rcu: Deconfuse dynticks entry-exit tracing
[linux-2.6-block.git] / kernel / rcutree.c
... / ...
CommitLineData
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <linux/nmi.h>
39#include <linux/atomic.h>
40#include <linux/bitops.h>
41#include <linux/export.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49#include <linux/kernel_stat.h>
50#include <linux/wait.h>
51#include <linux/kthread.h>
52#include <linux/prefetch.h>
53
54#include "rcutree.h"
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
58
59/* Data structures. */
60
61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
62
63#define RCU_STATE_INITIALIZER(structname) { \
64 .level = { &structname##_state.node[0] }, \
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
71 }, \
72 .fqs_state = RCU_GP_IDLE, \
73 .gpnum = -300, \
74 .completed = -300, \
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
79 .name = #structname, \
80}
81
82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84
85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87
88static struct rcu_state *rcu_state;
89
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
116#ifdef CONFIG_RCU_BOOST
117
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
126DEFINE_PER_CPU(char, rcu_cpu_has_work);
127
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
133
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
156/*
157 * Note a quiescent state. Because we do not need to know
158 * how many quiescent states passed, just if there was at least
159 * one since the start of the grace period, this just sets a flag.
160 * The caller must have disabled preemption.
161 */
162void rcu_sched_qs(int cpu)
163{
164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
165
166 rdp->passed_quiesce_gpnum = rdp->gpnum;
167 barrier();
168 if (rdp->passed_quiesce == 0)
169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
170 rdp->passed_quiesce = 1;
171}
172
173void rcu_bh_qs(int cpu)
174{
175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
176
177 rdp->passed_quiesce_gpnum = rdp->gpnum;
178 barrier();
179 if (rdp->passed_quiesce == 0)
180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
181 rdp->passed_quiesce = 1;
182}
183
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
187 * The caller must have disabled preemption.
188 */
189void rcu_note_context_switch(int cpu)
190{
191 trace_rcu_utilization("Start context switch");
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
194 trace_rcu_utilization("End context switch");
195}
196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
197
198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
199 .dynticks_nesting = DYNTICK_TASK_NESTING,
200 .dynticks = ATOMIC_INIT(1),
201};
202
203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
211int rcu_cpu_stall_suppress __read_mostly;
212module_param(rcu_cpu_stall_suppress, int, 0644);
213
214static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
215static int rcu_pending(int cpu);
216
217/*
218 * Return the number of RCU-sched batches processed thus far for debug & stats.
219 */
220long rcu_batches_completed_sched(void)
221{
222 return rcu_sched_state.completed;
223}
224EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
225
226/*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229long rcu_batches_completed_bh(void)
230{
231 return rcu_bh_state.completed;
232}
233EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
235/*
236 * Force a quiescent state for RCU BH.
237 */
238void rcu_bh_force_quiescent_state(void)
239{
240 force_quiescent_state(&rcu_bh_state, 0);
241}
242EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
244/*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251void rcutorture_record_test_transition(void)
252{
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255}
256EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258/*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263void rcutorture_record_progress(unsigned long vernum)
264{
265 rcutorture_vernum++;
266}
267EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
269/*
270 * Force a quiescent state for RCU-sched.
271 */
272void rcu_sched_force_quiescent_state(void)
273{
274 force_quiescent_state(&rcu_sched_state, 0);
275}
276EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
278/*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281static int
282cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283{
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285}
286
287/*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290static int
291cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292{
293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
294}
295
296/*
297 * Return the root node of the specified rcu_state structure.
298 */
299static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300{
301 return &rsp->node[0];
302}
303
304#ifdef CONFIG_SMP
305
306/*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318{
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
325 rdp->offline_fqs++;
326 return 1;
327 }
328
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340}
341
342#endif /* #ifdef CONFIG_SMP */
343
344/*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
351static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
352{
353 if (rdtp->dynticks_nesting) {
354 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
355 return;
356 }
357 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
358 if (!idle_cpu(smp_processor_id())) {
359 WARN_ON_ONCE(1); /* must be idle task! */
360 trace_rcu_dyntick("Error on entry: not idle task",
361 oldval, rdtp->dynticks_nesting);
362 ftrace_dump(DUMP_ALL);
363 }
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369}
370
371/**
372 * rcu_idle_enter - inform RCU that current CPU is entering idle
373 *
374 * Enter idle mode, in other words, -leave- the mode in which RCU
375 * read-side critical sections can occur. (Though RCU read-side
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
382 */
383void rcu_idle_enter(void)
384{
385 unsigned long flags;
386 long long oldval;
387 struct rcu_dynticks *rdtp;
388
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
391 oldval = rdtp->dynticks_nesting;
392 rdtp->dynticks_nesting = 0;
393 rcu_idle_enter_common(rdtp, oldval);
394 local_irq_restore(flags);
395}
396
397/**
398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399 *
400 * Exit from an interrupt handler, which might possibly result in entering
401 * idle mode, in other words, leaving the mode in which read-side critical
402 * sections can occur.
403 *
404 * This code assumes that the idle loop never does anything that might
405 * result in unbalanced calls to irq_enter() and irq_exit(). If your
406 * architecture violates this assumption, RCU will give you what you
407 * deserve, good and hard. But very infrequently and irreproducibly.
408 *
409 * Use things like work queues to work around this limitation.
410 *
411 * You have been warned.
412 */
413void rcu_irq_exit(void)
414{
415 unsigned long flags;
416 long long oldval;
417 struct rcu_dynticks *rdtp;
418
419 local_irq_save(flags);
420 rdtp = &__get_cpu_var(rcu_dynticks);
421 oldval = rdtp->dynticks_nesting;
422 rdtp->dynticks_nesting--;
423 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
424 rcu_idle_enter_common(rdtp, oldval);
425 local_irq_restore(flags);
426}
427
428/*
429 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
430 *
431 * If the new value of the ->dynticks_nesting counter was previously zero,
432 * we really have exited idle, and must do the appropriate accounting.
433 * The caller must have disabled interrupts.
434 */
435static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
436{
437 if (oldval) {
438 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
439 return;
440 }
441 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
442 atomic_inc(&rdtp->dynticks);
443 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
444 smp_mb__after_atomic_inc(); /* See above. */
445 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
446 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
447 if (!idle_cpu(smp_processor_id())) {
448 WARN_ON_ONCE(1); /* must be idle task! */
449 trace_rcu_dyntick("Error on exit: not idle task",
450 oldval, rdtp->dynticks_nesting);
451 ftrace_dump(DUMP_ALL);
452 }
453}
454
455/**
456 * rcu_idle_exit - inform RCU that current CPU is leaving idle
457 *
458 * Exit idle mode, in other words, -enter- the mode in which RCU
459 * read-side critical sections can occur.
460 *
461 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
462 * allow for the possibility of usermode upcalls messing up our count
463 * of interrupt nesting level during the busy period that is just
464 * now starting.
465 */
466void rcu_idle_exit(void)
467{
468 unsigned long flags;
469 struct rcu_dynticks *rdtp;
470 long long oldval;
471
472 local_irq_save(flags);
473 rdtp = &__get_cpu_var(rcu_dynticks);
474 oldval = rdtp->dynticks_nesting;
475 WARN_ON_ONCE(oldval != 0);
476 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
477 rcu_idle_exit_common(rdtp, oldval);
478 local_irq_restore(flags);
479}
480
481/**
482 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
483 *
484 * Enter an interrupt handler, which might possibly result in exiting
485 * idle mode, in other words, entering the mode in which read-side critical
486 * sections can occur.
487 *
488 * Note that the Linux kernel is fully capable of entering an interrupt
489 * handler that it never exits, for example when doing upcalls to
490 * user mode! This code assumes that the idle loop never does upcalls to
491 * user mode. If your architecture does do upcalls from the idle loop (or
492 * does anything else that results in unbalanced calls to the irq_enter()
493 * and irq_exit() functions), RCU will give you what you deserve, good
494 * and hard. But very infrequently and irreproducibly.
495 *
496 * Use things like work queues to work around this limitation.
497 *
498 * You have been warned.
499 */
500void rcu_irq_enter(void)
501{
502 unsigned long flags;
503 struct rcu_dynticks *rdtp;
504 long long oldval;
505
506 local_irq_save(flags);
507 rdtp = &__get_cpu_var(rcu_dynticks);
508 oldval = rdtp->dynticks_nesting;
509 rdtp->dynticks_nesting++;
510 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
511 rcu_idle_exit_common(rdtp, oldval);
512 local_irq_restore(flags);
513}
514
515/**
516 * rcu_nmi_enter - inform RCU of entry to NMI context
517 *
518 * If the CPU was idle with dynamic ticks active, and there is no
519 * irq handler running, this updates rdtp->dynticks_nmi to let the
520 * RCU grace-period handling know that the CPU is active.
521 */
522void rcu_nmi_enter(void)
523{
524 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
525
526 if (rdtp->dynticks_nmi_nesting == 0 &&
527 (atomic_read(&rdtp->dynticks) & 0x1))
528 return;
529 rdtp->dynticks_nmi_nesting++;
530 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
531 atomic_inc(&rdtp->dynticks);
532 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
533 smp_mb__after_atomic_inc(); /* See above. */
534 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
535}
536
537/**
538 * rcu_nmi_exit - inform RCU of exit from NMI context
539 *
540 * If the CPU was idle with dynamic ticks active, and there is no
541 * irq handler running, this updates rdtp->dynticks_nmi to let the
542 * RCU grace-period handling know that the CPU is no longer active.
543 */
544void rcu_nmi_exit(void)
545{
546 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
547
548 if (rdtp->dynticks_nmi_nesting == 0 ||
549 --rdtp->dynticks_nmi_nesting != 0)
550 return;
551 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
552 smp_mb__before_atomic_inc(); /* See above. */
553 atomic_inc(&rdtp->dynticks);
554 smp_mb__after_atomic_inc(); /* Force delay to next write. */
555 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
556}
557
558#ifdef CONFIG_PROVE_RCU
559
560/**
561 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
562 *
563 * If the current CPU is in its idle loop and is neither in an interrupt
564 * or NMI handler, return true.
565 */
566int rcu_is_cpu_idle(void)
567{
568 int ret;
569
570 preempt_disable();
571 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
572 preempt_enable();
573 return ret;
574}
575EXPORT_SYMBOL(rcu_is_cpu_idle);
576
577#endif /* #ifdef CONFIG_PROVE_RCU */
578
579/**
580 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
581 *
582 * If the current CPU is idle or running at a first-level (not nested)
583 * interrupt from idle, return true. The caller must have at least
584 * disabled preemption.
585 */
586int rcu_is_cpu_rrupt_from_idle(void)
587{
588 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
589}
590
591#ifdef CONFIG_SMP
592
593/*
594 * Snapshot the specified CPU's dynticks counter so that we can later
595 * credit them with an implicit quiescent state. Return 1 if this CPU
596 * is in dynticks idle mode, which is an extended quiescent state.
597 */
598static int dyntick_save_progress_counter(struct rcu_data *rdp)
599{
600 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
601 return 0;
602}
603
604/*
605 * Return true if the specified CPU has passed through a quiescent
606 * state by virtue of being in or having passed through an dynticks
607 * idle state since the last call to dyntick_save_progress_counter()
608 * for this same CPU.
609 */
610static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
611{
612 unsigned int curr;
613 unsigned int snap;
614
615 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
616 snap = (unsigned int)rdp->dynticks_snap;
617
618 /*
619 * If the CPU passed through or entered a dynticks idle phase with
620 * no active irq/NMI handlers, then we can safely pretend that the CPU
621 * already acknowledged the request to pass through a quiescent
622 * state. Either way, that CPU cannot possibly be in an RCU
623 * read-side critical section that started before the beginning
624 * of the current RCU grace period.
625 */
626 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
627 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
628 rdp->dynticks_fqs++;
629 return 1;
630 }
631
632 /* Go check for the CPU being offline. */
633 return rcu_implicit_offline_qs(rdp);
634}
635
636#endif /* #ifdef CONFIG_SMP */
637
638int rcu_cpu_stall_suppress __read_mostly;
639
640static void record_gp_stall_check_time(struct rcu_state *rsp)
641{
642 rsp->gp_start = jiffies;
643 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
644}
645
646static void print_other_cpu_stall(struct rcu_state *rsp)
647{
648 int cpu;
649 long delta;
650 unsigned long flags;
651 int ndetected;
652 struct rcu_node *rnp = rcu_get_root(rsp);
653
654 /* Only let one CPU complain about others per time interval. */
655
656 raw_spin_lock_irqsave(&rnp->lock, flags);
657 delta = jiffies - rsp->jiffies_stall;
658 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
659 raw_spin_unlock_irqrestore(&rnp->lock, flags);
660 return;
661 }
662 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
663
664 /*
665 * Now rat on any tasks that got kicked up to the root rcu_node
666 * due to CPU offlining.
667 */
668 ndetected = rcu_print_task_stall(rnp);
669 raw_spin_unlock_irqrestore(&rnp->lock, flags);
670
671 /*
672 * OK, time to rat on our buddy...
673 * See Documentation/RCU/stallwarn.txt for info on how to debug
674 * RCU CPU stall warnings.
675 */
676 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
677 rsp->name);
678 rcu_for_each_leaf_node(rsp, rnp) {
679 raw_spin_lock_irqsave(&rnp->lock, flags);
680 ndetected += rcu_print_task_stall(rnp);
681 raw_spin_unlock_irqrestore(&rnp->lock, flags);
682 if (rnp->qsmask == 0)
683 continue;
684 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
685 if (rnp->qsmask & (1UL << cpu)) {
686 printk(" %d", rnp->grplo + cpu);
687 ndetected++;
688 }
689 }
690 printk("} (detected by %d, t=%ld jiffies)\n",
691 smp_processor_id(), (long)(jiffies - rsp->gp_start));
692 if (ndetected == 0)
693 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
694 else if (!trigger_all_cpu_backtrace())
695 dump_stack();
696
697 /* If so configured, complain about tasks blocking the grace period. */
698
699 rcu_print_detail_task_stall(rsp);
700
701 force_quiescent_state(rsp, 0); /* Kick them all. */
702}
703
704static void print_cpu_stall(struct rcu_state *rsp)
705{
706 unsigned long flags;
707 struct rcu_node *rnp = rcu_get_root(rsp);
708
709 /*
710 * OK, time to rat on ourselves...
711 * See Documentation/RCU/stallwarn.txt for info on how to debug
712 * RCU CPU stall warnings.
713 */
714 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
715 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
716 if (!trigger_all_cpu_backtrace())
717 dump_stack();
718
719 raw_spin_lock_irqsave(&rnp->lock, flags);
720 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
721 rsp->jiffies_stall =
722 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
723 raw_spin_unlock_irqrestore(&rnp->lock, flags);
724
725 set_need_resched(); /* kick ourselves to get things going. */
726}
727
728static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
729{
730 unsigned long j;
731 unsigned long js;
732 struct rcu_node *rnp;
733
734 if (rcu_cpu_stall_suppress)
735 return;
736 j = ACCESS_ONCE(jiffies);
737 js = ACCESS_ONCE(rsp->jiffies_stall);
738 rnp = rdp->mynode;
739 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
740
741 /* We haven't checked in, so go dump stack. */
742 print_cpu_stall(rsp);
743
744 } else if (rcu_gp_in_progress(rsp) &&
745 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
746
747 /* They had a few time units to dump stack, so complain. */
748 print_other_cpu_stall(rsp);
749 }
750}
751
752static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
753{
754 rcu_cpu_stall_suppress = 1;
755 return NOTIFY_DONE;
756}
757
758/**
759 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
760 *
761 * Set the stall-warning timeout way off into the future, thus preventing
762 * any RCU CPU stall-warning messages from appearing in the current set of
763 * RCU grace periods.
764 *
765 * The caller must disable hard irqs.
766 */
767void rcu_cpu_stall_reset(void)
768{
769 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
770 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
771 rcu_preempt_stall_reset();
772}
773
774static struct notifier_block rcu_panic_block = {
775 .notifier_call = rcu_panic,
776};
777
778static void __init check_cpu_stall_init(void)
779{
780 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
781}
782
783/*
784 * Update CPU-local rcu_data state to record the newly noticed grace period.
785 * This is used both when we started the grace period and when we notice
786 * that someone else started the grace period. The caller must hold the
787 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
788 * and must have irqs disabled.
789 */
790static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
791{
792 if (rdp->gpnum != rnp->gpnum) {
793 /*
794 * If the current grace period is waiting for this CPU,
795 * set up to detect a quiescent state, otherwise don't
796 * go looking for one.
797 */
798 rdp->gpnum = rnp->gpnum;
799 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
800 if (rnp->qsmask & rdp->grpmask) {
801 rdp->qs_pending = 1;
802 rdp->passed_quiesce = 0;
803 } else
804 rdp->qs_pending = 0;
805 }
806}
807
808static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
809{
810 unsigned long flags;
811 struct rcu_node *rnp;
812
813 local_irq_save(flags);
814 rnp = rdp->mynode;
815 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
816 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
817 local_irq_restore(flags);
818 return;
819 }
820 __note_new_gpnum(rsp, rnp, rdp);
821 raw_spin_unlock_irqrestore(&rnp->lock, flags);
822}
823
824/*
825 * Did someone else start a new RCU grace period start since we last
826 * checked? Update local state appropriately if so. Must be called
827 * on the CPU corresponding to rdp.
828 */
829static int
830check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
831{
832 unsigned long flags;
833 int ret = 0;
834
835 local_irq_save(flags);
836 if (rdp->gpnum != rsp->gpnum) {
837 note_new_gpnum(rsp, rdp);
838 ret = 1;
839 }
840 local_irq_restore(flags);
841 return ret;
842}
843
844/*
845 * Advance this CPU's callbacks, but only if the current grace period
846 * has ended. This may be called only from the CPU to whom the rdp
847 * belongs. In addition, the corresponding leaf rcu_node structure's
848 * ->lock must be held by the caller, with irqs disabled.
849 */
850static void
851__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
852{
853 /* Did another grace period end? */
854 if (rdp->completed != rnp->completed) {
855
856 /* Advance callbacks. No harm if list empty. */
857 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
858 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
859 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
860
861 /* Remember that we saw this grace-period completion. */
862 rdp->completed = rnp->completed;
863 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
864
865 /*
866 * If we were in an extended quiescent state, we may have
867 * missed some grace periods that others CPUs handled on
868 * our behalf. Catch up with this state to avoid noting
869 * spurious new grace periods. If another grace period
870 * has started, then rnp->gpnum will have advanced, so
871 * we will detect this later on.
872 */
873 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
874 rdp->gpnum = rdp->completed;
875
876 /*
877 * If RCU does not need a quiescent state from this CPU,
878 * then make sure that this CPU doesn't go looking for one.
879 */
880 if ((rnp->qsmask & rdp->grpmask) == 0)
881 rdp->qs_pending = 0;
882 }
883}
884
885/*
886 * Advance this CPU's callbacks, but only if the current grace period
887 * has ended. This may be called only from the CPU to whom the rdp
888 * belongs.
889 */
890static void
891rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
892{
893 unsigned long flags;
894 struct rcu_node *rnp;
895
896 local_irq_save(flags);
897 rnp = rdp->mynode;
898 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
899 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
900 local_irq_restore(flags);
901 return;
902 }
903 __rcu_process_gp_end(rsp, rnp, rdp);
904 raw_spin_unlock_irqrestore(&rnp->lock, flags);
905}
906
907/*
908 * Do per-CPU grace-period initialization for running CPU. The caller
909 * must hold the lock of the leaf rcu_node structure corresponding to
910 * this CPU.
911 */
912static void
913rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
914{
915 /* Prior grace period ended, so advance callbacks for current CPU. */
916 __rcu_process_gp_end(rsp, rnp, rdp);
917
918 /*
919 * Because this CPU just now started the new grace period, we know
920 * that all of its callbacks will be covered by this upcoming grace
921 * period, even the ones that were registered arbitrarily recently.
922 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
923 *
924 * Other CPUs cannot be sure exactly when the grace period started.
925 * Therefore, their recently registered callbacks must pass through
926 * an additional RCU_NEXT_READY stage, so that they will be handled
927 * by the next RCU grace period.
928 */
929 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
930 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
931
932 /* Set state so that this CPU will detect the next quiescent state. */
933 __note_new_gpnum(rsp, rnp, rdp);
934}
935
936/*
937 * Start a new RCU grace period if warranted, re-initializing the hierarchy
938 * in preparation for detecting the next grace period. The caller must hold
939 * the root node's ->lock, which is released before return. Hard irqs must
940 * be disabled.
941 */
942static void
943rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
944 __releases(rcu_get_root(rsp)->lock)
945{
946 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
947 struct rcu_node *rnp = rcu_get_root(rsp);
948
949 if (!rcu_scheduler_fully_active ||
950 !cpu_needs_another_gp(rsp, rdp)) {
951 /*
952 * Either the scheduler hasn't yet spawned the first
953 * non-idle task or this CPU does not need another
954 * grace period. Either way, don't start a new grace
955 * period.
956 */
957 raw_spin_unlock_irqrestore(&rnp->lock, flags);
958 return;
959 }
960
961 if (rsp->fqs_active) {
962 /*
963 * This CPU needs a grace period, but force_quiescent_state()
964 * is running. Tell it to start one on this CPU's behalf.
965 */
966 rsp->fqs_need_gp = 1;
967 raw_spin_unlock_irqrestore(&rnp->lock, flags);
968 return;
969 }
970
971 /* Advance to a new grace period and initialize state. */
972 rsp->gpnum++;
973 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
974 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
975 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
976 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
977 record_gp_stall_check_time(rsp);
978
979 /* Special-case the common single-level case. */
980 if (NUM_RCU_NODES == 1) {
981 rcu_preempt_check_blocked_tasks(rnp);
982 rnp->qsmask = rnp->qsmaskinit;
983 rnp->gpnum = rsp->gpnum;
984 rnp->completed = rsp->completed;
985 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
986 rcu_start_gp_per_cpu(rsp, rnp, rdp);
987 rcu_preempt_boost_start_gp(rnp);
988 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
989 rnp->level, rnp->grplo,
990 rnp->grphi, rnp->qsmask);
991 raw_spin_unlock_irqrestore(&rnp->lock, flags);
992 return;
993 }
994
995 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
996
997
998 /* Exclude any concurrent CPU-hotplug operations. */
999 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1000
1001 /*
1002 * Set the quiescent-state-needed bits in all the rcu_node
1003 * structures for all currently online CPUs in breadth-first
1004 * order, starting from the root rcu_node structure. This
1005 * operation relies on the layout of the hierarchy within the
1006 * rsp->node[] array. Note that other CPUs will access only
1007 * the leaves of the hierarchy, which still indicate that no
1008 * grace period is in progress, at least until the corresponding
1009 * leaf node has been initialized. In addition, we have excluded
1010 * CPU-hotplug operations.
1011 *
1012 * Note that the grace period cannot complete until we finish
1013 * the initialization process, as there will be at least one
1014 * qsmask bit set in the root node until that time, namely the
1015 * one corresponding to this CPU, due to the fact that we have
1016 * irqs disabled.
1017 */
1018 rcu_for_each_node_breadth_first(rsp, rnp) {
1019 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1020 rcu_preempt_check_blocked_tasks(rnp);
1021 rnp->qsmask = rnp->qsmaskinit;
1022 rnp->gpnum = rsp->gpnum;
1023 rnp->completed = rsp->completed;
1024 if (rnp == rdp->mynode)
1025 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1026 rcu_preempt_boost_start_gp(rnp);
1027 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1028 rnp->level, rnp->grplo,
1029 rnp->grphi, rnp->qsmask);
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 }
1032
1033 rnp = rcu_get_root(rsp);
1034 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1035 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1036 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1037 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1038}
1039
1040/*
1041 * Report a full set of quiescent states to the specified rcu_state
1042 * data structure. This involves cleaning up after the prior grace
1043 * period and letting rcu_start_gp() start up the next grace period
1044 * if one is needed. Note that the caller must hold rnp->lock, as
1045 * required by rcu_start_gp(), which will release it.
1046 */
1047static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1048 __releases(rcu_get_root(rsp)->lock)
1049{
1050 unsigned long gp_duration;
1051 struct rcu_node *rnp = rcu_get_root(rsp);
1052 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1053
1054 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1055
1056 /*
1057 * Ensure that all grace-period and pre-grace-period activity
1058 * is seen before the assignment to rsp->completed.
1059 */
1060 smp_mb(); /* See above block comment. */
1061 gp_duration = jiffies - rsp->gp_start;
1062 if (gp_duration > rsp->gp_max)
1063 rsp->gp_max = gp_duration;
1064
1065 /*
1066 * We know the grace period is complete, but to everyone else
1067 * it appears to still be ongoing. But it is also the case
1068 * that to everyone else it looks like there is nothing that
1069 * they can do to advance the grace period. It is therefore
1070 * safe for us to drop the lock in order to mark the grace
1071 * period as completed in all of the rcu_node structures.
1072 *
1073 * But if this CPU needs another grace period, it will take
1074 * care of this while initializing the next grace period.
1075 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1076 * because the callbacks have not yet been advanced: Those
1077 * callbacks are waiting on the grace period that just now
1078 * completed.
1079 */
1080 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1081 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1082
1083 /*
1084 * Propagate new ->completed value to rcu_node structures
1085 * so that other CPUs don't have to wait until the start
1086 * of the next grace period to process their callbacks.
1087 */
1088 rcu_for_each_node_breadth_first(rsp, rnp) {
1089 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1090 rnp->completed = rsp->gpnum;
1091 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1092 }
1093 rnp = rcu_get_root(rsp);
1094 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1095 }
1096
1097 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1098 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1099 rsp->fqs_state = RCU_GP_IDLE;
1100 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1101}
1102
1103/*
1104 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1105 * Allows quiescent states for a group of CPUs to be reported at one go
1106 * to the specified rcu_node structure, though all the CPUs in the group
1107 * must be represented by the same rcu_node structure (which need not be
1108 * a leaf rcu_node structure, though it often will be). That structure's
1109 * lock must be held upon entry, and it is released before return.
1110 */
1111static void
1112rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1113 struct rcu_node *rnp, unsigned long flags)
1114 __releases(rnp->lock)
1115{
1116 struct rcu_node *rnp_c;
1117
1118 /* Walk up the rcu_node hierarchy. */
1119 for (;;) {
1120 if (!(rnp->qsmask & mask)) {
1121
1122 /* Our bit has already been cleared, so done. */
1123 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1124 return;
1125 }
1126 rnp->qsmask &= ~mask;
1127 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1128 mask, rnp->qsmask, rnp->level,
1129 rnp->grplo, rnp->grphi,
1130 !!rnp->gp_tasks);
1131 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1132
1133 /* Other bits still set at this level, so done. */
1134 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1135 return;
1136 }
1137 mask = rnp->grpmask;
1138 if (rnp->parent == NULL) {
1139
1140 /* No more levels. Exit loop holding root lock. */
1141
1142 break;
1143 }
1144 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1145 rnp_c = rnp;
1146 rnp = rnp->parent;
1147 raw_spin_lock_irqsave(&rnp->lock, flags);
1148 WARN_ON_ONCE(rnp_c->qsmask);
1149 }
1150
1151 /*
1152 * Get here if we are the last CPU to pass through a quiescent
1153 * state for this grace period. Invoke rcu_report_qs_rsp()
1154 * to clean up and start the next grace period if one is needed.
1155 */
1156 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1157}
1158
1159/*
1160 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1161 * structure. This must be either called from the specified CPU, or
1162 * called when the specified CPU is known to be offline (and when it is
1163 * also known that no other CPU is concurrently trying to help the offline
1164 * CPU). The lastcomp argument is used to make sure we are still in the
1165 * grace period of interest. We don't want to end the current grace period
1166 * based on quiescent states detected in an earlier grace period!
1167 */
1168static void
1169rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1170{
1171 unsigned long flags;
1172 unsigned long mask;
1173 struct rcu_node *rnp;
1174
1175 rnp = rdp->mynode;
1176 raw_spin_lock_irqsave(&rnp->lock, flags);
1177 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1178
1179 /*
1180 * The grace period in which this quiescent state was
1181 * recorded has ended, so don't report it upwards.
1182 * We will instead need a new quiescent state that lies
1183 * within the current grace period.
1184 */
1185 rdp->passed_quiesce = 0; /* need qs for new gp. */
1186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1187 return;
1188 }
1189 mask = rdp->grpmask;
1190 if ((rnp->qsmask & mask) == 0) {
1191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1192 } else {
1193 rdp->qs_pending = 0;
1194
1195 /*
1196 * This GP can't end until cpu checks in, so all of our
1197 * callbacks can be processed during the next GP.
1198 */
1199 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1200
1201 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1202 }
1203}
1204
1205/*
1206 * Check to see if there is a new grace period of which this CPU
1207 * is not yet aware, and if so, set up local rcu_data state for it.
1208 * Otherwise, see if this CPU has just passed through its first
1209 * quiescent state for this grace period, and record that fact if so.
1210 */
1211static void
1212rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1213{
1214 /* If there is now a new grace period, record and return. */
1215 if (check_for_new_grace_period(rsp, rdp))
1216 return;
1217
1218 /*
1219 * Does this CPU still need to do its part for current grace period?
1220 * If no, return and let the other CPUs do their part as well.
1221 */
1222 if (!rdp->qs_pending)
1223 return;
1224
1225 /*
1226 * Was there a quiescent state since the beginning of the grace
1227 * period? If no, then exit and wait for the next call.
1228 */
1229 if (!rdp->passed_quiesce)
1230 return;
1231
1232 /*
1233 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1234 * judge of that).
1235 */
1236 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1237}
1238
1239#ifdef CONFIG_HOTPLUG_CPU
1240
1241/*
1242 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1243 * Synchronization is not required because this function executes
1244 * in stop_machine() context.
1245 */
1246static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1247{
1248 int i;
1249 /* current DYING CPU is cleared in the cpu_online_mask */
1250 int receive_cpu = cpumask_any(cpu_online_mask);
1251 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1252 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1253
1254 if (rdp->nxtlist == NULL)
1255 return; /* irqs disabled, so comparison is stable. */
1256
1257 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1258 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1259 receive_rdp->qlen += rdp->qlen;
1260 receive_rdp->n_cbs_adopted += rdp->qlen;
1261 rdp->n_cbs_orphaned += rdp->qlen;
1262
1263 rdp->nxtlist = NULL;
1264 for (i = 0; i < RCU_NEXT_SIZE; i++)
1265 rdp->nxttail[i] = &rdp->nxtlist;
1266 rdp->qlen = 0;
1267}
1268
1269/*
1270 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1271 * and move all callbacks from the outgoing CPU to the current one.
1272 * There can only be one CPU hotplug operation at a time, so no other
1273 * CPU can be attempting to update rcu_cpu_kthread_task.
1274 */
1275static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1276{
1277 unsigned long flags;
1278 unsigned long mask;
1279 int need_report = 0;
1280 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1281 struct rcu_node *rnp;
1282
1283 rcu_stop_cpu_kthread(cpu);
1284
1285 /* Exclude any attempts to start a new grace period. */
1286 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1287
1288 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1289 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1290 mask = rdp->grpmask; /* rnp->grplo is constant. */
1291 do {
1292 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1293 rnp->qsmaskinit &= ~mask;
1294 if (rnp->qsmaskinit != 0) {
1295 if (rnp != rdp->mynode)
1296 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1297 else
1298 trace_rcu_grace_period(rsp->name,
1299 rnp->gpnum + 1 -
1300 !!(rnp->qsmask & mask),
1301 "cpuofl");
1302 break;
1303 }
1304 if (rnp == rdp->mynode) {
1305 trace_rcu_grace_period(rsp->name,
1306 rnp->gpnum + 1 -
1307 !!(rnp->qsmask & mask),
1308 "cpuofl");
1309 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1310 } else
1311 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1312 mask = rnp->grpmask;
1313 rnp = rnp->parent;
1314 } while (rnp != NULL);
1315
1316 /*
1317 * We still hold the leaf rcu_node structure lock here, and
1318 * irqs are still disabled. The reason for this subterfuge is
1319 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1320 * held leads to deadlock.
1321 */
1322 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1323 rnp = rdp->mynode;
1324 if (need_report & RCU_OFL_TASKS_NORM_GP)
1325 rcu_report_unblock_qs_rnp(rnp, flags);
1326 else
1327 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328 if (need_report & RCU_OFL_TASKS_EXP_GP)
1329 rcu_report_exp_rnp(rsp, rnp, true);
1330 rcu_node_kthread_setaffinity(rnp, -1);
1331}
1332
1333/*
1334 * Remove the specified CPU from the RCU hierarchy and move any pending
1335 * callbacks that it might have to the current CPU. This code assumes
1336 * that at least one CPU in the system will remain running at all times.
1337 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1338 */
1339static void rcu_offline_cpu(int cpu)
1340{
1341 __rcu_offline_cpu(cpu, &rcu_sched_state);
1342 __rcu_offline_cpu(cpu, &rcu_bh_state);
1343 rcu_preempt_offline_cpu(cpu);
1344}
1345
1346#else /* #ifdef CONFIG_HOTPLUG_CPU */
1347
1348static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1349{
1350}
1351
1352static void rcu_offline_cpu(int cpu)
1353{
1354}
1355
1356#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1357
1358/*
1359 * Invoke any RCU callbacks that have made it to the end of their grace
1360 * period. Thottle as specified by rdp->blimit.
1361 */
1362static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1363{
1364 unsigned long flags;
1365 struct rcu_head *next, *list, **tail;
1366 int bl, count;
1367
1368 /* If no callbacks are ready, just return.*/
1369 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1370 trace_rcu_batch_start(rsp->name, 0, 0);
1371 trace_rcu_batch_end(rsp->name, 0);
1372 return;
1373 }
1374
1375 /*
1376 * Extract the list of ready callbacks, disabling to prevent
1377 * races with call_rcu() from interrupt handlers.
1378 */
1379 local_irq_save(flags);
1380 bl = rdp->blimit;
1381 trace_rcu_batch_start(rsp->name, rdp->qlen, bl);
1382 list = rdp->nxtlist;
1383 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1384 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1385 tail = rdp->nxttail[RCU_DONE_TAIL];
1386 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1387 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1388 rdp->nxttail[count] = &rdp->nxtlist;
1389 local_irq_restore(flags);
1390
1391 /* Invoke callbacks. */
1392 count = 0;
1393 while (list) {
1394 next = list->next;
1395 prefetch(next);
1396 debug_rcu_head_unqueue(list);
1397 __rcu_reclaim(rsp->name, list);
1398 list = next;
1399 if (++count >= bl)
1400 break;
1401 }
1402
1403 local_irq_save(flags);
1404 trace_rcu_batch_end(rsp->name, count);
1405
1406 /* Update count, and requeue any remaining callbacks. */
1407 rdp->qlen -= count;
1408 rdp->n_cbs_invoked += count;
1409 if (list != NULL) {
1410 *tail = rdp->nxtlist;
1411 rdp->nxtlist = list;
1412 for (count = 0; count < RCU_NEXT_SIZE; count++)
1413 if (&rdp->nxtlist == rdp->nxttail[count])
1414 rdp->nxttail[count] = tail;
1415 else
1416 break;
1417 }
1418
1419 /* Reinstate batch limit if we have worked down the excess. */
1420 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1421 rdp->blimit = blimit;
1422
1423 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1424 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1425 rdp->qlen_last_fqs_check = 0;
1426 rdp->n_force_qs_snap = rsp->n_force_qs;
1427 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1428 rdp->qlen_last_fqs_check = rdp->qlen;
1429
1430 local_irq_restore(flags);
1431
1432 /* Re-invoke RCU core processing if there are callbacks remaining. */
1433 if (cpu_has_callbacks_ready_to_invoke(rdp))
1434 invoke_rcu_core();
1435}
1436
1437/*
1438 * Check to see if this CPU is in a non-context-switch quiescent state
1439 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1440 * Also schedule RCU core processing.
1441 *
1442 * This function must be called from hardirq context. It is normally
1443 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1444 * false, there is no point in invoking rcu_check_callbacks().
1445 */
1446void rcu_check_callbacks(int cpu, int user)
1447{
1448 trace_rcu_utilization("Start scheduler-tick");
1449 if (user || rcu_is_cpu_rrupt_from_idle()) {
1450
1451 /*
1452 * Get here if this CPU took its interrupt from user
1453 * mode or from the idle loop, and if this is not a
1454 * nested interrupt. In this case, the CPU is in
1455 * a quiescent state, so note it.
1456 *
1457 * No memory barrier is required here because both
1458 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1459 * variables that other CPUs neither access nor modify,
1460 * at least not while the corresponding CPU is online.
1461 */
1462
1463 rcu_sched_qs(cpu);
1464 rcu_bh_qs(cpu);
1465
1466 } else if (!in_softirq()) {
1467
1468 /*
1469 * Get here if this CPU did not take its interrupt from
1470 * softirq, in other words, if it is not interrupting
1471 * a rcu_bh read-side critical section. This is an _bh
1472 * critical section, so note it.
1473 */
1474
1475 rcu_bh_qs(cpu);
1476 }
1477 rcu_preempt_check_callbacks(cpu);
1478 if (rcu_pending(cpu))
1479 invoke_rcu_core();
1480 trace_rcu_utilization("End scheduler-tick");
1481}
1482
1483#ifdef CONFIG_SMP
1484
1485/*
1486 * Scan the leaf rcu_node structures, processing dyntick state for any that
1487 * have not yet encountered a quiescent state, using the function specified.
1488 * Also initiate boosting for any threads blocked on the root rcu_node.
1489 *
1490 * The caller must have suppressed start of new grace periods.
1491 */
1492static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1493{
1494 unsigned long bit;
1495 int cpu;
1496 unsigned long flags;
1497 unsigned long mask;
1498 struct rcu_node *rnp;
1499
1500 rcu_for_each_leaf_node(rsp, rnp) {
1501 mask = 0;
1502 raw_spin_lock_irqsave(&rnp->lock, flags);
1503 if (!rcu_gp_in_progress(rsp)) {
1504 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1505 return;
1506 }
1507 if (rnp->qsmask == 0) {
1508 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1509 continue;
1510 }
1511 cpu = rnp->grplo;
1512 bit = 1;
1513 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1514 if ((rnp->qsmask & bit) != 0 &&
1515 f(per_cpu_ptr(rsp->rda, cpu)))
1516 mask |= bit;
1517 }
1518 if (mask != 0) {
1519
1520 /* rcu_report_qs_rnp() releases rnp->lock. */
1521 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1522 continue;
1523 }
1524 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1525 }
1526 rnp = rcu_get_root(rsp);
1527 if (rnp->qsmask == 0) {
1528 raw_spin_lock_irqsave(&rnp->lock, flags);
1529 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1530 }
1531}
1532
1533/*
1534 * Force quiescent states on reluctant CPUs, and also detect which
1535 * CPUs are in dyntick-idle mode.
1536 */
1537static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1538{
1539 unsigned long flags;
1540 struct rcu_node *rnp = rcu_get_root(rsp);
1541
1542 trace_rcu_utilization("Start fqs");
1543 if (!rcu_gp_in_progress(rsp)) {
1544 trace_rcu_utilization("End fqs");
1545 return; /* No grace period in progress, nothing to force. */
1546 }
1547 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1548 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1549 trace_rcu_utilization("End fqs");
1550 return; /* Someone else is already on the job. */
1551 }
1552 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1553 goto unlock_fqs_ret; /* no emergency and done recently. */
1554 rsp->n_force_qs++;
1555 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1556 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1557 if(!rcu_gp_in_progress(rsp)) {
1558 rsp->n_force_qs_ngp++;
1559 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1560 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1561 }
1562 rsp->fqs_active = 1;
1563 switch (rsp->fqs_state) {
1564 case RCU_GP_IDLE:
1565 case RCU_GP_INIT:
1566
1567 break; /* grace period idle or initializing, ignore. */
1568
1569 case RCU_SAVE_DYNTICK:
1570 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1571 break; /* So gcc recognizes the dead code. */
1572
1573 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1574
1575 /* Record dyntick-idle state. */
1576 force_qs_rnp(rsp, dyntick_save_progress_counter);
1577 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1578 if (rcu_gp_in_progress(rsp))
1579 rsp->fqs_state = RCU_FORCE_QS;
1580 break;
1581
1582 case RCU_FORCE_QS:
1583
1584 /* Check dyntick-idle state, send IPI to laggarts. */
1585 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1586 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1587
1588 /* Leave state in case more forcing is required. */
1589
1590 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1591 break;
1592 }
1593 rsp->fqs_active = 0;
1594 if (rsp->fqs_need_gp) {
1595 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1596 rsp->fqs_need_gp = 0;
1597 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1598 trace_rcu_utilization("End fqs");
1599 return;
1600 }
1601 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1602unlock_fqs_ret:
1603 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1604 trace_rcu_utilization("End fqs");
1605}
1606
1607#else /* #ifdef CONFIG_SMP */
1608
1609static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1610{
1611 set_need_resched();
1612}
1613
1614#endif /* #else #ifdef CONFIG_SMP */
1615
1616/*
1617 * This does the RCU core processing work for the specified rcu_state
1618 * and rcu_data structures. This may be called only from the CPU to
1619 * whom the rdp belongs.
1620 */
1621static void
1622__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1623{
1624 unsigned long flags;
1625
1626 WARN_ON_ONCE(rdp->beenonline == 0);
1627
1628 /*
1629 * If an RCU GP has gone long enough, go check for dyntick
1630 * idle CPUs and, if needed, send resched IPIs.
1631 */
1632 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1633 force_quiescent_state(rsp, 1);
1634
1635 /*
1636 * Advance callbacks in response to end of earlier grace
1637 * period that some other CPU ended.
1638 */
1639 rcu_process_gp_end(rsp, rdp);
1640
1641 /* Update RCU state based on any recent quiescent states. */
1642 rcu_check_quiescent_state(rsp, rdp);
1643
1644 /* Does this CPU require a not-yet-started grace period? */
1645 if (cpu_needs_another_gp(rsp, rdp)) {
1646 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1647 rcu_start_gp(rsp, flags); /* releases above lock */
1648 }
1649
1650 /* If there are callbacks ready, invoke them. */
1651 if (cpu_has_callbacks_ready_to_invoke(rdp))
1652 invoke_rcu_callbacks(rsp, rdp);
1653}
1654
1655/*
1656 * Do RCU core processing for the current CPU.
1657 */
1658static void rcu_process_callbacks(struct softirq_action *unused)
1659{
1660 trace_rcu_utilization("Start RCU core");
1661 __rcu_process_callbacks(&rcu_sched_state,
1662 &__get_cpu_var(rcu_sched_data));
1663 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1664 rcu_preempt_process_callbacks();
1665 trace_rcu_utilization("End RCU core");
1666}
1667
1668/*
1669 * Schedule RCU callback invocation. If the specified type of RCU
1670 * does not support RCU priority boosting, just do a direct call,
1671 * otherwise wake up the per-CPU kernel kthread. Note that because we
1672 * are running on the current CPU with interrupts disabled, the
1673 * rcu_cpu_kthread_task cannot disappear out from under us.
1674 */
1675static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1676{
1677 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1678 return;
1679 if (likely(!rsp->boost)) {
1680 rcu_do_batch(rsp, rdp);
1681 return;
1682 }
1683 invoke_rcu_callbacks_kthread();
1684}
1685
1686static void invoke_rcu_core(void)
1687{
1688 raise_softirq(RCU_SOFTIRQ);
1689}
1690
1691static void
1692__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1693 struct rcu_state *rsp)
1694{
1695 unsigned long flags;
1696 struct rcu_data *rdp;
1697
1698 debug_rcu_head_queue(head);
1699 head->func = func;
1700 head->next = NULL;
1701
1702 smp_mb(); /* Ensure RCU update seen before callback registry. */
1703
1704 /*
1705 * Opportunistically note grace-period endings and beginnings.
1706 * Note that we might see a beginning right after we see an
1707 * end, but never vice versa, since this CPU has to pass through
1708 * a quiescent state betweentimes.
1709 */
1710 local_irq_save(flags);
1711 rdp = this_cpu_ptr(rsp->rda);
1712
1713 /* Add the callback to our list. */
1714 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1715 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1716 rdp->qlen++;
1717
1718 if (__is_kfree_rcu_offset((unsigned long)func))
1719 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1720 rdp->qlen);
1721 else
1722 trace_rcu_callback(rsp->name, head, rdp->qlen);
1723
1724 /* If interrupts were disabled, don't dive into RCU core. */
1725 if (irqs_disabled_flags(flags)) {
1726 local_irq_restore(flags);
1727 return;
1728 }
1729
1730 /*
1731 * Force the grace period if too many callbacks or too long waiting.
1732 * Enforce hysteresis, and don't invoke force_quiescent_state()
1733 * if some other CPU has recently done so. Also, don't bother
1734 * invoking force_quiescent_state() if the newly enqueued callback
1735 * is the only one waiting for a grace period to complete.
1736 */
1737 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1738
1739 /* Are we ignoring a completed grace period? */
1740 rcu_process_gp_end(rsp, rdp);
1741 check_for_new_grace_period(rsp, rdp);
1742
1743 /* Start a new grace period if one not already started. */
1744 if (!rcu_gp_in_progress(rsp)) {
1745 unsigned long nestflag;
1746 struct rcu_node *rnp_root = rcu_get_root(rsp);
1747
1748 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1749 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1750 } else {
1751 /* Give the grace period a kick. */
1752 rdp->blimit = LONG_MAX;
1753 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1754 *rdp->nxttail[RCU_DONE_TAIL] != head)
1755 force_quiescent_state(rsp, 0);
1756 rdp->n_force_qs_snap = rsp->n_force_qs;
1757 rdp->qlen_last_fqs_check = rdp->qlen;
1758 }
1759 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1760 force_quiescent_state(rsp, 1);
1761 local_irq_restore(flags);
1762}
1763
1764/*
1765 * Queue an RCU-sched callback for invocation after a grace period.
1766 */
1767void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1768{
1769 __call_rcu(head, func, &rcu_sched_state);
1770}
1771EXPORT_SYMBOL_GPL(call_rcu_sched);
1772
1773/*
1774 * Queue an RCU for invocation after a quicker grace period.
1775 */
1776void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1777{
1778 __call_rcu(head, func, &rcu_bh_state);
1779}
1780EXPORT_SYMBOL_GPL(call_rcu_bh);
1781
1782/**
1783 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1784 *
1785 * Control will return to the caller some time after a full rcu-sched
1786 * grace period has elapsed, in other words after all currently executing
1787 * rcu-sched read-side critical sections have completed. These read-side
1788 * critical sections are delimited by rcu_read_lock_sched() and
1789 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1790 * local_irq_disable(), and so on may be used in place of
1791 * rcu_read_lock_sched().
1792 *
1793 * This means that all preempt_disable code sequences, including NMI and
1794 * hardware-interrupt handlers, in progress on entry will have completed
1795 * before this primitive returns. However, this does not guarantee that
1796 * softirq handlers will have completed, since in some kernels, these
1797 * handlers can run in process context, and can block.
1798 *
1799 * This primitive provides the guarantees made by the (now removed)
1800 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1801 * guarantees that rcu_read_lock() sections will have completed.
1802 * In "classic RCU", these two guarantees happen to be one and
1803 * the same, but can differ in realtime RCU implementations.
1804 */
1805void synchronize_sched(void)
1806{
1807 if (rcu_blocking_is_gp())
1808 return;
1809 wait_rcu_gp(call_rcu_sched);
1810}
1811EXPORT_SYMBOL_GPL(synchronize_sched);
1812
1813/**
1814 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1815 *
1816 * Control will return to the caller some time after a full rcu_bh grace
1817 * period has elapsed, in other words after all currently executing rcu_bh
1818 * read-side critical sections have completed. RCU read-side critical
1819 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1820 * and may be nested.
1821 */
1822void synchronize_rcu_bh(void)
1823{
1824 if (rcu_blocking_is_gp())
1825 return;
1826 wait_rcu_gp(call_rcu_bh);
1827}
1828EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1829
1830/*
1831 * Check to see if there is any immediate RCU-related work to be done
1832 * by the current CPU, for the specified type of RCU, returning 1 if so.
1833 * The checks are in order of increasing expense: checks that can be
1834 * carried out against CPU-local state are performed first. However,
1835 * we must check for CPU stalls first, else we might not get a chance.
1836 */
1837static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1838{
1839 struct rcu_node *rnp = rdp->mynode;
1840
1841 rdp->n_rcu_pending++;
1842
1843 /* Check for CPU stalls, if enabled. */
1844 check_cpu_stall(rsp, rdp);
1845
1846 /* Is the RCU core waiting for a quiescent state from this CPU? */
1847 if (rcu_scheduler_fully_active &&
1848 rdp->qs_pending && !rdp->passed_quiesce) {
1849
1850 /*
1851 * If force_quiescent_state() coming soon and this CPU
1852 * needs a quiescent state, and this is either RCU-sched
1853 * or RCU-bh, force a local reschedule.
1854 */
1855 rdp->n_rp_qs_pending++;
1856 if (!rdp->preemptible &&
1857 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1858 jiffies))
1859 set_need_resched();
1860 } else if (rdp->qs_pending && rdp->passed_quiesce) {
1861 rdp->n_rp_report_qs++;
1862 return 1;
1863 }
1864
1865 /* Does this CPU have callbacks ready to invoke? */
1866 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1867 rdp->n_rp_cb_ready++;
1868 return 1;
1869 }
1870
1871 /* Has RCU gone idle with this CPU needing another grace period? */
1872 if (cpu_needs_another_gp(rsp, rdp)) {
1873 rdp->n_rp_cpu_needs_gp++;
1874 return 1;
1875 }
1876
1877 /* Has another RCU grace period completed? */
1878 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1879 rdp->n_rp_gp_completed++;
1880 return 1;
1881 }
1882
1883 /* Has a new RCU grace period started? */
1884 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1885 rdp->n_rp_gp_started++;
1886 return 1;
1887 }
1888
1889 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1890 if (rcu_gp_in_progress(rsp) &&
1891 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1892 rdp->n_rp_need_fqs++;
1893 return 1;
1894 }
1895
1896 /* nothing to do */
1897 rdp->n_rp_need_nothing++;
1898 return 0;
1899}
1900
1901/*
1902 * Check to see if there is any immediate RCU-related work to be done
1903 * by the current CPU, returning 1 if so. This function is part of the
1904 * RCU implementation; it is -not- an exported member of the RCU API.
1905 */
1906static int rcu_pending(int cpu)
1907{
1908 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1909 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1910 rcu_preempt_pending(cpu);
1911}
1912
1913/*
1914 * Check to see if any future RCU-related work will need to be done
1915 * by the current CPU, even if none need be done immediately, returning
1916 * 1 if so.
1917 */
1918static int rcu_needs_cpu_quick_check(int cpu)
1919{
1920 /* RCU callbacks either ready or pending? */
1921 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1922 per_cpu(rcu_bh_data, cpu).nxtlist ||
1923 rcu_preempt_needs_cpu(cpu);
1924}
1925
1926static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1927static atomic_t rcu_barrier_cpu_count;
1928static DEFINE_MUTEX(rcu_barrier_mutex);
1929static struct completion rcu_barrier_completion;
1930
1931static void rcu_barrier_callback(struct rcu_head *notused)
1932{
1933 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1934 complete(&rcu_barrier_completion);
1935}
1936
1937/*
1938 * Called with preemption disabled, and from cross-cpu IRQ context.
1939 */
1940static void rcu_barrier_func(void *type)
1941{
1942 int cpu = smp_processor_id();
1943 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1944 void (*call_rcu_func)(struct rcu_head *head,
1945 void (*func)(struct rcu_head *head));
1946
1947 atomic_inc(&rcu_barrier_cpu_count);
1948 call_rcu_func = type;
1949 call_rcu_func(head, rcu_barrier_callback);
1950}
1951
1952/*
1953 * Orchestrate the specified type of RCU barrier, waiting for all
1954 * RCU callbacks of the specified type to complete.
1955 */
1956static void _rcu_barrier(struct rcu_state *rsp,
1957 void (*call_rcu_func)(struct rcu_head *head,
1958 void (*func)(struct rcu_head *head)))
1959{
1960 BUG_ON(in_interrupt());
1961 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1962 mutex_lock(&rcu_barrier_mutex);
1963 init_completion(&rcu_barrier_completion);
1964 /*
1965 * Initialize rcu_barrier_cpu_count to 1, then invoke
1966 * rcu_barrier_func() on each CPU, so that each CPU also has
1967 * incremented rcu_barrier_cpu_count. Only then is it safe to
1968 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1969 * might complete its grace period before all of the other CPUs
1970 * did their increment, causing this function to return too
1971 * early. Note that on_each_cpu() disables irqs, which prevents
1972 * any CPUs from coming online or going offline until each online
1973 * CPU has queued its RCU-barrier callback.
1974 */
1975 atomic_set(&rcu_barrier_cpu_count, 1);
1976 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1977 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1978 complete(&rcu_barrier_completion);
1979 wait_for_completion(&rcu_barrier_completion);
1980 mutex_unlock(&rcu_barrier_mutex);
1981}
1982
1983/**
1984 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1985 */
1986void rcu_barrier_bh(void)
1987{
1988 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1989}
1990EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1991
1992/**
1993 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1994 */
1995void rcu_barrier_sched(void)
1996{
1997 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1998}
1999EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2000
2001/*
2002 * Do boot-time initialization of a CPU's per-CPU RCU data.
2003 */
2004static void __init
2005rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2006{
2007 unsigned long flags;
2008 int i;
2009 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2010 struct rcu_node *rnp = rcu_get_root(rsp);
2011
2012 /* Set up local state, ensuring consistent view of global state. */
2013 raw_spin_lock_irqsave(&rnp->lock, flags);
2014 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2015 rdp->nxtlist = NULL;
2016 for (i = 0; i < RCU_NEXT_SIZE; i++)
2017 rdp->nxttail[i] = &rdp->nxtlist;
2018 rdp->qlen = 0;
2019 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2020 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2021 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2022 rdp->cpu = cpu;
2023 rdp->rsp = rsp;
2024 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2025}
2026
2027/*
2028 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2029 * offline event can be happening at a given time. Note also that we
2030 * can accept some slop in the rsp->completed access due to the fact
2031 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2032 */
2033static void __cpuinit
2034rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2035{
2036 unsigned long flags;
2037 unsigned long mask;
2038 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2039 struct rcu_node *rnp = rcu_get_root(rsp);
2040
2041 /* Set up local state, ensuring consistent view of global state. */
2042 raw_spin_lock_irqsave(&rnp->lock, flags);
2043 rdp->beenonline = 1; /* We have now been online. */
2044 rdp->preemptible = preemptible;
2045 rdp->qlen_last_fqs_check = 0;
2046 rdp->n_force_qs_snap = rsp->n_force_qs;
2047 rdp->blimit = blimit;
2048 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
2049 WARN_ON_ONCE((atomic_read(&rdp->dynticks->dynticks) & 0x1) != 1);
2050 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2051
2052 /*
2053 * A new grace period might start here. If so, we won't be part
2054 * of it, but that is OK, as we are currently in a quiescent state.
2055 */
2056
2057 /* Exclude any attempts to start a new GP on large systems. */
2058 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2059
2060 /* Add CPU to rcu_node bitmasks. */
2061 rnp = rdp->mynode;
2062 mask = rdp->grpmask;
2063 do {
2064 /* Exclude any attempts to start a new GP on small systems. */
2065 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2066 rnp->qsmaskinit |= mask;
2067 mask = rnp->grpmask;
2068 if (rnp == rdp->mynode) {
2069 /*
2070 * If there is a grace period in progress, we will
2071 * set up to wait for it next time we run the
2072 * RCU core code.
2073 */
2074 rdp->gpnum = rnp->completed;
2075 rdp->completed = rnp->completed;
2076 rdp->passed_quiesce = 0;
2077 rdp->qs_pending = 0;
2078 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2079 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2080 }
2081 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2082 rnp = rnp->parent;
2083 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2084
2085 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2086}
2087
2088static void __cpuinit rcu_prepare_cpu(int cpu)
2089{
2090 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2091 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2092 rcu_preempt_init_percpu_data(cpu);
2093}
2094
2095/*
2096 * Handle CPU online/offline notification events.
2097 */
2098static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2099 unsigned long action, void *hcpu)
2100{
2101 long cpu = (long)hcpu;
2102 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2103 struct rcu_node *rnp = rdp->mynode;
2104
2105 trace_rcu_utilization("Start CPU hotplug");
2106 switch (action) {
2107 case CPU_UP_PREPARE:
2108 case CPU_UP_PREPARE_FROZEN:
2109 rcu_prepare_cpu(cpu);
2110 rcu_prepare_kthreads(cpu);
2111 break;
2112 case CPU_ONLINE:
2113 case CPU_DOWN_FAILED:
2114 rcu_node_kthread_setaffinity(rnp, -1);
2115 rcu_cpu_kthread_setrt(cpu, 1);
2116 break;
2117 case CPU_DOWN_PREPARE:
2118 rcu_node_kthread_setaffinity(rnp, cpu);
2119 rcu_cpu_kthread_setrt(cpu, 0);
2120 break;
2121 case CPU_DYING:
2122 case CPU_DYING_FROZEN:
2123 /*
2124 * The whole machine is "stopped" except this CPU, so we can
2125 * touch any data without introducing corruption. We send the
2126 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2127 */
2128 rcu_send_cbs_to_online(&rcu_bh_state);
2129 rcu_send_cbs_to_online(&rcu_sched_state);
2130 rcu_preempt_send_cbs_to_online();
2131 break;
2132 case CPU_DEAD:
2133 case CPU_DEAD_FROZEN:
2134 case CPU_UP_CANCELED:
2135 case CPU_UP_CANCELED_FROZEN:
2136 rcu_offline_cpu(cpu);
2137 break;
2138 default:
2139 break;
2140 }
2141 trace_rcu_utilization("End CPU hotplug");
2142 return NOTIFY_OK;
2143}
2144
2145/*
2146 * This function is invoked towards the end of the scheduler's initialization
2147 * process. Before this is called, the idle task might contain
2148 * RCU read-side critical sections (during which time, this idle
2149 * task is booting the system). After this function is called, the
2150 * idle tasks are prohibited from containing RCU read-side critical
2151 * sections. This function also enables RCU lockdep checking.
2152 */
2153void rcu_scheduler_starting(void)
2154{
2155 WARN_ON(num_online_cpus() != 1);
2156 WARN_ON(nr_context_switches() > 0);
2157 rcu_scheduler_active = 1;
2158}
2159
2160/*
2161 * Compute the per-level fanout, either using the exact fanout specified
2162 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2163 */
2164#ifdef CONFIG_RCU_FANOUT_EXACT
2165static void __init rcu_init_levelspread(struct rcu_state *rsp)
2166{
2167 int i;
2168
2169 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2170 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2171 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2172}
2173#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2174static void __init rcu_init_levelspread(struct rcu_state *rsp)
2175{
2176 int ccur;
2177 int cprv;
2178 int i;
2179
2180 cprv = NR_CPUS;
2181 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2182 ccur = rsp->levelcnt[i];
2183 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2184 cprv = ccur;
2185 }
2186}
2187#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2188
2189/*
2190 * Helper function for rcu_init() that initializes one rcu_state structure.
2191 */
2192static void __init rcu_init_one(struct rcu_state *rsp,
2193 struct rcu_data __percpu *rda)
2194{
2195 static char *buf[] = { "rcu_node_level_0",
2196 "rcu_node_level_1",
2197 "rcu_node_level_2",
2198 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2199 int cpustride = 1;
2200 int i;
2201 int j;
2202 struct rcu_node *rnp;
2203
2204 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2205
2206 /* Initialize the level-tracking arrays. */
2207
2208 for (i = 1; i < NUM_RCU_LVLS; i++)
2209 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2210 rcu_init_levelspread(rsp);
2211
2212 /* Initialize the elements themselves, starting from the leaves. */
2213
2214 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2215 cpustride *= rsp->levelspread[i];
2216 rnp = rsp->level[i];
2217 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2218 raw_spin_lock_init(&rnp->lock);
2219 lockdep_set_class_and_name(&rnp->lock,
2220 &rcu_node_class[i], buf[i]);
2221 rnp->gpnum = 0;
2222 rnp->qsmask = 0;
2223 rnp->qsmaskinit = 0;
2224 rnp->grplo = j * cpustride;
2225 rnp->grphi = (j + 1) * cpustride - 1;
2226 if (rnp->grphi >= NR_CPUS)
2227 rnp->grphi = NR_CPUS - 1;
2228 if (i == 0) {
2229 rnp->grpnum = 0;
2230 rnp->grpmask = 0;
2231 rnp->parent = NULL;
2232 } else {
2233 rnp->grpnum = j % rsp->levelspread[i - 1];
2234 rnp->grpmask = 1UL << rnp->grpnum;
2235 rnp->parent = rsp->level[i - 1] +
2236 j / rsp->levelspread[i - 1];
2237 }
2238 rnp->level = i;
2239 INIT_LIST_HEAD(&rnp->blkd_tasks);
2240 }
2241 }
2242
2243 rsp->rda = rda;
2244 rnp = rsp->level[NUM_RCU_LVLS - 1];
2245 for_each_possible_cpu(i) {
2246 while (i > rnp->grphi)
2247 rnp++;
2248 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2249 rcu_boot_init_percpu_data(i, rsp);
2250 }
2251}
2252
2253void __init rcu_init(void)
2254{
2255 int cpu;
2256
2257 rcu_bootup_announce();
2258 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2259 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2260 __rcu_init_preempt();
2261 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2262
2263 /*
2264 * We don't need protection against CPU-hotplug here because
2265 * this is called early in boot, before either interrupts
2266 * or the scheduler are operational.
2267 */
2268 cpu_notifier(rcu_cpu_notify, 0);
2269 for_each_online_cpu(cpu)
2270 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2271 check_cpu_stall_init();
2272}
2273
2274#include "rcutree_plugin.h"