| 3349 | */ |
| 3350 | migrate = mm->numa_next_scan; |
| 3351 | if (time_before(now, migrate)) |
| 3352 | return; |
| 3353 | |
| 3354 | if (p->numa_scan_period == 0) { |
| 3355 | p->numa_scan_period_max = task_scan_max(p); |
| 3356 | p->numa_scan_period = task_scan_start(p); |
| 3357 | } |
| 3358 | |
| 3359 | next_scan = now + msecs_to_jiffies(p->numa_scan_period); |
| 3360 | if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) |
| 3361 | return; |
| 3362 | |
| 3363 | /* |
| 3364 | * Delay this task enough that another task of this mm will likely win |
| 3365 | * the next time around. |
| 3366 | */ |
| 3367 | p->node_stamp += 2 * TICK_NSEC; |
| 3368 | |
| 3369 | pages = sysctl_numa_balancing_scan_size; |
| 3370 | pages <<= 20 - PAGE_SHIFT; /* MB in pages */ |
| 3371 | virtpages = pages * 8; /* Scan up to this much virtual space */ |
| 3372 | if (!pages) |
| 3373 | return; |
| 3374 | |
| 3375 | |
| 3376 | if (!mmap_read_trylock(mm)) |
| 3377 | return; |
| 3378 | |
| 3379 | /* |
| 3380 | * VMAs are skipped if the current PID has not trapped a fault within |
| 3381 | * the VMA recently. Allow scanning to be forced if there is no |
| 3382 | * suitable VMA remaining. |
| 3383 | */ |
| 3384 | vma_pids_skipped = false; |
| 3385 | |
| 3386 | retry_pids: |
| 3387 | start = mm->numa_scan_offset; |
| 3388 | vma_iter_init(&vmi, mm, start); |
| 3389 | vma = vma_next(&vmi); |
| 3390 | if (!vma) { |
| 3391 | reset_ptenuma_scan(p); |
| 3392 | start = 0; |
| 3393 | vma_iter_set(&vmi, start); |
| 3394 | vma = vma_next(&vmi); |
| 3395 | } |
| 3396 | |
| 3397 | for (; vma; vma = vma_next(&vmi)) { |
| 3398 | if (!vma_migratable(vma) || !vma_policy_mof(vma) || |
| 3399 | is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { |
| 3400 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); |
| 3401 | continue; |
| 3402 | } |
| 3403 | |
| 3404 | /* |
| 3405 | * Shared library pages mapped by multiple processes are not |
| 3406 | * migrated as it is expected they are cache replicated. Avoid |
| 3407 | * hinting faults in read-only file-backed mappings or the vDSO |
| 3408 | * as migrating the pages will be of marginal benefit. |
| 3409 | */ |
| 3410 | if (!vma->vm_mm || |
| 3411 | (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { |
| 3412 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); |
| 3413 | continue; |
| 3414 | } |
| 3415 | |
| 3416 | /* |
| 3417 | * Skip inaccessible VMAs to avoid any confusion between |
| 3418 | * PROT_NONE and NUMA hinting PTEs |
| 3419 | */ |
| 3420 | if (!vma_is_accessible(vma)) { |
| 3421 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); |
| 3422 | continue; |
| 3423 | } |
| 3424 | |
| 3425 | /* Initialise new per-VMA NUMAB state. */ |
| 3426 | if (!vma->numab_state) { |
| 3427 | struct vma_numab_state *ptr; |
| 3428 | |
| 3429 | ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); |
| 3430 | if (!ptr) |
| 3431 | continue; |
| 3432 | |
| 3433 | if (cmpxchg(&vma->numab_state, NULL, ptr)) { |
| 3434 | kfree(ptr); |
| 3435 | continue; |
| 3436 | } |
| 3437 | |
| 3438 | vma->numab_state->start_scan_seq = mm->numa_scan_seq; |
| 3439 | |
| 3440 | vma->numab_state->next_scan = now + |
| 3441 | msecs_to_jiffies(sysctl_numa_balancing_scan_delay); |
| 3442 | |
| 3443 | /* Reset happens after 4 times scan delay of scan start */ |
| 3444 | vma->numab_state->pids_active_reset = vma->numab_state->next_scan + |
| 3445 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
| 3446 | |
| 3447 | /* |
| 3448 | * Ensure prev_scan_seq does not match numa_scan_seq, |
| 3449 | * to prevent VMAs being skipped prematurely on the |
| 3450 | * first scan: |
| 3451 | */ |
| 3452 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; |
| 3453 | } |
| 3454 | |
| 3455 | /* |
| 3456 | * Scanning the VMAs of short lived tasks add more overhead. So |
| 3457 | * delay the scan for new VMAs. |
| 3458 | */ |
| 3459 | if (mm->numa_scan_seq && time_before(jiffies, |
| 3460 | vma->numab_state->next_scan)) { |
| 3461 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); |
| 3462 | continue; |
| 3463 | } |
| 3464 | |
| 3465 | /* RESET access PIDs regularly for old VMAs. */ |
| 3466 | if (mm->numa_scan_seq && |
| 3467 | time_after(jiffies, vma->numab_state->pids_active_reset)) { |
| 3468 | vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + |
| 3469 | msecs_to_jiffies(VMA_PID_RESET_PERIOD); |
| 3470 | vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); |
| 3471 | vma->numab_state->pids_active[1] = 0; |
| 3472 | } |
| 3473 | |
| 3474 | /* Do not rescan VMAs twice within the same sequence. */ |
| 3475 | if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { |
| 3476 | mm->numa_scan_offset = vma->vm_end; |
| 3477 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); |
| 3478 | continue; |
| 3479 | } |
| 3480 | |
| 3481 | /* |
| 3482 | * Do not scan the VMA if task has not accessed it, unless no other |
| 3483 | * VMA candidate exists. |
| 3484 | */ |
| 3485 | if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { |
| 3486 | vma_pids_skipped = true; |
| 3487 | trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); |
| 3488 | continue; |
| 3489 | } |
| 3490 | |
| 3491 | do { |
| 3492 | start = max(start, vma->vm_start); |
| 3493 | end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); |
| 3494 | end = min(end, vma->vm_end); |
| 3495 | nr_pte_updates = change_prot_numa(vma, start, end); |
| 3496 | |
| 3497 | /* |
| 3498 | * Try to scan sysctl_numa_balancing_size worth of |
| 3499 | * hpages that have at least one present PTE that |
| 3500 | * is not already PTE-numa. If the VMA contains |
| 3501 | * areas that are unused or already full of prot_numa |
| 3502 | * PTEs, scan up to virtpages, to skip through those |
| 3503 | * areas faster. |
| 3504 | */ |
| 3505 | if (nr_pte_updates) |
| 3506 | pages -= (end - start) >> PAGE_SHIFT; |
| 3507 | virtpages -= (end - start) >> PAGE_SHIFT; |
| 3508 | |
| 3509 | start = end; |
| 3510 | if (pages <= 0 || virtpages <= 0) |
| 3511 | goto out; |
| 3512 | |
| 3513 | cond_resched(); |
| 3514 | } while (end != vma->vm_end); |
| 3515 | |
| 3516 | /* VMA scan is complete, do not scan until next sequence. */ |
| 3517 | vma->numab_state->prev_scan_seq = mm->numa_scan_seq; |
| 3518 | |
| 3519 | /* |
| 3520 | * Only force scan within one VMA at a time, to limit the |
| 3521 | * cost of scanning a potentially uninteresting VMA. |
| 3522 | */ |
| 3523 | if (vma_pids_forced) |
| 3524 | break; |
| 3525 | } |
| 3526 | |
| 3527 | /* |
| 3528 | * If no VMAs are remaining and VMAs were skipped due to the PID |
| 3529 | * not accessing the VMA previously, then force a scan to ensure |
| 3530 | * forward progress: |
| 3531 | */ |
| 3532 | if (!vma && !vma_pids_forced && vma_pids_skipped) { |
| 3533 | vma_pids_forced = true; |
| 3534 | goto retry_pids; |
| 3535 | } |
| 3536 | |
| 3537 | out: |
| 3538 | /* |
| 3539 | * It is possible to reach the end of the VMA list but the last few |
| 3540 | * VMAs are not guaranteed to the vma_migratable. If they are not, we |
| 3541 | * would find the !migratable VMA on the next scan but not reset the |
| 3542 | * scanner to the start so check it now. |
| 3543 | */ |
| 3544 | if (vma) |
| 3545 | mm->numa_scan_offset = start; |
| 3546 | else |
| 3547 | reset_ptenuma_scan(p); |
| 3548 | mmap_read_unlock(mm); |
| 3549 | |
| 3550 | /* |
| 3551 | * Make sure tasks use at least 32x as much time to run other code |
| 3552 | * than they used here, to limit NUMA PTE scanning overhead to 3% max. |
| 3553 | * Usually update_task_scan_period slows down scanning enough; on an |
| 3554 | * overloaded system we need to limit overhead on a per task basis. |
| 3555 | */ |
| 3556 | if (unlikely(p->se.sum_exec_runtime != runtime)) { |
| 3557 | u64 diff = p->se.sum_exec_runtime - runtime; |
| 3558 | p->node_stamp += 32 * diff; |
| 3559 | } |
| 3560 | } |
| 3561 | |
| 3562 | void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
| 3563 | { |
| 3564 | int mm_users = 0; |
| 3565 | struct mm_struct *mm = p->mm; |
| 3566 | |
| 3567 | if (mm) { |
| 3568 | mm_users = atomic_read(&mm->mm_users); |
| 3569 | if (mm_users == 1) { |
| 3570 | mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); |
| 3571 | mm->numa_scan_seq = 0; |
| 3572 | } |
| 3573 | } |
| 3574 | p->node_stamp = 0; |
| 3575 | p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; |
| 3576 | p->numa_scan_period = sysctl_numa_balancing_scan_delay; |
| 3577 | p->numa_migrate_retry = 0; |
| 3578 | /* Protect against double add, see task_tick_numa and task_numa_work */ |
| 3579 | p->numa_work.next = &p->numa_work; |
| 3580 | p->numa_faults = NULL; |
| 3581 | p->numa_pages_migrated = 0; |
| 3582 | p->total_numa_faults = 0; |
| 3583 | RCU_INIT_POINTER(p->numa_group, NULL); |
| 3584 | p->last_task_numa_placement = 0; |
| 3585 | p->last_sum_exec_runtime = 0; |
| 3586 | |
| 3587 | init_task_work(&p->numa_work, task_numa_work); |
| 3588 | |
| 3589 | /* New address space, reset the preferred nid */ |
| 3590 | if (!(clone_flags & CLONE_VM)) { |
| 3591 | p->numa_preferred_nid = NUMA_NO_NODE; |
| 3592 | return; |
| 3593 | } |
| 3594 | |
| 3595 | /* |
| 3596 | * New thread, keep existing numa_preferred_nid which should be copied |
| 3597 | * already by arch_dup_task_struct but stagger when scans start. |
| 3598 | */ |
| 3599 | if (mm) { |
| 3600 | unsigned int delay; |
| 3601 | |
| 3602 | delay = min_t(unsigned int, task_scan_max(current), |
| 3603 | current->numa_scan_period * mm_users * NSEC_PER_MSEC); |
| 3604 | delay += 2 * TICK_NSEC; |
| 3605 | p->node_stamp = delay; |
| 3606 | } |
| 3607 | } |
| 3608 | |
| 3609 | /* |
| 3610 | * Drive the periodic memory faults.. |
| 3611 | */ |
| 3612 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
| 3613 | { |
| 3614 | struct callback_head *work = &curr->numa_work; |
| 3615 | u64 period, now; |
| 3616 | |
| 3617 | /* |
| 3618 | * We don't care about NUMA placement if we don't have memory. |
| 3619 | */ |
| 3620 | if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) |
| 3621 | return; |
| 3622 | |
| 3623 | /* |
| 3624 | * Using runtime rather than walltime has the dual advantage that |
| 3625 | * we (mostly) drive the selection from busy threads and that the |
| 3626 | * task needs to have done some actual work before we bother with |
| 3627 | * NUMA placement. |
| 3628 | */ |
| 3629 | now = curr->se.sum_exec_runtime; |
| 3630 | period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; |
| 3631 | |
| 3632 | if (now > curr->node_stamp + period) { |
| 3633 | if (!curr->node_stamp) |
| 3634 | curr->numa_scan_period = task_scan_start(curr); |
| 3635 | curr->node_stamp += period; |
| 3636 | |
| 3637 | if (!time_before(jiffies, curr->mm->numa_next_scan)) |
| 3638 | task_work_add(curr, work, TWA_RESUME); |
| 3639 | } |
| 3640 | } |
| 3641 | |
| 3642 | static void update_scan_period(struct task_struct *p, int new_cpu) |
| 3643 | { |
| 3644 | int src_nid = cpu_to_node(task_cpu(p)); |
| 3645 | int dst_nid = cpu_to_node(new_cpu); |
| 3646 | |
| 3647 | if (!static_branch_likely(&sched_numa_balancing)) |
| 3648 | return; |
| 3649 | |
| 3650 | if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) |
| 3651 | return; |
| 3652 | |
| 3653 | if (src_nid == dst_nid) |
| 3654 | return; |
| 3655 | |
| 3656 | /* |
| 3657 | * Allow resets if faults have been trapped before one scan |
| 3658 | * has completed. This is most likely due to a new task that |
| 3659 | * is pulled cross-node due to wakeups or load balancing. |
| 3660 | */ |
| 3661 | if (p->numa_scan_seq) { |
| 3662 | /* |
| 3663 | * Avoid scan adjustments if moving to the preferred |
| 3664 | * node or if the task was not previously running on |
| 3665 | * the preferred node. |
| 3666 | */ |
| 3667 | if (dst_nid == p->numa_preferred_nid || |
| 3668 | (p->numa_preferred_nid != NUMA_NO_NODE && |
| 3669 | src_nid != p->numa_preferred_nid)) |
| 3670 | return; |
| 3671 | } |
| 3672 | |
| 3673 | p->numa_scan_period = task_scan_start(p); |
| 3674 | } |
| 3675 | |
| 3676 | #else |
| 3677 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) |
| 3678 | { |
| 3679 | } |
| 3680 | |
| 3681 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) |
| 3682 | { |
| 3683 | } |
| 3684 | |
| 3685 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) |
| 3686 | { |
| 3687 | } |
| 3688 | |
| 3689 | static inline void update_scan_period(struct task_struct *p, int new_cpu) |
| 3690 | { |
| 3691 | } |
| 3692 | |
| 3693 | #endif /* CONFIG_NUMA_BALANCING */ |
| 3694 | |
| 3695 | static void |
| 3696 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3697 | { |
| 3698 | update_load_add(&cfs_rq->load, se->load.weight); |
| 3699 | #ifdef CONFIG_SMP |
| 3700 | if (entity_is_task(se)) { |
| 3701 | struct rq *rq = rq_of(cfs_rq); |
| 3702 | |
| 3703 | account_numa_enqueue(rq, task_of(se)); |
| 3704 | list_add(&se->group_node, &rq->cfs_tasks); |
| 3705 | } |
| 3706 | #endif |
| 3707 | cfs_rq->nr_queued++; |
| 3708 | } |
| 3709 | |
| 3710 | static void |
| 3711 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3712 | { |
| 3713 | update_load_sub(&cfs_rq->load, se->load.weight); |
| 3714 | #ifdef CONFIG_SMP |
| 3715 | if (entity_is_task(se)) { |
| 3716 | account_numa_dequeue(rq_of(cfs_rq), task_of(se)); |
| 3717 | list_del_init(&se->group_node); |
| 3718 | } |
| 3719 | #endif |
| 3720 | cfs_rq->nr_queued--; |
| 3721 | } |
| 3722 | |
| 3723 | /* |
| 3724 | * Signed add and clamp on underflow. |
| 3725 | * |
| 3726 | * Explicitly do a load-store to ensure the intermediate value never hits |
| 3727 | * memory. This allows lockless observations without ever seeing the negative |
| 3728 | * values. |
| 3729 | */ |
| 3730 | #define add_positive(_ptr, _val) do { \ |
| 3731 | typeof(_ptr) ptr = (_ptr); \ |
| 3732 | typeof(_val) val = (_val); \ |
| 3733 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ |
| 3734 | \ |
| 3735 | res = var + val; \ |
| 3736 | \ |
| 3737 | if (val < 0 && res > var) \ |
| 3738 | res = 0; \ |
| 3739 | \ |
| 3740 | WRITE_ONCE(*ptr, res); \ |
| 3741 | } while (0) |
| 3742 | |
| 3743 | /* |
| 3744 | * Unsigned subtract and clamp on underflow. |
| 3745 | * |
| 3746 | * Explicitly do a load-store to ensure the intermediate value never hits |
| 3747 | * memory. This allows lockless observations without ever seeing the negative |
| 3748 | * values. |
| 3749 | */ |
| 3750 | #define sub_positive(_ptr, _val) do { \ |
| 3751 | typeof(_ptr) ptr = (_ptr); \ |
| 3752 | typeof(*ptr) val = (_val); \ |
| 3753 | typeof(*ptr) res, var = READ_ONCE(*ptr); \ |
| 3754 | res = var - val; \ |
| 3755 | if (res > var) \ |
| 3756 | res = 0; \ |
| 3757 | WRITE_ONCE(*ptr, res); \ |
| 3758 | } while (0) |
| 3759 | |
| 3760 | /* |
| 3761 | * Remove and clamp on negative, from a local variable. |
| 3762 | * |
| 3763 | * A variant of sub_positive(), which does not use explicit load-store |
| 3764 | * and is thus optimized for local variable updates. |
| 3765 | */ |
| 3766 | #define lsub_positive(_ptr, _val) do { \ |
| 3767 | typeof(_ptr) ptr = (_ptr); \ |
| 3768 | *ptr -= min_t(typeof(*ptr), *ptr, _val); \ |
| 3769 | } while (0) |
| 3770 | |
| 3771 | #ifdef CONFIG_SMP |
| 3772 | static inline void |
| 3773 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3774 | { |
| 3775 | cfs_rq->avg.load_avg += se->avg.load_avg; |
| 3776 | cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; |
| 3777 | } |
| 3778 | |
| 3779 | static inline void |
| 3780 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 3781 | { |
| 3782 | sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); |
| 3783 | sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); |
| 3784 | /* See update_cfs_rq_load_avg() */ |
| 3785 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, |
| 3786 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); |
| 3787 | } |
| 3788 | #else |
| 3789 | static inline void |
| 3790 | enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } |
| 3791 | static inline void |
| 3792 | dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } |
| 3793 | #endif |
| 3794 | |
| 3795 | static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); |
| 3796 | |
| 3797 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
| 3798 | unsigned long weight) |
| 3799 | { |
| 3800 | bool curr = cfs_rq->curr == se; |
| 3801 | |
| 3802 | if (se->on_rq) { |
| 3803 | /* commit outstanding execution time */ |
| 3804 | update_curr(cfs_rq); |
| 3805 | update_entity_lag(cfs_rq, se); |
| 3806 | se->deadline -= se->vruntime; |
| 3807 | se->rel_deadline = 1; |
| 3808 | cfs_rq->nr_queued--; |
| 3809 | if (!curr) |
| 3810 | __dequeue_entity(cfs_rq, se); |
| 3811 | update_load_sub(&cfs_rq->load, se->load.weight); |
| 3812 | } |
| 3813 | dequeue_load_avg(cfs_rq, se); |
| 3814 | |
| 3815 | /* |
| 3816 | * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), |
| 3817 | * we need to scale se->vlag when w_i changes. |
| 3818 | */ |
| 3819 | se->vlag = div_s64(se->vlag * se->load.weight, weight); |
| 3820 | if (se->rel_deadline) |
| 3821 | se->deadline = div_s64(se->deadline * se->load.weight, weight); |
| 3822 | |
| 3823 | update_load_set(&se->load, weight); |
| 3824 | |
| 3825 | #ifdef CONFIG_SMP |
| 3826 | do { |
| 3827 | u32 divider = get_pelt_divider(&se->avg); |
| 3828 | |
| 3829 | se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); |
| 3830 | } while (0); |
| 3831 | #endif |
| 3832 | |
| 3833 | enqueue_load_avg(cfs_rq, se); |
| 3834 | if (se->on_rq) { |
| 3835 | place_entity(cfs_rq, se, 0); |
| 3836 | update_load_add(&cfs_rq->load, se->load.weight); |
| 3837 | if (!curr) |
| 3838 | __enqueue_entity(cfs_rq, se); |
| 3839 | cfs_rq->nr_queued++; |
| 3840 | |
| 3841 | /* |
| 3842 | * The entity's vruntime has been adjusted, so let's check |
| 3843 | * whether the rq-wide min_vruntime needs updated too. Since |
| 3844 | * the calculations above require stable min_vruntime rather |
| 3845 | * than up-to-date one, we do the update at the end of the |
| 3846 | * reweight process. |
| 3847 | */ |
| 3848 | update_min_vruntime(cfs_rq); |
| 3849 | } |
| 3850 | } |
| 3851 | |
| 3852 | static void reweight_task_fair(struct rq *rq, struct task_struct *p, |
| 3853 | const struct load_weight *lw) |
| 3854 | { |
| 3855 | struct sched_entity *se = &p->se; |
| 3856 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 3857 | struct load_weight *load = &se->load; |
| 3858 | |
| 3859 | reweight_entity(cfs_rq, se, lw->weight); |
| 3860 | load->inv_weight = lw->inv_weight; |
| 3861 | } |
| 3862 | |
| 3863 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); |
| 3864 | |
| 3865 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 3866 | #ifdef CONFIG_SMP |
| 3867 | /* |
| 3868 | * All this does is approximate the hierarchical proportion which includes that |
| 3869 | * global sum we all love to hate. |
| 3870 | * |
| 3871 | * That is, the weight of a group entity, is the proportional share of the |
| 3872 | * group weight based on the group runqueue weights. That is: |
| 3873 | * |
| 3874 | * tg->weight * grq->load.weight |
| 3875 | * ge->load.weight = ----------------------------- (1) |
| 3876 | * \Sum grq->load.weight |
| 3877 | * |
| 3878 | * Now, because computing that sum is prohibitively expensive to compute (been |
| 3879 | * there, done that) we approximate it with this average stuff. The average |
| 3880 | * moves slower and therefore the approximation is cheaper and more stable. |
| 3881 | * |
| 3882 | * So instead of the above, we substitute: |
| 3883 | * |
| 3884 | * grq->load.weight -> grq->avg.load_avg (2) |
| 3885 | * |
| 3886 | * which yields the following: |
| 3887 | * |
| 3888 | * tg->weight * grq->avg.load_avg |
| 3889 | * ge->load.weight = ------------------------------ (3) |
| 3890 | * tg->load_avg |
| 3891 | * |
| 3892 | * Where: tg->load_avg ~= \Sum grq->avg.load_avg |
| 3893 | * |
| 3894 | * That is shares_avg, and it is right (given the approximation (2)). |
| 3895 | * |
| 3896 | * The problem with it is that because the average is slow -- it was designed |
| 3897 | * to be exactly that of course -- this leads to transients in boundary |
| 3898 | * conditions. In specific, the case where the group was idle and we start the |
| 3899 | * one task. It takes time for our CPU's grq->avg.load_avg to build up, |
| 3900 | * yielding bad latency etc.. |
| 3901 | * |
| 3902 | * Now, in that special case (1) reduces to: |
| 3903 | * |
| 3904 | * tg->weight * grq->load.weight |
| 3905 | * ge->load.weight = ----------------------------- = tg->weight (4) |
| 3906 | * grp->load.weight |
| 3907 | * |
| 3908 | * That is, the sum collapses because all other CPUs are idle; the UP scenario. |
| 3909 | * |
| 3910 | * So what we do is modify our approximation (3) to approach (4) in the (near) |
| 3911 | * UP case, like: |
| 3912 | * |
| 3913 | * ge->load.weight = |
| 3914 | * |
| 3915 | * tg->weight * grq->load.weight |
| 3916 | * --------------------------------------------------- (5) |
| 3917 | * tg->load_avg - grq->avg.load_avg + grq->load.weight |
| 3918 | * |
| 3919 | * But because grq->load.weight can drop to 0, resulting in a divide by zero, |
| 3920 | * we need to use grq->avg.load_avg as its lower bound, which then gives: |
| 3921 | * |
| 3922 | * |
| 3923 | * tg->weight * grq->load.weight |
| 3924 | * ge->load.weight = ----------------------------- (6) |
| 3925 | * tg_load_avg' |
| 3926 | * |
| 3927 | * Where: |
| 3928 | * |
| 3929 | * tg_load_avg' = tg->load_avg - grq->avg.load_avg + |
| 3930 | * max(grq->load.weight, grq->avg.load_avg) |
| 3931 | * |
| 3932 | * And that is shares_weight and is icky. In the (near) UP case it approaches |
| 3933 | * (4) while in the normal case it approaches (3). It consistently |
| 3934 | * overestimates the ge->load.weight and therefore: |
| 3935 | * |
| 3936 | * \Sum ge->load.weight >= tg->weight |
| 3937 | * |
| 3938 | * hence icky! |
| 3939 | */ |
| 3940 | static long calc_group_shares(struct cfs_rq *cfs_rq) |
| 3941 | { |
| 3942 | long tg_weight, tg_shares, load, shares; |
| 3943 | struct task_group *tg = cfs_rq->tg; |
| 3944 | |
| 3945 | tg_shares = READ_ONCE(tg->shares); |
| 3946 | |
| 3947 | load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); |
| 3948 | |
| 3949 | tg_weight = atomic_long_read(&tg->load_avg); |
| 3950 | |
| 3951 | /* Ensure tg_weight >= load */ |
| 3952 | tg_weight -= cfs_rq->tg_load_avg_contrib; |
| 3953 | tg_weight += load; |
| 3954 | |
| 3955 | shares = (tg_shares * load); |
| 3956 | if (tg_weight) |
| 3957 | shares /= tg_weight; |
| 3958 | |
| 3959 | /* |
| 3960 | * MIN_SHARES has to be unscaled here to support per-CPU partitioning |
| 3961 | * of a group with small tg->shares value. It is a floor value which is |
| 3962 | * assigned as a minimum load.weight to the sched_entity representing |
| 3963 | * the group on a CPU. |
| 3964 | * |
| 3965 | * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 |
| 3966 | * on an 8-core system with 8 tasks each runnable on one CPU shares has |
| 3967 | * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In |
| 3968 | * case no task is runnable on a CPU MIN_SHARES=2 should be returned |
| 3969 | * instead of 0. |
| 3970 | */ |
| 3971 | return clamp_t(long, shares, MIN_SHARES, tg_shares); |
| 3972 | } |
| 3973 | #endif /* CONFIG_SMP */ |
| 3974 | |
| 3975 | /* |
| 3976 | * Recomputes the group entity based on the current state of its group |
| 3977 | * runqueue. |
| 3978 | */ |
| 3979 | static void update_cfs_group(struct sched_entity *se) |
| 3980 | { |
| 3981 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
| 3982 | long shares; |
| 3983 | |
| 3984 | /* |
| 3985 | * When a group becomes empty, preserve its weight. This matters for |
| 3986 | * DELAY_DEQUEUE. |
| 3987 | */ |
| 3988 | if (!gcfs_rq || !gcfs_rq->load.weight) |
| 3989 | return; |
| 3990 | |
| 3991 | if (throttled_hierarchy(gcfs_rq)) |
| 3992 | return; |
| 3993 | |
| 3994 | #ifndef CONFIG_SMP |
| 3995 | shares = READ_ONCE(gcfs_rq->tg->shares); |
| 3996 | #else |
| 3997 | shares = calc_group_shares(gcfs_rq); |
| 3998 | #endif |
| 3999 | if (unlikely(se->load.weight != shares)) |
| 4000 | reweight_entity(cfs_rq_of(se), se, shares); |
| 4001 | } |
| 4002 | |
| 4003 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
| 4004 | static inline void update_cfs_group(struct sched_entity *se) |
| 4005 | { |
| 4006 | } |
| 4007 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 4008 | |
| 4009 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) |
| 4010 | { |
| 4011 | struct rq *rq = rq_of(cfs_rq); |
| 4012 | |
| 4013 | if (&rq->cfs == cfs_rq) { |
| 4014 | /* |
| 4015 | * There are a few boundary cases this might miss but it should |
| 4016 | * get called often enough that that should (hopefully) not be |
| 4017 | * a real problem. |
| 4018 | * |
| 4019 | * It will not get called when we go idle, because the idle |
| 4020 | * thread is a different class (!fair), nor will the utilization |
| 4021 | * number include things like RT tasks. |
| 4022 | * |
| 4023 | * As is, the util number is not freq-invariant (we'd have to |
| 4024 | * implement arch_scale_freq_capacity() for that). |
| 4025 | * |
| 4026 | * See cpu_util_cfs(). |
| 4027 | */ |
| 4028 | cpufreq_update_util(rq, flags); |
| 4029 | } |
| 4030 | } |
| 4031 | |
| 4032 | #ifdef CONFIG_SMP |
| 4033 | static inline bool load_avg_is_decayed(struct sched_avg *sa) |
| 4034 | { |
| 4035 | if (sa->load_sum) |
| 4036 | return false; |
| 4037 | |
| 4038 | if (sa->util_sum) |
| 4039 | return false; |
| 4040 | |
| 4041 | if (sa->runnable_sum) |
| 4042 | return false; |
| 4043 | |
| 4044 | /* |
| 4045 | * _avg must be null when _sum are null because _avg = _sum / divider |
| 4046 | * Make sure that rounding and/or propagation of PELT values never |
| 4047 | * break this. |
| 4048 | */ |
| 4049 | WARN_ON_ONCE(sa->load_avg || |
| 4050 | sa->util_avg || |
| 4051 | sa->runnable_avg); |
| 4052 | |
| 4053 | return true; |
| 4054 | } |
| 4055 | |
| 4056 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) |
| 4057 | { |
| 4058 | return u64_u32_load_copy(cfs_rq->avg.last_update_time, |
| 4059 | cfs_rq->last_update_time_copy); |
| 4060 | } |
| 4061 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 4062 | /* |
| 4063 | * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list |
| 4064 | * immediately before a parent cfs_rq, and cfs_rqs are removed from the list |
| 4065 | * bottom-up, we only have to test whether the cfs_rq before us on the list |
| 4066 | * is our child. |
| 4067 | * If cfs_rq is not on the list, test whether a child needs its to be added to |
| 4068 | * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). |
| 4069 | */ |
| 4070 | static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) |
| 4071 | { |
| 4072 | struct cfs_rq *prev_cfs_rq; |
| 4073 | struct list_head *prev; |
| 4074 | struct rq *rq = rq_of(cfs_rq); |
| 4075 | |
| 4076 | if (cfs_rq->on_list) { |
| 4077 | prev = cfs_rq->leaf_cfs_rq_list.prev; |
| 4078 | } else { |
| 4079 | prev = rq->tmp_alone_branch; |
| 4080 | } |
| 4081 | |
| 4082 | if (prev == &rq->leaf_cfs_rq_list) |
| 4083 | return false; |
| 4084 | |
| 4085 | prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); |
| 4086 | |
| 4087 | return (prev_cfs_rq->tg->parent == cfs_rq->tg); |
| 4088 | } |
| 4089 | |
| 4090 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
| 4091 | { |
| 4092 | if (cfs_rq->load.weight) |
| 4093 | return false; |
| 4094 | |
| 4095 | if (!load_avg_is_decayed(&cfs_rq->avg)) |
| 4096 | return false; |
| 4097 | |
| 4098 | if (child_cfs_rq_on_list(cfs_rq)) |
| 4099 | return false; |
| 4100 | |
| 4101 | return true; |
| 4102 | } |
| 4103 | |
| 4104 | /** |
| 4105 | * update_tg_load_avg - update the tg's load avg |
| 4106 | * @cfs_rq: the cfs_rq whose avg changed |
| 4107 | * |
| 4108 | * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. |
| 4109 | * However, because tg->load_avg is a global value there are performance |
| 4110 | * considerations. |
| 4111 | * |
| 4112 | * In order to avoid having to look at the other cfs_rq's, we use a |
| 4113 | * differential update where we store the last value we propagated. This in |
| 4114 | * turn allows skipping updates if the differential is 'small'. |
| 4115 | * |
| 4116 | * Updating tg's load_avg is necessary before update_cfs_share(). |
| 4117 | */ |
| 4118 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) |
| 4119 | { |
| 4120 | long delta; |
| 4121 | u64 now; |
| 4122 | |
| 4123 | /* |
| 4124 | * No need to update load_avg for root_task_group as it is not used. |
| 4125 | */ |
| 4126 | if (cfs_rq->tg == &root_task_group) |
| 4127 | return; |
| 4128 | |
| 4129 | /* rq has been offline and doesn't contribute to the share anymore: */ |
| 4130 | if (!cpu_active(cpu_of(rq_of(cfs_rq)))) |
| 4131 | return; |
| 4132 | |
| 4133 | /* |
| 4134 | * For migration heavy workloads, access to tg->load_avg can be |
| 4135 | * unbound. Limit the update rate to at most once per ms. |
| 4136 | */ |
| 4137 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); |
| 4138 | if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) |
| 4139 | return; |
| 4140 | |
| 4141 | delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; |
| 4142 | if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { |
| 4143 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
| 4144 | cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; |
| 4145 | cfs_rq->last_update_tg_load_avg = now; |
| 4146 | } |
| 4147 | } |
| 4148 | |
| 4149 | static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) |
| 4150 | { |
| 4151 | long delta; |
| 4152 | u64 now; |
| 4153 | |
| 4154 | /* |
| 4155 | * No need to update load_avg for root_task_group, as it is not used. |
| 4156 | */ |
| 4157 | if (cfs_rq->tg == &root_task_group) |
| 4158 | return; |
| 4159 | |
| 4160 | now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); |
| 4161 | delta = 0 - cfs_rq->tg_load_avg_contrib; |
| 4162 | atomic_long_add(delta, &cfs_rq->tg->load_avg); |
| 4163 | cfs_rq->tg_load_avg_contrib = 0; |
| 4164 | cfs_rq->last_update_tg_load_avg = now; |
| 4165 | } |
| 4166 | |
| 4167 | /* CPU offline callback: */ |
| 4168 | static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) |
| 4169 | { |
| 4170 | struct task_group *tg; |
| 4171 | |
| 4172 | lockdep_assert_rq_held(rq); |
| 4173 | |
| 4174 | /* |
| 4175 | * The rq clock has already been updated in |
| 4176 | * set_rq_offline(), so we should skip updating |
| 4177 | * the rq clock again in unthrottle_cfs_rq(). |
| 4178 | */ |
| 4179 | rq_clock_start_loop_update(rq); |
| 4180 | |
| 4181 | rcu_read_lock(); |
| 4182 | list_for_each_entry_rcu(tg, &task_groups, list) { |
| 4183 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 4184 | |
| 4185 | clear_tg_load_avg(cfs_rq); |
| 4186 | } |
| 4187 | rcu_read_unlock(); |
| 4188 | |
| 4189 | rq_clock_stop_loop_update(rq); |
| 4190 | } |
| 4191 | |
| 4192 | /* |
| 4193 | * Called within set_task_rq() right before setting a task's CPU. The |
| 4194 | * caller only guarantees p->pi_lock is held; no other assumptions, |
| 4195 | * including the state of rq->lock, should be made. |
| 4196 | */ |
| 4197 | void set_task_rq_fair(struct sched_entity *se, |
| 4198 | struct cfs_rq *prev, struct cfs_rq *next) |
| 4199 | { |
| 4200 | u64 p_last_update_time; |
| 4201 | u64 n_last_update_time; |
| 4202 | |
| 4203 | if (!sched_feat(ATTACH_AGE_LOAD)) |
| 4204 | return; |
| 4205 | |
| 4206 | /* |
| 4207 | * We are supposed to update the task to "current" time, then its up to |
| 4208 | * date and ready to go to new CPU/cfs_rq. But we have difficulty in |
| 4209 | * getting what current time is, so simply throw away the out-of-date |
| 4210 | * time. This will result in the wakee task is less decayed, but giving |
| 4211 | * the wakee more load sounds not bad. |
| 4212 | */ |
| 4213 | if (!(se->avg.last_update_time && prev)) |
| 4214 | return; |
| 4215 | |
| 4216 | p_last_update_time = cfs_rq_last_update_time(prev); |
| 4217 | n_last_update_time = cfs_rq_last_update_time(next); |
| 4218 | |
| 4219 | __update_load_avg_blocked_se(p_last_update_time, se); |
| 4220 | se->avg.last_update_time = n_last_update_time; |
| 4221 | } |
| 4222 | |
| 4223 | /* |
| 4224 | * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to |
| 4225 | * propagate its contribution. The key to this propagation is the invariant |
| 4226 | * that for each group: |
| 4227 | * |
| 4228 | * ge->avg == grq->avg (1) |
| 4229 | * |
| 4230 | * _IFF_ we look at the pure running and runnable sums. Because they |
| 4231 | * represent the very same entity, just at different points in the hierarchy. |
| 4232 | * |
| 4233 | * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial |
| 4234 | * and simply copies the running/runnable sum over (but still wrong, because |
| 4235 | * the group entity and group rq do not have their PELT windows aligned). |
| 4236 | * |
| 4237 | * However, update_tg_cfs_load() is more complex. So we have: |
| 4238 | * |
| 4239 | * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) |
| 4240 | * |
| 4241 | * And since, like util, the runnable part should be directly transferable, |
| 4242 | * the following would _appear_ to be the straight forward approach: |
| 4243 | * |
| 4244 | * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) |
| 4245 | * |
| 4246 | * And per (1) we have: |
| 4247 | * |
| 4248 | * ge->avg.runnable_avg == grq->avg.runnable_avg |
| 4249 | * |
| 4250 | * Which gives: |
| 4251 | * |
| 4252 | * ge->load.weight * grq->avg.load_avg |
| 4253 | * ge->avg.load_avg = ----------------------------------- (4) |
| 4254 | * grq->load.weight |
| 4255 | * |
| 4256 | * Except that is wrong! |
| 4257 | * |
| 4258 | * Because while for entities historical weight is not important and we |
| 4259 | * really only care about our future and therefore can consider a pure |
| 4260 | * runnable sum, runqueues can NOT do this. |
| 4261 | * |
| 4262 | * We specifically want runqueues to have a load_avg that includes |
| 4263 | * historical weights. Those represent the blocked load, the load we expect |
| 4264 | * to (shortly) return to us. This only works by keeping the weights as |
| 4265 | * integral part of the sum. We therefore cannot decompose as per (3). |
| 4266 | * |
| 4267 | * Another reason this doesn't work is that runnable isn't a 0-sum entity. |
| 4268 | * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the |
| 4269 | * rq itself is runnable anywhere between 2/3 and 1 depending on how the |
| 4270 | * runnable section of these tasks overlap (or not). If they were to perfectly |
| 4271 | * align the rq as a whole would be runnable 2/3 of the time. If however we |
| 4272 | * always have at least 1 runnable task, the rq as a whole is always runnable. |
| 4273 | * |
| 4274 | * So we'll have to approximate.. :/ |
| 4275 | * |
| 4276 | * Given the constraint: |
| 4277 | * |
| 4278 | * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX |
| 4279 | * |
| 4280 | * We can construct a rule that adds runnable to a rq by assuming minimal |
| 4281 | * overlap. |
| 4282 | * |
| 4283 | * On removal, we'll assume each task is equally runnable; which yields: |
| 4284 | * |
| 4285 | * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight |
| 4286 | * |
| 4287 | * XXX: only do this for the part of runnable > running ? |
| 4288 | * |
| 4289 | */ |
| 4290 | static inline void |
| 4291 | update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
| 4292 | { |
| 4293 | long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; |
| 4294 | u32 new_sum, divider; |
| 4295 | |
| 4296 | /* Nothing to update */ |
| 4297 | if (!delta_avg) |
| 4298 | return; |
| 4299 | |
| 4300 | /* |
| 4301 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. |
| 4302 | * See ___update_load_avg() for details. |
| 4303 | */ |
| 4304 | divider = get_pelt_divider(&cfs_rq->avg); |
| 4305 | |
| 4306 | |
| 4307 | /* Set new sched_entity's utilization */ |
| 4308 | se->avg.util_avg = gcfs_rq->avg.util_avg; |
| 4309 | new_sum = se->avg.util_avg * divider; |
| 4310 | delta_sum = (long)new_sum - (long)se->avg.util_sum; |
| 4311 | se->avg.util_sum = new_sum; |
| 4312 | |
| 4313 | /* Update parent cfs_rq utilization */ |
| 4314 | add_positive(&cfs_rq->avg.util_avg, delta_avg); |
| 4315 | add_positive(&cfs_rq->avg.util_sum, delta_sum); |
| 4316 | |
| 4317 | /* See update_cfs_rq_load_avg() */ |
| 4318 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, |
| 4319 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); |
| 4320 | } |
| 4321 | |
| 4322 | static inline void |
| 4323 | update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
| 4324 | { |
| 4325 | long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; |
| 4326 | u32 new_sum, divider; |
| 4327 | |
| 4328 | /* Nothing to update */ |
| 4329 | if (!delta_avg) |
| 4330 | return; |
| 4331 | |
| 4332 | /* |
| 4333 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. |
| 4334 | * See ___update_load_avg() for details. |
| 4335 | */ |
| 4336 | divider = get_pelt_divider(&cfs_rq->avg); |
| 4337 | |
| 4338 | /* Set new sched_entity's runnable */ |
| 4339 | se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; |
| 4340 | new_sum = se->avg.runnable_avg * divider; |
| 4341 | delta_sum = (long)new_sum - (long)se->avg.runnable_sum; |
| 4342 | se->avg.runnable_sum = new_sum; |
| 4343 | |
| 4344 | /* Update parent cfs_rq runnable */ |
| 4345 | add_positive(&cfs_rq->avg.runnable_avg, delta_avg); |
| 4346 | add_positive(&cfs_rq->avg.runnable_sum, delta_sum); |
| 4347 | /* See update_cfs_rq_load_avg() */ |
| 4348 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, |
| 4349 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); |
| 4350 | } |
| 4351 | |
| 4352 | static inline void |
| 4353 | update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) |
| 4354 | { |
| 4355 | long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; |
| 4356 | unsigned long load_avg; |
| 4357 | u64 load_sum = 0; |
| 4358 | s64 delta_sum; |
| 4359 | u32 divider; |
| 4360 | |
| 4361 | if (!runnable_sum) |
| 4362 | return; |
| 4363 | |
| 4364 | gcfs_rq->prop_runnable_sum = 0; |
| 4365 | |
| 4366 | /* |
| 4367 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. |
| 4368 | * See ___update_load_avg() for details. |
| 4369 | */ |
| 4370 | divider = get_pelt_divider(&cfs_rq->avg); |
| 4371 | |
| 4372 | if (runnable_sum >= 0) { |
| 4373 | /* |
| 4374 | * Add runnable; clip at LOAD_AVG_MAX. Reflects that until |
| 4375 | * the CPU is saturated running == runnable. |
| 4376 | */ |
| 4377 | runnable_sum += se->avg.load_sum; |
| 4378 | runnable_sum = min_t(long, runnable_sum, divider); |
| 4379 | } else { |
| 4380 | /* |
| 4381 | * Estimate the new unweighted runnable_sum of the gcfs_rq by |
| 4382 | * assuming all tasks are equally runnable. |
| 4383 | */ |
| 4384 | if (scale_load_down(gcfs_rq->load.weight)) { |
| 4385 | load_sum = div_u64(gcfs_rq->avg.load_sum, |
| 4386 | scale_load_down(gcfs_rq->load.weight)); |
| 4387 | } |
| 4388 | |
| 4389 | /* But make sure to not inflate se's runnable */ |
| 4390 | runnable_sum = min(se->avg.load_sum, load_sum); |
| 4391 | } |
| 4392 | |
| 4393 | /* |
| 4394 | * runnable_sum can't be lower than running_sum |
| 4395 | * Rescale running sum to be in the same range as runnable sum |
| 4396 | * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] |
| 4397 | * runnable_sum is in [0 : LOAD_AVG_MAX] |
| 4398 | */ |
| 4399 | running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; |
| 4400 | runnable_sum = max(runnable_sum, running_sum); |
| 4401 | |
| 4402 | load_sum = se_weight(se) * runnable_sum; |
| 4403 | load_avg = div_u64(load_sum, divider); |
| 4404 | |
| 4405 | delta_avg = load_avg - se->avg.load_avg; |
| 4406 | if (!delta_avg) |
| 4407 | return; |
| 4408 | |
| 4409 | delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; |
| 4410 | |
| 4411 | se->avg.load_sum = runnable_sum; |
| 4412 | se->avg.load_avg = load_avg; |
| 4413 | add_positive(&cfs_rq->avg.load_avg, delta_avg); |
| 4414 | add_positive(&cfs_rq->avg.load_sum, delta_sum); |
| 4415 | /* See update_cfs_rq_load_avg() */ |
| 4416 | cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, |
| 4417 | cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); |
| 4418 | } |
| 4419 | |
| 4420 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) |
| 4421 | { |
| 4422 | cfs_rq->propagate = 1; |
| 4423 | cfs_rq->prop_runnable_sum += runnable_sum; |
| 4424 | } |
| 4425 | |
| 4426 | /* Update task and its cfs_rq load average */ |
| 4427 | static inline int propagate_entity_load_avg(struct sched_entity *se) |
| 4428 | { |
| 4429 | struct cfs_rq *cfs_rq, *gcfs_rq; |
| 4430 | |
| 4431 | if (entity_is_task(se)) |
| 4432 | return 0; |
| 4433 | |
| 4434 | gcfs_rq = group_cfs_rq(se); |
| 4435 | if (!gcfs_rq->propagate) |
| 4436 | return 0; |
| 4437 | |
| 4438 | gcfs_rq->propagate = 0; |
| 4439 | |
| 4440 | cfs_rq = cfs_rq_of(se); |
| 4441 | |
| 4442 | add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); |
| 4443 | |
| 4444 | update_tg_cfs_util(cfs_rq, se, gcfs_rq); |
| 4445 | update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); |
| 4446 | update_tg_cfs_load(cfs_rq, se, gcfs_rq); |
| 4447 | |
| 4448 | trace_pelt_cfs_tp(cfs_rq); |
| 4449 | trace_pelt_se_tp(se); |
| 4450 | |
| 4451 | return 1; |
| 4452 | } |
| 4453 | |
| 4454 | /* |
| 4455 | * Check if we need to update the load and the utilization of a blocked |
| 4456 | * group_entity: |
| 4457 | */ |
| 4458 | static inline bool skip_blocked_update(struct sched_entity *se) |
| 4459 | { |
| 4460 | struct cfs_rq *gcfs_rq = group_cfs_rq(se); |
| 4461 | |
| 4462 | /* |
| 4463 | * If sched_entity still have not zero load or utilization, we have to |
| 4464 | * decay it: |
| 4465 | */ |
| 4466 | if (se->avg.load_avg || se->avg.util_avg) |
| 4467 | return false; |
| 4468 | |
| 4469 | /* |
| 4470 | * If there is a pending propagation, we have to update the load and |
| 4471 | * the utilization of the sched_entity: |
| 4472 | */ |
| 4473 | if (gcfs_rq->propagate) |
| 4474 | return false; |
| 4475 | |
| 4476 | /* |
| 4477 | * Otherwise, the load and the utilization of the sched_entity is |
| 4478 | * already zero and there is no pending propagation, so it will be a |
| 4479 | * waste of time to try to decay it: |
| 4480 | */ |
| 4481 | return true; |
| 4482 | } |
| 4483 | |
| 4484 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
| 4485 | |
| 4486 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} |
| 4487 | |
| 4488 | static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} |
| 4489 | |
| 4490 | static inline int propagate_entity_load_avg(struct sched_entity *se) |
| 4491 | { |
| 4492 | return 0; |
| 4493 | } |
| 4494 | |
| 4495 | static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} |
| 4496 | |
| 4497 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 4498 | |
| 4499 | #ifdef CONFIG_NO_HZ_COMMON |
| 4500 | static inline void migrate_se_pelt_lag(struct sched_entity *se) |
| 4501 | { |
| 4502 | u64 throttled = 0, now, lut; |
| 4503 | struct cfs_rq *cfs_rq; |
| 4504 | struct rq *rq; |
| 4505 | bool is_idle; |
| 4506 | |
| 4507 | if (load_avg_is_decayed(&se->avg)) |
| 4508 | return; |
| 4509 | |
| 4510 | cfs_rq = cfs_rq_of(se); |
| 4511 | rq = rq_of(cfs_rq); |
| 4512 | |
| 4513 | rcu_read_lock(); |
| 4514 | is_idle = is_idle_task(rcu_dereference(rq->curr)); |
| 4515 | rcu_read_unlock(); |
| 4516 | |
| 4517 | /* |
| 4518 | * The lag estimation comes with a cost we don't want to pay all the |
| 4519 | * time. Hence, limiting to the case where the source CPU is idle and |
| 4520 | * we know we are at the greatest risk to have an outdated clock. |
| 4521 | */ |
| 4522 | if (!is_idle) |
| 4523 | return; |
| 4524 | |
| 4525 | /* |
| 4526 | * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: |
| 4527 | * |
| 4528 | * last_update_time (the cfs_rq's last_update_time) |
| 4529 | * = cfs_rq_clock_pelt()@cfs_rq_idle |
| 4530 | * = rq_clock_pelt()@cfs_rq_idle |
| 4531 | * - cfs->throttled_clock_pelt_time@cfs_rq_idle |
| 4532 | * |
| 4533 | * cfs_idle_lag (delta between rq's update and cfs_rq's update) |
| 4534 | * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle |
| 4535 | * |
| 4536 | * rq_idle_lag (delta between now and rq's update) |
| 4537 | * = sched_clock_cpu() - rq_clock()@rq_idle |
| 4538 | * |
| 4539 | * We can then write: |
| 4540 | * |
| 4541 | * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + |
| 4542 | * sched_clock_cpu() - rq_clock()@rq_idle |
| 4543 | * Where: |
| 4544 | * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle |
| 4545 | * rq_clock()@rq_idle is rq->clock_idle |
| 4546 | * cfs->throttled_clock_pelt_time@cfs_rq_idle |
| 4547 | * is cfs_rq->throttled_pelt_idle |
| 4548 | */ |
| 4549 | |
| 4550 | #ifdef CONFIG_CFS_BANDWIDTH |
| 4551 | throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); |
| 4552 | /* The clock has been stopped for throttling */ |
| 4553 | if (throttled == U64_MAX) |
| 4554 | return; |
| 4555 | #endif |
| 4556 | now = u64_u32_load(rq->clock_pelt_idle); |
| 4557 | /* |
| 4558 | * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case |
| 4559 | * is observed the old clock_pelt_idle value and the new clock_idle, |
| 4560 | * which lead to an underestimation. The opposite would lead to an |
| 4561 | * overestimation. |
| 4562 | */ |
| 4563 | smp_rmb(); |
| 4564 | lut = cfs_rq_last_update_time(cfs_rq); |
| 4565 | |
| 4566 | now -= throttled; |
| 4567 | if (now < lut) |
| 4568 | /* |
| 4569 | * cfs_rq->avg.last_update_time is more recent than our |
| 4570 | * estimation, let's use it. |
| 4571 | */ |
| 4572 | now = lut; |
| 4573 | else |
| 4574 | now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); |
| 4575 | |
| 4576 | __update_load_avg_blocked_se(now, se); |
| 4577 | } |
| 4578 | #else |
| 4579 | static void migrate_se_pelt_lag(struct sched_entity *se) {} |
| 4580 | #endif |
| 4581 | |
| 4582 | /** |
| 4583 | * update_cfs_rq_load_avg - update the cfs_rq's load/util averages |
| 4584 | * @now: current time, as per cfs_rq_clock_pelt() |
| 4585 | * @cfs_rq: cfs_rq to update |
| 4586 | * |
| 4587 | * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) |
| 4588 | * avg. The immediate corollary is that all (fair) tasks must be attached. |
| 4589 | * |
| 4590 | * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. |
| 4591 | * |
| 4592 | * Return: true if the load decayed or we removed load. |
| 4593 | * |
| 4594 | * Since both these conditions indicate a changed cfs_rq->avg.load we should |
| 4595 | * call update_tg_load_avg() when this function returns true. |
| 4596 | */ |
| 4597 | static inline int |
| 4598 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) |
| 4599 | { |
| 4600 | unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; |
| 4601 | struct sched_avg *sa = &cfs_rq->avg; |
| 4602 | int decayed = 0; |
| 4603 | |
| 4604 | if (cfs_rq->removed.nr) { |
| 4605 | unsigned long r; |
| 4606 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
| 4607 | |
| 4608 | raw_spin_lock(&cfs_rq->removed.lock); |
| 4609 | swap(cfs_rq->removed.util_avg, removed_util); |
| 4610 | swap(cfs_rq->removed.load_avg, removed_load); |
| 4611 | swap(cfs_rq->removed.runnable_avg, removed_runnable); |
| 4612 | cfs_rq->removed.nr = 0; |
| 4613 | raw_spin_unlock(&cfs_rq->removed.lock); |
| 4614 | |
| 4615 | r = removed_load; |
| 4616 | sub_positive(&sa->load_avg, r); |
| 4617 | sub_positive(&sa->load_sum, r * divider); |
| 4618 | /* See sa->util_sum below */ |
| 4619 | sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); |
| 4620 | |
| 4621 | r = removed_util; |
| 4622 | sub_positive(&sa->util_avg, r); |
| 4623 | sub_positive(&sa->util_sum, r * divider); |
| 4624 | /* |
| 4625 | * Because of rounding, se->util_sum might ends up being +1 more than |
| 4626 | * cfs->util_sum. Although this is not a problem by itself, detaching |
| 4627 | * a lot of tasks with the rounding problem between 2 updates of |
| 4628 | * util_avg (~1ms) can make cfs->util_sum becoming null whereas |
| 4629 | * cfs_util_avg is not. |
| 4630 | * Check that util_sum is still above its lower bound for the new |
| 4631 | * util_avg. Given that period_contrib might have moved since the last |
| 4632 | * sync, we are only sure that util_sum must be above or equal to |
| 4633 | * util_avg * minimum possible divider |
| 4634 | */ |
| 4635 | sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); |
| 4636 | |
| 4637 | r = removed_runnable; |
| 4638 | sub_positive(&sa->runnable_avg, r); |
| 4639 | sub_positive(&sa->runnable_sum, r * divider); |
| 4640 | /* See sa->util_sum above */ |
| 4641 | sa->runnable_sum = max_t(u32, sa->runnable_sum, |
| 4642 | sa->runnable_avg * PELT_MIN_DIVIDER); |
| 4643 | |
| 4644 | /* |
| 4645 | * removed_runnable is the unweighted version of removed_load so we |
| 4646 | * can use it to estimate removed_load_sum. |
| 4647 | */ |
| 4648 | add_tg_cfs_propagate(cfs_rq, |
| 4649 | -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); |
| 4650 | |
| 4651 | decayed = 1; |
| 4652 | } |
| 4653 | |
| 4654 | decayed |= __update_load_avg_cfs_rq(now, cfs_rq); |
| 4655 | u64_u32_store_copy(sa->last_update_time, |
| 4656 | cfs_rq->last_update_time_copy, |
| 4657 | sa->last_update_time); |
| 4658 | return decayed; |
| 4659 | } |
| 4660 | |
| 4661 | /** |
| 4662 | * attach_entity_load_avg - attach this entity to its cfs_rq load avg |
| 4663 | * @cfs_rq: cfs_rq to attach to |
| 4664 | * @se: sched_entity to attach |
| 4665 | * |
| 4666 | * Must call update_cfs_rq_load_avg() before this, since we rely on |
| 4667 | * cfs_rq->avg.last_update_time being current. |
| 4668 | */ |
| 4669 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 4670 | { |
| 4671 | /* |
| 4672 | * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. |
| 4673 | * See ___update_load_avg() for details. |
| 4674 | */ |
| 4675 | u32 divider = get_pelt_divider(&cfs_rq->avg); |
| 4676 | |
| 4677 | /* |
| 4678 | * When we attach the @se to the @cfs_rq, we must align the decay |
| 4679 | * window because without that, really weird and wonderful things can |
| 4680 | * happen. |
| 4681 | * |
| 4682 | * XXX illustrate |
| 4683 | */ |
| 4684 | se->avg.last_update_time = cfs_rq->avg.last_update_time; |
| 4685 | se->avg.period_contrib = cfs_rq->avg.period_contrib; |
| 4686 | |
| 4687 | /* |
| 4688 | * Hell(o) Nasty stuff.. we need to recompute _sum based on the new |
| 4689 | * period_contrib. This isn't strictly correct, but since we're |
| 4690 | * entirely outside of the PELT hierarchy, nobody cares if we truncate |
| 4691 | * _sum a little. |
| 4692 | */ |
| 4693 | se->avg.util_sum = se->avg.util_avg * divider; |
| 4694 | |
| 4695 | se->avg.runnable_sum = se->avg.runnable_avg * divider; |
| 4696 | |
| 4697 | se->avg.load_sum = se->avg.load_avg * divider; |
| 4698 | if (se_weight(se) < se->avg.load_sum) |
| 4699 | se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); |
| 4700 | else |
| 4701 | se->avg.load_sum = 1; |
| 4702 | |
| 4703 | enqueue_load_avg(cfs_rq, se); |
| 4704 | cfs_rq->avg.util_avg += se->avg.util_avg; |
| 4705 | cfs_rq->avg.util_sum += se->avg.util_sum; |
| 4706 | cfs_rq->avg.runnable_avg += se->avg.runnable_avg; |
| 4707 | cfs_rq->avg.runnable_sum += se->avg.runnable_sum; |
| 4708 | |
| 4709 | add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); |
| 4710 | |
| 4711 | cfs_rq_util_change(cfs_rq, 0); |
| 4712 | |
| 4713 | trace_pelt_cfs_tp(cfs_rq); |
| 4714 | } |
| 4715 | |
| 4716 | /** |
| 4717 | * detach_entity_load_avg - detach this entity from its cfs_rq load avg |
| 4718 | * @cfs_rq: cfs_rq to detach from |
| 4719 | * @se: sched_entity to detach |
| 4720 | * |
| 4721 | * Must call update_cfs_rq_load_avg() before this, since we rely on |
| 4722 | * cfs_rq->avg.last_update_time being current. |
| 4723 | */ |
| 4724 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 4725 | { |
| 4726 | dequeue_load_avg(cfs_rq, se); |
| 4727 | sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); |
| 4728 | sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); |
| 4729 | /* See update_cfs_rq_load_avg() */ |
| 4730 | cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, |
| 4731 | cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); |
| 4732 | |
| 4733 | sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); |
| 4734 | sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); |
| 4735 | /* See update_cfs_rq_load_avg() */ |
| 4736 | cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, |
| 4737 | cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); |
| 4738 | |
| 4739 | add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); |
| 4740 | |
| 4741 | cfs_rq_util_change(cfs_rq, 0); |
| 4742 | |
| 4743 | trace_pelt_cfs_tp(cfs_rq); |
| 4744 | } |
| 4745 | |
| 4746 | /* |
| 4747 | * Optional action to be done while updating the load average |
| 4748 | */ |
| 4749 | #define UPDATE_TG 0x1 |
| 4750 | #define SKIP_AGE_LOAD 0x2 |
| 4751 | #define DO_ATTACH 0x4 |
| 4752 | #define DO_DETACH 0x8 |
| 4753 | |
| 4754 | /* Update task and its cfs_rq load average */ |
| 4755 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 4756 | { |
| 4757 | u64 now = cfs_rq_clock_pelt(cfs_rq); |
| 4758 | int decayed; |
| 4759 | |
| 4760 | /* |
| 4761 | * Track task load average for carrying it to new CPU after migrated, and |
| 4762 | * track group sched_entity load average for task_h_load calculation in migration |
| 4763 | */ |
| 4764 | if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) |
| 4765 | __update_load_avg_se(now, cfs_rq, se); |
| 4766 | |
| 4767 | decayed = update_cfs_rq_load_avg(now, cfs_rq); |
| 4768 | decayed |= propagate_entity_load_avg(se); |
| 4769 | |
| 4770 | if (!se->avg.last_update_time && (flags & DO_ATTACH)) { |
| 4771 | |
| 4772 | /* |
| 4773 | * DO_ATTACH means we're here from enqueue_entity(). |
| 4774 | * !last_update_time means we've passed through |
| 4775 | * migrate_task_rq_fair() indicating we migrated. |
| 4776 | * |
| 4777 | * IOW we're enqueueing a task on a new CPU. |
| 4778 | */ |
| 4779 | attach_entity_load_avg(cfs_rq, se); |
| 4780 | update_tg_load_avg(cfs_rq); |
| 4781 | |
| 4782 | } else if (flags & DO_DETACH) { |
| 4783 | /* |
| 4784 | * DO_DETACH means we're here from dequeue_entity() |
| 4785 | * and we are migrating task out of the CPU. |
| 4786 | */ |
| 4787 | detach_entity_load_avg(cfs_rq, se); |
| 4788 | update_tg_load_avg(cfs_rq); |
| 4789 | } else if (decayed) { |
| 4790 | cfs_rq_util_change(cfs_rq, 0); |
| 4791 | |
| 4792 | if (flags & UPDATE_TG) |
| 4793 | update_tg_load_avg(cfs_rq); |
| 4794 | } |
| 4795 | } |
| 4796 | |
| 4797 | /* |
| 4798 | * Synchronize entity load avg of dequeued entity without locking |
| 4799 | * the previous rq. |
| 4800 | */ |
| 4801 | static void sync_entity_load_avg(struct sched_entity *se) |
| 4802 | { |
| 4803 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 4804 | u64 last_update_time; |
| 4805 | |
| 4806 | last_update_time = cfs_rq_last_update_time(cfs_rq); |
| 4807 | __update_load_avg_blocked_se(last_update_time, se); |
| 4808 | } |
| 4809 | |
| 4810 | /* |
| 4811 | * Task first catches up with cfs_rq, and then subtract |
| 4812 | * itself from the cfs_rq (task must be off the queue now). |
| 4813 | */ |
| 4814 | static void remove_entity_load_avg(struct sched_entity *se) |
| 4815 | { |
| 4816 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 4817 | unsigned long flags; |
| 4818 | |
| 4819 | /* |
| 4820 | * tasks cannot exit without having gone through wake_up_new_task() -> |
| 4821 | * enqueue_task_fair() which will have added things to the cfs_rq, |
| 4822 | * so we can remove unconditionally. |
| 4823 | */ |
| 4824 | |
| 4825 | sync_entity_load_avg(se); |
| 4826 | |
| 4827 | raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); |
| 4828 | ++cfs_rq->removed.nr; |
| 4829 | cfs_rq->removed.util_avg += se->avg.util_avg; |
| 4830 | cfs_rq->removed.load_avg += se->avg.load_avg; |
| 4831 | cfs_rq->removed.runnable_avg += se->avg.runnable_avg; |
| 4832 | raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); |
| 4833 | } |
| 4834 | |
| 4835 | static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) |
| 4836 | { |
| 4837 | return cfs_rq->avg.runnable_avg; |
| 4838 | } |
| 4839 | |
| 4840 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) |
| 4841 | { |
| 4842 | return cfs_rq->avg.load_avg; |
| 4843 | } |
| 4844 | |
| 4845 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); |
| 4846 | |
| 4847 | static inline unsigned long task_util(struct task_struct *p) |
| 4848 | { |
| 4849 | return READ_ONCE(p->se.avg.util_avg); |
| 4850 | } |
| 4851 | |
| 4852 | static inline unsigned long task_runnable(struct task_struct *p) |
| 4853 | { |
| 4854 | return READ_ONCE(p->se.avg.runnable_avg); |
| 4855 | } |
| 4856 | |
| 4857 | static inline unsigned long _task_util_est(struct task_struct *p) |
| 4858 | { |
| 4859 | return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; |
| 4860 | } |
| 4861 | |
| 4862 | static inline unsigned long task_util_est(struct task_struct *p) |
| 4863 | { |
| 4864 | return max(task_util(p), _task_util_est(p)); |
| 4865 | } |
| 4866 | |
| 4867 | static inline void util_est_enqueue(struct cfs_rq *cfs_rq, |
| 4868 | struct task_struct *p) |
| 4869 | { |
| 4870 | unsigned int enqueued; |
| 4871 | |
| 4872 | if (!sched_feat(UTIL_EST)) |
| 4873 | return; |
| 4874 | |
| 4875 | /* Update root cfs_rq's estimated utilization */ |
| 4876 | enqueued = cfs_rq->avg.util_est; |
| 4877 | enqueued += _task_util_est(p); |
| 4878 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
| 4879 | |
| 4880 | trace_sched_util_est_cfs_tp(cfs_rq); |
| 4881 | } |
| 4882 | |
| 4883 | static inline void util_est_dequeue(struct cfs_rq *cfs_rq, |
| 4884 | struct task_struct *p) |
| 4885 | { |
| 4886 | unsigned int enqueued; |
| 4887 | |
| 4888 | if (!sched_feat(UTIL_EST)) |
| 4889 | return; |
| 4890 | |
| 4891 | /* Update root cfs_rq's estimated utilization */ |
| 4892 | enqueued = cfs_rq->avg.util_est; |
| 4893 | enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); |
| 4894 | WRITE_ONCE(cfs_rq->avg.util_est, enqueued); |
| 4895 | |
| 4896 | trace_sched_util_est_cfs_tp(cfs_rq); |
| 4897 | } |
| 4898 | |
| 4899 | #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) |
| 4900 | |
| 4901 | static inline void util_est_update(struct cfs_rq *cfs_rq, |
| 4902 | struct task_struct *p, |
| 4903 | bool task_sleep) |
| 4904 | { |
| 4905 | unsigned int ewma, dequeued, last_ewma_diff; |
| 4906 | |
| 4907 | if (!sched_feat(UTIL_EST)) |
| 4908 | return; |
| 4909 | |
| 4910 | /* |
| 4911 | * Skip update of task's estimated utilization when the task has not |
| 4912 | * yet completed an activation, e.g. being migrated. |
| 4913 | */ |
| 4914 | if (!task_sleep) |
| 4915 | return; |
| 4916 | |
| 4917 | /* Get current estimate of utilization */ |
| 4918 | ewma = READ_ONCE(p->se.avg.util_est); |
| 4919 | |
| 4920 | /* |
| 4921 | * If the PELT values haven't changed since enqueue time, |
| 4922 | * skip the util_est update. |
| 4923 | */ |
| 4924 | if (ewma & UTIL_AVG_UNCHANGED) |
| 4925 | return; |
| 4926 | |
| 4927 | /* Get utilization at dequeue */ |
| 4928 | dequeued = task_util(p); |
| 4929 | |
| 4930 | /* |
| 4931 | * Reset EWMA on utilization increases, the moving average is used only |
| 4932 | * to smooth utilization decreases. |
| 4933 | */ |
| 4934 | if (ewma <= dequeued) { |
| 4935 | ewma = dequeued; |
| 4936 | goto done; |
| 4937 | } |
| 4938 | |
| 4939 | /* |
| 4940 | * Skip update of task's estimated utilization when its members are |
| 4941 | * already ~1% close to its last activation value. |
| 4942 | */ |
| 4943 | last_ewma_diff = ewma - dequeued; |
| 4944 | if (last_ewma_diff < UTIL_EST_MARGIN) |
| 4945 | goto done; |
| 4946 | |
| 4947 | /* |
| 4948 | * To avoid underestimate of task utilization, skip updates of EWMA if |
| 4949 | * we cannot grant that thread got all CPU time it wanted. |
| 4950 | */ |
| 4951 | if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) |
| 4952 | goto done; |
| 4953 | |
| 4954 | |
| 4955 | /* |
| 4956 | * Update Task's estimated utilization |
| 4957 | * |
| 4958 | * When *p completes an activation we can consolidate another sample |
| 4959 | * of the task size. This is done by using this value to update the |
| 4960 | * Exponential Weighted Moving Average (EWMA): |
| 4961 | * |
| 4962 | * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) |
| 4963 | * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) |
| 4964 | * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) |
| 4965 | * = w * ( -last_ewma_diff ) + ewma(t-1) |
| 4966 | * = w * (-last_ewma_diff + ewma(t-1) / w) |
| 4967 | * |
| 4968 | * Where 'w' is the weight of new samples, which is configured to be |
| 4969 | * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) |
| 4970 | */ |
| 4971 | ewma <<= UTIL_EST_WEIGHT_SHIFT; |
| 4972 | ewma -= last_ewma_diff; |
| 4973 | ewma >>= UTIL_EST_WEIGHT_SHIFT; |
| 4974 | done: |
| 4975 | ewma |= UTIL_AVG_UNCHANGED; |
| 4976 | WRITE_ONCE(p->se.avg.util_est, ewma); |
| 4977 | |
| 4978 | trace_sched_util_est_se_tp(&p->se); |
| 4979 | } |
| 4980 | |
| 4981 | static inline unsigned long get_actual_cpu_capacity(int cpu) |
| 4982 | { |
| 4983 | unsigned long capacity = arch_scale_cpu_capacity(cpu); |
| 4984 | |
| 4985 | capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); |
| 4986 | |
| 4987 | return capacity; |
| 4988 | } |
| 4989 | |
| 4990 | static inline int util_fits_cpu(unsigned long util, |
| 4991 | unsigned long uclamp_min, |
| 4992 | unsigned long uclamp_max, |
| 4993 | int cpu) |
| 4994 | { |
| 4995 | unsigned long capacity = capacity_of(cpu); |
| 4996 | unsigned long capacity_orig; |
| 4997 | bool fits, uclamp_max_fits; |
| 4998 | |
| 4999 | /* |
| 5000 | * Check if the real util fits without any uclamp boost/cap applied. |
| 5001 | */ |
| 5002 | fits = fits_capacity(util, capacity); |
| 5003 | |
| 5004 | if (!uclamp_is_used()) |
| 5005 | return fits; |
| 5006 | |
| 5007 | /* |
| 5008 | * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and |
| 5009 | * uclamp_max. We only care about capacity pressure (by using |
| 5010 | * capacity_of()) for comparing against the real util. |
| 5011 | * |
| 5012 | * If a task is boosted to 1024 for example, we don't want a tiny |
| 5013 | * pressure to skew the check whether it fits a CPU or not. |
| 5014 | * |
| 5015 | * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it |
| 5016 | * should fit a little cpu even if there's some pressure. |
| 5017 | * |
| 5018 | * Only exception is for HW or cpufreq pressure since it has a direct impact |
| 5019 | * on available OPP of the system. |
| 5020 | * |
| 5021 | * We honour it for uclamp_min only as a drop in performance level |
| 5022 | * could result in not getting the requested minimum performance level. |
| 5023 | * |
| 5024 | * For uclamp_max, we can tolerate a drop in performance level as the |
| 5025 | * goal is to cap the task. So it's okay if it's getting less. |
| 5026 | */ |
| 5027 | capacity_orig = arch_scale_cpu_capacity(cpu); |
| 5028 | |
| 5029 | /* |
| 5030 | * We want to force a task to fit a cpu as implied by uclamp_max. |
| 5031 | * But we do have some corner cases to cater for.. |
| 5032 | * |
| 5033 | * |
| 5034 | * C=z |
| 5035 | * | ___ |
| 5036 | * | C=y | | |
| 5037 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max |
| 5038 | * | C=x | | | | |
| 5039 | * | ___ | | | | |
| 5040 | * | | | | | | | (util somewhere in this region) |
| 5041 | * | | | | | | | |
| 5042 | * | | | | | | | |
| 5043 | * +---------------------------------------- |
| 5044 | * CPU0 CPU1 CPU2 |
| 5045 | * |
| 5046 | * In the above example if a task is capped to a specific performance |
| 5047 | * point, y, then when: |
| 5048 | * |
| 5049 | * * util = 80% of x then it does not fit on CPU0 and should migrate |
| 5050 | * to CPU1 |
| 5051 | * * util = 80% of y then it is forced to fit on CPU1 to honour |
| 5052 | * uclamp_max request. |
| 5053 | * |
| 5054 | * which is what we're enforcing here. A task always fits if |
| 5055 | * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, |
| 5056 | * the normal upmigration rules should withhold still. |
| 5057 | * |
| 5058 | * Only exception is when we are on max capacity, then we need to be |
| 5059 | * careful not to block overutilized state. This is so because: |
| 5060 | * |
| 5061 | * 1. There's no concept of capping at max_capacity! We can't go |
| 5062 | * beyond this performance level anyway. |
| 5063 | * 2. The system is being saturated when we're operating near |
| 5064 | * max capacity, it doesn't make sense to block overutilized. |
| 5065 | */ |
| 5066 | uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); |
| 5067 | uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); |
| 5068 | fits = fits || uclamp_max_fits; |
| 5069 | |
| 5070 | /* |
| 5071 | * |
| 5072 | * C=z |
| 5073 | * | ___ (region a, capped, util >= uclamp_max) |
| 5074 | * | C=y | | |
| 5075 | * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max |
| 5076 | * | C=x | | | | |
| 5077 | * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) |
| 5078 | * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min |
| 5079 | * | | | | | | | |
| 5080 | * | | | | | | | (region c, boosted, util < uclamp_min) |
| 5081 | * +---------------------------------------- |
| 5082 | * CPU0 CPU1 CPU2 |
| 5083 | * |
| 5084 | * a) If util > uclamp_max, then we're capped, we don't care about |
| 5085 | * actual fitness value here. We only care if uclamp_max fits |
| 5086 | * capacity without taking margin/pressure into account. |
| 5087 | * See comment above. |
| 5088 | * |
| 5089 | * b) If uclamp_min <= util <= uclamp_max, then the normal |
| 5090 | * fits_capacity() rules apply. Except we need to ensure that we |
| 5091 | * enforce we remain within uclamp_max, see comment above. |
| 5092 | * |
| 5093 | * c) If util < uclamp_min, then we are boosted. Same as (b) but we |
| 5094 | * need to take into account the boosted value fits the CPU without |
| 5095 | * taking margin/pressure into account. |
| 5096 | * |
| 5097 | * Cases (a) and (b) are handled in the 'fits' variable already. We |
| 5098 | * just need to consider an extra check for case (c) after ensuring we |
| 5099 | * handle the case uclamp_min > uclamp_max. |
| 5100 | */ |
| 5101 | uclamp_min = min(uclamp_min, uclamp_max); |
| 5102 | if (fits && (util < uclamp_min) && |
| 5103 | (uclamp_min > get_actual_cpu_capacity(cpu))) |
| 5104 | return -1; |
| 5105 | |
| 5106 | return fits; |
| 5107 | } |
| 5108 | |
| 5109 | static inline int task_fits_cpu(struct task_struct *p, int cpu) |
| 5110 | { |
| 5111 | unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); |
| 5112 | unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); |
| 5113 | unsigned long util = task_util_est(p); |
| 5114 | /* |
| 5115 | * Return true only if the cpu fully fits the task requirements, which |
| 5116 | * include the utilization but also the performance hints. |
| 5117 | */ |
| 5118 | return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); |
| 5119 | } |
| 5120 | |
| 5121 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) |
| 5122 | { |
| 5123 | int cpu = cpu_of(rq); |
| 5124 | |
| 5125 | if (!sched_asym_cpucap_active()) |
| 5126 | return; |
| 5127 | |
| 5128 | /* |
| 5129 | * Affinity allows us to go somewhere higher? Or are we on biggest |
| 5130 | * available CPU already? Or do we fit into this CPU ? |
| 5131 | */ |
| 5132 | if (!p || (p->nr_cpus_allowed == 1) || |
| 5133 | (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || |
| 5134 | task_fits_cpu(p, cpu)) { |
| 5135 | |
| 5136 | rq->misfit_task_load = 0; |
| 5137 | return; |
| 5138 | } |
| 5139 | |
| 5140 | /* |
| 5141 | * Make sure that misfit_task_load will not be null even if |
| 5142 | * task_h_load() returns 0. |
| 5143 | */ |
| 5144 | rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); |
| 5145 | } |
| 5146 | |
| 5147 | #else /* CONFIG_SMP */ |
| 5148 | |
| 5149 | static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) |
| 5150 | { |
| 5151 | return !cfs_rq->nr_queued; |
| 5152 | } |
| 5153 | |
| 5154 | #define UPDATE_TG 0x0 |
| 5155 | #define SKIP_AGE_LOAD 0x0 |
| 5156 | #define DO_ATTACH 0x0 |
| 5157 | #define DO_DETACH 0x0 |
| 5158 | |
| 5159 | static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) |
| 5160 | { |
| 5161 | cfs_rq_util_change(cfs_rq, 0); |
| 5162 | } |
| 5163 | |
| 5164 | static inline void remove_entity_load_avg(struct sched_entity *se) {} |
| 5165 | |
| 5166 | static inline void |
| 5167 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 5168 | static inline void |
| 5169 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} |
| 5170 | |
| 5171 | static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) |
| 5172 | { |
| 5173 | return 0; |
| 5174 | } |
| 5175 | |
| 5176 | static inline void |
| 5177 | util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} |
| 5178 | |
| 5179 | static inline void |
| 5180 | util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} |
| 5181 | |
| 5182 | static inline void |
| 5183 | util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, |
| 5184 | bool task_sleep) {} |
| 5185 | static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} |
| 5186 | |
| 5187 | #endif /* CONFIG_SMP */ |
| 5188 | |
| 5189 | void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) |
| 5190 | { |
| 5191 | struct sched_entity *se = &p->se; |
| 5192 | |
| 5193 | p->static_prio = NICE_TO_PRIO(attr->sched_nice); |
| 5194 | if (attr->sched_runtime) { |
| 5195 | se->custom_slice = 1; |
| 5196 | se->slice = clamp_t(u64, attr->sched_runtime, |
| 5197 | NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ |
| 5198 | NSEC_PER_MSEC*100); /* HZ=100 / 10 */ |
| 5199 | } else { |
| 5200 | se->custom_slice = 0; |
| 5201 | se->slice = sysctl_sched_base_slice; |
| 5202 | } |
| 5203 | } |
| 5204 | |
| 5205 | static void |
| 5206 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 5207 | { |
| 5208 | u64 vslice, vruntime = avg_vruntime(cfs_rq); |
| 5209 | s64 lag = 0; |
| 5210 | |
| 5211 | if (!se->custom_slice) |
| 5212 | se->slice = sysctl_sched_base_slice; |
| 5213 | vslice = calc_delta_fair(se->slice, se); |
| 5214 | |
| 5215 | /* |
| 5216 | * Due to how V is constructed as the weighted average of entities, |
| 5217 | * adding tasks with positive lag, or removing tasks with negative lag |
| 5218 | * will move 'time' backwards, this can screw around with the lag of |
| 5219 | * other tasks. |
| 5220 | * |
| 5221 | * EEVDF: placement strategy #1 / #2 |
| 5222 | */ |
| 5223 | if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { |
| 5224 | struct sched_entity *curr = cfs_rq->curr; |
| 5225 | unsigned long load; |
| 5226 | |
| 5227 | lag = se->vlag; |
| 5228 | |
| 5229 | /* |
| 5230 | * If we want to place a task and preserve lag, we have to |
| 5231 | * consider the effect of the new entity on the weighted |
| 5232 | * average and compensate for this, otherwise lag can quickly |
| 5233 | * evaporate. |
| 5234 | * |
| 5235 | * Lag is defined as: |
| 5236 | * |
| 5237 | * lag_i = S - s_i = w_i * (V - v_i) |
| 5238 | * |
| 5239 | * To avoid the 'w_i' term all over the place, we only track |
| 5240 | * the virtual lag: |
| 5241 | * |
| 5242 | * vl_i = V - v_i <=> v_i = V - vl_i |
| 5243 | * |
| 5244 | * And we take V to be the weighted average of all v: |
| 5245 | * |
| 5246 | * V = (\Sum w_j*v_j) / W |
| 5247 | * |
| 5248 | * Where W is: \Sum w_j |
| 5249 | * |
| 5250 | * Then, the weighted average after adding an entity with lag |
| 5251 | * vl_i is given by: |
| 5252 | * |
| 5253 | * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) |
| 5254 | * = (W*V + w_i*(V - vl_i)) / (W + w_i) |
| 5255 | * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) |
| 5256 | * = (V*(W + w_i) - w_i*l) / (W + w_i) |
| 5257 | * = V - w_i*vl_i / (W + w_i) |
| 5258 | * |
| 5259 | * And the actual lag after adding an entity with vl_i is: |
| 5260 | * |
| 5261 | * vl'_i = V' - v_i |
| 5262 | * = V - w_i*vl_i / (W + w_i) - (V - vl_i) |
| 5263 | * = vl_i - w_i*vl_i / (W + w_i) |
| 5264 | * |
| 5265 | * Which is strictly less than vl_i. So in order to preserve lag |
| 5266 | * we should inflate the lag before placement such that the |
| 5267 | * effective lag after placement comes out right. |
| 5268 | * |
| 5269 | * As such, invert the above relation for vl'_i to get the vl_i |
| 5270 | * we need to use such that the lag after placement is the lag |
| 5271 | * we computed before dequeue. |
| 5272 | * |
| 5273 | * vl'_i = vl_i - w_i*vl_i / (W + w_i) |
| 5274 | * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) |
| 5275 | * |
| 5276 | * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i |
| 5277 | * = W*vl_i |
| 5278 | * |
| 5279 | * vl_i = (W + w_i)*vl'_i / W |
| 5280 | */ |
| 5281 | load = cfs_rq->avg_load; |
| 5282 | if (curr && curr->on_rq) |
| 5283 | load += scale_load_down(curr->load.weight); |
| 5284 | |
| 5285 | lag *= load + scale_load_down(se->load.weight); |
| 5286 | if (WARN_ON_ONCE(!load)) |
| 5287 | load = 1; |
| 5288 | lag = div_s64(lag, load); |
| 5289 | } |
| 5290 | |
| 5291 | se->vruntime = vruntime - lag; |
| 5292 | |
| 5293 | if (se->rel_deadline) { |
| 5294 | se->deadline += se->vruntime; |
| 5295 | se->rel_deadline = 0; |
| 5296 | return; |
| 5297 | } |
| 5298 | |
| 5299 | /* |
| 5300 | * When joining the competition; the existing tasks will be, |
| 5301 | * on average, halfway through their slice, as such start tasks |
| 5302 | * off with half a slice to ease into the competition. |
| 5303 | */ |
| 5304 | if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) |
| 5305 | vslice /= 2; |
| 5306 | |
| 5307 | /* |
| 5308 | * EEVDF: vd_i = ve_i + r_i/w_i |
| 5309 | */ |
| 5310 | se->deadline = se->vruntime + vslice; |
| 5311 | } |
| 5312 | |
| 5313 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); |
| 5314 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); |
| 5315 | |
| 5316 | static void |
| 5317 | requeue_delayed_entity(struct sched_entity *se); |
| 5318 | |
| 5319 | static void |
| 5320 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 5321 | { |
| 5322 | bool curr = cfs_rq->curr == se; |
| 5323 | |
| 5324 | /* |
| 5325 | * If we're the current task, we must renormalise before calling |
| 5326 | * update_curr(). |
| 5327 | */ |
| 5328 | if (curr) |
| 5329 | place_entity(cfs_rq, se, flags); |
| 5330 | |
| 5331 | update_curr(cfs_rq); |
| 5332 | |
| 5333 | /* |
| 5334 | * When enqueuing a sched_entity, we must: |
| 5335 | * - Update loads to have both entity and cfs_rq synced with now. |
| 5336 | * - For group_entity, update its runnable_weight to reflect the new |
| 5337 | * h_nr_runnable of its group cfs_rq. |
| 5338 | * - For group_entity, update its weight to reflect the new share of |
| 5339 | * its group cfs_rq |
| 5340 | * - Add its new weight to cfs_rq->load.weight |
| 5341 | */ |
| 5342 | update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); |
| 5343 | se_update_runnable(se); |
| 5344 | /* |
| 5345 | * XXX update_load_avg() above will have attached us to the pelt sum; |
| 5346 | * but update_cfs_group() here will re-adjust the weight and have to |
| 5347 | * undo/redo all that. Seems wasteful. |
| 5348 | */ |
| 5349 | update_cfs_group(se); |
| 5350 | |
| 5351 | /* |
| 5352 | * XXX now that the entity has been re-weighted, and it's lag adjusted, |
| 5353 | * we can place the entity. |
| 5354 | */ |
| 5355 | if (!curr) |
| 5356 | place_entity(cfs_rq, se, flags); |
| 5357 | |
| 5358 | account_entity_enqueue(cfs_rq, se); |
| 5359 | |
| 5360 | /* Entity has migrated, no longer consider this task hot */ |
| 5361 | if (flags & ENQUEUE_MIGRATED) |
| 5362 | se->exec_start = 0; |
| 5363 | |
| 5364 | check_schedstat_required(); |
| 5365 | update_stats_enqueue_fair(cfs_rq, se, flags); |
| 5366 | if (!curr) |
| 5367 | __enqueue_entity(cfs_rq, se); |
| 5368 | se->on_rq = 1; |
| 5369 | |
| 5370 | if (cfs_rq->nr_queued == 1) { |
| 5371 | check_enqueue_throttle(cfs_rq); |
| 5372 | if (!throttled_hierarchy(cfs_rq)) { |
| 5373 | list_add_leaf_cfs_rq(cfs_rq); |
| 5374 | } else { |
| 5375 | #ifdef CONFIG_CFS_BANDWIDTH |
| 5376 | struct rq *rq = rq_of(cfs_rq); |
| 5377 | |
| 5378 | if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) |
| 5379 | cfs_rq->throttled_clock = rq_clock(rq); |
| 5380 | if (!cfs_rq->throttled_clock_self) |
| 5381 | cfs_rq->throttled_clock_self = rq_clock(rq); |
| 5382 | #endif |
| 5383 | } |
| 5384 | } |
| 5385 | } |
| 5386 | |
| 5387 | static void __clear_buddies_next(struct sched_entity *se) |
| 5388 | { |
| 5389 | for_each_sched_entity(se) { |
| 5390 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 5391 | if (cfs_rq->next != se) |
| 5392 | break; |
| 5393 | |
| 5394 | cfs_rq->next = NULL; |
| 5395 | } |
| 5396 | } |
| 5397 | |
| 5398 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 5399 | { |
| 5400 | if (cfs_rq->next == se) |
| 5401 | __clear_buddies_next(se); |
| 5402 | } |
| 5403 | |
| 5404 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
| 5405 | |
| 5406 | static void set_delayed(struct sched_entity *se) |
| 5407 | { |
| 5408 | se->sched_delayed = 1; |
| 5409 | |
| 5410 | /* |
| 5411 | * Delayed se of cfs_rq have no tasks queued on them. |
| 5412 | * Do not adjust h_nr_runnable since dequeue_entities() |
| 5413 | * will account it for blocked tasks. |
| 5414 | */ |
| 5415 | if (!entity_is_task(se)) |
| 5416 | return; |
| 5417 | |
| 5418 | for_each_sched_entity(se) { |
| 5419 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 5420 | |
| 5421 | cfs_rq->h_nr_runnable--; |
| 5422 | if (cfs_rq_throttled(cfs_rq)) |
| 5423 | break; |
| 5424 | } |
| 5425 | } |
| 5426 | |
| 5427 | static void clear_delayed(struct sched_entity *se) |
| 5428 | { |
| 5429 | se->sched_delayed = 0; |
| 5430 | |
| 5431 | /* |
| 5432 | * Delayed se of cfs_rq have no tasks queued on them. |
| 5433 | * Do not adjust h_nr_runnable since a dequeue has |
| 5434 | * already accounted for it or an enqueue of a task |
| 5435 | * below it will account for it in enqueue_task_fair(). |
| 5436 | */ |
| 5437 | if (!entity_is_task(se)) |
| 5438 | return; |
| 5439 | |
| 5440 | for_each_sched_entity(se) { |
| 5441 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 5442 | |
| 5443 | cfs_rq->h_nr_runnable++; |
| 5444 | if (cfs_rq_throttled(cfs_rq)) |
| 5445 | break; |
| 5446 | } |
| 5447 | } |
| 5448 | |
| 5449 | static inline void finish_delayed_dequeue_entity(struct sched_entity *se) |
| 5450 | { |
| 5451 | clear_delayed(se); |
| 5452 | if (sched_feat(DELAY_ZERO) && se->vlag > 0) |
| 5453 | se->vlag = 0; |
| 5454 | } |
| 5455 | |
| 5456 | static bool |
| 5457 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
| 5458 | { |
| 5459 | bool sleep = flags & DEQUEUE_SLEEP; |
| 5460 | int action = UPDATE_TG; |
| 5461 | |
| 5462 | update_curr(cfs_rq); |
| 5463 | clear_buddies(cfs_rq, se); |
| 5464 | |
| 5465 | if (flags & DEQUEUE_DELAYED) { |
| 5466 | WARN_ON_ONCE(!se->sched_delayed); |
| 5467 | } else { |
| 5468 | bool delay = sleep; |
| 5469 | /* |
| 5470 | * DELAY_DEQUEUE relies on spurious wakeups, special task |
| 5471 | * states must not suffer spurious wakeups, excempt them. |
| 5472 | */ |
| 5473 | if (flags & DEQUEUE_SPECIAL) |
| 5474 | delay = false; |
| 5475 | |
| 5476 | WARN_ON_ONCE(delay && se->sched_delayed); |
| 5477 | |
| 5478 | if (sched_feat(DELAY_DEQUEUE) && delay && |
| 5479 | !entity_eligible(cfs_rq, se)) { |
| 5480 | update_load_avg(cfs_rq, se, 0); |
| 5481 | set_delayed(se); |
| 5482 | return false; |
| 5483 | } |
| 5484 | } |
| 5485 | |
| 5486 | if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) |
| 5487 | action |= DO_DETACH; |
| 5488 | |
| 5489 | /* |
| 5490 | * When dequeuing a sched_entity, we must: |
| 5491 | * - Update loads to have both entity and cfs_rq synced with now. |
| 5492 | * - For group_entity, update its runnable_weight to reflect the new |
| 5493 | * h_nr_runnable of its group cfs_rq. |
| 5494 | * - Subtract its previous weight from cfs_rq->load.weight. |
| 5495 | * - For group entity, update its weight to reflect the new share |
| 5496 | * of its group cfs_rq. |
| 5497 | */ |
| 5498 | update_load_avg(cfs_rq, se, action); |
| 5499 | se_update_runnable(se); |
| 5500 | |
| 5501 | update_stats_dequeue_fair(cfs_rq, se, flags); |
| 5502 | |
| 5503 | update_entity_lag(cfs_rq, se); |
| 5504 | if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { |
| 5505 | se->deadline -= se->vruntime; |
| 5506 | se->rel_deadline = 1; |
| 5507 | } |
| 5508 | |
| 5509 | if (se != cfs_rq->curr) |
| 5510 | __dequeue_entity(cfs_rq, se); |
| 5511 | se->on_rq = 0; |
| 5512 | account_entity_dequeue(cfs_rq, se); |
| 5513 | |
| 5514 | /* return excess runtime on last dequeue */ |
| 5515 | return_cfs_rq_runtime(cfs_rq); |
| 5516 | |
| 5517 | update_cfs_group(se); |
| 5518 | |
| 5519 | /* |
| 5520 | * Now advance min_vruntime if @se was the entity holding it back, |
| 5521 | * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be |
| 5522 | * put back on, and if we advance min_vruntime, we'll be placed back |
| 5523 | * further than we started -- i.e. we'll be penalized. |
| 5524 | */ |
| 5525 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) |
| 5526 | update_min_vruntime(cfs_rq); |
| 5527 | |
| 5528 | if (flags & DEQUEUE_DELAYED) |
| 5529 | finish_delayed_dequeue_entity(se); |
| 5530 | |
| 5531 | if (cfs_rq->nr_queued == 0) |
| 5532 | update_idle_cfs_rq_clock_pelt(cfs_rq); |
| 5533 | |
| 5534 | return true; |
| 5535 | } |
| 5536 | |
| 5537 | static void |
| 5538 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
| 5539 | { |
| 5540 | clear_buddies(cfs_rq, se); |
| 5541 | |
| 5542 | /* 'current' is not kept within the tree. */ |
| 5543 | if (se->on_rq) { |
| 5544 | /* |
| 5545 | * Any task has to be enqueued before it get to execute on |
| 5546 | * a CPU. So account for the time it spent waiting on the |
| 5547 | * runqueue. |
| 5548 | */ |
| 5549 | update_stats_wait_end_fair(cfs_rq, se); |
| 5550 | __dequeue_entity(cfs_rq, se); |
| 5551 | update_load_avg(cfs_rq, se, UPDATE_TG); |
| 5552 | |
| 5553 | set_protect_slice(se); |
| 5554 | } |
| 5555 | |
| 5556 | update_stats_curr_start(cfs_rq, se); |
| 5557 | WARN_ON_ONCE(cfs_rq->curr); |
| 5558 | cfs_rq->curr = se; |
| 5559 | |
| 5560 | /* |
| 5561 | * Track our maximum slice length, if the CPU's load is at |
| 5562 | * least twice that of our own weight (i.e. don't track it |
| 5563 | * when there are only lesser-weight tasks around): |
| 5564 | */ |
| 5565 | if (schedstat_enabled() && |
| 5566 | rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { |
| 5567 | struct sched_statistics *stats; |
| 5568 | |
| 5569 | stats = __schedstats_from_se(se); |
| 5570 | __schedstat_set(stats->slice_max, |
| 5571 | max((u64)stats->slice_max, |
| 5572 | se->sum_exec_runtime - se->prev_sum_exec_runtime)); |
| 5573 | } |
| 5574 | |
| 5575 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
| 5576 | } |
| 5577 | |
| 5578 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); |
| 5579 | |
| 5580 | /* |
| 5581 | * Pick the next process, keeping these things in mind, in this order: |
| 5582 | * 1) keep things fair between processes/task groups |
| 5583 | * 2) pick the "next" process, since someone really wants that to run |
| 5584 | * 3) pick the "last" process, for cache locality |
| 5585 | * 4) do not run the "skip" process, if something else is available |
| 5586 | */ |
| 5587 | static struct sched_entity * |
| 5588 | pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) |
| 5589 | { |
| 5590 | struct sched_entity *se; |
| 5591 | |
| 5592 | /* |
| 5593 | * Picking the ->next buddy will affect latency but not fairness. |
| 5594 | */ |
| 5595 | if (sched_feat(PICK_BUDDY) && |
| 5596 | cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { |
| 5597 | /* ->next will never be delayed */ |
| 5598 | WARN_ON_ONCE(cfs_rq->next->sched_delayed); |
| 5599 | return cfs_rq->next; |
| 5600 | } |
| 5601 | |
| 5602 | se = pick_eevdf(cfs_rq); |
| 5603 | if (se->sched_delayed) { |
| 5604 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); |
| 5605 | /* |
| 5606 | * Must not reference @se again, see __block_task(). |
| 5607 | */ |
| 5608 | return NULL; |
| 5609 | } |
| 5610 | return se; |
| 5611 | } |
| 5612 | |
| 5613 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); |
| 5614 | |
| 5615 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
| 5616 | { |
| 5617 | /* |
| 5618 | * If still on the runqueue then deactivate_task() |
| 5619 | * was not called and update_curr() has to be done: |
| 5620 | */ |
| 5621 | if (prev->on_rq) |
| 5622 | update_curr(cfs_rq); |
| 5623 | |
| 5624 | /* throttle cfs_rqs exceeding runtime */ |
| 5625 | check_cfs_rq_runtime(cfs_rq); |
| 5626 | |
| 5627 | if (prev->on_rq) { |
| 5628 | update_stats_wait_start_fair(cfs_rq, prev); |
| 5629 | /* Put 'current' back into the tree. */ |
| 5630 | __enqueue_entity(cfs_rq, prev); |
| 5631 | /* in !on_rq case, update occurred at dequeue */ |
| 5632 | update_load_avg(cfs_rq, prev, 0); |
| 5633 | } |
| 5634 | WARN_ON_ONCE(cfs_rq->curr != prev); |
| 5635 | cfs_rq->curr = NULL; |
| 5636 | } |
| 5637 | |
| 5638 | static void |
| 5639 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) |
| 5640 | { |
| 5641 | /* |
| 5642 | * Update run-time statistics of the 'current'. |
| 5643 | */ |
| 5644 | update_curr(cfs_rq); |
| 5645 | |
| 5646 | /* |
| 5647 | * Ensure that runnable average is periodically updated. |
| 5648 | */ |
| 5649 | update_load_avg(cfs_rq, curr, UPDATE_TG); |
| 5650 | update_cfs_group(curr); |
| 5651 | |
| 5652 | #ifdef CONFIG_SCHED_HRTICK |
| 5653 | /* |
| 5654 | * queued ticks are scheduled to match the slice, so don't bother |
| 5655 | * validating it and just reschedule. |
| 5656 | */ |
| 5657 | if (queued) { |
| 5658 | resched_curr_lazy(rq_of(cfs_rq)); |
| 5659 | return; |
| 5660 | } |
| 5661 | #endif |
| 5662 | } |
| 5663 | |
| 5664 | |
| 5665 | /************************************************** |
| 5666 | * CFS bandwidth control machinery |
| 5667 | */ |
| 5668 | |
| 5669 | #ifdef CONFIG_CFS_BANDWIDTH |
| 5670 | |
| 5671 | #ifdef CONFIG_JUMP_LABEL |
| 5672 | static struct static_key __cfs_bandwidth_used; |
| 5673 | |
| 5674 | static inline bool cfs_bandwidth_used(void) |
| 5675 | { |
| 5676 | return static_key_false(&__cfs_bandwidth_used); |
| 5677 | } |
| 5678 | |
| 5679 | void cfs_bandwidth_usage_inc(void) |
| 5680 | { |
| 5681 | static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); |
| 5682 | } |
| 5683 | |
| 5684 | void cfs_bandwidth_usage_dec(void) |
| 5685 | { |
| 5686 | static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); |
| 5687 | } |
| 5688 | #else /* CONFIG_JUMP_LABEL */ |
| 5689 | static bool cfs_bandwidth_used(void) |
| 5690 | { |
| 5691 | return true; |
| 5692 | } |
| 5693 | |
| 5694 | void cfs_bandwidth_usage_inc(void) {} |
| 5695 | void cfs_bandwidth_usage_dec(void) {} |
| 5696 | #endif /* CONFIG_JUMP_LABEL */ |
| 5697 | |
| 5698 | /* |
| 5699 | * default period for cfs group bandwidth. |
| 5700 | * default: 0.1s, units: nanoseconds |
| 5701 | */ |
| 5702 | static inline u64 default_cfs_period(void) |
| 5703 | { |
| 5704 | return 100000000ULL; |
| 5705 | } |
| 5706 | |
| 5707 | static inline u64 sched_cfs_bandwidth_slice(void) |
| 5708 | { |
| 5709 | return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; |
| 5710 | } |
| 5711 | |
| 5712 | /* |
| 5713 | * Replenish runtime according to assigned quota. We use sched_clock_cpu |
| 5714 | * directly instead of rq->clock to avoid adding additional synchronization |
| 5715 | * around rq->lock. |
| 5716 | * |
| 5717 | * requires cfs_b->lock |
| 5718 | */ |
| 5719 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) |
| 5720 | { |
| 5721 | s64 runtime; |
| 5722 | |
| 5723 | if (unlikely(cfs_b->quota == RUNTIME_INF)) |
| 5724 | return; |
| 5725 | |
| 5726 | cfs_b->runtime += cfs_b->quota; |
| 5727 | runtime = cfs_b->runtime_snap - cfs_b->runtime; |
| 5728 | if (runtime > 0) { |
| 5729 | cfs_b->burst_time += runtime; |
| 5730 | cfs_b->nr_burst++; |
| 5731 | } |
| 5732 | |
| 5733 | cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); |
| 5734 | cfs_b->runtime_snap = cfs_b->runtime; |
| 5735 | } |
| 5736 | |
| 5737 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
| 5738 | { |
| 5739 | return &tg->cfs_bandwidth; |
| 5740 | } |
| 5741 | |
| 5742 | /* returns 0 on failure to allocate runtime */ |
| 5743 | static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, |
| 5744 | struct cfs_rq *cfs_rq, u64 target_runtime) |
| 5745 | { |
| 5746 | u64 min_amount, amount = 0; |
| 5747 | |
| 5748 | lockdep_assert_held(&cfs_b->lock); |
| 5749 | |
| 5750 | /* note: this is a positive sum as runtime_remaining <= 0 */ |
| 5751 | min_amount = target_runtime - cfs_rq->runtime_remaining; |
| 5752 | |
| 5753 | if (cfs_b->quota == RUNTIME_INF) |
| 5754 | amount = min_amount; |
| 5755 | else { |
| 5756 | start_cfs_bandwidth(cfs_b); |
| 5757 | |
| 5758 | if (cfs_b->runtime > 0) { |
| 5759 | amount = min(cfs_b->runtime, min_amount); |
| 5760 | cfs_b->runtime -= amount; |
| 5761 | cfs_b->idle = 0; |
| 5762 | } |
| 5763 | } |
| 5764 | |
| 5765 | cfs_rq->runtime_remaining += amount; |
| 5766 | |
| 5767 | return cfs_rq->runtime_remaining > 0; |
| 5768 | } |
| 5769 | |
| 5770 | /* returns 0 on failure to allocate runtime */ |
| 5771 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 5772 | { |
| 5773 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 5774 | int ret; |
| 5775 | |
| 5776 | raw_spin_lock(&cfs_b->lock); |
| 5777 | ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); |
| 5778 | raw_spin_unlock(&cfs_b->lock); |
| 5779 | |
| 5780 | return ret; |
| 5781 | } |
| 5782 | |
| 5783 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
| 5784 | { |
| 5785 | /* dock delta_exec before expiring quota (as it could span periods) */ |
| 5786 | cfs_rq->runtime_remaining -= delta_exec; |
| 5787 | |
| 5788 | if (likely(cfs_rq->runtime_remaining > 0)) |
| 5789 | return; |
| 5790 | |
| 5791 | if (cfs_rq->throttled) |
| 5792 | return; |
| 5793 | /* |
| 5794 | * if we're unable to extend our runtime we resched so that the active |
| 5795 | * hierarchy can be throttled |
| 5796 | */ |
| 5797 | if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) |
| 5798 | resched_curr(rq_of(cfs_rq)); |
| 5799 | } |
| 5800 | |
| 5801 | static __always_inline |
| 5802 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) |
| 5803 | { |
| 5804 | if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) |
| 5805 | return; |
| 5806 | |
| 5807 | __account_cfs_rq_runtime(cfs_rq, delta_exec); |
| 5808 | } |
| 5809 | |
| 5810 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
| 5811 | { |
| 5812 | return cfs_bandwidth_used() && cfs_rq->throttled; |
| 5813 | } |
| 5814 | |
| 5815 | /* check whether cfs_rq, or any parent, is throttled */ |
| 5816 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) |
| 5817 | { |
| 5818 | return cfs_bandwidth_used() && cfs_rq->throttle_count; |
| 5819 | } |
| 5820 | |
| 5821 | /* |
| 5822 | * Ensure that neither of the group entities corresponding to src_cpu or |
| 5823 | * dest_cpu are members of a throttled hierarchy when performing group |
| 5824 | * load-balance operations. |
| 5825 | */ |
| 5826 | static inline int throttled_lb_pair(struct task_group *tg, |
| 5827 | int src_cpu, int dest_cpu) |
| 5828 | { |
| 5829 | struct cfs_rq *src_cfs_rq, *dest_cfs_rq; |
| 5830 | |
| 5831 | src_cfs_rq = tg->cfs_rq[src_cpu]; |
| 5832 | dest_cfs_rq = tg->cfs_rq[dest_cpu]; |
| 5833 | |
| 5834 | return throttled_hierarchy(src_cfs_rq) || |
| 5835 | throttled_hierarchy(dest_cfs_rq); |
| 5836 | } |
| 5837 | |
| 5838 | static int tg_unthrottle_up(struct task_group *tg, void *data) |
| 5839 | { |
| 5840 | struct rq *rq = data; |
| 5841 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 5842 | |
| 5843 | cfs_rq->throttle_count--; |
| 5844 | if (!cfs_rq->throttle_count) { |
| 5845 | cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - |
| 5846 | cfs_rq->throttled_clock_pelt; |
| 5847 | |
| 5848 | /* Add cfs_rq with load or one or more already running entities to the list */ |
| 5849 | if (!cfs_rq_is_decayed(cfs_rq)) |
| 5850 | list_add_leaf_cfs_rq(cfs_rq); |
| 5851 | |
| 5852 | if (cfs_rq->throttled_clock_self) { |
| 5853 | u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; |
| 5854 | |
| 5855 | cfs_rq->throttled_clock_self = 0; |
| 5856 | |
| 5857 | if (WARN_ON_ONCE((s64)delta < 0)) |
| 5858 | delta = 0; |
| 5859 | |
| 5860 | cfs_rq->throttled_clock_self_time += delta; |
| 5861 | } |
| 5862 | } |
| 5863 | |
| 5864 | return 0; |
| 5865 | } |
| 5866 | |
| 5867 | static int tg_throttle_down(struct task_group *tg, void *data) |
| 5868 | { |
| 5869 | struct rq *rq = data; |
| 5870 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 5871 | |
| 5872 | /* group is entering throttled state, stop time */ |
| 5873 | if (!cfs_rq->throttle_count) { |
| 5874 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); |
| 5875 | list_del_leaf_cfs_rq(cfs_rq); |
| 5876 | |
| 5877 | WARN_ON_ONCE(cfs_rq->throttled_clock_self); |
| 5878 | if (cfs_rq->nr_queued) |
| 5879 | cfs_rq->throttled_clock_self = rq_clock(rq); |
| 5880 | } |
| 5881 | cfs_rq->throttle_count++; |
| 5882 | |
| 5883 | return 0; |
| 5884 | } |
| 5885 | |
| 5886 | static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) |
| 5887 | { |
| 5888 | struct rq *rq = rq_of(cfs_rq); |
| 5889 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 5890 | struct sched_entity *se; |
| 5891 | long queued_delta, runnable_delta, idle_delta, dequeue = 1; |
| 5892 | long rq_h_nr_queued = rq->cfs.h_nr_queued; |
| 5893 | |
| 5894 | raw_spin_lock(&cfs_b->lock); |
| 5895 | /* This will start the period timer if necessary */ |
| 5896 | if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { |
| 5897 | /* |
| 5898 | * We have raced with bandwidth becoming available, and if we |
| 5899 | * actually throttled the timer might not unthrottle us for an |
| 5900 | * entire period. We additionally needed to make sure that any |
| 5901 | * subsequent check_cfs_rq_runtime calls agree not to throttle |
| 5902 | * us, as we may commit to do cfs put_prev+pick_next, so we ask |
| 5903 | * for 1ns of runtime rather than just check cfs_b. |
| 5904 | */ |
| 5905 | dequeue = 0; |
| 5906 | } else { |
| 5907 | list_add_tail_rcu(&cfs_rq->throttled_list, |
| 5908 | &cfs_b->throttled_cfs_rq); |
| 5909 | } |
| 5910 | raw_spin_unlock(&cfs_b->lock); |
| 5911 | |
| 5912 | if (!dequeue) |
| 5913 | return false; /* Throttle no longer required. */ |
| 5914 | |
| 5915 | se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; |
| 5916 | |
| 5917 | /* freeze hierarchy runnable averages while throttled */ |
| 5918 | rcu_read_lock(); |
| 5919 | walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); |
| 5920 | rcu_read_unlock(); |
| 5921 | |
| 5922 | queued_delta = cfs_rq->h_nr_queued; |
| 5923 | runnable_delta = cfs_rq->h_nr_runnable; |
| 5924 | idle_delta = cfs_rq->h_nr_idle; |
| 5925 | for_each_sched_entity(se) { |
| 5926 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
| 5927 | int flags; |
| 5928 | |
| 5929 | /* throttled entity or throttle-on-deactivate */ |
| 5930 | if (!se->on_rq) |
| 5931 | goto done; |
| 5932 | |
| 5933 | /* |
| 5934 | * Abuse SPECIAL to avoid delayed dequeue in this instance. |
| 5935 | * This avoids teaching dequeue_entities() about throttled |
| 5936 | * entities and keeps things relatively simple. |
| 5937 | */ |
| 5938 | flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; |
| 5939 | if (se->sched_delayed) |
| 5940 | flags |= DEQUEUE_DELAYED; |
| 5941 | dequeue_entity(qcfs_rq, se, flags); |
| 5942 | |
| 5943 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
| 5944 | idle_delta = cfs_rq->h_nr_queued; |
| 5945 | |
| 5946 | qcfs_rq->h_nr_queued -= queued_delta; |
| 5947 | qcfs_rq->h_nr_runnable -= runnable_delta; |
| 5948 | qcfs_rq->h_nr_idle -= idle_delta; |
| 5949 | |
| 5950 | if (qcfs_rq->load.weight) { |
| 5951 | /* Avoid re-evaluating load for this entity: */ |
| 5952 | se = parent_entity(se); |
| 5953 | break; |
| 5954 | } |
| 5955 | } |
| 5956 | |
| 5957 | for_each_sched_entity(se) { |
| 5958 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
| 5959 | /* throttled entity or throttle-on-deactivate */ |
| 5960 | if (!se->on_rq) |
| 5961 | goto done; |
| 5962 | |
| 5963 | update_load_avg(qcfs_rq, se, 0); |
| 5964 | se_update_runnable(se); |
| 5965 | |
| 5966 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
| 5967 | idle_delta = cfs_rq->h_nr_queued; |
| 5968 | |
| 5969 | qcfs_rq->h_nr_queued -= queued_delta; |
| 5970 | qcfs_rq->h_nr_runnable -= runnable_delta; |
| 5971 | qcfs_rq->h_nr_idle -= idle_delta; |
| 5972 | } |
| 5973 | |
| 5974 | /* At this point se is NULL and we are at root level*/ |
| 5975 | sub_nr_running(rq, queued_delta); |
| 5976 | |
| 5977 | /* Stop the fair server if throttling resulted in no runnable tasks */ |
| 5978 | if (rq_h_nr_queued && !rq->cfs.h_nr_queued) |
| 5979 | dl_server_stop(&rq->fair_server); |
| 5980 | done: |
| 5981 | /* |
| 5982 | * Note: distribution will already see us throttled via the |
| 5983 | * throttled-list. rq->lock protects completion. |
| 5984 | */ |
| 5985 | cfs_rq->throttled = 1; |
| 5986 | WARN_ON_ONCE(cfs_rq->throttled_clock); |
| 5987 | if (cfs_rq->nr_queued) |
| 5988 | cfs_rq->throttled_clock = rq_clock(rq); |
| 5989 | return true; |
| 5990 | } |
| 5991 | |
| 5992 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) |
| 5993 | { |
| 5994 | struct rq *rq = rq_of(cfs_rq); |
| 5995 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 5996 | struct sched_entity *se; |
| 5997 | long queued_delta, runnable_delta, idle_delta; |
| 5998 | long rq_h_nr_queued = rq->cfs.h_nr_queued; |
| 5999 | |
| 6000 | se = cfs_rq->tg->se[cpu_of(rq)]; |
| 6001 | |
| 6002 | cfs_rq->throttled = 0; |
| 6003 | |
| 6004 | update_rq_clock(rq); |
| 6005 | |
| 6006 | raw_spin_lock(&cfs_b->lock); |
| 6007 | if (cfs_rq->throttled_clock) { |
| 6008 | cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; |
| 6009 | cfs_rq->throttled_clock = 0; |
| 6010 | } |
| 6011 | list_del_rcu(&cfs_rq->throttled_list); |
| 6012 | raw_spin_unlock(&cfs_b->lock); |
| 6013 | |
| 6014 | /* update hierarchical throttle state */ |
| 6015 | walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); |
| 6016 | |
| 6017 | if (!cfs_rq->load.weight) { |
| 6018 | if (!cfs_rq->on_list) |
| 6019 | return; |
| 6020 | /* |
| 6021 | * Nothing to run but something to decay (on_list)? |
| 6022 | * Complete the branch. |
| 6023 | */ |
| 6024 | for_each_sched_entity(se) { |
| 6025 | if (list_add_leaf_cfs_rq(cfs_rq_of(se))) |
| 6026 | break; |
| 6027 | } |
| 6028 | goto unthrottle_throttle; |
| 6029 | } |
| 6030 | |
| 6031 | queued_delta = cfs_rq->h_nr_queued; |
| 6032 | runnable_delta = cfs_rq->h_nr_runnable; |
| 6033 | idle_delta = cfs_rq->h_nr_idle; |
| 6034 | for_each_sched_entity(se) { |
| 6035 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
| 6036 | |
| 6037 | /* Handle any unfinished DELAY_DEQUEUE business first. */ |
| 6038 | if (se->sched_delayed) { |
| 6039 | int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; |
| 6040 | |
| 6041 | dequeue_entity(qcfs_rq, se, flags); |
| 6042 | } else if (se->on_rq) |
| 6043 | break; |
| 6044 | enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); |
| 6045 | |
| 6046 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
| 6047 | idle_delta = cfs_rq->h_nr_queued; |
| 6048 | |
| 6049 | qcfs_rq->h_nr_queued += queued_delta; |
| 6050 | qcfs_rq->h_nr_runnable += runnable_delta; |
| 6051 | qcfs_rq->h_nr_idle += idle_delta; |
| 6052 | |
| 6053 | /* end evaluation on encountering a throttled cfs_rq */ |
| 6054 | if (cfs_rq_throttled(qcfs_rq)) |
| 6055 | goto unthrottle_throttle; |
| 6056 | } |
| 6057 | |
| 6058 | for_each_sched_entity(se) { |
| 6059 | struct cfs_rq *qcfs_rq = cfs_rq_of(se); |
| 6060 | |
| 6061 | update_load_avg(qcfs_rq, se, UPDATE_TG); |
| 6062 | se_update_runnable(se); |
| 6063 | |
| 6064 | if (cfs_rq_is_idle(group_cfs_rq(se))) |
| 6065 | idle_delta = cfs_rq->h_nr_queued; |
| 6066 | |
| 6067 | qcfs_rq->h_nr_queued += queued_delta; |
| 6068 | qcfs_rq->h_nr_runnable += runnable_delta; |
| 6069 | qcfs_rq->h_nr_idle += idle_delta; |
| 6070 | |
| 6071 | /* end evaluation on encountering a throttled cfs_rq */ |
| 6072 | if (cfs_rq_throttled(qcfs_rq)) |
| 6073 | goto unthrottle_throttle; |
| 6074 | } |
| 6075 | |
| 6076 | /* Start the fair server if un-throttling resulted in new runnable tasks */ |
| 6077 | if (!rq_h_nr_queued && rq->cfs.h_nr_queued) |
| 6078 | dl_server_start(&rq->fair_server); |
| 6079 | |
| 6080 | /* At this point se is NULL and we are at root level*/ |
| 6081 | add_nr_running(rq, queued_delta); |
| 6082 | |
| 6083 | unthrottle_throttle: |
| 6084 | assert_list_leaf_cfs_rq(rq); |
| 6085 | |
| 6086 | /* Determine whether we need to wake up potentially idle CPU: */ |
| 6087 | if (rq->curr == rq->idle && rq->cfs.nr_queued) |
| 6088 | resched_curr(rq); |
| 6089 | } |
| 6090 | |
| 6091 | #ifdef CONFIG_SMP |
| 6092 | static void __cfsb_csd_unthrottle(void *arg) |
| 6093 | { |
| 6094 | struct cfs_rq *cursor, *tmp; |
| 6095 | struct rq *rq = arg; |
| 6096 | struct rq_flags rf; |
| 6097 | |
| 6098 | rq_lock(rq, &rf); |
| 6099 | |
| 6100 | /* |
| 6101 | * Iterating over the list can trigger several call to |
| 6102 | * update_rq_clock() in unthrottle_cfs_rq(). |
| 6103 | * Do it once and skip the potential next ones. |
| 6104 | */ |
| 6105 | update_rq_clock(rq); |
| 6106 | rq_clock_start_loop_update(rq); |
| 6107 | |
| 6108 | /* |
| 6109 | * Since we hold rq lock we're safe from concurrent manipulation of |
| 6110 | * the CSD list. However, this RCU critical section annotates the |
| 6111 | * fact that we pair with sched_free_group_rcu(), so that we cannot |
| 6112 | * race with group being freed in the window between removing it |
| 6113 | * from the list and advancing to the next entry in the list. |
| 6114 | */ |
| 6115 | rcu_read_lock(); |
| 6116 | |
| 6117 | list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, |
| 6118 | throttled_csd_list) { |
| 6119 | list_del_init(&cursor->throttled_csd_list); |
| 6120 | |
| 6121 | if (cfs_rq_throttled(cursor)) |
| 6122 | unthrottle_cfs_rq(cursor); |
| 6123 | } |
| 6124 | |
| 6125 | rcu_read_unlock(); |
| 6126 | |
| 6127 | rq_clock_stop_loop_update(rq); |
| 6128 | rq_unlock(rq, &rf); |
| 6129 | } |
| 6130 | |
| 6131 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) |
| 6132 | { |
| 6133 | struct rq *rq = rq_of(cfs_rq); |
| 6134 | bool first; |
| 6135 | |
| 6136 | if (rq == this_rq()) { |
| 6137 | unthrottle_cfs_rq(cfs_rq); |
| 6138 | return; |
| 6139 | } |
| 6140 | |
| 6141 | /* Already enqueued */ |
| 6142 | if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) |
| 6143 | return; |
| 6144 | |
| 6145 | first = list_empty(&rq->cfsb_csd_list); |
| 6146 | list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); |
| 6147 | if (first) |
| 6148 | smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); |
| 6149 | } |
| 6150 | #else |
| 6151 | static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) |
| 6152 | { |
| 6153 | unthrottle_cfs_rq(cfs_rq); |
| 6154 | } |
| 6155 | #endif |
| 6156 | |
| 6157 | static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) |
| 6158 | { |
| 6159 | lockdep_assert_rq_held(rq_of(cfs_rq)); |
| 6160 | |
| 6161 | if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || |
| 6162 | cfs_rq->runtime_remaining <= 0)) |
| 6163 | return; |
| 6164 | |
| 6165 | __unthrottle_cfs_rq_async(cfs_rq); |
| 6166 | } |
| 6167 | |
| 6168 | static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) |
| 6169 | { |
| 6170 | int this_cpu = smp_processor_id(); |
| 6171 | u64 runtime, remaining = 1; |
| 6172 | bool throttled = false; |
| 6173 | struct cfs_rq *cfs_rq, *tmp; |
| 6174 | struct rq_flags rf; |
| 6175 | struct rq *rq; |
| 6176 | LIST_HEAD(local_unthrottle); |
| 6177 | |
| 6178 | rcu_read_lock(); |
| 6179 | list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, |
| 6180 | throttled_list) { |
| 6181 | rq = rq_of(cfs_rq); |
| 6182 | |
| 6183 | if (!remaining) { |
| 6184 | throttled = true; |
| 6185 | break; |
| 6186 | } |
| 6187 | |
| 6188 | rq_lock_irqsave(rq, &rf); |
| 6189 | if (!cfs_rq_throttled(cfs_rq)) |
| 6190 | goto next; |
| 6191 | |
| 6192 | /* Already queued for async unthrottle */ |
| 6193 | if (!list_empty(&cfs_rq->throttled_csd_list)) |
| 6194 | goto next; |
| 6195 | |
| 6196 | /* By the above checks, this should never be true */ |
| 6197 | WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); |
| 6198 | |
| 6199 | raw_spin_lock(&cfs_b->lock); |
| 6200 | runtime = -cfs_rq->runtime_remaining + 1; |
| 6201 | if (runtime > cfs_b->runtime) |
| 6202 | runtime = cfs_b->runtime; |
| 6203 | cfs_b->runtime -= runtime; |
| 6204 | remaining = cfs_b->runtime; |
| 6205 | raw_spin_unlock(&cfs_b->lock); |
| 6206 | |
| 6207 | cfs_rq->runtime_remaining += runtime; |
| 6208 | |
| 6209 | /* we check whether we're throttled above */ |
| 6210 | if (cfs_rq->runtime_remaining > 0) { |
| 6211 | if (cpu_of(rq) != this_cpu) { |
| 6212 | unthrottle_cfs_rq_async(cfs_rq); |
| 6213 | } else { |
| 6214 | /* |
| 6215 | * We currently only expect to be unthrottling |
| 6216 | * a single cfs_rq locally. |
| 6217 | */ |
| 6218 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); |
| 6219 | list_add_tail(&cfs_rq->throttled_csd_list, |
| 6220 | &local_unthrottle); |
| 6221 | } |
| 6222 | } else { |
| 6223 | throttled = true; |
| 6224 | } |
| 6225 | |
| 6226 | next: |
| 6227 | rq_unlock_irqrestore(rq, &rf); |
| 6228 | } |
| 6229 | |
| 6230 | list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, |
| 6231 | throttled_csd_list) { |
| 6232 | struct rq *rq = rq_of(cfs_rq); |
| 6233 | |
| 6234 | rq_lock_irqsave(rq, &rf); |
| 6235 | |
| 6236 | list_del_init(&cfs_rq->throttled_csd_list); |
| 6237 | |
| 6238 | if (cfs_rq_throttled(cfs_rq)) |
| 6239 | unthrottle_cfs_rq(cfs_rq); |
| 6240 | |
| 6241 | rq_unlock_irqrestore(rq, &rf); |
| 6242 | } |
| 6243 | WARN_ON_ONCE(!list_empty(&local_unthrottle)); |
| 6244 | |
| 6245 | rcu_read_unlock(); |
| 6246 | |
| 6247 | return throttled; |
| 6248 | } |
| 6249 | |
| 6250 | /* |
| 6251 | * Responsible for refilling a task_group's bandwidth and unthrottling its |
| 6252 | * cfs_rqs as appropriate. If there has been no activity within the last |
| 6253 | * period the timer is deactivated until scheduling resumes; cfs_b->idle is |
| 6254 | * used to track this state. |
| 6255 | */ |
| 6256 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) |
| 6257 | { |
| 6258 | int throttled; |
| 6259 | |
| 6260 | /* no need to continue the timer with no bandwidth constraint */ |
| 6261 | if (cfs_b->quota == RUNTIME_INF) |
| 6262 | goto out_deactivate; |
| 6263 | |
| 6264 | throttled = !list_empty(&cfs_b->throttled_cfs_rq); |
| 6265 | cfs_b->nr_periods += overrun; |
| 6266 | |
| 6267 | /* Refill extra burst quota even if cfs_b->idle */ |
| 6268 | __refill_cfs_bandwidth_runtime(cfs_b); |
| 6269 | |
| 6270 | /* |
| 6271 | * idle depends on !throttled (for the case of a large deficit), and if |
| 6272 | * we're going inactive then everything else can be deferred |
| 6273 | */ |
| 6274 | if (cfs_b->idle && !throttled) |
| 6275 | goto out_deactivate; |
| 6276 | |
| 6277 | if (!throttled) { |
| 6278 | /* mark as potentially idle for the upcoming period */ |
| 6279 | cfs_b->idle = 1; |
| 6280 | return 0; |
| 6281 | } |
| 6282 | |
| 6283 | /* account preceding periods in which throttling occurred */ |
| 6284 | cfs_b->nr_throttled += overrun; |
| 6285 | |
| 6286 | /* |
| 6287 | * This check is repeated as we release cfs_b->lock while we unthrottle. |
| 6288 | */ |
| 6289 | while (throttled && cfs_b->runtime > 0) { |
| 6290 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
| 6291 | /* we can't nest cfs_b->lock while distributing bandwidth */ |
| 6292 | throttled = distribute_cfs_runtime(cfs_b); |
| 6293 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
| 6294 | } |
| 6295 | |
| 6296 | /* |
| 6297 | * While we are ensured activity in the period following an |
| 6298 | * unthrottle, this also covers the case in which the new bandwidth is |
| 6299 | * insufficient to cover the existing bandwidth deficit. (Forcing the |
| 6300 | * timer to remain active while there are any throttled entities.) |
| 6301 | */ |
| 6302 | cfs_b->idle = 0; |
| 6303 | |
| 6304 | return 0; |
| 6305 | |
| 6306 | out_deactivate: |
| 6307 | return 1; |
| 6308 | } |
| 6309 | |
| 6310 | /* a cfs_rq won't donate quota below this amount */ |
| 6311 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; |
| 6312 | /* minimum remaining period time to redistribute slack quota */ |
| 6313 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; |
| 6314 | /* how long we wait to gather additional slack before distributing */ |
| 6315 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; |
| 6316 | |
| 6317 | /* |
| 6318 | * Are we near the end of the current quota period? |
| 6319 | * |
| 6320 | * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the |
| 6321 | * hrtimer base being cleared by hrtimer_start. In the case of |
| 6322 | * migrate_hrtimers, base is never cleared, so we are fine. |
| 6323 | */ |
| 6324 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) |
| 6325 | { |
| 6326 | struct hrtimer *refresh_timer = &cfs_b->period_timer; |
| 6327 | s64 remaining; |
| 6328 | |
| 6329 | /* if the call-back is running a quota refresh is already occurring */ |
| 6330 | if (hrtimer_callback_running(refresh_timer)) |
| 6331 | return 1; |
| 6332 | |
| 6333 | /* is a quota refresh about to occur? */ |
| 6334 | remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); |
| 6335 | if (remaining < (s64)min_expire) |
| 6336 | return 1; |
| 6337 | |
| 6338 | return 0; |
| 6339 | } |
| 6340 | |
| 6341 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) |
| 6342 | { |
| 6343 | u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; |
| 6344 | |
| 6345 | /* if there's a quota refresh soon don't bother with slack */ |
| 6346 | if (runtime_refresh_within(cfs_b, min_left)) |
| 6347 | return; |
| 6348 | |
| 6349 | /* don't push forwards an existing deferred unthrottle */ |
| 6350 | if (cfs_b->slack_started) |
| 6351 | return; |
| 6352 | cfs_b->slack_started = true; |
| 6353 | |
| 6354 | hrtimer_start(&cfs_b->slack_timer, |
| 6355 | ns_to_ktime(cfs_bandwidth_slack_period), |
| 6356 | HRTIMER_MODE_REL); |
| 6357 | } |
| 6358 | |
| 6359 | /* we know any runtime found here is valid as update_curr() precedes return */ |
| 6360 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 6361 | { |
| 6362 | struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); |
| 6363 | s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; |
| 6364 | |
| 6365 | if (slack_runtime <= 0) |
| 6366 | return; |
| 6367 | |
| 6368 | raw_spin_lock(&cfs_b->lock); |
| 6369 | if (cfs_b->quota != RUNTIME_INF) { |
| 6370 | cfs_b->runtime += slack_runtime; |
| 6371 | |
| 6372 | /* we are under rq->lock, defer unthrottling using a timer */ |
| 6373 | if (cfs_b->runtime > sched_cfs_bandwidth_slice() && |
| 6374 | !list_empty(&cfs_b->throttled_cfs_rq)) |
| 6375 | start_cfs_slack_bandwidth(cfs_b); |
| 6376 | } |
| 6377 | raw_spin_unlock(&cfs_b->lock); |
| 6378 | |
| 6379 | /* even if it's not valid for return we don't want to try again */ |
| 6380 | cfs_rq->runtime_remaining -= slack_runtime; |
| 6381 | } |
| 6382 | |
| 6383 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 6384 | { |
| 6385 | if (!cfs_bandwidth_used()) |
| 6386 | return; |
| 6387 | |
| 6388 | if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) |
| 6389 | return; |
| 6390 | |
| 6391 | __return_cfs_rq_runtime(cfs_rq); |
| 6392 | } |
| 6393 | |
| 6394 | /* |
| 6395 | * This is done with a timer (instead of inline with bandwidth return) since |
| 6396 | * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. |
| 6397 | */ |
| 6398 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) |
| 6399 | { |
| 6400 | u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); |
| 6401 | unsigned long flags; |
| 6402 | |
| 6403 | /* confirm we're still not at a refresh boundary */ |
| 6404 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
| 6405 | cfs_b->slack_started = false; |
| 6406 | |
| 6407 | if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { |
| 6408 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
| 6409 | return; |
| 6410 | } |
| 6411 | |
| 6412 | if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) |
| 6413 | runtime = cfs_b->runtime; |
| 6414 | |
| 6415 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
| 6416 | |
| 6417 | if (!runtime) |
| 6418 | return; |
| 6419 | |
| 6420 | distribute_cfs_runtime(cfs_b); |
| 6421 | } |
| 6422 | |
| 6423 | /* |
| 6424 | * When a group wakes up we want to make sure that its quota is not already |
| 6425 | * expired/exceeded, otherwise it may be allowed to steal additional ticks of |
| 6426 | * runtime as update_curr() throttling can not trigger until it's on-rq. |
| 6427 | */ |
| 6428 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) |
| 6429 | { |
| 6430 | if (!cfs_bandwidth_used()) |
| 6431 | return; |
| 6432 | |
| 6433 | /* an active group must be handled by the update_curr()->put() path */ |
| 6434 | if (!cfs_rq->runtime_enabled || cfs_rq->curr) |
| 6435 | return; |
| 6436 | |
| 6437 | /* ensure the group is not already throttled */ |
| 6438 | if (cfs_rq_throttled(cfs_rq)) |
| 6439 | return; |
| 6440 | |
| 6441 | /* update runtime allocation */ |
| 6442 | account_cfs_rq_runtime(cfs_rq, 0); |
| 6443 | if (cfs_rq->runtime_remaining <= 0) |
| 6444 | throttle_cfs_rq(cfs_rq); |
| 6445 | } |
| 6446 | |
| 6447 | static void sync_throttle(struct task_group *tg, int cpu) |
| 6448 | { |
| 6449 | struct cfs_rq *pcfs_rq, *cfs_rq; |
| 6450 | |
| 6451 | if (!cfs_bandwidth_used()) |
| 6452 | return; |
| 6453 | |
| 6454 | if (!tg->parent) |
| 6455 | return; |
| 6456 | |
| 6457 | cfs_rq = tg->cfs_rq[cpu]; |
| 6458 | pcfs_rq = tg->parent->cfs_rq[cpu]; |
| 6459 | |
| 6460 | cfs_rq->throttle_count = pcfs_rq->throttle_count; |
| 6461 | cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); |
| 6462 | } |
| 6463 | |
| 6464 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ |
| 6465 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 6466 | { |
| 6467 | if (!cfs_bandwidth_used()) |
| 6468 | return false; |
| 6469 | |
| 6470 | if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) |
| 6471 | return false; |
| 6472 | |
| 6473 | /* |
| 6474 | * it's possible for a throttled entity to be forced into a running |
| 6475 | * state (e.g. set_curr_task), in this case we're finished. |
| 6476 | */ |
| 6477 | if (cfs_rq_throttled(cfs_rq)) |
| 6478 | return true; |
| 6479 | |
| 6480 | return throttle_cfs_rq(cfs_rq); |
| 6481 | } |
| 6482 | |
| 6483 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) |
| 6484 | { |
| 6485 | struct cfs_bandwidth *cfs_b = |
| 6486 | container_of(timer, struct cfs_bandwidth, slack_timer); |
| 6487 | |
| 6488 | do_sched_cfs_slack_timer(cfs_b); |
| 6489 | |
| 6490 | return HRTIMER_NORESTART; |
| 6491 | } |
| 6492 | |
| 6493 | extern const u64 max_cfs_quota_period; |
| 6494 | |
| 6495 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) |
| 6496 | { |
| 6497 | struct cfs_bandwidth *cfs_b = |
| 6498 | container_of(timer, struct cfs_bandwidth, period_timer); |
| 6499 | unsigned long flags; |
| 6500 | int overrun; |
| 6501 | int idle = 0; |
| 6502 | int count = 0; |
| 6503 | |
| 6504 | raw_spin_lock_irqsave(&cfs_b->lock, flags); |
| 6505 | for (;;) { |
| 6506 | overrun = hrtimer_forward_now(timer, cfs_b->period); |
| 6507 | if (!overrun) |
| 6508 | break; |
| 6509 | |
| 6510 | idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); |
| 6511 | |
| 6512 | if (++count > 3) { |
| 6513 | u64 new, old = ktime_to_ns(cfs_b->period); |
| 6514 | |
| 6515 | /* |
| 6516 | * Grow period by a factor of 2 to avoid losing precision. |
| 6517 | * Precision loss in the quota/period ratio can cause __cfs_schedulable |
| 6518 | * to fail. |
| 6519 | */ |
| 6520 | new = old * 2; |
| 6521 | if (new < max_cfs_quota_period) { |
| 6522 | cfs_b->period = ns_to_ktime(new); |
| 6523 | cfs_b->quota *= 2; |
| 6524 | cfs_b->burst *= 2; |
| 6525 | |
| 6526 | pr_warn_ratelimited( |
| 6527 | "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", |
| 6528 | smp_processor_id(), |
| 6529 | div_u64(new, NSEC_PER_USEC), |
| 6530 | div_u64(cfs_b->quota, NSEC_PER_USEC)); |
| 6531 | } else { |
| 6532 | pr_warn_ratelimited( |
| 6533 | "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", |
| 6534 | smp_processor_id(), |
| 6535 | div_u64(old, NSEC_PER_USEC), |
| 6536 | div_u64(cfs_b->quota, NSEC_PER_USEC)); |
| 6537 | } |
| 6538 | |
| 6539 | /* reset count so we don't come right back in here */ |
| 6540 | count = 0; |
| 6541 | } |
| 6542 | } |
| 6543 | if (idle) |
| 6544 | cfs_b->period_active = 0; |
| 6545 | raw_spin_unlock_irqrestore(&cfs_b->lock, flags); |
| 6546 | |
| 6547 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
| 6548 | } |
| 6549 | |
| 6550 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) |
| 6551 | { |
| 6552 | raw_spin_lock_init(&cfs_b->lock); |
| 6553 | cfs_b->runtime = 0; |
| 6554 | cfs_b->quota = RUNTIME_INF; |
| 6555 | cfs_b->period = ns_to_ktime(default_cfs_period()); |
| 6556 | cfs_b->burst = 0; |
| 6557 | cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; |
| 6558 | |
| 6559 | INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); |
| 6560 | hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, |
| 6561 | HRTIMER_MODE_ABS_PINNED); |
| 6562 | |
| 6563 | /* Add a random offset so that timers interleave */ |
| 6564 | hrtimer_set_expires(&cfs_b->period_timer, |
| 6565 | get_random_u32_below(cfs_b->period)); |
| 6566 | hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, |
| 6567 | HRTIMER_MODE_REL); |
| 6568 | cfs_b->slack_started = false; |
| 6569 | } |
| 6570 | |
| 6571 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) |
| 6572 | { |
| 6573 | cfs_rq->runtime_enabled = 0; |
| 6574 | INIT_LIST_HEAD(&cfs_rq->throttled_list); |
| 6575 | INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); |
| 6576 | } |
| 6577 | |
| 6578 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
| 6579 | { |
| 6580 | lockdep_assert_held(&cfs_b->lock); |
| 6581 | |
| 6582 | if (cfs_b->period_active) |
| 6583 | return; |
| 6584 | |
| 6585 | cfs_b->period_active = 1; |
| 6586 | hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); |
| 6587 | hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); |
| 6588 | } |
| 6589 | |
| 6590 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) |
| 6591 | { |
| 6592 | int __maybe_unused i; |
| 6593 | |
| 6594 | /* init_cfs_bandwidth() was not called */ |
| 6595 | if (!cfs_b->throttled_cfs_rq.next) |
| 6596 | return; |
| 6597 | |
| 6598 | hrtimer_cancel(&cfs_b->period_timer); |
| 6599 | hrtimer_cancel(&cfs_b->slack_timer); |
| 6600 | |
| 6601 | /* |
| 6602 | * It is possible that we still have some cfs_rq's pending on a CSD |
| 6603 | * list, though this race is very rare. In order for this to occur, we |
| 6604 | * must have raced with the last task leaving the group while there |
| 6605 | * exist throttled cfs_rq(s), and the period_timer must have queued the |
| 6606 | * CSD item but the remote cpu has not yet processed it. To handle this, |
| 6607 | * we can simply flush all pending CSD work inline here. We're |
| 6608 | * guaranteed at this point that no additional cfs_rq of this group can |
| 6609 | * join a CSD list. |
| 6610 | */ |
| 6611 | #ifdef CONFIG_SMP |
| 6612 | for_each_possible_cpu(i) { |
| 6613 | struct rq *rq = cpu_rq(i); |
| 6614 | unsigned long flags; |
| 6615 | |
| 6616 | if (list_empty(&rq->cfsb_csd_list)) |
| 6617 | continue; |
| 6618 | |
| 6619 | local_irq_save(flags); |
| 6620 | __cfsb_csd_unthrottle(rq); |
| 6621 | local_irq_restore(flags); |
| 6622 | } |
| 6623 | #endif |
| 6624 | } |
| 6625 | |
| 6626 | /* |
| 6627 | * Both these CPU hotplug callbacks race against unregister_fair_sched_group() |
| 6628 | * |
| 6629 | * The race is harmless, since modifying bandwidth settings of unhooked group |
| 6630 | * bits doesn't do much. |
| 6631 | */ |
| 6632 | |
| 6633 | /* cpu online callback */ |
| 6634 | static void __maybe_unused update_runtime_enabled(struct rq *rq) |
| 6635 | { |
| 6636 | struct task_group *tg; |
| 6637 | |
| 6638 | lockdep_assert_rq_held(rq); |
| 6639 | |
| 6640 | rcu_read_lock(); |
| 6641 | list_for_each_entry_rcu(tg, &task_groups, list) { |
| 6642 | struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; |
| 6643 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 6644 | |
| 6645 | raw_spin_lock(&cfs_b->lock); |
| 6646 | cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; |
| 6647 | raw_spin_unlock(&cfs_b->lock); |
| 6648 | } |
| 6649 | rcu_read_unlock(); |
| 6650 | } |
| 6651 | |
| 6652 | /* cpu offline callback */ |
| 6653 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) |
| 6654 | { |
| 6655 | struct task_group *tg; |
| 6656 | |
| 6657 | lockdep_assert_rq_held(rq); |
| 6658 | |
| 6659 | // Do not unthrottle for an active CPU |
| 6660 | if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) |
| 6661 | return; |
| 6662 | |
| 6663 | /* |
| 6664 | * The rq clock has already been updated in the |
| 6665 | * set_rq_offline(), so we should skip updating |
| 6666 | * the rq clock again in unthrottle_cfs_rq(). |
| 6667 | */ |
| 6668 | rq_clock_start_loop_update(rq); |
| 6669 | |
| 6670 | rcu_read_lock(); |
| 6671 | list_for_each_entry_rcu(tg, &task_groups, list) { |
| 6672 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; |
| 6673 | |
| 6674 | if (!cfs_rq->runtime_enabled) |
| 6675 | continue; |
| 6676 | |
| 6677 | /* |
| 6678 | * Offline rq is schedulable till CPU is completely disabled |
| 6679 | * in take_cpu_down(), so we prevent new cfs throttling here. |
| 6680 | */ |
| 6681 | cfs_rq->runtime_enabled = 0; |
| 6682 | |
| 6683 | if (!cfs_rq_throttled(cfs_rq)) |
| 6684 | continue; |
| 6685 | |
| 6686 | /* |
| 6687 | * clock_task is not advancing so we just need to make sure |
| 6688 | * there's some valid quota amount |
| 6689 | */ |
| 6690 | cfs_rq->runtime_remaining = 1; |
| 6691 | unthrottle_cfs_rq(cfs_rq); |
| 6692 | } |
| 6693 | rcu_read_unlock(); |
| 6694 | |
| 6695 | rq_clock_stop_loop_update(rq); |
| 6696 | } |
| 6697 | |
| 6698 | bool cfs_task_bw_constrained(struct task_struct *p) |
| 6699 | { |
| 6700 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
| 6701 | |
| 6702 | if (!cfs_bandwidth_used()) |
| 6703 | return false; |
| 6704 | |
| 6705 | if (cfs_rq->runtime_enabled || |
| 6706 | tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) |
| 6707 | return true; |
| 6708 | |
| 6709 | return false; |
| 6710 | } |
| 6711 | |
| 6712 | #ifdef CONFIG_NO_HZ_FULL |
| 6713 | /* called from pick_next_task_fair() */ |
| 6714 | static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) |
| 6715 | { |
| 6716 | int cpu = cpu_of(rq); |
| 6717 | |
| 6718 | if (!cfs_bandwidth_used()) |
| 6719 | return; |
| 6720 | |
| 6721 | if (!tick_nohz_full_cpu(cpu)) |
| 6722 | return; |
| 6723 | |
| 6724 | if (rq->nr_running != 1) |
| 6725 | return; |
| 6726 | |
| 6727 | /* |
| 6728 | * We know there is only one task runnable and we've just picked it. The |
| 6729 | * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will |
| 6730 | * be otherwise able to stop the tick. Just need to check if we are using |
| 6731 | * bandwidth control. |
| 6732 | */ |
| 6733 | if (cfs_task_bw_constrained(p)) |
| 6734 | tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); |
| 6735 | } |
| 6736 | #endif |
| 6737 | |
| 6738 | #else /* CONFIG_CFS_BANDWIDTH */ |
| 6739 | |
| 6740 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} |
| 6741 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } |
| 6742 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} |
| 6743 | static inline void sync_throttle(struct task_group *tg, int cpu) {} |
| 6744 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
| 6745 | |
| 6746 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) |
| 6747 | { |
| 6748 | return 0; |
| 6749 | } |
| 6750 | |
| 6751 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) |
| 6752 | { |
| 6753 | return 0; |
| 6754 | } |
| 6755 | |
| 6756 | static inline int throttled_lb_pair(struct task_group *tg, |
| 6757 | int src_cpu, int dest_cpu) |
| 6758 | { |
| 6759 | return 0; |
| 6760 | } |
| 6761 | |
| 6762 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 6763 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} |
| 6764 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} |
| 6765 | #endif |
| 6766 | |
| 6767 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) |
| 6768 | { |
| 6769 | return NULL; |
| 6770 | } |
| 6771 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} |
| 6772 | static inline void update_runtime_enabled(struct rq *rq) {} |
| 6773 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} |
| 6774 | #ifdef CONFIG_CGROUP_SCHED |
| 6775 | bool cfs_task_bw_constrained(struct task_struct *p) |
| 6776 | { |
| 6777 | return false; |
| 6778 | } |
| 6779 | #endif |
| 6780 | #endif /* CONFIG_CFS_BANDWIDTH */ |
| 6781 | |
| 6782 | #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) |
| 6783 | static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} |
| 6784 | #endif |
| 6785 | |
| 6786 | /************************************************** |
| 6787 | * CFS operations on tasks: |
| 6788 | */ |
| 6789 | |
| 6790 | #ifdef CONFIG_SCHED_HRTICK |
| 6791 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) |
| 6792 | { |
| 6793 | struct sched_entity *se = &p->se; |
| 6794 | |
| 6795 | WARN_ON_ONCE(task_rq(p) != rq); |
| 6796 | |
| 6797 | if (rq->cfs.h_nr_queued > 1) { |
| 6798 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
| 6799 | u64 slice = se->slice; |
| 6800 | s64 delta = slice - ran; |
| 6801 | |
| 6802 | if (delta < 0) { |
| 6803 | if (task_current_donor(rq, p)) |
| 6804 | resched_curr(rq); |
| 6805 | return; |
| 6806 | } |
| 6807 | hrtick_start(rq, delta); |
| 6808 | } |
| 6809 | } |
| 6810 | |
| 6811 | /* |
| 6812 | * called from enqueue/dequeue and updates the hrtick when the |
| 6813 | * current task is from our class and nr_running is low enough |
| 6814 | * to matter. |
| 6815 | */ |
| 6816 | static void hrtick_update(struct rq *rq) |
| 6817 | { |
| 6818 | struct task_struct *donor = rq->donor; |
| 6819 | |
| 6820 | if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) |
| 6821 | return; |
| 6822 | |
| 6823 | hrtick_start_fair(rq, donor); |
| 6824 | } |
| 6825 | #else /* !CONFIG_SCHED_HRTICK */ |
| 6826 | static inline void |
| 6827 | hrtick_start_fair(struct rq *rq, struct task_struct *p) |
| 6828 | { |
| 6829 | } |
| 6830 | |
| 6831 | static inline void hrtick_update(struct rq *rq) |
| 6832 | { |
| 6833 | } |
| 6834 | #endif |
| 6835 | |
| 6836 | #ifdef CONFIG_SMP |
| 6837 | static inline bool cpu_overutilized(int cpu) |
| 6838 | { |
| 6839 | unsigned long rq_util_min, rq_util_max; |
| 6840 | |
| 6841 | if (!sched_energy_enabled()) |
| 6842 | return false; |
| 6843 | |
| 6844 | rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); |
| 6845 | rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); |
| 6846 | |
| 6847 | /* Return true only if the utilization doesn't fit CPU's capacity */ |
| 6848 | return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); |
| 6849 | } |
| 6850 | |
| 6851 | /* |
| 6852 | * overutilized value make sense only if EAS is enabled |
| 6853 | */ |
| 6854 | static inline bool is_rd_overutilized(struct root_domain *rd) |
| 6855 | { |
| 6856 | return !sched_energy_enabled() || READ_ONCE(rd->overutilized); |
| 6857 | } |
| 6858 | |
| 6859 | static inline void set_rd_overutilized(struct root_domain *rd, bool flag) |
| 6860 | { |
| 6861 | if (!sched_energy_enabled()) |
| 6862 | return; |
| 6863 | |
| 6864 | WRITE_ONCE(rd->overutilized, flag); |
| 6865 | trace_sched_overutilized_tp(rd, flag); |
| 6866 | } |
| 6867 | |
| 6868 | static inline void check_update_overutilized_status(struct rq *rq) |
| 6869 | { |
| 6870 | /* |
| 6871 | * overutilized field is used for load balancing decisions only |
| 6872 | * if energy aware scheduler is being used |
| 6873 | */ |
| 6874 | |
| 6875 | if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) |
| 6876 | set_rd_overutilized(rq->rd, 1); |
| 6877 | } |
| 6878 | #else |
| 6879 | static inline void check_update_overutilized_status(struct rq *rq) { } |
| 6880 | #endif |
| 6881 | |
| 6882 | /* Runqueue only has SCHED_IDLE tasks enqueued */ |
| 6883 | static int sched_idle_rq(struct rq *rq) |
| 6884 | { |
| 6885 | return unlikely(rq->nr_running == rq->cfs.h_nr_idle && |
| 6886 | rq->nr_running); |
| 6887 | } |
| 6888 | |
| 6889 | #ifdef CONFIG_SMP |
| 6890 | static int sched_idle_cpu(int cpu) |
| 6891 | { |
| 6892 | return sched_idle_rq(cpu_rq(cpu)); |
| 6893 | } |
| 6894 | #endif |
| 6895 | |
| 6896 | static void |
| 6897 | requeue_delayed_entity(struct sched_entity *se) |
| 6898 | { |
| 6899 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 6900 | |
| 6901 | /* |
| 6902 | * se->sched_delayed should imply: se->on_rq == 1. |
| 6903 | * Because a delayed entity is one that is still on |
| 6904 | * the runqueue competing until elegibility. |
| 6905 | */ |
| 6906 | WARN_ON_ONCE(!se->sched_delayed); |
| 6907 | WARN_ON_ONCE(!se->on_rq); |
| 6908 | |
| 6909 | if (sched_feat(DELAY_ZERO)) { |
| 6910 | update_entity_lag(cfs_rq, se); |
| 6911 | if (se->vlag > 0) { |
| 6912 | cfs_rq->nr_queued--; |
| 6913 | if (se != cfs_rq->curr) |
| 6914 | __dequeue_entity(cfs_rq, se); |
| 6915 | se->vlag = 0; |
| 6916 | place_entity(cfs_rq, se, 0); |
| 6917 | if (se != cfs_rq->curr) |
| 6918 | __enqueue_entity(cfs_rq, se); |
| 6919 | cfs_rq->nr_queued++; |
| 6920 | } |
| 6921 | } |
| 6922 | |
| 6923 | update_load_avg(cfs_rq, se, 0); |
| 6924 | clear_delayed(se); |
| 6925 | } |
| 6926 | |
| 6927 | /* |
| 6928 | * The enqueue_task method is called before nr_running is |
| 6929 | * increased. Here we update the fair scheduling stats and |
| 6930 | * then put the task into the rbtree: |
| 6931 | */ |
| 6932 | static void |
| 6933 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
| 6934 | { |
| 6935 | struct cfs_rq *cfs_rq; |
| 6936 | struct sched_entity *se = &p->se; |
| 6937 | int h_nr_idle = task_has_idle_policy(p); |
| 6938 | int h_nr_runnable = 1; |
| 6939 | int task_new = !(flags & ENQUEUE_WAKEUP); |
| 6940 | int rq_h_nr_queued = rq->cfs.h_nr_queued; |
| 6941 | u64 slice = 0; |
| 6942 | |
| 6943 | /* |
| 6944 | * The code below (indirectly) updates schedutil which looks at |
| 6945 | * the cfs_rq utilization to select a frequency. |
| 6946 | * Let's add the task's estimated utilization to the cfs_rq's |
| 6947 | * estimated utilization, before we update schedutil. |
| 6948 | */ |
| 6949 | if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) |
| 6950 | util_est_enqueue(&rq->cfs, p); |
| 6951 | |
| 6952 | if (flags & ENQUEUE_DELAYED) { |
| 6953 | requeue_delayed_entity(se); |
| 6954 | return; |
| 6955 | } |
| 6956 | |
| 6957 | /* |
| 6958 | * If in_iowait is set, the code below may not trigger any cpufreq |
| 6959 | * utilization updates, so do it here explicitly with the IOWAIT flag |
| 6960 | * passed. |
| 6961 | */ |
| 6962 | if (p->in_iowait) |
| 6963 | cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); |
| 6964 | |
| 6965 | if (task_new && se->sched_delayed) |
| 6966 | h_nr_runnable = 0; |
| 6967 | |
| 6968 | for_each_sched_entity(se) { |
| 6969 | if (se->on_rq) { |
| 6970 | if (se->sched_delayed) |
| 6971 | requeue_delayed_entity(se); |
| 6972 | break; |
| 6973 | } |
| 6974 | cfs_rq = cfs_rq_of(se); |
| 6975 | |
| 6976 | /* |
| 6977 | * Basically set the slice of group entries to the min_slice of |
| 6978 | * their respective cfs_rq. This ensures the group can service |
| 6979 | * its entities in the desired time-frame. |
| 6980 | */ |
| 6981 | if (slice) { |
| 6982 | se->slice = slice; |
| 6983 | se->custom_slice = 1; |
| 6984 | } |
| 6985 | enqueue_entity(cfs_rq, se, flags); |
| 6986 | slice = cfs_rq_min_slice(cfs_rq); |
| 6987 | |
| 6988 | cfs_rq->h_nr_runnable += h_nr_runnable; |
| 6989 | cfs_rq->h_nr_queued++; |
| 6990 | cfs_rq->h_nr_idle += h_nr_idle; |
| 6991 | |
| 6992 | if (cfs_rq_is_idle(cfs_rq)) |
| 6993 | h_nr_idle = 1; |
| 6994 | |
| 6995 | /* end evaluation on encountering a throttled cfs_rq */ |
| 6996 | if (cfs_rq_throttled(cfs_rq)) |
| 6997 | goto enqueue_throttle; |
| 6998 | |
| 6999 | flags = ENQUEUE_WAKEUP; |
| 7000 | } |
| 7001 | |
| 7002 | for_each_sched_entity(se) { |
| 7003 | cfs_rq = cfs_rq_of(se); |
| 7004 | |
| 7005 | update_load_avg(cfs_rq, se, UPDATE_TG); |
| 7006 | se_update_runnable(se); |
| 7007 | update_cfs_group(se); |
| 7008 | |
| 7009 | se->slice = slice; |
| 7010 | if (se != cfs_rq->curr) |
| 7011 | min_vruntime_cb_propagate(&se->run_node, NULL); |
| 7012 | slice = cfs_rq_min_slice(cfs_rq); |
| 7013 | |
| 7014 | cfs_rq->h_nr_runnable += h_nr_runnable; |
| 7015 | cfs_rq->h_nr_queued++; |
| 7016 | cfs_rq->h_nr_idle += h_nr_idle; |
| 7017 | |
| 7018 | if (cfs_rq_is_idle(cfs_rq)) |
| 7019 | h_nr_idle = 1; |
| 7020 | |
| 7021 | /* end evaluation on encountering a throttled cfs_rq */ |
| 7022 | if (cfs_rq_throttled(cfs_rq)) |
| 7023 | goto enqueue_throttle; |
| 7024 | } |
| 7025 | |
| 7026 | if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { |
| 7027 | /* Account for idle runtime */ |
| 7028 | if (!rq->nr_running) |
| 7029 | dl_server_update_idle_time(rq, rq->curr); |
| 7030 | dl_server_start(&rq->fair_server); |
| 7031 | } |
| 7032 | |
| 7033 | /* At this point se is NULL and we are at root level*/ |
| 7034 | add_nr_running(rq, 1); |
| 7035 | |
| 7036 | /* |
| 7037 | * Since new tasks are assigned an initial util_avg equal to |
| 7038 | * half of the spare capacity of their CPU, tiny tasks have the |
| 7039 | * ability to cross the overutilized threshold, which will |
| 7040 | * result in the load balancer ruining all the task placement |
| 7041 | * done by EAS. As a way to mitigate that effect, do not account |
| 7042 | * for the first enqueue operation of new tasks during the |
| 7043 | * overutilized flag detection. |
| 7044 | * |
| 7045 | * A better way of solving this problem would be to wait for |
| 7046 | * the PELT signals of tasks to converge before taking them |
| 7047 | * into account, but that is not straightforward to implement, |
| 7048 | * and the following generally works well enough in practice. |
| 7049 | */ |
| 7050 | if (!task_new) |
| 7051 | check_update_overutilized_status(rq); |
| 7052 | |
| 7053 | enqueue_throttle: |
| 7054 | assert_list_leaf_cfs_rq(rq); |
| 7055 | |
| 7056 | hrtick_update(rq); |
| 7057 | } |
| 7058 | |
| 7059 | static void set_next_buddy(struct sched_entity *se); |
| 7060 | |
| 7061 | /* |
| 7062 | * Basically dequeue_task_fair(), except it can deal with dequeue_entity() |
| 7063 | * failing half-way through and resume the dequeue later. |
| 7064 | * |
| 7065 | * Returns: |
| 7066 | * -1 - dequeue delayed |
| 7067 | * 0 - dequeue throttled |
| 7068 | * 1 - dequeue complete |
| 7069 | */ |
| 7070 | static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) |
| 7071 | { |
| 7072 | bool was_sched_idle = sched_idle_rq(rq); |
| 7073 | int rq_h_nr_queued = rq->cfs.h_nr_queued; |
| 7074 | bool task_sleep = flags & DEQUEUE_SLEEP; |
| 7075 | bool task_delayed = flags & DEQUEUE_DELAYED; |
| 7076 | struct task_struct *p = NULL; |
| 7077 | int h_nr_idle = 0; |
| 7078 | int h_nr_queued = 0; |
| 7079 | int h_nr_runnable = 0; |
| 7080 | struct cfs_rq *cfs_rq; |
| 7081 | u64 slice = 0; |
| 7082 | |
| 7083 | if (entity_is_task(se)) { |
| 7084 | p = task_of(se); |
| 7085 | h_nr_queued = 1; |
| 7086 | h_nr_idle = task_has_idle_policy(p); |
| 7087 | if (task_sleep || task_delayed || !se->sched_delayed) |
| 7088 | h_nr_runnable = 1; |
| 7089 | } |
| 7090 | |
| 7091 | for_each_sched_entity(se) { |
| 7092 | cfs_rq = cfs_rq_of(se); |
| 7093 | |
| 7094 | if (!dequeue_entity(cfs_rq, se, flags)) { |
| 7095 | if (p && &p->se == se) |
| 7096 | return -1; |
| 7097 | |
| 7098 | slice = cfs_rq_min_slice(cfs_rq); |
| 7099 | break; |
| 7100 | } |
| 7101 | |
| 7102 | cfs_rq->h_nr_runnable -= h_nr_runnable; |
| 7103 | cfs_rq->h_nr_queued -= h_nr_queued; |
| 7104 | cfs_rq->h_nr_idle -= h_nr_idle; |
| 7105 | |
| 7106 | if (cfs_rq_is_idle(cfs_rq)) |
| 7107 | h_nr_idle = h_nr_queued; |
| 7108 | |
| 7109 | /* end evaluation on encountering a throttled cfs_rq */ |
| 7110 | if (cfs_rq_throttled(cfs_rq)) |
| 7111 | return 0; |
| 7112 | |
| 7113 | /* Don't dequeue parent if it has other entities besides us */ |
| 7114 | if (cfs_rq->load.weight) { |
| 7115 | slice = cfs_rq_min_slice(cfs_rq); |
| 7116 | |
| 7117 | /* Avoid re-evaluating load for this entity: */ |
| 7118 | se = parent_entity(se); |
| 7119 | /* |
| 7120 | * Bias pick_next to pick a task from this cfs_rq, as |
| 7121 | * p is sleeping when it is within its sched_slice. |
| 7122 | */ |
| 7123 | if (task_sleep && se && !throttled_hierarchy(cfs_rq)) |
| 7124 | set_next_buddy(se); |
| 7125 | break; |
| 7126 | } |
| 7127 | flags |= DEQUEUE_SLEEP; |
| 7128 | flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); |
| 7129 | } |
| 7130 | |
| 7131 | for_each_sched_entity(se) { |
| 7132 | cfs_rq = cfs_rq_of(se); |
| 7133 | |
| 7134 | update_load_avg(cfs_rq, se, UPDATE_TG); |
| 7135 | se_update_runnable(se); |
| 7136 | update_cfs_group(se); |
| 7137 | |
| 7138 | se->slice = slice; |
| 7139 | if (se != cfs_rq->curr) |
| 7140 | min_vruntime_cb_propagate(&se->run_node, NULL); |
| 7141 | slice = cfs_rq_min_slice(cfs_rq); |
| 7142 | |
| 7143 | cfs_rq->h_nr_runnable -= h_nr_runnable; |
| 7144 | cfs_rq->h_nr_queued -= h_nr_queued; |
| 7145 | cfs_rq->h_nr_idle -= h_nr_idle; |
| 7146 | |
| 7147 | if (cfs_rq_is_idle(cfs_rq)) |
| 7148 | h_nr_idle = h_nr_queued; |
| 7149 | |
| 7150 | /* end evaluation on encountering a throttled cfs_rq */ |
| 7151 | if (cfs_rq_throttled(cfs_rq)) |
| 7152 | return 0; |
| 7153 | } |
| 7154 | |
| 7155 | sub_nr_running(rq, h_nr_queued); |
| 7156 | |
| 7157 | if (rq_h_nr_queued && !rq->cfs.h_nr_queued) |
| 7158 | dl_server_stop(&rq->fair_server); |
| 7159 | |
| 7160 | /* balance early to pull high priority tasks */ |
| 7161 | if (unlikely(!was_sched_idle && sched_idle_rq(rq))) |
| 7162 | rq->next_balance = jiffies; |
| 7163 | |
| 7164 | if (p && task_delayed) { |
| 7165 | WARN_ON_ONCE(!task_sleep); |
| 7166 | WARN_ON_ONCE(p->on_rq != 1); |
| 7167 | |
| 7168 | /* Fix-up what dequeue_task_fair() skipped */ |
| 7169 | hrtick_update(rq); |
| 7170 | |
| 7171 | /* |
| 7172 | * Fix-up what block_task() skipped. |
| 7173 | * |
| 7174 | * Must be last, @p might not be valid after this. |
| 7175 | */ |
| 7176 | __block_task(rq, p); |
| 7177 | } |
| 7178 | |
| 7179 | return 1; |
| 7180 | } |
| 7181 | |
| 7182 | /* |
| 7183 | * The dequeue_task method is called before nr_running is |
| 7184 | * decreased. We remove the task from the rbtree and |
| 7185 | * update the fair scheduling stats: |
| 7186 | */ |
| 7187 | static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
| 7188 | { |
| 7189 | if (!p->se.sched_delayed) |
| 7190 | util_est_dequeue(&rq->cfs, p); |
| 7191 | |
| 7192 | util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); |
| 7193 | if (dequeue_entities(rq, &p->se, flags) < 0) |
| 7194 | return false; |
| 7195 | |
| 7196 | /* |
| 7197 | * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). |
| 7198 | */ |
| 7199 | |
| 7200 | hrtick_update(rq); |
| 7201 | return true; |
| 7202 | } |
| 7203 | |
| 7204 | static inline unsigned int cfs_h_nr_delayed(struct rq *rq) |
| 7205 | { |
| 7206 | return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); |
| 7207 | } |
| 7208 | |
| 7209 | #ifdef CONFIG_SMP |
| 7210 | |
| 7211 | /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ |
| 7212 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); |
| 7213 | static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); |
| 7214 | static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); |
| 7215 | |
| 7216 | #ifdef CONFIG_NO_HZ_COMMON |
| 7217 | |
| 7218 | static struct { |
| 7219 | cpumask_var_t idle_cpus_mask; |
| 7220 | atomic_t nr_cpus; |
| 7221 | int has_blocked; /* Idle CPUS has blocked load */ |
| 7222 | int needs_update; /* Newly idle CPUs need their next_balance collated */ |
| 7223 | unsigned long next_balance; /* in jiffy units */ |
| 7224 | unsigned long next_blocked; /* Next update of blocked load in jiffies */ |
| 7225 | } nohz ____cacheline_aligned; |
| 7226 | |
| 7227 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 7228 | |
| 7229 | static unsigned long cpu_load(struct rq *rq) |
| 7230 | { |
| 7231 | return cfs_rq_load_avg(&rq->cfs); |
| 7232 | } |
| 7233 | |
| 7234 | /* |
| 7235 | * cpu_load_without - compute CPU load without any contributions from *p |
| 7236 | * @cpu: the CPU which load is requested |
| 7237 | * @p: the task which load should be discounted |
| 7238 | * |
| 7239 | * The load of a CPU is defined by the load of tasks currently enqueued on that |
| 7240 | * CPU as well as tasks which are currently sleeping after an execution on that |
| 7241 | * CPU. |
| 7242 | * |
| 7243 | * This method returns the load of the specified CPU by discounting the load of |
| 7244 | * the specified task, whenever the task is currently contributing to the CPU |
| 7245 | * load. |
| 7246 | */ |
| 7247 | static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) |
| 7248 | { |
| 7249 | struct cfs_rq *cfs_rq; |
| 7250 | unsigned int load; |
| 7251 | |
| 7252 | /* Task has no contribution or is new */ |
| 7253 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
| 7254 | return cpu_load(rq); |
| 7255 | |
| 7256 | cfs_rq = &rq->cfs; |
| 7257 | load = READ_ONCE(cfs_rq->avg.load_avg); |
| 7258 | |
| 7259 | /* Discount task's util from CPU's util */ |
| 7260 | lsub_positive(&load, task_h_load(p)); |
| 7261 | |
| 7262 | return load; |
| 7263 | } |
| 7264 | |
| 7265 | static unsigned long cpu_runnable(struct rq *rq) |
| 7266 | { |
| 7267 | return cfs_rq_runnable_avg(&rq->cfs); |
| 7268 | } |
| 7269 | |
| 7270 | static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) |
| 7271 | { |
| 7272 | struct cfs_rq *cfs_rq; |
| 7273 | unsigned int runnable; |
| 7274 | |
| 7275 | /* Task has no contribution or is new */ |
| 7276 | if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
| 7277 | return cpu_runnable(rq); |
| 7278 | |
| 7279 | cfs_rq = &rq->cfs; |
| 7280 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); |
| 7281 | |
| 7282 | /* Discount task's runnable from CPU's runnable */ |
| 7283 | lsub_positive(&runnable, p->se.avg.runnable_avg); |
| 7284 | |
| 7285 | return runnable; |
| 7286 | } |
| 7287 | |
| 7288 | static unsigned long capacity_of(int cpu) |
| 7289 | { |
| 7290 | return cpu_rq(cpu)->cpu_capacity; |
| 7291 | } |
| 7292 | |
| 7293 | static void record_wakee(struct task_struct *p) |
| 7294 | { |
| 7295 | /* |
| 7296 | * Only decay a single time; tasks that have less then 1 wakeup per |
| 7297 | * jiffy will not have built up many flips. |
| 7298 | */ |
| 7299 | if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { |
| 7300 | current->wakee_flips >>= 1; |
| 7301 | current->wakee_flip_decay_ts = jiffies; |
| 7302 | } |
| 7303 | |
| 7304 | if (current->last_wakee != p) { |
| 7305 | current->last_wakee = p; |
| 7306 | current->wakee_flips++; |
| 7307 | } |
| 7308 | } |
| 7309 | |
| 7310 | /* |
| 7311 | * Detect M:N waker/wakee relationships via a switching-frequency heuristic. |
| 7312 | * |
| 7313 | * A waker of many should wake a different task than the one last awakened |
| 7314 | * at a frequency roughly N times higher than one of its wakees. |
| 7315 | * |
| 7316 | * In order to determine whether we should let the load spread vs consolidating |
| 7317 | * to shared cache, we look for a minimum 'flip' frequency of llc_size in one |
| 7318 | * partner, and a factor of lls_size higher frequency in the other. |
| 7319 | * |
| 7320 | * With both conditions met, we can be relatively sure that the relationship is |
| 7321 | * non-monogamous, with partner count exceeding socket size. |
| 7322 | * |
| 7323 | * Waker/wakee being client/server, worker/dispatcher, interrupt source or |
| 7324 | * whatever is irrelevant, spread criteria is apparent partner count exceeds |
| 7325 | * socket size. |
| 7326 | */ |
| 7327 | static int wake_wide(struct task_struct *p) |
| 7328 | { |
| 7329 | unsigned int master = current->wakee_flips; |
| 7330 | unsigned int slave = p->wakee_flips; |
| 7331 | int factor = __this_cpu_read(sd_llc_size); |
| 7332 | |
| 7333 | if (master < slave) |
| 7334 | swap(master, slave); |
| 7335 | if (slave < factor || master < slave * factor) |
| 7336 | return 0; |
| 7337 | return 1; |
| 7338 | } |
| 7339 | |
| 7340 | /* |
| 7341 | * The purpose of wake_affine() is to quickly determine on which CPU we can run |
| 7342 | * soonest. For the purpose of speed we only consider the waking and previous |
| 7343 | * CPU. |
| 7344 | * |
| 7345 | * wake_affine_idle() - only considers 'now', it check if the waking CPU is |
| 7346 | * cache-affine and is (or will be) idle. |
| 7347 | * |
| 7348 | * wake_affine_weight() - considers the weight to reflect the average |
| 7349 | * scheduling latency of the CPUs. This seems to work |
| 7350 | * for the overloaded case. |
| 7351 | */ |
| 7352 | static int |
| 7353 | wake_affine_idle(int this_cpu, int prev_cpu, int sync) |
| 7354 | { |
| 7355 | /* |
| 7356 | * If this_cpu is idle, it implies the wakeup is from interrupt |
| 7357 | * context. Only allow the move if cache is shared. Otherwise an |
| 7358 | * interrupt intensive workload could force all tasks onto one |
| 7359 | * node depending on the IO topology or IRQ affinity settings. |
| 7360 | * |
| 7361 | * If the prev_cpu is idle and cache affine then avoid a migration. |
| 7362 | * There is no guarantee that the cache hot data from an interrupt |
| 7363 | * is more important than cache hot data on the prev_cpu and from |
| 7364 | * a cpufreq perspective, it's better to have higher utilisation |
| 7365 | * on one CPU. |
| 7366 | */ |
| 7367 | if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) |
| 7368 | return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; |
| 7369 | |
| 7370 | if (sync) { |
| 7371 | struct rq *rq = cpu_rq(this_cpu); |
| 7372 | |
| 7373 | if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) |
| 7374 | return this_cpu; |
| 7375 | } |
| 7376 | |
| 7377 | if (available_idle_cpu(prev_cpu)) |
| 7378 | return prev_cpu; |
| 7379 | |
| 7380 | return nr_cpumask_bits; |
| 7381 | } |
| 7382 | |
| 7383 | static int |
| 7384 | wake_affine_weight(struct sched_domain *sd, struct task_struct *p, |
| 7385 | int this_cpu, int prev_cpu, int sync) |
| 7386 | { |
| 7387 | s64 this_eff_load, prev_eff_load; |
| 7388 | unsigned long task_load; |
| 7389 | |
| 7390 | this_eff_load = cpu_load(cpu_rq(this_cpu)); |
| 7391 | |
| 7392 | if (sync) { |
| 7393 | unsigned long current_load = task_h_load(current); |
| 7394 | |
| 7395 | if (current_load > this_eff_load) |
| 7396 | return this_cpu; |
| 7397 | |
| 7398 | this_eff_load -= current_load; |
| 7399 | } |
| 7400 | |
| 7401 | task_load = task_h_load(p); |
| 7402 | |
| 7403 | this_eff_load += task_load; |
| 7404 | if (sched_feat(WA_BIAS)) |
| 7405 | this_eff_load *= 100; |
| 7406 | this_eff_load *= capacity_of(prev_cpu); |
| 7407 | |
| 7408 | prev_eff_load = cpu_load(cpu_rq(prev_cpu)); |
| 7409 | prev_eff_load -= task_load; |
| 7410 | if (sched_feat(WA_BIAS)) |
| 7411 | prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; |
| 7412 | prev_eff_load *= capacity_of(this_cpu); |
| 7413 | |
| 7414 | /* |
| 7415 | * If sync, adjust the weight of prev_eff_load such that if |
| 7416 | * prev_eff == this_eff that select_idle_sibling() will consider |
| 7417 | * stacking the wakee on top of the waker if no other CPU is |
| 7418 | * idle. |
| 7419 | */ |
| 7420 | if (sync) |
| 7421 | prev_eff_load += 1; |
| 7422 | |
| 7423 | return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; |
| 7424 | } |
| 7425 | |
| 7426 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, |
| 7427 | int this_cpu, int prev_cpu, int sync) |
| 7428 | { |
| 7429 | int target = nr_cpumask_bits; |
| 7430 | |
| 7431 | if (sched_feat(WA_IDLE)) |
| 7432 | target = wake_affine_idle(this_cpu, prev_cpu, sync); |
| 7433 | |
| 7434 | if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) |
| 7435 | target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); |
| 7436 | |
| 7437 | schedstat_inc(p->stats.nr_wakeups_affine_attempts); |
| 7438 | if (target != this_cpu) |
| 7439 | return prev_cpu; |
| 7440 | |
| 7441 | schedstat_inc(sd->ttwu_move_affine); |
| 7442 | schedstat_inc(p->stats.nr_wakeups_affine); |
| 7443 | return target; |
| 7444 | } |
| 7445 | |
| 7446 | static struct sched_group * |
| 7447 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); |
| 7448 | |
| 7449 | /* |
| 7450 | * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. |
| 7451 | */ |
| 7452 | static int |
| 7453 | sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
| 7454 | { |
| 7455 | unsigned long load, min_load = ULONG_MAX; |
| 7456 | unsigned int min_exit_latency = UINT_MAX; |
| 7457 | u64 latest_idle_timestamp = 0; |
| 7458 | int least_loaded_cpu = this_cpu; |
| 7459 | int shallowest_idle_cpu = -1; |
| 7460 | int i; |
| 7461 | |
| 7462 | /* Check if we have any choice: */ |
| 7463 | if (group->group_weight == 1) |
| 7464 | return cpumask_first(sched_group_span(group)); |
| 7465 | |
| 7466 | /* Traverse only the allowed CPUs */ |
| 7467 | for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { |
| 7468 | struct rq *rq = cpu_rq(i); |
| 7469 | |
| 7470 | if (!sched_core_cookie_match(rq, p)) |
| 7471 | continue; |
| 7472 | |
| 7473 | if (sched_idle_cpu(i)) |
| 7474 | return i; |
| 7475 | |
| 7476 | if (available_idle_cpu(i)) { |
| 7477 | struct cpuidle_state *idle = idle_get_state(rq); |
| 7478 | if (idle && idle->exit_latency < min_exit_latency) { |
| 7479 | /* |
| 7480 | * We give priority to a CPU whose idle state |
| 7481 | * has the smallest exit latency irrespective |
| 7482 | * of any idle timestamp. |
| 7483 | */ |
| 7484 | min_exit_latency = idle->exit_latency; |
| 7485 | latest_idle_timestamp = rq->idle_stamp; |
| 7486 | shallowest_idle_cpu = i; |
| 7487 | } else if ((!idle || idle->exit_latency == min_exit_latency) && |
| 7488 | rq->idle_stamp > latest_idle_timestamp) { |
| 7489 | /* |
| 7490 | * If equal or no active idle state, then |
| 7491 | * the most recently idled CPU might have |
| 7492 | * a warmer cache. |
| 7493 | */ |
| 7494 | latest_idle_timestamp = rq->idle_stamp; |
| 7495 | shallowest_idle_cpu = i; |
| 7496 | } |
| 7497 | } else if (shallowest_idle_cpu == -1) { |
| 7498 | load = cpu_load(cpu_rq(i)); |
| 7499 | if (load < min_load) { |
| 7500 | min_load = load; |
| 7501 | least_loaded_cpu = i; |
| 7502 | } |
| 7503 | } |
| 7504 | } |
| 7505 | |
| 7506 | return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; |
| 7507 | } |
| 7508 | |
| 7509 | static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, |
| 7510 | int cpu, int prev_cpu, int sd_flag) |
| 7511 | { |
| 7512 | int new_cpu = cpu; |
| 7513 | |
| 7514 | if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) |
| 7515 | return prev_cpu; |
| 7516 | |
| 7517 | /* |
| 7518 | * We need task's util for cpu_util_without, sync it up to |
| 7519 | * prev_cpu's last_update_time. |
| 7520 | */ |
| 7521 | if (!(sd_flag & SD_BALANCE_FORK)) |
| 7522 | sync_entity_load_avg(&p->se); |
| 7523 | |
| 7524 | while (sd) { |
| 7525 | struct sched_group *group; |
| 7526 | struct sched_domain *tmp; |
| 7527 | int weight; |
| 7528 | |
| 7529 | if (!(sd->flags & sd_flag)) { |
| 7530 | sd = sd->child; |
| 7531 | continue; |
| 7532 | } |
| 7533 | |
| 7534 | group = sched_balance_find_dst_group(sd, p, cpu); |
| 7535 | if (!group) { |
| 7536 | sd = sd->child; |
| 7537 | continue; |
| 7538 | } |
| 7539 | |
| 7540 | new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); |
| 7541 | if (new_cpu == cpu) { |
| 7542 | /* Now try balancing at a lower domain level of 'cpu': */ |
| 7543 | sd = sd->child; |
| 7544 | continue; |
| 7545 | } |
| 7546 | |
| 7547 | /* Now try balancing at a lower domain level of 'new_cpu': */ |
| 7548 | cpu = new_cpu; |
| 7549 | weight = sd->span_weight; |
| 7550 | sd = NULL; |
| 7551 | for_each_domain(cpu, tmp) { |
| 7552 | if (weight <= tmp->span_weight) |
| 7553 | break; |
| 7554 | if (tmp->flags & sd_flag) |
| 7555 | sd = tmp; |
| 7556 | } |
| 7557 | } |
| 7558 | |
| 7559 | return new_cpu; |
| 7560 | } |
| 7561 | |
| 7562 | static inline int __select_idle_cpu(int cpu, struct task_struct *p) |
| 7563 | { |
| 7564 | if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && |
| 7565 | sched_cpu_cookie_match(cpu_rq(cpu), p)) |
| 7566 | return cpu; |
| 7567 | |
| 7568 | return -1; |
| 7569 | } |
| 7570 | |
| 7571 | #ifdef CONFIG_SCHED_SMT |
| 7572 | DEFINE_STATIC_KEY_FALSE(sched_smt_present); |
| 7573 | EXPORT_SYMBOL_GPL(sched_smt_present); |
| 7574 | |
| 7575 | static inline void set_idle_cores(int cpu, int val) |
| 7576 | { |
| 7577 | struct sched_domain_shared *sds; |
| 7578 | |
| 7579 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
| 7580 | if (sds) |
| 7581 | WRITE_ONCE(sds->has_idle_cores, val); |
| 7582 | } |
| 7583 | |
| 7584 | static inline bool test_idle_cores(int cpu) |
| 7585 | { |
| 7586 | struct sched_domain_shared *sds; |
| 7587 | |
| 7588 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
| 7589 | if (sds) |
| 7590 | return READ_ONCE(sds->has_idle_cores); |
| 7591 | |
| 7592 | return false; |
| 7593 | } |
| 7594 | |
| 7595 | /* |
| 7596 | * Scans the local SMT mask to see if the entire core is idle, and records this |
| 7597 | * information in sd_llc_shared->has_idle_cores. |
| 7598 | * |
| 7599 | * Since SMT siblings share all cache levels, inspecting this limited remote |
| 7600 | * state should be fairly cheap. |
| 7601 | */ |
| 7602 | void __update_idle_core(struct rq *rq) |
| 7603 | { |
| 7604 | int core = cpu_of(rq); |
| 7605 | int cpu; |
| 7606 | |
| 7607 | rcu_read_lock(); |
| 7608 | if (test_idle_cores(core)) |
| 7609 | goto unlock; |
| 7610 | |
| 7611 | for_each_cpu(cpu, cpu_smt_mask(core)) { |
| 7612 | if (cpu == core) |
| 7613 | continue; |
| 7614 | |
| 7615 | if (!available_idle_cpu(cpu)) |
| 7616 | goto unlock; |
| 7617 | } |
| 7618 | |
| 7619 | set_idle_cores(core, 1); |
| 7620 | unlock: |
| 7621 | rcu_read_unlock(); |
| 7622 | } |
| 7623 | |
| 7624 | /* |
| 7625 | * Scan the entire LLC domain for idle cores; this dynamically switches off if |
| 7626 | * there are no idle cores left in the system; tracked through |
| 7627 | * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. |
| 7628 | */ |
| 7629 | static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) |
| 7630 | { |
| 7631 | bool idle = true; |
| 7632 | int cpu; |
| 7633 | |
| 7634 | for_each_cpu(cpu, cpu_smt_mask(core)) { |
| 7635 | if (!available_idle_cpu(cpu)) { |
| 7636 | idle = false; |
| 7637 | if (*idle_cpu == -1) { |
| 7638 | if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { |
| 7639 | *idle_cpu = cpu; |
| 7640 | break; |
| 7641 | } |
| 7642 | continue; |
| 7643 | } |
| 7644 | break; |
| 7645 | } |
| 7646 | if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) |
| 7647 | *idle_cpu = cpu; |
| 7648 | } |
| 7649 | |
| 7650 | if (idle) |
| 7651 | return core; |
| 7652 | |
| 7653 | cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); |
| 7654 | return -1; |
| 7655 | } |
| 7656 | |
| 7657 | /* |
| 7658 | * Scan the local SMT mask for idle CPUs. |
| 7659 | */ |
| 7660 | static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
| 7661 | { |
| 7662 | int cpu; |
| 7663 | |
| 7664 | for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { |
| 7665 | if (cpu == target) |
| 7666 | continue; |
| 7667 | /* |
| 7668 | * Check if the CPU is in the LLC scheduling domain of @target. |
| 7669 | * Due to isolcpus, there is no guarantee that all the siblings are in the domain. |
| 7670 | */ |
| 7671 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) |
| 7672 | continue; |
| 7673 | if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) |
| 7674 | return cpu; |
| 7675 | } |
| 7676 | |
| 7677 | return -1; |
| 7678 | } |
| 7679 | |
| 7680 | #else /* CONFIG_SCHED_SMT */ |
| 7681 | |
| 7682 | static inline void set_idle_cores(int cpu, int val) |
| 7683 | { |
| 7684 | } |
| 7685 | |
| 7686 | static inline bool test_idle_cores(int cpu) |
| 7687 | { |
| 7688 | return false; |
| 7689 | } |
| 7690 | |
| 7691 | static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) |
| 7692 | { |
| 7693 | return __select_idle_cpu(core, p); |
| 7694 | } |
| 7695 | |
| 7696 | static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) |
| 7697 | { |
| 7698 | return -1; |
| 7699 | } |
| 7700 | |
| 7701 | #endif /* CONFIG_SCHED_SMT */ |
| 7702 | |
| 7703 | /* |
| 7704 | * Scan the LLC domain for idle CPUs; this is dynamically regulated by |
| 7705 | * comparing the average scan cost (tracked in sd->avg_scan_cost) against the |
| 7706 | * average idle time for this rq (as found in rq->avg_idle). |
| 7707 | */ |
| 7708 | static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) |
| 7709 | { |
| 7710 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
| 7711 | int i, cpu, idle_cpu = -1, nr = INT_MAX; |
| 7712 | struct sched_domain_shared *sd_share; |
| 7713 | |
| 7714 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
| 7715 | |
| 7716 | if (sched_feat(SIS_UTIL)) { |
| 7717 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); |
| 7718 | if (sd_share) { |
| 7719 | /* because !--nr is the condition to stop scan */ |
| 7720 | nr = READ_ONCE(sd_share->nr_idle_scan) + 1; |
| 7721 | /* overloaded LLC is unlikely to have idle cpu/core */ |
| 7722 | if (nr == 1) |
| 7723 | return -1; |
| 7724 | } |
| 7725 | } |
| 7726 | |
| 7727 | if (static_branch_unlikely(&sched_cluster_active)) { |
| 7728 | struct sched_group *sg = sd->groups; |
| 7729 | |
| 7730 | if (sg->flags & SD_CLUSTER) { |
| 7731 | for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { |
| 7732 | if (!cpumask_test_cpu(cpu, cpus)) |
| 7733 | continue; |
| 7734 | |
| 7735 | if (has_idle_core) { |
| 7736 | i = select_idle_core(p, cpu, cpus, &idle_cpu); |
| 7737 | if ((unsigned int)i < nr_cpumask_bits) |
| 7738 | return i; |
| 7739 | } else { |
| 7740 | if (--nr <= 0) |
| 7741 | return -1; |
| 7742 | idle_cpu = __select_idle_cpu(cpu, p); |
| 7743 | if ((unsigned int)idle_cpu < nr_cpumask_bits) |
| 7744 | return idle_cpu; |
| 7745 | } |
| 7746 | } |
| 7747 | cpumask_andnot(cpus, cpus, sched_group_span(sg)); |
| 7748 | } |
| 7749 | } |
| 7750 | |
| 7751 | for_each_cpu_wrap(cpu, cpus, target + 1) { |
| 7752 | if (has_idle_core) { |
| 7753 | i = select_idle_core(p, cpu, cpus, &idle_cpu); |
| 7754 | if ((unsigned int)i < nr_cpumask_bits) |
| 7755 | return i; |
| 7756 | |
| 7757 | } else { |
| 7758 | if (--nr <= 0) |
| 7759 | return -1; |
| 7760 | idle_cpu = __select_idle_cpu(cpu, p); |
| 7761 | if ((unsigned int)idle_cpu < nr_cpumask_bits) |
| 7762 | break; |
| 7763 | } |
| 7764 | } |
| 7765 | |
| 7766 | if (has_idle_core) |
| 7767 | set_idle_cores(target, false); |
| 7768 | |
| 7769 | return idle_cpu; |
| 7770 | } |
| 7771 | |
| 7772 | /* |
| 7773 | * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which |
| 7774 | * the task fits. If no CPU is big enough, but there are idle ones, try to |
| 7775 | * maximize capacity. |
| 7776 | */ |
| 7777 | static int |
| 7778 | select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) |
| 7779 | { |
| 7780 | unsigned long task_util, util_min, util_max, best_cap = 0; |
| 7781 | int fits, best_fits = 0; |
| 7782 | int cpu, best_cpu = -1; |
| 7783 | struct cpumask *cpus; |
| 7784 | |
| 7785 | cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
| 7786 | cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); |
| 7787 | |
| 7788 | task_util = task_util_est(p); |
| 7789 | util_min = uclamp_eff_value(p, UCLAMP_MIN); |
| 7790 | util_max = uclamp_eff_value(p, UCLAMP_MAX); |
| 7791 | |
| 7792 | for_each_cpu_wrap(cpu, cpus, target) { |
| 7793 | unsigned long cpu_cap = capacity_of(cpu); |
| 7794 | |
| 7795 | if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) |
| 7796 | continue; |
| 7797 | |
| 7798 | fits = util_fits_cpu(task_util, util_min, util_max, cpu); |
| 7799 | |
| 7800 | /* This CPU fits with all requirements */ |
| 7801 | if (fits > 0) |
| 7802 | return cpu; |
| 7803 | /* |
| 7804 | * Only the min performance hint (i.e. uclamp_min) doesn't fit. |
| 7805 | * Look for the CPU with best capacity. |
| 7806 | */ |
| 7807 | else if (fits < 0) |
| 7808 | cpu_cap = get_actual_cpu_capacity(cpu); |
| 7809 | |
| 7810 | /* |
| 7811 | * First, select CPU which fits better (-1 being better than 0). |
| 7812 | * Then, select the one with best capacity at same level. |
| 7813 | */ |
| 7814 | if ((fits < best_fits) || |
| 7815 | ((fits == best_fits) && (cpu_cap > best_cap))) { |
| 7816 | best_cap = cpu_cap; |
| 7817 | best_cpu = cpu; |
| 7818 | best_fits = fits; |
| 7819 | } |
| 7820 | } |
| 7821 | |
| 7822 | return best_cpu; |
| 7823 | } |
| 7824 | |
| 7825 | static inline bool asym_fits_cpu(unsigned long util, |
| 7826 | unsigned long util_min, |
| 7827 | unsigned long util_max, |
| 7828 | int cpu) |
| 7829 | { |
| 7830 | if (sched_asym_cpucap_active()) |
| 7831 | /* |
| 7832 | * Return true only if the cpu fully fits the task requirements |
| 7833 | * which include the utilization and the performance hints. |
| 7834 | */ |
| 7835 | return (util_fits_cpu(util, util_min, util_max, cpu) > 0); |
| 7836 | |
| 7837 | return true; |
| 7838 | } |
| 7839 | |
| 7840 | /* |
| 7841 | * Try and locate an idle core/thread in the LLC cache domain. |
| 7842 | */ |
| 7843 | static int select_idle_sibling(struct task_struct *p, int prev, int target) |
| 7844 | { |
| 7845 | bool has_idle_core = false; |
| 7846 | struct sched_domain *sd; |
| 7847 | unsigned long task_util, util_min, util_max; |
| 7848 | int i, recent_used_cpu, prev_aff = -1; |
| 7849 | |
| 7850 | /* |
| 7851 | * On asymmetric system, update task utilization because we will check |
| 7852 | * that the task fits with CPU's capacity. |
| 7853 | */ |
| 7854 | if (sched_asym_cpucap_active()) { |
| 7855 | sync_entity_load_avg(&p->se); |
| 7856 | task_util = task_util_est(p); |
| 7857 | util_min = uclamp_eff_value(p, UCLAMP_MIN); |
| 7858 | util_max = uclamp_eff_value(p, UCLAMP_MAX); |
| 7859 | } |
| 7860 | |
| 7861 | /* |
| 7862 | * per-cpu select_rq_mask usage |
| 7863 | */ |
| 7864 | lockdep_assert_irqs_disabled(); |
| 7865 | |
| 7866 | if ((available_idle_cpu(target) || sched_idle_cpu(target)) && |
| 7867 | asym_fits_cpu(task_util, util_min, util_max, target)) |
| 7868 | return target; |
| 7869 | |
| 7870 | /* |
| 7871 | * If the previous CPU is cache affine and idle, don't be stupid: |
| 7872 | */ |
| 7873 | if (prev != target && cpus_share_cache(prev, target) && |
| 7874 | (available_idle_cpu(prev) || sched_idle_cpu(prev)) && |
| 7875 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
| 7876 | |
| 7877 | if (!static_branch_unlikely(&sched_cluster_active) || |
| 7878 | cpus_share_resources(prev, target)) |
| 7879 | return prev; |
| 7880 | |
| 7881 | prev_aff = prev; |
| 7882 | } |
| 7883 | |
| 7884 | /* |
| 7885 | * Allow a per-cpu kthread to stack with the wakee if the |
| 7886 | * kworker thread and the tasks previous CPUs are the same. |
| 7887 | * The assumption is that the wakee queued work for the |
| 7888 | * per-cpu kthread that is now complete and the wakeup is |
| 7889 | * essentially a sync wakeup. An obvious example of this |
| 7890 | * pattern is IO completions. |
| 7891 | */ |
| 7892 | if (is_per_cpu_kthread(current) && |
| 7893 | in_task() && |
| 7894 | prev == smp_processor_id() && |
| 7895 | this_rq()->nr_running <= 1 && |
| 7896 | asym_fits_cpu(task_util, util_min, util_max, prev)) { |
| 7897 | return prev; |
| 7898 | } |
| 7899 | |
| 7900 | /* Check a recently used CPU as a potential idle candidate: */ |
| 7901 | recent_used_cpu = p->recent_used_cpu; |
| 7902 | p->recent_used_cpu = prev; |
| 7903 | if (recent_used_cpu != prev && |
| 7904 | recent_used_cpu != target && |
| 7905 | cpus_share_cache(recent_used_cpu, target) && |
| 7906 | (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && |
| 7907 | cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && |
| 7908 | asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { |
| 7909 | |
| 7910 | if (!static_branch_unlikely(&sched_cluster_active) || |
| 7911 | cpus_share_resources(recent_used_cpu, target)) |
| 7912 | return recent_used_cpu; |
| 7913 | |
| 7914 | } else { |
| 7915 | recent_used_cpu = -1; |
| 7916 | } |
| 7917 | |
| 7918 | /* |
| 7919 | * For asymmetric CPU capacity systems, our domain of interest is |
| 7920 | * sd_asym_cpucapacity rather than sd_llc. |
| 7921 | */ |
| 7922 | if (sched_asym_cpucap_active()) { |
| 7923 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); |
| 7924 | /* |
| 7925 | * On an asymmetric CPU capacity system where an exclusive |
| 7926 | * cpuset defines a symmetric island (i.e. one unique |
| 7927 | * capacity_orig value through the cpuset), the key will be set |
| 7928 | * but the CPUs within that cpuset will not have a domain with |
| 7929 | * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric |
| 7930 | * capacity path. |
| 7931 | */ |
| 7932 | if (sd) { |
| 7933 | i = select_idle_capacity(p, sd, target); |
| 7934 | return ((unsigned)i < nr_cpumask_bits) ? i : target; |
| 7935 | } |
| 7936 | } |
| 7937 | |
| 7938 | sd = rcu_dereference(per_cpu(sd_llc, target)); |
| 7939 | if (!sd) |
| 7940 | return target; |
| 7941 | |
| 7942 | if (sched_smt_active()) { |
| 7943 | has_idle_core = test_idle_cores(target); |
| 7944 | |
| 7945 | if (!has_idle_core && cpus_share_cache(prev, target)) { |
| 7946 | i = select_idle_smt(p, sd, prev); |
| 7947 | if ((unsigned int)i < nr_cpumask_bits) |
| 7948 | return i; |
| 7949 | } |
| 7950 | } |
| 7951 | |
| 7952 | i = select_idle_cpu(p, sd, has_idle_core, target); |
| 7953 | if ((unsigned)i < nr_cpumask_bits) |
| 7954 | return i; |
| 7955 | |
| 7956 | /* |
| 7957 | * For cluster machines which have lower sharing cache like L2 or |
| 7958 | * LLC Tag, we tend to find an idle CPU in the target's cluster |
| 7959 | * first. But prev_cpu or recent_used_cpu may also be a good candidate, |
| 7960 | * use them if possible when no idle CPU found in select_idle_cpu(). |
| 7961 | */ |
| 7962 | if ((unsigned int)prev_aff < nr_cpumask_bits) |
| 7963 | return prev_aff; |
| 7964 | if ((unsigned int)recent_used_cpu < nr_cpumask_bits) |
| 7965 | return recent_used_cpu; |
| 7966 | |
| 7967 | return target; |
| 7968 | } |
| 7969 | |
| 7970 | /** |
| 7971 | * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. |
| 7972 | * @cpu: the CPU to get the utilization for |
| 7973 | * @p: task for which the CPU utilization should be predicted or NULL |
| 7974 | * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL |
| 7975 | * @boost: 1 to enable boosting, otherwise 0 |
| 7976 | * |
| 7977 | * The unit of the return value must be the same as the one of CPU capacity |
| 7978 | * so that CPU utilization can be compared with CPU capacity. |
| 7979 | * |
| 7980 | * CPU utilization is the sum of running time of runnable tasks plus the |
| 7981 | * recent utilization of currently non-runnable tasks on that CPU. |
| 7982 | * It represents the amount of CPU capacity currently used by CFS tasks in |
| 7983 | * the range [0..max CPU capacity] with max CPU capacity being the CPU |
| 7984 | * capacity at f_max. |
| 7985 | * |
| 7986 | * The estimated CPU utilization is defined as the maximum between CPU |
| 7987 | * utilization and sum of the estimated utilization of the currently |
| 7988 | * runnable tasks on that CPU. It preserves a utilization "snapshot" of |
| 7989 | * previously-executed tasks, which helps better deduce how busy a CPU will |
| 7990 | * be when a long-sleeping task wakes up. The contribution to CPU utilization |
| 7991 | * of such a task would be significantly decayed at this point of time. |
| 7992 | * |
| 7993 | * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). |
| 7994 | * CPU contention for CFS tasks can be detected by CPU runnable > CPU |
| 7995 | * utilization. Boosting is implemented in cpu_util() so that internal |
| 7996 | * users (e.g. EAS) can use it next to external users (e.g. schedutil), |
| 7997 | * latter via cpu_util_cfs_boost(). |
| 7998 | * |
| 7999 | * CPU utilization can be higher than the current CPU capacity |
| 8000 | * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because |
| 8001 | * of rounding errors as well as task migrations or wakeups of new tasks. |
| 8002 | * CPU utilization has to be capped to fit into the [0..max CPU capacity] |
| 8003 | * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) |
| 8004 | * could be seen as over-utilized even though CPU1 has 20% of spare CPU |
| 8005 | * capacity. CPU utilization is allowed to overshoot current CPU capacity |
| 8006 | * though since this is useful for predicting the CPU capacity required |
| 8007 | * after task migrations (scheduler-driven DVFS). |
| 8008 | * |
| 8009 | * Return: (Boosted) (estimated) utilization for the specified CPU. |
| 8010 | */ |
| 8011 | static unsigned long |
| 8012 | cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) |
| 8013 | { |
| 8014 | struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; |
| 8015 | unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); |
| 8016 | unsigned long runnable; |
| 8017 | |
| 8018 | if (boost) { |
| 8019 | runnable = READ_ONCE(cfs_rq->avg.runnable_avg); |
| 8020 | util = max(util, runnable); |
| 8021 | } |
| 8022 | |
| 8023 | /* |
| 8024 | * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its |
| 8025 | * contribution. If @p migrates from another CPU to @cpu add its |
| 8026 | * contribution. In all the other cases @cpu is not impacted by the |
| 8027 | * migration so its util_avg is already correct. |
| 8028 | */ |
| 8029 | if (p && task_cpu(p) == cpu && dst_cpu != cpu) |
| 8030 | lsub_positive(&util, task_util(p)); |
| 8031 | else if (p && task_cpu(p) != cpu && dst_cpu == cpu) |
| 8032 | util += task_util(p); |
| 8033 | |
| 8034 | if (sched_feat(UTIL_EST)) { |
| 8035 | unsigned long util_est; |
| 8036 | |
| 8037 | util_est = READ_ONCE(cfs_rq->avg.util_est); |
| 8038 | |
| 8039 | /* |
| 8040 | * During wake-up @p isn't enqueued yet and doesn't contribute |
| 8041 | * to any cpu_rq(cpu)->cfs.avg.util_est. |
| 8042 | * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p |
| 8043 | * has been enqueued. |
| 8044 | * |
| 8045 | * During exec (@dst_cpu = -1) @p is enqueued and does |
| 8046 | * contribute to cpu_rq(cpu)->cfs.util_est. |
| 8047 | * Remove it to "simulate" cpu_util without @p's contribution. |
| 8048 | * |
| 8049 | * Despite the task_on_rq_queued(@p) check there is still a |
| 8050 | * small window for a possible race when an exec |
| 8051 | * select_task_rq_fair() races with LB's detach_task(). |
| 8052 | * |
| 8053 | * detach_task() |
| 8054 | * deactivate_task() |
| 8055 | * p->on_rq = TASK_ON_RQ_MIGRATING; |
| 8056 | * -------------------------------- A |
| 8057 | * dequeue_task() \ |
| 8058 | * dequeue_task_fair() + Race Time |
| 8059 | * util_est_dequeue() / |
| 8060 | * -------------------------------- B |
| 8061 | * |
| 8062 | * The additional check "current == p" is required to further |
| 8063 | * reduce the race window. |
| 8064 | */ |
| 8065 | if (dst_cpu == cpu) |
| 8066 | util_est += _task_util_est(p); |
| 8067 | else if (p && unlikely(task_on_rq_queued(p) || current == p)) |
| 8068 | lsub_positive(&util_est, _task_util_est(p)); |
| 8069 | |
| 8070 | util = max(util, util_est); |
| 8071 | } |
| 8072 | |
| 8073 | return min(util, arch_scale_cpu_capacity(cpu)); |
| 8074 | } |
| 8075 | |
| 8076 | unsigned long cpu_util_cfs(int cpu) |
| 8077 | { |
| 8078 | return cpu_util(cpu, NULL, -1, 0); |
| 8079 | } |
| 8080 | |
| 8081 | unsigned long cpu_util_cfs_boost(int cpu) |
| 8082 | { |
| 8083 | return cpu_util(cpu, NULL, -1, 1); |
| 8084 | } |
| 8085 | |
| 8086 | /* |
| 8087 | * cpu_util_without: compute cpu utilization without any contributions from *p |
| 8088 | * @cpu: the CPU which utilization is requested |
| 8089 | * @p: the task which utilization should be discounted |
| 8090 | * |
| 8091 | * The utilization of a CPU is defined by the utilization of tasks currently |
| 8092 | * enqueued on that CPU as well as tasks which are currently sleeping after an |
| 8093 | * execution on that CPU. |
| 8094 | * |
| 8095 | * This method returns the utilization of the specified CPU by discounting the |
| 8096 | * utilization of the specified task, whenever the task is currently |
| 8097 | * contributing to the CPU utilization. |
| 8098 | */ |
| 8099 | static unsigned long cpu_util_without(int cpu, struct task_struct *p) |
| 8100 | { |
| 8101 | /* Task has no contribution or is new */ |
| 8102 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
| 8103 | p = NULL; |
| 8104 | |
| 8105 | return cpu_util(cpu, p, -1, 0); |
| 8106 | } |
| 8107 | |
| 8108 | /* |
| 8109 | * This function computes an effective utilization for the given CPU, to be |
| 8110 | * used for frequency selection given the linear relation: f = u * f_max. |
| 8111 | * |
| 8112 | * The scheduler tracks the following metrics: |
| 8113 | * |
| 8114 | * cpu_util_{cfs,rt,dl,irq}() |
| 8115 | * cpu_bw_dl() |
| 8116 | * |
| 8117 | * Where the cfs,rt and dl util numbers are tracked with the same metric and |
| 8118 | * synchronized windows and are thus directly comparable. |
| 8119 | * |
| 8120 | * The cfs,rt,dl utilization are the running times measured with rq->clock_task |
| 8121 | * which excludes things like IRQ and steal-time. These latter are then accrued |
| 8122 | * in the IRQ utilization. |
| 8123 | * |
| 8124 | * The DL bandwidth number OTOH is not a measured metric but a value computed |
| 8125 | * based on the task model parameters and gives the minimal utilization |
| 8126 | * required to meet deadlines. |
| 8127 | */ |
| 8128 | unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, |
| 8129 | unsigned long *min, |
| 8130 | unsigned long *max) |
| 8131 | { |
| 8132 | unsigned long util, irq, scale; |
| 8133 | struct rq *rq = cpu_rq(cpu); |
| 8134 | |
| 8135 | scale = arch_scale_cpu_capacity(cpu); |
| 8136 | |
| 8137 | /* |
| 8138 | * Early check to see if IRQ/steal time saturates the CPU, can be |
| 8139 | * because of inaccuracies in how we track these -- see |
| 8140 | * update_irq_load_avg(). |
| 8141 | */ |
| 8142 | irq = cpu_util_irq(rq); |
| 8143 | if (unlikely(irq >= scale)) { |
| 8144 | if (min) |
| 8145 | *min = scale; |
| 8146 | if (max) |
| 8147 | *max = scale; |
| 8148 | return scale; |
| 8149 | } |
| 8150 | |
| 8151 | if (min) { |
| 8152 | /* |
| 8153 | * The minimum utilization returns the highest level between: |
| 8154 | * - the computed DL bandwidth needed with the IRQ pressure which |
| 8155 | * steals time to the deadline task. |
| 8156 | * - The minimum performance requirement for CFS and/or RT. |
| 8157 | */ |
| 8158 | *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); |
| 8159 | |
| 8160 | /* |
| 8161 | * When an RT task is runnable and uclamp is not used, we must |
| 8162 | * ensure that the task will run at maximum compute capacity. |
| 8163 | */ |
| 8164 | if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) |
| 8165 | *min = max(*min, scale); |
| 8166 | } |
| 8167 | |
| 8168 | /* |
| 8169 | * Because the time spend on RT/DL tasks is visible as 'lost' time to |
| 8170 | * CFS tasks and we use the same metric to track the effective |
| 8171 | * utilization (PELT windows are synchronized) we can directly add them |
| 8172 | * to obtain the CPU's actual utilization. |
| 8173 | */ |
| 8174 | util = util_cfs + cpu_util_rt(rq); |
| 8175 | util += cpu_util_dl(rq); |
| 8176 | |
| 8177 | /* |
| 8178 | * The maximum hint is a soft bandwidth requirement, which can be lower |
| 8179 | * than the actual utilization because of uclamp_max requirements. |
| 8180 | */ |
| 8181 | if (max) |
| 8182 | *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); |
| 8183 | |
| 8184 | if (util >= scale) |
| 8185 | return scale; |
| 8186 | |
| 8187 | /* |
| 8188 | * There is still idle time; further improve the number by using the |
| 8189 | * IRQ metric. Because IRQ/steal time is hidden from the task clock we |
| 8190 | * need to scale the task numbers: |
| 8191 | * |
| 8192 | * max - irq |
| 8193 | * U' = irq + --------- * U |
| 8194 | * max |
| 8195 | */ |
| 8196 | util = scale_irq_capacity(util, irq, scale); |
| 8197 | util += irq; |
| 8198 | |
| 8199 | return min(scale, util); |
| 8200 | } |
| 8201 | |
| 8202 | unsigned long sched_cpu_util(int cpu) |
| 8203 | { |
| 8204 | return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); |
| 8205 | } |
| 8206 | |
| 8207 | /* |
| 8208 | * energy_env - Utilization landscape for energy estimation. |
| 8209 | * @task_busy_time: Utilization contribution by the task for which we test the |
| 8210 | * placement. Given by eenv_task_busy_time(). |
| 8211 | * @pd_busy_time: Utilization of the whole perf domain without the task |
| 8212 | * contribution. Given by eenv_pd_busy_time(). |
| 8213 | * @cpu_cap: Maximum CPU capacity for the perf domain. |
| 8214 | * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). |
| 8215 | */ |
| 8216 | struct energy_env { |
| 8217 | unsigned long task_busy_time; |
| 8218 | unsigned long pd_busy_time; |
| 8219 | unsigned long cpu_cap; |
| 8220 | unsigned long pd_cap; |
| 8221 | }; |
| 8222 | |
| 8223 | /* |
| 8224 | * Compute the task busy time for compute_energy(). This time cannot be |
| 8225 | * injected directly into effective_cpu_util() because of the IRQ scaling. |
| 8226 | * The latter only makes sense with the most recent CPUs where the task has |
| 8227 | * run. |
| 8228 | */ |
| 8229 | static inline void eenv_task_busy_time(struct energy_env *eenv, |
| 8230 | struct task_struct *p, int prev_cpu) |
| 8231 | { |
| 8232 | unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); |
| 8233 | unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); |
| 8234 | |
| 8235 | if (unlikely(irq >= max_cap)) |
| 8236 | busy_time = max_cap; |
| 8237 | else |
| 8238 | busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); |
| 8239 | |
| 8240 | eenv->task_busy_time = busy_time; |
| 8241 | } |
| 8242 | |
| 8243 | /* |
| 8244 | * Compute the perf_domain (PD) busy time for compute_energy(). Based on the |
| 8245 | * utilization for each @pd_cpus, it however doesn't take into account |
| 8246 | * clamping since the ratio (utilization / cpu_capacity) is already enough to |
| 8247 | * scale the EM reported power consumption at the (eventually clamped) |
| 8248 | * cpu_capacity. |
| 8249 | * |
| 8250 | * The contribution of the task @p for which we want to estimate the |
| 8251 | * energy cost is removed (by cpu_util()) and must be calculated |
| 8252 | * separately (see eenv_task_busy_time). This ensures: |
| 8253 | * |
| 8254 | * - A stable PD utilization, no matter which CPU of that PD we want to place |
| 8255 | * the task on. |
| 8256 | * |
| 8257 | * - A fair comparison between CPUs as the task contribution (task_util()) |
| 8258 | * will always be the same no matter which CPU utilization we rely on |
| 8259 | * (util_avg or util_est). |
| 8260 | * |
| 8261 | * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't |
| 8262 | * exceed @eenv->pd_cap. |
| 8263 | */ |
| 8264 | static inline void eenv_pd_busy_time(struct energy_env *eenv, |
| 8265 | struct cpumask *pd_cpus, |
| 8266 | struct task_struct *p) |
| 8267 | { |
| 8268 | unsigned long busy_time = 0; |
| 8269 | int cpu; |
| 8270 | |
| 8271 | for_each_cpu(cpu, pd_cpus) { |
| 8272 | unsigned long util = cpu_util(cpu, p, -1, 0); |
| 8273 | |
| 8274 | busy_time += effective_cpu_util(cpu, util, NULL, NULL); |
| 8275 | } |
| 8276 | |
| 8277 | eenv->pd_busy_time = min(eenv->pd_cap, busy_time); |
| 8278 | } |
| 8279 | |
| 8280 | /* |
| 8281 | * Compute the maximum utilization for compute_energy() when the task @p |
| 8282 | * is placed on the cpu @dst_cpu. |
| 8283 | * |
| 8284 | * Returns the maximum utilization among @eenv->cpus. This utilization can't |
| 8285 | * exceed @eenv->cpu_cap. |
| 8286 | */ |
| 8287 | static inline unsigned long |
| 8288 | eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, |
| 8289 | struct task_struct *p, int dst_cpu) |
| 8290 | { |
| 8291 | unsigned long max_util = 0; |
| 8292 | int cpu; |
| 8293 | |
| 8294 | for_each_cpu(cpu, pd_cpus) { |
| 8295 | struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; |
| 8296 | unsigned long util = cpu_util(cpu, p, dst_cpu, 1); |
| 8297 | unsigned long eff_util, min, max; |
| 8298 | |
| 8299 | /* |
| 8300 | * Performance domain frequency: utilization clamping |
| 8301 | * must be considered since it affects the selection |
| 8302 | * of the performance domain frequency. |
| 8303 | * NOTE: in case RT tasks are running, by default the min |
| 8304 | * utilization can be max OPP. |
| 8305 | */ |
| 8306 | eff_util = effective_cpu_util(cpu, util, &min, &max); |
| 8307 | |
| 8308 | /* Task's uclamp can modify min and max value */ |
| 8309 | if (tsk && uclamp_is_used()) { |
| 8310 | min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); |
| 8311 | |
| 8312 | /* |
| 8313 | * If there is no active max uclamp constraint, |
| 8314 | * directly use task's one, otherwise keep max. |
| 8315 | */ |
| 8316 | if (uclamp_rq_is_idle(cpu_rq(cpu))) |
| 8317 | max = uclamp_eff_value(p, UCLAMP_MAX); |
| 8318 | else |
| 8319 | max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); |
| 8320 | } |
| 8321 | |
| 8322 | eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); |
| 8323 | max_util = max(max_util, eff_util); |
| 8324 | } |
| 8325 | |
| 8326 | return min(max_util, eenv->cpu_cap); |
| 8327 | } |
| 8328 | |
| 8329 | /* |
| 8330 | * compute_energy(): Use the Energy Model to estimate the energy that @pd would |
| 8331 | * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task |
| 8332 | * contribution is ignored. |
| 8333 | */ |
| 8334 | static inline unsigned long |
| 8335 | compute_energy(struct energy_env *eenv, struct perf_domain *pd, |
| 8336 | struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) |
| 8337 | { |
| 8338 | unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); |
| 8339 | unsigned long busy_time = eenv->pd_busy_time; |
| 8340 | unsigned long energy; |
| 8341 | |
| 8342 | if (dst_cpu >= 0) |
| 8343 | busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); |
| 8344 | |
| 8345 | energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); |
| 8346 | |
| 8347 | trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); |
| 8348 | |
| 8349 | return energy; |
| 8350 | } |
| 8351 | |
| 8352 | /* |
| 8353 | * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the |
| 8354 | * waking task. find_energy_efficient_cpu() looks for the CPU with maximum |
| 8355 | * spare capacity in each performance domain and uses it as a potential |
| 8356 | * candidate to execute the task. Then, it uses the Energy Model to figure |
| 8357 | * out which of the CPU candidates is the most energy-efficient. |
| 8358 | * |
| 8359 | * The rationale for this heuristic is as follows. In a performance domain, |
| 8360 | * all the most energy efficient CPU candidates (according to the Energy |
| 8361 | * Model) are those for which we'll request a low frequency. When there are |
| 8362 | * several CPUs for which the frequency request will be the same, we don't |
| 8363 | * have enough data to break the tie between them, because the Energy Model |
| 8364 | * only includes active power costs. With this model, if we assume that |
| 8365 | * frequency requests follow utilization (e.g. using schedutil), the CPU with |
| 8366 | * the maximum spare capacity in a performance domain is guaranteed to be among |
| 8367 | * the best candidates of the performance domain. |
| 8368 | * |
| 8369 | * In practice, it could be preferable from an energy standpoint to pack |
| 8370 | * small tasks on a CPU in order to let other CPUs go in deeper idle states, |
| 8371 | * but that could also hurt our chances to go cluster idle, and we have no |
| 8372 | * ways to tell with the current Energy Model if this is actually a good |
| 8373 | * idea or not. So, find_energy_efficient_cpu() basically favors |
| 8374 | * cluster-packing, and spreading inside a cluster. That should at least be |
| 8375 | * a good thing for latency, and this is consistent with the idea that most |
| 8376 | * of the energy savings of EAS come from the asymmetry of the system, and |
| 8377 | * not so much from breaking the tie between identical CPUs. That's also the |
| 8378 | * reason why EAS is enabled in the topology code only for systems where |
| 8379 | * SD_ASYM_CPUCAPACITY is set. |
| 8380 | * |
| 8381 | * NOTE: Forkees are not accepted in the energy-aware wake-up path because |
| 8382 | * they don't have any useful utilization data yet and it's not possible to |
| 8383 | * forecast their impact on energy consumption. Consequently, they will be |
| 8384 | * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out |
| 8385 | * to be energy-inefficient in some use-cases. The alternative would be to |
| 8386 | * bias new tasks towards specific types of CPUs first, or to try to infer |
| 8387 | * their util_avg from the parent task, but those heuristics could hurt |
| 8388 | * other use-cases too. So, until someone finds a better way to solve this, |
| 8389 | * let's keep things simple by re-using the existing slow path. |
| 8390 | */ |
| 8391 | static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) |
| 8392 | { |
| 8393 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
| 8394 | unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; |
| 8395 | unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; |
| 8396 | unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; |
| 8397 | struct root_domain *rd = this_rq()->rd; |
| 8398 | int cpu, best_energy_cpu, target = -1; |
| 8399 | int prev_fits = -1, best_fits = -1; |
| 8400 | unsigned long best_actual_cap = 0; |
| 8401 | unsigned long prev_actual_cap = 0; |
| 8402 | struct sched_domain *sd; |
| 8403 | struct perf_domain *pd; |
| 8404 | struct energy_env eenv; |
| 8405 | |
| 8406 | rcu_read_lock(); |
| 8407 | pd = rcu_dereference(rd->pd); |
| 8408 | if (!pd) |
| 8409 | goto unlock; |
| 8410 | |
| 8411 | /* |
| 8412 | * Energy-aware wake-up happens on the lowest sched_domain starting |
| 8413 | * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. |
| 8414 | */ |
| 8415 | sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); |
| 8416 | while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) |
| 8417 | sd = sd->parent; |
| 8418 | if (!sd) |
| 8419 | goto unlock; |
| 8420 | |
| 8421 | target = prev_cpu; |
| 8422 | |
| 8423 | sync_entity_load_avg(&p->se); |
| 8424 | if (!task_util_est(p) && p_util_min == 0) |
| 8425 | goto unlock; |
| 8426 | |
| 8427 | eenv_task_busy_time(&eenv, p, prev_cpu); |
| 8428 | |
| 8429 | for (; pd; pd = pd->next) { |
| 8430 | unsigned long util_min = p_util_min, util_max = p_util_max; |
| 8431 | unsigned long cpu_cap, cpu_actual_cap, util; |
| 8432 | long prev_spare_cap = -1, max_spare_cap = -1; |
| 8433 | unsigned long rq_util_min, rq_util_max; |
| 8434 | unsigned long cur_delta, base_energy; |
| 8435 | int max_spare_cap_cpu = -1; |
| 8436 | int fits, max_fits = -1; |
| 8437 | |
| 8438 | cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); |
| 8439 | |
| 8440 | if (cpumask_empty(cpus)) |
| 8441 | continue; |
| 8442 | |
| 8443 | /* Account external pressure for the energy estimation */ |
| 8444 | cpu = cpumask_first(cpus); |
| 8445 | cpu_actual_cap = get_actual_cpu_capacity(cpu); |
| 8446 | |
| 8447 | eenv.cpu_cap = cpu_actual_cap; |
| 8448 | eenv.pd_cap = 0; |
| 8449 | |
| 8450 | for_each_cpu(cpu, cpus) { |
| 8451 | struct rq *rq = cpu_rq(cpu); |
| 8452 | |
| 8453 | eenv.pd_cap += cpu_actual_cap; |
| 8454 | |
| 8455 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) |
| 8456 | continue; |
| 8457 | |
| 8458 | if (!cpumask_test_cpu(cpu, p->cpus_ptr)) |
| 8459 | continue; |
| 8460 | |
| 8461 | util = cpu_util(cpu, p, cpu, 0); |
| 8462 | cpu_cap = capacity_of(cpu); |
| 8463 | |
| 8464 | /* |
| 8465 | * Skip CPUs that cannot satisfy the capacity request. |
| 8466 | * IOW, placing the task there would make the CPU |
| 8467 | * overutilized. Take uclamp into account to see how |
| 8468 | * much capacity we can get out of the CPU; this is |
| 8469 | * aligned with sched_cpu_util(). |
| 8470 | */ |
| 8471 | if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { |
| 8472 | /* |
| 8473 | * Open code uclamp_rq_util_with() except for |
| 8474 | * the clamp() part. I.e.: apply max aggregation |
| 8475 | * only. util_fits_cpu() logic requires to |
| 8476 | * operate on non clamped util but must use the |
| 8477 | * max-aggregated uclamp_{min, max}. |
| 8478 | */ |
| 8479 | rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); |
| 8480 | rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); |
| 8481 | |
| 8482 | util_min = max(rq_util_min, p_util_min); |
| 8483 | util_max = max(rq_util_max, p_util_max); |
| 8484 | } |
| 8485 | |
| 8486 | fits = util_fits_cpu(util, util_min, util_max, cpu); |
| 8487 | if (!fits) |
| 8488 | continue; |
| 8489 | |
| 8490 | lsub_positive(&cpu_cap, util); |
| 8491 | |
| 8492 | if (cpu == prev_cpu) { |
| 8493 | /* Always use prev_cpu as a candidate. */ |
| 8494 | prev_spare_cap = cpu_cap; |
| 8495 | prev_fits = fits; |
| 8496 | } else if ((fits > max_fits) || |
| 8497 | ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { |
| 8498 | /* |
| 8499 | * Find the CPU with the maximum spare capacity |
| 8500 | * among the remaining CPUs in the performance |
| 8501 | * domain. |
| 8502 | */ |
| 8503 | max_spare_cap = cpu_cap; |
| 8504 | max_spare_cap_cpu = cpu; |
| 8505 | max_fits = fits; |
| 8506 | } |
| 8507 | } |
| 8508 | |
| 8509 | if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) |
| 8510 | continue; |
| 8511 | |
| 8512 | eenv_pd_busy_time(&eenv, cpus, p); |
| 8513 | /* Compute the 'base' energy of the pd, without @p */ |
| 8514 | base_energy = compute_energy(&eenv, pd, cpus, p, -1); |
| 8515 | |
| 8516 | /* Evaluate the energy impact of using prev_cpu. */ |
| 8517 | if (prev_spare_cap > -1) { |
| 8518 | prev_delta = compute_energy(&eenv, pd, cpus, p, |
| 8519 | prev_cpu); |
| 8520 | /* CPU utilization has changed */ |
| 8521 | if (prev_delta < base_energy) |
| 8522 | goto unlock; |
| 8523 | prev_delta -= base_energy; |
| 8524 | prev_actual_cap = cpu_actual_cap; |
| 8525 | best_delta = min(best_delta, prev_delta); |
| 8526 | } |
| 8527 | |
| 8528 | /* Evaluate the energy impact of using max_spare_cap_cpu. */ |
| 8529 | if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { |
| 8530 | /* Current best energy cpu fits better */ |
| 8531 | if (max_fits < best_fits) |
| 8532 | continue; |
| 8533 | |
| 8534 | /* |
| 8535 | * Both don't fit performance hint (i.e. uclamp_min) |
| 8536 | * but best energy cpu has better capacity. |
| 8537 | */ |
| 8538 | if ((max_fits < 0) && |
| 8539 | (cpu_actual_cap <= best_actual_cap)) |
| 8540 | continue; |
| 8541 | |
| 8542 | cur_delta = compute_energy(&eenv, pd, cpus, p, |
| 8543 | max_spare_cap_cpu); |
| 8544 | /* CPU utilization has changed */ |
| 8545 | if (cur_delta < base_energy) |
| 8546 | goto unlock; |
| 8547 | cur_delta -= base_energy; |
| 8548 | |
| 8549 | /* |
| 8550 | * Both fit for the task but best energy cpu has lower |
| 8551 | * energy impact. |
| 8552 | */ |
| 8553 | if ((max_fits > 0) && (best_fits > 0) && |
| 8554 | (cur_delta >= best_delta)) |
| 8555 | continue; |
| 8556 | |
| 8557 | best_delta = cur_delta; |
| 8558 | best_energy_cpu = max_spare_cap_cpu; |
| 8559 | best_fits = max_fits; |
| 8560 | best_actual_cap = cpu_actual_cap; |
| 8561 | } |
| 8562 | } |
| 8563 | rcu_read_unlock(); |
| 8564 | |
| 8565 | if ((best_fits > prev_fits) || |
| 8566 | ((best_fits > 0) && (best_delta < prev_delta)) || |
| 8567 | ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) |
| 8568 | target = best_energy_cpu; |
| 8569 | |
| 8570 | return target; |
| 8571 | |
| 8572 | unlock: |
| 8573 | rcu_read_unlock(); |
| 8574 | |
| 8575 | return target; |
| 8576 | } |
| 8577 | |
| 8578 | /* |
| 8579 | * select_task_rq_fair: Select target runqueue for the waking task in domains |
| 8580 | * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, |
| 8581 | * SD_BALANCE_FORK, or SD_BALANCE_EXEC. |
| 8582 | * |
| 8583 | * Balances load by selecting the idlest CPU in the idlest group, or under |
| 8584 | * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. |
| 8585 | * |
| 8586 | * Returns the target CPU number. |
| 8587 | */ |
| 8588 | static int |
| 8589 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) |
| 8590 | { |
| 8591 | int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); |
| 8592 | struct sched_domain *tmp, *sd = NULL; |
| 8593 | int cpu = smp_processor_id(); |
| 8594 | int new_cpu = prev_cpu; |
| 8595 | int want_affine = 0; |
| 8596 | /* SD_flags and WF_flags share the first nibble */ |
| 8597 | int sd_flag = wake_flags & 0xF; |
| 8598 | |
| 8599 | /* |
| 8600 | * required for stable ->cpus_allowed |
| 8601 | */ |
| 8602 | lockdep_assert_held(&p->pi_lock); |
| 8603 | if (wake_flags & WF_TTWU) { |
| 8604 | record_wakee(p); |
| 8605 | |
| 8606 | if ((wake_flags & WF_CURRENT_CPU) && |
| 8607 | cpumask_test_cpu(cpu, p->cpus_ptr)) |
| 8608 | return cpu; |
| 8609 | |
| 8610 | if (!is_rd_overutilized(this_rq()->rd)) { |
| 8611 | new_cpu = find_energy_efficient_cpu(p, prev_cpu); |
| 8612 | if (new_cpu >= 0) |
| 8613 | return new_cpu; |
| 8614 | new_cpu = prev_cpu; |
| 8615 | } |
| 8616 | |
| 8617 | want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); |
| 8618 | } |
| 8619 | |
| 8620 | rcu_read_lock(); |
| 8621 | for_each_domain(cpu, tmp) { |
| 8622 | /* |
| 8623 | * If both 'cpu' and 'prev_cpu' are part of this domain, |
| 8624 | * cpu is a valid SD_WAKE_AFFINE target. |
| 8625 | */ |
| 8626 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
| 8627 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { |
| 8628 | if (cpu != prev_cpu) |
| 8629 | new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); |
| 8630 | |
| 8631 | sd = NULL; /* Prefer wake_affine over balance flags */ |
| 8632 | break; |
| 8633 | } |
| 8634 | |
| 8635 | /* |
| 8636 | * Usually only true for WF_EXEC and WF_FORK, as sched_domains |
| 8637 | * usually do not have SD_BALANCE_WAKE set. That means wakeup |
| 8638 | * will usually go to the fast path. |
| 8639 | */ |
| 8640 | if (tmp->flags & sd_flag) |
| 8641 | sd = tmp; |
| 8642 | else if (!want_affine) |
| 8643 | break; |
| 8644 | } |
| 8645 | |
| 8646 | if (unlikely(sd)) { |
| 8647 | /* Slow path */ |
| 8648 | new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); |
| 8649 | } else if (wake_flags & WF_TTWU) { /* XXX always ? */ |
| 8650 | /* Fast path */ |
| 8651 | new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); |
| 8652 | } |
| 8653 | rcu_read_unlock(); |
| 8654 | |
| 8655 | return new_cpu; |
| 8656 | } |
| 8657 | |
| 8658 | /* |
| 8659 | * Called immediately before a task is migrated to a new CPU; task_cpu(p) and |
| 8660 | * cfs_rq_of(p) references at time of call are still valid and identify the |
| 8661 | * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. |
| 8662 | */ |
| 8663 | static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) |
| 8664 | { |
| 8665 | struct sched_entity *se = &p->se; |
| 8666 | |
| 8667 | if (!task_on_rq_migrating(p)) { |
| 8668 | remove_entity_load_avg(se); |
| 8669 | |
| 8670 | /* |
| 8671 | * Here, the task's PELT values have been updated according to |
| 8672 | * the current rq's clock. But if that clock hasn't been |
| 8673 | * updated in a while, a substantial idle time will be missed, |
| 8674 | * leading to an inflation after wake-up on the new rq. |
| 8675 | * |
| 8676 | * Estimate the missing time from the cfs_rq last_update_time |
| 8677 | * and update sched_avg to improve the PELT continuity after |
| 8678 | * migration. |
| 8679 | */ |
| 8680 | migrate_se_pelt_lag(se); |
| 8681 | } |
| 8682 | |
| 8683 | /* Tell new CPU we are migrated */ |
| 8684 | se->avg.last_update_time = 0; |
| 8685 | |
| 8686 | update_scan_period(p, new_cpu); |
| 8687 | } |
| 8688 | |
| 8689 | static void task_dead_fair(struct task_struct *p) |
| 8690 | { |
| 8691 | struct sched_entity *se = &p->se; |
| 8692 | |
| 8693 | if (se->sched_delayed) { |
| 8694 | struct rq_flags rf; |
| 8695 | struct rq *rq; |
| 8696 | |
| 8697 | rq = task_rq_lock(p, &rf); |
| 8698 | if (se->sched_delayed) { |
| 8699 | update_rq_clock(rq); |
| 8700 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); |
| 8701 | } |
| 8702 | task_rq_unlock(rq, p, &rf); |
| 8703 | } |
| 8704 | |
| 8705 | remove_entity_load_avg(se); |
| 8706 | } |
| 8707 | |
| 8708 | /* |
| 8709 | * Set the max capacity the task is allowed to run at for misfit detection. |
| 8710 | */ |
| 8711 | static void set_task_max_allowed_capacity(struct task_struct *p) |
| 8712 | { |
| 8713 | struct asym_cap_data *entry; |
| 8714 | |
| 8715 | if (!sched_asym_cpucap_active()) |
| 8716 | return; |
| 8717 | |
| 8718 | rcu_read_lock(); |
| 8719 | list_for_each_entry_rcu(entry, &asym_cap_list, link) { |
| 8720 | cpumask_t *cpumask; |
| 8721 | |
| 8722 | cpumask = cpu_capacity_span(entry); |
| 8723 | if (!cpumask_intersects(p->cpus_ptr, cpumask)) |
| 8724 | continue; |
| 8725 | |
| 8726 | p->max_allowed_capacity = entry->capacity; |
| 8727 | break; |
| 8728 | } |
| 8729 | rcu_read_unlock(); |
| 8730 | } |
| 8731 | |
| 8732 | static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) |
| 8733 | { |
| 8734 | set_cpus_allowed_common(p, ctx); |
| 8735 | set_task_max_allowed_capacity(p); |
| 8736 | } |
| 8737 | |
| 8738 | static int |
| 8739 | balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 8740 | { |
| 8741 | if (sched_fair_runnable(rq)) |
| 8742 | return 1; |
| 8743 | |
| 8744 | return sched_balance_newidle(rq, rf) != 0; |
| 8745 | } |
| 8746 | #else |
| 8747 | static inline void set_task_max_allowed_capacity(struct task_struct *p) {} |
| 8748 | #endif /* CONFIG_SMP */ |
| 8749 | |
| 8750 | static void set_next_buddy(struct sched_entity *se) |
| 8751 | { |
| 8752 | for_each_sched_entity(se) { |
| 8753 | if (WARN_ON_ONCE(!se->on_rq)) |
| 8754 | return; |
| 8755 | if (se_is_idle(se)) |
| 8756 | return; |
| 8757 | cfs_rq_of(se)->next = se; |
| 8758 | } |
| 8759 | } |
| 8760 | |
| 8761 | /* |
| 8762 | * Preempt the current task with a newly woken task if needed: |
| 8763 | */ |
| 8764 | static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) |
| 8765 | { |
| 8766 | struct task_struct *donor = rq->donor; |
| 8767 | struct sched_entity *se = &donor->se, *pse = &p->se; |
| 8768 | struct cfs_rq *cfs_rq = task_cfs_rq(donor); |
| 8769 | int cse_is_idle, pse_is_idle; |
| 8770 | |
| 8771 | if (unlikely(se == pse)) |
| 8772 | return; |
| 8773 | |
| 8774 | /* |
| 8775 | * This is possible from callers such as attach_tasks(), in which we |
| 8776 | * unconditionally wakeup_preempt() after an enqueue (which may have |
| 8777 | * lead to a throttle). This both saves work and prevents false |
| 8778 | * next-buddy nomination below. |
| 8779 | */ |
| 8780 | if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) |
| 8781 | return; |
| 8782 | |
| 8783 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { |
| 8784 | set_next_buddy(pse); |
| 8785 | } |
| 8786 | |
| 8787 | /* |
| 8788 | * We can come here with TIF_NEED_RESCHED already set from new task |
| 8789 | * wake up path. |
| 8790 | * |
| 8791 | * Note: this also catches the edge-case of curr being in a throttled |
| 8792 | * group (e.g. via set_curr_task), since update_curr() (in the |
| 8793 | * enqueue of curr) will have resulted in resched being set. This |
| 8794 | * prevents us from potentially nominating it as a false LAST_BUDDY |
| 8795 | * below. |
| 8796 | */ |
| 8797 | if (test_tsk_need_resched(rq->curr)) |
| 8798 | return; |
| 8799 | |
| 8800 | if (!sched_feat(WAKEUP_PREEMPTION)) |
| 8801 | return; |
| 8802 | |
| 8803 | find_matching_se(&se, &pse); |
| 8804 | WARN_ON_ONCE(!pse); |
| 8805 | |
| 8806 | cse_is_idle = se_is_idle(se); |
| 8807 | pse_is_idle = se_is_idle(pse); |
| 8808 | |
| 8809 | /* |
| 8810 | * Preempt an idle entity in favor of a non-idle entity (and don't preempt |
| 8811 | * in the inverse case). |
| 8812 | */ |
| 8813 | if (cse_is_idle && !pse_is_idle) { |
| 8814 | /* |
| 8815 | * When non-idle entity preempt an idle entity, |
| 8816 | * don't give idle entity slice protection. |
| 8817 | */ |
| 8818 | cancel_protect_slice(se); |
| 8819 | goto preempt; |
| 8820 | } |
| 8821 | |
| 8822 | if (cse_is_idle != pse_is_idle) |
| 8823 | return; |
| 8824 | |
| 8825 | /* |
| 8826 | * BATCH and IDLE tasks do not preempt others. |
| 8827 | */ |
| 8828 | if (unlikely(!normal_policy(p->policy))) |
| 8829 | return; |
| 8830 | |
| 8831 | cfs_rq = cfs_rq_of(se); |
| 8832 | update_curr(cfs_rq); |
| 8833 | /* |
| 8834 | * If @p has a shorter slice than current and @p is eligible, override |
| 8835 | * current's slice protection in order to allow preemption. |
| 8836 | * |
| 8837 | * Note that even if @p does not turn out to be the most eligible |
| 8838 | * task at this moment, current's slice protection will be lost. |
| 8839 | */ |
| 8840 | if (do_preempt_short(cfs_rq, pse, se)) |
| 8841 | cancel_protect_slice(se); |
| 8842 | |
| 8843 | /* |
| 8844 | * If @p has become the most eligible task, force preemption. |
| 8845 | */ |
| 8846 | if (pick_eevdf(cfs_rq) == pse) |
| 8847 | goto preempt; |
| 8848 | |
| 8849 | return; |
| 8850 | |
| 8851 | preempt: |
| 8852 | resched_curr_lazy(rq); |
| 8853 | } |
| 8854 | |
| 8855 | static struct task_struct *pick_task_fair(struct rq *rq) |
| 8856 | { |
| 8857 | struct sched_entity *se; |
| 8858 | struct cfs_rq *cfs_rq; |
| 8859 | |
| 8860 | again: |
| 8861 | cfs_rq = &rq->cfs; |
| 8862 | if (!cfs_rq->nr_queued) |
| 8863 | return NULL; |
| 8864 | |
| 8865 | do { |
| 8866 | /* Might not have done put_prev_entity() */ |
| 8867 | if (cfs_rq->curr && cfs_rq->curr->on_rq) |
| 8868 | update_curr(cfs_rq); |
| 8869 | |
| 8870 | if (unlikely(check_cfs_rq_runtime(cfs_rq))) |
| 8871 | goto again; |
| 8872 | |
| 8873 | se = pick_next_entity(rq, cfs_rq); |
| 8874 | if (!se) |
| 8875 | goto again; |
| 8876 | cfs_rq = group_cfs_rq(se); |
| 8877 | } while (cfs_rq); |
| 8878 | |
| 8879 | return task_of(se); |
| 8880 | } |
| 8881 | |
| 8882 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); |
| 8883 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); |
| 8884 | |
| 8885 | struct task_struct * |
| 8886 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) |
| 8887 | { |
| 8888 | struct sched_entity *se; |
| 8889 | struct task_struct *p; |
| 8890 | int new_tasks; |
| 8891 | |
| 8892 | again: |
| 8893 | p = pick_task_fair(rq); |
| 8894 | if (!p) |
| 8895 | goto idle; |
| 8896 | se = &p->se; |
| 8897 | |
| 8898 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 8899 | if (prev->sched_class != &fair_sched_class) |
| 8900 | goto simple; |
| 8901 | |
| 8902 | __put_prev_set_next_dl_server(rq, prev, p); |
| 8903 | |
| 8904 | /* |
| 8905 | * Because of the set_next_buddy() in dequeue_task_fair() it is rather |
| 8906 | * likely that a next task is from the same cgroup as the current. |
| 8907 | * |
| 8908 | * Therefore attempt to avoid putting and setting the entire cgroup |
| 8909 | * hierarchy, only change the part that actually changes. |
| 8910 | * |
| 8911 | * Since we haven't yet done put_prev_entity and if the selected task |
| 8912 | * is a different task than we started out with, try and touch the |
| 8913 | * least amount of cfs_rqs. |
| 8914 | */ |
| 8915 | if (prev != p) { |
| 8916 | struct sched_entity *pse = &prev->se; |
| 8917 | struct cfs_rq *cfs_rq; |
| 8918 | |
| 8919 | while (!(cfs_rq = is_same_group(se, pse))) { |
| 8920 | int se_depth = se->depth; |
| 8921 | int pse_depth = pse->depth; |
| 8922 | |
| 8923 | if (se_depth <= pse_depth) { |
| 8924 | put_prev_entity(cfs_rq_of(pse), pse); |
| 8925 | pse = parent_entity(pse); |
| 8926 | } |
| 8927 | if (se_depth >= pse_depth) { |
| 8928 | set_next_entity(cfs_rq_of(se), se); |
| 8929 | se = parent_entity(se); |
| 8930 | } |
| 8931 | } |
| 8932 | |
| 8933 | put_prev_entity(cfs_rq, pse); |
| 8934 | set_next_entity(cfs_rq, se); |
| 8935 | |
| 8936 | __set_next_task_fair(rq, p, true); |
| 8937 | } |
| 8938 | |
| 8939 | return p; |
| 8940 | |
| 8941 | simple: |
| 8942 | #endif |
| 8943 | put_prev_set_next_task(rq, prev, p); |
| 8944 | return p; |
| 8945 | |
| 8946 | idle: |
| 8947 | if (!rf) |
| 8948 | return NULL; |
| 8949 | |
| 8950 | new_tasks = sched_balance_newidle(rq, rf); |
| 8951 | |
| 8952 | /* |
| 8953 | * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is |
| 8954 | * possible for any higher priority task to appear. In that case we |
| 8955 | * must re-start the pick_next_entity() loop. |
| 8956 | */ |
| 8957 | if (new_tasks < 0) |
| 8958 | return RETRY_TASK; |
| 8959 | |
| 8960 | if (new_tasks > 0) |
| 8961 | goto again; |
| 8962 | |
| 8963 | /* |
| 8964 | * rq is about to be idle, check if we need to update the |
| 8965 | * lost_idle_time of clock_pelt |
| 8966 | */ |
| 8967 | update_idle_rq_clock_pelt(rq); |
| 8968 | |
| 8969 | return NULL; |
| 8970 | } |
| 8971 | |
| 8972 | static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) |
| 8973 | { |
| 8974 | return pick_next_task_fair(rq, prev, NULL); |
| 8975 | } |
| 8976 | |
| 8977 | static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) |
| 8978 | { |
| 8979 | return !!dl_se->rq->cfs.nr_queued; |
| 8980 | } |
| 8981 | |
| 8982 | static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) |
| 8983 | { |
| 8984 | return pick_task_fair(dl_se->rq); |
| 8985 | } |
| 8986 | |
| 8987 | void fair_server_init(struct rq *rq) |
| 8988 | { |
| 8989 | struct sched_dl_entity *dl_se = &rq->fair_server; |
| 8990 | |
| 8991 | init_dl_entity(dl_se); |
| 8992 | |
| 8993 | dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); |
| 8994 | } |
| 8995 | |
| 8996 | /* |
| 8997 | * Account for a descheduled task: |
| 8998 | */ |
| 8999 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) |
| 9000 | { |
| 9001 | struct sched_entity *se = &prev->se; |
| 9002 | struct cfs_rq *cfs_rq; |
| 9003 | |
| 9004 | for_each_sched_entity(se) { |
| 9005 | cfs_rq = cfs_rq_of(se); |
| 9006 | put_prev_entity(cfs_rq, se); |
| 9007 | } |
| 9008 | } |
| 9009 | |
| 9010 | /* |
| 9011 | * sched_yield() is very simple |
| 9012 | */ |
| 9013 | static void yield_task_fair(struct rq *rq) |
| 9014 | { |
| 9015 | struct task_struct *curr = rq->curr; |
| 9016 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
| 9017 | struct sched_entity *se = &curr->se; |
| 9018 | |
| 9019 | /* |
| 9020 | * Are we the only task in the tree? |
| 9021 | */ |
| 9022 | if (unlikely(rq->nr_running == 1)) |
| 9023 | return; |
| 9024 | |
| 9025 | clear_buddies(cfs_rq, se); |
| 9026 | |
| 9027 | update_rq_clock(rq); |
| 9028 | /* |
| 9029 | * Update run-time statistics of the 'current'. |
| 9030 | */ |
| 9031 | update_curr(cfs_rq); |
| 9032 | /* |
| 9033 | * Tell update_rq_clock() that we've just updated, |
| 9034 | * so we don't do microscopic update in schedule() |
| 9035 | * and double the fastpath cost. |
| 9036 | */ |
| 9037 | rq_clock_skip_update(rq); |
| 9038 | |
| 9039 | se->deadline += calc_delta_fair(se->slice, se); |
| 9040 | } |
| 9041 | |
| 9042 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) |
| 9043 | { |
| 9044 | struct sched_entity *se = &p->se; |
| 9045 | |
| 9046 | /* throttled hierarchies are not runnable */ |
| 9047 | if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) |
| 9048 | return false; |
| 9049 | |
| 9050 | /* Tell the scheduler that we'd really like se to run next. */ |
| 9051 | set_next_buddy(se); |
| 9052 | |
| 9053 | yield_task_fair(rq); |
| 9054 | |
| 9055 | return true; |
| 9056 | } |
| 9057 | |
| 9058 | #ifdef CONFIG_SMP |
| 9059 | /************************************************** |
| 9060 | * Fair scheduling class load-balancing methods. |
| 9061 | * |
| 9062 | * BASICS |
| 9063 | * |
| 9064 | * The purpose of load-balancing is to achieve the same basic fairness the |
| 9065 | * per-CPU scheduler provides, namely provide a proportional amount of compute |
| 9066 | * time to each task. This is expressed in the following equation: |
| 9067 | * |
| 9068 | * W_i,n/P_i == W_j,n/P_j for all i,j (1) |
| 9069 | * |
| 9070 | * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight |
| 9071 | * W_i,0 is defined as: |
| 9072 | * |
| 9073 | * W_i,0 = \Sum_j w_i,j (2) |
| 9074 | * |
| 9075 | * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight |
| 9076 | * is derived from the nice value as per sched_prio_to_weight[]. |
| 9077 | * |
| 9078 | * The weight average is an exponential decay average of the instantaneous |
| 9079 | * weight: |
| 9080 | * |
| 9081 | * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) |
| 9082 | * |
| 9083 | * C_i is the compute capacity of CPU i, typically it is the |
| 9084 | * fraction of 'recent' time available for SCHED_OTHER task execution. But it |
| 9085 | * can also include other factors [XXX]. |
| 9086 | * |
| 9087 | * To achieve this balance we define a measure of imbalance which follows |
| 9088 | * directly from (1): |
| 9089 | * |
| 9090 | * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) |
| 9091 | * |
| 9092 | * We them move tasks around to minimize the imbalance. In the continuous |
| 9093 | * function space it is obvious this converges, in the discrete case we get |
| 9094 | * a few fun cases generally called infeasible weight scenarios. |
| 9095 | * |
| 9096 | * [XXX expand on: |
| 9097 | * - infeasible weights; |
| 9098 | * - local vs global optima in the discrete case. ] |
| 9099 | * |
| 9100 | * |
| 9101 | * SCHED DOMAINS |
| 9102 | * |
| 9103 | * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) |
| 9104 | * for all i,j solution, we create a tree of CPUs that follows the hardware |
| 9105 | * topology where each level pairs two lower groups (or better). This results |
| 9106 | * in O(log n) layers. Furthermore we reduce the number of CPUs going up the |
| 9107 | * tree to only the first of the previous level and we decrease the frequency |
| 9108 | * of load-balance at each level inversely proportional to the number of CPUs in |
| 9109 | * the groups. |
| 9110 | * |
| 9111 | * This yields: |
| 9112 | * |
| 9113 | * log_2 n 1 n |
| 9114 | * \Sum { --- * --- * 2^i } = O(n) (5) |
| 9115 | * i = 0 2^i 2^i |
| 9116 | * `- size of each group |
| 9117 | * | | `- number of CPUs doing load-balance |
| 9118 | * | `- freq |
| 9119 | * `- sum over all levels |
| 9120 | * |
| 9121 | * Coupled with a limit on how many tasks we can migrate every balance pass, |
| 9122 | * this makes (5) the runtime complexity of the balancer. |
| 9123 | * |
| 9124 | * An important property here is that each CPU is still (indirectly) connected |
| 9125 | * to every other CPU in at most O(log n) steps: |
| 9126 | * |
| 9127 | * The adjacency matrix of the resulting graph is given by: |
| 9128 | * |
| 9129 | * log_2 n |
| 9130 | * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) |
| 9131 | * k = 0 |
| 9132 | * |
| 9133 | * And you'll find that: |
| 9134 | * |
| 9135 | * A^(log_2 n)_i,j != 0 for all i,j (7) |
| 9136 | * |
| 9137 | * Showing there's indeed a path between every CPU in at most O(log n) steps. |
| 9138 | * The task movement gives a factor of O(m), giving a convergence complexity |
| 9139 | * of: |
| 9140 | * |
| 9141 | * O(nm log n), n := nr_cpus, m := nr_tasks (8) |
| 9142 | * |
| 9143 | * |
| 9144 | * WORK CONSERVING |
| 9145 | * |
| 9146 | * In order to avoid CPUs going idle while there's still work to do, new idle |
| 9147 | * balancing is more aggressive and has the newly idle CPU iterate up the domain |
| 9148 | * tree itself instead of relying on other CPUs to bring it work. |
| 9149 | * |
| 9150 | * This adds some complexity to both (5) and (8) but it reduces the total idle |
| 9151 | * time. |
| 9152 | * |
| 9153 | * [XXX more?] |
| 9154 | * |
| 9155 | * |
| 9156 | * CGROUPS |
| 9157 | * |
| 9158 | * Cgroups make a horror show out of (2), instead of a simple sum we get: |
| 9159 | * |
| 9160 | * s_k,i |
| 9161 | * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) |
| 9162 | * S_k |
| 9163 | * |
| 9164 | * Where |
| 9165 | * |
| 9166 | * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) |
| 9167 | * |
| 9168 | * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. |
| 9169 | * |
| 9170 | * The big problem is S_k, its a global sum needed to compute a local (W_i) |
| 9171 | * property. |
| 9172 | * |
| 9173 | * [XXX write more on how we solve this.. _after_ merging pjt's patches that |
| 9174 | * rewrite all of this once again.] |
| 9175 | */ |
| 9176 | |
| 9177 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; |
| 9178 | |
| 9179 | enum fbq_type { regular, remote, all }; |
| 9180 | |
| 9181 | /* |
| 9182 | * 'group_type' describes the group of CPUs at the moment of load balancing. |
| 9183 | * |
| 9184 | * The enum is ordered by pulling priority, with the group with lowest priority |
| 9185 | * first so the group_type can simply be compared when selecting the busiest |
| 9186 | * group. See update_sd_pick_busiest(). |
| 9187 | */ |
| 9188 | enum group_type { |
| 9189 | /* The group has spare capacity that can be used to run more tasks. */ |
| 9190 | group_has_spare = 0, |
| 9191 | /* |
| 9192 | * The group is fully used and the tasks don't compete for more CPU |
| 9193 | * cycles. Nevertheless, some tasks might wait before running. |
| 9194 | */ |
| 9195 | group_fully_busy, |
| 9196 | /* |
| 9197 | * One task doesn't fit with CPU's capacity and must be migrated to a |
| 9198 | * more powerful CPU. |
| 9199 | */ |
| 9200 | group_misfit_task, |
| 9201 | /* |
| 9202 | * Balance SMT group that's fully busy. Can benefit from migration |
| 9203 | * a task on SMT with busy sibling to another CPU on idle core. |
| 9204 | */ |
| 9205 | group_smt_balance, |
| 9206 | /* |
| 9207 | * SD_ASYM_PACKING only: One local CPU with higher capacity is available, |
| 9208 | * and the task should be migrated to it instead of running on the |
| 9209 | * current CPU. |
| 9210 | */ |
| 9211 | group_asym_packing, |
| 9212 | /* |
| 9213 | * The tasks' affinity constraints previously prevented the scheduler |
| 9214 | * from balancing the load across the system. |
| 9215 | */ |
| 9216 | group_imbalanced, |
| 9217 | /* |
| 9218 | * The CPU is overloaded and can't provide expected CPU cycles to all |
| 9219 | * tasks. |
| 9220 | */ |
| 9221 | group_overloaded |
| 9222 | }; |
| 9223 | |
| 9224 | enum migration_type { |
| 9225 | migrate_load = 0, |
| 9226 | migrate_util, |
| 9227 | migrate_task, |
| 9228 | migrate_misfit |
| 9229 | }; |
| 9230 | |
| 9231 | #define LBF_ALL_PINNED 0x01 |
| 9232 | #define LBF_NEED_BREAK 0x02 |
| 9233 | #define LBF_DST_PINNED 0x04 |
| 9234 | #define LBF_SOME_PINNED 0x08 |
| 9235 | #define LBF_ACTIVE_LB 0x10 |
| 9236 | |
| 9237 | struct lb_env { |
| 9238 | struct sched_domain *sd; |
| 9239 | |
| 9240 | struct rq *src_rq; |
| 9241 | int src_cpu; |
| 9242 | |
| 9243 | int dst_cpu; |
| 9244 | struct rq *dst_rq; |
| 9245 | |
| 9246 | struct cpumask *dst_grpmask; |
| 9247 | int new_dst_cpu; |
| 9248 | enum cpu_idle_type idle; |
| 9249 | long imbalance; |
| 9250 | /* The set of CPUs under consideration for load-balancing */ |
| 9251 | struct cpumask *cpus; |
| 9252 | |
| 9253 | unsigned int flags; |
| 9254 | |
| 9255 | unsigned int loop; |
| 9256 | unsigned int loop_break; |
| 9257 | unsigned int loop_max; |
| 9258 | |
| 9259 | enum fbq_type fbq_type; |
| 9260 | enum migration_type migration_type; |
| 9261 | struct list_head tasks; |
| 9262 | }; |
| 9263 | |
| 9264 | /* |
| 9265 | * Is this task likely cache-hot: |
| 9266 | */ |
| 9267 | static int task_hot(struct task_struct *p, struct lb_env *env) |
| 9268 | { |
| 9269 | s64 delta; |
| 9270 | |
| 9271 | lockdep_assert_rq_held(env->src_rq); |
| 9272 | |
| 9273 | if (p->sched_class != &fair_sched_class) |
| 9274 | return 0; |
| 9275 | |
| 9276 | if (unlikely(task_has_idle_policy(p))) |
| 9277 | return 0; |
| 9278 | |
| 9279 | /* SMT siblings share cache */ |
| 9280 | if (env->sd->flags & SD_SHARE_CPUCAPACITY) |
| 9281 | return 0; |
| 9282 | |
| 9283 | /* |
| 9284 | * Buddy candidates are cache hot: |
| 9285 | */ |
| 9286 | if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && |
| 9287 | (&p->se == cfs_rq_of(&p->se)->next)) |
| 9288 | return 1; |
| 9289 | |
| 9290 | if (sysctl_sched_migration_cost == -1) |
| 9291 | return 1; |
| 9292 | |
| 9293 | /* |
| 9294 | * Don't migrate task if the task's cookie does not match |
| 9295 | * with the destination CPU's core cookie. |
| 9296 | */ |
| 9297 | if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) |
| 9298 | return 1; |
| 9299 | |
| 9300 | if (sysctl_sched_migration_cost == 0) |
| 9301 | return 0; |
| 9302 | |
| 9303 | delta = rq_clock_task(env->src_rq) - p->se.exec_start; |
| 9304 | |
| 9305 | return delta < (s64)sysctl_sched_migration_cost; |
| 9306 | } |
| 9307 | |
| 9308 | #ifdef CONFIG_NUMA_BALANCING |
| 9309 | /* |
| 9310 | * Returns a positive value, if task migration degrades locality. |
| 9311 | * Returns 0, if task migration is not affected by locality. |
| 9312 | * Returns a negative value, if task migration improves locality i.e migration preferred. |
| 9313 | */ |
| 9314 | static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) |
| 9315 | { |
| 9316 | struct numa_group *numa_group = rcu_dereference(p->numa_group); |
| 9317 | unsigned long src_weight, dst_weight; |
| 9318 | int src_nid, dst_nid, dist; |
| 9319 | |
| 9320 | if (!static_branch_likely(&sched_numa_balancing)) |
| 9321 | return 0; |
| 9322 | |
| 9323 | if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) |
| 9324 | return 0; |
| 9325 | |
| 9326 | src_nid = cpu_to_node(env->src_cpu); |
| 9327 | dst_nid = cpu_to_node(env->dst_cpu); |
| 9328 | |
| 9329 | if (src_nid == dst_nid) |
| 9330 | return 0; |
| 9331 | |
| 9332 | /* Migrating away from the preferred node is always bad. */ |
| 9333 | if (src_nid == p->numa_preferred_nid) { |
| 9334 | if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) |
| 9335 | return 1; |
| 9336 | else |
| 9337 | return 0; |
| 9338 | } |
| 9339 | |
| 9340 | /* Encourage migration to the preferred node. */ |
| 9341 | if (dst_nid == p->numa_preferred_nid) |
| 9342 | return -1; |
| 9343 | |
| 9344 | /* Leaving a core idle is often worse than degrading locality. */ |
| 9345 | if (env->idle == CPU_IDLE) |
| 9346 | return 0; |
| 9347 | |
| 9348 | dist = node_distance(src_nid, dst_nid); |
| 9349 | if (numa_group) { |
| 9350 | src_weight = group_weight(p, src_nid, dist); |
| 9351 | dst_weight = group_weight(p, dst_nid, dist); |
| 9352 | } else { |
| 9353 | src_weight = task_weight(p, src_nid, dist); |
| 9354 | dst_weight = task_weight(p, dst_nid, dist); |
| 9355 | } |
| 9356 | |
| 9357 | return src_weight - dst_weight; |
| 9358 | } |
| 9359 | |
| 9360 | #else |
| 9361 | static inline long migrate_degrades_locality(struct task_struct *p, |
| 9362 | struct lb_env *env) |
| 9363 | { |
| 9364 | return 0; |
| 9365 | } |
| 9366 | #endif |
| 9367 | |
| 9368 | /* |
| 9369 | * Check whether the task is ineligible on the destination cpu |
| 9370 | * |
| 9371 | * When the PLACE_LAG scheduling feature is enabled and |
| 9372 | * dst_cfs_rq->nr_queued is greater than 1, if the task |
| 9373 | * is ineligible, it will also be ineligible when |
| 9374 | * it is migrated to the destination cpu. |
| 9375 | */ |
| 9376 | static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) |
| 9377 | { |
| 9378 | struct cfs_rq *dst_cfs_rq; |
| 9379 | |
| 9380 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 9381 | dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; |
| 9382 | #else |
| 9383 | dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; |
| 9384 | #endif |
| 9385 | if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && |
| 9386 | !entity_eligible(task_cfs_rq(p), &p->se)) |
| 9387 | return 1; |
| 9388 | |
| 9389 | return 0; |
| 9390 | } |
| 9391 | |
| 9392 | /* |
| 9393 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
| 9394 | */ |
| 9395 | static |
| 9396 | int can_migrate_task(struct task_struct *p, struct lb_env *env) |
| 9397 | { |
| 9398 | long degrades, hot; |
| 9399 | |
| 9400 | lockdep_assert_rq_held(env->src_rq); |
| 9401 | if (p->sched_task_hot) |
| 9402 | p->sched_task_hot = 0; |
| 9403 | |
| 9404 | /* |
| 9405 | * We do not migrate tasks that are: |
| 9406 | * 1) delayed dequeued unless we migrate load, or |
| 9407 | * 2) throttled_lb_pair, or |
| 9408 | * 3) cannot be migrated to this CPU due to cpus_ptr, or |
| 9409 | * 4) running (obviously), or |
| 9410 | * 5) are cache-hot on their current CPU. |
| 9411 | */ |
| 9412 | if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) |
| 9413 | return 0; |
| 9414 | |
| 9415 | if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) |
| 9416 | return 0; |
| 9417 | |
| 9418 | /* |
| 9419 | * We want to prioritize the migration of eligible tasks. |
| 9420 | * For ineligible tasks we soft-limit them and only allow |
| 9421 | * them to migrate when nr_balance_failed is non-zero to |
| 9422 | * avoid load-balancing trying very hard to balance the load. |
| 9423 | */ |
| 9424 | if (!env->sd->nr_balance_failed && |
| 9425 | task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) |
| 9426 | return 0; |
| 9427 | |
| 9428 | /* Disregard percpu kthreads; they are where they need to be. */ |
| 9429 | if (kthread_is_per_cpu(p)) |
| 9430 | return 0; |
| 9431 | |
| 9432 | if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { |
| 9433 | int cpu; |
| 9434 | |
| 9435 | schedstat_inc(p->stats.nr_failed_migrations_affine); |
| 9436 | |
| 9437 | env->flags |= LBF_SOME_PINNED; |
| 9438 | |
| 9439 | /* |
| 9440 | * Remember if this task can be migrated to any other CPU in |
| 9441 | * our sched_group. We may want to revisit it if we couldn't |
| 9442 | * meet load balance goals by pulling other tasks on src_cpu. |
| 9443 | * |
| 9444 | * Avoid computing new_dst_cpu |
| 9445 | * - for NEWLY_IDLE |
| 9446 | * - if we have already computed one in current iteration |
| 9447 | * - if it's an active balance |
| 9448 | */ |
| 9449 | if (env->idle == CPU_NEWLY_IDLE || |
| 9450 | env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) |
| 9451 | return 0; |
| 9452 | |
| 9453 | /* Prevent to re-select dst_cpu via env's CPUs: */ |
| 9454 | cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); |
| 9455 | |
| 9456 | if (cpu < nr_cpu_ids) { |
| 9457 | env->flags |= LBF_DST_PINNED; |
| 9458 | env->new_dst_cpu = cpu; |
| 9459 | } |
| 9460 | |
| 9461 | return 0; |
| 9462 | } |
| 9463 | |
| 9464 | /* Record that we found at least one task that could run on dst_cpu */ |
| 9465 | env->flags &= ~LBF_ALL_PINNED; |
| 9466 | |
| 9467 | if (task_on_cpu(env->src_rq, p)) { |
| 9468 | schedstat_inc(p->stats.nr_failed_migrations_running); |
| 9469 | return 0; |
| 9470 | } |
| 9471 | |
| 9472 | /* |
| 9473 | * Aggressive migration if: |
| 9474 | * 1) active balance |
| 9475 | * 2) destination numa is preferred |
| 9476 | * 3) task is cache cold, or |
| 9477 | * 4) too many balance attempts have failed. |
| 9478 | */ |
| 9479 | if (env->flags & LBF_ACTIVE_LB) |
| 9480 | return 1; |
| 9481 | |
| 9482 | degrades = migrate_degrades_locality(p, env); |
| 9483 | if (!degrades) |
| 9484 | hot = task_hot(p, env); |
| 9485 | else |
| 9486 | hot = degrades > 0; |
| 9487 | |
| 9488 | if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { |
| 9489 | if (hot) |
| 9490 | p->sched_task_hot = 1; |
| 9491 | return 1; |
| 9492 | } |
| 9493 | |
| 9494 | schedstat_inc(p->stats.nr_failed_migrations_hot); |
| 9495 | return 0; |
| 9496 | } |
| 9497 | |
| 9498 | /* |
| 9499 | * detach_task() -- detach the task for the migration specified in env |
| 9500 | */ |
| 9501 | static void detach_task(struct task_struct *p, struct lb_env *env) |
| 9502 | { |
| 9503 | lockdep_assert_rq_held(env->src_rq); |
| 9504 | |
| 9505 | if (p->sched_task_hot) { |
| 9506 | p->sched_task_hot = 0; |
| 9507 | schedstat_inc(env->sd->lb_hot_gained[env->idle]); |
| 9508 | schedstat_inc(p->stats.nr_forced_migrations); |
| 9509 | } |
| 9510 | |
| 9511 | deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); |
| 9512 | set_task_cpu(p, env->dst_cpu); |
| 9513 | } |
| 9514 | |
| 9515 | /* |
| 9516 | * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as |
| 9517 | * part of active balancing operations within "domain". |
| 9518 | * |
| 9519 | * Returns a task if successful and NULL otherwise. |
| 9520 | */ |
| 9521 | static struct task_struct *detach_one_task(struct lb_env *env) |
| 9522 | { |
| 9523 | struct task_struct *p; |
| 9524 | |
| 9525 | lockdep_assert_rq_held(env->src_rq); |
| 9526 | |
| 9527 | list_for_each_entry_reverse(p, |
| 9528 | &env->src_rq->cfs_tasks, se.group_node) { |
| 9529 | if (!can_migrate_task(p, env)) |
| 9530 | continue; |
| 9531 | |
| 9532 | detach_task(p, env); |
| 9533 | |
| 9534 | /* |
| 9535 | * Right now, this is only the second place where |
| 9536 | * lb_gained[env->idle] is updated (other is detach_tasks) |
| 9537 | * so we can safely collect stats here rather than |
| 9538 | * inside detach_tasks(). |
| 9539 | */ |
| 9540 | schedstat_inc(env->sd->lb_gained[env->idle]); |
| 9541 | return p; |
| 9542 | } |
| 9543 | return NULL; |
| 9544 | } |
| 9545 | |
| 9546 | /* |
| 9547 | * detach_tasks() -- tries to detach up to imbalance load/util/tasks from |
| 9548 | * busiest_rq, as part of a balancing operation within domain "sd". |
| 9549 | * |
| 9550 | * Returns number of detached tasks if successful and 0 otherwise. |
| 9551 | */ |
| 9552 | static int detach_tasks(struct lb_env *env) |
| 9553 | { |
| 9554 | struct list_head *tasks = &env->src_rq->cfs_tasks; |
| 9555 | unsigned long util, load; |
| 9556 | struct task_struct *p; |
| 9557 | int detached = 0; |
| 9558 | |
| 9559 | lockdep_assert_rq_held(env->src_rq); |
| 9560 | |
| 9561 | /* |
| 9562 | * Source run queue has been emptied by another CPU, clear |
| 9563 | * LBF_ALL_PINNED flag as we will not test any task. |
| 9564 | */ |
| 9565 | if (env->src_rq->nr_running <= 1) { |
| 9566 | env->flags &= ~LBF_ALL_PINNED; |
| 9567 | return 0; |
| 9568 | } |
| 9569 | |
| 9570 | if (env->imbalance <= 0) |
| 9571 | return 0; |
| 9572 | |
| 9573 | while (!list_empty(tasks)) { |
| 9574 | /* |
| 9575 | * We don't want to steal all, otherwise we may be treated likewise, |
| 9576 | * which could at worst lead to a livelock crash. |
| 9577 | */ |
| 9578 | if (env->idle && env->src_rq->nr_running <= 1) |
| 9579 | break; |
| 9580 | |
| 9581 | env->loop++; |
| 9582 | /* We've more or less seen every task there is, call it quits */ |
| 9583 | if (env->loop > env->loop_max) |
| 9584 | break; |
| 9585 | |
| 9586 | /* take a breather every nr_migrate tasks */ |
| 9587 | if (env->loop > env->loop_break) { |
| 9588 | env->loop_break += SCHED_NR_MIGRATE_BREAK; |
| 9589 | env->flags |= LBF_NEED_BREAK; |
| 9590 | break; |
| 9591 | } |
| 9592 | |
| 9593 | p = list_last_entry(tasks, struct task_struct, se.group_node); |
| 9594 | |
| 9595 | if (!can_migrate_task(p, env)) |
| 9596 | goto next; |
| 9597 | |
| 9598 | switch (env->migration_type) { |
| 9599 | case migrate_load: |
| 9600 | /* |
| 9601 | * Depending of the number of CPUs and tasks and the |
| 9602 | * cgroup hierarchy, task_h_load() can return a null |
| 9603 | * value. Make sure that env->imbalance decreases |
| 9604 | * otherwise detach_tasks() will stop only after |
| 9605 | * detaching up to loop_max tasks. |
| 9606 | */ |
| 9607 | load = max_t(unsigned long, task_h_load(p), 1); |
| 9608 | |
| 9609 | if (sched_feat(LB_MIN) && |
| 9610 | load < 16 && !env->sd->nr_balance_failed) |
| 9611 | goto next; |
| 9612 | |
| 9613 | /* |
| 9614 | * Make sure that we don't migrate too much load. |
| 9615 | * Nevertheless, let relax the constraint if |
| 9616 | * scheduler fails to find a good waiting task to |
| 9617 | * migrate. |
| 9618 | */ |
| 9619 | if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) |
| 9620 | goto next; |
| 9621 | |
| 9622 | env->imbalance -= load; |
| 9623 | break; |
| 9624 | |
| 9625 | case migrate_util: |
| 9626 | util = task_util_est(p); |
| 9627 | |
| 9628 | if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) |
| 9629 | goto next; |
| 9630 | |
| 9631 | env->imbalance -= util; |
| 9632 | break; |
| 9633 | |
| 9634 | case migrate_task: |
| 9635 | env->imbalance--; |
| 9636 | break; |
| 9637 | |
| 9638 | case migrate_misfit: |
| 9639 | /* This is not a misfit task */ |
| 9640 | if (task_fits_cpu(p, env->src_cpu)) |
| 9641 | goto next; |
| 9642 | |
| 9643 | env->imbalance = 0; |
| 9644 | break; |
| 9645 | } |
| 9646 | |
| 9647 | detach_task(p, env); |
| 9648 | list_add(&p->se.group_node, &env->tasks); |
| 9649 | |
| 9650 | detached++; |
| 9651 | |
| 9652 | #ifdef CONFIG_PREEMPTION |
| 9653 | /* |
| 9654 | * NEWIDLE balancing is a source of latency, so preemptible |
| 9655 | * kernels will stop after the first task is detached to minimize |
| 9656 | * the critical section. |
| 9657 | */ |
| 9658 | if (env->idle == CPU_NEWLY_IDLE) |
| 9659 | break; |
| 9660 | #endif |
| 9661 | |
| 9662 | /* |
| 9663 | * We only want to steal up to the prescribed amount of |
| 9664 | * load/util/tasks. |
| 9665 | */ |
| 9666 | if (env->imbalance <= 0) |
| 9667 | break; |
| 9668 | |
| 9669 | continue; |
| 9670 | next: |
| 9671 | if (p->sched_task_hot) |
| 9672 | schedstat_inc(p->stats.nr_failed_migrations_hot); |
| 9673 | |
| 9674 | list_move(&p->se.group_node, tasks); |
| 9675 | } |
| 9676 | |
| 9677 | /* |
| 9678 | * Right now, this is one of only two places we collect this stat |
| 9679 | * so we can safely collect detach_one_task() stats here rather |
| 9680 | * than inside detach_one_task(). |
| 9681 | */ |
| 9682 | schedstat_add(env->sd->lb_gained[env->idle], detached); |
| 9683 | |
| 9684 | return detached; |
| 9685 | } |
| 9686 | |
| 9687 | /* |
| 9688 | * attach_task() -- attach the task detached by detach_task() to its new rq. |
| 9689 | */ |
| 9690 | static void attach_task(struct rq *rq, struct task_struct *p) |
| 9691 | { |
| 9692 | lockdep_assert_rq_held(rq); |
| 9693 | |
| 9694 | WARN_ON_ONCE(task_rq(p) != rq); |
| 9695 | activate_task(rq, p, ENQUEUE_NOCLOCK); |
| 9696 | wakeup_preempt(rq, p, 0); |
| 9697 | } |
| 9698 | |
| 9699 | /* |
| 9700 | * attach_one_task() -- attaches the task returned from detach_one_task() to |
| 9701 | * its new rq. |
| 9702 | */ |
| 9703 | static void attach_one_task(struct rq *rq, struct task_struct *p) |
| 9704 | { |
| 9705 | struct rq_flags rf; |
| 9706 | |
| 9707 | rq_lock(rq, &rf); |
| 9708 | update_rq_clock(rq); |
| 9709 | attach_task(rq, p); |
| 9710 | rq_unlock(rq, &rf); |
| 9711 | } |
| 9712 | |
| 9713 | /* |
| 9714 | * attach_tasks() -- attaches all tasks detached by detach_tasks() to their |
| 9715 | * new rq. |
| 9716 | */ |
| 9717 | static void attach_tasks(struct lb_env *env) |
| 9718 | { |
| 9719 | struct list_head *tasks = &env->tasks; |
| 9720 | struct task_struct *p; |
| 9721 | struct rq_flags rf; |
| 9722 | |
| 9723 | rq_lock(env->dst_rq, &rf); |
| 9724 | update_rq_clock(env->dst_rq); |
| 9725 | |
| 9726 | while (!list_empty(tasks)) { |
| 9727 | p = list_first_entry(tasks, struct task_struct, se.group_node); |
| 9728 | list_del_init(&p->se.group_node); |
| 9729 | |
| 9730 | attach_task(env->dst_rq, p); |
| 9731 | } |
| 9732 | |
| 9733 | rq_unlock(env->dst_rq, &rf); |
| 9734 | } |
| 9735 | |
| 9736 | #ifdef CONFIG_NO_HZ_COMMON |
| 9737 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) |
| 9738 | { |
| 9739 | if (cfs_rq->avg.load_avg) |
| 9740 | return true; |
| 9741 | |
| 9742 | if (cfs_rq->avg.util_avg) |
| 9743 | return true; |
| 9744 | |
| 9745 | return false; |
| 9746 | } |
| 9747 | |
| 9748 | static inline bool others_have_blocked(struct rq *rq) |
| 9749 | { |
| 9750 | if (cpu_util_rt(rq)) |
| 9751 | return true; |
| 9752 | |
| 9753 | if (cpu_util_dl(rq)) |
| 9754 | return true; |
| 9755 | |
| 9756 | if (hw_load_avg(rq)) |
| 9757 | return true; |
| 9758 | |
| 9759 | if (cpu_util_irq(rq)) |
| 9760 | return true; |
| 9761 | |
| 9762 | return false; |
| 9763 | } |
| 9764 | |
| 9765 | static inline void update_blocked_load_tick(struct rq *rq) |
| 9766 | { |
| 9767 | WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); |
| 9768 | } |
| 9769 | |
| 9770 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) |
| 9771 | { |
| 9772 | if (!has_blocked) |
| 9773 | rq->has_blocked_load = 0; |
| 9774 | } |
| 9775 | #else |
| 9776 | static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } |
| 9777 | static inline bool others_have_blocked(struct rq *rq) { return false; } |
| 9778 | static inline void update_blocked_load_tick(struct rq *rq) {} |
| 9779 | static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} |
| 9780 | #endif |
| 9781 | |
| 9782 | static bool __update_blocked_others(struct rq *rq, bool *done) |
| 9783 | { |
| 9784 | bool updated; |
| 9785 | |
| 9786 | /* |
| 9787 | * update_load_avg() can call cpufreq_update_util(). Make sure that RT, |
| 9788 | * DL and IRQ signals have been updated before updating CFS. |
| 9789 | */ |
| 9790 | updated = update_other_load_avgs(rq); |
| 9791 | |
| 9792 | if (others_have_blocked(rq)) |
| 9793 | *done = false; |
| 9794 | |
| 9795 | return updated; |
| 9796 | } |
| 9797 | |
| 9798 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 9799 | |
| 9800 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
| 9801 | { |
| 9802 | struct cfs_rq *cfs_rq, *pos; |
| 9803 | bool decayed = false; |
| 9804 | int cpu = cpu_of(rq); |
| 9805 | |
| 9806 | /* |
| 9807 | * Iterates the task_group tree in a bottom up fashion, see |
| 9808 | * list_add_leaf_cfs_rq() for details. |
| 9809 | */ |
| 9810 | for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { |
| 9811 | struct sched_entity *se; |
| 9812 | |
| 9813 | if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { |
| 9814 | update_tg_load_avg(cfs_rq); |
| 9815 | |
| 9816 | if (cfs_rq->nr_queued == 0) |
| 9817 | update_idle_cfs_rq_clock_pelt(cfs_rq); |
| 9818 | |
| 9819 | if (cfs_rq == &rq->cfs) |
| 9820 | decayed = true; |
| 9821 | } |
| 9822 | |
| 9823 | /* Propagate pending load changes to the parent, if any: */ |
| 9824 | se = cfs_rq->tg->se[cpu]; |
| 9825 | if (se && !skip_blocked_update(se)) |
| 9826 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
| 9827 | |
| 9828 | /* |
| 9829 | * There can be a lot of idle CPU cgroups. Don't let fully |
| 9830 | * decayed cfs_rqs linger on the list. |
| 9831 | */ |
| 9832 | if (cfs_rq_is_decayed(cfs_rq)) |
| 9833 | list_del_leaf_cfs_rq(cfs_rq); |
| 9834 | |
| 9835 | /* Don't need periodic decay once load/util_avg are null */ |
| 9836 | if (cfs_rq_has_blocked(cfs_rq)) |
| 9837 | *done = false; |
| 9838 | } |
| 9839 | |
| 9840 | return decayed; |
| 9841 | } |
| 9842 | |
| 9843 | /* |
| 9844 | * Compute the hierarchical load factor for cfs_rq and all its ascendants. |
| 9845 | * This needs to be done in a top-down fashion because the load of a child |
| 9846 | * group is a fraction of its parents load. |
| 9847 | */ |
| 9848 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) |
| 9849 | { |
| 9850 | struct rq *rq = rq_of(cfs_rq); |
| 9851 | struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; |
| 9852 | unsigned long now = jiffies; |
| 9853 | unsigned long load; |
| 9854 | |
| 9855 | if (cfs_rq->last_h_load_update == now) |
| 9856 | return; |
| 9857 | |
| 9858 | WRITE_ONCE(cfs_rq->h_load_next, NULL); |
| 9859 | for_each_sched_entity(se) { |
| 9860 | cfs_rq = cfs_rq_of(se); |
| 9861 | WRITE_ONCE(cfs_rq->h_load_next, se); |
| 9862 | if (cfs_rq->last_h_load_update == now) |
| 9863 | break; |
| 9864 | } |
| 9865 | |
| 9866 | if (!se) { |
| 9867 | cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); |
| 9868 | cfs_rq->last_h_load_update = now; |
| 9869 | } |
| 9870 | |
| 9871 | while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { |
| 9872 | load = cfs_rq->h_load; |
| 9873 | load = div64_ul(load * se->avg.load_avg, |
| 9874 | cfs_rq_load_avg(cfs_rq) + 1); |
| 9875 | cfs_rq = group_cfs_rq(se); |
| 9876 | cfs_rq->h_load = load; |
| 9877 | cfs_rq->last_h_load_update = now; |
| 9878 | } |
| 9879 | } |
| 9880 | |
| 9881 | static unsigned long task_h_load(struct task_struct *p) |
| 9882 | { |
| 9883 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
| 9884 | |
| 9885 | update_cfs_rq_h_load(cfs_rq); |
| 9886 | return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, |
| 9887 | cfs_rq_load_avg(cfs_rq) + 1); |
| 9888 | } |
| 9889 | #else |
| 9890 | static bool __update_blocked_fair(struct rq *rq, bool *done) |
| 9891 | { |
| 9892 | struct cfs_rq *cfs_rq = &rq->cfs; |
| 9893 | bool decayed; |
| 9894 | |
| 9895 | decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); |
| 9896 | if (cfs_rq_has_blocked(cfs_rq)) |
| 9897 | *done = false; |
| 9898 | |
| 9899 | return decayed; |
| 9900 | } |
| 9901 | |
| 9902 | static unsigned long task_h_load(struct task_struct *p) |
| 9903 | { |
| 9904 | return p->se.avg.load_avg; |
| 9905 | } |
| 9906 | #endif |
| 9907 | |
| 9908 | static void sched_balance_update_blocked_averages(int cpu) |
| 9909 | { |
| 9910 | bool decayed = false, done = true; |
| 9911 | struct rq *rq = cpu_rq(cpu); |
| 9912 | struct rq_flags rf; |
| 9913 | |
| 9914 | rq_lock_irqsave(rq, &rf); |
| 9915 | update_blocked_load_tick(rq); |
| 9916 | update_rq_clock(rq); |
| 9917 | |
| 9918 | decayed |= __update_blocked_others(rq, &done); |
| 9919 | decayed |= __update_blocked_fair(rq, &done); |
| 9920 | |
| 9921 | update_blocked_load_status(rq, !done); |
| 9922 | if (decayed) |
| 9923 | cpufreq_update_util(rq, 0); |
| 9924 | rq_unlock_irqrestore(rq, &rf); |
| 9925 | } |
| 9926 | |
| 9927 | /********** Helpers for sched_balance_find_src_group ************************/ |
| 9928 | |
| 9929 | /* |
| 9930 | * sg_lb_stats - stats of a sched_group required for load-balancing: |
| 9931 | */ |
| 9932 | struct sg_lb_stats { |
| 9933 | unsigned long avg_load; /* Avg load over the CPUs of the group */ |
| 9934 | unsigned long group_load; /* Total load over the CPUs of the group */ |
| 9935 | unsigned long group_capacity; /* Capacity over the CPUs of the group */ |
| 9936 | unsigned long group_util; /* Total utilization over the CPUs of the group */ |
| 9937 | unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ |
| 9938 | unsigned int sum_nr_running; /* Nr of all tasks running in the group */ |
| 9939 | unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ |
| 9940 | unsigned int idle_cpus; /* Nr of idle CPUs in the group */ |
| 9941 | unsigned int group_weight; |
| 9942 | enum group_type group_type; |
| 9943 | unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ |
| 9944 | unsigned int group_smt_balance; /* Task on busy SMT be moved */ |
| 9945 | unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ |
| 9946 | #ifdef CONFIG_NUMA_BALANCING |
| 9947 | unsigned int nr_numa_running; |
| 9948 | unsigned int nr_preferred_running; |
| 9949 | #endif |
| 9950 | }; |
| 9951 | |
| 9952 | /* |
| 9953 | * sd_lb_stats - stats of a sched_domain required for load-balancing: |
| 9954 | */ |
| 9955 | struct sd_lb_stats { |
| 9956 | struct sched_group *busiest; /* Busiest group in this sd */ |
| 9957 | struct sched_group *local; /* Local group in this sd */ |
| 9958 | unsigned long total_load; /* Total load of all groups in sd */ |
| 9959 | unsigned long total_capacity; /* Total capacity of all groups in sd */ |
| 9960 | unsigned long avg_load; /* Average load across all groups in sd */ |
| 9961 | unsigned int prefer_sibling; /* Tasks should go to sibling first */ |
| 9962 | |
| 9963 | struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ |
| 9964 | struct sg_lb_stats local_stat; /* Statistics of the local group */ |
| 9965 | }; |
| 9966 | |
| 9967 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) |
| 9968 | { |
| 9969 | /* |
| 9970 | * Skimp on the clearing to avoid duplicate work. We can avoid clearing |
| 9971 | * local_stat because update_sg_lb_stats() does a full clear/assignment. |
| 9972 | * We must however set busiest_stat::group_type and |
| 9973 | * busiest_stat::idle_cpus to the worst busiest group because |
| 9974 | * update_sd_pick_busiest() reads these before assignment. |
| 9975 | */ |
| 9976 | *sds = (struct sd_lb_stats){ |
| 9977 | .busiest = NULL, |
| 9978 | .local = NULL, |
| 9979 | .total_load = 0UL, |
| 9980 | .total_capacity = 0UL, |
| 9981 | .busiest_stat = { |
| 9982 | .idle_cpus = UINT_MAX, |
| 9983 | .group_type = group_has_spare, |
| 9984 | }, |
| 9985 | }; |
| 9986 | } |
| 9987 | |
| 9988 | static unsigned long scale_rt_capacity(int cpu) |
| 9989 | { |
| 9990 | unsigned long max = get_actual_cpu_capacity(cpu); |
| 9991 | struct rq *rq = cpu_rq(cpu); |
| 9992 | unsigned long used, free; |
| 9993 | unsigned long irq; |
| 9994 | |
| 9995 | irq = cpu_util_irq(rq); |
| 9996 | |
| 9997 | if (unlikely(irq >= max)) |
| 9998 | return 1; |
| 9999 | |
| 10000 | /* |
| 10001 | * avg_rt.util_avg and avg_dl.util_avg track binary signals |
| 10002 | * (running and not running) with weights 0 and 1024 respectively. |
| 10003 | */ |
| 10004 | used = cpu_util_rt(rq); |
| 10005 | used += cpu_util_dl(rq); |
| 10006 | |
| 10007 | if (unlikely(used >= max)) |
| 10008 | return 1; |
| 10009 | |
| 10010 | free = max - used; |
| 10011 | |
| 10012 | return scale_irq_capacity(free, irq, max); |
| 10013 | } |
| 10014 | |
| 10015 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) |
| 10016 | { |
| 10017 | unsigned long capacity = scale_rt_capacity(cpu); |
| 10018 | struct sched_group *sdg = sd->groups; |
| 10019 | |
| 10020 | if (!capacity) |
| 10021 | capacity = 1; |
| 10022 | |
| 10023 | cpu_rq(cpu)->cpu_capacity = capacity; |
| 10024 | trace_sched_cpu_capacity_tp(cpu_rq(cpu)); |
| 10025 | |
| 10026 | sdg->sgc->capacity = capacity; |
| 10027 | sdg->sgc->min_capacity = capacity; |
| 10028 | sdg->sgc->max_capacity = capacity; |
| 10029 | } |
| 10030 | |
| 10031 | void update_group_capacity(struct sched_domain *sd, int cpu) |
| 10032 | { |
| 10033 | struct sched_domain *child = sd->child; |
| 10034 | struct sched_group *group, *sdg = sd->groups; |
| 10035 | unsigned long capacity, min_capacity, max_capacity; |
| 10036 | unsigned long interval; |
| 10037 | |
| 10038 | interval = msecs_to_jiffies(sd->balance_interval); |
| 10039 | interval = clamp(interval, 1UL, max_load_balance_interval); |
| 10040 | sdg->sgc->next_update = jiffies + interval; |
| 10041 | |
| 10042 | if (!child) { |
| 10043 | update_cpu_capacity(sd, cpu); |
| 10044 | return; |
| 10045 | } |
| 10046 | |
| 10047 | capacity = 0; |
| 10048 | min_capacity = ULONG_MAX; |
| 10049 | max_capacity = 0; |
| 10050 | |
| 10051 | if (child->flags & SD_OVERLAP) { |
| 10052 | /* |
| 10053 | * SD_OVERLAP domains cannot assume that child groups |
| 10054 | * span the current group. |
| 10055 | */ |
| 10056 | |
| 10057 | for_each_cpu(cpu, sched_group_span(sdg)) { |
| 10058 | unsigned long cpu_cap = capacity_of(cpu); |
| 10059 | |
| 10060 | capacity += cpu_cap; |
| 10061 | min_capacity = min(cpu_cap, min_capacity); |
| 10062 | max_capacity = max(cpu_cap, max_capacity); |
| 10063 | } |
| 10064 | } else { |
| 10065 | /* |
| 10066 | * !SD_OVERLAP domains can assume that child groups |
| 10067 | * span the current group. |
| 10068 | */ |
| 10069 | |
| 10070 | group = child->groups; |
| 10071 | do { |
| 10072 | struct sched_group_capacity *sgc = group->sgc; |
| 10073 | |
| 10074 | capacity += sgc->capacity; |
| 10075 | min_capacity = min(sgc->min_capacity, min_capacity); |
| 10076 | max_capacity = max(sgc->max_capacity, max_capacity); |
| 10077 | group = group->next; |
| 10078 | } while (group != child->groups); |
| 10079 | } |
| 10080 | |
| 10081 | sdg->sgc->capacity = capacity; |
| 10082 | sdg->sgc->min_capacity = min_capacity; |
| 10083 | sdg->sgc->max_capacity = max_capacity; |
| 10084 | } |
| 10085 | |
| 10086 | /* |
| 10087 | * Check whether the capacity of the rq has been noticeably reduced by side |
| 10088 | * activity. The imbalance_pct is used for the threshold. |
| 10089 | * Return true is the capacity is reduced |
| 10090 | */ |
| 10091 | static inline int |
| 10092 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) |
| 10093 | { |
| 10094 | return ((rq->cpu_capacity * sd->imbalance_pct) < |
| 10095 | (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); |
| 10096 | } |
| 10097 | |
| 10098 | /* Check if the rq has a misfit task */ |
| 10099 | static inline bool check_misfit_status(struct rq *rq) |
| 10100 | { |
| 10101 | return rq->misfit_task_load; |
| 10102 | } |
| 10103 | |
| 10104 | /* |
| 10105 | * Group imbalance indicates (and tries to solve) the problem where balancing |
| 10106 | * groups is inadequate due to ->cpus_ptr constraints. |
| 10107 | * |
| 10108 | * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a |
| 10109 | * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. |
| 10110 | * Something like: |
| 10111 | * |
| 10112 | * { 0 1 2 3 } { 4 5 6 7 } |
| 10113 | * * * * * |
| 10114 | * |
| 10115 | * If we were to balance group-wise we'd place two tasks in the first group and |
| 10116 | * two tasks in the second group. Clearly this is undesired as it will overload |
| 10117 | * cpu 3 and leave one of the CPUs in the second group unused. |
| 10118 | * |
| 10119 | * The current solution to this issue is detecting the skew in the first group |
| 10120 | * by noticing the lower domain failed to reach balance and had difficulty |
| 10121 | * moving tasks due to affinity constraints. |
| 10122 | * |
| 10123 | * When this is so detected; this group becomes a candidate for busiest; see |
| 10124 | * update_sd_pick_busiest(). And calculate_imbalance() and |
| 10125 | * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it |
| 10126 | * to create an effective group imbalance. |
| 10127 | * |
| 10128 | * This is a somewhat tricky proposition since the next run might not find the |
| 10129 | * group imbalance and decide the groups need to be balanced again. A most |
| 10130 | * subtle and fragile situation. |
| 10131 | */ |
| 10132 | |
| 10133 | static inline int sg_imbalanced(struct sched_group *group) |
| 10134 | { |
| 10135 | return group->sgc->imbalance; |
| 10136 | } |
| 10137 | |
| 10138 | /* |
| 10139 | * group_has_capacity returns true if the group has spare capacity that could |
| 10140 | * be used by some tasks. |
| 10141 | * We consider that a group has spare capacity if the number of task is |
| 10142 | * smaller than the number of CPUs or if the utilization is lower than the |
| 10143 | * available capacity for CFS tasks. |
| 10144 | * For the latter, we use a threshold to stabilize the state, to take into |
| 10145 | * account the variance of the tasks' load and to return true if the available |
| 10146 | * capacity in meaningful for the load balancer. |
| 10147 | * As an example, an available capacity of 1% can appear but it doesn't make |
| 10148 | * any benefit for the load balance. |
| 10149 | */ |
| 10150 | static inline bool |
| 10151 | group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
| 10152 | { |
| 10153 | if (sgs->sum_nr_running < sgs->group_weight) |
| 10154 | return true; |
| 10155 | |
| 10156 | if ((sgs->group_capacity * imbalance_pct) < |
| 10157 | (sgs->group_runnable * 100)) |
| 10158 | return false; |
| 10159 | |
| 10160 | if ((sgs->group_capacity * 100) > |
| 10161 | (sgs->group_util * imbalance_pct)) |
| 10162 | return true; |
| 10163 | |
| 10164 | return false; |
| 10165 | } |
| 10166 | |
| 10167 | /* |
| 10168 | * group_is_overloaded returns true if the group has more tasks than it can |
| 10169 | * handle. |
| 10170 | * group_is_overloaded is not equals to !group_has_capacity because a group |
| 10171 | * with the exact right number of tasks, has no more spare capacity but is not |
| 10172 | * overloaded so both group_has_capacity and group_is_overloaded return |
| 10173 | * false. |
| 10174 | */ |
| 10175 | static inline bool |
| 10176 | group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) |
| 10177 | { |
| 10178 | if (sgs->sum_nr_running <= sgs->group_weight) |
| 10179 | return false; |
| 10180 | |
| 10181 | if ((sgs->group_capacity * 100) < |
| 10182 | (sgs->group_util * imbalance_pct)) |
| 10183 | return true; |
| 10184 | |
| 10185 | if ((sgs->group_capacity * imbalance_pct) < |
| 10186 | (sgs->group_runnable * 100)) |
| 10187 | return true; |
| 10188 | |
| 10189 | return false; |
| 10190 | } |
| 10191 | |
| 10192 | static inline enum |
| 10193 | group_type group_classify(unsigned int imbalance_pct, |
| 10194 | struct sched_group *group, |
| 10195 | struct sg_lb_stats *sgs) |
| 10196 | { |
| 10197 | if (group_is_overloaded(imbalance_pct, sgs)) |
| 10198 | return group_overloaded; |
| 10199 | |
| 10200 | if (sg_imbalanced(group)) |
| 10201 | return group_imbalanced; |
| 10202 | |
| 10203 | if (sgs->group_asym_packing) |
| 10204 | return group_asym_packing; |
| 10205 | |
| 10206 | if (sgs->group_smt_balance) |
| 10207 | return group_smt_balance; |
| 10208 | |
| 10209 | if (sgs->group_misfit_task_load) |
| 10210 | return group_misfit_task; |
| 10211 | |
| 10212 | if (!group_has_capacity(imbalance_pct, sgs)) |
| 10213 | return group_fully_busy; |
| 10214 | |
| 10215 | return group_has_spare; |
| 10216 | } |
| 10217 | |
| 10218 | /** |
| 10219 | * sched_use_asym_prio - Check whether asym_packing priority must be used |
| 10220 | * @sd: The scheduling domain of the load balancing |
| 10221 | * @cpu: A CPU |
| 10222 | * |
| 10223 | * Always use CPU priority when balancing load between SMT siblings. When |
| 10224 | * balancing load between cores, it is not sufficient that @cpu is idle. Only |
| 10225 | * use CPU priority if the whole core is idle. |
| 10226 | * |
| 10227 | * Returns: True if the priority of @cpu must be followed. False otherwise. |
| 10228 | */ |
| 10229 | static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) |
| 10230 | { |
| 10231 | if (!(sd->flags & SD_ASYM_PACKING)) |
| 10232 | return false; |
| 10233 | |
| 10234 | if (!sched_smt_active()) |
| 10235 | return true; |
| 10236 | |
| 10237 | return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); |
| 10238 | } |
| 10239 | |
| 10240 | static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) |
| 10241 | { |
| 10242 | /* |
| 10243 | * First check if @dst_cpu can do asym_packing load balance. Only do it |
| 10244 | * if it has higher priority than @src_cpu. |
| 10245 | */ |
| 10246 | return sched_use_asym_prio(sd, dst_cpu) && |
| 10247 | sched_asym_prefer(dst_cpu, src_cpu); |
| 10248 | } |
| 10249 | |
| 10250 | /** |
| 10251 | * sched_group_asym - Check if the destination CPU can do asym_packing balance |
| 10252 | * @env: The load balancing environment |
| 10253 | * @sgs: Load-balancing statistics of the candidate busiest group |
| 10254 | * @group: The candidate busiest group |
| 10255 | * |
| 10256 | * @env::dst_cpu can do asym_packing if it has higher priority than the |
| 10257 | * preferred CPU of @group. |
| 10258 | * |
| 10259 | * Return: true if @env::dst_cpu can do with asym_packing load balance. False |
| 10260 | * otherwise. |
| 10261 | */ |
| 10262 | static inline bool |
| 10263 | sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) |
| 10264 | { |
| 10265 | /* |
| 10266 | * CPU priorities do not make sense for SMT cores with more than one |
| 10267 | * busy sibling. |
| 10268 | */ |
| 10269 | if ((group->flags & SD_SHARE_CPUCAPACITY) && |
| 10270 | (sgs->group_weight - sgs->idle_cpus != 1)) |
| 10271 | return false; |
| 10272 | |
| 10273 | return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); |
| 10274 | } |
| 10275 | |
| 10276 | /* One group has more than one SMT CPU while the other group does not */ |
| 10277 | static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, |
| 10278 | struct sched_group *sg2) |
| 10279 | { |
| 10280 | if (!sg1 || !sg2) |
| 10281 | return false; |
| 10282 | |
| 10283 | return (sg1->flags & SD_SHARE_CPUCAPACITY) != |
| 10284 | (sg2->flags & SD_SHARE_CPUCAPACITY); |
| 10285 | } |
| 10286 | |
| 10287 | static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, |
| 10288 | struct sched_group *group) |
| 10289 | { |
| 10290 | if (!env->idle) |
| 10291 | return false; |
| 10292 | |
| 10293 | /* |
| 10294 | * For SMT source group, it is better to move a task |
| 10295 | * to a CPU that doesn't have multiple tasks sharing its CPU capacity. |
| 10296 | * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY |
| 10297 | * will not be on. |
| 10298 | */ |
| 10299 | if (group->flags & SD_SHARE_CPUCAPACITY && |
| 10300 | sgs->sum_h_nr_running > 1) |
| 10301 | return true; |
| 10302 | |
| 10303 | return false; |
| 10304 | } |
| 10305 | |
| 10306 | static inline long sibling_imbalance(struct lb_env *env, |
| 10307 | struct sd_lb_stats *sds, |
| 10308 | struct sg_lb_stats *busiest, |
| 10309 | struct sg_lb_stats *local) |
| 10310 | { |
| 10311 | int ncores_busiest, ncores_local; |
| 10312 | long imbalance; |
| 10313 | |
| 10314 | if (!env->idle || !busiest->sum_nr_running) |
| 10315 | return 0; |
| 10316 | |
| 10317 | ncores_busiest = sds->busiest->cores; |
| 10318 | ncores_local = sds->local->cores; |
| 10319 | |
| 10320 | if (ncores_busiest == ncores_local) { |
| 10321 | imbalance = busiest->sum_nr_running; |
| 10322 | lsub_positive(&imbalance, local->sum_nr_running); |
| 10323 | return imbalance; |
| 10324 | } |
| 10325 | |
| 10326 | /* Balance such that nr_running/ncores ratio are same on both groups */ |
| 10327 | imbalance = ncores_local * busiest->sum_nr_running; |
| 10328 | lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); |
| 10329 | /* Normalize imbalance and do rounding on normalization */ |
| 10330 | imbalance = 2 * imbalance + ncores_local + ncores_busiest; |
| 10331 | imbalance /= ncores_local + ncores_busiest; |
| 10332 | |
| 10333 | /* Take advantage of resource in an empty sched group */ |
| 10334 | if (imbalance <= 1 && local->sum_nr_running == 0 && |
| 10335 | busiest->sum_nr_running > 1) |
| 10336 | imbalance = 2; |
| 10337 | |
| 10338 | return imbalance; |
| 10339 | } |
| 10340 | |
| 10341 | static inline bool |
| 10342 | sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) |
| 10343 | { |
| 10344 | /* |
| 10345 | * When there is more than 1 task, the group_overloaded case already |
| 10346 | * takes care of cpu with reduced capacity |
| 10347 | */ |
| 10348 | if (rq->cfs.h_nr_runnable != 1) |
| 10349 | return false; |
| 10350 | |
| 10351 | return check_cpu_capacity(rq, sd); |
| 10352 | } |
| 10353 | |
| 10354 | /** |
| 10355 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
| 10356 | * @env: The load balancing environment. |
| 10357 | * @sds: Load-balancing data with statistics of the local group. |
| 10358 | * @group: sched_group whose statistics are to be updated. |
| 10359 | * @sgs: variable to hold the statistics for this group. |
| 10360 | * @sg_overloaded: sched_group is overloaded |
| 10361 | * @sg_overutilized: sched_group is overutilized |
| 10362 | */ |
| 10363 | static inline void update_sg_lb_stats(struct lb_env *env, |
| 10364 | struct sd_lb_stats *sds, |
| 10365 | struct sched_group *group, |
| 10366 | struct sg_lb_stats *sgs, |
| 10367 | bool *sg_overloaded, |
| 10368 | bool *sg_overutilized) |
| 10369 | { |
| 10370 | int i, nr_running, local_group, sd_flags = env->sd->flags; |
| 10371 | bool balancing_at_rd = !env->sd->parent; |
| 10372 | |
| 10373 | memset(sgs, 0, sizeof(*sgs)); |
| 10374 | |
| 10375 | local_group = group == sds->local; |
| 10376 | |
| 10377 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
| 10378 | struct rq *rq = cpu_rq(i); |
| 10379 | unsigned long load = cpu_load(rq); |
| 10380 | |
| 10381 | sgs->group_load += load; |
| 10382 | sgs->group_util += cpu_util_cfs(i); |
| 10383 | sgs->group_runnable += cpu_runnable(rq); |
| 10384 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; |
| 10385 | |
| 10386 | nr_running = rq->nr_running; |
| 10387 | sgs->sum_nr_running += nr_running; |
| 10388 | |
| 10389 | if (cpu_overutilized(i)) |
| 10390 | *sg_overutilized = 1; |
| 10391 | |
| 10392 | /* |
| 10393 | * No need to call idle_cpu() if nr_running is not 0 |
| 10394 | */ |
| 10395 | if (!nr_running && idle_cpu(i)) { |
| 10396 | sgs->idle_cpus++; |
| 10397 | /* Idle cpu can't have misfit task */ |
| 10398 | continue; |
| 10399 | } |
| 10400 | |
| 10401 | /* Overload indicator is only updated at root domain */ |
| 10402 | if (balancing_at_rd && nr_running > 1) |
| 10403 | *sg_overloaded = 1; |
| 10404 | |
| 10405 | #ifdef CONFIG_NUMA_BALANCING |
| 10406 | /* Only fbq_classify_group() uses this to classify NUMA groups */ |
| 10407 | if (sd_flags & SD_NUMA) { |
| 10408 | sgs->nr_numa_running += rq->nr_numa_running; |
| 10409 | sgs->nr_preferred_running += rq->nr_preferred_running; |
| 10410 | } |
| 10411 | #endif |
| 10412 | if (local_group) |
| 10413 | continue; |
| 10414 | |
| 10415 | if (sd_flags & SD_ASYM_CPUCAPACITY) { |
| 10416 | /* Check for a misfit task on the cpu */ |
| 10417 | if (sgs->group_misfit_task_load < rq->misfit_task_load) { |
| 10418 | sgs->group_misfit_task_load = rq->misfit_task_load; |
| 10419 | *sg_overloaded = 1; |
| 10420 | } |
| 10421 | } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { |
| 10422 | /* Check for a task running on a CPU with reduced capacity */ |
| 10423 | if (sgs->group_misfit_task_load < load) |
| 10424 | sgs->group_misfit_task_load = load; |
| 10425 | } |
| 10426 | } |
| 10427 | |
| 10428 | sgs->group_capacity = group->sgc->capacity; |
| 10429 | |
| 10430 | sgs->group_weight = group->group_weight; |
| 10431 | |
| 10432 | /* Check if dst CPU is idle and preferred to this group */ |
| 10433 | if (!local_group && env->idle && sgs->sum_h_nr_running && |
| 10434 | sched_group_asym(env, sgs, group)) |
| 10435 | sgs->group_asym_packing = 1; |
| 10436 | |
| 10437 | /* Check for loaded SMT group to be balanced to dst CPU */ |
| 10438 | if (!local_group && smt_balance(env, sgs, group)) |
| 10439 | sgs->group_smt_balance = 1; |
| 10440 | |
| 10441 | sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); |
| 10442 | |
| 10443 | /* Computing avg_load makes sense only when group is overloaded */ |
| 10444 | if (sgs->group_type == group_overloaded) |
| 10445 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / |
| 10446 | sgs->group_capacity; |
| 10447 | } |
| 10448 | |
| 10449 | /** |
| 10450 | * update_sd_pick_busiest - return 1 on busiest group |
| 10451 | * @env: The load balancing environment. |
| 10452 | * @sds: sched_domain statistics |
| 10453 | * @sg: sched_group candidate to be checked for being the busiest |
| 10454 | * @sgs: sched_group statistics |
| 10455 | * |
| 10456 | * Determine if @sg is a busier group than the previously selected |
| 10457 | * busiest group. |
| 10458 | * |
| 10459 | * Return: %true if @sg is a busier group than the previously selected |
| 10460 | * busiest group. %false otherwise. |
| 10461 | */ |
| 10462 | static bool update_sd_pick_busiest(struct lb_env *env, |
| 10463 | struct sd_lb_stats *sds, |
| 10464 | struct sched_group *sg, |
| 10465 | struct sg_lb_stats *sgs) |
| 10466 | { |
| 10467 | struct sg_lb_stats *busiest = &sds->busiest_stat; |
| 10468 | |
| 10469 | /* Make sure that there is at least one task to pull */ |
| 10470 | if (!sgs->sum_h_nr_running) |
| 10471 | return false; |
| 10472 | |
| 10473 | /* |
| 10474 | * Don't try to pull misfit tasks we can't help. |
| 10475 | * We can use max_capacity here as reduction in capacity on some |
| 10476 | * CPUs in the group should either be possible to resolve |
| 10477 | * internally or be covered by avg_load imbalance (eventually). |
| 10478 | */ |
| 10479 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && |
| 10480 | (sgs->group_type == group_misfit_task) && |
| 10481 | (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || |
| 10482 | sds->local_stat.group_type != group_has_spare)) |
| 10483 | return false; |
| 10484 | |
| 10485 | if (sgs->group_type > busiest->group_type) |
| 10486 | return true; |
| 10487 | |
| 10488 | if (sgs->group_type < busiest->group_type) |
| 10489 | return false; |
| 10490 | |
| 10491 | /* |
| 10492 | * The candidate and the current busiest group are the same type of |
| 10493 | * group. Let check which one is the busiest according to the type. |
| 10494 | */ |
| 10495 | |
| 10496 | switch (sgs->group_type) { |
| 10497 | case group_overloaded: |
| 10498 | /* Select the overloaded group with highest avg_load. */ |
| 10499 | return sgs->avg_load > busiest->avg_load; |
| 10500 | |
| 10501 | case group_imbalanced: |
| 10502 | /* |
| 10503 | * Select the 1st imbalanced group as we don't have any way to |
| 10504 | * choose one more than another. |
| 10505 | */ |
| 10506 | return false; |
| 10507 | |
| 10508 | case group_asym_packing: |
| 10509 | /* Prefer to move from lowest priority CPU's work */ |
| 10510 | return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), |
| 10511 | READ_ONCE(sg->asym_prefer_cpu)); |
| 10512 | |
| 10513 | case group_misfit_task: |
| 10514 | /* |
| 10515 | * If we have more than one misfit sg go with the biggest |
| 10516 | * misfit. |
| 10517 | */ |
| 10518 | return sgs->group_misfit_task_load > busiest->group_misfit_task_load; |
| 10519 | |
| 10520 | case group_smt_balance: |
| 10521 | /* |
| 10522 | * Check if we have spare CPUs on either SMT group to |
| 10523 | * choose has spare or fully busy handling. |
| 10524 | */ |
| 10525 | if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) |
| 10526 | goto has_spare; |
| 10527 | |
| 10528 | fallthrough; |
| 10529 | |
| 10530 | case group_fully_busy: |
| 10531 | /* |
| 10532 | * Select the fully busy group with highest avg_load. In |
| 10533 | * theory, there is no need to pull task from such kind of |
| 10534 | * group because tasks have all compute capacity that they need |
| 10535 | * but we can still improve the overall throughput by reducing |
| 10536 | * contention when accessing shared HW resources. |
| 10537 | * |
| 10538 | * XXX for now avg_load is not computed and always 0 so we |
| 10539 | * select the 1st one, except if @sg is composed of SMT |
| 10540 | * siblings. |
| 10541 | */ |
| 10542 | |
| 10543 | if (sgs->avg_load < busiest->avg_load) |
| 10544 | return false; |
| 10545 | |
| 10546 | if (sgs->avg_load == busiest->avg_load) { |
| 10547 | /* |
| 10548 | * SMT sched groups need more help than non-SMT groups. |
| 10549 | * If @sg happens to also be SMT, either choice is good. |
| 10550 | */ |
| 10551 | if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) |
| 10552 | return false; |
| 10553 | } |
| 10554 | |
| 10555 | break; |
| 10556 | |
| 10557 | case group_has_spare: |
| 10558 | /* |
| 10559 | * Do not pick sg with SMT CPUs over sg with pure CPUs, |
| 10560 | * as we do not want to pull task off SMT core with one task |
| 10561 | * and make the core idle. |
| 10562 | */ |
| 10563 | if (smt_vs_nonsmt_groups(sds->busiest, sg)) { |
| 10564 | if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) |
| 10565 | return false; |
| 10566 | else |
| 10567 | return true; |
| 10568 | } |
| 10569 | has_spare: |
| 10570 | |
| 10571 | /* |
| 10572 | * Select not overloaded group with lowest number of idle CPUs |
| 10573 | * and highest number of running tasks. We could also compare |
| 10574 | * the spare capacity which is more stable but it can end up |
| 10575 | * that the group has less spare capacity but finally more idle |
| 10576 | * CPUs which means less opportunity to pull tasks. |
| 10577 | */ |
| 10578 | if (sgs->idle_cpus > busiest->idle_cpus) |
| 10579 | return false; |
| 10580 | else if ((sgs->idle_cpus == busiest->idle_cpus) && |
| 10581 | (sgs->sum_nr_running <= busiest->sum_nr_running)) |
| 10582 | return false; |
| 10583 | |
| 10584 | break; |
| 10585 | } |
| 10586 | |
| 10587 | /* |
| 10588 | * Candidate sg has no more than one task per CPU and has higher |
| 10589 | * per-CPU capacity. Migrating tasks to less capable CPUs may harm |
| 10590 | * throughput. Maximize throughput, power/energy consequences are not |
| 10591 | * considered. |
| 10592 | */ |
| 10593 | if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && |
| 10594 | (sgs->group_type <= group_fully_busy) && |
| 10595 | (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) |
| 10596 | return false; |
| 10597 | |
| 10598 | return true; |
| 10599 | } |
| 10600 | |
| 10601 | #ifdef CONFIG_NUMA_BALANCING |
| 10602 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) |
| 10603 | { |
| 10604 | if (sgs->sum_h_nr_running > sgs->nr_numa_running) |
| 10605 | return regular; |
| 10606 | if (sgs->sum_h_nr_running > sgs->nr_preferred_running) |
| 10607 | return remote; |
| 10608 | return all; |
| 10609 | } |
| 10610 | |
| 10611 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) |
| 10612 | { |
| 10613 | if (rq->nr_running > rq->nr_numa_running) |
| 10614 | return regular; |
| 10615 | if (rq->nr_running > rq->nr_preferred_running) |
| 10616 | return remote; |
| 10617 | return all; |
| 10618 | } |
| 10619 | #else |
| 10620 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) |
| 10621 | { |
| 10622 | return all; |
| 10623 | } |
| 10624 | |
| 10625 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) |
| 10626 | { |
| 10627 | return regular; |
| 10628 | } |
| 10629 | #endif /* CONFIG_NUMA_BALANCING */ |
| 10630 | |
| 10631 | |
| 10632 | struct sg_lb_stats; |
| 10633 | |
| 10634 | /* |
| 10635 | * task_running_on_cpu - return 1 if @p is running on @cpu. |
| 10636 | */ |
| 10637 | |
| 10638 | static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) |
| 10639 | { |
| 10640 | /* Task has no contribution or is new */ |
| 10641 | if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) |
| 10642 | return 0; |
| 10643 | |
| 10644 | if (task_on_rq_queued(p)) |
| 10645 | return 1; |
| 10646 | |
| 10647 | return 0; |
| 10648 | } |
| 10649 | |
| 10650 | /** |
| 10651 | * idle_cpu_without - would a given CPU be idle without p ? |
| 10652 | * @cpu: the processor on which idleness is tested. |
| 10653 | * @p: task which should be ignored. |
| 10654 | * |
| 10655 | * Return: 1 if the CPU would be idle. 0 otherwise. |
| 10656 | */ |
| 10657 | static int idle_cpu_without(int cpu, struct task_struct *p) |
| 10658 | { |
| 10659 | struct rq *rq = cpu_rq(cpu); |
| 10660 | |
| 10661 | if (rq->curr != rq->idle && rq->curr != p) |
| 10662 | return 0; |
| 10663 | |
| 10664 | /* |
| 10665 | * rq->nr_running can't be used but an updated version without the |
| 10666 | * impact of p on cpu must be used instead. The updated nr_running |
| 10667 | * be computed and tested before calling idle_cpu_without(). |
| 10668 | */ |
| 10669 | |
| 10670 | if (rq->ttwu_pending) |
| 10671 | return 0; |
| 10672 | |
| 10673 | return 1; |
| 10674 | } |
| 10675 | |
| 10676 | /* |
| 10677 | * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. |
| 10678 | * @sd: The sched_domain level to look for idlest group. |
| 10679 | * @group: sched_group whose statistics are to be updated. |
| 10680 | * @sgs: variable to hold the statistics for this group. |
| 10681 | * @p: The task for which we look for the idlest group/CPU. |
| 10682 | */ |
| 10683 | static inline void update_sg_wakeup_stats(struct sched_domain *sd, |
| 10684 | struct sched_group *group, |
| 10685 | struct sg_lb_stats *sgs, |
| 10686 | struct task_struct *p) |
| 10687 | { |
| 10688 | int i, nr_running; |
| 10689 | |
| 10690 | memset(sgs, 0, sizeof(*sgs)); |
| 10691 | |
| 10692 | /* Assume that task can't fit any CPU of the group */ |
| 10693 | if (sd->flags & SD_ASYM_CPUCAPACITY) |
| 10694 | sgs->group_misfit_task_load = 1; |
| 10695 | |
| 10696 | for_each_cpu(i, sched_group_span(group)) { |
| 10697 | struct rq *rq = cpu_rq(i); |
| 10698 | unsigned int local; |
| 10699 | |
| 10700 | sgs->group_load += cpu_load_without(rq, p); |
| 10701 | sgs->group_util += cpu_util_without(i, p); |
| 10702 | sgs->group_runnable += cpu_runnable_without(rq, p); |
| 10703 | local = task_running_on_cpu(i, p); |
| 10704 | sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; |
| 10705 | |
| 10706 | nr_running = rq->nr_running - local; |
| 10707 | sgs->sum_nr_running += nr_running; |
| 10708 | |
| 10709 | /* |
| 10710 | * No need to call idle_cpu_without() if nr_running is not 0 |
| 10711 | */ |
| 10712 | if (!nr_running && idle_cpu_without(i, p)) |
| 10713 | sgs->idle_cpus++; |
| 10714 | |
| 10715 | /* Check if task fits in the CPU */ |
| 10716 | if (sd->flags & SD_ASYM_CPUCAPACITY && |
| 10717 | sgs->group_misfit_task_load && |
| 10718 | task_fits_cpu(p, i)) |
| 10719 | sgs->group_misfit_task_load = 0; |
| 10720 | |
| 10721 | } |
| 10722 | |
| 10723 | sgs->group_capacity = group->sgc->capacity; |
| 10724 | |
| 10725 | sgs->group_weight = group->group_weight; |
| 10726 | |
| 10727 | sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); |
| 10728 | |
| 10729 | /* |
| 10730 | * Computing avg_load makes sense only when group is fully busy or |
| 10731 | * overloaded |
| 10732 | */ |
| 10733 | if (sgs->group_type == group_fully_busy || |
| 10734 | sgs->group_type == group_overloaded) |
| 10735 | sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / |
| 10736 | sgs->group_capacity; |
| 10737 | } |
| 10738 | |
| 10739 | static bool update_pick_idlest(struct sched_group *idlest, |
| 10740 | struct sg_lb_stats *idlest_sgs, |
| 10741 | struct sched_group *group, |
| 10742 | struct sg_lb_stats *sgs) |
| 10743 | { |
| 10744 | if (sgs->group_type < idlest_sgs->group_type) |
| 10745 | return true; |
| 10746 | |
| 10747 | if (sgs->group_type > idlest_sgs->group_type) |
| 10748 | return false; |
| 10749 | |
| 10750 | /* |
| 10751 | * The candidate and the current idlest group are the same type of |
| 10752 | * group. Let check which one is the idlest according to the type. |
| 10753 | */ |
| 10754 | |
| 10755 | switch (sgs->group_type) { |
| 10756 | case group_overloaded: |
| 10757 | case group_fully_busy: |
| 10758 | /* Select the group with lowest avg_load. */ |
| 10759 | if (idlest_sgs->avg_load <= sgs->avg_load) |
| 10760 | return false; |
| 10761 | break; |
| 10762 | |
| 10763 | case group_imbalanced: |
| 10764 | case group_asym_packing: |
| 10765 | case group_smt_balance: |
| 10766 | /* Those types are not used in the slow wakeup path */ |
| 10767 | return false; |
| 10768 | |
| 10769 | case group_misfit_task: |
| 10770 | /* Select group with the highest max capacity */ |
| 10771 | if (idlest->sgc->max_capacity >= group->sgc->max_capacity) |
| 10772 | return false; |
| 10773 | break; |
| 10774 | |
| 10775 | case group_has_spare: |
| 10776 | /* Select group with most idle CPUs */ |
| 10777 | if (idlest_sgs->idle_cpus > sgs->idle_cpus) |
| 10778 | return false; |
| 10779 | |
| 10780 | /* Select group with lowest group_util */ |
| 10781 | if (idlest_sgs->idle_cpus == sgs->idle_cpus && |
| 10782 | idlest_sgs->group_util <= sgs->group_util) |
| 10783 | return false; |
| 10784 | |
| 10785 | break; |
| 10786 | } |
| 10787 | |
| 10788 | return true; |
| 10789 | } |
| 10790 | |
| 10791 | /* |
| 10792 | * sched_balance_find_dst_group() finds and returns the least busy CPU group within the |
| 10793 | * domain. |
| 10794 | * |
| 10795 | * Assumes p is allowed on at least one CPU in sd. |
| 10796 | */ |
| 10797 | static struct sched_group * |
| 10798 | sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
| 10799 | { |
| 10800 | struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; |
| 10801 | struct sg_lb_stats local_sgs, tmp_sgs; |
| 10802 | struct sg_lb_stats *sgs; |
| 10803 | unsigned long imbalance; |
| 10804 | struct sg_lb_stats idlest_sgs = { |
| 10805 | .avg_load = UINT_MAX, |
| 10806 | .group_type = group_overloaded, |
| 10807 | }; |
| 10808 | |
| 10809 | do { |
| 10810 | int local_group; |
| 10811 | |
| 10812 | /* Skip over this group if it has no CPUs allowed */ |
| 10813 | if (!cpumask_intersects(sched_group_span(group), |
| 10814 | p->cpus_ptr)) |
| 10815 | continue; |
| 10816 | |
| 10817 | /* Skip over this group if no cookie matched */ |
| 10818 | if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) |
| 10819 | continue; |
| 10820 | |
| 10821 | local_group = cpumask_test_cpu(this_cpu, |
| 10822 | sched_group_span(group)); |
| 10823 | |
| 10824 | if (local_group) { |
| 10825 | sgs = &local_sgs; |
| 10826 | local = group; |
| 10827 | } else { |
| 10828 | sgs = &tmp_sgs; |
| 10829 | } |
| 10830 | |
| 10831 | update_sg_wakeup_stats(sd, group, sgs, p); |
| 10832 | |
| 10833 | if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { |
| 10834 | idlest = group; |
| 10835 | idlest_sgs = *sgs; |
| 10836 | } |
| 10837 | |
| 10838 | } while (group = group->next, group != sd->groups); |
| 10839 | |
| 10840 | |
| 10841 | /* There is no idlest group to push tasks to */ |
| 10842 | if (!idlest) |
| 10843 | return NULL; |
| 10844 | |
| 10845 | /* The local group has been skipped because of CPU affinity */ |
| 10846 | if (!local) |
| 10847 | return idlest; |
| 10848 | |
| 10849 | /* |
| 10850 | * If the local group is idler than the selected idlest group |
| 10851 | * don't try and push the task. |
| 10852 | */ |
| 10853 | if (local_sgs.group_type < idlest_sgs.group_type) |
| 10854 | return NULL; |
| 10855 | |
| 10856 | /* |
| 10857 | * If the local group is busier than the selected idlest group |
| 10858 | * try and push the task. |
| 10859 | */ |
| 10860 | if (local_sgs.group_type > idlest_sgs.group_type) |
| 10861 | return idlest; |
| 10862 | |
| 10863 | switch (local_sgs.group_type) { |
| 10864 | case group_overloaded: |
| 10865 | case group_fully_busy: |
| 10866 | |
| 10867 | /* Calculate allowed imbalance based on load */ |
| 10868 | imbalance = scale_load_down(NICE_0_LOAD) * |
| 10869 | (sd->imbalance_pct-100) / 100; |
| 10870 | |
| 10871 | /* |
| 10872 | * When comparing groups across NUMA domains, it's possible for |
| 10873 | * the local domain to be very lightly loaded relative to the |
| 10874 | * remote domains but "imbalance" skews the comparison making |
| 10875 | * remote CPUs look much more favourable. When considering |
| 10876 | * cross-domain, add imbalance to the load on the remote node |
| 10877 | * and consider staying local. |
| 10878 | */ |
| 10879 | |
| 10880 | if ((sd->flags & SD_NUMA) && |
| 10881 | ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) |
| 10882 | return NULL; |
| 10883 | |
| 10884 | /* |
| 10885 | * If the local group is less loaded than the selected |
| 10886 | * idlest group don't try and push any tasks. |
| 10887 | */ |
| 10888 | if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) |
| 10889 | return NULL; |
| 10890 | |
| 10891 | if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) |
| 10892 | return NULL; |
| 10893 | break; |
| 10894 | |
| 10895 | case group_imbalanced: |
| 10896 | case group_asym_packing: |
| 10897 | case group_smt_balance: |
| 10898 | /* Those type are not used in the slow wakeup path */ |
| 10899 | return NULL; |
| 10900 | |
| 10901 | case group_misfit_task: |
| 10902 | /* Select group with the highest max capacity */ |
| 10903 | if (local->sgc->max_capacity >= idlest->sgc->max_capacity) |
| 10904 | return NULL; |
| 10905 | break; |
| 10906 | |
| 10907 | case group_has_spare: |
| 10908 | #ifdef CONFIG_NUMA |
| 10909 | if (sd->flags & SD_NUMA) { |
| 10910 | int imb_numa_nr = sd->imb_numa_nr; |
| 10911 | #ifdef CONFIG_NUMA_BALANCING |
| 10912 | int idlest_cpu; |
| 10913 | /* |
| 10914 | * If there is spare capacity at NUMA, try to select |
| 10915 | * the preferred node |
| 10916 | */ |
| 10917 | if (cpu_to_node(this_cpu) == p->numa_preferred_nid) |
| 10918 | return NULL; |
| 10919 | |
| 10920 | idlest_cpu = cpumask_first(sched_group_span(idlest)); |
| 10921 | if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) |
| 10922 | return idlest; |
| 10923 | #endif /* CONFIG_NUMA_BALANCING */ |
| 10924 | /* |
| 10925 | * Otherwise, keep the task close to the wakeup source |
| 10926 | * and improve locality if the number of running tasks |
| 10927 | * would remain below threshold where an imbalance is |
| 10928 | * allowed while accounting for the possibility the |
| 10929 | * task is pinned to a subset of CPUs. If there is a |
| 10930 | * real need of migration, periodic load balance will |
| 10931 | * take care of it. |
| 10932 | */ |
| 10933 | if (p->nr_cpus_allowed != NR_CPUS) { |
| 10934 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); |
| 10935 | |
| 10936 | cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); |
| 10937 | imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); |
| 10938 | } |
| 10939 | |
| 10940 | imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); |
| 10941 | if (!adjust_numa_imbalance(imbalance, |
| 10942 | local_sgs.sum_nr_running + 1, |
| 10943 | imb_numa_nr)) { |
| 10944 | return NULL; |
| 10945 | } |
| 10946 | } |
| 10947 | #endif /* CONFIG_NUMA */ |
| 10948 | |
| 10949 | /* |
| 10950 | * Select group with highest number of idle CPUs. We could also |
| 10951 | * compare the utilization which is more stable but it can end |
| 10952 | * up that the group has less spare capacity but finally more |
| 10953 | * idle CPUs which means more opportunity to run task. |
| 10954 | */ |
| 10955 | if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) |
| 10956 | return NULL; |
| 10957 | break; |
| 10958 | } |
| 10959 | |
| 10960 | return idlest; |
| 10961 | } |
| 10962 | |
| 10963 | static void update_idle_cpu_scan(struct lb_env *env, |
| 10964 | unsigned long sum_util) |
| 10965 | { |
| 10966 | struct sched_domain_shared *sd_share; |
| 10967 | int llc_weight, pct; |
| 10968 | u64 x, y, tmp; |
| 10969 | /* |
| 10970 | * Update the number of CPUs to scan in LLC domain, which could |
| 10971 | * be used as a hint in select_idle_cpu(). The update of sd_share |
| 10972 | * could be expensive because it is within a shared cache line. |
| 10973 | * So the write of this hint only occurs during periodic load |
| 10974 | * balancing, rather than CPU_NEWLY_IDLE, because the latter |
| 10975 | * can fire way more frequently than the former. |
| 10976 | */ |
| 10977 | if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) |
| 10978 | return; |
| 10979 | |
| 10980 | llc_weight = per_cpu(sd_llc_size, env->dst_cpu); |
| 10981 | if (env->sd->span_weight != llc_weight) |
| 10982 | return; |
| 10983 | |
| 10984 | sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); |
| 10985 | if (!sd_share) |
| 10986 | return; |
| 10987 | |
| 10988 | /* |
| 10989 | * The number of CPUs to search drops as sum_util increases, when |
| 10990 | * sum_util hits 85% or above, the scan stops. |
| 10991 | * The reason to choose 85% as the threshold is because this is the |
| 10992 | * imbalance_pct(117) when a LLC sched group is overloaded. |
| 10993 | * |
| 10994 | * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] |
| 10995 | * and y'= y / SCHED_CAPACITY_SCALE |
| 10996 | * |
| 10997 | * x is the ratio of sum_util compared to the CPU capacity: |
| 10998 | * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) |
| 10999 | * y' is the ratio of CPUs to be scanned in the LLC domain, |
| 11000 | * and the number of CPUs to scan is calculated by: |
| 11001 | * |
| 11002 | * nr_scan = llc_weight * y' [2] |
| 11003 | * |
| 11004 | * When x hits the threshold of overloaded, AKA, when |
| 11005 | * x = 100 / pct, y drops to 0. According to [1], |
| 11006 | * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 |
| 11007 | * |
| 11008 | * Scale x by SCHED_CAPACITY_SCALE: |
| 11009 | * x' = sum_util / llc_weight; [3] |
| 11010 | * |
| 11011 | * and finally [1] becomes: |
| 11012 | * y = SCHED_CAPACITY_SCALE - |
| 11013 | * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] |
| 11014 | * |
| 11015 | */ |
| 11016 | /* equation [3] */ |
| 11017 | x = sum_util; |
| 11018 | do_div(x, llc_weight); |
| 11019 | |
| 11020 | /* equation [4] */ |
| 11021 | pct = env->sd->imbalance_pct; |
| 11022 | tmp = x * x * pct * pct; |
| 11023 | do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); |
| 11024 | tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); |
| 11025 | y = SCHED_CAPACITY_SCALE - tmp; |
| 11026 | |
| 11027 | /* equation [2] */ |
| 11028 | y *= llc_weight; |
| 11029 | do_div(y, SCHED_CAPACITY_SCALE); |
| 11030 | if ((int)y != sd_share->nr_idle_scan) |
| 11031 | WRITE_ONCE(sd_share->nr_idle_scan, (int)y); |
| 11032 | } |
| 11033 | |
| 11034 | /** |
| 11035 | * update_sd_lb_stats - Update sched_domain's statistics for load balancing. |
| 11036 | * @env: The load balancing environment. |
| 11037 | * @sds: variable to hold the statistics for this sched_domain. |
| 11038 | */ |
| 11039 | |
| 11040 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) |
| 11041 | { |
| 11042 | struct sched_group *sg = env->sd->groups; |
| 11043 | struct sg_lb_stats *local = &sds->local_stat; |
| 11044 | struct sg_lb_stats tmp_sgs; |
| 11045 | unsigned long sum_util = 0; |
| 11046 | bool sg_overloaded = 0, sg_overutilized = 0; |
| 11047 | |
| 11048 | do { |
| 11049 | struct sg_lb_stats *sgs = &tmp_sgs; |
| 11050 | int local_group; |
| 11051 | |
| 11052 | local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); |
| 11053 | if (local_group) { |
| 11054 | sds->local = sg; |
| 11055 | sgs = local; |
| 11056 | |
| 11057 | if (env->idle != CPU_NEWLY_IDLE || |
| 11058 | time_after_eq(jiffies, sg->sgc->next_update)) |
| 11059 | update_group_capacity(env->sd, env->dst_cpu); |
| 11060 | } |
| 11061 | |
| 11062 | update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); |
| 11063 | |
| 11064 | if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { |
| 11065 | sds->busiest = sg; |
| 11066 | sds->busiest_stat = *sgs; |
| 11067 | } |
| 11068 | |
| 11069 | /* Now, start updating sd_lb_stats */ |
| 11070 | sds->total_load += sgs->group_load; |
| 11071 | sds->total_capacity += sgs->group_capacity; |
| 11072 | |
| 11073 | sum_util += sgs->group_util; |
| 11074 | sg = sg->next; |
| 11075 | } while (sg != env->sd->groups); |
| 11076 | |
| 11077 | /* |
| 11078 | * Indicate that the child domain of the busiest group prefers tasks |
| 11079 | * go to a child's sibling domains first. NB the flags of a sched group |
| 11080 | * are those of the child domain. |
| 11081 | */ |
| 11082 | if (sds->busiest) |
| 11083 | sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); |
| 11084 | |
| 11085 | |
| 11086 | if (env->sd->flags & SD_NUMA) |
| 11087 | env->fbq_type = fbq_classify_group(&sds->busiest_stat); |
| 11088 | |
| 11089 | if (!env->sd->parent) { |
| 11090 | /* update overload indicator if we are at root domain */ |
| 11091 | set_rd_overloaded(env->dst_rq->rd, sg_overloaded); |
| 11092 | |
| 11093 | /* Update over-utilization (tipping point, U >= 0) indicator */ |
| 11094 | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); |
| 11095 | } else if (sg_overutilized) { |
| 11096 | set_rd_overutilized(env->dst_rq->rd, sg_overutilized); |
| 11097 | } |
| 11098 | |
| 11099 | update_idle_cpu_scan(env, sum_util); |
| 11100 | } |
| 11101 | |
| 11102 | /** |
| 11103 | * calculate_imbalance - Calculate the amount of imbalance present within the |
| 11104 | * groups of a given sched_domain during load balance. |
| 11105 | * @env: load balance environment |
| 11106 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
| 11107 | */ |
| 11108 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) |
| 11109 | { |
| 11110 | struct sg_lb_stats *local, *busiest; |
| 11111 | |
| 11112 | local = &sds->local_stat; |
| 11113 | busiest = &sds->busiest_stat; |
| 11114 | |
| 11115 | if (busiest->group_type == group_misfit_task) { |
| 11116 | if (env->sd->flags & SD_ASYM_CPUCAPACITY) { |
| 11117 | /* Set imbalance to allow misfit tasks to be balanced. */ |
| 11118 | env->migration_type = migrate_misfit; |
| 11119 | env->imbalance = 1; |
| 11120 | } else { |
| 11121 | /* |
| 11122 | * Set load imbalance to allow moving task from cpu |
| 11123 | * with reduced capacity. |
| 11124 | */ |
| 11125 | env->migration_type = migrate_load; |
| 11126 | env->imbalance = busiest->group_misfit_task_load; |
| 11127 | } |
| 11128 | return; |
| 11129 | } |
| 11130 | |
| 11131 | if (busiest->group_type == group_asym_packing) { |
| 11132 | /* |
| 11133 | * In case of asym capacity, we will try to migrate all load to |
| 11134 | * the preferred CPU. |
| 11135 | */ |
| 11136 | env->migration_type = migrate_task; |
| 11137 | env->imbalance = busiest->sum_h_nr_running; |
| 11138 | return; |
| 11139 | } |
| 11140 | |
| 11141 | if (busiest->group_type == group_smt_balance) { |
| 11142 | /* Reduce number of tasks sharing CPU capacity */ |
| 11143 | env->migration_type = migrate_task; |
| 11144 | env->imbalance = 1; |
| 11145 | return; |
| 11146 | } |
| 11147 | |
| 11148 | if (busiest->group_type == group_imbalanced) { |
| 11149 | /* |
| 11150 | * In the group_imb case we cannot rely on group-wide averages |
| 11151 | * to ensure CPU-load equilibrium, try to move any task to fix |
| 11152 | * the imbalance. The next load balance will take care of |
| 11153 | * balancing back the system. |
| 11154 | */ |
| 11155 | env->migration_type = migrate_task; |
| 11156 | env->imbalance = 1; |
| 11157 | return; |
| 11158 | } |
| 11159 | |
| 11160 | /* |
| 11161 | * Try to use spare capacity of local group without overloading it or |
| 11162 | * emptying busiest. |
| 11163 | */ |
| 11164 | if (local->group_type == group_has_spare) { |
| 11165 | if ((busiest->group_type > group_fully_busy) && |
| 11166 | !(env->sd->flags & SD_SHARE_LLC)) { |
| 11167 | /* |
| 11168 | * If busiest is overloaded, try to fill spare |
| 11169 | * capacity. This might end up creating spare capacity |
| 11170 | * in busiest or busiest still being overloaded but |
| 11171 | * there is no simple way to directly compute the |
| 11172 | * amount of load to migrate in order to balance the |
| 11173 | * system. |
| 11174 | */ |
| 11175 | env->migration_type = migrate_util; |
| 11176 | env->imbalance = max(local->group_capacity, local->group_util) - |
| 11177 | local->group_util; |
| 11178 | |
| 11179 | /* |
| 11180 | * In some cases, the group's utilization is max or even |
| 11181 | * higher than capacity because of migrations but the |
| 11182 | * local CPU is (newly) idle. There is at least one |
| 11183 | * waiting task in this overloaded busiest group. Let's |
| 11184 | * try to pull it. |
| 11185 | */ |
| 11186 | if (env->idle && env->imbalance == 0) { |
| 11187 | env->migration_type = migrate_task; |
| 11188 | env->imbalance = 1; |
| 11189 | } |
| 11190 | |
| 11191 | return; |
| 11192 | } |
| 11193 | |
| 11194 | if (busiest->group_weight == 1 || sds->prefer_sibling) { |
| 11195 | /* |
| 11196 | * When prefer sibling, evenly spread running tasks on |
| 11197 | * groups. |
| 11198 | */ |
| 11199 | env->migration_type = migrate_task; |
| 11200 | env->imbalance = sibling_imbalance(env, sds, busiest, local); |
| 11201 | } else { |
| 11202 | |
| 11203 | /* |
| 11204 | * If there is no overload, we just want to even the number of |
| 11205 | * idle CPUs. |
| 11206 | */ |
| 11207 | env->migration_type = migrate_task; |
| 11208 | env->imbalance = max_t(long, 0, |
| 11209 | (local->idle_cpus - busiest->idle_cpus)); |
| 11210 | } |
| 11211 | |
| 11212 | #ifdef CONFIG_NUMA |
| 11213 | /* Consider allowing a small imbalance between NUMA groups */ |
| 11214 | if (env->sd->flags & SD_NUMA) { |
| 11215 | env->imbalance = adjust_numa_imbalance(env->imbalance, |
| 11216 | local->sum_nr_running + 1, |
| 11217 | env->sd->imb_numa_nr); |
| 11218 | } |
| 11219 | #endif |
| 11220 | |
| 11221 | /* Number of tasks to move to restore balance */ |
| 11222 | env->imbalance >>= 1; |
| 11223 | |
| 11224 | return; |
| 11225 | } |
| 11226 | |
| 11227 | /* |
| 11228 | * Local is fully busy but has to take more load to relieve the |
| 11229 | * busiest group |
| 11230 | */ |
| 11231 | if (local->group_type < group_overloaded) { |
| 11232 | /* |
| 11233 | * Local will become overloaded so the avg_load metrics are |
| 11234 | * finally needed. |
| 11235 | */ |
| 11236 | |
| 11237 | local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / |
| 11238 | local->group_capacity; |
| 11239 | |
| 11240 | /* |
| 11241 | * If the local group is more loaded than the selected |
| 11242 | * busiest group don't try to pull any tasks. |
| 11243 | */ |
| 11244 | if (local->avg_load >= busiest->avg_load) { |
| 11245 | env->imbalance = 0; |
| 11246 | return; |
| 11247 | } |
| 11248 | |
| 11249 | sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / |
| 11250 | sds->total_capacity; |
| 11251 | |
| 11252 | /* |
| 11253 | * If the local group is more loaded than the average system |
| 11254 | * load, don't try to pull any tasks. |
| 11255 | */ |
| 11256 | if (local->avg_load >= sds->avg_load) { |
| 11257 | env->imbalance = 0; |
| 11258 | return; |
| 11259 | } |
| 11260 | |
| 11261 | } |
| 11262 | |
| 11263 | /* |
| 11264 | * Both group are or will become overloaded and we're trying to get all |
| 11265 | * the CPUs to the average_load, so we don't want to push ourselves |
| 11266 | * above the average load, nor do we wish to reduce the max loaded CPU |
| 11267 | * below the average load. At the same time, we also don't want to |
| 11268 | * reduce the group load below the group capacity. Thus we look for |
| 11269 | * the minimum possible imbalance. |
| 11270 | */ |
| 11271 | env->migration_type = migrate_load; |
| 11272 | env->imbalance = min( |
| 11273 | (busiest->avg_load - sds->avg_load) * busiest->group_capacity, |
| 11274 | (sds->avg_load - local->avg_load) * local->group_capacity |
| 11275 | ) / SCHED_CAPACITY_SCALE; |
| 11276 | } |
| 11277 | |
| 11278 | /******* sched_balance_find_src_group() helpers end here *********************/ |
| 11279 | |
| 11280 | /* |
| 11281 | * Decision matrix according to the local and busiest group type: |
| 11282 | * |
| 11283 | * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded |
| 11284 | * has_spare nr_idle balanced N/A N/A balanced balanced |
| 11285 | * fully_busy nr_idle nr_idle N/A N/A balanced balanced |
| 11286 | * misfit_task force N/A N/A N/A N/A N/A |
| 11287 | * asym_packing force force N/A N/A force force |
| 11288 | * imbalanced force force N/A N/A force force |
| 11289 | * overloaded force force N/A N/A force avg_load |
| 11290 | * |
| 11291 | * N/A : Not Applicable because already filtered while updating |
| 11292 | * statistics. |
| 11293 | * balanced : The system is balanced for these 2 groups. |
| 11294 | * force : Calculate the imbalance as load migration is probably needed. |
| 11295 | * avg_load : Only if imbalance is significant enough. |
| 11296 | * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite |
| 11297 | * different in groups. |
| 11298 | */ |
| 11299 | |
| 11300 | /** |
| 11301 | * sched_balance_find_src_group - Returns the busiest group within the sched_domain |
| 11302 | * if there is an imbalance. |
| 11303 | * @env: The load balancing environment. |
| 11304 | * |
| 11305 | * Also calculates the amount of runnable load which should be moved |
| 11306 | * to restore balance. |
| 11307 | * |
| 11308 | * Return: - The busiest group if imbalance exists. |
| 11309 | */ |
| 11310 | static struct sched_group *sched_balance_find_src_group(struct lb_env *env) |
| 11311 | { |
| 11312 | struct sg_lb_stats *local, *busiest; |
| 11313 | struct sd_lb_stats sds; |
| 11314 | |
| 11315 | init_sd_lb_stats(&sds); |
| 11316 | |
| 11317 | /* |
| 11318 | * Compute the various statistics relevant for load balancing at |
| 11319 | * this level. |
| 11320 | */ |
| 11321 | update_sd_lb_stats(env, &sds); |
| 11322 | |
| 11323 | /* There is no busy sibling group to pull tasks from */ |
| 11324 | if (!sds.busiest) |
| 11325 | goto out_balanced; |
| 11326 | |
| 11327 | busiest = &sds.busiest_stat; |
| 11328 | |
| 11329 | /* Misfit tasks should be dealt with regardless of the avg load */ |
| 11330 | if (busiest->group_type == group_misfit_task) |
| 11331 | goto force_balance; |
| 11332 | |
| 11333 | if (!is_rd_overutilized(env->dst_rq->rd) && |
| 11334 | rcu_dereference(env->dst_rq->rd->pd)) |
| 11335 | goto out_balanced; |
| 11336 | |
| 11337 | /* ASYM feature bypasses nice load balance check */ |
| 11338 | if (busiest->group_type == group_asym_packing) |
| 11339 | goto force_balance; |
| 11340 | |
| 11341 | /* |
| 11342 | * If the busiest group is imbalanced the below checks don't |
| 11343 | * work because they assume all things are equal, which typically |
| 11344 | * isn't true due to cpus_ptr constraints and the like. |
| 11345 | */ |
| 11346 | if (busiest->group_type == group_imbalanced) |
| 11347 | goto force_balance; |
| 11348 | |
| 11349 | local = &sds.local_stat; |
| 11350 | /* |
| 11351 | * If the local group is busier than the selected busiest group |
| 11352 | * don't try and pull any tasks. |
| 11353 | */ |
| 11354 | if (local->group_type > busiest->group_type) |
| 11355 | goto out_balanced; |
| 11356 | |
| 11357 | /* |
| 11358 | * When groups are overloaded, use the avg_load to ensure fairness |
| 11359 | * between tasks. |
| 11360 | */ |
| 11361 | if (local->group_type == group_overloaded) { |
| 11362 | /* |
| 11363 | * If the local group is more loaded than the selected |
| 11364 | * busiest group don't try to pull any tasks. |
| 11365 | */ |
| 11366 | if (local->avg_load >= busiest->avg_load) |
| 11367 | goto out_balanced; |
| 11368 | |
| 11369 | /* XXX broken for overlapping NUMA groups */ |
| 11370 | sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / |
| 11371 | sds.total_capacity; |
| 11372 | |
| 11373 | /* |
| 11374 | * Don't pull any tasks if this group is already above the |
| 11375 | * domain average load. |
| 11376 | */ |
| 11377 | if (local->avg_load >= sds.avg_load) |
| 11378 | goto out_balanced; |
| 11379 | |
| 11380 | /* |
| 11381 | * If the busiest group is more loaded, use imbalance_pct to be |
| 11382 | * conservative. |
| 11383 | */ |
| 11384 | if (100 * busiest->avg_load <= |
| 11385 | env->sd->imbalance_pct * local->avg_load) |
| 11386 | goto out_balanced; |
| 11387 | } |
| 11388 | |
| 11389 | /* |
| 11390 | * Try to move all excess tasks to a sibling domain of the busiest |
| 11391 | * group's child domain. |
| 11392 | */ |
| 11393 | if (sds.prefer_sibling && local->group_type == group_has_spare && |
| 11394 | sibling_imbalance(env, &sds, busiest, local) > 1) |
| 11395 | goto force_balance; |
| 11396 | |
| 11397 | if (busiest->group_type != group_overloaded) { |
| 11398 | if (!env->idle) { |
| 11399 | /* |
| 11400 | * If the busiest group is not overloaded (and as a |
| 11401 | * result the local one too) but this CPU is already |
| 11402 | * busy, let another idle CPU try to pull task. |
| 11403 | */ |
| 11404 | goto out_balanced; |
| 11405 | } |
| 11406 | |
| 11407 | if (busiest->group_type == group_smt_balance && |
| 11408 | smt_vs_nonsmt_groups(sds.local, sds.busiest)) { |
| 11409 | /* Let non SMT CPU pull from SMT CPU sharing with sibling */ |
| 11410 | goto force_balance; |
| 11411 | } |
| 11412 | |
| 11413 | if (busiest->group_weight > 1 && |
| 11414 | local->idle_cpus <= (busiest->idle_cpus + 1)) { |
| 11415 | /* |
| 11416 | * If the busiest group is not overloaded |
| 11417 | * and there is no imbalance between this and busiest |
| 11418 | * group wrt idle CPUs, it is balanced. The imbalance |
| 11419 | * becomes significant if the diff is greater than 1 |
| 11420 | * otherwise we might end up to just move the imbalance |
| 11421 | * on another group. Of course this applies only if |
| 11422 | * there is more than 1 CPU per group. |
| 11423 | */ |
| 11424 | goto out_balanced; |
| 11425 | } |
| 11426 | |
| 11427 | if (busiest->sum_h_nr_running == 1) { |
| 11428 | /* |
| 11429 | * busiest doesn't have any tasks waiting to run |
| 11430 | */ |
| 11431 | goto out_balanced; |
| 11432 | } |
| 11433 | } |
| 11434 | |
| 11435 | force_balance: |
| 11436 | /* Looks like there is an imbalance. Compute it */ |
| 11437 | calculate_imbalance(env, &sds); |
| 11438 | return env->imbalance ? sds.busiest : NULL; |
| 11439 | |
| 11440 | out_balanced: |
| 11441 | env->imbalance = 0; |
| 11442 | return NULL; |
| 11443 | } |
| 11444 | |
| 11445 | /* |
| 11446 | * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. |
| 11447 | */ |
| 11448 | static struct rq *sched_balance_find_src_rq(struct lb_env *env, |
| 11449 | struct sched_group *group) |
| 11450 | { |
| 11451 | struct rq *busiest = NULL, *rq; |
| 11452 | unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; |
| 11453 | unsigned int busiest_nr = 0; |
| 11454 | int i; |
| 11455 | |
| 11456 | for_each_cpu_and(i, sched_group_span(group), env->cpus) { |
| 11457 | unsigned long capacity, load, util; |
| 11458 | unsigned int nr_running; |
| 11459 | enum fbq_type rt; |
| 11460 | |
| 11461 | rq = cpu_rq(i); |
| 11462 | rt = fbq_classify_rq(rq); |
| 11463 | |
| 11464 | /* |
| 11465 | * We classify groups/runqueues into three groups: |
| 11466 | * - regular: there are !numa tasks |
| 11467 | * - remote: there are numa tasks that run on the 'wrong' node |
| 11468 | * - all: there is no distinction |
| 11469 | * |
| 11470 | * In order to avoid migrating ideally placed numa tasks, |
| 11471 | * ignore those when there's better options. |
| 11472 | * |
| 11473 | * If we ignore the actual busiest queue to migrate another |
| 11474 | * task, the next balance pass can still reduce the busiest |
| 11475 | * queue by moving tasks around inside the node. |
| 11476 | * |
| 11477 | * If we cannot move enough load due to this classification |
| 11478 | * the next pass will adjust the group classification and |
| 11479 | * allow migration of more tasks. |
| 11480 | * |
| 11481 | * Both cases only affect the total convergence complexity. |
| 11482 | */ |
| 11483 | if (rt > env->fbq_type) |
| 11484 | continue; |
| 11485 | |
| 11486 | nr_running = rq->cfs.h_nr_runnable; |
| 11487 | if (!nr_running) |
| 11488 | continue; |
| 11489 | |
| 11490 | capacity = capacity_of(i); |
| 11491 | |
| 11492 | /* |
| 11493 | * For ASYM_CPUCAPACITY domains, don't pick a CPU that could |
| 11494 | * eventually lead to active_balancing high->low capacity. |
| 11495 | * Higher per-CPU capacity is considered better than balancing |
| 11496 | * average load. |
| 11497 | */ |
| 11498 | if (env->sd->flags & SD_ASYM_CPUCAPACITY && |
| 11499 | !capacity_greater(capacity_of(env->dst_cpu), capacity) && |
| 11500 | nr_running == 1) |
| 11501 | continue; |
| 11502 | |
| 11503 | /* |
| 11504 | * Make sure we only pull tasks from a CPU of lower priority |
| 11505 | * when balancing between SMT siblings. |
| 11506 | * |
| 11507 | * If balancing between cores, let lower priority CPUs help |
| 11508 | * SMT cores with more than one busy sibling. |
| 11509 | */ |
| 11510 | if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) |
| 11511 | continue; |
| 11512 | |
| 11513 | switch (env->migration_type) { |
| 11514 | case migrate_load: |
| 11515 | /* |
| 11516 | * When comparing with load imbalance, use cpu_load() |
| 11517 | * which is not scaled with the CPU capacity. |
| 11518 | */ |
| 11519 | load = cpu_load(rq); |
| 11520 | |
| 11521 | if (nr_running == 1 && load > env->imbalance && |
| 11522 | !check_cpu_capacity(rq, env->sd)) |
| 11523 | break; |
| 11524 | |
| 11525 | /* |
| 11526 | * For the load comparisons with the other CPUs, |
| 11527 | * consider the cpu_load() scaled with the CPU |
| 11528 | * capacity, so that the load can be moved away |
| 11529 | * from the CPU that is potentially running at a |
| 11530 | * lower capacity. |
| 11531 | * |
| 11532 | * Thus we're looking for max(load_i / capacity_i), |
| 11533 | * crosswise multiplication to rid ourselves of the |
| 11534 | * division works out to: |
| 11535 | * load_i * capacity_j > load_j * capacity_i; |
| 11536 | * where j is our previous maximum. |
| 11537 | */ |
| 11538 | if (load * busiest_capacity > busiest_load * capacity) { |
| 11539 | busiest_load = load; |
| 11540 | busiest_capacity = capacity; |
| 11541 | busiest = rq; |
| 11542 | } |
| 11543 | break; |
| 11544 | |
| 11545 | case migrate_util: |
| 11546 | util = cpu_util_cfs_boost(i); |
| 11547 | |
| 11548 | /* |
| 11549 | * Don't try to pull utilization from a CPU with one |
| 11550 | * running task. Whatever its utilization, we will fail |
| 11551 | * detach the task. |
| 11552 | */ |
| 11553 | if (nr_running <= 1) |
| 11554 | continue; |
| 11555 | |
| 11556 | if (busiest_util < util) { |
| 11557 | busiest_util = util; |
| 11558 | busiest = rq; |
| 11559 | } |
| 11560 | break; |
| 11561 | |
| 11562 | case migrate_task: |
| 11563 | if (busiest_nr < nr_running) { |
| 11564 | busiest_nr = nr_running; |
| 11565 | busiest = rq; |
| 11566 | } |
| 11567 | break; |
| 11568 | |
| 11569 | case migrate_misfit: |
| 11570 | /* |
| 11571 | * For ASYM_CPUCAPACITY domains with misfit tasks we |
| 11572 | * simply seek the "biggest" misfit task. |
| 11573 | */ |
| 11574 | if (rq->misfit_task_load > busiest_load) { |
| 11575 | busiest_load = rq->misfit_task_load; |
| 11576 | busiest = rq; |
| 11577 | } |
| 11578 | |
| 11579 | break; |
| 11580 | |
| 11581 | } |
| 11582 | } |
| 11583 | |
| 11584 | return busiest; |
| 11585 | } |
| 11586 | |
| 11587 | /* |
| 11588 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but |
| 11589 | * so long as it is large enough. |
| 11590 | */ |
| 11591 | #define MAX_PINNED_INTERVAL 512 |
| 11592 | |
| 11593 | static inline bool |
| 11594 | asym_active_balance(struct lb_env *env) |
| 11595 | { |
| 11596 | /* |
| 11597 | * ASYM_PACKING needs to force migrate tasks from busy but lower |
| 11598 | * priority CPUs in order to pack all tasks in the highest priority |
| 11599 | * CPUs. When done between cores, do it only if the whole core if the |
| 11600 | * whole core is idle. |
| 11601 | * |
| 11602 | * If @env::src_cpu is an SMT core with busy siblings, let |
| 11603 | * the lower priority @env::dst_cpu help it. Do not follow |
| 11604 | * CPU priority. |
| 11605 | */ |
| 11606 | return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && |
| 11607 | (sched_asym_prefer(env->dst_cpu, env->src_cpu) || |
| 11608 | !sched_use_asym_prio(env->sd, env->src_cpu)); |
| 11609 | } |
| 11610 | |
| 11611 | static inline bool |
| 11612 | imbalanced_active_balance(struct lb_env *env) |
| 11613 | { |
| 11614 | struct sched_domain *sd = env->sd; |
| 11615 | |
| 11616 | /* |
| 11617 | * The imbalanced case includes the case of pinned tasks preventing a fair |
| 11618 | * distribution of the load on the system but also the even distribution of the |
| 11619 | * threads on a system with spare capacity |
| 11620 | */ |
| 11621 | if ((env->migration_type == migrate_task) && |
| 11622 | (sd->nr_balance_failed > sd->cache_nice_tries+2)) |
| 11623 | return 1; |
| 11624 | |
| 11625 | return 0; |
| 11626 | } |
| 11627 | |
| 11628 | static int need_active_balance(struct lb_env *env) |
| 11629 | { |
| 11630 | struct sched_domain *sd = env->sd; |
| 11631 | |
| 11632 | if (asym_active_balance(env)) |
| 11633 | return 1; |
| 11634 | |
| 11635 | if (imbalanced_active_balance(env)) |
| 11636 | return 1; |
| 11637 | |
| 11638 | /* |
| 11639 | * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. |
| 11640 | * It's worth migrating the task if the src_cpu's capacity is reduced |
| 11641 | * because of other sched_class or IRQs if more capacity stays |
| 11642 | * available on dst_cpu. |
| 11643 | */ |
| 11644 | if (env->idle && |
| 11645 | (env->src_rq->cfs.h_nr_runnable == 1)) { |
| 11646 | if ((check_cpu_capacity(env->src_rq, sd)) && |
| 11647 | (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) |
| 11648 | return 1; |
| 11649 | } |
| 11650 | |
| 11651 | if (env->migration_type == migrate_misfit) |
| 11652 | return 1; |
| 11653 | |
| 11654 | return 0; |
| 11655 | } |
| 11656 | |
| 11657 | static int active_load_balance_cpu_stop(void *data); |
| 11658 | |
| 11659 | static int should_we_balance(struct lb_env *env) |
| 11660 | { |
| 11661 | struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); |
| 11662 | struct sched_group *sg = env->sd->groups; |
| 11663 | int cpu, idle_smt = -1; |
| 11664 | |
| 11665 | /* |
| 11666 | * Ensure the balancing environment is consistent; can happen |
| 11667 | * when the softirq triggers 'during' hotplug. |
| 11668 | */ |
| 11669 | if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) |
| 11670 | return 0; |
| 11671 | |
| 11672 | /* |
| 11673 | * In the newly idle case, we will allow all the CPUs |
| 11674 | * to do the newly idle load balance. |
| 11675 | * |
| 11676 | * However, we bail out if we already have tasks or a wakeup pending, |
| 11677 | * to optimize wakeup latency. |
| 11678 | */ |
| 11679 | if (env->idle == CPU_NEWLY_IDLE) { |
| 11680 | if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) |
| 11681 | return 0; |
| 11682 | return 1; |
| 11683 | } |
| 11684 | |
| 11685 | cpumask_copy(swb_cpus, group_balance_mask(sg)); |
| 11686 | /* Try to find first idle CPU */ |
| 11687 | for_each_cpu_and(cpu, swb_cpus, env->cpus) { |
| 11688 | if (!idle_cpu(cpu)) |
| 11689 | continue; |
| 11690 | |
| 11691 | /* |
| 11692 | * Don't balance to idle SMT in busy core right away when |
| 11693 | * balancing cores, but remember the first idle SMT CPU for |
| 11694 | * later consideration. Find CPU on an idle core first. |
| 11695 | */ |
| 11696 | if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { |
| 11697 | if (idle_smt == -1) |
| 11698 | idle_smt = cpu; |
| 11699 | /* |
| 11700 | * If the core is not idle, and first SMT sibling which is |
| 11701 | * idle has been found, then its not needed to check other |
| 11702 | * SMT siblings for idleness: |
| 11703 | */ |
| 11704 | #ifdef CONFIG_SCHED_SMT |
| 11705 | cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); |
| 11706 | #endif |
| 11707 | continue; |
| 11708 | } |
| 11709 | |
| 11710 | /* |
| 11711 | * Are we the first idle core in a non-SMT domain or higher, |
| 11712 | * or the first idle CPU in a SMT domain? |
| 11713 | */ |
| 11714 | return cpu == env->dst_cpu; |
| 11715 | } |
| 11716 | |
| 11717 | /* Are we the first idle CPU with busy siblings? */ |
| 11718 | if (idle_smt != -1) |
| 11719 | return idle_smt == env->dst_cpu; |
| 11720 | |
| 11721 | /* Are we the first CPU of this group ? */ |
| 11722 | return group_balance_cpu(sg) == env->dst_cpu; |
| 11723 | } |
| 11724 | |
| 11725 | static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, |
| 11726 | enum cpu_idle_type idle) |
| 11727 | { |
| 11728 | if (!schedstat_enabled()) |
| 11729 | return; |
| 11730 | |
| 11731 | switch (env->migration_type) { |
| 11732 | case migrate_load: |
| 11733 | __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); |
| 11734 | break; |
| 11735 | case migrate_util: |
| 11736 | __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); |
| 11737 | break; |
| 11738 | case migrate_task: |
| 11739 | __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); |
| 11740 | break; |
| 11741 | case migrate_misfit: |
| 11742 | __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); |
| 11743 | break; |
| 11744 | } |
| 11745 | } |
| 11746 | |
| 11747 | /* |
| 11748 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
| 11749 | * tasks if there is an imbalance. |
| 11750 | */ |
| 11751 | static int sched_balance_rq(int this_cpu, struct rq *this_rq, |
| 11752 | struct sched_domain *sd, enum cpu_idle_type idle, |
| 11753 | int *continue_balancing) |
| 11754 | { |
| 11755 | int ld_moved, cur_ld_moved, active_balance = 0; |
| 11756 | struct sched_domain *sd_parent = sd->parent; |
| 11757 | struct sched_group *group; |
| 11758 | struct rq *busiest; |
| 11759 | struct rq_flags rf; |
| 11760 | struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); |
| 11761 | struct lb_env env = { |
| 11762 | .sd = sd, |
| 11763 | .dst_cpu = this_cpu, |
| 11764 | .dst_rq = this_rq, |
| 11765 | .dst_grpmask = group_balance_mask(sd->groups), |
| 11766 | .idle = idle, |
| 11767 | .loop_break = SCHED_NR_MIGRATE_BREAK, |
| 11768 | .cpus = cpus, |
| 11769 | .fbq_type = all, |
| 11770 | .tasks = LIST_HEAD_INIT(env.tasks), |
| 11771 | }; |
| 11772 | |
| 11773 | cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); |
| 11774 | |
| 11775 | schedstat_inc(sd->lb_count[idle]); |
| 11776 | |
| 11777 | redo: |
| 11778 | if (!should_we_balance(&env)) { |
| 11779 | *continue_balancing = 0; |
| 11780 | goto out_balanced; |
| 11781 | } |
| 11782 | |
| 11783 | group = sched_balance_find_src_group(&env); |
| 11784 | if (!group) { |
| 11785 | schedstat_inc(sd->lb_nobusyg[idle]); |
| 11786 | goto out_balanced; |
| 11787 | } |
| 11788 | |
| 11789 | busiest = sched_balance_find_src_rq(&env, group); |
| 11790 | if (!busiest) { |
| 11791 | schedstat_inc(sd->lb_nobusyq[idle]); |
| 11792 | goto out_balanced; |
| 11793 | } |
| 11794 | |
| 11795 | WARN_ON_ONCE(busiest == env.dst_rq); |
| 11796 | |
| 11797 | update_lb_imbalance_stat(&env, sd, idle); |
| 11798 | |
| 11799 | env.src_cpu = busiest->cpu; |
| 11800 | env.src_rq = busiest; |
| 11801 | |
| 11802 | ld_moved = 0; |
| 11803 | /* Clear this flag as soon as we find a pullable task */ |
| 11804 | env.flags |= LBF_ALL_PINNED; |
| 11805 | if (busiest->nr_running > 1) { |
| 11806 | /* |
| 11807 | * Attempt to move tasks. If sched_balance_find_src_group has found |
| 11808 | * an imbalance but busiest->nr_running <= 1, the group is |
| 11809 | * still unbalanced. ld_moved simply stays zero, so it is |
| 11810 | * correctly treated as an imbalance. |
| 11811 | */ |
| 11812 | env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); |
| 11813 | |
| 11814 | more_balance: |
| 11815 | rq_lock_irqsave(busiest, &rf); |
| 11816 | update_rq_clock(busiest); |
| 11817 | |
| 11818 | /* |
| 11819 | * cur_ld_moved - load moved in current iteration |
| 11820 | * ld_moved - cumulative load moved across iterations |
| 11821 | */ |
| 11822 | cur_ld_moved = detach_tasks(&env); |
| 11823 | |
| 11824 | /* |
| 11825 | * We've detached some tasks from busiest_rq. Every |
| 11826 | * task is masked "TASK_ON_RQ_MIGRATING", so we can safely |
| 11827 | * unlock busiest->lock, and we are able to be sure |
| 11828 | * that nobody can manipulate the tasks in parallel. |
| 11829 | * See task_rq_lock() family for the details. |
| 11830 | */ |
| 11831 | |
| 11832 | rq_unlock(busiest, &rf); |
| 11833 | |
| 11834 | if (cur_ld_moved) { |
| 11835 | attach_tasks(&env); |
| 11836 | ld_moved += cur_ld_moved; |
| 11837 | } |
| 11838 | |
| 11839 | local_irq_restore(rf.flags); |
| 11840 | |
| 11841 | if (env.flags & LBF_NEED_BREAK) { |
| 11842 | env.flags &= ~LBF_NEED_BREAK; |
| 11843 | goto more_balance; |
| 11844 | } |
| 11845 | |
| 11846 | /* |
| 11847 | * Revisit (affine) tasks on src_cpu that couldn't be moved to |
| 11848 | * us and move them to an alternate dst_cpu in our sched_group |
| 11849 | * where they can run. The upper limit on how many times we |
| 11850 | * iterate on same src_cpu is dependent on number of CPUs in our |
| 11851 | * sched_group. |
| 11852 | * |
| 11853 | * This changes load balance semantics a bit on who can move |
| 11854 | * load to a given_cpu. In addition to the given_cpu itself |
| 11855 | * (or a ilb_cpu acting on its behalf where given_cpu is |
| 11856 | * nohz-idle), we now have balance_cpu in a position to move |
| 11857 | * load to given_cpu. In rare situations, this may cause |
| 11858 | * conflicts (balance_cpu and given_cpu/ilb_cpu deciding |
| 11859 | * _independently_ and at _same_ time to move some load to |
| 11860 | * given_cpu) causing excess load to be moved to given_cpu. |
| 11861 | * This however should not happen so much in practice and |
| 11862 | * moreover subsequent load balance cycles should correct the |
| 11863 | * excess load moved. |
| 11864 | */ |
| 11865 | if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { |
| 11866 | |
| 11867 | /* Prevent to re-select dst_cpu via env's CPUs */ |
| 11868 | __cpumask_clear_cpu(env.dst_cpu, env.cpus); |
| 11869 | |
| 11870 | env.dst_rq = cpu_rq(env.new_dst_cpu); |
| 11871 | env.dst_cpu = env.new_dst_cpu; |
| 11872 | env.flags &= ~LBF_DST_PINNED; |
| 11873 | env.loop = 0; |
| 11874 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
| 11875 | |
| 11876 | /* |
| 11877 | * Go back to "more_balance" rather than "redo" since we |
| 11878 | * need to continue with same src_cpu. |
| 11879 | */ |
| 11880 | goto more_balance; |
| 11881 | } |
| 11882 | |
| 11883 | /* |
| 11884 | * We failed to reach balance because of affinity. |
| 11885 | */ |
| 11886 | if (sd_parent) { |
| 11887 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
| 11888 | |
| 11889 | if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) |
| 11890 | *group_imbalance = 1; |
| 11891 | } |
| 11892 | |
| 11893 | /* All tasks on this runqueue were pinned by CPU affinity */ |
| 11894 | if (unlikely(env.flags & LBF_ALL_PINNED)) { |
| 11895 | __cpumask_clear_cpu(cpu_of(busiest), cpus); |
| 11896 | /* |
| 11897 | * Attempting to continue load balancing at the current |
| 11898 | * sched_domain level only makes sense if there are |
| 11899 | * active CPUs remaining as possible busiest CPUs to |
| 11900 | * pull load from which are not contained within the |
| 11901 | * destination group that is receiving any migrated |
| 11902 | * load. |
| 11903 | */ |
| 11904 | if (!cpumask_subset(cpus, env.dst_grpmask)) { |
| 11905 | env.loop = 0; |
| 11906 | env.loop_break = SCHED_NR_MIGRATE_BREAK; |
| 11907 | goto redo; |
| 11908 | } |
| 11909 | goto out_all_pinned; |
| 11910 | } |
| 11911 | } |
| 11912 | |
| 11913 | if (!ld_moved) { |
| 11914 | schedstat_inc(sd->lb_failed[idle]); |
| 11915 | /* |
| 11916 | * Increment the failure counter only on periodic balance. |
| 11917 | * We do not want newidle balance, which can be very |
| 11918 | * frequent, pollute the failure counter causing |
| 11919 | * excessive cache_hot migrations and active balances. |
| 11920 | * |
| 11921 | * Similarly for migration_misfit which is not related to |
| 11922 | * load/util migration, don't pollute nr_balance_failed. |
| 11923 | */ |
| 11924 | if (idle != CPU_NEWLY_IDLE && |
| 11925 | env.migration_type != migrate_misfit) |
| 11926 | sd->nr_balance_failed++; |
| 11927 | |
| 11928 | if (need_active_balance(&env)) { |
| 11929 | unsigned long flags; |
| 11930 | |
| 11931 | raw_spin_rq_lock_irqsave(busiest, flags); |
| 11932 | |
| 11933 | /* |
| 11934 | * Don't kick the active_load_balance_cpu_stop, |
| 11935 | * if the curr task on busiest CPU can't be |
| 11936 | * moved to this_cpu: |
| 11937 | */ |
| 11938 | if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { |
| 11939 | raw_spin_rq_unlock_irqrestore(busiest, flags); |
| 11940 | goto out_one_pinned; |
| 11941 | } |
| 11942 | |
| 11943 | /* Record that we found at least one task that could run on this_cpu */ |
| 11944 | env.flags &= ~LBF_ALL_PINNED; |
| 11945 | |
| 11946 | /* |
| 11947 | * ->active_balance synchronizes accesses to |
| 11948 | * ->active_balance_work. Once set, it's cleared |
| 11949 | * only after active load balance is finished. |
| 11950 | */ |
| 11951 | if (!busiest->active_balance) { |
| 11952 | busiest->active_balance = 1; |
| 11953 | busiest->push_cpu = this_cpu; |
| 11954 | active_balance = 1; |
| 11955 | } |
| 11956 | |
| 11957 | preempt_disable(); |
| 11958 | raw_spin_rq_unlock_irqrestore(busiest, flags); |
| 11959 | if (active_balance) { |
| 11960 | stop_one_cpu_nowait(cpu_of(busiest), |
| 11961 | active_load_balance_cpu_stop, busiest, |
| 11962 | &busiest->active_balance_work); |
| 11963 | } |
| 11964 | preempt_enable(); |
| 11965 | } |
| 11966 | } else { |
| 11967 | sd->nr_balance_failed = 0; |
| 11968 | } |
| 11969 | |
| 11970 | if (likely(!active_balance) || need_active_balance(&env)) { |
| 11971 | /* We were unbalanced, so reset the balancing interval */ |
| 11972 | sd->balance_interval = sd->min_interval; |
| 11973 | } |
| 11974 | |
| 11975 | goto out; |
| 11976 | |
| 11977 | out_balanced: |
| 11978 | /* |
| 11979 | * We reach balance although we may have faced some affinity |
| 11980 | * constraints. Clear the imbalance flag only if other tasks got |
| 11981 | * a chance to move and fix the imbalance. |
| 11982 | */ |
| 11983 | if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { |
| 11984 | int *group_imbalance = &sd_parent->groups->sgc->imbalance; |
| 11985 | |
| 11986 | if (*group_imbalance) |
| 11987 | *group_imbalance = 0; |
| 11988 | } |
| 11989 | |
| 11990 | out_all_pinned: |
| 11991 | /* |
| 11992 | * We reach balance because all tasks are pinned at this level so |
| 11993 | * we can't migrate them. Let the imbalance flag set so parent level |
| 11994 | * can try to migrate them. |
| 11995 | */ |
| 11996 | schedstat_inc(sd->lb_balanced[idle]); |
| 11997 | |
| 11998 | sd->nr_balance_failed = 0; |
| 11999 | |
| 12000 | out_one_pinned: |
| 12001 | ld_moved = 0; |
| 12002 | |
| 12003 | /* |
| 12004 | * sched_balance_newidle() disregards balance intervals, so we could |
| 12005 | * repeatedly reach this code, which would lead to balance_interval |
| 12006 | * skyrocketing in a short amount of time. Skip the balance_interval |
| 12007 | * increase logic to avoid that. |
| 12008 | * |
| 12009 | * Similarly misfit migration which is not necessarily an indication of |
| 12010 | * the system being busy and requires lb to backoff to let it settle |
| 12011 | * down. |
| 12012 | */ |
| 12013 | if (env.idle == CPU_NEWLY_IDLE || |
| 12014 | env.migration_type == migrate_misfit) |
| 12015 | goto out; |
| 12016 | |
| 12017 | /* tune up the balancing interval */ |
| 12018 | if ((env.flags & LBF_ALL_PINNED && |
| 12019 | sd->balance_interval < MAX_PINNED_INTERVAL) || |
| 12020 | sd->balance_interval < sd->max_interval) |
| 12021 | sd->balance_interval *= 2; |
| 12022 | out: |
| 12023 | return ld_moved; |
| 12024 | } |
| 12025 | |
| 12026 | static inline unsigned long |
| 12027 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) |
| 12028 | { |
| 12029 | unsigned long interval = sd->balance_interval; |
| 12030 | |
| 12031 | if (cpu_busy) |
| 12032 | interval *= sd->busy_factor; |
| 12033 | |
| 12034 | /* scale ms to jiffies */ |
| 12035 | interval = msecs_to_jiffies(interval); |
| 12036 | |
| 12037 | /* |
| 12038 | * Reduce likelihood of busy balancing at higher domains racing with |
| 12039 | * balancing at lower domains by preventing their balancing periods |
| 12040 | * from being multiples of each other. |
| 12041 | */ |
| 12042 | if (cpu_busy) |
| 12043 | interval -= 1; |
| 12044 | |
| 12045 | interval = clamp(interval, 1UL, max_load_balance_interval); |
| 12046 | |
| 12047 | return interval; |
| 12048 | } |
| 12049 | |
| 12050 | static inline void |
| 12051 | update_next_balance(struct sched_domain *sd, unsigned long *next_balance) |
| 12052 | { |
| 12053 | unsigned long interval, next; |
| 12054 | |
| 12055 | /* used by idle balance, so cpu_busy = 0 */ |
| 12056 | interval = get_sd_balance_interval(sd, 0); |
| 12057 | next = sd->last_balance + interval; |
| 12058 | |
| 12059 | if (time_after(*next_balance, next)) |
| 12060 | *next_balance = next; |
| 12061 | } |
| 12062 | |
| 12063 | /* |
| 12064 | * active_load_balance_cpu_stop is run by the CPU stopper. It pushes |
| 12065 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
| 12066 | * least 1 task to be running on each physical CPU where possible, and |
| 12067 | * avoids physical / logical imbalances. |
| 12068 | */ |
| 12069 | static int active_load_balance_cpu_stop(void *data) |
| 12070 | { |
| 12071 | struct rq *busiest_rq = data; |
| 12072 | int busiest_cpu = cpu_of(busiest_rq); |
| 12073 | int target_cpu = busiest_rq->push_cpu; |
| 12074 | struct rq *target_rq = cpu_rq(target_cpu); |
| 12075 | struct sched_domain *sd; |
| 12076 | struct task_struct *p = NULL; |
| 12077 | struct rq_flags rf; |
| 12078 | |
| 12079 | rq_lock_irq(busiest_rq, &rf); |
| 12080 | /* |
| 12081 | * Between queueing the stop-work and running it is a hole in which |
| 12082 | * CPUs can become inactive. We should not move tasks from or to |
| 12083 | * inactive CPUs. |
| 12084 | */ |
| 12085 | if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) |
| 12086 | goto out_unlock; |
| 12087 | |
| 12088 | /* Make sure the requested CPU hasn't gone down in the meantime: */ |
| 12089 | if (unlikely(busiest_cpu != smp_processor_id() || |
| 12090 | !busiest_rq->active_balance)) |
| 12091 | goto out_unlock; |
| 12092 | |
| 12093 | /* Is there any task to move? */ |
| 12094 | if (busiest_rq->nr_running <= 1) |
| 12095 | goto out_unlock; |
| 12096 | |
| 12097 | /* |
| 12098 | * This condition is "impossible", if it occurs |
| 12099 | * we need to fix it. Originally reported by |
| 12100 | * Bjorn Helgaas on a 128-CPU setup. |
| 12101 | */ |
| 12102 | WARN_ON_ONCE(busiest_rq == target_rq); |
| 12103 | |
| 12104 | /* Search for an sd spanning us and the target CPU. */ |
| 12105 | rcu_read_lock(); |
| 12106 | for_each_domain(target_cpu, sd) { |
| 12107 | if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
| 12108 | break; |
| 12109 | } |
| 12110 | |
| 12111 | if (likely(sd)) { |
| 12112 | struct lb_env env = { |
| 12113 | .sd = sd, |
| 12114 | .dst_cpu = target_cpu, |
| 12115 | .dst_rq = target_rq, |
| 12116 | .src_cpu = busiest_rq->cpu, |
| 12117 | .src_rq = busiest_rq, |
| 12118 | .idle = CPU_IDLE, |
| 12119 | .flags = LBF_ACTIVE_LB, |
| 12120 | }; |
| 12121 | |
| 12122 | schedstat_inc(sd->alb_count); |
| 12123 | update_rq_clock(busiest_rq); |
| 12124 | |
| 12125 | p = detach_one_task(&env); |
| 12126 | if (p) { |
| 12127 | schedstat_inc(sd->alb_pushed); |
| 12128 | /* Active balancing done, reset the failure counter. */ |
| 12129 | sd->nr_balance_failed = 0; |
| 12130 | } else { |
| 12131 | schedstat_inc(sd->alb_failed); |
| 12132 | } |
| 12133 | } |
| 12134 | rcu_read_unlock(); |
| 12135 | out_unlock: |
| 12136 | busiest_rq->active_balance = 0; |
| 12137 | rq_unlock(busiest_rq, &rf); |
| 12138 | |
| 12139 | if (p) |
| 12140 | attach_one_task(target_rq, p); |
| 12141 | |
| 12142 | local_irq_enable(); |
| 12143 | |
| 12144 | return 0; |
| 12145 | } |
| 12146 | |
| 12147 | /* |
| 12148 | * This flag serializes load-balancing passes over large domains |
| 12149 | * (above the NODE topology level) - only one load-balancing instance |
| 12150 | * may run at a time, to reduce overhead on very large systems with |
| 12151 | * lots of CPUs and large NUMA distances. |
| 12152 | * |
| 12153 | * - Note that load-balancing passes triggered while another one |
| 12154 | * is executing are skipped and not re-tried. |
| 12155 | * |
| 12156 | * - Also note that this does not serialize rebalance_domains() |
| 12157 | * execution, as non-SD_SERIALIZE domains will still be |
| 12158 | * load-balanced in parallel. |
| 12159 | */ |
| 12160 | static atomic_t sched_balance_running = ATOMIC_INIT(0); |
| 12161 | |
| 12162 | /* |
| 12163 | * Scale the max sched_balance_rq interval with the number of CPUs in the system. |
| 12164 | * This trades load-balance latency on larger machines for less cross talk. |
| 12165 | */ |
| 12166 | void update_max_interval(void) |
| 12167 | { |
| 12168 | max_load_balance_interval = HZ*num_online_cpus()/10; |
| 12169 | } |
| 12170 | |
| 12171 | static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) |
| 12172 | { |
| 12173 | if (cost > sd->max_newidle_lb_cost) { |
| 12174 | /* |
| 12175 | * Track max cost of a domain to make sure to not delay the |
| 12176 | * next wakeup on the CPU. |
| 12177 | */ |
| 12178 | sd->max_newidle_lb_cost = cost; |
| 12179 | sd->last_decay_max_lb_cost = jiffies; |
| 12180 | } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { |
| 12181 | /* |
| 12182 | * Decay the newidle max times by ~1% per second to ensure that |
| 12183 | * it is not outdated and the current max cost is actually |
| 12184 | * shorter. |
| 12185 | */ |
| 12186 | sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; |
| 12187 | sd->last_decay_max_lb_cost = jiffies; |
| 12188 | |
| 12189 | return true; |
| 12190 | } |
| 12191 | |
| 12192 | return false; |
| 12193 | } |
| 12194 | |
| 12195 | /* |
| 12196 | * It checks each scheduling domain to see if it is due to be balanced, |
| 12197 | * and initiates a balancing operation if so. |
| 12198 | * |
| 12199 | * Balancing parameters are set up in init_sched_domains. |
| 12200 | */ |
| 12201 | static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) |
| 12202 | { |
| 12203 | int continue_balancing = 1; |
| 12204 | int cpu = rq->cpu; |
| 12205 | int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); |
| 12206 | unsigned long interval; |
| 12207 | struct sched_domain *sd; |
| 12208 | /* Earliest time when we have to do rebalance again */ |
| 12209 | unsigned long next_balance = jiffies + 60*HZ; |
| 12210 | int update_next_balance = 0; |
| 12211 | int need_serialize, need_decay = 0; |
| 12212 | u64 max_cost = 0; |
| 12213 | |
| 12214 | rcu_read_lock(); |
| 12215 | for_each_domain(cpu, sd) { |
| 12216 | /* |
| 12217 | * Decay the newidle max times here because this is a regular |
| 12218 | * visit to all the domains. |
| 12219 | */ |
| 12220 | need_decay = update_newidle_cost(sd, 0); |
| 12221 | max_cost += sd->max_newidle_lb_cost; |
| 12222 | |
| 12223 | /* |
| 12224 | * Stop the load balance at this level. There is another |
| 12225 | * CPU in our sched group which is doing load balancing more |
| 12226 | * actively. |
| 12227 | */ |
| 12228 | if (!continue_balancing) { |
| 12229 | if (need_decay) |
| 12230 | continue; |
| 12231 | break; |
| 12232 | } |
| 12233 | |
| 12234 | interval = get_sd_balance_interval(sd, busy); |
| 12235 | |
| 12236 | need_serialize = sd->flags & SD_SERIALIZE; |
| 12237 | if (need_serialize) { |
| 12238 | if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) |
| 12239 | goto out; |
| 12240 | } |
| 12241 | |
| 12242 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
| 12243 | if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { |
| 12244 | /* |
| 12245 | * The LBF_DST_PINNED logic could have changed |
| 12246 | * env->dst_cpu, so we can't know our idle |
| 12247 | * state even if we migrated tasks. Update it. |
| 12248 | */ |
| 12249 | idle = idle_cpu(cpu); |
| 12250 | busy = !idle && !sched_idle_cpu(cpu); |
| 12251 | } |
| 12252 | sd->last_balance = jiffies; |
| 12253 | interval = get_sd_balance_interval(sd, busy); |
| 12254 | } |
| 12255 | if (need_serialize) |
| 12256 | atomic_set_release(&sched_balance_running, 0); |
| 12257 | out: |
| 12258 | if (time_after(next_balance, sd->last_balance + interval)) { |
| 12259 | next_balance = sd->last_balance + interval; |
| 12260 | update_next_balance = 1; |
| 12261 | } |
| 12262 | } |
| 12263 | if (need_decay) { |
| 12264 | /* |
| 12265 | * Ensure the rq-wide value also decays but keep it at a |
| 12266 | * reasonable floor to avoid funnies with rq->avg_idle. |
| 12267 | */ |
| 12268 | rq->max_idle_balance_cost = |
| 12269 | max((u64)sysctl_sched_migration_cost, max_cost); |
| 12270 | } |
| 12271 | rcu_read_unlock(); |
| 12272 | |
| 12273 | /* |
| 12274 | * next_balance will be updated only when there is a need. |
| 12275 | * When the cpu is attached to null domain for ex, it will not be |
| 12276 | * updated. |
| 12277 | */ |
| 12278 | if (likely(update_next_balance)) |
| 12279 | rq->next_balance = next_balance; |
| 12280 | |
| 12281 | } |
| 12282 | |
| 12283 | static inline int on_null_domain(struct rq *rq) |
| 12284 | { |
| 12285 | return unlikely(!rcu_dereference_sched(rq->sd)); |
| 12286 | } |
| 12287 | |
| 12288 | #ifdef CONFIG_NO_HZ_COMMON |
| 12289 | /* |
| 12290 | * NOHZ idle load balancing (ILB) details: |
| 12291 | * |
| 12292 | * - When one of the busy CPUs notices that there may be an idle rebalancing |
| 12293 | * needed, they will kick the idle load balancer, which then does idle |
| 12294 | * load balancing for all the idle CPUs. |
| 12295 | */ |
| 12296 | static inline int find_new_ilb(void) |
| 12297 | { |
| 12298 | const struct cpumask *hk_mask; |
| 12299 | int ilb_cpu; |
| 12300 | |
| 12301 | hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); |
| 12302 | |
| 12303 | for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { |
| 12304 | |
| 12305 | if (ilb_cpu == smp_processor_id()) |
| 12306 | continue; |
| 12307 | |
| 12308 | if (idle_cpu(ilb_cpu)) |
| 12309 | return ilb_cpu; |
| 12310 | } |
| 12311 | |
| 12312 | return -1; |
| 12313 | } |
| 12314 | |
| 12315 | /* |
| 12316 | * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU |
| 12317 | * SMP function call (IPI). |
| 12318 | * |
| 12319 | * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set |
| 12320 | * (if there is one). |
| 12321 | */ |
| 12322 | static void kick_ilb(unsigned int flags) |
| 12323 | { |
| 12324 | int ilb_cpu; |
| 12325 | |
| 12326 | /* |
| 12327 | * Increase nohz.next_balance only when if full ilb is triggered but |
| 12328 | * not if we only update stats. |
| 12329 | */ |
| 12330 | if (flags & NOHZ_BALANCE_KICK) |
| 12331 | nohz.next_balance = jiffies+1; |
| 12332 | |
| 12333 | ilb_cpu = find_new_ilb(); |
| 12334 | if (ilb_cpu < 0) |
| 12335 | return; |
| 12336 | |
| 12337 | /* |
| 12338 | * Don't bother if no new NOHZ balance work items for ilb_cpu, |
| 12339 | * i.e. all bits in flags are already set in ilb_cpu. |
| 12340 | */ |
| 12341 | if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) |
| 12342 | return; |
| 12343 | |
| 12344 | /* |
| 12345 | * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets |
| 12346 | * the first flag owns it; cleared by nohz_csd_func(). |
| 12347 | */ |
| 12348 | flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); |
| 12349 | if (flags & NOHZ_KICK_MASK) |
| 12350 | return; |
| 12351 | |
| 12352 | /* |
| 12353 | * This way we generate an IPI on the target CPU which |
| 12354 | * is idle, and the softirq performing NOHZ idle load balancing |
| 12355 | * will be run before returning from the IPI. |
| 12356 | */ |
| 12357 | smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); |
| 12358 | } |
| 12359 | |
| 12360 | /* |
| 12361 | * Current decision point for kicking the idle load balancer in the presence |
| 12362 | * of idle CPUs in the system. |
| 12363 | */ |
| 12364 | static void nohz_balancer_kick(struct rq *rq) |
| 12365 | { |
| 12366 | unsigned long now = jiffies; |
| 12367 | struct sched_domain_shared *sds; |
| 12368 | struct sched_domain *sd; |
| 12369 | int nr_busy, i, cpu = rq->cpu; |
| 12370 | unsigned int flags = 0; |
| 12371 | |
| 12372 | if (unlikely(rq->idle_balance)) |
| 12373 | return; |
| 12374 | |
| 12375 | /* |
| 12376 | * We may be recently in ticked or tickless idle mode. At the first |
| 12377 | * busy tick after returning from idle, we will update the busy stats. |
| 12378 | */ |
| 12379 | nohz_balance_exit_idle(rq); |
| 12380 | |
| 12381 | /* |
| 12382 | * None are in tickless mode and hence no need for NOHZ idle load |
| 12383 | * balancing: |
| 12384 | */ |
| 12385 | if (likely(!atomic_read(&nohz.nr_cpus))) |
| 12386 | return; |
| 12387 | |
| 12388 | if (READ_ONCE(nohz.has_blocked) && |
| 12389 | time_after(now, READ_ONCE(nohz.next_blocked))) |
| 12390 | flags = NOHZ_STATS_KICK; |
| 12391 | |
| 12392 | if (time_before(now, nohz.next_balance)) |
| 12393 | goto out; |
| 12394 | |
| 12395 | if (rq->nr_running >= 2) { |
| 12396 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
| 12397 | goto out; |
| 12398 | } |
| 12399 | |
| 12400 | rcu_read_lock(); |
| 12401 | |
| 12402 | sd = rcu_dereference(rq->sd); |
| 12403 | if (sd) { |
| 12404 | /* |
| 12405 | * If there's a runnable CFS task and the current CPU has reduced |
| 12406 | * capacity, kick the ILB to see if there's a better CPU to run on: |
| 12407 | */ |
| 12408 | if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { |
| 12409 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
| 12410 | goto unlock; |
| 12411 | } |
| 12412 | } |
| 12413 | |
| 12414 | sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); |
| 12415 | if (sd) { |
| 12416 | /* |
| 12417 | * When ASYM_PACKING; see if there's a more preferred CPU |
| 12418 | * currently idle; in which case, kick the ILB to move tasks |
| 12419 | * around. |
| 12420 | * |
| 12421 | * When balancing between cores, all the SMT siblings of the |
| 12422 | * preferred CPU must be idle. |
| 12423 | */ |
| 12424 | for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { |
| 12425 | if (sched_asym(sd, i, cpu)) { |
| 12426 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
| 12427 | goto unlock; |
| 12428 | } |
| 12429 | } |
| 12430 | } |
| 12431 | |
| 12432 | sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); |
| 12433 | if (sd) { |
| 12434 | /* |
| 12435 | * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU |
| 12436 | * to run the misfit task on. |
| 12437 | */ |
| 12438 | if (check_misfit_status(rq)) { |
| 12439 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
| 12440 | goto unlock; |
| 12441 | } |
| 12442 | |
| 12443 | /* |
| 12444 | * For asymmetric systems, we do not want to nicely balance |
| 12445 | * cache use, instead we want to embrace asymmetry and only |
| 12446 | * ensure tasks have enough CPU capacity. |
| 12447 | * |
| 12448 | * Skip the LLC logic because it's not relevant in that case. |
| 12449 | */ |
| 12450 | goto unlock; |
| 12451 | } |
| 12452 | |
| 12453 | sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); |
| 12454 | if (sds) { |
| 12455 | /* |
| 12456 | * If there is an imbalance between LLC domains (IOW we could |
| 12457 | * increase the overall cache utilization), we need a less-loaded LLC |
| 12458 | * domain to pull some load from. Likewise, we may need to spread |
| 12459 | * load within the current LLC domain (e.g. packed SMT cores but |
| 12460 | * other CPUs are idle). We can't really know from here how busy |
| 12461 | * the others are - so just get a NOHZ balance going if it looks |
| 12462 | * like this LLC domain has tasks we could move. |
| 12463 | */ |
| 12464 | nr_busy = atomic_read(&sds->nr_busy_cpus); |
| 12465 | if (nr_busy > 1) { |
| 12466 | flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; |
| 12467 | goto unlock; |
| 12468 | } |
| 12469 | } |
| 12470 | unlock: |
| 12471 | rcu_read_unlock(); |
| 12472 | out: |
| 12473 | if (READ_ONCE(nohz.needs_update)) |
| 12474 | flags |= NOHZ_NEXT_KICK; |
| 12475 | |
| 12476 | if (flags) |
| 12477 | kick_ilb(flags); |
| 12478 | } |
| 12479 | |
| 12480 | static void set_cpu_sd_state_busy(int cpu) |
| 12481 | { |
| 12482 | struct sched_domain *sd; |
| 12483 | |
| 12484 | rcu_read_lock(); |
| 12485 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
| 12486 | |
| 12487 | if (!sd || !sd->nohz_idle) |
| 12488 | goto unlock; |
| 12489 | sd->nohz_idle = 0; |
| 12490 | |
| 12491 | atomic_inc(&sd->shared->nr_busy_cpus); |
| 12492 | unlock: |
| 12493 | rcu_read_unlock(); |
| 12494 | } |
| 12495 | |
| 12496 | void nohz_balance_exit_idle(struct rq *rq) |
| 12497 | { |
| 12498 | WARN_ON_ONCE(rq != this_rq()); |
| 12499 | |
| 12500 | if (likely(!rq->nohz_tick_stopped)) |
| 12501 | return; |
| 12502 | |
| 12503 | rq->nohz_tick_stopped = 0; |
| 12504 | cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); |
| 12505 | atomic_dec(&nohz.nr_cpus); |
| 12506 | |
| 12507 | set_cpu_sd_state_busy(rq->cpu); |
| 12508 | } |
| 12509 | |
| 12510 | static void set_cpu_sd_state_idle(int cpu) |
| 12511 | { |
| 12512 | struct sched_domain *sd; |
| 12513 | |
| 12514 | rcu_read_lock(); |
| 12515 | sd = rcu_dereference(per_cpu(sd_llc, cpu)); |
| 12516 | |
| 12517 | if (!sd || sd->nohz_idle) |
| 12518 | goto unlock; |
| 12519 | sd->nohz_idle = 1; |
| 12520 | |
| 12521 | atomic_dec(&sd->shared->nr_busy_cpus); |
| 12522 | unlock: |
| 12523 | rcu_read_unlock(); |
| 12524 | } |
| 12525 | |
| 12526 | /* |
| 12527 | * This routine will record that the CPU is going idle with tick stopped. |
| 12528 | * This info will be used in performing idle load balancing in the future. |
| 12529 | */ |
| 12530 | void nohz_balance_enter_idle(int cpu) |
| 12531 | { |
| 12532 | struct rq *rq = cpu_rq(cpu); |
| 12533 | |
| 12534 | WARN_ON_ONCE(cpu != smp_processor_id()); |
| 12535 | |
| 12536 | /* If this CPU is going down, then nothing needs to be done: */ |
| 12537 | if (!cpu_active(cpu)) |
| 12538 | return; |
| 12539 | |
| 12540 | /* |
| 12541 | * Can be set safely without rq->lock held |
| 12542 | * If a clear happens, it will have evaluated last additions because |
| 12543 | * rq->lock is held during the check and the clear |
| 12544 | */ |
| 12545 | rq->has_blocked_load = 1; |
| 12546 | |
| 12547 | /* |
| 12548 | * The tick is still stopped but load could have been added in the |
| 12549 | * meantime. We set the nohz.has_blocked flag to trig a check of the |
| 12550 | * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear |
| 12551 | * of nohz.has_blocked can only happen after checking the new load |
| 12552 | */ |
| 12553 | if (rq->nohz_tick_stopped) |
| 12554 | goto out; |
| 12555 | |
| 12556 | /* If we're a completely isolated CPU, we don't play: */ |
| 12557 | if (on_null_domain(rq)) |
| 12558 | return; |
| 12559 | |
| 12560 | rq->nohz_tick_stopped = 1; |
| 12561 | |
| 12562 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
| 12563 | atomic_inc(&nohz.nr_cpus); |
| 12564 | |
| 12565 | /* |
| 12566 | * Ensures that if nohz_idle_balance() fails to observe our |
| 12567 | * @idle_cpus_mask store, it must observe the @has_blocked |
| 12568 | * and @needs_update stores. |
| 12569 | */ |
| 12570 | smp_mb__after_atomic(); |
| 12571 | |
| 12572 | set_cpu_sd_state_idle(cpu); |
| 12573 | |
| 12574 | WRITE_ONCE(nohz.needs_update, 1); |
| 12575 | out: |
| 12576 | /* |
| 12577 | * Each time a cpu enter idle, we assume that it has blocked load and |
| 12578 | * enable the periodic update of the load of idle CPUs |
| 12579 | */ |
| 12580 | WRITE_ONCE(nohz.has_blocked, 1); |
| 12581 | } |
| 12582 | |
| 12583 | static bool update_nohz_stats(struct rq *rq) |
| 12584 | { |
| 12585 | unsigned int cpu = rq->cpu; |
| 12586 | |
| 12587 | if (!rq->has_blocked_load) |
| 12588 | return false; |
| 12589 | |
| 12590 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) |
| 12591 | return false; |
| 12592 | |
| 12593 | if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) |
| 12594 | return true; |
| 12595 | |
| 12596 | sched_balance_update_blocked_averages(cpu); |
| 12597 | |
| 12598 | return rq->has_blocked_load; |
| 12599 | } |
| 12600 | |
| 12601 | /* |
| 12602 | * Internal function that runs load balance for all idle CPUs. The load balance |
| 12603 | * can be a simple update of blocked load or a complete load balance with |
| 12604 | * tasks movement depending of flags. |
| 12605 | */ |
| 12606 | static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) |
| 12607 | { |
| 12608 | /* Earliest time when we have to do rebalance again */ |
| 12609 | unsigned long now = jiffies; |
| 12610 | unsigned long next_balance = now + 60*HZ; |
| 12611 | bool has_blocked_load = false; |
| 12612 | int update_next_balance = 0; |
| 12613 | int this_cpu = this_rq->cpu; |
| 12614 | int balance_cpu; |
| 12615 | struct rq *rq; |
| 12616 | |
| 12617 | WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); |
| 12618 | |
| 12619 | /* |
| 12620 | * We assume there will be no idle load after this update and clear |
| 12621 | * the has_blocked flag. If a cpu enters idle in the mean time, it will |
| 12622 | * set the has_blocked flag and trigger another update of idle load. |
| 12623 | * Because a cpu that becomes idle, is added to idle_cpus_mask before |
| 12624 | * setting the flag, we are sure to not clear the state and not |
| 12625 | * check the load of an idle cpu. |
| 12626 | * |
| 12627 | * Same applies to idle_cpus_mask vs needs_update. |
| 12628 | */ |
| 12629 | if (flags & NOHZ_STATS_KICK) |
| 12630 | WRITE_ONCE(nohz.has_blocked, 0); |
| 12631 | if (flags & NOHZ_NEXT_KICK) |
| 12632 | WRITE_ONCE(nohz.needs_update, 0); |
| 12633 | |
| 12634 | /* |
| 12635 | * Ensures that if we miss the CPU, we must see the has_blocked |
| 12636 | * store from nohz_balance_enter_idle(). |
| 12637 | */ |
| 12638 | smp_mb(); |
| 12639 | |
| 12640 | /* |
| 12641 | * Start with the next CPU after this_cpu so we will end with this_cpu and let a |
| 12642 | * chance for other idle cpu to pull load. |
| 12643 | */ |
| 12644 | for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { |
| 12645 | if (!idle_cpu(balance_cpu)) |
| 12646 | continue; |
| 12647 | |
| 12648 | /* |
| 12649 | * If this CPU gets work to do, stop the load balancing |
| 12650 | * work being done for other CPUs. Next load |
| 12651 | * balancing owner will pick it up. |
| 12652 | */ |
| 12653 | if (!idle_cpu(this_cpu) && need_resched()) { |
| 12654 | if (flags & NOHZ_STATS_KICK) |
| 12655 | has_blocked_load = true; |
| 12656 | if (flags & NOHZ_NEXT_KICK) |
| 12657 | WRITE_ONCE(nohz.needs_update, 1); |
| 12658 | goto abort; |
| 12659 | } |
| 12660 | |
| 12661 | rq = cpu_rq(balance_cpu); |
| 12662 | |
| 12663 | if (flags & NOHZ_STATS_KICK) |
| 12664 | has_blocked_load |= update_nohz_stats(rq); |
| 12665 | |
| 12666 | /* |
| 12667 | * If time for next balance is due, |
| 12668 | * do the balance. |
| 12669 | */ |
| 12670 | if (time_after_eq(jiffies, rq->next_balance)) { |
| 12671 | struct rq_flags rf; |
| 12672 | |
| 12673 | rq_lock_irqsave(rq, &rf); |
| 12674 | update_rq_clock(rq); |
| 12675 | rq_unlock_irqrestore(rq, &rf); |
| 12676 | |
| 12677 | if (flags & NOHZ_BALANCE_KICK) |
| 12678 | sched_balance_domains(rq, CPU_IDLE); |
| 12679 | } |
| 12680 | |
| 12681 | if (time_after(next_balance, rq->next_balance)) { |
| 12682 | next_balance = rq->next_balance; |
| 12683 | update_next_balance = 1; |
| 12684 | } |
| 12685 | } |
| 12686 | |
| 12687 | /* |
| 12688 | * next_balance will be updated only when there is a need. |
| 12689 | * When the CPU is attached to null domain for ex, it will not be |
| 12690 | * updated. |
| 12691 | */ |
| 12692 | if (likely(update_next_balance)) |
| 12693 | nohz.next_balance = next_balance; |
| 12694 | |
| 12695 | if (flags & NOHZ_STATS_KICK) |
| 12696 | WRITE_ONCE(nohz.next_blocked, |
| 12697 | now + msecs_to_jiffies(LOAD_AVG_PERIOD)); |
| 12698 | |
| 12699 | abort: |
| 12700 | /* There is still blocked load, enable periodic update */ |
| 12701 | if (has_blocked_load) |
| 12702 | WRITE_ONCE(nohz.has_blocked, 1); |
| 12703 | } |
| 12704 | |
| 12705 | /* |
| 12706 | * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the |
| 12707 | * rebalancing for all the CPUs for whom scheduler ticks are stopped. |
| 12708 | */ |
| 12709 | static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
| 12710 | { |
| 12711 | unsigned int flags = this_rq->nohz_idle_balance; |
| 12712 | |
| 12713 | if (!flags) |
| 12714 | return false; |
| 12715 | |
| 12716 | this_rq->nohz_idle_balance = 0; |
| 12717 | |
| 12718 | if (idle != CPU_IDLE) |
| 12719 | return false; |
| 12720 | |
| 12721 | _nohz_idle_balance(this_rq, flags); |
| 12722 | |
| 12723 | return true; |
| 12724 | } |
| 12725 | |
| 12726 | /* |
| 12727 | * Check if we need to directly run the ILB for updating blocked load before |
| 12728 | * entering idle state. Here we run ILB directly without issuing IPIs. |
| 12729 | * |
| 12730 | * Note that when this function is called, the tick may not yet be stopped on |
| 12731 | * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and |
| 12732 | * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates |
| 12733 | * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle |
| 12734 | * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is |
| 12735 | * called from this function on (this) CPU that's not yet in the mask. That's |
| 12736 | * OK because the goal of nohz_run_idle_balance() is to run ILB only for |
| 12737 | * updating the blocked load of already idle CPUs without waking up one of |
| 12738 | * those idle CPUs and outside the preempt disable / IRQ off phase of the local |
| 12739 | * cpu about to enter idle, because it can take a long time. |
| 12740 | */ |
| 12741 | void nohz_run_idle_balance(int cpu) |
| 12742 | { |
| 12743 | unsigned int flags; |
| 12744 | |
| 12745 | flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); |
| 12746 | |
| 12747 | /* |
| 12748 | * Update the blocked load only if no SCHED_SOFTIRQ is about to happen |
| 12749 | * (i.e. NOHZ_STATS_KICK set) and will do the same. |
| 12750 | */ |
| 12751 | if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) |
| 12752 | _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); |
| 12753 | } |
| 12754 | |
| 12755 | static void nohz_newidle_balance(struct rq *this_rq) |
| 12756 | { |
| 12757 | int this_cpu = this_rq->cpu; |
| 12758 | |
| 12759 | /* Will wake up very soon. No time for doing anything else*/ |
| 12760 | if (this_rq->avg_idle < sysctl_sched_migration_cost) |
| 12761 | return; |
| 12762 | |
| 12763 | /* Don't need to update blocked load of idle CPUs*/ |
| 12764 | if (!READ_ONCE(nohz.has_blocked) || |
| 12765 | time_before(jiffies, READ_ONCE(nohz.next_blocked))) |
| 12766 | return; |
| 12767 | |
| 12768 | /* |
| 12769 | * Set the need to trigger ILB in order to update blocked load |
| 12770 | * before entering idle state. |
| 12771 | */ |
| 12772 | atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); |
| 12773 | } |
| 12774 | |
| 12775 | #else /* !CONFIG_NO_HZ_COMMON */ |
| 12776 | static inline void nohz_balancer_kick(struct rq *rq) { } |
| 12777 | |
| 12778 | static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) |
| 12779 | { |
| 12780 | return false; |
| 12781 | } |
| 12782 | |
| 12783 | static inline void nohz_newidle_balance(struct rq *this_rq) { } |
| 12784 | #endif /* CONFIG_NO_HZ_COMMON */ |
| 12785 | |
| 12786 | /* |
| 12787 | * sched_balance_newidle is called by schedule() if this_cpu is about to become |
| 12788 | * idle. Attempts to pull tasks from other CPUs. |
| 12789 | * |
| 12790 | * Returns: |
| 12791 | * < 0 - we released the lock and there are !fair tasks present |
| 12792 | * 0 - failed, no new tasks |
| 12793 | * > 0 - success, new (fair) tasks present |
| 12794 | */ |
| 12795 | static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) |
| 12796 | { |
| 12797 | unsigned long next_balance = jiffies + HZ; |
| 12798 | int this_cpu = this_rq->cpu; |
| 12799 | int continue_balancing = 1; |
| 12800 | u64 t0, t1, curr_cost = 0; |
| 12801 | struct sched_domain *sd; |
| 12802 | int pulled_task = 0; |
| 12803 | |
| 12804 | update_misfit_status(NULL, this_rq); |
| 12805 | |
| 12806 | /* |
| 12807 | * There is a task waiting to run. No need to search for one. |
| 12808 | * Return 0; the task will be enqueued when switching to idle. |
| 12809 | */ |
| 12810 | if (this_rq->ttwu_pending) |
| 12811 | return 0; |
| 12812 | |
| 12813 | /* |
| 12814 | * We must set idle_stamp _before_ calling sched_balance_rq() |
| 12815 | * for CPU_NEWLY_IDLE, such that we measure the this duration |
| 12816 | * as idle time. |
| 12817 | */ |
| 12818 | this_rq->idle_stamp = rq_clock(this_rq); |
| 12819 | |
| 12820 | /* |
| 12821 | * Do not pull tasks towards !active CPUs... |
| 12822 | */ |
| 12823 | if (!cpu_active(this_cpu)) |
| 12824 | return 0; |
| 12825 | |
| 12826 | /* |
| 12827 | * This is OK, because current is on_cpu, which avoids it being picked |
| 12828 | * for load-balance and preemption/IRQs are still disabled avoiding |
| 12829 | * further scheduler activity on it and we're being very careful to |
| 12830 | * re-start the picking loop. |
| 12831 | */ |
| 12832 | rq_unpin_lock(this_rq, rf); |
| 12833 | |
| 12834 | rcu_read_lock(); |
| 12835 | sd = rcu_dereference_check_sched_domain(this_rq->sd); |
| 12836 | |
| 12837 | if (!get_rd_overloaded(this_rq->rd) || |
| 12838 | (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { |
| 12839 | |
| 12840 | if (sd) |
| 12841 | update_next_balance(sd, &next_balance); |
| 12842 | rcu_read_unlock(); |
| 12843 | |
| 12844 | goto out; |
| 12845 | } |
| 12846 | rcu_read_unlock(); |
| 12847 | |
| 12848 | raw_spin_rq_unlock(this_rq); |
| 12849 | |
| 12850 | t0 = sched_clock_cpu(this_cpu); |
| 12851 | sched_balance_update_blocked_averages(this_cpu); |
| 12852 | |
| 12853 | rcu_read_lock(); |
| 12854 | for_each_domain(this_cpu, sd) { |
| 12855 | u64 domain_cost; |
| 12856 | |
| 12857 | update_next_balance(sd, &next_balance); |
| 12858 | |
| 12859 | if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) |
| 12860 | break; |
| 12861 | |
| 12862 | if (sd->flags & SD_BALANCE_NEWIDLE) { |
| 12863 | |
| 12864 | pulled_task = sched_balance_rq(this_cpu, this_rq, |
| 12865 | sd, CPU_NEWLY_IDLE, |
| 12866 | &continue_balancing); |
| 12867 | |
| 12868 | t1 = sched_clock_cpu(this_cpu); |
| 12869 | domain_cost = t1 - t0; |
| 12870 | update_newidle_cost(sd, domain_cost); |
| 12871 | |
| 12872 | curr_cost += domain_cost; |
| 12873 | t0 = t1; |
| 12874 | } |
| 12875 | |
| 12876 | /* |
| 12877 | * Stop searching for tasks to pull if there are |
| 12878 | * now runnable tasks on this rq. |
| 12879 | */ |
| 12880 | if (pulled_task || !continue_balancing) |
| 12881 | break; |
| 12882 | } |
| 12883 | rcu_read_unlock(); |
| 12884 | |
| 12885 | raw_spin_rq_lock(this_rq); |
| 12886 | |
| 12887 | if (curr_cost > this_rq->max_idle_balance_cost) |
| 12888 | this_rq->max_idle_balance_cost = curr_cost; |
| 12889 | |
| 12890 | /* |
| 12891 | * While browsing the domains, we released the rq lock, a task could |
| 12892 | * have been enqueued in the meantime. Since we're not going idle, |
| 12893 | * pretend we pulled a task. |
| 12894 | */ |
| 12895 | if (this_rq->cfs.h_nr_queued && !pulled_task) |
| 12896 | pulled_task = 1; |
| 12897 | |
| 12898 | /* Is there a task of a high priority class? */ |
| 12899 | if (this_rq->nr_running != this_rq->cfs.h_nr_queued) |
| 12900 | pulled_task = -1; |
| 12901 | |
| 12902 | out: |
| 12903 | /* Move the next balance forward */ |
| 12904 | if (time_after(this_rq->next_balance, next_balance)) |
| 12905 | this_rq->next_balance = next_balance; |
| 12906 | |
| 12907 | if (pulled_task) |
| 12908 | this_rq->idle_stamp = 0; |
| 12909 | else |
| 12910 | nohz_newidle_balance(this_rq); |
| 12911 | |
| 12912 | rq_repin_lock(this_rq, rf); |
| 12913 | |
| 12914 | return pulled_task; |
| 12915 | } |
| 12916 | |
| 12917 | /* |
| 12918 | * This softirq handler is triggered via SCHED_SOFTIRQ from two places: |
| 12919 | * |
| 12920 | * - directly from the local sched_tick() for periodic load balancing |
| 12921 | * |
| 12922 | * - indirectly from a remote sched_tick() for NOHZ idle balancing |
| 12923 | * through the SMP cross-call nohz_csd_func() |
| 12924 | */ |
| 12925 | static __latent_entropy void sched_balance_softirq(void) |
| 12926 | { |
| 12927 | struct rq *this_rq = this_rq(); |
| 12928 | enum cpu_idle_type idle = this_rq->idle_balance; |
| 12929 | /* |
| 12930 | * If this CPU has a pending NOHZ_BALANCE_KICK, then do the |
| 12931 | * balancing on behalf of the other idle CPUs whose ticks are |
| 12932 | * stopped. Do nohz_idle_balance *before* sched_balance_domains to |
| 12933 | * give the idle CPUs a chance to load balance. Else we may |
| 12934 | * load balance only within the local sched_domain hierarchy |
| 12935 | * and abort nohz_idle_balance altogether if we pull some load. |
| 12936 | */ |
| 12937 | if (nohz_idle_balance(this_rq, idle)) |
| 12938 | return; |
| 12939 | |
| 12940 | /* normal load balance */ |
| 12941 | sched_balance_update_blocked_averages(this_rq->cpu); |
| 12942 | sched_balance_domains(this_rq, idle); |
| 12943 | } |
| 12944 | |
| 12945 | /* |
| 12946 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
| 12947 | */ |
| 12948 | void sched_balance_trigger(struct rq *rq) |
| 12949 | { |
| 12950 | /* |
| 12951 | * Don't need to rebalance while attached to NULL domain or |
| 12952 | * runqueue CPU is not active |
| 12953 | */ |
| 12954 | if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) |
| 12955 | return; |
| 12956 | |
| 12957 | if (time_after_eq(jiffies, rq->next_balance)) |
| 12958 | raise_softirq(SCHED_SOFTIRQ); |
| 12959 | |
| 12960 | nohz_balancer_kick(rq); |
| 12961 | } |
| 12962 | |
| 12963 | static void rq_online_fair(struct rq *rq) |
| 12964 | { |
| 12965 | update_sysctl(); |
| 12966 | |
| 12967 | update_runtime_enabled(rq); |
| 12968 | } |
| 12969 | |
| 12970 | static void rq_offline_fair(struct rq *rq) |
| 12971 | { |
| 12972 | update_sysctl(); |
| 12973 | |
| 12974 | /* Ensure any throttled groups are reachable by pick_next_task */ |
| 12975 | unthrottle_offline_cfs_rqs(rq); |
| 12976 | |
| 12977 | /* Ensure that we remove rq contribution to group share: */ |
| 12978 | clear_tg_offline_cfs_rqs(rq); |
| 12979 | } |
| 12980 | |
| 12981 | #endif /* CONFIG_SMP */ |
| 12982 | |
| 12983 | #ifdef CONFIG_SCHED_CORE |
| 12984 | static inline bool |
| 12985 | __entity_slice_used(struct sched_entity *se, int min_nr_tasks) |
| 12986 | { |
| 12987 | u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
| 12988 | u64 slice = se->slice; |
| 12989 | |
| 12990 | return (rtime * min_nr_tasks > slice); |
| 12991 | } |
| 12992 | |
| 12993 | #define MIN_NR_TASKS_DURING_FORCEIDLE 2 |
| 12994 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) |
| 12995 | { |
| 12996 | if (!sched_core_enabled(rq)) |
| 12997 | return; |
| 12998 | |
| 12999 | /* |
| 13000 | * If runqueue has only one task which used up its slice and |
| 13001 | * if the sibling is forced idle, then trigger schedule to |
| 13002 | * give forced idle task a chance. |
| 13003 | * |
| 13004 | * sched_slice() considers only this active rq and it gets the |
| 13005 | * whole slice. But during force idle, we have siblings acting |
| 13006 | * like a single runqueue and hence we need to consider runnable |
| 13007 | * tasks on this CPU and the forced idle CPU. Ideally, we should |
| 13008 | * go through the forced idle rq, but that would be a perf hit. |
| 13009 | * We can assume that the forced idle CPU has at least |
| 13010 | * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check |
| 13011 | * if we need to give up the CPU. |
| 13012 | */ |
| 13013 | if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && |
| 13014 | __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) |
| 13015 | resched_curr(rq); |
| 13016 | } |
| 13017 | |
| 13018 | /* |
| 13019 | * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. |
| 13020 | */ |
| 13021 | static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, |
| 13022 | bool forceidle) |
| 13023 | { |
| 13024 | for_each_sched_entity(se) { |
| 13025 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13026 | |
| 13027 | if (forceidle) { |
| 13028 | if (cfs_rq->forceidle_seq == fi_seq) |
| 13029 | break; |
| 13030 | cfs_rq->forceidle_seq = fi_seq; |
| 13031 | } |
| 13032 | |
| 13033 | cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; |
| 13034 | } |
| 13035 | } |
| 13036 | |
| 13037 | void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) |
| 13038 | { |
| 13039 | struct sched_entity *se = &p->se; |
| 13040 | |
| 13041 | if (p->sched_class != &fair_sched_class) |
| 13042 | return; |
| 13043 | |
| 13044 | se_fi_update(se, rq->core->core_forceidle_seq, in_fi); |
| 13045 | } |
| 13046 | |
| 13047 | bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, |
| 13048 | bool in_fi) |
| 13049 | { |
| 13050 | struct rq *rq = task_rq(a); |
| 13051 | const struct sched_entity *sea = &a->se; |
| 13052 | const struct sched_entity *seb = &b->se; |
| 13053 | struct cfs_rq *cfs_rqa; |
| 13054 | struct cfs_rq *cfs_rqb; |
| 13055 | s64 delta; |
| 13056 | |
| 13057 | WARN_ON_ONCE(task_rq(b)->core != rq->core); |
| 13058 | |
| 13059 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 13060 | /* |
| 13061 | * Find an se in the hierarchy for tasks a and b, such that the se's |
| 13062 | * are immediate siblings. |
| 13063 | */ |
| 13064 | while (sea->cfs_rq->tg != seb->cfs_rq->tg) { |
| 13065 | int sea_depth = sea->depth; |
| 13066 | int seb_depth = seb->depth; |
| 13067 | |
| 13068 | if (sea_depth >= seb_depth) |
| 13069 | sea = parent_entity(sea); |
| 13070 | if (sea_depth <= seb_depth) |
| 13071 | seb = parent_entity(seb); |
| 13072 | } |
| 13073 | |
| 13074 | se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); |
| 13075 | se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); |
| 13076 | |
| 13077 | cfs_rqa = sea->cfs_rq; |
| 13078 | cfs_rqb = seb->cfs_rq; |
| 13079 | #else |
| 13080 | cfs_rqa = &task_rq(a)->cfs; |
| 13081 | cfs_rqb = &task_rq(b)->cfs; |
| 13082 | #endif |
| 13083 | |
| 13084 | /* |
| 13085 | * Find delta after normalizing se's vruntime with its cfs_rq's |
| 13086 | * min_vruntime_fi, which would have been updated in prior calls |
| 13087 | * to se_fi_update(). |
| 13088 | */ |
| 13089 | delta = (s64)(sea->vruntime - seb->vruntime) + |
| 13090 | (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); |
| 13091 | |
| 13092 | return delta > 0; |
| 13093 | } |
| 13094 | |
| 13095 | static int task_is_throttled_fair(struct task_struct *p, int cpu) |
| 13096 | { |
| 13097 | struct cfs_rq *cfs_rq; |
| 13098 | |
| 13099 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 13100 | cfs_rq = task_group(p)->cfs_rq[cpu]; |
| 13101 | #else |
| 13102 | cfs_rq = &cpu_rq(cpu)->cfs; |
| 13103 | #endif |
| 13104 | return throttled_hierarchy(cfs_rq); |
| 13105 | } |
| 13106 | #else |
| 13107 | static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} |
| 13108 | #endif |
| 13109 | |
| 13110 | /* |
| 13111 | * scheduler tick hitting a task of our scheduling class. |
| 13112 | * |
| 13113 | * NOTE: This function can be called remotely by the tick offload that |
| 13114 | * goes along full dynticks. Therefore no local assumption can be made |
| 13115 | * and everything must be accessed through the @rq and @curr passed in |
| 13116 | * parameters. |
| 13117 | */ |
| 13118 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
| 13119 | { |
| 13120 | struct cfs_rq *cfs_rq; |
| 13121 | struct sched_entity *se = &curr->se; |
| 13122 | |
| 13123 | for_each_sched_entity(se) { |
| 13124 | cfs_rq = cfs_rq_of(se); |
| 13125 | entity_tick(cfs_rq, se, queued); |
| 13126 | } |
| 13127 | |
| 13128 | if (static_branch_unlikely(&sched_numa_balancing)) |
| 13129 | task_tick_numa(rq, curr); |
| 13130 | |
| 13131 | update_misfit_status(curr, rq); |
| 13132 | check_update_overutilized_status(task_rq(curr)); |
| 13133 | |
| 13134 | task_tick_core(rq, curr); |
| 13135 | } |
| 13136 | |
| 13137 | /* |
| 13138 | * called on fork with the child task as argument from the parent's context |
| 13139 | * - child not yet on the tasklist |
| 13140 | * - preemption disabled |
| 13141 | */ |
| 13142 | static void task_fork_fair(struct task_struct *p) |
| 13143 | { |
| 13144 | set_task_max_allowed_capacity(p); |
| 13145 | } |
| 13146 | |
| 13147 | /* |
| 13148 | * Priority of the task has changed. Check to see if we preempt |
| 13149 | * the current task. |
| 13150 | */ |
| 13151 | static void |
| 13152 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) |
| 13153 | { |
| 13154 | if (!task_on_rq_queued(p)) |
| 13155 | return; |
| 13156 | |
| 13157 | if (rq->cfs.nr_queued == 1) |
| 13158 | return; |
| 13159 | |
| 13160 | /* |
| 13161 | * Reschedule if we are currently running on this runqueue and |
| 13162 | * our priority decreased, or if we are not currently running on |
| 13163 | * this runqueue and our priority is higher than the current's |
| 13164 | */ |
| 13165 | if (task_current_donor(rq, p)) { |
| 13166 | if (p->prio > oldprio) |
| 13167 | resched_curr(rq); |
| 13168 | } else |
| 13169 | wakeup_preempt(rq, p, 0); |
| 13170 | } |
| 13171 | |
| 13172 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 13173 | /* |
| 13174 | * Propagate the changes of the sched_entity across the tg tree to make it |
| 13175 | * visible to the root |
| 13176 | */ |
| 13177 | static void propagate_entity_cfs_rq(struct sched_entity *se) |
| 13178 | { |
| 13179 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13180 | |
| 13181 | if (cfs_rq_throttled(cfs_rq)) |
| 13182 | return; |
| 13183 | |
| 13184 | if (!throttled_hierarchy(cfs_rq)) |
| 13185 | list_add_leaf_cfs_rq(cfs_rq); |
| 13186 | |
| 13187 | /* Start to propagate at parent */ |
| 13188 | se = se->parent; |
| 13189 | |
| 13190 | for_each_sched_entity(se) { |
| 13191 | cfs_rq = cfs_rq_of(se); |
| 13192 | |
| 13193 | update_load_avg(cfs_rq, se, UPDATE_TG); |
| 13194 | |
| 13195 | if (cfs_rq_throttled(cfs_rq)) |
| 13196 | break; |
| 13197 | |
| 13198 | if (!throttled_hierarchy(cfs_rq)) |
| 13199 | list_add_leaf_cfs_rq(cfs_rq); |
| 13200 | } |
| 13201 | } |
| 13202 | #else |
| 13203 | static void propagate_entity_cfs_rq(struct sched_entity *se) { } |
| 13204 | #endif |
| 13205 | |
| 13206 | static void detach_entity_cfs_rq(struct sched_entity *se) |
| 13207 | { |
| 13208 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13209 | |
| 13210 | #ifdef CONFIG_SMP |
| 13211 | /* |
| 13212 | * In case the task sched_avg hasn't been attached: |
| 13213 | * - A forked task which hasn't been woken up by wake_up_new_task(). |
| 13214 | * - A task which has been woken up by try_to_wake_up() but is |
| 13215 | * waiting for actually being woken up by sched_ttwu_pending(). |
| 13216 | */ |
| 13217 | if (!se->avg.last_update_time) |
| 13218 | return; |
| 13219 | #endif |
| 13220 | |
| 13221 | /* Catch up with the cfs_rq and remove our load when we leave */ |
| 13222 | update_load_avg(cfs_rq, se, 0); |
| 13223 | detach_entity_load_avg(cfs_rq, se); |
| 13224 | update_tg_load_avg(cfs_rq); |
| 13225 | propagate_entity_cfs_rq(se); |
| 13226 | } |
| 13227 | |
| 13228 | static void attach_entity_cfs_rq(struct sched_entity *se) |
| 13229 | { |
| 13230 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13231 | |
| 13232 | /* Synchronize entity with its cfs_rq */ |
| 13233 | update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); |
| 13234 | attach_entity_load_avg(cfs_rq, se); |
| 13235 | update_tg_load_avg(cfs_rq); |
| 13236 | propagate_entity_cfs_rq(se); |
| 13237 | } |
| 13238 | |
| 13239 | static void detach_task_cfs_rq(struct task_struct *p) |
| 13240 | { |
| 13241 | struct sched_entity *se = &p->se; |
| 13242 | |
| 13243 | detach_entity_cfs_rq(se); |
| 13244 | } |
| 13245 | |
| 13246 | static void attach_task_cfs_rq(struct task_struct *p) |
| 13247 | { |
| 13248 | struct sched_entity *se = &p->se; |
| 13249 | |
| 13250 | attach_entity_cfs_rq(se); |
| 13251 | } |
| 13252 | |
| 13253 | static void switched_from_fair(struct rq *rq, struct task_struct *p) |
| 13254 | { |
| 13255 | detach_task_cfs_rq(p); |
| 13256 | } |
| 13257 | |
| 13258 | static void switched_to_fair(struct rq *rq, struct task_struct *p) |
| 13259 | { |
| 13260 | WARN_ON_ONCE(p->se.sched_delayed); |
| 13261 | |
| 13262 | attach_task_cfs_rq(p); |
| 13263 | |
| 13264 | set_task_max_allowed_capacity(p); |
| 13265 | |
| 13266 | if (task_on_rq_queued(p)) { |
| 13267 | /* |
| 13268 | * We were most likely switched from sched_rt, so |
| 13269 | * kick off the schedule if running, otherwise just see |
| 13270 | * if we can still preempt the current task. |
| 13271 | */ |
| 13272 | if (task_current_donor(rq, p)) |
| 13273 | resched_curr(rq); |
| 13274 | else |
| 13275 | wakeup_preempt(rq, p, 0); |
| 13276 | } |
| 13277 | } |
| 13278 | |
| 13279 | static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
| 13280 | { |
| 13281 | struct sched_entity *se = &p->se; |
| 13282 | |
| 13283 | #ifdef CONFIG_SMP |
| 13284 | if (task_on_rq_queued(p)) { |
| 13285 | /* |
| 13286 | * Move the next running task to the front of the list, so our |
| 13287 | * cfs_tasks list becomes MRU one. |
| 13288 | */ |
| 13289 | list_move(&se->group_node, &rq->cfs_tasks); |
| 13290 | } |
| 13291 | #endif |
| 13292 | if (!first) |
| 13293 | return; |
| 13294 | |
| 13295 | WARN_ON_ONCE(se->sched_delayed); |
| 13296 | |
| 13297 | if (hrtick_enabled_fair(rq)) |
| 13298 | hrtick_start_fair(rq, p); |
| 13299 | |
| 13300 | update_misfit_status(p, rq); |
| 13301 | sched_fair_update_stop_tick(rq, p); |
| 13302 | } |
| 13303 | |
| 13304 | /* |
| 13305 | * Account for a task changing its policy or group. |
| 13306 | * |
| 13307 | * This routine is mostly called to set cfs_rq->curr field when a task |
| 13308 | * migrates between groups/classes. |
| 13309 | */ |
| 13310 | static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) |
| 13311 | { |
| 13312 | struct sched_entity *se = &p->se; |
| 13313 | |
| 13314 | for_each_sched_entity(se) { |
| 13315 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13316 | |
| 13317 | set_next_entity(cfs_rq, se); |
| 13318 | /* ensure bandwidth has been allocated on our new cfs_rq */ |
| 13319 | account_cfs_rq_runtime(cfs_rq, 0); |
| 13320 | } |
| 13321 | |
| 13322 | __set_next_task_fair(rq, p, first); |
| 13323 | } |
| 13324 | |
| 13325 | void init_cfs_rq(struct cfs_rq *cfs_rq) |
| 13326 | { |
| 13327 | cfs_rq->tasks_timeline = RB_ROOT_CACHED; |
| 13328 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
| 13329 | #ifdef CONFIG_SMP |
| 13330 | raw_spin_lock_init(&cfs_rq->removed.lock); |
| 13331 | #endif |
| 13332 | } |
| 13333 | |
| 13334 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 13335 | static void task_change_group_fair(struct task_struct *p) |
| 13336 | { |
| 13337 | /* |
| 13338 | * We couldn't detach or attach a forked task which |
| 13339 | * hasn't been woken up by wake_up_new_task(). |
| 13340 | */ |
| 13341 | if (READ_ONCE(p->__state) == TASK_NEW) |
| 13342 | return; |
| 13343 | |
| 13344 | detach_task_cfs_rq(p); |
| 13345 | |
| 13346 | #ifdef CONFIG_SMP |
| 13347 | /* Tell se's cfs_rq has been changed -- migrated */ |
| 13348 | p->se.avg.last_update_time = 0; |
| 13349 | #endif |
| 13350 | set_task_rq(p, task_cpu(p)); |
| 13351 | attach_task_cfs_rq(p); |
| 13352 | } |
| 13353 | |
| 13354 | void free_fair_sched_group(struct task_group *tg) |
| 13355 | { |
| 13356 | int i; |
| 13357 | |
| 13358 | for_each_possible_cpu(i) { |
| 13359 | if (tg->cfs_rq) |
| 13360 | kfree(tg->cfs_rq[i]); |
| 13361 | if (tg->se) |
| 13362 | kfree(tg->se[i]); |
| 13363 | } |
| 13364 | |
| 13365 | kfree(tg->cfs_rq); |
| 13366 | kfree(tg->se); |
| 13367 | } |
| 13368 | |
| 13369 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
| 13370 | { |
| 13371 | struct sched_entity *se; |
| 13372 | struct cfs_rq *cfs_rq; |
| 13373 | int i; |
| 13374 | |
| 13375 | tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); |
| 13376 | if (!tg->cfs_rq) |
| 13377 | goto err; |
| 13378 | tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); |
| 13379 | if (!tg->se) |
| 13380 | goto err; |
| 13381 | |
| 13382 | tg->shares = NICE_0_LOAD; |
| 13383 | |
| 13384 | init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); |
| 13385 | |
| 13386 | for_each_possible_cpu(i) { |
| 13387 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
| 13388 | GFP_KERNEL, cpu_to_node(i)); |
| 13389 | if (!cfs_rq) |
| 13390 | goto err; |
| 13391 | |
| 13392 | se = kzalloc_node(sizeof(struct sched_entity_stats), |
| 13393 | GFP_KERNEL, cpu_to_node(i)); |
| 13394 | if (!se) |
| 13395 | goto err_free_rq; |
| 13396 | |
| 13397 | init_cfs_rq(cfs_rq); |
| 13398 | init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); |
| 13399 | init_entity_runnable_average(se); |
| 13400 | } |
| 13401 | |
| 13402 | return 1; |
| 13403 | |
| 13404 | err_free_rq: |
| 13405 | kfree(cfs_rq); |
| 13406 | err: |
| 13407 | return 0; |
| 13408 | } |
| 13409 | |
| 13410 | void online_fair_sched_group(struct task_group *tg) |
| 13411 | { |
| 13412 | struct sched_entity *se; |
| 13413 | struct rq_flags rf; |
| 13414 | struct rq *rq; |
| 13415 | int i; |
| 13416 | |
| 13417 | for_each_possible_cpu(i) { |
| 13418 | rq = cpu_rq(i); |
| 13419 | se = tg->se[i]; |
| 13420 | rq_lock_irq(rq, &rf); |
| 13421 | update_rq_clock(rq); |
| 13422 | attach_entity_cfs_rq(se); |
| 13423 | sync_throttle(tg, i); |
| 13424 | rq_unlock_irq(rq, &rf); |
| 13425 | } |
| 13426 | } |
| 13427 | |
| 13428 | void unregister_fair_sched_group(struct task_group *tg) |
| 13429 | { |
| 13430 | int cpu; |
| 13431 | |
| 13432 | destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); |
| 13433 | |
| 13434 | for_each_possible_cpu(cpu) { |
| 13435 | struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; |
| 13436 | struct sched_entity *se = tg->se[cpu]; |
| 13437 | struct rq *rq = cpu_rq(cpu); |
| 13438 | |
| 13439 | if (se) { |
| 13440 | if (se->sched_delayed) { |
| 13441 | guard(rq_lock_irqsave)(rq); |
| 13442 | if (se->sched_delayed) { |
| 13443 | update_rq_clock(rq); |
| 13444 | dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); |
| 13445 | } |
| 13446 | list_del_leaf_cfs_rq(cfs_rq); |
| 13447 | } |
| 13448 | remove_entity_load_avg(se); |
| 13449 | } |
| 13450 | |
| 13451 | /* |
| 13452 | * Only empty task groups can be destroyed; so we can speculatively |
| 13453 | * check on_list without danger of it being re-added. |
| 13454 | */ |
| 13455 | if (cfs_rq->on_list) { |
| 13456 | guard(rq_lock_irqsave)(rq); |
| 13457 | list_del_leaf_cfs_rq(cfs_rq); |
| 13458 | } |
| 13459 | } |
| 13460 | } |
| 13461 | |
| 13462 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| 13463 | struct sched_entity *se, int cpu, |
| 13464 | struct sched_entity *parent) |
| 13465 | { |
| 13466 | struct rq *rq = cpu_rq(cpu); |
| 13467 | |
| 13468 | cfs_rq->tg = tg; |
| 13469 | cfs_rq->rq = rq; |
| 13470 | init_cfs_rq_runtime(cfs_rq); |
| 13471 | |
| 13472 | tg->cfs_rq[cpu] = cfs_rq; |
| 13473 | tg->se[cpu] = se; |
| 13474 | |
| 13475 | /* se could be NULL for root_task_group */ |
| 13476 | if (!se) |
| 13477 | return; |
| 13478 | |
| 13479 | if (!parent) { |
| 13480 | se->cfs_rq = &rq->cfs; |
| 13481 | se->depth = 0; |
| 13482 | } else { |
| 13483 | se->cfs_rq = parent->my_q; |
| 13484 | se->depth = parent->depth + 1; |
| 13485 | } |
| 13486 | |
| 13487 | se->my_q = cfs_rq; |
| 13488 | /* guarantee group entities always have weight */ |
| 13489 | update_load_set(&se->load, NICE_0_LOAD); |
| 13490 | se->parent = parent; |
| 13491 | } |
| 13492 | |
| 13493 | static DEFINE_MUTEX(shares_mutex); |
| 13494 | |
| 13495 | static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) |
| 13496 | { |
| 13497 | int i; |
| 13498 | |
| 13499 | lockdep_assert_held(&shares_mutex); |
| 13500 | |
| 13501 | /* |
| 13502 | * We can't change the weight of the root cgroup. |
| 13503 | */ |
| 13504 | if (!tg->se[0]) |
| 13505 | return -EINVAL; |
| 13506 | |
| 13507 | shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); |
| 13508 | |
| 13509 | if (tg->shares == shares) |
| 13510 | return 0; |
| 13511 | |
| 13512 | tg->shares = shares; |
| 13513 | for_each_possible_cpu(i) { |
| 13514 | struct rq *rq = cpu_rq(i); |
| 13515 | struct sched_entity *se = tg->se[i]; |
| 13516 | struct rq_flags rf; |
| 13517 | |
| 13518 | /* Propagate contribution to hierarchy */ |
| 13519 | rq_lock_irqsave(rq, &rf); |
| 13520 | update_rq_clock(rq); |
| 13521 | for_each_sched_entity(se) { |
| 13522 | update_load_avg(cfs_rq_of(se), se, UPDATE_TG); |
| 13523 | update_cfs_group(se); |
| 13524 | } |
| 13525 | rq_unlock_irqrestore(rq, &rf); |
| 13526 | } |
| 13527 | |
| 13528 | return 0; |
| 13529 | } |
| 13530 | |
| 13531 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
| 13532 | { |
| 13533 | int ret; |
| 13534 | |
| 13535 | mutex_lock(&shares_mutex); |
| 13536 | if (tg_is_idle(tg)) |
| 13537 | ret = -EINVAL; |
| 13538 | else |
| 13539 | ret = __sched_group_set_shares(tg, shares); |
| 13540 | mutex_unlock(&shares_mutex); |
| 13541 | |
| 13542 | return ret; |
| 13543 | } |
| 13544 | |
| 13545 | int sched_group_set_idle(struct task_group *tg, long idle) |
| 13546 | { |
| 13547 | int i; |
| 13548 | |
| 13549 | if (tg == &root_task_group) |
| 13550 | return -EINVAL; |
| 13551 | |
| 13552 | if (idle < 0 || idle > 1) |
| 13553 | return -EINVAL; |
| 13554 | |
| 13555 | mutex_lock(&shares_mutex); |
| 13556 | |
| 13557 | if (tg->idle == idle) { |
| 13558 | mutex_unlock(&shares_mutex); |
| 13559 | return 0; |
| 13560 | } |
| 13561 | |
| 13562 | tg->idle = idle; |
| 13563 | |
| 13564 | for_each_possible_cpu(i) { |
| 13565 | struct rq *rq = cpu_rq(i); |
| 13566 | struct sched_entity *se = tg->se[i]; |
| 13567 | struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; |
| 13568 | bool was_idle = cfs_rq_is_idle(grp_cfs_rq); |
| 13569 | long idle_task_delta; |
| 13570 | struct rq_flags rf; |
| 13571 | |
| 13572 | rq_lock_irqsave(rq, &rf); |
| 13573 | |
| 13574 | grp_cfs_rq->idle = idle; |
| 13575 | if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) |
| 13576 | goto next_cpu; |
| 13577 | |
| 13578 | idle_task_delta = grp_cfs_rq->h_nr_queued - |
| 13579 | grp_cfs_rq->h_nr_idle; |
| 13580 | if (!cfs_rq_is_idle(grp_cfs_rq)) |
| 13581 | idle_task_delta *= -1; |
| 13582 | |
| 13583 | for_each_sched_entity(se) { |
| 13584 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
| 13585 | |
| 13586 | if (!se->on_rq) |
| 13587 | break; |
| 13588 | |
| 13589 | cfs_rq->h_nr_idle += idle_task_delta; |
| 13590 | |
| 13591 | /* Already accounted at parent level and above. */ |
| 13592 | if (cfs_rq_is_idle(cfs_rq)) |
| 13593 | break; |
| 13594 | } |
| 13595 | |
| 13596 | next_cpu: |
| 13597 | rq_unlock_irqrestore(rq, &rf); |
| 13598 | } |
| 13599 | |
| 13600 | /* Idle groups have minimum weight. */ |
| 13601 | if (tg_is_idle(tg)) |
| 13602 | __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); |
| 13603 | else |
| 13604 | __sched_group_set_shares(tg, NICE_0_LOAD); |
| 13605 | |
| 13606 | mutex_unlock(&shares_mutex); |
| 13607 | return 0; |
| 13608 | } |
| 13609 | |
| 13610 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| 13611 | |
| 13612 | |
| 13613 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
| 13614 | { |
| 13615 | struct sched_entity *se = &task->se; |
| 13616 | unsigned int rr_interval = 0; |
| 13617 | |
| 13618 | /* |
| 13619 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise |
| 13620 | * idle runqueue: |
| 13621 | */ |
| 13622 | if (rq->cfs.load.weight) |
| 13623 | rr_interval = NS_TO_JIFFIES(se->slice); |
| 13624 | |
| 13625 | return rr_interval; |
| 13626 | } |
| 13627 | |
| 13628 | /* |
| 13629 | * All the scheduling class methods: |
| 13630 | */ |
| 13631 | DEFINE_SCHED_CLASS(fair) = { |
| 13632 | |
| 13633 | .enqueue_task = enqueue_task_fair, |
| 13634 | .dequeue_task = dequeue_task_fair, |
| 13635 | .yield_task = yield_task_fair, |
| 13636 | .yield_to_task = yield_to_task_fair, |
| 13637 | |
| 13638 | .wakeup_preempt = check_preempt_wakeup_fair, |
| 13639 | |
| 13640 | .pick_task = pick_task_fair, |
| 13641 | .pick_next_task = __pick_next_task_fair, |
| 13642 | .put_prev_task = put_prev_task_fair, |
| 13643 | .set_next_task = set_next_task_fair, |
| 13644 | |
| 13645 | #ifdef CONFIG_SMP |
| 13646 | .balance = balance_fair, |
| 13647 | .select_task_rq = select_task_rq_fair, |
| 13648 | .migrate_task_rq = migrate_task_rq_fair, |
| 13649 | |
| 13650 | .rq_online = rq_online_fair, |
| 13651 | .rq_offline = rq_offline_fair, |
| 13652 | |
| 13653 | .task_dead = task_dead_fair, |
| 13654 | .set_cpus_allowed = set_cpus_allowed_fair, |
| 13655 | #endif |
| 13656 | |
| 13657 | .task_tick = task_tick_fair, |
| 13658 | .task_fork = task_fork_fair, |
| 13659 | |
| 13660 | .reweight_task = reweight_task_fair, |
| 13661 | .prio_changed = prio_changed_fair, |
| 13662 | .switched_from = switched_from_fair, |
| 13663 | .switched_to = switched_to_fair, |
| 13664 | |
| 13665 | .get_rr_interval = get_rr_interval_fair, |
| 13666 | |
| 13667 | .update_curr = update_curr_fair, |
| 13668 | |
| 13669 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 13670 | .task_change_group = task_change_group_fair, |
| 13671 | #endif |
| 13672 | |
| 13673 | #ifdef CONFIG_SCHED_CORE |
| 13674 | .task_is_throttled = task_is_throttled_fair, |
| 13675 | #endif |
| 13676 | |
| 13677 | #ifdef CONFIG_UCLAMP_TASK |
| 13678 | .uclamp_enabled = 1, |
| 13679 | #endif |
| 13680 | }; |
| 13681 | |
| 13682 | void print_cfs_stats(struct seq_file *m, int cpu) |
| 13683 | { |
| 13684 | struct cfs_rq *cfs_rq, *pos; |
| 13685 | |
| 13686 | rcu_read_lock(); |
| 13687 | for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) |
| 13688 | print_cfs_rq(m, cpu, cfs_rq); |
| 13689 | rcu_read_unlock(); |
| 13690 | } |
| 13691 | |
| 13692 | #ifdef CONFIG_NUMA_BALANCING |
| 13693 | void show_numa_stats(struct task_struct *p, struct seq_file *m) |
| 13694 | { |
| 13695 | int node; |
| 13696 | unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; |
| 13697 | struct numa_group *ng; |
| 13698 | |
| 13699 | rcu_read_lock(); |
| 13700 | ng = rcu_dereference(p->numa_group); |
| 13701 | for_each_online_node(node) { |
| 13702 | if (p->numa_faults) { |
| 13703 | tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; |
| 13704 | tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; |
| 13705 | } |
| 13706 | if (ng) { |
| 13707 | gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], |
| 13708 | gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; |
| 13709 | } |
| 13710 | print_numa_stats(m, node, tsf, tpf, gsf, gpf); |
| 13711 | } |
| 13712 | rcu_read_unlock(); |
| 13713 | } |
| 13714 | #endif /* CONFIG_NUMA_BALANCING */ |
| 13715 | |
| 13716 | __init void init_sched_fair_class(void) |
| 13717 | { |
| 13718 | #ifdef CONFIG_SMP |
| 13719 | int i; |
| 13720 | |
| 13721 | for_each_possible_cpu(i) { |
| 13722 | zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); |
| 13723 | zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); |
| 13724 | zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), |
| 13725 | GFP_KERNEL, cpu_to_node(i)); |
| 13726 | |
| 13727 | #ifdef CONFIG_CFS_BANDWIDTH |
| 13728 | INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); |
| 13729 | INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); |
| 13730 | #endif |
| 13731 | } |
| 13732 | |
| 13733 | open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); |
| 13734 | |
| 13735 | #ifdef CONFIG_NO_HZ_COMMON |
| 13736 | nohz.next_balance = jiffies; |
| 13737 | nohz.next_blocked = jiffies; |
| 13738 | zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); |
| 13739 | #endif |
| 13740 | #endif /* SMP */ |
| 13741 | |
| 13742 | } |