lib/smp_processor_id: Don't use cpumask_equal()
[linux-2.6-block.git] / kernel / sched / core.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#include "sched.h"
10
11#include <linux/nospec.h>
12
13#include <linux/kcov.h>
14
15#include <asm/switch_to.h>
16#include <asm/tlb.h>
17
18#include "../workqueue_internal.h"
19#include "../smpboot.h"
20
21#include "pelt.h"
22
23#define CREATE_TRACE_POINTS
24#include <trace/events/sched.h>
25
26/*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
37DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38
39#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40/*
41 * Debugging: various feature bits
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
46 */
47#define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49const_debug unsigned int sysctl_sched_features =
50#include "features.h"
51 0;
52#undef SCHED_FEAT
53#endif
54
55/*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
61/*
62 * period over which we measure -rt task CPU usage in us.
63 * default: 1s
64 */
65unsigned int sysctl_sched_rt_period = 1000000;
66
67__read_mostly int scheduler_running;
68
69/*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73int sysctl_sched_rt_runtime = 950000;
74
75/*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
78struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 __acquires(rq->lock)
80{
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 rq_pin_lock(rq, rf);
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97}
98
99/*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
102struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105{
106 struct rq *rq;
107
108 for (;;) {
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
122 * If we observe the old CPU in task_rq_lock(), the acquire of
123 * the old rq->lock will fully serialize against the stores.
124 *
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 rq_pin_lock(rq, rf);
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139}
140
141/*
142 * RQ-clock updating methods:
143 */
144
145static void update_rq_clock_task(struct rq *rq, s64 delta)
146{
147/*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
153#ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176#endif
177#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((&paravirt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188#endif
189
190 rq->clock_task += delta;
191
192#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
195#endif
196 update_rq_clock_pelt(rq, delta);
197}
198
199void update_rq_clock(struct rq *rq)
200{
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208#ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
212#endif
213
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219}
220
221
222#ifdef CONFIG_SCHED_HRTICK
223/*
224 * Use HR-timers to deliver accurate preemption points.
225 */
226
227static void hrtick_clear(struct rq *rq)
228{
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231}
232
233/*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
237static enum hrtimer_restart hrtick(struct hrtimer *timer)
238{
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 struct rq_flags rf;
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
244 rq_lock(rq, &rf);
245 update_rq_clock(rq);
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 rq_unlock(rq, &rf);
248
249 return HRTIMER_NORESTART;
250}
251
252#ifdef CONFIG_SMP
253
254static void __hrtick_restart(struct rq *rq)
255{
256 struct hrtimer *timer = &rq->hrtick_timer;
257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259}
260
261/*
262 * called from hardirq (IPI) context
263 */
264static void __hrtick_start(void *arg)
265{
266 struct rq *rq = arg;
267 struct rq_flags rf;
268
269 rq_lock(rq, &rf);
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
272 rq_unlock(rq, &rf);
273}
274
275/*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
280void hrtick_start(struct rq *rq, u64 delay)
281{
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
300 }
301}
302
303#else
304/*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
309void hrtick_start(struct rq *rq, u64 delay)
310{
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED_HARD);
318}
319#endif /* CONFIG_SMP */
320
321static void hrtick_rq_init(struct rq *rq)
322{
323#ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
325
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329#endif
330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick;
333}
334#else /* CONFIG_SCHED_HRTICK */
335static inline void hrtick_clear(struct rq *rq)
336{
337}
338
339static inline void hrtick_rq_init(struct rq *rq)
340{
341}
342#endif /* CONFIG_SCHED_HRTICK */
343
344/*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347#define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360})
361
362#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363/*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
368static bool set_nr_and_not_polling(struct task_struct *p)
369{
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372}
373
374/*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
380static bool set_nr_if_polling(struct task_struct *p)
381{
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396}
397
398#else
399static bool set_nr_and_not_polling(struct task_struct *p)
400{
401 set_tsk_need_resched(p);
402 return true;
403}
404
405#ifdef CONFIG_SMP
406static bool set_nr_if_polling(struct task_struct *p)
407{
408 return false;
409}
410#endif
411#endif
412
413static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414{
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
424 */
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 return false;
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
434 return true;
435}
436
437/**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
449void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450{
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453}
454
455/**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
472void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473{
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
476}
477
478void wake_up_q(struct wake_q_head *head)
479{
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
487 /* Task can safely be re-inserted now: */
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498}
499
500/*
501 * resched_curr - mark rq's current task 'to be rescheduled now'.
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
507void resched_curr(struct rq *rq)
508{
509 struct task_struct *curr = rq->curr;
510 int cpu;
511
512 lockdep_assert_held(&rq->lock);
513
514 if (test_tsk_need_resched(curr))
515 return;
516
517 cpu = cpu_of(rq);
518
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
522 return;
523 }
524
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
529}
530
531void resched_cpu(int cpu)
532{
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540}
541
542#ifdef CONFIG_SMP
543#ifdef CONFIG_NO_HZ_COMMON
544/*
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
556
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 return cpu;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575unlock:
576 rcu_read_unlock();
577 return cpu;
578}
579
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590static void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601}
602
603static bool wake_up_full_nohz_cpu(int cpu)
604{
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
617 return true;
618 }
619
620 return false;
621}
622
623/*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
628void wake_up_nohz_cpu(int cpu)
629{
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
632}
633
634static inline bool got_nohz_idle_kick(void)
635{
636 int cpu = smp_processor_id();
637
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 return false;
650}
651
652#else /* CONFIG_NO_HZ_COMMON */
653
654static inline bool got_nohz_idle_kick(void)
655{
656 return false;
657}
658
659#endif /* CONFIG_NO_HZ_COMMON */
660
661#ifdef CONFIG_NO_HZ_FULL
662bool sched_can_stop_tick(struct rq *rq)
663{
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
670 /*
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
673 */
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698}
699#endif /* CONFIG_NO_HZ_FULL */
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712{
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737out:
738 return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743 return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p, bool update_load)
748{
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
759 return;
760 }
761
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
772 }
773}
774
775#ifdef CONFIG_UCLAMP_TASK
776/*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786static DEFINE_MUTEX(uclamp_mutex);
787
788/* Max allowed minimum utilization */
789unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791/* Max allowed maximum utilization */
792unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794/* All clamps are required to be less or equal than these values */
795static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797/* Integer rounded range for each bucket */
798#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800#define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804{
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806}
807
808static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809{
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811}
812
813static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
814{
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818}
819
820static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822{
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826}
827
828static inline unsigned int
829uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831{
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843}
844
845static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847{
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853}
854
855static inline
856enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858{
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874}
875
876static inline struct uclamp_se
877uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878{
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880#ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895#endif
896
897 return uc_req;
898}
899
900/*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
907 */
908static inline struct uclamp_se
909uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910{
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919}
920
921enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922{
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return uc_eff.value;
932}
933
934/*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 */
944static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946{
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971}
972
973/*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
982static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984{
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018}
1019
1020static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021{
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033}
1034
1035static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036{
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044}
1045
1046static inline void
1047uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048{
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
1068 if (!p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074}
1075
1076static inline void
1077uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1078 unsigned int clamps)
1079{
1080 enum uclamp_id clamp_id;
1081 struct css_task_iter it;
1082 struct task_struct *p;
1083
1084 css_task_iter_start(css, 0, &it);
1085 while ((p = css_task_iter_next(&it))) {
1086 for_each_clamp_id(clamp_id) {
1087 if ((0x1 << clamp_id) & clamps)
1088 uclamp_update_active(p, clamp_id);
1089 }
1090 }
1091 css_task_iter_end(&it);
1092}
1093
1094#ifdef CONFIG_UCLAMP_TASK_GROUP
1095static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096static void uclamp_update_root_tg(void)
1097{
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108}
1109#else
1110static void uclamp_update_root_tg(void) { }
1111#endif
1112
1113int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116{
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151 /*
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
1155 */
1156
1157 goto done;
1158
1159undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166}
1167
1168static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170{
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185}
1186
1187static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189{
1190 enum uclamp_id clamp_id;
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223}
1224
1225static void uclamp_fork(struct task_struct *p)
1226{
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 unsigned int clamp_value = uclamp_none(clamp_id);
1237
1238 /* By default, RT tasks always get 100% boost */
1239 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240 clamp_value = uclamp_none(UCLAMP_MAX);
1241
1242 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243 }
1244}
1245
1246static void __init init_uclamp(void)
1247{
1248 struct uclamp_se uc_max = {};
1249 enum uclamp_id clamp_id;
1250 int cpu;
1251
1252 mutex_init(&uclamp_mutex);
1253
1254 for_each_possible_cpu(cpu) {
1255 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1256 cpu_rq(cpu)->uclamp_flags = 0;
1257 }
1258
1259 for_each_clamp_id(clamp_id) {
1260 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 uclamp_none(clamp_id), false);
1262 }
1263
1264 /* System defaults allow max clamp values for both indexes */
1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 for_each_clamp_id(clamp_id) {
1267 uclamp_default[clamp_id] = uc_max;
1268#ifdef CONFIG_UCLAMP_TASK_GROUP
1269 root_task_group.uclamp_req[clamp_id] = uc_max;
1270 root_task_group.uclamp[clamp_id] = uc_max;
1271#endif
1272 }
1273}
1274
1275#else /* CONFIG_UCLAMP_TASK */
1276static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1277static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1278static inline int uclamp_validate(struct task_struct *p,
1279 const struct sched_attr *attr)
1280{
1281 return -EOPNOTSUPP;
1282}
1283static void __setscheduler_uclamp(struct task_struct *p,
1284 const struct sched_attr *attr) { }
1285static inline void uclamp_fork(struct task_struct *p) { }
1286static inline void init_uclamp(void) { }
1287#endif /* CONFIG_UCLAMP_TASK */
1288
1289static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290{
1291 if (!(flags & ENQUEUE_NOCLOCK))
1292 update_rq_clock(rq);
1293
1294 if (!(flags & ENQUEUE_RESTORE)) {
1295 sched_info_queued(rq, p);
1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 }
1298
1299 uclamp_rq_inc(rq, p);
1300 p->sched_class->enqueue_task(rq, p, flags);
1301}
1302
1303static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304{
1305 if (!(flags & DEQUEUE_NOCLOCK))
1306 update_rq_clock(rq);
1307
1308 if (!(flags & DEQUEUE_SAVE)) {
1309 sched_info_dequeued(rq, p);
1310 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 }
1312
1313 uclamp_rq_dec(rq, p);
1314 p->sched_class->dequeue_task(rq, p, flags);
1315}
1316
1317void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318{
1319 if (task_contributes_to_load(p))
1320 rq->nr_uninterruptible--;
1321
1322 enqueue_task(rq, p, flags);
1323
1324 p->on_rq = TASK_ON_RQ_QUEUED;
1325}
1326
1327void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328{
1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330
1331 if (task_contributes_to_load(p))
1332 rq->nr_uninterruptible++;
1333
1334 dequeue_task(rq, p, flags);
1335}
1336
1337/*
1338 * __normal_prio - return the priority that is based on the static prio
1339 */
1340static inline int __normal_prio(struct task_struct *p)
1341{
1342 return p->static_prio;
1343}
1344
1345/*
1346 * Calculate the expected normal priority: i.e. priority
1347 * without taking RT-inheritance into account. Might be
1348 * boosted by interactivity modifiers. Changes upon fork,
1349 * setprio syscalls, and whenever the interactivity
1350 * estimator recalculates.
1351 */
1352static inline int normal_prio(struct task_struct *p)
1353{
1354 int prio;
1355
1356 if (task_has_dl_policy(p))
1357 prio = MAX_DL_PRIO-1;
1358 else if (task_has_rt_policy(p))
1359 prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 else
1361 prio = __normal_prio(p);
1362 return prio;
1363}
1364
1365/*
1366 * Calculate the current priority, i.e. the priority
1367 * taken into account by the scheduler. This value might
1368 * be boosted by RT tasks, or might be boosted by
1369 * interactivity modifiers. Will be RT if the task got
1370 * RT-boosted. If not then it returns p->normal_prio.
1371 */
1372static int effective_prio(struct task_struct *p)
1373{
1374 p->normal_prio = normal_prio(p);
1375 /*
1376 * If we are RT tasks or we were boosted to RT priority,
1377 * keep the priority unchanged. Otherwise, update priority
1378 * to the normal priority:
1379 */
1380 if (!rt_prio(p->prio))
1381 return p->normal_prio;
1382 return p->prio;
1383}
1384
1385/**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1388 *
1389 * Return: 1 if the task is currently executing. 0 otherwise.
1390 */
1391inline int task_curr(const struct task_struct *p)
1392{
1393 return cpu_curr(task_cpu(p)) == p;
1394}
1395
1396/*
1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398 * use the balance_callback list if you want balancing.
1399 *
1400 * this means any call to check_class_changed() must be followed by a call to
1401 * balance_callback().
1402 */
1403static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 const struct sched_class *prev_class,
1405 int oldprio)
1406{
1407 if (prev_class != p->sched_class) {
1408 if (prev_class->switched_from)
1409 prev_class->switched_from(rq, p);
1410
1411 p->sched_class->switched_to(rq, p);
1412 } else if (oldprio != p->prio || dl_task(p))
1413 p->sched_class->prio_changed(rq, p, oldprio);
1414}
1415
1416void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417{
1418 const struct sched_class *class;
1419
1420 if (p->sched_class == rq->curr->sched_class) {
1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 } else {
1423 for_each_class(class) {
1424 if (class == rq->curr->sched_class)
1425 break;
1426 if (class == p->sched_class) {
1427 resched_curr(rq);
1428 break;
1429 }
1430 }
1431 }
1432
1433 /*
1434 * A queue event has occurred, and we're going to schedule. In
1435 * this case, we can save a useless back to back clock update.
1436 */
1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 rq_clock_skip_update(rq);
1439}
1440
1441#ifdef CONFIG_SMP
1442
1443static inline bool is_per_cpu_kthread(struct task_struct *p)
1444{
1445 if (!(p->flags & PF_KTHREAD))
1446 return false;
1447
1448 if (p->nr_cpus_allowed != 1)
1449 return false;
1450
1451 return true;
1452}
1453
1454/*
1455 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1456 * __set_cpus_allowed_ptr() and select_fallback_rq().
1457 */
1458static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1459{
1460 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1461 return false;
1462
1463 if (is_per_cpu_kthread(p))
1464 return cpu_online(cpu);
1465
1466 return cpu_active(cpu);
1467}
1468
1469/*
1470 * This is how migration works:
1471 *
1472 * 1) we invoke migration_cpu_stop() on the target CPU using
1473 * stop_one_cpu().
1474 * 2) stopper starts to run (implicitly forcing the migrated thread
1475 * off the CPU)
1476 * 3) it checks whether the migrated task is still in the wrong runqueue.
1477 * 4) if it's in the wrong runqueue then the migration thread removes
1478 * it and puts it into the right queue.
1479 * 5) stopper completes and stop_one_cpu() returns and the migration
1480 * is done.
1481 */
1482
1483/*
1484 * move_queued_task - move a queued task to new rq.
1485 *
1486 * Returns (locked) new rq. Old rq's lock is released.
1487 */
1488static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1489 struct task_struct *p, int new_cpu)
1490{
1491 lockdep_assert_held(&rq->lock);
1492
1493 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1494 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1495 set_task_cpu(p, new_cpu);
1496 rq_unlock(rq, rf);
1497
1498 rq = cpu_rq(new_cpu);
1499
1500 rq_lock(rq, rf);
1501 BUG_ON(task_cpu(p) != new_cpu);
1502 enqueue_task(rq, p, 0);
1503 p->on_rq = TASK_ON_RQ_QUEUED;
1504 check_preempt_curr(rq, p, 0);
1505
1506 return rq;
1507}
1508
1509struct migration_arg {
1510 struct task_struct *task;
1511 int dest_cpu;
1512};
1513
1514/*
1515 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1516 * this because either it can't run here any more (set_cpus_allowed()
1517 * away from this CPU, or CPU going down), or because we're
1518 * attempting to rebalance this task on exec (sched_exec).
1519 *
1520 * So we race with normal scheduler movements, but that's OK, as long
1521 * as the task is no longer on this CPU.
1522 */
1523static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1524 struct task_struct *p, int dest_cpu)
1525{
1526 /* Affinity changed (again). */
1527 if (!is_cpu_allowed(p, dest_cpu))
1528 return rq;
1529
1530 update_rq_clock(rq);
1531 rq = move_queued_task(rq, rf, p, dest_cpu);
1532
1533 return rq;
1534}
1535
1536/*
1537 * migration_cpu_stop - this will be executed by a highprio stopper thread
1538 * and performs thread migration by bumping thread off CPU then
1539 * 'pushing' onto another runqueue.
1540 */
1541static int migration_cpu_stop(void *data)
1542{
1543 struct migration_arg *arg = data;
1544 struct task_struct *p = arg->task;
1545 struct rq *rq = this_rq();
1546 struct rq_flags rf;
1547
1548 /*
1549 * The original target CPU might have gone down and we might
1550 * be on another CPU but it doesn't matter.
1551 */
1552 local_irq_disable();
1553 /*
1554 * We need to explicitly wake pending tasks before running
1555 * __migrate_task() such that we will not miss enforcing cpus_ptr
1556 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1557 */
1558 sched_ttwu_pending();
1559
1560 raw_spin_lock(&p->pi_lock);
1561 rq_lock(rq, &rf);
1562 /*
1563 * If task_rq(p) != rq, it cannot be migrated here, because we're
1564 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1565 * we're holding p->pi_lock.
1566 */
1567 if (task_rq(p) == rq) {
1568 if (task_on_rq_queued(p))
1569 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1570 else
1571 p->wake_cpu = arg->dest_cpu;
1572 }
1573 rq_unlock(rq, &rf);
1574 raw_spin_unlock(&p->pi_lock);
1575
1576 local_irq_enable();
1577 return 0;
1578}
1579
1580/*
1581 * sched_class::set_cpus_allowed must do the below, but is not required to
1582 * actually call this function.
1583 */
1584void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1585{
1586 cpumask_copy(&p->cpus_mask, new_mask);
1587 p->nr_cpus_allowed = cpumask_weight(new_mask);
1588}
1589
1590void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1591{
1592 struct rq *rq = task_rq(p);
1593 bool queued, running;
1594
1595 lockdep_assert_held(&p->pi_lock);
1596
1597 queued = task_on_rq_queued(p);
1598 running = task_current(rq, p);
1599
1600 if (queued) {
1601 /*
1602 * Because __kthread_bind() calls this on blocked tasks without
1603 * holding rq->lock.
1604 */
1605 lockdep_assert_held(&rq->lock);
1606 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1607 }
1608 if (running)
1609 put_prev_task(rq, p);
1610
1611 p->sched_class->set_cpus_allowed(p, new_mask);
1612
1613 if (queued)
1614 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1615 if (running)
1616 set_next_task(rq, p);
1617}
1618
1619/*
1620 * Change a given task's CPU affinity. Migrate the thread to a
1621 * proper CPU and schedule it away if the CPU it's executing on
1622 * is removed from the allowed bitmask.
1623 *
1624 * NOTE: the caller must have a valid reference to the task, the
1625 * task must not exit() & deallocate itself prematurely. The
1626 * call is not atomic; no spinlocks may be held.
1627 */
1628static int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630{
1631 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1632 unsigned int dest_cpu;
1633 struct rq_flags rf;
1634 struct rq *rq;
1635 int ret = 0;
1636
1637 rq = task_rq_lock(p, &rf);
1638 update_rq_clock(rq);
1639
1640 if (p->flags & PF_KTHREAD) {
1641 /*
1642 * Kernel threads are allowed on online && !active CPUs
1643 */
1644 cpu_valid_mask = cpu_online_mask;
1645 }
1646
1647 /*
1648 * Must re-check here, to close a race against __kthread_bind(),
1649 * sched_setaffinity() is not guaranteed to observe the flag.
1650 */
1651 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1652 ret = -EINVAL;
1653 goto out;
1654 }
1655
1656 if (cpumask_equal(p->cpus_ptr, new_mask))
1657 goto out;
1658
1659 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1660 if (dest_cpu >= nr_cpu_ids) {
1661 ret = -EINVAL;
1662 goto out;
1663 }
1664
1665 do_set_cpus_allowed(p, new_mask);
1666
1667 if (p->flags & PF_KTHREAD) {
1668 /*
1669 * For kernel threads that do indeed end up on online &&
1670 * !active we want to ensure they are strict per-CPU threads.
1671 */
1672 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1673 !cpumask_intersects(new_mask, cpu_active_mask) &&
1674 p->nr_cpus_allowed != 1);
1675 }
1676
1677 /* Can the task run on the task's current CPU? If so, we're done */
1678 if (cpumask_test_cpu(task_cpu(p), new_mask))
1679 goto out;
1680
1681 if (task_running(rq, p) || p->state == TASK_WAKING) {
1682 struct migration_arg arg = { p, dest_cpu };
1683 /* Need help from migration thread: drop lock and wait. */
1684 task_rq_unlock(rq, p, &rf);
1685 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1686 return 0;
1687 } else if (task_on_rq_queued(p)) {
1688 /*
1689 * OK, since we're going to drop the lock immediately
1690 * afterwards anyway.
1691 */
1692 rq = move_queued_task(rq, &rf, p, dest_cpu);
1693 }
1694out:
1695 task_rq_unlock(rq, p, &rf);
1696
1697 return ret;
1698}
1699
1700int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1701{
1702 return __set_cpus_allowed_ptr(p, new_mask, false);
1703}
1704EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1705
1706void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1707{
1708#ifdef CONFIG_SCHED_DEBUG
1709 /*
1710 * We should never call set_task_cpu() on a blocked task,
1711 * ttwu() will sort out the placement.
1712 */
1713 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1714 !p->on_rq);
1715
1716 /*
1717 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1718 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1719 * time relying on p->on_rq.
1720 */
1721 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1722 p->sched_class == &fair_sched_class &&
1723 (p->on_rq && !task_on_rq_migrating(p)));
1724
1725#ifdef CONFIG_LOCKDEP
1726 /*
1727 * The caller should hold either p->pi_lock or rq->lock, when changing
1728 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1729 *
1730 * sched_move_task() holds both and thus holding either pins the cgroup,
1731 * see task_group().
1732 *
1733 * Furthermore, all task_rq users should acquire both locks, see
1734 * task_rq_lock().
1735 */
1736 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1737 lockdep_is_held(&task_rq(p)->lock)));
1738#endif
1739 /*
1740 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1741 */
1742 WARN_ON_ONCE(!cpu_online(new_cpu));
1743#endif
1744
1745 trace_sched_migrate_task(p, new_cpu);
1746
1747 if (task_cpu(p) != new_cpu) {
1748 if (p->sched_class->migrate_task_rq)
1749 p->sched_class->migrate_task_rq(p, new_cpu);
1750 p->se.nr_migrations++;
1751 rseq_migrate(p);
1752 perf_event_task_migrate(p);
1753 }
1754
1755 __set_task_cpu(p, new_cpu);
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759static void __migrate_swap_task(struct task_struct *p, int cpu)
1760{
1761 if (task_on_rq_queued(p)) {
1762 struct rq *src_rq, *dst_rq;
1763 struct rq_flags srf, drf;
1764
1765 src_rq = task_rq(p);
1766 dst_rq = cpu_rq(cpu);
1767
1768 rq_pin_lock(src_rq, &srf);
1769 rq_pin_lock(dst_rq, &drf);
1770
1771 deactivate_task(src_rq, p, 0);
1772 set_task_cpu(p, cpu);
1773 activate_task(dst_rq, p, 0);
1774 check_preempt_curr(dst_rq, p, 0);
1775
1776 rq_unpin_lock(dst_rq, &drf);
1777 rq_unpin_lock(src_rq, &srf);
1778
1779 } else {
1780 /*
1781 * Task isn't running anymore; make it appear like we migrated
1782 * it before it went to sleep. This means on wakeup we make the
1783 * previous CPU our target instead of where it really is.
1784 */
1785 p->wake_cpu = cpu;
1786 }
1787}
1788
1789struct migration_swap_arg {
1790 struct task_struct *src_task, *dst_task;
1791 int src_cpu, dst_cpu;
1792};
1793
1794static int migrate_swap_stop(void *data)
1795{
1796 struct migration_swap_arg *arg = data;
1797 struct rq *src_rq, *dst_rq;
1798 int ret = -EAGAIN;
1799
1800 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1801 return -EAGAIN;
1802
1803 src_rq = cpu_rq(arg->src_cpu);
1804 dst_rq = cpu_rq(arg->dst_cpu);
1805
1806 double_raw_lock(&arg->src_task->pi_lock,
1807 &arg->dst_task->pi_lock);
1808 double_rq_lock(src_rq, dst_rq);
1809
1810 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1811 goto unlock;
1812
1813 if (task_cpu(arg->src_task) != arg->src_cpu)
1814 goto unlock;
1815
1816 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1817 goto unlock;
1818
1819 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1820 goto unlock;
1821
1822 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1823 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1824
1825 ret = 0;
1826
1827unlock:
1828 double_rq_unlock(src_rq, dst_rq);
1829 raw_spin_unlock(&arg->dst_task->pi_lock);
1830 raw_spin_unlock(&arg->src_task->pi_lock);
1831
1832 return ret;
1833}
1834
1835/*
1836 * Cross migrate two tasks
1837 */
1838int migrate_swap(struct task_struct *cur, struct task_struct *p,
1839 int target_cpu, int curr_cpu)
1840{
1841 struct migration_swap_arg arg;
1842 int ret = -EINVAL;
1843
1844 arg = (struct migration_swap_arg){
1845 .src_task = cur,
1846 .src_cpu = curr_cpu,
1847 .dst_task = p,
1848 .dst_cpu = target_cpu,
1849 };
1850
1851 if (arg.src_cpu == arg.dst_cpu)
1852 goto out;
1853
1854 /*
1855 * These three tests are all lockless; this is OK since all of them
1856 * will be re-checked with proper locks held further down the line.
1857 */
1858 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1859 goto out;
1860
1861 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1862 goto out;
1863
1864 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1865 goto out;
1866
1867 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1868 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1869
1870out:
1871 return ret;
1872}
1873#endif /* CONFIG_NUMA_BALANCING */
1874
1875/*
1876 * wait_task_inactive - wait for a thread to unschedule.
1877 *
1878 * If @match_state is nonzero, it's the @p->state value just checked and
1879 * not expected to change. If it changes, i.e. @p might have woken up,
1880 * then return zero. When we succeed in waiting for @p to be off its CPU,
1881 * we return a positive number (its total switch count). If a second call
1882 * a short while later returns the same number, the caller can be sure that
1883 * @p has remained unscheduled the whole time.
1884 *
1885 * The caller must ensure that the task *will* unschedule sometime soon,
1886 * else this function might spin for a *long* time. This function can't
1887 * be called with interrupts off, or it may introduce deadlock with
1888 * smp_call_function() if an IPI is sent by the same process we are
1889 * waiting to become inactive.
1890 */
1891unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1892{
1893 int running, queued;
1894 struct rq_flags rf;
1895 unsigned long ncsw;
1896 struct rq *rq;
1897
1898 for (;;) {
1899 /*
1900 * We do the initial early heuristics without holding
1901 * any task-queue locks at all. We'll only try to get
1902 * the runqueue lock when things look like they will
1903 * work out!
1904 */
1905 rq = task_rq(p);
1906
1907 /*
1908 * If the task is actively running on another CPU
1909 * still, just relax and busy-wait without holding
1910 * any locks.
1911 *
1912 * NOTE! Since we don't hold any locks, it's not
1913 * even sure that "rq" stays as the right runqueue!
1914 * But we don't care, since "task_running()" will
1915 * return false if the runqueue has changed and p
1916 * is actually now running somewhere else!
1917 */
1918 while (task_running(rq, p)) {
1919 if (match_state && unlikely(p->state != match_state))
1920 return 0;
1921 cpu_relax();
1922 }
1923
1924 /*
1925 * Ok, time to look more closely! We need the rq
1926 * lock now, to be *sure*. If we're wrong, we'll
1927 * just go back and repeat.
1928 */
1929 rq = task_rq_lock(p, &rf);
1930 trace_sched_wait_task(p);
1931 running = task_running(rq, p);
1932 queued = task_on_rq_queued(p);
1933 ncsw = 0;
1934 if (!match_state || p->state == match_state)
1935 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1936 task_rq_unlock(rq, p, &rf);
1937
1938 /*
1939 * If it changed from the expected state, bail out now.
1940 */
1941 if (unlikely(!ncsw))
1942 break;
1943
1944 /*
1945 * Was it really running after all now that we
1946 * checked with the proper locks actually held?
1947 *
1948 * Oops. Go back and try again..
1949 */
1950 if (unlikely(running)) {
1951 cpu_relax();
1952 continue;
1953 }
1954
1955 /*
1956 * It's not enough that it's not actively running,
1957 * it must be off the runqueue _entirely_, and not
1958 * preempted!
1959 *
1960 * So if it was still runnable (but just not actively
1961 * running right now), it's preempted, and we should
1962 * yield - it could be a while.
1963 */
1964 if (unlikely(queued)) {
1965 ktime_t to = NSEC_PER_SEC / HZ;
1966
1967 set_current_state(TASK_UNINTERRUPTIBLE);
1968 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1969 continue;
1970 }
1971
1972 /*
1973 * Ahh, all good. It wasn't running, and it wasn't
1974 * runnable, which means that it will never become
1975 * running in the future either. We're all done!
1976 */
1977 break;
1978 }
1979
1980 return ncsw;
1981}
1982
1983/***
1984 * kick_process - kick a running thread to enter/exit the kernel
1985 * @p: the to-be-kicked thread
1986 *
1987 * Cause a process which is running on another CPU to enter
1988 * kernel-mode, without any delay. (to get signals handled.)
1989 *
1990 * NOTE: this function doesn't have to take the runqueue lock,
1991 * because all it wants to ensure is that the remote task enters
1992 * the kernel. If the IPI races and the task has been migrated
1993 * to another CPU then no harm is done and the purpose has been
1994 * achieved as well.
1995 */
1996void kick_process(struct task_struct *p)
1997{
1998 int cpu;
1999
2000 preempt_disable();
2001 cpu = task_cpu(p);
2002 if ((cpu != smp_processor_id()) && task_curr(p))
2003 smp_send_reschedule(cpu);
2004 preempt_enable();
2005}
2006EXPORT_SYMBOL_GPL(kick_process);
2007
2008/*
2009 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2010 *
2011 * A few notes on cpu_active vs cpu_online:
2012 *
2013 * - cpu_active must be a subset of cpu_online
2014 *
2015 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2016 * see __set_cpus_allowed_ptr(). At this point the newly online
2017 * CPU isn't yet part of the sched domains, and balancing will not
2018 * see it.
2019 *
2020 * - on CPU-down we clear cpu_active() to mask the sched domains and
2021 * avoid the load balancer to place new tasks on the to be removed
2022 * CPU. Existing tasks will remain running there and will be taken
2023 * off.
2024 *
2025 * This means that fallback selection must not select !active CPUs.
2026 * And can assume that any active CPU must be online. Conversely
2027 * select_task_rq() below may allow selection of !active CPUs in order
2028 * to satisfy the above rules.
2029 */
2030static int select_fallback_rq(int cpu, struct task_struct *p)
2031{
2032 int nid = cpu_to_node(cpu);
2033 const struct cpumask *nodemask = NULL;
2034 enum { cpuset, possible, fail } state = cpuset;
2035 int dest_cpu;
2036
2037 /*
2038 * If the node that the CPU is on has been offlined, cpu_to_node()
2039 * will return -1. There is no CPU on the node, and we should
2040 * select the CPU on the other node.
2041 */
2042 if (nid != -1) {
2043 nodemask = cpumask_of_node(nid);
2044
2045 /* Look for allowed, online CPU in same node. */
2046 for_each_cpu(dest_cpu, nodemask) {
2047 if (!cpu_active(dest_cpu))
2048 continue;
2049 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2050 return dest_cpu;
2051 }
2052 }
2053
2054 for (;;) {
2055 /* Any allowed, online CPU? */
2056 for_each_cpu(dest_cpu, p->cpus_ptr) {
2057 if (!is_cpu_allowed(p, dest_cpu))
2058 continue;
2059
2060 goto out;
2061 }
2062
2063 /* No more Mr. Nice Guy. */
2064 switch (state) {
2065 case cpuset:
2066 if (IS_ENABLED(CONFIG_CPUSETS)) {
2067 cpuset_cpus_allowed_fallback(p);
2068 state = possible;
2069 break;
2070 }
2071 /* Fall-through */
2072 case possible:
2073 do_set_cpus_allowed(p, cpu_possible_mask);
2074 state = fail;
2075 break;
2076
2077 case fail:
2078 BUG();
2079 break;
2080 }
2081 }
2082
2083out:
2084 if (state != cpuset) {
2085 /*
2086 * Don't tell them about moving exiting tasks or
2087 * kernel threads (both mm NULL), since they never
2088 * leave kernel.
2089 */
2090 if (p->mm && printk_ratelimit()) {
2091 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2092 task_pid_nr(p), p->comm, cpu);
2093 }
2094 }
2095
2096 return dest_cpu;
2097}
2098
2099/*
2100 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2101 */
2102static inline
2103int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2104{
2105 lockdep_assert_held(&p->pi_lock);
2106
2107 if (p->nr_cpus_allowed > 1)
2108 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2109 else
2110 cpu = cpumask_any(p->cpus_ptr);
2111
2112 /*
2113 * In order not to call set_task_cpu() on a blocking task we need
2114 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2115 * CPU.
2116 *
2117 * Since this is common to all placement strategies, this lives here.
2118 *
2119 * [ this allows ->select_task() to simply return task_cpu(p) and
2120 * not worry about this generic constraint ]
2121 */
2122 if (unlikely(!is_cpu_allowed(p, cpu)))
2123 cpu = select_fallback_rq(task_cpu(p), p);
2124
2125 return cpu;
2126}
2127
2128static void update_avg(u64 *avg, u64 sample)
2129{
2130 s64 diff = sample - *avg;
2131 *avg += diff >> 3;
2132}
2133
2134void sched_set_stop_task(int cpu, struct task_struct *stop)
2135{
2136 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2137 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2138
2139 if (stop) {
2140 /*
2141 * Make it appear like a SCHED_FIFO task, its something
2142 * userspace knows about and won't get confused about.
2143 *
2144 * Also, it will make PI more or less work without too
2145 * much confusion -- but then, stop work should not
2146 * rely on PI working anyway.
2147 */
2148 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2149
2150 stop->sched_class = &stop_sched_class;
2151 }
2152
2153 cpu_rq(cpu)->stop = stop;
2154
2155 if (old_stop) {
2156 /*
2157 * Reset it back to a normal scheduling class so that
2158 * it can die in pieces.
2159 */
2160 old_stop->sched_class = &rt_sched_class;
2161 }
2162}
2163
2164#else
2165
2166static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2167 const struct cpumask *new_mask, bool check)
2168{
2169 return set_cpus_allowed_ptr(p, new_mask);
2170}
2171
2172#endif /* CONFIG_SMP */
2173
2174static void
2175ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2176{
2177 struct rq *rq;
2178
2179 if (!schedstat_enabled())
2180 return;
2181
2182 rq = this_rq();
2183
2184#ifdef CONFIG_SMP
2185 if (cpu == rq->cpu) {
2186 __schedstat_inc(rq->ttwu_local);
2187 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2188 } else {
2189 struct sched_domain *sd;
2190
2191 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2192 rcu_read_lock();
2193 for_each_domain(rq->cpu, sd) {
2194 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2195 __schedstat_inc(sd->ttwu_wake_remote);
2196 break;
2197 }
2198 }
2199 rcu_read_unlock();
2200 }
2201
2202 if (wake_flags & WF_MIGRATED)
2203 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2204#endif /* CONFIG_SMP */
2205
2206 __schedstat_inc(rq->ttwu_count);
2207 __schedstat_inc(p->se.statistics.nr_wakeups);
2208
2209 if (wake_flags & WF_SYNC)
2210 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2211}
2212
2213/*
2214 * Mark the task runnable and perform wakeup-preemption.
2215 */
2216static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2217 struct rq_flags *rf)
2218{
2219 check_preempt_curr(rq, p, wake_flags);
2220 p->state = TASK_RUNNING;
2221 trace_sched_wakeup(p);
2222
2223#ifdef CONFIG_SMP
2224 if (p->sched_class->task_woken) {
2225 /*
2226 * Our task @p is fully woken up and running; so its safe to
2227 * drop the rq->lock, hereafter rq is only used for statistics.
2228 */
2229 rq_unpin_lock(rq, rf);
2230 p->sched_class->task_woken(rq, p);
2231 rq_repin_lock(rq, rf);
2232 }
2233
2234 if (rq->idle_stamp) {
2235 u64 delta = rq_clock(rq) - rq->idle_stamp;
2236 u64 max = 2*rq->max_idle_balance_cost;
2237
2238 update_avg(&rq->avg_idle, delta);
2239
2240 if (rq->avg_idle > max)
2241 rq->avg_idle = max;
2242
2243 rq->idle_stamp = 0;
2244 }
2245#endif
2246}
2247
2248static void
2249ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2250 struct rq_flags *rf)
2251{
2252 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2253
2254 lockdep_assert_held(&rq->lock);
2255
2256#ifdef CONFIG_SMP
2257 if (p->sched_contributes_to_load)
2258 rq->nr_uninterruptible--;
2259
2260 if (wake_flags & WF_MIGRATED)
2261 en_flags |= ENQUEUE_MIGRATED;
2262#endif
2263
2264 activate_task(rq, p, en_flags);
2265 ttwu_do_wakeup(rq, p, wake_flags, rf);
2266}
2267
2268/*
2269 * Called in case the task @p isn't fully descheduled from its runqueue,
2270 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2271 * since all we need to do is flip p->state to TASK_RUNNING, since
2272 * the task is still ->on_rq.
2273 */
2274static int ttwu_remote(struct task_struct *p, int wake_flags)
2275{
2276 struct rq_flags rf;
2277 struct rq *rq;
2278 int ret = 0;
2279
2280 rq = __task_rq_lock(p, &rf);
2281 if (task_on_rq_queued(p)) {
2282 /* check_preempt_curr() may use rq clock */
2283 update_rq_clock(rq);
2284 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2285 ret = 1;
2286 }
2287 __task_rq_unlock(rq, &rf);
2288
2289 return ret;
2290}
2291
2292#ifdef CONFIG_SMP
2293void sched_ttwu_pending(void)
2294{
2295 struct rq *rq = this_rq();
2296 struct llist_node *llist = llist_del_all(&rq->wake_list);
2297 struct task_struct *p, *t;
2298 struct rq_flags rf;
2299
2300 if (!llist)
2301 return;
2302
2303 rq_lock_irqsave(rq, &rf);
2304 update_rq_clock(rq);
2305
2306 llist_for_each_entry_safe(p, t, llist, wake_entry)
2307 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2308
2309 rq_unlock_irqrestore(rq, &rf);
2310}
2311
2312void scheduler_ipi(void)
2313{
2314 /*
2315 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2316 * TIF_NEED_RESCHED remotely (for the first time) will also send
2317 * this IPI.
2318 */
2319 preempt_fold_need_resched();
2320
2321 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2322 return;
2323
2324 /*
2325 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2326 * traditionally all their work was done from the interrupt return
2327 * path. Now that we actually do some work, we need to make sure
2328 * we do call them.
2329 *
2330 * Some archs already do call them, luckily irq_enter/exit nest
2331 * properly.
2332 *
2333 * Arguably we should visit all archs and update all handlers,
2334 * however a fair share of IPIs are still resched only so this would
2335 * somewhat pessimize the simple resched case.
2336 */
2337 irq_enter();
2338 sched_ttwu_pending();
2339
2340 /*
2341 * Check if someone kicked us for doing the nohz idle load balance.
2342 */
2343 if (unlikely(got_nohz_idle_kick())) {
2344 this_rq()->idle_balance = 1;
2345 raise_softirq_irqoff(SCHED_SOFTIRQ);
2346 }
2347 irq_exit();
2348}
2349
2350static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2351{
2352 struct rq *rq = cpu_rq(cpu);
2353
2354 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2355
2356 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2357 if (!set_nr_if_polling(rq->idle))
2358 smp_send_reschedule(cpu);
2359 else
2360 trace_sched_wake_idle_without_ipi(cpu);
2361 }
2362}
2363
2364void wake_up_if_idle(int cpu)
2365{
2366 struct rq *rq = cpu_rq(cpu);
2367 struct rq_flags rf;
2368
2369 rcu_read_lock();
2370
2371 if (!is_idle_task(rcu_dereference(rq->curr)))
2372 goto out;
2373
2374 if (set_nr_if_polling(rq->idle)) {
2375 trace_sched_wake_idle_without_ipi(cpu);
2376 } else {
2377 rq_lock_irqsave(rq, &rf);
2378 if (is_idle_task(rq->curr))
2379 smp_send_reschedule(cpu);
2380 /* Else CPU is not idle, do nothing here: */
2381 rq_unlock_irqrestore(rq, &rf);
2382 }
2383
2384out:
2385 rcu_read_unlock();
2386}
2387
2388bool cpus_share_cache(int this_cpu, int that_cpu)
2389{
2390 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2391}
2392#endif /* CONFIG_SMP */
2393
2394static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395{
2396 struct rq *rq = cpu_rq(cpu);
2397 struct rq_flags rf;
2398
2399#if defined(CONFIG_SMP)
2400 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2401 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2402 ttwu_queue_remote(p, cpu, wake_flags);
2403 return;
2404 }
2405#endif
2406
2407 rq_lock(rq, &rf);
2408 update_rq_clock(rq);
2409 ttwu_do_activate(rq, p, wake_flags, &rf);
2410 rq_unlock(rq, &rf);
2411}
2412
2413/*
2414 * Notes on Program-Order guarantees on SMP systems.
2415 *
2416 * MIGRATION
2417 *
2418 * The basic program-order guarantee on SMP systems is that when a task [t]
2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420 * execution on its new CPU [c1].
2421 *
2422 * For migration (of runnable tasks) this is provided by the following means:
2423 *
2424 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2425 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2426 * rq(c1)->lock (if not at the same time, then in that order).
2427 * C) LOCK of the rq(c1)->lock scheduling in task
2428 *
2429 * Release/acquire chaining guarantees that B happens after A and C after B.
2430 * Note: the CPU doing B need not be c0 or c1
2431 *
2432 * Example:
2433 *
2434 * CPU0 CPU1 CPU2
2435 *
2436 * LOCK rq(0)->lock
2437 * sched-out X
2438 * sched-in Y
2439 * UNLOCK rq(0)->lock
2440 *
2441 * LOCK rq(0)->lock // orders against CPU0
2442 * dequeue X
2443 * UNLOCK rq(0)->lock
2444 *
2445 * LOCK rq(1)->lock
2446 * enqueue X
2447 * UNLOCK rq(1)->lock
2448 *
2449 * LOCK rq(1)->lock // orders against CPU2
2450 * sched-out Z
2451 * sched-in X
2452 * UNLOCK rq(1)->lock
2453 *
2454 *
2455 * BLOCKING -- aka. SLEEP + WAKEUP
2456 *
2457 * For blocking we (obviously) need to provide the same guarantee as for
2458 * migration. However the means are completely different as there is no lock
2459 * chain to provide order. Instead we do:
2460 *
2461 * 1) smp_store_release(X->on_cpu, 0)
2462 * 2) smp_cond_load_acquire(!X->on_cpu)
2463 *
2464 * Example:
2465 *
2466 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2467 *
2468 * LOCK rq(0)->lock LOCK X->pi_lock
2469 * dequeue X
2470 * sched-out X
2471 * smp_store_release(X->on_cpu, 0);
2472 *
2473 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2474 * X->state = WAKING
2475 * set_task_cpu(X,2)
2476 *
2477 * LOCK rq(2)->lock
2478 * enqueue X
2479 * X->state = RUNNING
2480 * UNLOCK rq(2)->lock
2481 *
2482 * LOCK rq(2)->lock // orders against CPU1
2483 * sched-out Z
2484 * sched-in X
2485 * UNLOCK rq(2)->lock
2486 *
2487 * UNLOCK X->pi_lock
2488 * UNLOCK rq(0)->lock
2489 *
2490 *
2491 * However, for wakeups there is a second guarantee we must provide, namely we
2492 * must ensure that CONDITION=1 done by the caller can not be reordered with
2493 * accesses to the task state; see try_to_wake_up() and set_current_state().
2494 */
2495
2496/**
2497 * try_to_wake_up - wake up a thread
2498 * @p: the thread to be awakened
2499 * @state: the mask of task states that can be woken
2500 * @wake_flags: wake modifier flags (WF_*)
2501 *
2502 * If (@state & @p->state) @p->state = TASK_RUNNING.
2503 *
2504 * If the task was not queued/runnable, also place it back on a runqueue.
2505 *
2506 * Atomic against schedule() which would dequeue a task, also see
2507 * set_current_state().
2508 *
2509 * This function executes a full memory barrier before accessing the task
2510 * state; see set_current_state().
2511 *
2512 * Return: %true if @p->state changes (an actual wakeup was done),
2513 * %false otherwise.
2514 */
2515static int
2516try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517{
2518 unsigned long flags;
2519 int cpu, success = 0;
2520
2521 preempt_disable();
2522 if (p == current) {
2523 /*
2524 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525 * == smp_processor_id()'. Together this means we can special
2526 * case the whole 'p->on_rq && ttwu_remote()' case below
2527 * without taking any locks.
2528 *
2529 * In particular:
2530 * - we rely on Program-Order guarantees for all the ordering,
2531 * - we're serialized against set_special_state() by virtue of
2532 * it disabling IRQs (this allows not taking ->pi_lock).
2533 */
2534 if (!(p->state & state))
2535 goto out;
2536
2537 success = 1;
2538 cpu = task_cpu(p);
2539 trace_sched_waking(p);
2540 p->state = TASK_RUNNING;
2541 trace_sched_wakeup(p);
2542 goto out;
2543 }
2544
2545 /*
2546 * If we are going to wake up a thread waiting for CONDITION we
2547 * need to ensure that CONDITION=1 done by the caller can not be
2548 * reordered with p->state check below. This pairs with mb() in
2549 * set_current_state() the waiting thread does.
2550 */
2551 raw_spin_lock_irqsave(&p->pi_lock, flags);
2552 smp_mb__after_spinlock();
2553 if (!(p->state & state))
2554 goto unlock;
2555
2556 trace_sched_waking(p);
2557
2558 /* We're going to change ->state: */
2559 success = 1;
2560 cpu = task_cpu(p);
2561
2562 /*
2563 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565 * in smp_cond_load_acquire() below.
2566 *
2567 * sched_ttwu_pending() try_to_wake_up()
2568 * STORE p->on_rq = 1 LOAD p->state
2569 * UNLOCK rq->lock
2570 *
2571 * __schedule() (switch to task 'p')
2572 * LOCK rq->lock smp_rmb();
2573 * smp_mb__after_spinlock();
2574 * UNLOCK rq->lock
2575 *
2576 * [task p]
2577 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2578 *
2579 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580 * __schedule(). See the comment for smp_mb__after_spinlock().
2581 */
2582 smp_rmb();
2583 if (p->on_rq && ttwu_remote(p, wake_flags))
2584 goto unlock;
2585
2586#ifdef CONFIG_SMP
2587 /*
2588 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2589 * possible to, falsely, observe p->on_cpu == 0.
2590 *
2591 * One must be running (->on_cpu == 1) in order to remove oneself
2592 * from the runqueue.
2593 *
2594 * __schedule() (switch to task 'p') try_to_wake_up()
2595 * STORE p->on_cpu = 1 LOAD p->on_rq
2596 * UNLOCK rq->lock
2597 *
2598 * __schedule() (put 'p' to sleep)
2599 * LOCK rq->lock smp_rmb();
2600 * smp_mb__after_spinlock();
2601 * STORE p->on_rq = 0 LOAD p->on_cpu
2602 *
2603 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2604 * __schedule(). See the comment for smp_mb__after_spinlock().
2605 */
2606 smp_rmb();
2607
2608 /*
2609 * If the owning (remote) CPU is still in the middle of schedule() with
2610 * this task as prev, wait until its done referencing the task.
2611 *
2612 * Pairs with the smp_store_release() in finish_task().
2613 *
2614 * This ensures that tasks getting woken will be fully ordered against
2615 * their previous state and preserve Program Order.
2616 */
2617 smp_cond_load_acquire(&p->on_cpu, !VAL);
2618
2619 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2620 p->state = TASK_WAKING;
2621
2622 if (p->in_iowait) {
2623 delayacct_blkio_end(p);
2624 atomic_dec(&task_rq(p)->nr_iowait);
2625 }
2626
2627 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2628 if (task_cpu(p) != cpu) {
2629 wake_flags |= WF_MIGRATED;
2630 psi_ttwu_dequeue(p);
2631 set_task_cpu(p, cpu);
2632 }
2633
2634#else /* CONFIG_SMP */
2635
2636 if (p->in_iowait) {
2637 delayacct_blkio_end(p);
2638 atomic_dec(&task_rq(p)->nr_iowait);
2639 }
2640
2641#endif /* CONFIG_SMP */
2642
2643 ttwu_queue(p, cpu, wake_flags);
2644unlock:
2645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2646out:
2647 if (success)
2648 ttwu_stat(p, cpu, wake_flags);
2649 preempt_enable();
2650
2651 return success;
2652}
2653
2654/**
2655 * wake_up_process - Wake up a specific process
2656 * @p: The process to be woken up.
2657 *
2658 * Attempt to wake up the nominated process and move it to the set of runnable
2659 * processes.
2660 *
2661 * Return: 1 if the process was woken up, 0 if it was already running.
2662 *
2663 * This function executes a full memory barrier before accessing the task state.
2664 */
2665int wake_up_process(struct task_struct *p)
2666{
2667 return try_to_wake_up(p, TASK_NORMAL, 0);
2668}
2669EXPORT_SYMBOL(wake_up_process);
2670
2671int wake_up_state(struct task_struct *p, unsigned int state)
2672{
2673 return try_to_wake_up(p, state, 0);
2674}
2675
2676/*
2677 * Perform scheduler related setup for a newly forked process p.
2678 * p is forked by current.
2679 *
2680 * __sched_fork() is basic setup used by init_idle() too:
2681 */
2682static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2683{
2684 p->on_rq = 0;
2685
2686 p->se.on_rq = 0;
2687 p->se.exec_start = 0;
2688 p->se.sum_exec_runtime = 0;
2689 p->se.prev_sum_exec_runtime = 0;
2690 p->se.nr_migrations = 0;
2691 p->se.vruntime = 0;
2692 INIT_LIST_HEAD(&p->se.group_node);
2693
2694#ifdef CONFIG_FAIR_GROUP_SCHED
2695 p->se.cfs_rq = NULL;
2696#endif
2697
2698#ifdef CONFIG_SCHEDSTATS
2699 /* Even if schedstat is disabled, there should not be garbage */
2700 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2701#endif
2702
2703 RB_CLEAR_NODE(&p->dl.rb_node);
2704 init_dl_task_timer(&p->dl);
2705 init_dl_inactive_task_timer(&p->dl);
2706 __dl_clear_params(p);
2707
2708 INIT_LIST_HEAD(&p->rt.run_list);
2709 p->rt.timeout = 0;
2710 p->rt.time_slice = sched_rr_timeslice;
2711 p->rt.on_rq = 0;
2712 p->rt.on_list = 0;
2713
2714#ifdef CONFIG_PREEMPT_NOTIFIERS
2715 INIT_HLIST_HEAD(&p->preempt_notifiers);
2716#endif
2717
2718#ifdef CONFIG_COMPACTION
2719 p->capture_control = NULL;
2720#endif
2721 init_numa_balancing(clone_flags, p);
2722}
2723
2724DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2725
2726#ifdef CONFIG_NUMA_BALANCING
2727
2728void set_numabalancing_state(bool enabled)
2729{
2730 if (enabled)
2731 static_branch_enable(&sched_numa_balancing);
2732 else
2733 static_branch_disable(&sched_numa_balancing);
2734}
2735
2736#ifdef CONFIG_PROC_SYSCTL
2737int sysctl_numa_balancing(struct ctl_table *table, int write,
2738 void __user *buffer, size_t *lenp, loff_t *ppos)
2739{
2740 struct ctl_table t;
2741 int err;
2742 int state = static_branch_likely(&sched_numa_balancing);
2743
2744 if (write && !capable(CAP_SYS_ADMIN))
2745 return -EPERM;
2746
2747 t = *table;
2748 t.data = &state;
2749 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2750 if (err < 0)
2751 return err;
2752 if (write)
2753 set_numabalancing_state(state);
2754 return err;
2755}
2756#endif
2757#endif
2758
2759#ifdef CONFIG_SCHEDSTATS
2760
2761DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2762static bool __initdata __sched_schedstats = false;
2763
2764static void set_schedstats(bool enabled)
2765{
2766 if (enabled)
2767 static_branch_enable(&sched_schedstats);
2768 else
2769 static_branch_disable(&sched_schedstats);
2770}
2771
2772void force_schedstat_enabled(void)
2773{
2774 if (!schedstat_enabled()) {
2775 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2776 static_branch_enable(&sched_schedstats);
2777 }
2778}
2779
2780static int __init setup_schedstats(char *str)
2781{
2782 int ret = 0;
2783 if (!str)
2784 goto out;
2785
2786 /*
2787 * This code is called before jump labels have been set up, so we can't
2788 * change the static branch directly just yet. Instead set a temporary
2789 * variable so init_schedstats() can do it later.
2790 */
2791 if (!strcmp(str, "enable")) {
2792 __sched_schedstats = true;
2793 ret = 1;
2794 } else if (!strcmp(str, "disable")) {
2795 __sched_schedstats = false;
2796 ret = 1;
2797 }
2798out:
2799 if (!ret)
2800 pr_warn("Unable to parse schedstats=\n");
2801
2802 return ret;
2803}
2804__setup("schedstats=", setup_schedstats);
2805
2806static void __init init_schedstats(void)
2807{
2808 set_schedstats(__sched_schedstats);
2809}
2810
2811#ifdef CONFIG_PROC_SYSCTL
2812int sysctl_schedstats(struct ctl_table *table, int write,
2813 void __user *buffer, size_t *lenp, loff_t *ppos)
2814{
2815 struct ctl_table t;
2816 int err;
2817 int state = static_branch_likely(&sched_schedstats);
2818
2819 if (write && !capable(CAP_SYS_ADMIN))
2820 return -EPERM;
2821
2822 t = *table;
2823 t.data = &state;
2824 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2825 if (err < 0)
2826 return err;
2827 if (write)
2828 set_schedstats(state);
2829 return err;
2830}
2831#endif /* CONFIG_PROC_SYSCTL */
2832#else /* !CONFIG_SCHEDSTATS */
2833static inline void init_schedstats(void) {}
2834#endif /* CONFIG_SCHEDSTATS */
2835
2836/*
2837 * fork()/clone()-time setup:
2838 */
2839int sched_fork(unsigned long clone_flags, struct task_struct *p)
2840{
2841 unsigned long flags;
2842
2843 __sched_fork(clone_flags, p);
2844 /*
2845 * We mark the process as NEW here. This guarantees that
2846 * nobody will actually run it, and a signal or other external
2847 * event cannot wake it up and insert it on the runqueue either.
2848 */
2849 p->state = TASK_NEW;
2850
2851 /*
2852 * Make sure we do not leak PI boosting priority to the child.
2853 */
2854 p->prio = current->normal_prio;
2855
2856 uclamp_fork(p);
2857
2858 /*
2859 * Revert to default priority/policy on fork if requested.
2860 */
2861 if (unlikely(p->sched_reset_on_fork)) {
2862 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2863 p->policy = SCHED_NORMAL;
2864 p->static_prio = NICE_TO_PRIO(0);
2865 p->rt_priority = 0;
2866 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2867 p->static_prio = NICE_TO_PRIO(0);
2868
2869 p->prio = p->normal_prio = __normal_prio(p);
2870 set_load_weight(p, false);
2871
2872 /*
2873 * We don't need the reset flag anymore after the fork. It has
2874 * fulfilled its duty:
2875 */
2876 p->sched_reset_on_fork = 0;
2877 }
2878
2879 if (dl_prio(p->prio))
2880 return -EAGAIN;
2881 else if (rt_prio(p->prio))
2882 p->sched_class = &rt_sched_class;
2883 else
2884 p->sched_class = &fair_sched_class;
2885
2886 init_entity_runnable_average(&p->se);
2887
2888 /*
2889 * The child is not yet in the pid-hash so no cgroup attach races,
2890 * and the cgroup is pinned to this child due to cgroup_fork()
2891 * is ran before sched_fork().
2892 *
2893 * Silence PROVE_RCU.
2894 */
2895 raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 /*
2897 * We're setting the CPU for the first time, we don't migrate,
2898 * so use __set_task_cpu().
2899 */
2900 __set_task_cpu(p, smp_processor_id());
2901 if (p->sched_class->task_fork)
2902 p->sched_class->task_fork(p);
2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904
2905#ifdef CONFIG_SCHED_INFO
2906 if (likely(sched_info_on()))
2907 memset(&p->sched_info, 0, sizeof(p->sched_info));
2908#endif
2909#if defined(CONFIG_SMP)
2910 p->on_cpu = 0;
2911#endif
2912 init_task_preempt_count(p);
2913#ifdef CONFIG_SMP
2914 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2915 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2916#endif
2917 return 0;
2918}
2919
2920unsigned long to_ratio(u64 period, u64 runtime)
2921{
2922 if (runtime == RUNTIME_INF)
2923 return BW_UNIT;
2924
2925 /*
2926 * Doing this here saves a lot of checks in all
2927 * the calling paths, and returning zero seems
2928 * safe for them anyway.
2929 */
2930 if (period == 0)
2931 return 0;
2932
2933 return div64_u64(runtime << BW_SHIFT, period);
2934}
2935
2936/*
2937 * wake_up_new_task - wake up a newly created task for the first time.
2938 *
2939 * This function will do some initial scheduler statistics housekeeping
2940 * that must be done for every newly created context, then puts the task
2941 * on the runqueue and wakes it.
2942 */
2943void wake_up_new_task(struct task_struct *p)
2944{
2945 struct rq_flags rf;
2946 struct rq *rq;
2947
2948 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2949 p->state = TASK_RUNNING;
2950#ifdef CONFIG_SMP
2951 /*
2952 * Fork balancing, do it here and not earlier because:
2953 * - cpus_ptr can change in the fork path
2954 * - any previously selected CPU might disappear through hotplug
2955 *
2956 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2957 * as we're not fully set-up yet.
2958 */
2959 p->recent_used_cpu = task_cpu(p);
2960 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2961#endif
2962 rq = __task_rq_lock(p, &rf);
2963 update_rq_clock(rq);
2964 post_init_entity_util_avg(p);
2965
2966 activate_task(rq, p, ENQUEUE_NOCLOCK);
2967 trace_sched_wakeup_new(p);
2968 check_preempt_curr(rq, p, WF_FORK);
2969#ifdef CONFIG_SMP
2970 if (p->sched_class->task_woken) {
2971 /*
2972 * Nothing relies on rq->lock after this, so its fine to
2973 * drop it.
2974 */
2975 rq_unpin_lock(rq, &rf);
2976 p->sched_class->task_woken(rq, p);
2977 rq_repin_lock(rq, &rf);
2978 }
2979#endif
2980 task_rq_unlock(rq, p, &rf);
2981}
2982
2983#ifdef CONFIG_PREEMPT_NOTIFIERS
2984
2985static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2986
2987void preempt_notifier_inc(void)
2988{
2989 static_branch_inc(&preempt_notifier_key);
2990}
2991EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2992
2993void preempt_notifier_dec(void)
2994{
2995 static_branch_dec(&preempt_notifier_key);
2996}
2997EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2998
2999/**
3000 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3001 * @notifier: notifier struct to register
3002 */
3003void preempt_notifier_register(struct preempt_notifier *notifier)
3004{
3005 if (!static_branch_unlikely(&preempt_notifier_key))
3006 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3007
3008 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3009}
3010EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011
3012/**
3013 * preempt_notifier_unregister - no longer interested in preemption notifications
3014 * @notifier: notifier struct to unregister
3015 *
3016 * This is *not* safe to call from within a preemption notifier.
3017 */
3018void preempt_notifier_unregister(struct preempt_notifier *notifier)
3019{
3020 hlist_del(&notifier->link);
3021}
3022EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3023
3024static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3025{
3026 struct preempt_notifier *notifier;
3027
3028 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3029 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3030}
3031
3032static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3033{
3034 if (static_branch_unlikely(&preempt_notifier_key))
3035 __fire_sched_in_preempt_notifiers(curr);
3036}
3037
3038static void
3039__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3040 struct task_struct *next)
3041{
3042 struct preempt_notifier *notifier;
3043
3044 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3045 notifier->ops->sched_out(notifier, next);
3046}
3047
3048static __always_inline void
3049fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050 struct task_struct *next)
3051{
3052 if (static_branch_unlikely(&preempt_notifier_key))
3053 __fire_sched_out_preempt_notifiers(curr, next);
3054}
3055
3056#else /* !CONFIG_PREEMPT_NOTIFIERS */
3057
3058static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059{
3060}
3061
3062static inline void
3063fire_sched_out_preempt_notifiers(struct task_struct *curr,
3064 struct task_struct *next)
3065{
3066}
3067
3068#endif /* CONFIG_PREEMPT_NOTIFIERS */
3069
3070static inline void prepare_task(struct task_struct *next)
3071{
3072#ifdef CONFIG_SMP
3073 /*
3074 * Claim the task as running, we do this before switching to it
3075 * such that any running task will have this set.
3076 */
3077 next->on_cpu = 1;
3078#endif
3079}
3080
3081static inline void finish_task(struct task_struct *prev)
3082{
3083#ifdef CONFIG_SMP
3084 /*
3085 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3086 * We must ensure this doesn't happen until the switch is completely
3087 * finished.
3088 *
3089 * In particular, the load of prev->state in finish_task_switch() must
3090 * happen before this.
3091 *
3092 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3093 */
3094 smp_store_release(&prev->on_cpu, 0);
3095#endif
3096}
3097
3098static inline void
3099prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3100{
3101 /*
3102 * Since the runqueue lock will be released by the next
3103 * task (which is an invalid locking op but in the case
3104 * of the scheduler it's an obvious special-case), so we
3105 * do an early lockdep release here:
3106 */
3107 rq_unpin_lock(rq, rf);
3108 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3109#ifdef CONFIG_DEBUG_SPINLOCK
3110 /* this is a valid case when another task releases the spinlock */
3111 rq->lock.owner = next;
3112#endif
3113}
3114
3115static inline void finish_lock_switch(struct rq *rq)
3116{
3117 /*
3118 * If we are tracking spinlock dependencies then we have to
3119 * fix up the runqueue lock - which gets 'carried over' from
3120 * prev into current:
3121 */
3122 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3123 raw_spin_unlock_irq(&rq->lock);
3124}
3125
3126/*
3127 * NOP if the arch has not defined these:
3128 */
3129
3130#ifndef prepare_arch_switch
3131# define prepare_arch_switch(next) do { } while (0)
3132#endif
3133
3134#ifndef finish_arch_post_lock_switch
3135# define finish_arch_post_lock_switch() do { } while (0)
3136#endif
3137
3138/**
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3143 *
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3147 *
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3150 */
3151static inline void
3152prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 struct task_struct *next)
3154{
3155 kcov_prepare_switch(prev);
3156 sched_info_switch(rq, prev, next);
3157 perf_event_task_sched_out(prev, next);
3158 rseq_preempt(prev);
3159 fire_sched_out_preempt_notifiers(prev, next);
3160 prepare_task(next);
3161 prepare_arch_switch(next);
3162}
3163
3164/**
3165 * finish_task_switch - clean up after a task-switch
3166 * @prev: the thread we just switched away from.
3167 *
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3172 *
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3177 *
3178 * The context switch have flipped the stack from under us and restored the
3179 * local variables which were saved when this task called schedule() in the
3180 * past. prev == current is still correct but we need to recalculate this_rq
3181 * because prev may have moved to another CPU.
3182 */
3183static struct rq *finish_task_switch(struct task_struct *prev)
3184 __releases(rq->lock)
3185{
3186 struct rq *rq = this_rq();
3187 struct mm_struct *mm = rq->prev_mm;
3188 long prev_state;
3189
3190 /*
3191 * The previous task will have left us with a preempt_count of 2
3192 * because it left us after:
3193 *
3194 * schedule()
3195 * preempt_disable(); // 1
3196 * __schedule()
3197 * raw_spin_lock_irq(&rq->lock) // 2
3198 *
3199 * Also, see FORK_PREEMPT_COUNT.
3200 */
3201 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3202 "corrupted preempt_count: %s/%d/0x%x\n",
3203 current->comm, current->pid, preempt_count()))
3204 preempt_count_set(FORK_PREEMPT_COUNT);
3205
3206 rq->prev_mm = NULL;
3207
3208 /*
3209 * A task struct has one reference for the use as "current".
3210 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3211 * schedule one last time. The schedule call will never return, and
3212 * the scheduled task must drop that reference.
3213 *
3214 * We must observe prev->state before clearing prev->on_cpu (in
3215 * finish_task), otherwise a concurrent wakeup can get prev
3216 * running on another CPU and we could rave with its RUNNING -> DEAD
3217 * transition, resulting in a double drop.
3218 */
3219 prev_state = prev->state;
3220 vtime_task_switch(prev);
3221 perf_event_task_sched_in(prev, current);
3222 finish_task(prev);
3223 finish_lock_switch(rq);
3224 finish_arch_post_lock_switch();
3225 kcov_finish_switch(current);
3226
3227 fire_sched_in_preempt_notifiers(current);
3228 /*
3229 * When switching through a kernel thread, the loop in
3230 * membarrier_{private,global}_expedited() may have observed that
3231 * kernel thread and not issued an IPI. It is therefore possible to
3232 * schedule between user->kernel->user threads without passing though
3233 * switch_mm(). Membarrier requires a barrier after storing to
3234 * rq->curr, before returning to userspace, so provide them here:
3235 *
3236 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3237 * provided by mmdrop(),
3238 * - a sync_core for SYNC_CORE.
3239 */
3240 if (mm) {
3241 membarrier_mm_sync_core_before_usermode(mm);
3242 mmdrop(mm);
3243 }
3244 if (unlikely(prev_state == TASK_DEAD)) {
3245 if (prev->sched_class->task_dead)
3246 prev->sched_class->task_dead(prev);
3247
3248 /*
3249 * Remove function-return probe instances associated with this
3250 * task and put them back on the free list.
3251 */
3252 kprobe_flush_task(prev);
3253
3254 /* Task is done with its stack. */
3255 put_task_stack(prev);
3256
3257 put_task_struct_rcu_user(prev);
3258 }
3259
3260 tick_nohz_task_switch();
3261 return rq;
3262}
3263
3264#ifdef CONFIG_SMP
3265
3266/* rq->lock is NOT held, but preemption is disabled */
3267static void __balance_callback(struct rq *rq)
3268{
3269 struct callback_head *head, *next;
3270 void (*func)(struct rq *rq);
3271 unsigned long flags;
3272
3273 raw_spin_lock_irqsave(&rq->lock, flags);
3274 head = rq->balance_callback;
3275 rq->balance_callback = NULL;
3276 while (head) {
3277 func = (void (*)(struct rq *))head->func;
3278 next = head->next;
3279 head->next = NULL;
3280 head = next;
3281
3282 func(rq);
3283 }
3284 raw_spin_unlock_irqrestore(&rq->lock, flags);
3285}
3286
3287static inline void balance_callback(struct rq *rq)
3288{
3289 if (unlikely(rq->balance_callback))
3290 __balance_callback(rq);
3291}
3292
3293#else
3294
3295static inline void balance_callback(struct rq *rq)
3296{
3297}
3298
3299#endif
3300
3301/**
3302 * schedule_tail - first thing a freshly forked thread must call.
3303 * @prev: the thread we just switched away from.
3304 */
3305asmlinkage __visible void schedule_tail(struct task_struct *prev)
3306 __releases(rq->lock)
3307{
3308 struct rq *rq;
3309
3310 /*
3311 * New tasks start with FORK_PREEMPT_COUNT, see there and
3312 * finish_task_switch() for details.
3313 *
3314 * finish_task_switch() will drop rq->lock() and lower preempt_count
3315 * and the preempt_enable() will end up enabling preemption (on
3316 * PREEMPT_COUNT kernels).
3317 */
3318
3319 rq = finish_task_switch(prev);
3320 balance_callback(rq);
3321 preempt_enable();
3322
3323 if (current->set_child_tid)
3324 put_user(task_pid_vnr(current), current->set_child_tid);
3325
3326 calculate_sigpending();
3327}
3328
3329/*
3330 * context_switch - switch to the new MM and the new thread's register state.
3331 */
3332static __always_inline struct rq *
3333context_switch(struct rq *rq, struct task_struct *prev,
3334 struct task_struct *next, struct rq_flags *rf)
3335{
3336 prepare_task_switch(rq, prev, next);
3337
3338 /*
3339 * For paravirt, this is coupled with an exit in switch_to to
3340 * combine the page table reload and the switch backend into
3341 * one hypercall.
3342 */
3343 arch_start_context_switch(prev);
3344
3345 /*
3346 * kernel -> kernel lazy + transfer active
3347 * user -> kernel lazy + mmgrab() active
3348 *
3349 * kernel -> user switch + mmdrop() active
3350 * user -> user switch
3351 */
3352 if (!next->mm) { // to kernel
3353 enter_lazy_tlb(prev->active_mm, next);
3354
3355 next->active_mm = prev->active_mm;
3356 if (prev->mm) // from user
3357 mmgrab(prev->active_mm);
3358 else
3359 prev->active_mm = NULL;
3360 } else { // to user
3361 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3362 /*
3363 * sys_membarrier() requires an smp_mb() between setting
3364 * rq->curr / membarrier_switch_mm() and returning to userspace.
3365 *
3366 * The below provides this either through switch_mm(), or in
3367 * case 'prev->active_mm == next->mm' through
3368 * finish_task_switch()'s mmdrop().
3369 */
3370 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3371
3372 if (!prev->mm) { // from kernel
3373 /* will mmdrop() in finish_task_switch(). */
3374 rq->prev_mm = prev->active_mm;
3375 prev->active_mm = NULL;
3376 }
3377 }
3378
3379 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3380
3381 prepare_lock_switch(rq, next, rf);
3382
3383 /* Here we just switch the register state and the stack. */
3384 switch_to(prev, next, prev);
3385 barrier();
3386
3387 return finish_task_switch(prev);
3388}
3389
3390/*
3391 * nr_running and nr_context_switches:
3392 *
3393 * externally visible scheduler statistics: current number of runnable
3394 * threads, total number of context switches performed since bootup.
3395 */
3396unsigned long nr_running(void)
3397{
3398 unsigned long i, sum = 0;
3399
3400 for_each_online_cpu(i)
3401 sum += cpu_rq(i)->nr_running;
3402
3403 return sum;
3404}
3405
3406/*
3407 * Check if only the current task is running on the CPU.
3408 *
3409 * Caution: this function does not check that the caller has disabled
3410 * preemption, thus the result might have a time-of-check-to-time-of-use
3411 * race. The caller is responsible to use it correctly, for example:
3412 *
3413 * - from a non-preemptible section (of course)
3414 *
3415 * - from a thread that is bound to a single CPU
3416 *
3417 * - in a loop with very short iterations (e.g. a polling loop)
3418 */
3419bool single_task_running(void)
3420{
3421 return raw_rq()->nr_running == 1;
3422}
3423EXPORT_SYMBOL(single_task_running);
3424
3425unsigned long long nr_context_switches(void)
3426{
3427 int i;
3428 unsigned long long sum = 0;
3429
3430 for_each_possible_cpu(i)
3431 sum += cpu_rq(i)->nr_switches;
3432
3433 return sum;
3434}
3435
3436/*
3437 * Consumers of these two interfaces, like for example the cpuidle menu
3438 * governor, are using nonsensical data. Preferring shallow idle state selection
3439 * for a CPU that has IO-wait which might not even end up running the task when
3440 * it does become runnable.
3441 */
3442
3443unsigned long nr_iowait_cpu(int cpu)
3444{
3445 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3446}
3447
3448/*
3449 * IO-wait accounting, and how its mostly bollocks (on SMP).
3450 *
3451 * The idea behind IO-wait account is to account the idle time that we could
3452 * have spend running if it were not for IO. That is, if we were to improve the
3453 * storage performance, we'd have a proportional reduction in IO-wait time.
3454 *
3455 * This all works nicely on UP, where, when a task blocks on IO, we account
3456 * idle time as IO-wait, because if the storage were faster, it could've been
3457 * running and we'd not be idle.
3458 *
3459 * This has been extended to SMP, by doing the same for each CPU. This however
3460 * is broken.
3461 *
3462 * Imagine for instance the case where two tasks block on one CPU, only the one
3463 * CPU will have IO-wait accounted, while the other has regular idle. Even
3464 * though, if the storage were faster, both could've ran at the same time,
3465 * utilising both CPUs.
3466 *
3467 * This means, that when looking globally, the current IO-wait accounting on
3468 * SMP is a lower bound, by reason of under accounting.
3469 *
3470 * Worse, since the numbers are provided per CPU, they are sometimes
3471 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3472 * associated with any one particular CPU, it can wake to another CPU than it
3473 * blocked on. This means the per CPU IO-wait number is meaningless.
3474 *
3475 * Task CPU affinities can make all that even more 'interesting'.
3476 */
3477
3478unsigned long nr_iowait(void)
3479{
3480 unsigned long i, sum = 0;
3481
3482 for_each_possible_cpu(i)
3483 sum += nr_iowait_cpu(i);
3484
3485 return sum;
3486}
3487
3488#ifdef CONFIG_SMP
3489
3490/*
3491 * sched_exec - execve() is a valuable balancing opportunity, because at
3492 * this point the task has the smallest effective memory and cache footprint.
3493 */
3494void sched_exec(void)
3495{
3496 struct task_struct *p = current;
3497 unsigned long flags;
3498 int dest_cpu;
3499
3500 raw_spin_lock_irqsave(&p->pi_lock, flags);
3501 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3502 if (dest_cpu == smp_processor_id())
3503 goto unlock;
3504
3505 if (likely(cpu_active(dest_cpu))) {
3506 struct migration_arg arg = { p, dest_cpu };
3507
3508 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3510 return;
3511 }
3512unlock:
3513 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3514}
3515
3516#endif
3517
3518DEFINE_PER_CPU(struct kernel_stat, kstat);
3519DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3520
3521EXPORT_PER_CPU_SYMBOL(kstat);
3522EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3523
3524/*
3525 * The function fair_sched_class.update_curr accesses the struct curr
3526 * and its field curr->exec_start; when called from task_sched_runtime(),
3527 * we observe a high rate of cache misses in practice.
3528 * Prefetching this data results in improved performance.
3529 */
3530static inline void prefetch_curr_exec_start(struct task_struct *p)
3531{
3532#ifdef CONFIG_FAIR_GROUP_SCHED
3533 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3534#else
3535 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3536#endif
3537 prefetch(curr);
3538 prefetch(&curr->exec_start);
3539}
3540
3541/*
3542 * Return accounted runtime for the task.
3543 * In case the task is currently running, return the runtime plus current's
3544 * pending runtime that have not been accounted yet.
3545 */
3546unsigned long long task_sched_runtime(struct task_struct *p)
3547{
3548 struct rq_flags rf;
3549 struct rq *rq;
3550 u64 ns;
3551
3552#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3553 /*
3554 * 64-bit doesn't need locks to atomically read a 64-bit value.
3555 * So we have a optimization chance when the task's delta_exec is 0.
3556 * Reading ->on_cpu is racy, but this is ok.
3557 *
3558 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3559 * If we race with it entering CPU, unaccounted time is 0. This is
3560 * indistinguishable from the read occurring a few cycles earlier.
3561 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3562 * been accounted, so we're correct here as well.
3563 */
3564 if (!p->on_cpu || !task_on_rq_queued(p))
3565 return p->se.sum_exec_runtime;
3566#endif
3567
3568 rq = task_rq_lock(p, &rf);
3569 /*
3570 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3571 * project cycles that may never be accounted to this
3572 * thread, breaking clock_gettime().
3573 */
3574 if (task_current(rq, p) && task_on_rq_queued(p)) {
3575 prefetch_curr_exec_start(p);
3576 update_rq_clock(rq);
3577 p->sched_class->update_curr(rq);
3578 }
3579 ns = p->se.sum_exec_runtime;
3580 task_rq_unlock(rq, p, &rf);
3581
3582 return ns;
3583}
3584
3585/*
3586 * This function gets called by the timer code, with HZ frequency.
3587 * We call it with interrupts disabled.
3588 */
3589void scheduler_tick(void)
3590{
3591 int cpu = smp_processor_id();
3592 struct rq *rq = cpu_rq(cpu);
3593 struct task_struct *curr = rq->curr;
3594 struct rq_flags rf;
3595
3596 sched_clock_tick();
3597
3598 rq_lock(rq, &rf);
3599
3600 update_rq_clock(rq);
3601 curr->sched_class->task_tick(rq, curr, 0);
3602 calc_global_load_tick(rq);
3603 psi_task_tick(rq);
3604
3605 rq_unlock(rq, &rf);
3606
3607 perf_event_task_tick();
3608
3609#ifdef CONFIG_SMP
3610 rq->idle_balance = idle_cpu(cpu);
3611 trigger_load_balance(rq);
3612#endif
3613}
3614
3615#ifdef CONFIG_NO_HZ_FULL
3616
3617struct tick_work {
3618 int cpu;
3619 atomic_t state;
3620 struct delayed_work work;
3621};
3622/* Values for ->state, see diagram below. */
3623#define TICK_SCHED_REMOTE_OFFLINE 0
3624#define TICK_SCHED_REMOTE_OFFLINING 1
3625#define TICK_SCHED_REMOTE_RUNNING 2
3626
3627/*
3628 * State diagram for ->state:
3629 *
3630 *
3631 * TICK_SCHED_REMOTE_OFFLINE
3632 * | ^
3633 * | |
3634 * | | sched_tick_remote()
3635 * | |
3636 * | |
3637 * +--TICK_SCHED_REMOTE_OFFLINING
3638 * | ^
3639 * | |
3640 * sched_tick_start() | | sched_tick_stop()
3641 * | |
3642 * V |
3643 * TICK_SCHED_REMOTE_RUNNING
3644 *
3645 *
3646 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3647 * and sched_tick_start() are happy to leave the state in RUNNING.
3648 */
3649
3650static struct tick_work __percpu *tick_work_cpu;
3651
3652static void sched_tick_remote(struct work_struct *work)
3653{
3654 struct delayed_work *dwork = to_delayed_work(work);
3655 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3656 int cpu = twork->cpu;
3657 struct rq *rq = cpu_rq(cpu);
3658 struct task_struct *curr;
3659 struct rq_flags rf;
3660 u64 delta;
3661 int os;
3662
3663 /*
3664 * Handle the tick only if it appears the remote CPU is running in full
3665 * dynticks mode. The check is racy by nature, but missing a tick or
3666 * having one too much is no big deal because the scheduler tick updates
3667 * statistics and checks timeslices in a time-independent way, regardless
3668 * of when exactly it is running.
3669 */
3670 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3671 goto out_requeue;
3672
3673 rq_lock_irq(rq, &rf);
3674 curr = rq->curr;
3675 if (is_idle_task(curr) || cpu_is_offline(cpu))
3676 goto out_unlock;
3677
3678 update_rq_clock(rq);
3679 delta = rq_clock_task(rq) - curr->se.exec_start;
3680
3681 /*
3682 * Make sure the next tick runs within a reasonable
3683 * amount of time.
3684 */
3685 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 curr->sched_class->task_tick(rq, curr, 0);
3687
3688out_unlock:
3689 rq_unlock_irq(rq, &rf);
3690
3691out_requeue:
3692 /*
3693 * Run the remote tick once per second (1Hz). This arbitrary
3694 * frequency is large enough to avoid overload but short enough
3695 * to keep scheduler internal stats reasonably up to date. But
3696 * first update state to reflect hotplug activity if required.
3697 */
3698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 if (os == TICK_SCHED_REMOTE_RUNNING)
3701 queue_delayed_work(system_unbound_wq, dwork, HZ);
3702}
3703
3704static void sched_tick_start(int cpu)
3705{
3706 int os;
3707 struct tick_work *twork;
3708
3709 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 return;
3711
3712 WARN_ON_ONCE(!tick_work_cpu);
3713
3714 twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 twork->cpu = cpu;
3719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 }
3722}
3723
3724#ifdef CONFIG_HOTPLUG_CPU
3725static void sched_tick_stop(int cpu)
3726{
3727 struct tick_work *twork;
3728 int os;
3729
3730 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 return;
3732
3733 WARN_ON_ONCE(!tick_work_cpu);
3734
3735 twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 /* There cannot be competing actions, but don't rely on stop-machine. */
3737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 /* Don't cancel, as this would mess up the state machine. */
3740}
3741#endif /* CONFIG_HOTPLUG_CPU */
3742
3743int __init sched_tick_offload_init(void)
3744{
3745 tick_work_cpu = alloc_percpu(struct tick_work);
3746 BUG_ON(!tick_work_cpu);
3747 return 0;
3748}
3749
3750#else /* !CONFIG_NO_HZ_FULL */
3751static inline void sched_tick_start(int cpu) { }
3752static inline void sched_tick_stop(int cpu) { }
3753#endif
3754
3755#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757/*
3758 * If the value passed in is equal to the current preempt count
3759 * then we just disabled preemption. Start timing the latency.
3760 */
3761static inline void preempt_latency_start(int val)
3762{
3763 if (preempt_count() == val) {
3764 unsigned long ip = get_lock_parent_ip();
3765#ifdef CONFIG_DEBUG_PREEMPT
3766 current->preempt_disable_ip = ip;
3767#endif
3768 trace_preempt_off(CALLER_ADDR0, ip);
3769 }
3770}
3771
3772void preempt_count_add(int val)
3773{
3774#ifdef CONFIG_DEBUG_PREEMPT
3775 /*
3776 * Underflow?
3777 */
3778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 return;
3780#endif
3781 __preempt_count_add(val);
3782#ifdef CONFIG_DEBUG_PREEMPT
3783 /*
3784 * Spinlock count overflowing soon?
3785 */
3786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 PREEMPT_MASK - 10);
3788#endif
3789 preempt_latency_start(val);
3790}
3791EXPORT_SYMBOL(preempt_count_add);
3792NOKPROBE_SYMBOL(preempt_count_add);
3793
3794/*
3795 * If the value passed in equals to the current preempt count
3796 * then we just enabled preemption. Stop timing the latency.
3797 */
3798static inline void preempt_latency_stop(int val)
3799{
3800 if (preempt_count() == val)
3801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802}
3803
3804void preempt_count_sub(int val)
3805{
3806#ifdef CONFIG_DEBUG_PREEMPT
3807 /*
3808 * Underflow?
3809 */
3810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 return;
3812 /*
3813 * Is the spinlock portion underflowing?
3814 */
3815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 !(preempt_count() & PREEMPT_MASK)))
3817 return;
3818#endif
3819
3820 preempt_latency_stop(val);
3821 __preempt_count_sub(val);
3822}
3823EXPORT_SYMBOL(preempt_count_sub);
3824NOKPROBE_SYMBOL(preempt_count_sub);
3825
3826#else
3827static inline void preempt_latency_start(int val) { }
3828static inline void preempt_latency_stop(int val) { }
3829#endif
3830
3831static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832{
3833#ifdef CONFIG_DEBUG_PREEMPT
3834 return p->preempt_disable_ip;
3835#else
3836 return 0;
3837#endif
3838}
3839
3840/*
3841 * Print scheduling while atomic bug:
3842 */
3843static noinline void __schedule_bug(struct task_struct *prev)
3844{
3845 /* Save this before calling printk(), since that will clobber it */
3846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847
3848 if (oops_in_progress)
3849 return;
3850
3851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 prev->comm, prev->pid, preempt_count());
3853
3854 debug_show_held_locks(prev);
3855 print_modules();
3856 if (irqs_disabled())
3857 print_irqtrace_events(prev);
3858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 && in_atomic_preempt_off()) {
3860 pr_err("Preemption disabled at:");
3861 print_ip_sym(preempt_disable_ip);
3862 pr_cont("\n");
3863 }
3864 if (panic_on_warn)
3865 panic("scheduling while atomic\n");
3866
3867 dump_stack();
3868 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869}
3870
3871/*
3872 * Various schedule()-time debugging checks and statistics:
3873 */
3874static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875{
3876#ifdef CONFIG_SCHED_STACK_END_CHECK
3877 if (task_stack_end_corrupted(prev))
3878 panic("corrupted stack end detected inside scheduler\n");
3879#endif
3880
3881#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882 if (!preempt && prev->state && prev->non_block_count) {
3883 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884 prev->comm, prev->pid, prev->non_block_count);
3885 dump_stack();
3886 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887 }
3888#endif
3889
3890 if (unlikely(in_atomic_preempt_off())) {
3891 __schedule_bug(prev);
3892 preempt_count_set(PREEMPT_DISABLED);
3893 }
3894 rcu_sleep_check();
3895
3896 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897
3898 schedstat_inc(this_rq()->sched_count);
3899}
3900
3901/*
3902 * Pick up the highest-prio task:
3903 */
3904static inline struct task_struct *
3905pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906{
3907 const struct sched_class *class;
3908 struct task_struct *p;
3909
3910 /*
3911 * Optimization: we know that if all tasks are in the fair class we can
3912 * call that function directly, but only if the @prev task wasn't of a
3913 * higher scheduling class, because otherwise those loose the
3914 * opportunity to pull in more work from other CPUs.
3915 */
3916 if (likely((prev->sched_class == &idle_sched_class ||
3917 prev->sched_class == &fair_sched_class) &&
3918 rq->nr_running == rq->cfs.h_nr_running)) {
3919
3920 p = fair_sched_class.pick_next_task(rq, prev, rf);
3921 if (unlikely(p == RETRY_TASK))
3922 goto restart;
3923
3924 /* Assumes fair_sched_class->next == idle_sched_class */
3925 if (unlikely(!p))
3926 p = idle_sched_class.pick_next_task(rq, prev, rf);
3927
3928 return p;
3929 }
3930
3931restart:
3932 /*
3933 * Ensure that we put DL/RT tasks before the pick loop, such that they
3934 * can PULL higher prio tasks when we lower the RQ 'priority'.
3935 */
3936 prev->sched_class->put_prev_task(rq, prev, rf);
3937 if (!rq->nr_running)
3938 newidle_balance(rq, rf);
3939
3940 for_each_class(class) {
3941 p = class->pick_next_task(rq, NULL, NULL);
3942 if (p)
3943 return p;
3944 }
3945
3946 /* The idle class should always have a runnable task: */
3947 BUG();
3948}
3949
3950/*
3951 * __schedule() is the main scheduler function.
3952 *
3953 * The main means of driving the scheduler and thus entering this function are:
3954 *
3955 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3956 *
3957 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3958 * paths. For example, see arch/x86/entry_64.S.
3959 *
3960 * To drive preemption between tasks, the scheduler sets the flag in timer
3961 * interrupt handler scheduler_tick().
3962 *
3963 * 3. Wakeups don't really cause entry into schedule(). They add a
3964 * task to the run-queue and that's it.
3965 *
3966 * Now, if the new task added to the run-queue preempts the current
3967 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3968 * called on the nearest possible occasion:
3969 *
3970 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3971 *
3972 * - in syscall or exception context, at the next outmost
3973 * preempt_enable(). (this might be as soon as the wake_up()'s
3974 * spin_unlock()!)
3975 *
3976 * - in IRQ context, return from interrupt-handler to
3977 * preemptible context
3978 *
3979 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3980 * then at the next:
3981 *
3982 * - cond_resched() call
3983 * - explicit schedule() call
3984 * - return from syscall or exception to user-space
3985 * - return from interrupt-handler to user-space
3986 *
3987 * WARNING: must be called with preemption disabled!
3988 */
3989static void __sched notrace __schedule(bool preempt)
3990{
3991 struct task_struct *prev, *next;
3992 unsigned long *switch_count;
3993 struct rq_flags rf;
3994 struct rq *rq;
3995 int cpu;
3996
3997 cpu = smp_processor_id();
3998 rq = cpu_rq(cpu);
3999 prev = rq->curr;
4000
4001 schedule_debug(prev, preempt);
4002
4003 if (sched_feat(HRTICK))
4004 hrtick_clear(rq);
4005
4006 local_irq_disable();
4007 rcu_note_context_switch(preempt);
4008
4009 /*
4010 * Make sure that signal_pending_state()->signal_pending() below
4011 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4012 * done by the caller to avoid the race with signal_wake_up().
4013 *
4014 * The membarrier system call requires a full memory barrier
4015 * after coming from user-space, before storing to rq->curr.
4016 */
4017 rq_lock(rq, &rf);
4018 smp_mb__after_spinlock();
4019
4020 /* Promote REQ to ACT */
4021 rq->clock_update_flags <<= 1;
4022 update_rq_clock(rq);
4023
4024 switch_count = &prev->nivcsw;
4025 if (!preempt && prev->state) {
4026 if (signal_pending_state(prev->state, prev)) {
4027 prev->state = TASK_RUNNING;
4028 } else {
4029 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4030
4031 if (prev->in_iowait) {
4032 atomic_inc(&rq->nr_iowait);
4033 delayacct_blkio_start();
4034 }
4035 }
4036 switch_count = &prev->nvcsw;
4037 }
4038
4039 next = pick_next_task(rq, prev, &rf);
4040 clear_tsk_need_resched(prev);
4041 clear_preempt_need_resched();
4042
4043 if (likely(prev != next)) {
4044 rq->nr_switches++;
4045 /*
4046 * RCU users of rcu_dereference(rq->curr) may not see
4047 * changes to task_struct made by pick_next_task().
4048 */
4049 RCU_INIT_POINTER(rq->curr, next);
4050 /*
4051 * The membarrier system call requires each architecture
4052 * to have a full memory barrier after updating
4053 * rq->curr, before returning to user-space.
4054 *
4055 * Here are the schemes providing that barrier on the
4056 * various architectures:
4057 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4058 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4059 * - finish_lock_switch() for weakly-ordered
4060 * architectures where spin_unlock is a full barrier,
4061 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4062 * is a RELEASE barrier),
4063 */
4064 ++*switch_count;
4065
4066 trace_sched_switch(preempt, prev, next);
4067
4068 /* Also unlocks the rq: */
4069 rq = context_switch(rq, prev, next, &rf);
4070 } else {
4071 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4072 rq_unlock_irq(rq, &rf);
4073 }
4074
4075 balance_callback(rq);
4076}
4077
4078void __noreturn do_task_dead(void)
4079{
4080 /* Causes final put_task_struct in finish_task_switch(): */
4081 set_special_state(TASK_DEAD);
4082
4083 /* Tell freezer to ignore us: */
4084 current->flags |= PF_NOFREEZE;
4085
4086 __schedule(false);
4087 BUG();
4088
4089 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4090 for (;;)
4091 cpu_relax();
4092}
4093
4094static inline void sched_submit_work(struct task_struct *tsk)
4095{
4096 if (!tsk->state)
4097 return;
4098
4099 /*
4100 * If a worker went to sleep, notify and ask workqueue whether
4101 * it wants to wake up a task to maintain concurrency.
4102 * As this function is called inside the schedule() context,
4103 * we disable preemption to avoid it calling schedule() again
4104 * in the possible wakeup of a kworker.
4105 */
4106 if (tsk->flags & PF_WQ_WORKER) {
4107 preempt_disable();
4108 wq_worker_sleeping(tsk);
4109 preempt_enable_no_resched();
4110 }
4111
4112 if (tsk_is_pi_blocked(tsk))
4113 return;
4114
4115 /*
4116 * If we are going to sleep and we have plugged IO queued,
4117 * make sure to submit it to avoid deadlocks.
4118 */
4119 if (blk_needs_flush_plug(tsk))
4120 blk_schedule_flush_plug(tsk);
4121}
4122
4123static void sched_update_worker(struct task_struct *tsk)
4124{
4125 if (tsk->flags & PF_WQ_WORKER)
4126 wq_worker_running(tsk);
4127}
4128
4129asmlinkage __visible void __sched schedule(void)
4130{
4131 struct task_struct *tsk = current;
4132
4133 sched_submit_work(tsk);
4134 do {
4135 preempt_disable();
4136 __schedule(false);
4137 sched_preempt_enable_no_resched();
4138 } while (need_resched());
4139 sched_update_worker(tsk);
4140}
4141EXPORT_SYMBOL(schedule);
4142
4143/*
4144 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4145 * state (have scheduled out non-voluntarily) by making sure that all
4146 * tasks have either left the run queue or have gone into user space.
4147 * As idle tasks do not do either, they must not ever be preempted
4148 * (schedule out non-voluntarily).
4149 *
4150 * schedule_idle() is similar to schedule_preempt_disable() except that it
4151 * never enables preemption because it does not call sched_submit_work().
4152 */
4153void __sched schedule_idle(void)
4154{
4155 /*
4156 * As this skips calling sched_submit_work(), which the idle task does
4157 * regardless because that function is a nop when the task is in a
4158 * TASK_RUNNING state, make sure this isn't used someplace that the
4159 * current task can be in any other state. Note, idle is always in the
4160 * TASK_RUNNING state.
4161 */
4162 WARN_ON_ONCE(current->state);
4163 do {
4164 __schedule(false);
4165 } while (need_resched());
4166}
4167
4168#ifdef CONFIG_CONTEXT_TRACKING
4169asmlinkage __visible void __sched schedule_user(void)
4170{
4171 /*
4172 * If we come here after a random call to set_need_resched(),
4173 * or we have been woken up remotely but the IPI has not yet arrived,
4174 * we haven't yet exited the RCU idle mode. Do it here manually until
4175 * we find a better solution.
4176 *
4177 * NB: There are buggy callers of this function. Ideally we
4178 * should warn if prev_state != CONTEXT_USER, but that will trigger
4179 * too frequently to make sense yet.
4180 */
4181 enum ctx_state prev_state = exception_enter();
4182 schedule();
4183 exception_exit(prev_state);
4184}
4185#endif
4186
4187/**
4188 * schedule_preempt_disabled - called with preemption disabled
4189 *
4190 * Returns with preemption disabled. Note: preempt_count must be 1
4191 */
4192void __sched schedule_preempt_disabled(void)
4193{
4194 sched_preempt_enable_no_resched();
4195 schedule();
4196 preempt_disable();
4197}
4198
4199static void __sched notrace preempt_schedule_common(void)
4200{
4201 do {
4202 /*
4203 * Because the function tracer can trace preempt_count_sub()
4204 * and it also uses preempt_enable/disable_notrace(), if
4205 * NEED_RESCHED is set, the preempt_enable_notrace() called
4206 * by the function tracer will call this function again and
4207 * cause infinite recursion.
4208 *
4209 * Preemption must be disabled here before the function
4210 * tracer can trace. Break up preempt_disable() into two
4211 * calls. One to disable preemption without fear of being
4212 * traced. The other to still record the preemption latency,
4213 * which can also be traced by the function tracer.
4214 */
4215 preempt_disable_notrace();
4216 preempt_latency_start(1);
4217 __schedule(true);
4218 preempt_latency_stop(1);
4219 preempt_enable_no_resched_notrace();
4220
4221 /*
4222 * Check again in case we missed a preemption opportunity
4223 * between schedule and now.
4224 */
4225 } while (need_resched());
4226}
4227
4228#ifdef CONFIG_PREEMPTION
4229/*
4230 * This is the entry point to schedule() from in-kernel preemption
4231 * off of preempt_enable.
4232 */
4233asmlinkage __visible void __sched notrace preempt_schedule(void)
4234{
4235 /*
4236 * If there is a non-zero preempt_count or interrupts are disabled,
4237 * we do not want to preempt the current task. Just return..
4238 */
4239 if (likely(!preemptible()))
4240 return;
4241
4242 preempt_schedule_common();
4243}
4244NOKPROBE_SYMBOL(preempt_schedule);
4245EXPORT_SYMBOL(preempt_schedule);
4246
4247/**
4248 * preempt_schedule_notrace - preempt_schedule called by tracing
4249 *
4250 * The tracing infrastructure uses preempt_enable_notrace to prevent
4251 * recursion and tracing preempt enabling caused by the tracing
4252 * infrastructure itself. But as tracing can happen in areas coming
4253 * from userspace or just about to enter userspace, a preempt enable
4254 * can occur before user_exit() is called. This will cause the scheduler
4255 * to be called when the system is still in usermode.
4256 *
4257 * To prevent this, the preempt_enable_notrace will use this function
4258 * instead of preempt_schedule() to exit user context if needed before
4259 * calling the scheduler.
4260 */
4261asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4262{
4263 enum ctx_state prev_ctx;
4264
4265 if (likely(!preemptible()))
4266 return;
4267
4268 do {
4269 /*
4270 * Because the function tracer can trace preempt_count_sub()
4271 * and it also uses preempt_enable/disable_notrace(), if
4272 * NEED_RESCHED is set, the preempt_enable_notrace() called
4273 * by the function tracer will call this function again and
4274 * cause infinite recursion.
4275 *
4276 * Preemption must be disabled here before the function
4277 * tracer can trace. Break up preempt_disable() into two
4278 * calls. One to disable preemption without fear of being
4279 * traced. The other to still record the preemption latency,
4280 * which can also be traced by the function tracer.
4281 */
4282 preempt_disable_notrace();
4283 preempt_latency_start(1);
4284 /*
4285 * Needs preempt disabled in case user_exit() is traced
4286 * and the tracer calls preempt_enable_notrace() causing
4287 * an infinite recursion.
4288 */
4289 prev_ctx = exception_enter();
4290 __schedule(true);
4291 exception_exit(prev_ctx);
4292
4293 preempt_latency_stop(1);
4294 preempt_enable_no_resched_notrace();
4295 } while (need_resched());
4296}
4297EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4298
4299#endif /* CONFIG_PREEMPTION */
4300
4301/*
4302 * This is the entry point to schedule() from kernel preemption
4303 * off of irq context.
4304 * Note, that this is called and return with irqs disabled. This will
4305 * protect us against recursive calling from irq.
4306 */
4307asmlinkage __visible void __sched preempt_schedule_irq(void)
4308{
4309 enum ctx_state prev_state;
4310
4311 /* Catch callers which need to be fixed */
4312 BUG_ON(preempt_count() || !irqs_disabled());
4313
4314 prev_state = exception_enter();
4315
4316 do {
4317 preempt_disable();
4318 local_irq_enable();
4319 __schedule(true);
4320 local_irq_disable();
4321 sched_preempt_enable_no_resched();
4322 } while (need_resched());
4323
4324 exception_exit(prev_state);
4325}
4326
4327int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4328 void *key)
4329{
4330 return try_to_wake_up(curr->private, mode, wake_flags);
4331}
4332EXPORT_SYMBOL(default_wake_function);
4333
4334#ifdef CONFIG_RT_MUTEXES
4335
4336static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4337{
4338 if (pi_task)
4339 prio = min(prio, pi_task->prio);
4340
4341 return prio;
4342}
4343
4344static inline int rt_effective_prio(struct task_struct *p, int prio)
4345{
4346 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4347
4348 return __rt_effective_prio(pi_task, prio);
4349}
4350
4351/*
4352 * rt_mutex_setprio - set the current priority of a task
4353 * @p: task to boost
4354 * @pi_task: donor task
4355 *
4356 * This function changes the 'effective' priority of a task. It does
4357 * not touch ->normal_prio like __setscheduler().
4358 *
4359 * Used by the rt_mutex code to implement priority inheritance
4360 * logic. Call site only calls if the priority of the task changed.
4361 */
4362void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4363{
4364 int prio, oldprio, queued, running, queue_flag =
4365 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4366 const struct sched_class *prev_class;
4367 struct rq_flags rf;
4368 struct rq *rq;
4369
4370 /* XXX used to be waiter->prio, not waiter->task->prio */
4371 prio = __rt_effective_prio(pi_task, p->normal_prio);
4372
4373 /*
4374 * If nothing changed; bail early.
4375 */
4376 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4377 return;
4378
4379 rq = __task_rq_lock(p, &rf);
4380 update_rq_clock(rq);
4381 /*
4382 * Set under pi_lock && rq->lock, such that the value can be used under
4383 * either lock.
4384 *
4385 * Note that there is loads of tricky to make this pointer cache work
4386 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4387 * ensure a task is de-boosted (pi_task is set to NULL) before the
4388 * task is allowed to run again (and can exit). This ensures the pointer
4389 * points to a blocked task -- which guaratees the task is present.
4390 */
4391 p->pi_top_task = pi_task;
4392
4393 /*
4394 * For FIFO/RR we only need to set prio, if that matches we're done.
4395 */
4396 if (prio == p->prio && !dl_prio(prio))
4397 goto out_unlock;
4398
4399 /*
4400 * Idle task boosting is a nono in general. There is one
4401 * exception, when PREEMPT_RT and NOHZ is active:
4402 *
4403 * The idle task calls get_next_timer_interrupt() and holds
4404 * the timer wheel base->lock on the CPU and another CPU wants
4405 * to access the timer (probably to cancel it). We can safely
4406 * ignore the boosting request, as the idle CPU runs this code
4407 * with interrupts disabled and will complete the lock
4408 * protected section without being interrupted. So there is no
4409 * real need to boost.
4410 */
4411 if (unlikely(p == rq->idle)) {
4412 WARN_ON(p != rq->curr);
4413 WARN_ON(p->pi_blocked_on);
4414 goto out_unlock;
4415 }
4416
4417 trace_sched_pi_setprio(p, pi_task);
4418 oldprio = p->prio;
4419
4420 if (oldprio == prio)
4421 queue_flag &= ~DEQUEUE_MOVE;
4422
4423 prev_class = p->sched_class;
4424 queued = task_on_rq_queued(p);
4425 running = task_current(rq, p);
4426 if (queued)
4427 dequeue_task(rq, p, queue_flag);
4428 if (running)
4429 put_prev_task(rq, p);
4430
4431 /*
4432 * Boosting condition are:
4433 * 1. -rt task is running and holds mutex A
4434 * --> -dl task blocks on mutex A
4435 *
4436 * 2. -dl task is running and holds mutex A
4437 * --> -dl task blocks on mutex A and could preempt the
4438 * running task
4439 */
4440 if (dl_prio(prio)) {
4441 if (!dl_prio(p->normal_prio) ||
4442 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4443 p->dl.dl_boosted = 1;
4444 queue_flag |= ENQUEUE_REPLENISH;
4445 } else
4446 p->dl.dl_boosted = 0;
4447 p->sched_class = &dl_sched_class;
4448 } else if (rt_prio(prio)) {
4449 if (dl_prio(oldprio))
4450 p->dl.dl_boosted = 0;
4451 if (oldprio < prio)
4452 queue_flag |= ENQUEUE_HEAD;
4453 p->sched_class = &rt_sched_class;
4454 } else {
4455 if (dl_prio(oldprio))
4456 p->dl.dl_boosted = 0;
4457 if (rt_prio(oldprio))
4458 p->rt.timeout = 0;
4459 p->sched_class = &fair_sched_class;
4460 }
4461
4462 p->prio = prio;
4463
4464 if (queued)
4465 enqueue_task(rq, p, queue_flag);
4466 if (running)
4467 set_next_task(rq, p);
4468
4469 check_class_changed(rq, p, prev_class, oldprio);
4470out_unlock:
4471 /* Avoid rq from going away on us: */
4472 preempt_disable();
4473 __task_rq_unlock(rq, &rf);
4474
4475 balance_callback(rq);
4476 preempt_enable();
4477}
4478#else
4479static inline int rt_effective_prio(struct task_struct *p, int prio)
4480{
4481 return prio;
4482}
4483#endif
4484
4485void set_user_nice(struct task_struct *p, long nice)
4486{
4487 bool queued, running;
4488 int old_prio, delta;
4489 struct rq_flags rf;
4490 struct rq *rq;
4491
4492 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4493 return;
4494 /*
4495 * We have to be careful, if called from sys_setpriority(),
4496 * the task might be in the middle of scheduling on another CPU.
4497 */
4498 rq = task_rq_lock(p, &rf);
4499 update_rq_clock(rq);
4500
4501 /*
4502 * The RT priorities are set via sched_setscheduler(), but we still
4503 * allow the 'normal' nice value to be set - but as expected
4504 * it wont have any effect on scheduling until the task is
4505 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4506 */
4507 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4508 p->static_prio = NICE_TO_PRIO(nice);
4509 goto out_unlock;
4510 }
4511 queued = task_on_rq_queued(p);
4512 running = task_current(rq, p);
4513 if (queued)
4514 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4515 if (running)
4516 put_prev_task(rq, p);
4517
4518 p->static_prio = NICE_TO_PRIO(nice);
4519 set_load_weight(p, true);
4520 old_prio = p->prio;
4521 p->prio = effective_prio(p);
4522 delta = p->prio - old_prio;
4523
4524 if (queued) {
4525 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4526 /*
4527 * If the task increased its priority or is running and
4528 * lowered its priority, then reschedule its CPU:
4529 */
4530 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4531 resched_curr(rq);
4532 }
4533 if (running)
4534 set_next_task(rq, p);
4535out_unlock:
4536 task_rq_unlock(rq, p, &rf);
4537}
4538EXPORT_SYMBOL(set_user_nice);
4539
4540/*
4541 * can_nice - check if a task can reduce its nice value
4542 * @p: task
4543 * @nice: nice value
4544 */
4545int can_nice(const struct task_struct *p, const int nice)
4546{
4547 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4548 int nice_rlim = nice_to_rlimit(nice);
4549
4550 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4551 capable(CAP_SYS_NICE));
4552}
4553
4554#ifdef __ARCH_WANT_SYS_NICE
4555
4556/*
4557 * sys_nice - change the priority of the current process.
4558 * @increment: priority increment
4559 *
4560 * sys_setpriority is a more generic, but much slower function that
4561 * does similar things.
4562 */
4563SYSCALL_DEFINE1(nice, int, increment)
4564{
4565 long nice, retval;
4566
4567 /*
4568 * Setpriority might change our priority at the same moment.
4569 * We don't have to worry. Conceptually one call occurs first
4570 * and we have a single winner.
4571 */
4572 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4573 nice = task_nice(current) + increment;
4574
4575 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4576 if (increment < 0 && !can_nice(current, nice))
4577 return -EPERM;
4578
4579 retval = security_task_setnice(current, nice);
4580 if (retval)
4581 return retval;
4582
4583 set_user_nice(current, nice);
4584 return 0;
4585}
4586
4587#endif
4588
4589/**
4590 * task_prio - return the priority value of a given task.
4591 * @p: the task in question.
4592 *
4593 * Return: The priority value as seen by users in /proc.
4594 * RT tasks are offset by -200. Normal tasks are centered
4595 * around 0, value goes from -16 to +15.
4596 */
4597int task_prio(const struct task_struct *p)
4598{
4599 return p->prio - MAX_RT_PRIO;
4600}
4601
4602/**
4603 * idle_cpu - is a given CPU idle currently?
4604 * @cpu: the processor in question.
4605 *
4606 * Return: 1 if the CPU is currently idle. 0 otherwise.
4607 */
4608int idle_cpu(int cpu)
4609{
4610 struct rq *rq = cpu_rq(cpu);
4611
4612 if (rq->curr != rq->idle)
4613 return 0;
4614
4615 if (rq->nr_running)
4616 return 0;
4617
4618#ifdef CONFIG_SMP
4619 if (!llist_empty(&rq->wake_list))
4620 return 0;
4621#endif
4622
4623 return 1;
4624}
4625
4626/**
4627 * available_idle_cpu - is a given CPU idle for enqueuing work.
4628 * @cpu: the CPU in question.
4629 *
4630 * Return: 1 if the CPU is currently idle. 0 otherwise.
4631 */
4632int available_idle_cpu(int cpu)
4633{
4634 if (!idle_cpu(cpu))
4635 return 0;
4636
4637 if (vcpu_is_preempted(cpu))
4638 return 0;
4639
4640 return 1;
4641}
4642
4643/**
4644 * idle_task - return the idle task for a given CPU.
4645 * @cpu: the processor in question.
4646 *
4647 * Return: The idle task for the CPU @cpu.
4648 */
4649struct task_struct *idle_task(int cpu)
4650{
4651 return cpu_rq(cpu)->idle;
4652}
4653
4654/**
4655 * find_process_by_pid - find a process with a matching PID value.
4656 * @pid: the pid in question.
4657 *
4658 * The task of @pid, if found. %NULL otherwise.
4659 */
4660static struct task_struct *find_process_by_pid(pid_t pid)
4661{
4662 return pid ? find_task_by_vpid(pid) : current;
4663}
4664
4665/*
4666 * sched_setparam() passes in -1 for its policy, to let the functions
4667 * it calls know not to change it.
4668 */
4669#define SETPARAM_POLICY -1
4670
4671static void __setscheduler_params(struct task_struct *p,
4672 const struct sched_attr *attr)
4673{
4674 int policy = attr->sched_policy;
4675
4676 if (policy == SETPARAM_POLICY)
4677 policy = p->policy;
4678
4679 p->policy = policy;
4680
4681 if (dl_policy(policy))
4682 __setparam_dl(p, attr);
4683 else if (fair_policy(policy))
4684 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4685
4686 /*
4687 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4688 * !rt_policy. Always setting this ensures that things like
4689 * getparam()/getattr() don't report silly values for !rt tasks.
4690 */
4691 p->rt_priority = attr->sched_priority;
4692 p->normal_prio = normal_prio(p);
4693 set_load_weight(p, true);
4694}
4695
4696/* Actually do priority change: must hold pi & rq lock. */
4697static void __setscheduler(struct rq *rq, struct task_struct *p,
4698 const struct sched_attr *attr, bool keep_boost)
4699{
4700 /*
4701 * If params can't change scheduling class changes aren't allowed
4702 * either.
4703 */
4704 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4705 return;
4706
4707 __setscheduler_params(p, attr);
4708
4709 /*
4710 * Keep a potential priority boosting if called from
4711 * sched_setscheduler().
4712 */
4713 p->prio = normal_prio(p);
4714 if (keep_boost)
4715 p->prio = rt_effective_prio(p, p->prio);
4716
4717 if (dl_prio(p->prio))
4718 p->sched_class = &dl_sched_class;
4719 else if (rt_prio(p->prio))
4720 p->sched_class = &rt_sched_class;
4721 else
4722 p->sched_class = &fair_sched_class;
4723}
4724
4725/*
4726 * Check the target process has a UID that matches the current process's:
4727 */
4728static bool check_same_owner(struct task_struct *p)
4729{
4730 const struct cred *cred = current_cred(), *pcred;
4731 bool match;
4732
4733 rcu_read_lock();
4734 pcred = __task_cred(p);
4735 match = (uid_eq(cred->euid, pcred->euid) ||
4736 uid_eq(cred->euid, pcred->uid));
4737 rcu_read_unlock();
4738 return match;
4739}
4740
4741static int __sched_setscheduler(struct task_struct *p,
4742 const struct sched_attr *attr,
4743 bool user, bool pi)
4744{
4745 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4746 MAX_RT_PRIO - 1 - attr->sched_priority;
4747 int retval, oldprio, oldpolicy = -1, queued, running;
4748 int new_effective_prio, policy = attr->sched_policy;
4749 const struct sched_class *prev_class;
4750 struct rq_flags rf;
4751 int reset_on_fork;
4752 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4753 struct rq *rq;
4754
4755 /* The pi code expects interrupts enabled */
4756 BUG_ON(pi && in_interrupt());
4757recheck:
4758 /* Double check policy once rq lock held: */
4759 if (policy < 0) {
4760 reset_on_fork = p->sched_reset_on_fork;
4761 policy = oldpolicy = p->policy;
4762 } else {
4763 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4764
4765 if (!valid_policy(policy))
4766 return -EINVAL;
4767 }
4768
4769 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4770 return -EINVAL;
4771
4772 /*
4773 * Valid priorities for SCHED_FIFO and SCHED_RR are
4774 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4775 * SCHED_BATCH and SCHED_IDLE is 0.
4776 */
4777 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4778 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4779 return -EINVAL;
4780 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4781 (rt_policy(policy) != (attr->sched_priority != 0)))
4782 return -EINVAL;
4783
4784 /*
4785 * Allow unprivileged RT tasks to decrease priority:
4786 */
4787 if (user && !capable(CAP_SYS_NICE)) {
4788 if (fair_policy(policy)) {
4789 if (attr->sched_nice < task_nice(p) &&
4790 !can_nice(p, attr->sched_nice))
4791 return -EPERM;
4792 }
4793
4794 if (rt_policy(policy)) {
4795 unsigned long rlim_rtprio =
4796 task_rlimit(p, RLIMIT_RTPRIO);
4797
4798 /* Can't set/change the rt policy: */
4799 if (policy != p->policy && !rlim_rtprio)
4800 return -EPERM;
4801
4802 /* Can't increase priority: */
4803 if (attr->sched_priority > p->rt_priority &&
4804 attr->sched_priority > rlim_rtprio)
4805 return -EPERM;
4806 }
4807
4808 /*
4809 * Can't set/change SCHED_DEADLINE policy at all for now
4810 * (safest behavior); in the future we would like to allow
4811 * unprivileged DL tasks to increase their relative deadline
4812 * or reduce their runtime (both ways reducing utilization)
4813 */
4814 if (dl_policy(policy))
4815 return -EPERM;
4816
4817 /*
4818 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4819 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4820 */
4821 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4822 if (!can_nice(p, task_nice(p)))
4823 return -EPERM;
4824 }
4825
4826 /* Can't change other user's priorities: */
4827 if (!check_same_owner(p))
4828 return -EPERM;
4829
4830 /* Normal users shall not reset the sched_reset_on_fork flag: */
4831 if (p->sched_reset_on_fork && !reset_on_fork)
4832 return -EPERM;
4833 }
4834
4835 if (user) {
4836 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4837 return -EINVAL;
4838
4839 retval = security_task_setscheduler(p);
4840 if (retval)
4841 return retval;
4842 }
4843
4844 /* Update task specific "requested" clamps */
4845 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4846 retval = uclamp_validate(p, attr);
4847 if (retval)
4848 return retval;
4849 }
4850
4851 if (pi)
4852 cpuset_read_lock();
4853
4854 /*
4855 * Make sure no PI-waiters arrive (or leave) while we are
4856 * changing the priority of the task:
4857 *
4858 * To be able to change p->policy safely, the appropriate
4859 * runqueue lock must be held.
4860 */
4861 rq = task_rq_lock(p, &rf);
4862 update_rq_clock(rq);
4863
4864 /*
4865 * Changing the policy of the stop threads its a very bad idea:
4866 */
4867 if (p == rq->stop) {
4868 retval = -EINVAL;
4869 goto unlock;
4870 }
4871
4872 /*
4873 * If not changing anything there's no need to proceed further,
4874 * but store a possible modification of reset_on_fork.
4875 */
4876 if (unlikely(policy == p->policy)) {
4877 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4878 goto change;
4879 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4880 goto change;
4881 if (dl_policy(policy) && dl_param_changed(p, attr))
4882 goto change;
4883 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4884 goto change;
4885
4886 p->sched_reset_on_fork = reset_on_fork;
4887 retval = 0;
4888 goto unlock;
4889 }
4890change:
4891
4892 if (user) {
4893#ifdef CONFIG_RT_GROUP_SCHED
4894 /*
4895 * Do not allow realtime tasks into groups that have no runtime
4896 * assigned.
4897 */
4898 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4899 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4900 !task_group_is_autogroup(task_group(p))) {
4901 retval = -EPERM;
4902 goto unlock;
4903 }
4904#endif
4905#ifdef CONFIG_SMP
4906 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4907 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4908 cpumask_t *span = rq->rd->span;
4909
4910 /*
4911 * Don't allow tasks with an affinity mask smaller than
4912 * the entire root_domain to become SCHED_DEADLINE. We
4913 * will also fail if there's no bandwidth available.
4914 */
4915 if (!cpumask_subset(span, p->cpus_ptr) ||
4916 rq->rd->dl_bw.bw == 0) {
4917 retval = -EPERM;
4918 goto unlock;
4919 }
4920 }
4921#endif
4922 }
4923
4924 /* Re-check policy now with rq lock held: */
4925 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4926 policy = oldpolicy = -1;
4927 task_rq_unlock(rq, p, &rf);
4928 if (pi)
4929 cpuset_read_unlock();
4930 goto recheck;
4931 }
4932
4933 /*
4934 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4935 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4936 * is available.
4937 */
4938 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4939 retval = -EBUSY;
4940 goto unlock;
4941 }
4942
4943 p->sched_reset_on_fork = reset_on_fork;
4944 oldprio = p->prio;
4945
4946 if (pi) {
4947 /*
4948 * Take priority boosted tasks into account. If the new
4949 * effective priority is unchanged, we just store the new
4950 * normal parameters and do not touch the scheduler class and
4951 * the runqueue. This will be done when the task deboost
4952 * itself.
4953 */
4954 new_effective_prio = rt_effective_prio(p, newprio);
4955 if (new_effective_prio == oldprio)
4956 queue_flags &= ~DEQUEUE_MOVE;
4957 }
4958
4959 queued = task_on_rq_queued(p);
4960 running = task_current(rq, p);
4961 if (queued)
4962 dequeue_task(rq, p, queue_flags);
4963 if (running)
4964 put_prev_task(rq, p);
4965
4966 prev_class = p->sched_class;
4967
4968 __setscheduler(rq, p, attr, pi);
4969 __setscheduler_uclamp(p, attr);
4970
4971 if (queued) {
4972 /*
4973 * We enqueue to tail when the priority of a task is
4974 * increased (user space view).
4975 */
4976 if (oldprio < p->prio)
4977 queue_flags |= ENQUEUE_HEAD;
4978
4979 enqueue_task(rq, p, queue_flags);
4980 }
4981 if (running)
4982 set_next_task(rq, p);
4983
4984 check_class_changed(rq, p, prev_class, oldprio);
4985
4986 /* Avoid rq from going away on us: */
4987 preempt_disable();
4988 task_rq_unlock(rq, p, &rf);
4989
4990 if (pi) {
4991 cpuset_read_unlock();
4992 rt_mutex_adjust_pi(p);
4993 }
4994
4995 /* Run balance callbacks after we've adjusted the PI chain: */
4996 balance_callback(rq);
4997 preempt_enable();
4998
4999 return 0;
5000
5001unlock:
5002 task_rq_unlock(rq, p, &rf);
5003 if (pi)
5004 cpuset_read_unlock();
5005 return retval;
5006}
5007
5008static int _sched_setscheduler(struct task_struct *p, int policy,
5009 const struct sched_param *param, bool check)
5010{
5011 struct sched_attr attr = {
5012 .sched_policy = policy,
5013 .sched_priority = param->sched_priority,
5014 .sched_nice = PRIO_TO_NICE(p->static_prio),
5015 };
5016
5017 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5018 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5019 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5020 policy &= ~SCHED_RESET_ON_FORK;
5021 attr.sched_policy = policy;
5022 }
5023
5024 return __sched_setscheduler(p, &attr, check, true);
5025}
5026/**
5027 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5028 * @p: the task in question.
5029 * @policy: new policy.
5030 * @param: structure containing the new RT priority.
5031 *
5032 * Return: 0 on success. An error code otherwise.
5033 *
5034 * NOTE that the task may be already dead.
5035 */
5036int sched_setscheduler(struct task_struct *p, int policy,
5037 const struct sched_param *param)
5038{
5039 return _sched_setscheduler(p, policy, param, true);
5040}
5041EXPORT_SYMBOL_GPL(sched_setscheduler);
5042
5043int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5044{
5045 return __sched_setscheduler(p, attr, true, true);
5046}
5047EXPORT_SYMBOL_GPL(sched_setattr);
5048
5049int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5050{
5051 return __sched_setscheduler(p, attr, false, true);
5052}
5053
5054/**
5055 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5056 * @p: the task in question.
5057 * @policy: new policy.
5058 * @param: structure containing the new RT priority.
5059 *
5060 * Just like sched_setscheduler, only don't bother checking if the
5061 * current context has permission. For example, this is needed in
5062 * stop_machine(): we create temporary high priority worker threads,
5063 * but our caller might not have that capability.
5064 *
5065 * Return: 0 on success. An error code otherwise.
5066 */
5067int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5068 const struct sched_param *param)
5069{
5070 return _sched_setscheduler(p, policy, param, false);
5071}
5072EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5073
5074static int
5075do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5076{
5077 struct sched_param lparam;
5078 struct task_struct *p;
5079 int retval;
5080
5081 if (!param || pid < 0)
5082 return -EINVAL;
5083 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5084 return -EFAULT;
5085
5086 rcu_read_lock();
5087 retval = -ESRCH;
5088 p = find_process_by_pid(pid);
5089 if (likely(p))
5090 get_task_struct(p);
5091 rcu_read_unlock();
5092
5093 if (likely(p)) {
5094 retval = sched_setscheduler(p, policy, &lparam);
5095 put_task_struct(p);
5096 }
5097
5098 return retval;
5099}
5100
5101/*
5102 * Mimics kernel/events/core.c perf_copy_attr().
5103 */
5104static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5105{
5106 u32 size;
5107 int ret;
5108
5109 /* Zero the full structure, so that a short copy will be nice: */
5110 memset(attr, 0, sizeof(*attr));
5111
5112 ret = get_user(size, &uattr->size);
5113 if (ret)
5114 return ret;
5115
5116 /* ABI compatibility quirk: */
5117 if (!size)
5118 size = SCHED_ATTR_SIZE_VER0;
5119 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5120 goto err_size;
5121
5122 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5123 if (ret) {
5124 if (ret == -E2BIG)
5125 goto err_size;
5126 return ret;
5127 }
5128
5129 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5130 size < SCHED_ATTR_SIZE_VER1)
5131 return -EINVAL;
5132
5133 /*
5134 * XXX: Do we want to be lenient like existing syscalls; or do we want
5135 * to be strict and return an error on out-of-bounds values?
5136 */
5137 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5138
5139 return 0;
5140
5141err_size:
5142 put_user(sizeof(*attr), &uattr->size);
5143 return -E2BIG;
5144}
5145
5146/**
5147 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5148 * @pid: the pid in question.
5149 * @policy: new policy.
5150 * @param: structure containing the new RT priority.
5151 *
5152 * Return: 0 on success. An error code otherwise.
5153 */
5154SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5155{
5156 if (policy < 0)
5157 return -EINVAL;
5158
5159 return do_sched_setscheduler(pid, policy, param);
5160}
5161
5162/**
5163 * sys_sched_setparam - set/change the RT priority of a thread
5164 * @pid: the pid in question.
5165 * @param: structure containing the new RT priority.
5166 *
5167 * Return: 0 on success. An error code otherwise.
5168 */
5169SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5170{
5171 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5172}
5173
5174/**
5175 * sys_sched_setattr - same as above, but with extended sched_attr
5176 * @pid: the pid in question.
5177 * @uattr: structure containing the extended parameters.
5178 * @flags: for future extension.
5179 */
5180SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5181 unsigned int, flags)
5182{
5183 struct sched_attr attr;
5184 struct task_struct *p;
5185 int retval;
5186
5187 if (!uattr || pid < 0 || flags)
5188 return -EINVAL;
5189
5190 retval = sched_copy_attr(uattr, &attr);
5191 if (retval)
5192 return retval;
5193
5194 if ((int)attr.sched_policy < 0)
5195 return -EINVAL;
5196 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5197 attr.sched_policy = SETPARAM_POLICY;
5198
5199 rcu_read_lock();
5200 retval = -ESRCH;
5201 p = find_process_by_pid(pid);
5202 if (likely(p))
5203 get_task_struct(p);
5204 rcu_read_unlock();
5205
5206 if (likely(p)) {
5207 retval = sched_setattr(p, &attr);
5208 put_task_struct(p);
5209 }
5210
5211 return retval;
5212}
5213
5214/**
5215 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5216 * @pid: the pid in question.
5217 *
5218 * Return: On success, the policy of the thread. Otherwise, a negative error
5219 * code.
5220 */
5221SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5222{
5223 struct task_struct *p;
5224 int retval;
5225
5226 if (pid < 0)
5227 return -EINVAL;
5228
5229 retval = -ESRCH;
5230 rcu_read_lock();
5231 p = find_process_by_pid(pid);
5232 if (p) {
5233 retval = security_task_getscheduler(p);
5234 if (!retval)
5235 retval = p->policy
5236 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5237 }
5238 rcu_read_unlock();
5239 return retval;
5240}
5241
5242/**
5243 * sys_sched_getparam - get the RT priority of a thread
5244 * @pid: the pid in question.
5245 * @param: structure containing the RT priority.
5246 *
5247 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5248 * code.
5249 */
5250SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5251{
5252 struct sched_param lp = { .sched_priority = 0 };
5253 struct task_struct *p;
5254 int retval;
5255
5256 if (!param || pid < 0)
5257 return -EINVAL;
5258
5259 rcu_read_lock();
5260 p = find_process_by_pid(pid);
5261 retval = -ESRCH;
5262 if (!p)
5263 goto out_unlock;
5264
5265 retval = security_task_getscheduler(p);
5266 if (retval)
5267 goto out_unlock;
5268
5269 if (task_has_rt_policy(p))
5270 lp.sched_priority = p->rt_priority;
5271 rcu_read_unlock();
5272
5273 /*
5274 * This one might sleep, we cannot do it with a spinlock held ...
5275 */
5276 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5277
5278 return retval;
5279
5280out_unlock:
5281 rcu_read_unlock();
5282 return retval;
5283}
5284
5285/*
5286 * Copy the kernel size attribute structure (which might be larger
5287 * than what user-space knows about) to user-space.
5288 *
5289 * Note that all cases are valid: user-space buffer can be larger or
5290 * smaller than the kernel-space buffer. The usual case is that both
5291 * have the same size.
5292 */
5293static int
5294sched_attr_copy_to_user(struct sched_attr __user *uattr,
5295 struct sched_attr *kattr,
5296 unsigned int usize)
5297{
5298 unsigned int ksize = sizeof(*kattr);
5299
5300 if (!access_ok(uattr, usize))
5301 return -EFAULT;
5302
5303 /*
5304 * sched_getattr() ABI forwards and backwards compatibility:
5305 *
5306 * If usize == ksize then we just copy everything to user-space and all is good.
5307 *
5308 * If usize < ksize then we only copy as much as user-space has space for,
5309 * this keeps ABI compatibility as well. We skip the rest.
5310 *
5311 * If usize > ksize then user-space is using a newer version of the ABI,
5312 * which part the kernel doesn't know about. Just ignore it - tooling can
5313 * detect the kernel's knowledge of attributes from the attr->size value
5314 * which is set to ksize in this case.
5315 */
5316 kattr->size = min(usize, ksize);
5317
5318 if (copy_to_user(uattr, kattr, kattr->size))
5319 return -EFAULT;
5320
5321 return 0;
5322}
5323
5324/**
5325 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5326 * @pid: the pid in question.
5327 * @uattr: structure containing the extended parameters.
5328 * @usize: sizeof(attr) for fwd/bwd comp.
5329 * @flags: for future extension.
5330 */
5331SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5332 unsigned int, usize, unsigned int, flags)
5333{
5334 struct sched_attr kattr = { };
5335 struct task_struct *p;
5336 int retval;
5337
5338 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5339 usize < SCHED_ATTR_SIZE_VER0 || flags)
5340 return -EINVAL;
5341
5342 rcu_read_lock();
5343 p = find_process_by_pid(pid);
5344 retval = -ESRCH;
5345 if (!p)
5346 goto out_unlock;
5347
5348 retval = security_task_getscheduler(p);
5349 if (retval)
5350 goto out_unlock;
5351
5352 kattr.sched_policy = p->policy;
5353 if (p->sched_reset_on_fork)
5354 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5355 if (task_has_dl_policy(p))
5356 __getparam_dl(p, &kattr);
5357 else if (task_has_rt_policy(p))
5358 kattr.sched_priority = p->rt_priority;
5359 else
5360 kattr.sched_nice = task_nice(p);
5361
5362#ifdef CONFIG_UCLAMP_TASK
5363 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5364 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5365#endif
5366
5367 rcu_read_unlock();
5368
5369 return sched_attr_copy_to_user(uattr, &kattr, usize);
5370
5371out_unlock:
5372 rcu_read_unlock();
5373 return retval;
5374}
5375
5376long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5377{
5378 cpumask_var_t cpus_allowed, new_mask;
5379 struct task_struct *p;
5380 int retval;
5381
5382 rcu_read_lock();
5383
5384 p = find_process_by_pid(pid);
5385 if (!p) {
5386 rcu_read_unlock();
5387 return -ESRCH;
5388 }
5389
5390 /* Prevent p going away */
5391 get_task_struct(p);
5392 rcu_read_unlock();
5393
5394 if (p->flags & PF_NO_SETAFFINITY) {
5395 retval = -EINVAL;
5396 goto out_put_task;
5397 }
5398 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5399 retval = -ENOMEM;
5400 goto out_put_task;
5401 }
5402 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5403 retval = -ENOMEM;
5404 goto out_free_cpus_allowed;
5405 }
5406 retval = -EPERM;
5407 if (!check_same_owner(p)) {
5408 rcu_read_lock();
5409 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5410 rcu_read_unlock();
5411 goto out_free_new_mask;
5412 }
5413 rcu_read_unlock();
5414 }
5415
5416 retval = security_task_setscheduler(p);
5417 if (retval)
5418 goto out_free_new_mask;
5419
5420
5421 cpuset_cpus_allowed(p, cpus_allowed);
5422 cpumask_and(new_mask, in_mask, cpus_allowed);
5423
5424 /*
5425 * Since bandwidth control happens on root_domain basis,
5426 * if admission test is enabled, we only admit -deadline
5427 * tasks allowed to run on all the CPUs in the task's
5428 * root_domain.
5429 */
5430#ifdef CONFIG_SMP
5431 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5432 rcu_read_lock();
5433 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5434 retval = -EBUSY;
5435 rcu_read_unlock();
5436 goto out_free_new_mask;
5437 }
5438 rcu_read_unlock();
5439 }
5440#endif
5441again:
5442 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5443
5444 if (!retval) {
5445 cpuset_cpus_allowed(p, cpus_allowed);
5446 if (!cpumask_subset(new_mask, cpus_allowed)) {
5447 /*
5448 * We must have raced with a concurrent cpuset
5449 * update. Just reset the cpus_allowed to the
5450 * cpuset's cpus_allowed
5451 */
5452 cpumask_copy(new_mask, cpus_allowed);
5453 goto again;
5454 }
5455 }
5456out_free_new_mask:
5457 free_cpumask_var(new_mask);
5458out_free_cpus_allowed:
5459 free_cpumask_var(cpus_allowed);
5460out_put_task:
5461 put_task_struct(p);
5462 return retval;
5463}
5464
5465static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5466 struct cpumask *new_mask)
5467{
5468 if (len < cpumask_size())
5469 cpumask_clear(new_mask);
5470 else if (len > cpumask_size())
5471 len = cpumask_size();
5472
5473 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5474}
5475
5476/**
5477 * sys_sched_setaffinity - set the CPU affinity of a process
5478 * @pid: pid of the process
5479 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5480 * @user_mask_ptr: user-space pointer to the new CPU mask
5481 *
5482 * Return: 0 on success. An error code otherwise.
5483 */
5484SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5485 unsigned long __user *, user_mask_ptr)
5486{
5487 cpumask_var_t new_mask;
5488 int retval;
5489
5490 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5491 return -ENOMEM;
5492
5493 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5494 if (retval == 0)
5495 retval = sched_setaffinity(pid, new_mask);
5496 free_cpumask_var(new_mask);
5497 return retval;
5498}
5499
5500long sched_getaffinity(pid_t pid, struct cpumask *mask)
5501{
5502 struct task_struct *p;
5503 unsigned long flags;
5504 int retval;
5505
5506 rcu_read_lock();
5507
5508 retval = -ESRCH;
5509 p = find_process_by_pid(pid);
5510 if (!p)
5511 goto out_unlock;
5512
5513 retval = security_task_getscheduler(p);
5514 if (retval)
5515 goto out_unlock;
5516
5517 raw_spin_lock_irqsave(&p->pi_lock, flags);
5518 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5519 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5520
5521out_unlock:
5522 rcu_read_unlock();
5523
5524 return retval;
5525}
5526
5527/**
5528 * sys_sched_getaffinity - get the CPU affinity of a process
5529 * @pid: pid of the process
5530 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5531 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5532 *
5533 * Return: size of CPU mask copied to user_mask_ptr on success. An
5534 * error code otherwise.
5535 */
5536SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5537 unsigned long __user *, user_mask_ptr)
5538{
5539 int ret;
5540 cpumask_var_t mask;
5541
5542 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5543 return -EINVAL;
5544 if (len & (sizeof(unsigned long)-1))
5545 return -EINVAL;
5546
5547 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5548 return -ENOMEM;
5549
5550 ret = sched_getaffinity(pid, mask);
5551 if (ret == 0) {
5552 unsigned int retlen = min(len, cpumask_size());
5553
5554 if (copy_to_user(user_mask_ptr, mask, retlen))
5555 ret = -EFAULT;
5556 else
5557 ret = retlen;
5558 }
5559 free_cpumask_var(mask);
5560
5561 return ret;
5562}
5563
5564/**
5565 * sys_sched_yield - yield the current processor to other threads.
5566 *
5567 * This function yields the current CPU to other tasks. If there are no
5568 * other threads running on this CPU then this function will return.
5569 *
5570 * Return: 0.
5571 */
5572static void do_sched_yield(void)
5573{
5574 struct rq_flags rf;
5575 struct rq *rq;
5576
5577 rq = this_rq_lock_irq(&rf);
5578
5579 schedstat_inc(rq->yld_count);
5580 current->sched_class->yield_task(rq);
5581
5582 /*
5583 * Since we are going to call schedule() anyway, there's
5584 * no need to preempt or enable interrupts:
5585 */
5586 preempt_disable();
5587 rq_unlock(rq, &rf);
5588 sched_preempt_enable_no_resched();
5589
5590 schedule();
5591}
5592
5593SYSCALL_DEFINE0(sched_yield)
5594{
5595 do_sched_yield();
5596 return 0;
5597}
5598
5599#ifndef CONFIG_PREEMPTION
5600int __sched _cond_resched(void)
5601{
5602 if (should_resched(0)) {
5603 preempt_schedule_common();
5604 return 1;
5605 }
5606 rcu_all_qs();
5607 return 0;
5608}
5609EXPORT_SYMBOL(_cond_resched);
5610#endif
5611
5612/*
5613 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5614 * call schedule, and on return reacquire the lock.
5615 *
5616 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5617 * operations here to prevent schedule() from being called twice (once via
5618 * spin_unlock(), once by hand).
5619 */
5620int __cond_resched_lock(spinlock_t *lock)
5621{
5622 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5623 int ret = 0;
5624
5625 lockdep_assert_held(lock);
5626
5627 if (spin_needbreak(lock) || resched) {
5628 spin_unlock(lock);
5629 if (resched)
5630 preempt_schedule_common();
5631 else
5632 cpu_relax();
5633 ret = 1;
5634 spin_lock(lock);
5635 }
5636 return ret;
5637}
5638EXPORT_SYMBOL(__cond_resched_lock);
5639
5640/**
5641 * yield - yield the current processor to other threads.
5642 *
5643 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5644 *
5645 * The scheduler is at all times free to pick the calling task as the most
5646 * eligible task to run, if removing the yield() call from your code breaks
5647 * it, its already broken.
5648 *
5649 * Typical broken usage is:
5650 *
5651 * while (!event)
5652 * yield();
5653 *
5654 * where one assumes that yield() will let 'the other' process run that will
5655 * make event true. If the current task is a SCHED_FIFO task that will never
5656 * happen. Never use yield() as a progress guarantee!!
5657 *
5658 * If you want to use yield() to wait for something, use wait_event().
5659 * If you want to use yield() to be 'nice' for others, use cond_resched().
5660 * If you still want to use yield(), do not!
5661 */
5662void __sched yield(void)
5663{
5664 set_current_state(TASK_RUNNING);
5665 do_sched_yield();
5666}
5667EXPORT_SYMBOL(yield);
5668
5669/**
5670 * yield_to - yield the current processor to another thread in
5671 * your thread group, or accelerate that thread toward the
5672 * processor it's on.
5673 * @p: target task
5674 * @preempt: whether task preemption is allowed or not
5675 *
5676 * It's the caller's job to ensure that the target task struct
5677 * can't go away on us before we can do any checks.
5678 *
5679 * Return:
5680 * true (>0) if we indeed boosted the target task.
5681 * false (0) if we failed to boost the target.
5682 * -ESRCH if there's no task to yield to.
5683 */
5684int __sched yield_to(struct task_struct *p, bool preempt)
5685{
5686 struct task_struct *curr = current;
5687 struct rq *rq, *p_rq;
5688 unsigned long flags;
5689 int yielded = 0;
5690
5691 local_irq_save(flags);
5692 rq = this_rq();
5693
5694again:
5695 p_rq = task_rq(p);
5696 /*
5697 * If we're the only runnable task on the rq and target rq also
5698 * has only one task, there's absolutely no point in yielding.
5699 */
5700 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5701 yielded = -ESRCH;
5702 goto out_irq;
5703 }
5704
5705 double_rq_lock(rq, p_rq);
5706 if (task_rq(p) != p_rq) {
5707 double_rq_unlock(rq, p_rq);
5708 goto again;
5709 }
5710
5711 if (!curr->sched_class->yield_to_task)
5712 goto out_unlock;
5713
5714 if (curr->sched_class != p->sched_class)
5715 goto out_unlock;
5716
5717 if (task_running(p_rq, p) || p->state)
5718 goto out_unlock;
5719
5720 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5721 if (yielded) {
5722 schedstat_inc(rq->yld_count);
5723 /*
5724 * Make p's CPU reschedule; pick_next_entity takes care of
5725 * fairness.
5726 */
5727 if (preempt && rq != p_rq)
5728 resched_curr(p_rq);
5729 }
5730
5731out_unlock:
5732 double_rq_unlock(rq, p_rq);
5733out_irq:
5734 local_irq_restore(flags);
5735
5736 if (yielded > 0)
5737 schedule();
5738
5739 return yielded;
5740}
5741EXPORT_SYMBOL_GPL(yield_to);
5742
5743int io_schedule_prepare(void)
5744{
5745 int old_iowait = current->in_iowait;
5746
5747 current->in_iowait = 1;
5748 blk_schedule_flush_plug(current);
5749
5750 return old_iowait;
5751}
5752
5753void io_schedule_finish(int token)
5754{
5755 current->in_iowait = token;
5756}
5757
5758/*
5759 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5760 * that process accounting knows that this is a task in IO wait state.
5761 */
5762long __sched io_schedule_timeout(long timeout)
5763{
5764 int token;
5765 long ret;
5766
5767 token = io_schedule_prepare();
5768 ret = schedule_timeout(timeout);
5769 io_schedule_finish(token);
5770
5771 return ret;
5772}
5773EXPORT_SYMBOL(io_schedule_timeout);
5774
5775void __sched io_schedule(void)
5776{
5777 int token;
5778
5779 token = io_schedule_prepare();
5780 schedule();
5781 io_schedule_finish(token);
5782}
5783EXPORT_SYMBOL(io_schedule);
5784
5785/**
5786 * sys_sched_get_priority_max - return maximum RT priority.
5787 * @policy: scheduling class.
5788 *
5789 * Return: On success, this syscall returns the maximum
5790 * rt_priority that can be used by a given scheduling class.
5791 * On failure, a negative error code is returned.
5792 */
5793SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5794{
5795 int ret = -EINVAL;
5796
5797 switch (policy) {
5798 case SCHED_FIFO:
5799 case SCHED_RR:
5800 ret = MAX_USER_RT_PRIO-1;
5801 break;
5802 case SCHED_DEADLINE:
5803 case SCHED_NORMAL:
5804 case SCHED_BATCH:
5805 case SCHED_IDLE:
5806 ret = 0;
5807 break;
5808 }
5809 return ret;
5810}
5811
5812/**
5813 * sys_sched_get_priority_min - return minimum RT priority.
5814 * @policy: scheduling class.
5815 *
5816 * Return: On success, this syscall returns the minimum
5817 * rt_priority that can be used by a given scheduling class.
5818 * On failure, a negative error code is returned.
5819 */
5820SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5821{
5822 int ret = -EINVAL;
5823
5824 switch (policy) {
5825 case SCHED_FIFO:
5826 case SCHED_RR:
5827 ret = 1;
5828 break;
5829 case SCHED_DEADLINE:
5830 case SCHED_NORMAL:
5831 case SCHED_BATCH:
5832 case SCHED_IDLE:
5833 ret = 0;
5834 }
5835 return ret;
5836}
5837
5838static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5839{
5840 struct task_struct *p;
5841 unsigned int time_slice;
5842 struct rq_flags rf;
5843 struct rq *rq;
5844 int retval;
5845
5846 if (pid < 0)
5847 return -EINVAL;
5848
5849 retval = -ESRCH;
5850 rcu_read_lock();
5851 p = find_process_by_pid(pid);
5852 if (!p)
5853 goto out_unlock;
5854
5855 retval = security_task_getscheduler(p);
5856 if (retval)
5857 goto out_unlock;
5858
5859 rq = task_rq_lock(p, &rf);
5860 time_slice = 0;
5861 if (p->sched_class->get_rr_interval)
5862 time_slice = p->sched_class->get_rr_interval(rq, p);
5863 task_rq_unlock(rq, p, &rf);
5864
5865 rcu_read_unlock();
5866 jiffies_to_timespec64(time_slice, t);
5867 return 0;
5868
5869out_unlock:
5870 rcu_read_unlock();
5871 return retval;
5872}
5873
5874/**
5875 * sys_sched_rr_get_interval - return the default timeslice of a process.
5876 * @pid: pid of the process.
5877 * @interval: userspace pointer to the timeslice value.
5878 *
5879 * this syscall writes the default timeslice value of a given process
5880 * into the user-space timespec buffer. A value of '0' means infinity.
5881 *
5882 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5883 * an error code.
5884 */
5885SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5886 struct __kernel_timespec __user *, interval)
5887{
5888 struct timespec64 t;
5889 int retval = sched_rr_get_interval(pid, &t);
5890
5891 if (retval == 0)
5892 retval = put_timespec64(&t, interval);
5893
5894 return retval;
5895}
5896
5897#ifdef CONFIG_COMPAT_32BIT_TIME
5898SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5899 struct old_timespec32 __user *, interval)
5900{
5901 struct timespec64 t;
5902 int retval = sched_rr_get_interval(pid, &t);
5903
5904 if (retval == 0)
5905 retval = put_old_timespec32(&t, interval);
5906 return retval;
5907}
5908#endif
5909
5910void sched_show_task(struct task_struct *p)
5911{
5912 unsigned long free = 0;
5913 int ppid;
5914
5915 if (!try_get_task_stack(p))
5916 return;
5917
5918 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5919
5920 if (p->state == TASK_RUNNING)
5921 printk(KERN_CONT " running task ");
5922#ifdef CONFIG_DEBUG_STACK_USAGE
5923 free = stack_not_used(p);
5924#endif
5925 ppid = 0;
5926 rcu_read_lock();
5927 if (pid_alive(p))
5928 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5929 rcu_read_unlock();
5930 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5931 task_pid_nr(p), ppid,
5932 (unsigned long)task_thread_info(p)->flags);
5933
5934 print_worker_info(KERN_INFO, p);
5935 show_stack(p, NULL);
5936 put_task_stack(p);
5937}
5938EXPORT_SYMBOL_GPL(sched_show_task);
5939
5940static inline bool
5941state_filter_match(unsigned long state_filter, struct task_struct *p)
5942{
5943 /* no filter, everything matches */
5944 if (!state_filter)
5945 return true;
5946
5947 /* filter, but doesn't match */
5948 if (!(p->state & state_filter))
5949 return false;
5950
5951 /*
5952 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5953 * TASK_KILLABLE).
5954 */
5955 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5956 return false;
5957
5958 return true;
5959}
5960
5961
5962void show_state_filter(unsigned long state_filter)
5963{
5964 struct task_struct *g, *p;
5965
5966#if BITS_PER_LONG == 32
5967 printk(KERN_INFO
5968 " task PC stack pid father\n");
5969#else
5970 printk(KERN_INFO
5971 " task PC stack pid father\n");
5972#endif
5973 rcu_read_lock();
5974 for_each_process_thread(g, p) {
5975 /*
5976 * reset the NMI-timeout, listing all files on a slow
5977 * console might take a lot of time:
5978 * Also, reset softlockup watchdogs on all CPUs, because
5979 * another CPU might be blocked waiting for us to process
5980 * an IPI.
5981 */
5982 touch_nmi_watchdog();
5983 touch_all_softlockup_watchdogs();
5984 if (state_filter_match(state_filter, p))
5985 sched_show_task(p);
5986 }
5987
5988#ifdef CONFIG_SCHED_DEBUG
5989 if (!state_filter)
5990 sysrq_sched_debug_show();
5991#endif
5992 rcu_read_unlock();
5993 /*
5994 * Only show locks if all tasks are dumped:
5995 */
5996 if (!state_filter)
5997 debug_show_all_locks();
5998}
5999
6000/**
6001 * init_idle - set up an idle thread for a given CPU
6002 * @idle: task in question
6003 * @cpu: CPU the idle task belongs to
6004 *
6005 * NOTE: this function does not set the idle thread's NEED_RESCHED
6006 * flag, to make booting more robust.
6007 */
6008void init_idle(struct task_struct *idle, int cpu)
6009{
6010 struct rq *rq = cpu_rq(cpu);
6011 unsigned long flags;
6012
6013 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6014 raw_spin_lock(&rq->lock);
6015
6016 __sched_fork(0, idle);
6017 idle->state = TASK_RUNNING;
6018 idle->se.exec_start = sched_clock();
6019 idle->flags |= PF_IDLE;
6020
6021 kasan_unpoison_task_stack(idle);
6022
6023#ifdef CONFIG_SMP
6024 /*
6025 * Its possible that init_idle() gets called multiple times on a task,
6026 * in that case do_set_cpus_allowed() will not do the right thing.
6027 *
6028 * And since this is boot we can forgo the serialization.
6029 */
6030 set_cpus_allowed_common(idle, cpumask_of(cpu));
6031#endif
6032 /*
6033 * We're having a chicken and egg problem, even though we are
6034 * holding rq->lock, the CPU isn't yet set to this CPU so the
6035 * lockdep check in task_group() will fail.
6036 *
6037 * Similar case to sched_fork(). / Alternatively we could
6038 * use task_rq_lock() here and obtain the other rq->lock.
6039 *
6040 * Silence PROVE_RCU
6041 */
6042 rcu_read_lock();
6043 __set_task_cpu(idle, cpu);
6044 rcu_read_unlock();
6045
6046 rq->idle = idle;
6047 rcu_assign_pointer(rq->curr, idle);
6048 idle->on_rq = TASK_ON_RQ_QUEUED;
6049#ifdef CONFIG_SMP
6050 idle->on_cpu = 1;
6051#endif
6052 raw_spin_unlock(&rq->lock);
6053 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6054
6055 /* Set the preempt count _outside_ the spinlocks! */
6056 init_idle_preempt_count(idle, cpu);
6057
6058 /*
6059 * The idle tasks have their own, simple scheduling class:
6060 */
6061 idle->sched_class = &idle_sched_class;
6062 ftrace_graph_init_idle_task(idle, cpu);
6063 vtime_init_idle(idle, cpu);
6064#ifdef CONFIG_SMP
6065 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6066#endif
6067}
6068
6069#ifdef CONFIG_SMP
6070
6071int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6072 const struct cpumask *trial)
6073{
6074 int ret = 1;
6075
6076 if (!cpumask_weight(cur))
6077 return ret;
6078
6079 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6080
6081 return ret;
6082}
6083
6084int task_can_attach(struct task_struct *p,
6085 const struct cpumask *cs_cpus_allowed)
6086{
6087 int ret = 0;
6088
6089 /*
6090 * Kthreads which disallow setaffinity shouldn't be moved
6091 * to a new cpuset; we don't want to change their CPU
6092 * affinity and isolating such threads by their set of
6093 * allowed nodes is unnecessary. Thus, cpusets are not
6094 * applicable for such threads. This prevents checking for
6095 * success of set_cpus_allowed_ptr() on all attached tasks
6096 * before cpus_mask may be changed.
6097 */
6098 if (p->flags & PF_NO_SETAFFINITY) {
6099 ret = -EINVAL;
6100 goto out;
6101 }
6102
6103 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6104 cs_cpus_allowed))
6105 ret = dl_task_can_attach(p, cs_cpus_allowed);
6106
6107out:
6108 return ret;
6109}
6110
6111bool sched_smp_initialized __read_mostly;
6112
6113#ifdef CONFIG_NUMA_BALANCING
6114/* Migrate current task p to target_cpu */
6115int migrate_task_to(struct task_struct *p, int target_cpu)
6116{
6117 struct migration_arg arg = { p, target_cpu };
6118 int curr_cpu = task_cpu(p);
6119
6120 if (curr_cpu == target_cpu)
6121 return 0;
6122
6123 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6124 return -EINVAL;
6125
6126 /* TODO: This is not properly updating schedstats */
6127
6128 trace_sched_move_numa(p, curr_cpu, target_cpu);
6129 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6130}
6131
6132/*
6133 * Requeue a task on a given node and accurately track the number of NUMA
6134 * tasks on the runqueues
6135 */
6136void sched_setnuma(struct task_struct *p, int nid)
6137{
6138 bool queued, running;
6139 struct rq_flags rf;
6140 struct rq *rq;
6141
6142 rq = task_rq_lock(p, &rf);
6143 queued = task_on_rq_queued(p);
6144 running = task_current(rq, p);
6145
6146 if (queued)
6147 dequeue_task(rq, p, DEQUEUE_SAVE);
6148 if (running)
6149 put_prev_task(rq, p);
6150
6151 p->numa_preferred_nid = nid;
6152
6153 if (queued)
6154 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6155 if (running)
6156 set_next_task(rq, p);
6157 task_rq_unlock(rq, p, &rf);
6158}
6159#endif /* CONFIG_NUMA_BALANCING */
6160
6161#ifdef CONFIG_HOTPLUG_CPU
6162/*
6163 * Ensure that the idle task is using init_mm right before its CPU goes
6164 * offline.
6165 */
6166void idle_task_exit(void)
6167{
6168 struct mm_struct *mm = current->active_mm;
6169
6170 BUG_ON(cpu_online(smp_processor_id()));
6171
6172 if (mm != &init_mm) {
6173 switch_mm(mm, &init_mm, current);
6174 current->active_mm = &init_mm;
6175 finish_arch_post_lock_switch();
6176 }
6177 mmdrop(mm);
6178}
6179
6180/*
6181 * Since this CPU is going 'away' for a while, fold any nr_active delta
6182 * we might have. Assumes we're called after migrate_tasks() so that the
6183 * nr_active count is stable. We need to take the teardown thread which
6184 * is calling this into account, so we hand in adjust = 1 to the load
6185 * calculation.
6186 *
6187 * Also see the comment "Global load-average calculations".
6188 */
6189static void calc_load_migrate(struct rq *rq)
6190{
6191 long delta = calc_load_fold_active(rq, 1);
6192 if (delta)
6193 atomic_long_add(delta, &calc_load_tasks);
6194}
6195
6196static struct task_struct *__pick_migrate_task(struct rq *rq)
6197{
6198 const struct sched_class *class;
6199 struct task_struct *next;
6200
6201 for_each_class(class) {
6202 next = class->pick_next_task(rq, NULL, NULL);
6203 if (next) {
6204 next->sched_class->put_prev_task(rq, next, NULL);
6205 return next;
6206 }
6207 }
6208
6209 /* The idle class should always have a runnable task */
6210 BUG();
6211}
6212
6213/*
6214 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6215 * try_to_wake_up()->select_task_rq().
6216 *
6217 * Called with rq->lock held even though we'er in stop_machine() and
6218 * there's no concurrency possible, we hold the required locks anyway
6219 * because of lock validation efforts.
6220 */
6221static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6222{
6223 struct rq *rq = dead_rq;
6224 struct task_struct *next, *stop = rq->stop;
6225 struct rq_flags orf = *rf;
6226 int dest_cpu;
6227
6228 /*
6229 * Fudge the rq selection such that the below task selection loop
6230 * doesn't get stuck on the currently eligible stop task.
6231 *
6232 * We're currently inside stop_machine() and the rq is either stuck
6233 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6234 * either way we should never end up calling schedule() until we're
6235 * done here.
6236 */
6237 rq->stop = NULL;
6238
6239 /*
6240 * put_prev_task() and pick_next_task() sched
6241 * class method both need to have an up-to-date
6242 * value of rq->clock[_task]
6243 */
6244 update_rq_clock(rq);
6245
6246 for (;;) {
6247 /*
6248 * There's this thread running, bail when that's the only
6249 * remaining thread:
6250 */
6251 if (rq->nr_running == 1)
6252 break;
6253
6254 next = __pick_migrate_task(rq);
6255
6256 /*
6257 * Rules for changing task_struct::cpus_mask are holding
6258 * both pi_lock and rq->lock, such that holding either
6259 * stabilizes the mask.
6260 *
6261 * Drop rq->lock is not quite as disastrous as it usually is
6262 * because !cpu_active at this point, which means load-balance
6263 * will not interfere. Also, stop-machine.
6264 */
6265 rq_unlock(rq, rf);
6266 raw_spin_lock(&next->pi_lock);
6267 rq_relock(rq, rf);
6268
6269 /*
6270 * Since we're inside stop-machine, _nothing_ should have
6271 * changed the task, WARN if weird stuff happened, because in
6272 * that case the above rq->lock drop is a fail too.
6273 */
6274 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6275 raw_spin_unlock(&next->pi_lock);
6276 continue;
6277 }
6278
6279 /* Find suitable destination for @next, with force if needed. */
6280 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6281 rq = __migrate_task(rq, rf, next, dest_cpu);
6282 if (rq != dead_rq) {
6283 rq_unlock(rq, rf);
6284 rq = dead_rq;
6285 *rf = orf;
6286 rq_relock(rq, rf);
6287 }
6288 raw_spin_unlock(&next->pi_lock);
6289 }
6290
6291 rq->stop = stop;
6292}
6293#endif /* CONFIG_HOTPLUG_CPU */
6294
6295void set_rq_online(struct rq *rq)
6296{
6297 if (!rq->online) {
6298 const struct sched_class *class;
6299
6300 cpumask_set_cpu(rq->cpu, rq->rd->online);
6301 rq->online = 1;
6302
6303 for_each_class(class) {
6304 if (class->rq_online)
6305 class->rq_online(rq);
6306 }
6307 }
6308}
6309
6310void set_rq_offline(struct rq *rq)
6311{
6312 if (rq->online) {
6313 const struct sched_class *class;
6314
6315 for_each_class(class) {
6316 if (class->rq_offline)
6317 class->rq_offline(rq);
6318 }
6319
6320 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6321 rq->online = 0;
6322 }
6323}
6324
6325/*
6326 * used to mark begin/end of suspend/resume:
6327 */
6328static int num_cpus_frozen;
6329
6330/*
6331 * Update cpusets according to cpu_active mask. If cpusets are
6332 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6333 * around partition_sched_domains().
6334 *
6335 * If we come here as part of a suspend/resume, don't touch cpusets because we
6336 * want to restore it back to its original state upon resume anyway.
6337 */
6338static void cpuset_cpu_active(void)
6339{
6340 if (cpuhp_tasks_frozen) {
6341 /*
6342 * num_cpus_frozen tracks how many CPUs are involved in suspend
6343 * resume sequence. As long as this is not the last online
6344 * operation in the resume sequence, just build a single sched
6345 * domain, ignoring cpusets.
6346 */
6347 partition_sched_domains(1, NULL, NULL);
6348 if (--num_cpus_frozen)
6349 return;
6350 /*
6351 * This is the last CPU online operation. So fall through and
6352 * restore the original sched domains by considering the
6353 * cpuset configurations.
6354 */
6355 cpuset_force_rebuild();
6356 }
6357 cpuset_update_active_cpus();
6358}
6359
6360static int cpuset_cpu_inactive(unsigned int cpu)
6361{
6362 if (!cpuhp_tasks_frozen) {
6363 if (dl_cpu_busy(cpu))
6364 return -EBUSY;
6365 cpuset_update_active_cpus();
6366 } else {
6367 num_cpus_frozen++;
6368 partition_sched_domains(1, NULL, NULL);
6369 }
6370 return 0;
6371}
6372
6373int sched_cpu_activate(unsigned int cpu)
6374{
6375 struct rq *rq = cpu_rq(cpu);
6376 struct rq_flags rf;
6377
6378#ifdef CONFIG_SCHED_SMT
6379 /*
6380 * When going up, increment the number of cores with SMT present.
6381 */
6382 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6383 static_branch_inc_cpuslocked(&sched_smt_present);
6384#endif
6385 set_cpu_active(cpu, true);
6386
6387 if (sched_smp_initialized) {
6388 sched_domains_numa_masks_set(cpu);
6389 cpuset_cpu_active();
6390 }
6391
6392 /*
6393 * Put the rq online, if not already. This happens:
6394 *
6395 * 1) In the early boot process, because we build the real domains
6396 * after all CPUs have been brought up.
6397 *
6398 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6399 * domains.
6400 */
6401 rq_lock_irqsave(rq, &rf);
6402 if (rq->rd) {
6403 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6404 set_rq_online(rq);
6405 }
6406 rq_unlock_irqrestore(rq, &rf);
6407
6408 return 0;
6409}
6410
6411int sched_cpu_deactivate(unsigned int cpu)
6412{
6413 int ret;
6414
6415 set_cpu_active(cpu, false);
6416 /*
6417 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6418 * users of this state to go away such that all new such users will
6419 * observe it.
6420 *
6421 * Do sync before park smpboot threads to take care the rcu boost case.
6422 */
6423 synchronize_rcu();
6424
6425#ifdef CONFIG_SCHED_SMT
6426 /*
6427 * When going down, decrement the number of cores with SMT present.
6428 */
6429 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6430 static_branch_dec_cpuslocked(&sched_smt_present);
6431#endif
6432
6433 if (!sched_smp_initialized)
6434 return 0;
6435
6436 ret = cpuset_cpu_inactive(cpu);
6437 if (ret) {
6438 set_cpu_active(cpu, true);
6439 return ret;
6440 }
6441 sched_domains_numa_masks_clear(cpu);
6442 return 0;
6443}
6444
6445static void sched_rq_cpu_starting(unsigned int cpu)
6446{
6447 struct rq *rq = cpu_rq(cpu);
6448
6449 rq->calc_load_update = calc_load_update;
6450 update_max_interval();
6451}
6452
6453int sched_cpu_starting(unsigned int cpu)
6454{
6455 sched_rq_cpu_starting(cpu);
6456 sched_tick_start(cpu);
6457 return 0;
6458}
6459
6460#ifdef CONFIG_HOTPLUG_CPU
6461int sched_cpu_dying(unsigned int cpu)
6462{
6463 struct rq *rq = cpu_rq(cpu);
6464 struct rq_flags rf;
6465
6466 /* Handle pending wakeups and then migrate everything off */
6467 sched_ttwu_pending();
6468 sched_tick_stop(cpu);
6469
6470 rq_lock_irqsave(rq, &rf);
6471 if (rq->rd) {
6472 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6473 set_rq_offline(rq);
6474 }
6475 migrate_tasks(rq, &rf);
6476 BUG_ON(rq->nr_running != 1);
6477 rq_unlock_irqrestore(rq, &rf);
6478
6479 calc_load_migrate(rq);
6480 update_max_interval();
6481 nohz_balance_exit_idle(rq);
6482 hrtick_clear(rq);
6483 return 0;
6484}
6485#endif
6486
6487void __init sched_init_smp(void)
6488{
6489 sched_init_numa();
6490
6491 /*
6492 * There's no userspace yet to cause hotplug operations; hence all the
6493 * CPU masks are stable and all blatant races in the below code cannot
6494 * happen.
6495 */
6496 mutex_lock(&sched_domains_mutex);
6497 sched_init_domains(cpu_active_mask);
6498 mutex_unlock(&sched_domains_mutex);
6499
6500 /* Move init over to a non-isolated CPU */
6501 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6502 BUG();
6503 sched_init_granularity();
6504
6505 init_sched_rt_class();
6506 init_sched_dl_class();
6507
6508 sched_smp_initialized = true;
6509}
6510
6511static int __init migration_init(void)
6512{
6513 sched_cpu_starting(smp_processor_id());
6514 return 0;
6515}
6516early_initcall(migration_init);
6517
6518#else
6519void __init sched_init_smp(void)
6520{
6521 sched_init_granularity();
6522}
6523#endif /* CONFIG_SMP */
6524
6525int in_sched_functions(unsigned long addr)
6526{
6527 return in_lock_functions(addr) ||
6528 (addr >= (unsigned long)__sched_text_start
6529 && addr < (unsigned long)__sched_text_end);
6530}
6531
6532#ifdef CONFIG_CGROUP_SCHED
6533/*
6534 * Default task group.
6535 * Every task in system belongs to this group at bootup.
6536 */
6537struct task_group root_task_group;
6538LIST_HEAD(task_groups);
6539
6540/* Cacheline aligned slab cache for task_group */
6541static struct kmem_cache *task_group_cache __read_mostly;
6542#endif
6543
6544DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6545DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6546
6547void __init sched_init(void)
6548{
6549 unsigned long ptr = 0;
6550 int i;
6551
6552 wait_bit_init();
6553
6554#ifdef CONFIG_FAIR_GROUP_SCHED
6555 ptr += 2 * nr_cpu_ids * sizeof(void **);
6556#endif
6557#ifdef CONFIG_RT_GROUP_SCHED
6558 ptr += 2 * nr_cpu_ids * sizeof(void **);
6559#endif
6560 if (ptr) {
6561 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6562
6563#ifdef CONFIG_FAIR_GROUP_SCHED
6564 root_task_group.se = (struct sched_entity **)ptr;
6565 ptr += nr_cpu_ids * sizeof(void **);
6566
6567 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6568 ptr += nr_cpu_ids * sizeof(void **);
6569
6570#endif /* CONFIG_FAIR_GROUP_SCHED */
6571#ifdef CONFIG_RT_GROUP_SCHED
6572 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6573 ptr += nr_cpu_ids * sizeof(void **);
6574
6575 root_task_group.rt_rq = (struct rt_rq **)ptr;
6576 ptr += nr_cpu_ids * sizeof(void **);
6577
6578#endif /* CONFIG_RT_GROUP_SCHED */
6579 }
6580#ifdef CONFIG_CPUMASK_OFFSTACK
6581 for_each_possible_cpu(i) {
6582 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6583 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6584 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6585 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6586 }
6587#endif /* CONFIG_CPUMASK_OFFSTACK */
6588
6589 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6590 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6591
6592#ifdef CONFIG_SMP
6593 init_defrootdomain();
6594#endif
6595
6596#ifdef CONFIG_RT_GROUP_SCHED
6597 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6598 global_rt_period(), global_rt_runtime());
6599#endif /* CONFIG_RT_GROUP_SCHED */
6600
6601#ifdef CONFIG_CGROUP_SCHED
6602 task_group_cache = KMEM_CACHE(task_group, 0);
6603
6604 list_add(&root_task_group.list, &task_groups);
6605 INIT_LIST_HEAD(&root_task_group.children);
6606 INIT_LIST_HEAD(&root_task_group.siblings);
6607 autogroup_init(&init_task);
6608#endif /* CONFIG_CGROUP_SCHED */
6609
6610 for_each_possible_cpu(i) {
6611 struct rq *rq;
6612
6613 rq = cpu_rq(i);
6614 raw_spin_lock_init(&rq->lock);
6615 rq->nr_running = 0;
6616 rq->calc_load_active = 0;
6617 rq->calc_load_update = jiffies + LOAD_FREQ;
6618 init_cfs_rq(&rq->cfs);
6619 init_rt_rq(&rq->rt);
6620 init_dl_rq(&rq->dl);
6621#ifdef CONFIG_FAIR_GROUP_SCHED
6622 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6623 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6624 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6625 /*
6626 * How much CPU bandwidth does root_task_group get?
6627 *
6628 * In case of task-groups formed thr' the cgroup filesystem, it
6629 * gets 100% of the CPU resources in the system. This overall
6630 * system CPU resource is divided among the tasks of
6631 * root_task_group and its child task-groups in a fair manner,
6632 * based on each entity's (task or task-group's) weight
6633 * (se->load.weight).
6634 *
6635 * In other words, if root_task_group has 10 tasks of weight
6636 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6637 * then A0's share of the CPU resource is:
6638 *
6639 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6640 *
6641 * We achieve this by letting root_task_group's tasks sit
6642 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6643 */
6644 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6645 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6646#endif /* CONFIG_FAIR_GROUP_SCHED */
6647
6648 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6649#ifdef CONFIG_RT_GROUP_SCHED
6650 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6651#endif
6652#ifdef CONFIG_SMP
6653 rq->sd = NULL;
6654 rq->rd = NULL;
6655 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6656 rq->balance_callback = NULL;
6657 rq->active_balance = 0;
6658 rq->next_balance = jiffies;
6659 rq->push_cpu = 0;
6660 rq->cpu = i;
6661 rq->online = 0;
6662 rq->idle_stamp = 0;
6663 rq->avg_idle = 2*sysctl_sched_migration_cost;
6664 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6665
6666 INIT_LIST_HEAD(&rq->cfs_tasks);
6667
6668 rq_attach_root(rq, &def_root_domain);
6669#ifdef CONFIG_NO_HZ_COMMON
6670 rq->last_load_update_tick = jiffies;
6671 rq->last_blocked_load_update_tick = jiffies;
6672 atomic_set(&rq->nohz_flags, 0);
6673#endif
6674#endif /* CONFIG_SMP */
6675 hrtick_rq_init(rq);
6676 atomic_set(&rq->nr_iowait, 0);
6677 }
6678
6679 set_load_weight(&init_task, false);
6680
6681 /*
6682 * The boot idle thread does lazy MMU switching as well:
6683 */
6684 mmgrab(&init_mm);
6685 enter_lazy_tlb(&init_mm, current);
6686
6687 /*
6688 * Make us the idle thread. Technically, schedule() should not be
6689 * called from this thread, however somewhere below it might be,
6690 * but because we are the idle thread, we just pick up running again
6691 * when this runqueue becomes "idle".
6692 */
6693 init_idle(current, smp_processor_id());
6694
6695 calc_load_update = jiffies + LOAD_FREQ;
6696
6697#ifdef CONFIG_SMP
6698 idle_thread_set_boot_cpu();
6699#endif
6700 init_sched_fair_class();
6701
6702 init_schedstats();
6703
6704 psi_init();
6705
6706 init_uclamp();
6707
6708 scheduler_running = 1;
6709}
6710
6711#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6712static inline int preempt_count_equals(int preempt_offset)
6713{
6714 int nested = preempt_count() + rcu_preempt_depth();
6715
6716 return (nested == preempt_offset);
6717}
6718
6719void __might_sleep(const char *file, int line, int preempt_offset)
6720{
6721 /*
6722 * Blocking primitives will set (and therefore destroy) current->state,
6723 * since we will exit with TASK_RUNNING make sure we enter with it,
6724 * otherwise we will destroy state.
6725 */
6726 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6727 "do not call blocking ops when !TASK_RUNNING; "
6728 "state=%lx set at [<%p>] %pS\n",
6729 current->state,
6730 (void *)current->task_state_change,
6731 (void *)current->task_state_change);
6732
6733 ___might_sleep(file, line, preempt_offset);
6734}
6735EXPORT_SYMBOL(__might_sleep);
6736
6737void ___might_sleep(const char *file, int line, int preempt_offset)
6738{
6739 /* Ratelimiting timestamp: */
6740 static unsigned long prev_jiffy;
6741
6742 unsigned long preempt_disable_ip;
6743
6744 /* WARN_ON_ONCE() by default, no rate limit required: */
6745 rcu_sleep_check();
6746
6747 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6748 !is_idle_task(current) && !current->non_block_count) ||
6749 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6750 oops_in_progress)
6751 return;
6752
6753 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6754 return;
6755 prev_jiffy = jiffies;
6756
6757 /* Save this before calling printk(), since that will clobber it: */
6758 preempt_disable_ip = get_preempt_disable_ip(current);
6759
6760 printk(KERN_ERR
6761 "BUG: sleeping function called from invalid context at %s:%d\n",
6762 file, line);
6763 printk(KERN_ERR
6764 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6765 in_atomic(), irqs_disabled(), current->non_block_count,
6766 current->pid, current->comm);
6767
6768 if (task_stack_end_corrupted(current))
6769 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6770
6771 debug_show_held_locks(current);
6772 if (irqs_disabled())
6773 print_irqtrace_events(current);
6774 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6775 && !preempt_count_equals(preempt_offset)) {
6776 pr_err("Preemption disabled at:");
6777 print_ip_sym(preempt_disable_ip);
6778 pr_cont("\n");
6779 }
6780 dump_stack();
6781 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6782}
6783EXPORT_SYMBOL(___might_sleep);
6784
6785void __cant_sleep(const char *file, int line, int preempt_offset)
6786{
6787 static unsigned long prev_jiffy;
6788
6789 if (irqs_disabled())
6790 return;
6791
6792 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6793 return;
6794
6795 if (preempt_count() > preempt_offset)
6796 return;
6797
6798 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6799 return;
6800 prev_jiffy = jiffies;
6801
6802 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6803 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6804 in_atomic(), irqs_disabled(),
6805 current->pid, current->comm);
6806
6807 debug_show_held_locks(current);
6808 dump_stack();
6809 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6810}
6811EXPORT_SYMBOL_GPL(__cant_sleep);
6812#endif
6813
6814#ifdef CONFIG_MAGIC_SYSRQ
6815void normalize_rt_tasks(void)
6816{
6817 struct task_struct *g, *p;
6818 struct sched_attr attr = {
6819 .sched_policy = SCHED_NORMAL,
6820 };
6821
6822 read_lock(&tasklist_lock);
6823 for_each_process_thread(g, p) {
6824 /*
6825 * Only normalize user tasks:
6826 */
6827 if (p->flags & PF_KTHREAD)
6828 continue;
6829
6830 p->se.exec_start = 0;
6831 schedstat_set(p->se.statistics.wait_start, 0);
6832 schedstat_set(p->se.statistics.sleep_start, 0);
6833 schedstat_set(p->se.statistics.block_start, 0);
6834
6835 if (!dl_task(p) && !rt_task(p)) {
6836 /*
6837 * Renice negative nice level userspace
6838 * tasks back to 0:
6839 */
6840 if (task_nice(p) < 0)
6841 set_user_nice(p, 0);
6842 continue;
6843 }
6844
6845 __sched_setscheduler(p, &attr, false, false);
6846 }
6847 read_unlock(&tasklist_lock);
6848}
6849
6850#endif /* CONFIG_MAGIC_SYSRQ */
6851
6852#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6853/*
6854 * These functions are only useful for the IA64 MCA handling, or kdb.
6855 *
6856 * They can only be called when the whole system has been
6857 * stopped - every CPU needs to be quiescent, and no scheduling
6858 * activity can take place. Using them for anything else would
6859 * be a serious bug, and as a result, they aren't even visible
6860 * under any other configuration.
6861 */
6862
6863/**
6864 * curr_task - return the current task for a given CPU.
6865 * @cpu: the processor in question.
6866 *
6867 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6868 *
6869 * Return: The current task for @cpu.
6870 */
6871struct task_struct *curr_task(int cpu)
6872{
6873 return cpu_curr(cpu);
6874}
6875
6876#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6877
6878#ifdef CONFIG_IA64
6879/**
6880 * ia64_set_curr_task - set the current task for a given CPU.
6881 * @cpu: the processor in question.
6882 * @p: the task pointer to set.
6883 *
6884 * Description: This function must only be used when non-maskable interrupts
6885 * are serviced on a separate stack. It allows the architecture to switch the
6886 * notion of the current task on a CPU in a non-blocking manner. This function
6887 * must be called with all CPU's synchronized, and interrupts disabled, the
6888 * and caller must save the original value of the current task (see
6889 * curr_task() above) and restore that value before reenabling interrupts and
6890 * re-starting the system.
6891 *
6892 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6893 */
6894void ia64_set_curr_task(int cpu, struct task_struct *p)
6895{
6896 cpu_curr(cpu) = p;
6897}
6898
6899#endif
6900
6901#ifdef CONFIG_CGROUP_SCHED
6902/* task_group_lock serializes the addition/removal of task groups */
6903static DEFINE_SPINLOCK(task_group_lock);
6904
6905static inline void alloc_uclamp_sched_group(struct task_group *tg,
6906 struct task_group *parent)
6907{
6908#ifdef CONFIG_UCLAMP_TASK_GROUP
6909 enum uclamp_id clamp_id;
6910
6911 for_each_clamp_id(clamp_id) {
6912 uclamp_se_set(&tg->uclamp_req[clamp_id],
6913 uclamp_none(clamp_id), false);
6914 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6915 }
6916#endif
6917}
6918
6919static void sched_free_group(struct task_group *tg)
6920{
6921 free_fair_sched_group(tg);
6922 free_rt_sched_group(tg);
6923 autogroup_free(tg);
6924 kmem_cache_free(task_group_cache, tg);
6925}
6926
6927/* allocate runqueue etc for a new task group */
6928struct task_group *sched_create_group(struct task_group *parent)
6929{
6930 struct task_group *tg;
6931
6932 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6933 if (!tg)
6934 return ERR_PTR(-ENOMEM);
6935
6936 if (!alloc_fair_sched_group(tg, parent))
6937 goto err;
6938
6939 if (!alloc_rt_sched_group(tg, parent))
6940 goto err;
6941
6942 alloc_uclamp_sched_group(tg, parent);
6943
6944 return tg;
6945
6946err:
6947 sched_free_group(tg);
6948 return ERR_PTR(-ENOMEM);
6949}
6950
6951void sched_online_group(struct task_group *tg, struct task_group *parent)
6952{
6953 unsigned long flags;
6954
6955 spin_lock_irqsave(&task_group_lock, flags);
6956 list_add_rcu(&tg->list, &task_groups);
6957
6958 /* Root should already exist: */
6959 WARN_ON(!parent);
6960
6961 tg->parent = parent;
6962 INIT_LIST_HEAD(&tg->children);
6963 list_add_rcu(&tg->siblings, &parent->children);
6964 spin_unlock_irqrestore(&task_group_lock, flags);
6965
6966 online_fair_sched_group(tg);
6967}
6968
6969/* rcu callback to free various structures associated with a task group */
6970static void sched_free_group_rcu(struct rcu_head *rhp)
6971{
6972 /* Now it should be safe to free those cfs_rqs: */
6973 sched_free_group(container_of(rhp, struct task_group, rcu));
6974}
6975
6976void sched_destroy_group(struct task_group *tg)
6977{
6978 /* Wait for possible concurrent references to cfs_rqs complete: */
6979 call_rcu(&tg->rcu, sched_free_group_rcu);
6980}
6981
6982void sched_offline_group(struct task_group *tg)
6983{
6984 unsigned long flags;
6985
6986 /* End participation in shares distribution: */
6987 unregister_fair_sched_group(tg);
6988
6989 spin_lock_irqsave(&task_group_lock, flags);
6990 list_del_rcu(&tg->list);
6991 list_del_rcu(&tg->siblings);
6992 spin_unlock_irqrestore(&task_group_lock, flags);
6993}
6994
6995static void sched_change_group(struct task_struct *tsk, int type)
6996{
6997 struct task_group *tg;
6998
6999 /*
7000 * All callers are synchronized by task_rq_lock(); we do not use RCU
7001 * which is pointless here. Thus, we pass "true" to task_css_check()
7002 * to prevent lockdep warnings.
7003 */
7004 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7005 struct task_group, css);
7006 tg = autogroup_task_group(tsk, tg);
7007 tsk->sched_task_group = tg;
7008
7009#ifdef CONFIG_FAIR_GROUP_SCHED
7010 if (tsk->sched_class->task_change_group)
7011 tsk->sched_class->task_change_group(tsk, type);
7012 else
7013#endif
7014 set_task_rq(tsk, task_cpu(tsk));
7015}
7016
7017/*
7018 * Change task's runqueue when it moves between groups.
7019 *
7020 * The caller of this function should have put the task in its new group by
7021 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7022 * its new group.
7023 */
7024void sched_move_task(struct task_struct *tsk)
7025{
7026 int queued, running, queue_flags =
7027 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7028 struct rq_flags rf;
7029 struct rq *rq;
7030
7031 rq = task_rq_lock(tsk, &rf);
7032 update_rq_clock(rq);
7033
7034 running = task_current(rq, tsk);
7035 queued = task_on_rq_queued(tsk);
7036
7037 if (queued)
7038 dequeue_task(rq, tsk, queue_flags);
7039 if (running)
7040 put_prev_task(rq, tsk);
7041
7042 sched_change_group(tsk, TASK_MOVE_GROUP);
7043
7044 if (queued)
7045 enqueue_task(rq, tsk, queue_flags);
7046 if (running)
7047 set_next_task(rq, tsk);
7048
7049 task_rq_unlock(rq, tsk, &rf);
7050}
7051
7052static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7053{
7054 return css ? container_of(css, struct task_group, css) : NULL;
7055}
7056
7057static struct cgroup_subsys_state *
7058cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7059{
7060 struct task_group *parent = css_tg(parent_css);
7061 struct task_group *tg;
7062
7063 if (!parent) {
7064 /* This is early initialization for the top cgroup */
7065 return &root_task_group.css;
7066 }
7067
7068 tg = sched_create_group(parent);
7069 if (IS_ERR(tg))
7070 return ERR_PTR(-ENOMEM);
7071
7072 return &tg->css;
7073}
7074
7075/* Expose task group only after completing cgroup initialization */
7076static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7077{
7078 struct task_group *tg = css_tg(css);
7079 struct task_group *parent = css_tg(css->parent);
7080
7081 if (parent)
7082 sched_online_group(tg, parent);
7083 return 0;
7084}
7085
7086static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7087{
7088 struct task_group *tg = css_tg(css);
7089
7090 sched_offline_group(tg);
7091}
7092
7093static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7094{
7095 struct task_group *tg = css_tg(css);
7096
7097 /*
7098 * Relies on the RCU grace period between css_released() and this.
7099 */
7100 sched_free_group(tg);
7101}
7102
7103/*
7104 * This is called before wake_up_new_task(), therefore we really only
7105 * have to set its group bits, all the other stuff does not apply.
7106 */
7107static void cpu_cgroup_fork(struct task_struct *task)
7108{
7109 struct rq_flags rf;
7110 struct rq *rq;
7111
7112 rq = task_rq_lock(task, &rf);
7113
7114 update_rq_clock(rq);
7115 sched_change_group(task, TASK_SET_GROUP);
7116
7117 task_rq_unlock(rq, task, &rf);
7118}
7119
7120static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7121{
7122 struct task_struct *task;
7123 struct cgroup_subsys_state *css;
7124 int ret = 0;
7125
7126 cgroup_taskset_for_each(task, css, tset) {
7127#ifdef CONFIG_RT_GROUP_SCHED
7128 if (!sched_rt_can_attach(css_tg(css), task))
7129 return -EINVAL;
7130#endif
7131 /*
7132 * Serialize against wake_up_new_task() such that if its
7133 * running, we're sure to observe its full state.
7134 */
7135 raw_spin_lock_irq(&task->pi_lock);
7136 /*
7137 * Avoid calling sched_move_task() before wake_up_new_task()
7138 * has happened. This would lead to problems with PELT, due to
7139 * move wanting to detach+attach while we're not attached yet.
7140 */
7141 if (task->state == TASK_NEW)
7142 ret = -EINVAL;
7143 raw_spin_unlock_irq(&task->pi_lock);
7144
7145 if (ret)
7146 break;
7147 }
7148 return ret;
7149}
7150
7151static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7152{
7153 struct task_struct *task;
7154 struct cgroup_subsys_state *css;
7155
7156 cgroup_taskset_for_each(task, css, tset)
7157 sched_move_task(task);
7158}
7159
7160#ifdef CONFIG_UCLAMP_TASK_GROUP
7161static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7162{
7163 struct cgroup_subsys_state *top_css = css;
7164 struct uclamp_se *uc_parent = NULL;
7165 struct uclamp_se *uc_se = NULL;
7166 unsigned int eff[UCLAMP_CNT];
7167 enum uclamp_id clamp_id;
7168 unsigned int clamps;
7169
7170 css_for_each_descendant_pre(css, top_css) {
7171 uc_parent = css_tg(css)->parent
7172 ? css_tg(css)->parent->uclamp : NULL;
7173
7174 for_each_clamp_id(clamp_id) {
7175 /* Assume effective clamps matches requested clamps */
7176 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7177 /* Cap effective clamps with parent's effective clamps */
7178 if (uc_parent &&
7179 eff[clamp_id] > uc_parent[clamp_id].value) {
7180 eff[clamp_id] = uc_parent[clamp_id].value;
7181 }
7182 }
7183 /* Ensure protection is always capped by limit */
7184 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7185
7186 /* Propagate most restrictive effective clamps */
7187 clamps = 0x0;
7188 uc_se = css_tg(css)->uclamp;
7189 for_each_clamp_id(clamp_id) {
7190 if (eff[clamp_id] == uc_se[clamp_id].value)
7191 continue;
7192 uc_se[clamp_id].value = eff[clamp_id];
7193 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7194 clamps |= (0x1 << clamp_id);
7195 }
7196 if (!clamps) {
7197 css = css_rightmost_descendant(css);
7198 continue;
7199 }
7200
7201 /* Immediately update descendants RUNNABLE tasks */
7202 uclamp_update_active_tasks(css, clamps);
7203 }
7204}
7205
7206/*
7207 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7208 * C expression. Since there is no way to convert a macro argument (N) into a
7209 * character constant, use two levels of macros.
7210 */
7211#define _POW10(exp) ((unsigned int)1e##exp)
7212#define POW10(exp) _POW10(exp)
7213
7214struct uclamp_request {
7215#define UCLAMP_PERCENT_SHIFT 2
7216#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7217 s64 percent;
7218 u64 util;
7219 int ret;
7220};
7221
7222static inline struct uclamp_request
7223capacity_from_percent(char *buf)
7224{
7225 struct uclamp_request req = {
7226 .percent = UCLAMP_PERCENT_SCALE,
7227 .util = SCHED_CAPACITY_SCALE,
7228 .ret = 0,
7229 };
7230
7231 buf = strim(buf);
7232 if (strcmp(buf, "max")) {
7233 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7234 &req.percent);
7235 if (req.ret)
7236 return req;
7237 if (req.percent > UCLAMP_PERCENT_SCALE) {
7238 req.ret = -ERANGE;
7239 return req;
7240 }
7241
7242 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7243 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7244 }
7245
7246 return req;
7247}
7248
7249static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7250 size_t nbytes, loff_t off,
7251 enum uclamp_id clamp_id)
7252{
7253 struct uclamp_request req;
7254 struct task_group *tg;
7255
7256 req = capacity_from_percent(buf);
7257 if (req.ret)
7258 return req.ret;
7259
7260 mutex_lock(&uclamp_mutex);
7261 rcu_read_lock();
7262
7263 tg = css_tg(of_css(of));
7264 if (tg->uclamp_req[clamp_id].value != req.util)
7265 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7266
7267 /*
7268 * Because of not recoverable conversion rounding we keep track of the
7269 * exact requested value
7270 */
7271 tg->uclamp_pct[clamp_id] = req.percent;
7272
7273 /* Update effective clamps to track the most restrictive value */
7274 cpu_util_update_eff(of_css(of));
7275
7276 rcu_read_unlock();
7277 mutex_unlock(&uclamp_mutex);
7278
7279 return nbytes;
7280}
7281
7282static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7283 char *buf, size_t nbytes,
7284 loff_t off)
7285{
7286 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7287}
7288
7289static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7290 char *buf, size_t nbytes,
7291 loff_t off)
7292{
7293 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7294}
7295
7296static inline void cpu_uclamp_print(struct seq_file *sf,
7297 enum uclamp_id clamp_id)
7298{
7299 struct task_group *tg;
7300 u64 util_clamp;
7301 u64 percent;
7302 u32 rem;
7303
7304 rcu_read_lock();
7305 tg = css_tg(seq_css(sf));
7306 util_clamp = tg->uclamp_req[clamp_id].value;
7307 rcu_read_unlock();
7308
7309 if (util_clamp == SCHED_CAPACITY_SCALE) {
7310 seq_puts(sf, "max\n");
7311 return;
7312 }
7313
7314 percent = tg->uclamp_pct[clamp_id];
7315 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7316 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7317}
7318
7319static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7320{
7321 cpu_uclamp_print(sf, UCLAMP_MIN);
7322 return 0;
7323}
7324
7325static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7326{
7327 cpu_uclamp_print(sf, UCLAMP_MAX);
7328 return 0;
7329}
7330#endif /* CONFIG_UCLAMP_TASK_GROUP */
7331
7332#ifdef CONFIG_FAIR_GROUP_SCHED
7333static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7334 struct cftype *cftype, u64 shareval)
7335{
7336 if (shareval > scale_load_down(ULONG_MAX))
7337 shareval = MAX_SHARES;
7338 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7339}
7340
7341static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7342 struct cftype *cft)
7343{
7344 struct task_group *tg = css_tg(css);
7345
7346 return (u64) scale_load_down(tg->shares);
7347}
7348
7349#ifdef CONFIG_CFS_BANDWIDTH
7350static DEFINE_MUTEX(cfs_constraints_mutex);
7351
7352const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7353static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7354
7355static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7356
7357static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7358{
7359 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7360 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7361
7362 if (tg == &root_task_group)
7363 return -EINVAL;
7364
7365 /*
7366 * Ensure we have at some amount of bandwidth every period. This is
7367 * to prevent reaching a state of large arrears when throttled via
7368 * entity_tick() resulting in prolonged exit starvation.
7369 */
7370 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7371 return -EINVAL;
7372
7373 /*
7374 * Likewise, bound things on the otherside by preventing insane quota
7375 * periods. This also allows us to normalize in computing quota
7376 * feasibility.
7377 */
7378 if (period > max_cfs_quota_period)
7379 return -EINVAL;
7380
7381 /*
7382 * Prevent race between setting of cfs_rq->runtime_enabled and
7383 * unthrottle_offline_cfs_rqs().
7384 */
7385 get_online_cpus();
7386 mutex_lock(&cfs_constraints_mutex);
7387 ret = __cfs_schedulable(tg, period, quota);
7388 if (ret)
7389 goto out_unlock;
7390
7391 runtime_enabled = quota != RUNTIME_INF;
7392 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7393 /*
7394 * If we need to toggle cfs_bandwidth_used, off->on must occur
7395 * before making related changes, and on->off must occur afterwards
7396 */
7397 if (runtime_enabled && !runtime_was_enabled)
7398 cfs_bandwidth_usage_inc();
7399 raw_spin_lock_irq(&cfs_b->lock);
7400 cfs_b->period = ns_to_ktime(period);
7401 cfs_b->quota = quota;
7402
7403 __refill_cfs_bandwidth_runtime(cfs_b);
7404
7405 /* Restart the period timer (if active) to handle new period expiry: */
7406 if (runtime_enabled)
7407 start_cfs_bandwidth(cfs_b);
7408
7409 raw_spin_unlock_irq(&cfs_b->lock);
7410
7411 for_each_online_cpu(i) {
7412 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7413 struct rq *rq = cfs_rq->rq;
7414 struct rq_flags rf;
7415
7416 rq_lock_irq(rq, &rf);
7417 cfs_rq->runtime_enabled = runtime_enabled;
7418 cfs_rq->runtime_remaining = 0;
7419
7420 if (cfs_rq->throttled)
7421 unthrottle_cfs_rq(cfs_rq);
7422 rq_unlock_irq(rq, &rf);
7423 }
7424 if (runtime_was_enabled && !runtime_enabled)
7425 cfs_bandwidth_usage_dec();
7426out_unlock:
7427 mutex_unlock(&cfs_constraints_mutex);
7428 put_online_cpus();
7429
7430 return ret;
7431}
7432
7433static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7434{
7435 u64 quota, period;
7436
7437 period = ktime_to_ns(tg->cfs_bandwidth.period);
7438 if (cfs_quota_us < 0)
7439 quota = RUNTIME_INF;
7440 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7441 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7442 else
7443 return -EINVAL;
7444
7445 return tg_set_cfs_bandwidth(tg, period, quota);
7446}
7447
7448static long tg_get_cfs_quota(struct task_group *tg)
7449{
7450 u64 quota_us;
7451
7452 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7453 return -1;
7454
7455 quota_us = tg->cfs_bandwidth.quota;
7456 do_div(quota_us, NSEC_PER_USEC);
7457
7458 return quota_us;
7459}
7460
7461static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7462{
7463 u64 quota, period;
7464
7465 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7466 return -EINVAL;
7467
7468 period = (u64)cfs_period_us * NSEC_PER_USEC;
7469 quota = tg->cfs_bandwidth.quota;
7470
7471 return tg_set_cfs_bandwidth(tg, period, quota);
7472}
7473
7474static long tg_get_cfs_period(struct task_group *tg)
7475{
7476 u64 cfs_period_us;
7477
7478 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7479 do_div(cfs_period_us, NSEC_PER_USEC);
7480
7481 return cfs_period_us;
7482}
7483
7484static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7485 struct cftype *cft)
7486{
7487 return tg_get_cfs_quota(css_tg(css));
7488}
7489
7490static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7491 struct cftype *cftype, s64 cfs_quota_us)
7492{
7493 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7494}
7495
7496static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7497 struct cftype *cft)
7498{
7499 return tg_get_cfs_period(css_tg(css));
7500}
7501
7502static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7503 struct cftype *cftype, u64 cfs_period_us)
7504{
7505 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7506}
7507
7508struct cfs_schedulable_data {
7509 struct task_group *tg;
7510 u64 period, quota;
7511};
7512
7513/*
7514 * normalize group quota/period to be quota/max_period
7515 * note: units are usecs
7516 */
7517static u64 normalize_cfs_quota(struct task_group *tg,
7518 struct cfs_schedulable_data *d)
7519{
7520 u64 quota, period;
7521
7522 if (tg == d->tg) {
7523 period = d->period;
7524 quota = d->quota;
7525 } else {
7526 period = tg_get_cfs_period(tg);
7527 quota = tg_get_cfs_quota(tg);
7528 }
7529
7530 /* note: these should typically be equivalent */
7531 if (quota == RUNTIME_INF || quota == -1)
7532 return RUNTIME_INF;
7533
7534 return to_ratio(period, quota);
7535}
7536
7537static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7538{
7539 struct cfs_schedulable_data *d = data;
7540 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7541 s64 quota = 0, parent_quota = -1;
7542
7543 if (!tg->parent) {
7544 quota = RUNTIME_INF;
7545 } else {
7546 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7547
7548 quota = normalize_cfs_quota(tg, d);
7549 parent_quota = parent_b->hierarchical_quota;
7550
7551 /*
7552 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7553 * always take the min. On cgroup1, only inherit when no
7554 * limit is set:
7555 */
7556 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7557 quota = min(quota, parent_quota);
7558 } else {
7559 if (quota == RUNTIME_INF)
7560 quota = parent_quota;
7561 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7562 return -EINVAL;
7563 }
7564 }
7565 cfs_b->hierarchical_quota = quota;
7566
7567 return 0;
7568}
7569
7570static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7571{
7572 int ret;
7573 struct cfs_schedulable_data data = {
7574 .tg = tg,
7575 .period = period,
7576 .quota = quota,
7577 };
7578
7579 if (quota != RUNTIME_INF) {
7580 do_div(data.period, NSEC_PER_USEC);
7581 do_div(data.quota, NSEC_PER_USEC);
7582 }
7583
7584 rcu_read_lock();
7585 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7586 rcu_read_unlock();
7587
7588 return ret;
7589}
7590
7591static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7592{
7593 struct task_group *tg = css_tg(seq_css(sf));
7594 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7595
7596 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7597 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7598 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7599
7600 if (schedstat_enabled() && tg != &root_task_group) {
7601 u64 ws = 0;
7602 int i;
7603
7604 for_each_possible_cpu(i)
7605 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7606
7607 seq_printf(sf, "wait_sum %llu\n", ws);
7608 }
7609
7610 return 0;
7611}
7612#endif /* CONFIG_CFS_BANDWIDTH */
7613#endif /* CONFIG_FAIR_GROUP_SCHED */
7614
7615#ifdef CONFIG_RT_GROUP_SCHED
7616static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7617 struct cftype *cft, s64 val)
7618{
7619 return sched_group_set_rt_runtime(css_tg(css), val);
7620}
7621
7622static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7623 struct cftype *cft)
7624{
7625 return sched_group_rt_runtime(css_tg(css));
7626}
7627
7628static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7629 struct cftype *cftype, u64 rt_period_us)
7630{
7631 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7632}
7633
7634static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7635 struct cftype *cft)
7636{
7637 return sched_group_rt_period(css_tg(css));
7638}
7639#endif /* CONFIG_RT_GROUP_SCHED */
7640
7641static struct cftype cpu_legacy_files[] = {
7642#ifdef CONFIG_FAIR_GROUP_SCHED
7643 {
7644 .name = "shares",
7645 .read_u64 = cpu_shares_read_u64,
7646 .write_u64 = cpu_shares_write_u64,
7647 },
7648#endif
7649#ifdef CONFIG_CFS_BANDWIDTH
7650 {
7651 .name = "cfs_quota_us",
7652 .read_s64 = cpu_cfs_quota_read_s64,
7653 .write_s64 = cpu_cfs_quota_write_s64,
7654 },
7655 {
7656 .name = "cfs_period_us",
7657 .read_u64 = cpu_cfs_period_read_u64,
7658 .write_u64 = cpu_cfs_period_write_u64,
7659 },
7660 {
7661 .name = "stat",
7662 .seq_show = cpu_cfs_stat_show,
7663 },
7664#endif
7665#ifdef CONFIG_RT_GROUP_SCHED
7666 {
7667 .name = "rt_runtime_us",
7668 .read_s64 = cpu_rt_runtime_read,
7669 .write_s64 = cpu_rt_runtime_write,
7670 },
7671 {
7672 .name = "rt_period_us",
7673 .read_u64 = cpu_rt_period_read_uint,
7674 .write_u64 = cpu_rt_period_write_uint,
7675 },
7676#endif
7677#ifdef CONFIG_UCLAMP_TASK_GROUP
7678 {
7679 .name = "uclamp.min",
7680 .flags = CFTYPE_NOT_ON_ROOT,
7681 .seq_show = cpu_uclamp_min_show,
7682 .write = cpu_uclamp_min_write,
7683 },
7684 {
7685 .name = "uclamp.max",
7686 .flags = CFTYPE_NOT_ON_ROOT,
7687 .seq_show = cpu_uclamp_max_show,
7688 .write = cpu_uclamp_max_write,
7689 },
7690#endif
7691 { } /* Terminate */
7692};
7693
7694static int cpu_extra_stat_show(struct seq_file *sf,
7695 struct cgroup_subsys_state *css)
7696{
7697#ifdef CONFIG_CFS_BANDWIDTH
7698 {
7699 struct task_group *tg = css_tg(css);
7700 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7701 u64 throttled_usec;
7702
7703 throttled_usec = cfs_b->throttled_time;
7704 do_div(throttled_usec, NSEC_PER_USEC);
7705
7706 seq_printf(sf, "nr_periods %d\n"
7707 "nr_throttled %d\n"
7708 "throttled_usec %llu\n",
7709 cfs_b->nr_periods, cfs_b->nr_throttled,
7710 throttled_usec);
7711 }
7712#endif
7713 return 0;
7714}
7715
7716#ifdef CONFIG_FAIR_GROUP_SCHED
7717static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7718 struct cftype *cft)
7719{
7720 struct task_group *tg = css_tg(css);
7721 u64 weight = scale_load_down(tg->shares);
7722
7723 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7724}
7725
7726static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7727 struct cftype *cft, u64 weight)
7728{
7729 /*
7730 * cgroup weight knobs should use the common MIN, DFL and MAX
7731 * values which are 1, 100 and 10000 respectively. While it loses
7732 * a bit of range on both ends, it maps pretty well onto the shares
7733 * value used by scheduler and the round-trip conversions preserve
7734 * the original value over the entire range.
7735 */
7736 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7737 return -ERANGE;
7738
7739 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7740
7741 return sched_group_set_shares(css_tg(css), scale_load(weight));
7742}
7743
7744static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7745 struct cftype *cft)
7746{
7747 unsigned long weight = scale_load_down(css_tg(css)->shares);
7748 int last_delta = INT_MAX;
7749 int prio, delta;
7750
7751 /* find the closest nice value to the current weight */
7752 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7753 delta = abs(sched_prio_to_weight[prio] - weight);
7754 if (delta >= last_delta)
7755 break;
7756 last_delta = delta;
7757 }
7758
7759 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7760}
7761
7762static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7763 struct cftype *cft, s64 nice)
7764{
7765 unsigned long weight;
7766 int idx;
7767
7768 if (nice < MIN_NICE || nice > MAX_NICE)
7769 return -ERANGE;
7770
7771 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7772 idx = array_index_nospec(idx, 40);
7773 weight = sched_prio_to_weight[idx];
7774
7775 return sched_group_set_shares(css_tg(css), scale_load(weight));
7776}
7777#endif
7778
7779static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7780 long period, long quota)
7781{
7782 if (quota < 0)
7783 seq_puts(sf, "max");
7784 else
7785 seq_printf(sf, "%ld", quota);
7786
7787 seq_printf(sf, " %ld\n", period);
7788}
7789
7790/* caller should put the current value in *@periodp before calling */
7791static int __maybe_unused cpu_period_quota_parse(char *buf,
7792 u64 *periodp, u64 *quotap)
7793{
7794 char tok[21]; /* U64_MAX */
7795
7796 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7797 return -EINVAL;
7798
7799 *periodp *= NSEC_PER_USEC;
7800
7801 if (sscanf(tok, "%llu", quotap))
7802 *quotap *= NSEC_PER_USEC;
7803 else if (!strcmp(tok, "max"))
7804 *quotap = RUNTIME_INF;
7805 else
7806 return -EINVAL;
7807
7808 return 0;
7809}
7810
7811#ifdef CONFIG_CFS_BANDWIDTH
7812static int cpu_max_show(struct seq_file *sf, void *v)
7813{
7814 struct task_group *tg = css_tg(seq_css(sf));
7815
7816 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7817 return 0;
7818}
7819
7820static ssize_t cpu_max_write(struct kernfs_open_file *of,
7821 char *buf, size_t nbytes, loff_t off)
7822{
7823 struct task_group *tg = css_tg(of_css(of));
7824 u64 period = tg_get_cfs_period(tg);
7825 u64 quota;
7826 int ret;
7827
7828 ret = cpu_period_quota_parse(buf, &period, &quota);
7829 if (!ret)
7830 ret = tg_set_cfs_bandwidth(tg, period, quota);
7831 return ret ?: nbytes;
7832}
7833#endif
7834
7835static struct cftype cpu_files[] = {
7836#ifdef CONFIG_FAIR_GROUP_SCHED
7837 {
7838 .name = "weight",
7839 .flags = CFTYPE_NOT_ON_ROOT,
7840 .read_u64 = cpu_weight_read_u64,
7841 .write_u64 = cpu_weight_write_u64,
7842 },
7843 {
7844 .name = "weight.nice",
7845 .flags = CFTYPE_NOT_ON_ROOT,
7846 .read_s64 = cpu_weight_nice_read_s64,
7847 .write_s64 = cpu_weight_nice_write_s64,
7848 },
7849#endif
7850#ifdef CONFIG_CFS_BANDWIDTH
7851 {
7852 .name = "max",
7853 .flags = CFTYPE_NOT_ON_ROOT,
7854 .seq_show = cpu_max_show,
7855 .write = cpu_max_write,
7856 },
7857#endif
7858#ifdef CONFIG_UCLAMP_TASK_GROUP
7859 {
7860 .name = "uclamp.min",
7861 .flags = CFTYPE_NOT_ON_ROOT,
7862 .seq_show = cpu_uclamp_min_show,
7863 .write = cpu_uclamp_min_write,
7864 },
7865 {
7866 .name = "uclamp.max",
7867 .flags = CFTYPE_NOT_ON_ROOT,
7868 .seq_show = cpu_uclamp_max_show,
7869 .write = cpu_uclamp_max_write,
7870 },
7871#endif
7872 { } /* terminate */
7873};
7874
7875struct cgroup_subsys cpu_cgrp_subsys = {
7876 .css_alloc = cpu_cgroup_css_alloc,
7877 .css_online = cpu_cgroup_css_online,
7878 .css_released = cpu_cgroup_css_released,
7879 .css_free = cpu_cgroup_css_free,
7880 .css_extra_stat_show = cpu_extra_stat_show,
7881 .fork = cpu_cgroup_fork,
7882 .can_attach = cpu_cgroup_can_attach,
7883 .attach = cpu_cgroup_attach,
7884 .legacy_cftypes = cpu_legacy_files,
7885 .dfl_cftypes = cpu_files,
7886 .early_init = true,
7887 .threaded = true,
7888};
7889
7890#endif /* CONFIG_CGROUP_SCHED */
7891
7892void dump_cpu_task(int cpu)
7893{
7894 pr_info("Task dump for CPU %d:\n", cpu);
7895 sched_show_task(cpu_curr(cpu));
7896}
7897
7898/*
7899 * Nice levels are multiplicative, with a gentle 10% change for every
7900 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7901 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7902 * that remained on nice 0.
7903 *
7904 * The "10% effect" is relative and cumulative: from _any_ nice level,
7905 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7906 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7907 * If a task goes up by ~10% and another task goes down by ~10% then
7908 * the relative distance between them is ~25%.)
7909 */
7910const int sched_prio_to_weight[40] = {
7911 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7912 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7913 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7914 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7915 /* 0 */ 1024, 820, 655, 526, 423,
7916 /* 5 */ 335, 272, 215, 172, 137,
7917 /* 10 */ 110, 87, 70, 56, 45,
7918 /* 15 */ 36, 29, 23, 18, 15,
7919};
7920
7921/*
7922 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7923 *
7924 * In cases where the weight does not change often, we can use the
7925 * precalculated inverse to speed up arithmetics by turning divisions
7926 * into multiplications:
7927 */
7928const u32 sched_prio_to_wmult[40] = {
7929 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7930 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7931 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7932 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7933 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7934 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7935 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7936 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7937};
7938
7939#undef CREATE_TRACE_POINTS