| 1 | /* SPDX-License-Identifier: GPL-2.0+ */ |
| 2 | /* |
| 3 | * Task-based RCU implementations. |
| 4 | * |
| 5 | * Copyright (C) 2020 Paul E. McKenney |
| 6 | */ |
| 7 | |
| 8 | #ifdef CONFIG_TASKS_RCU_GENERIC |
| 9 | #include "rcu_segcblist.h" |
| 10 | |
| 11 | //////////////////////////////////////////////////////////////////////// |
| 12 | // |
| 13 | // Generic data structures. |
| 14 | |
| 15 | struct rcu_tasks; |
| 16 | typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); |
| 17 | typedef void (*pregp_func_t)(struct list_head *hop); |
| 18 | typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); |
| 19 | typedef void (*postscan_func_t)(struct list_head *hop); |
| 20 | typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); |
| 21 | typedef void (*postgp_func_t)(struct rcu_tasks *rtp); |
| 22 | |
| 23 | /** |
| 24 | * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. |
| 25 | * @cblist: Callback list. |
| 26 | * @lock: Lock protecting per-CPU callback list. |
| 27 | * @rtp_jiffies: Jiffies counter value for statistics. |
| 28 | * @lazy_timer: Timer to unlazify callbacks. |
| 29 | * @urgent_gp: Number of additional non-lazy grace periods. |
| 30 | * @rtp_n_lock_retries: Rough lock-contention statistic. |
| 31 | * @rtp_work: Work queue for invoking callbacks. |
| 32 | * @rtp_irq_work: IRQ work queue for deferred wakeups. |
| 33 | * @barrier_q_head: RCU callback for barrier operation. |
| 34 | * @rtp_blkd_tasks: List of tasks blocked as readers. |
| 35 | * @rtp_exit_list: List of tasks in the latter portion of do_exit(). |
| 36 | * @cpu: CPU number corresponding to this entry. |
| 37 | * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure. |
| 38 | * @rtpp: Pointer to the rcu_tasks structure. |
| 39 | */ |
| 40 | struct rcu_tasks_percpu { |
| 41 | struct rcu_segcblist cblist; |
| 42 | raw_spinlock_t __private lock; |
| 43 | unsigned long rtp_jiffies; |
| 44 | unsigned long rtp_n_lock_retries; |
| 45 | struct timer_list lazy_timer; |
| 46 | unsigned int urgent_gp; |
| 47 | struct work_struct rtp_work; |
| 48 | struct irq_work rtp_irq_work; |
| 49 | struct rcu_head barrier_q_head; |
| 50 | struct list_head rtp_blkd_tasks; |
| 51 | struct list_head rtp_exit_list; |
| 52 | int cpu; |
| 53 | int index; |
| 54 | struct rcu_tasks *rtpp; |
| 55 | }; |
| 56 | |
| 57 | /** |
| 58 | * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. |
| 59 | * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. |
| 60 | * @cbs_gbl_lock: Lock protecting callback list. |
| 61 | * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. |
| 62 | * @gp_func: This flavor's grace-period-wait function. |
| 63 | * @gp_state: Grace period's most recent state transition (debugging). |
| 64 | * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. |
| 65 | * @init_fract: Initial backoff sleep interval. |
| 66 | * @gp_jiffies: Time of last @gp_state transition. |
| 67 | * @gp_start: Most recent grace-period start in jiffies. |
| 68 | * @tasks_gp_seq: Number of grace periods completed since boot in upper bits. |
| 69 | * @n_ipis: Number of IPIs sent to encourage grace periods to end. |
| 70 | * @n_ipis_fails: Number of IPI-send failures. |
| 71 | * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. |
| 72 | * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. |
| 73 | * @pregp_func: This flavor's pre-grace-period function (optional). |
| 74 | * @pertask_func: This flavor's per-task scan function (optional). |
| 75 | * @postscan_func: This flavor's post-task scan function (optional). |
| 76 | * @holdouts_func: This flavor's holdout-list scan function (optional). |
| 77 | * @postgp_func: This flavor's post-grace-period function (optional). |
| 78 | * @call_func: This flavor's call_rcu()-equivalent function. |
| 79 | * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE). |
| 80 | * @rtpcpu: This flavor's rcu_tasks_percpu structure. |
| 81 | * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask. |
| 82 | * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. |
| 83 | * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. |
| 84 | * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. |
| 85 | * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. |
| 86 | * @barrier_q_mutex: Serialize barrier operations. |
| 87 | * @barrier_q_count: Number of queues being waited on. |
| 88 | * @barrier_q_completion: Barrier wait/wakeup mechanism. |
| 89 | * @barrier_q_seq: Sequence number for barrier operations. |
| 90 | * @barrier_q_start: Most recent barrier start in jiffies. |
| 91 | * @name: This flavor's textual name. |
| 92 | * @kname: This flavor's kthread name. |
| 93 | */ |
| 94 | struct rcu_tasks { |
| 95 | struct rcuwait cbs_wait; |
| 96 | raw_spinlock_t cbs_gbl_lock; |
| 97 | struct mutex tasks_gp_mutex; |
| 98 | int gp_state; |
| 99 | int gp_sleep; |
| 100 | int init_fract; |
| 101 | unsigned long gp_jiffies; |
| 102 | unsigned long gp_start; |
| 103 | unsigned long tasks_gp_seq; |
| 104 | unsigned long n_ipis; |
| 105 | unsigned long n_ipis_fails; |
| 106 | struct task_struct *kthread_ptr; |
| 107 | unsigned long lazy_jiffies; |
| 108 | rcu_tasks_gp_func_t gp_func; |
| 109 | pregp_func_t pregp_func; |
| 110 | pertask_func_t pertask_func; |
| 111 | postscan_func_t postscan_func; |
| 112 | holdouts_func_t holdouts_func; |
| 113 | postgp_func_t postgp_func; |
| 114 | call_rcu_func_t call_func; |
| 115 | unsigned int wait_state; |
| 116 | struct rcu_tasks_percpu __percpu *rtpcpu; |
| 117 | struct rcu_tasks_percpu **rtpcp_array; |
| 118 | int percpu_enqueue_shift; |
| 119 | int percpu_enqueue_lim; |
| 120 | int percpu_dequeue_lim; |
| 121 | unsigned long percpu_dequeue_gpseq; |
| 122 | struct mutex barrier_q_mutex; |
| 123 | atomic_t barrier_q_count; |
| 124 | struct completion barrier_q_completion; |
| 125 | unsigned long barrier_q_seq; |
| 126 | unsigned long barrier_q_start; |
| 127 | char *name; |
| 128 | char *kname; |
| 129 | }; |
| 130 | |
| 131 | static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); |
| 132 | |
| 133 | #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ |
| 134 | static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ |
| 135 | .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ |
| 136 | .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ |
| 137 | }; \ |
| 138 | static struct rcu_tasks rt_name = \ |
| 139 | { \ |
| 140 | .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ |
| 141 | .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ |
| 142 | .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ |
| 143 | .gp_func = gp, \ |
| 144 | .call_func = call, \ |
| 145 | .wait_state = TASK_UNINTERRUPTIBLE, \ |
| 146 | .rtpcpu = &rt_name ## __percpu, \ |
| 147 | .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ |
| 148 | .name = n, \ |
| 149 | .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ |
| 150 | .percpu_enqueue_lim = 1, \ |
| 151 | .percpu_dequeue_lim = 1, \ |
| 152 | .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ |
| 153 | .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ |
| 154 | .kname = #rt_name, \ |
| 155 | } |
| 156 | |
| 157 | #ifdef CONFIG_TASKS_RCU |
| 158 | |
| 159 | /* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */ |
| 160 | static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); |
| 161 | static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); |
| 162 | #endif |
| 163 | |
| 164 | /* Avoid IPIing CPUs early in the grace period. */ |
| 165 | #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) |
| 166 | static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; |
| 167 | module_param(rcu_task_ipi_delay, int, 0644); |
| 168 | |
| 169 | /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ |
| 170 | #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) |
| 171 | #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) |
| 172 | static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; |
| 173 | module_param(rcu_task_stall_timeout, int, 0644); |
| 174 | #define RCU_TASK_STALL_INFO (HZ * 10) |
| 175 | static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; |
| 176 | module_param(rcu_task_stall_info, int, 0644); |
| 177 | static int rcu_task_stall_info_mult __read_mostly = 3; |
| 178 | module_param(rcu_task_stall_info_mult, int, 0444); |
| 179 | |
| 180 | static int rcu_task_enqueue_lim __read_mostly = -1; |
| 181 | module_param(rcu_task_enqueue_lim, int, 0444); |
| 182 | |
| 183 | static bool rcu_task_cb_adjust; |
| 184 | static int rcu_task_contend_lim __read_mostly = 100; |
| 185 | module_param(rcu_task_contend_lim, int, 0444); |
| 186 | static int rcu_task_collapse_lim __read_mostly = 10; |
| 187 | module_param(rcu_task_collapse_lim, int, 0444); |
| 188 | static int rcu_task_lazy_lim __read_mostly = 32; |
| 189 | module_param(rcu_task_lazy_lim, int, 0444); |
| 190 | |
| 191 | static int rcu_task_cpu_ids; |
| 192 | |
| 193 | /* RCU tasks grace-period state for debugging. */ |
| 194 | #define RTGS_INIT 0 |
| 195 | #define RTGS_WAIT_WAIT_CBS 1 |
| 196 | #define RTGS_WAIT_GP 2 |
| 197 | #define RTGS_PRE_WAIT_GP 3 |
| 198 | #define RTGS_SCAN_TASKLIST 4 |
| 199 | #define RTGS_POST_SCAN_TASKLIST 5 |
| 200 | #define RTGS_WAIT_SCAN_HOLDOUTS 6 |
| 201 | #define RTGS_SCAN_HOLDOUTS 7 |
| 202 | #define RTGS_POST_GP 8 |
| 203 | #define RTGS_WAIT_READERS 9 |
| 204 | #define RTGS_INVOKE_CBS 10 |
| 205 | #define RTGS_WAIT_CBS 11 |
| 206 | #ifndef CONFIG_TINY_RCU |
| 207 | static const char * const rcu_tasks_gp_state_names[] = { |
| 208 | "RTGS_INIT", |
| 209 | "RTGS_WAIT_WAIT_CBS", |
| 210 | "RTGS_WAIT_GP", |
| 211 | "RTGS_PRE_WAIT_GP", |
| 212 | "RTGS_SCAN_TASKLIST", |
| 213 | "RTGS_POST_SCAN_TASKLIST", |
| 214 | "RTGS_WAIT_SCAN_HOLDOUTS", |
| 215 | "RTGS_SCAN_HOLDOUTS", |
| 216 | "RTGS_POST_GP", |
| 217 | "RTGS_WAIT_READERS", |
| 218 | "RTGS_INVOKE_CBS", |
| 219 | "RTGS_WAIT_CBS", |
| 220 | }; |
| 221 | #endif /* #ifndef CONFIG_TINY_RCU */ |
| 222 | |
| 223 | //////////////////////////////////////////////////////////////////////// |
| 224 | // |
| 225 | // Generic code. |
| 226 | |
| 227 | static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); |
| 228 | |
| 229 | /* Record grace-period phase and time. */ |
| 230 | static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) |
| 231 | { |
| 232 | rtp->gp_state = newstate; |
| 233 | rtp->gp_jiffies = jiffies; |
| 234 | } |
| 235 | |
| 236 | #ifndef CONFIG_TINY_RCU |
| 237 | /* Return state name. */ |
| 238 | static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) |
| 239 | { |
| 240 | int i = data_race(rtp->gp_state); // Let KCSAN detect update races |
| 241 | int j = READ_ONCE(i); // Prevent the compiler from reading twice |
| 242 | |
| 243 | if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) |
| 244 | return "???"; |
| 245 | return rcu_tasks_gp_state_names[j]; |
| 246 | } |
| 247 | #endif /* #ifndef CONFIG_TINY_RCU */ |
| 248 | |
| 249 | // Initialize per-CPU callback lists for the specified flavor of |
| 250 | // Tasks RCU. Do not enqueue callbacks before this function is invoked. |
| 251 | static void cblist_init_generic(struct rcu_tasks *rtp) |
| 252 | { |
| 253 | int cpu; |
| 254 | int lim; |
| 255 | int shift; |
| 256 | int maxcpu; |
| 257 | int index = 0; |
| 258 | |
| 259 | if (rcu_task_enqueue_lim < 0) { |
| 260 | rcu_task_enqueue_lim = 1; |
| 261 | rcu_task_cb_adjust = true; |
| 262 | } else if (rcu_task_enqueue_lim == 0) { |
| 263 | rcu_task_enqueue_lim = 1; |
| 264 | } |
| 265 | lim = rcu_task_enqueue_lim; |
| 266 | |
| 267 | rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL); |
| 268 | BUG_ON(!rtp->rtpcp_array); |
| 269 | |
| 270 | for_each_possible_cpu(cpu) { |
| 271 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 272 | |
| 273 | WARN_ON_ONCE(!rtpcp); |
| 274 | if (cpu) |
| 275 | raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); |
| 276 | if (rcu_segcblist_empty(&rtpcp->cblist)) |
| 277 | rcu_segcblist_init(&rtpcp->cblist); |
| 278 | INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); |
| 279 | rtpcp->cpu = cpu; |
| 280 | rtpcp->rtpp = rtp; |
| 281 | rtpcp->index = index; |
| 282 | rtp->rtpcp_array[index] = rtpcp; |
| 283 | index++; |
| 284 | if (!rtpcp->rtp_blkd_tasks.next) |
| 285 | INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); |
| 286 | if (!rtpcp->rtp_exit_list.next) |
| 287 | INIT_LIST_HEAD(&rtpcp->rtp_exit_list); |
| 288 | rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head; |
| 289 | maxcpu = cpu; |
| 290 | } |
| 291 | |
| 292 | rcu_task_cpu_ids = maxcpu + 1; |
| 293 | if (lim > rcu_task_cpu_ids) |
| 294 | lim = rcu_task_cpu_ids; |
| 295 | shift = ilog2(rcu_task_cpu_ids / lim); |
| 296 | if (((rcu_task_cpu_ids - 1) >> shift) >= lim) |
| 297 | shift++; |
| 298 | WRITE_ONCE(rtp->percpu_enqueue_shift, shift); |
| 299 | WRITE_ONCE(rtp->percpu_dequeue_lim, lim); |
| 300 | smp_store_release(&rtp->percpu_enqueue_lim, lim); |
| 301 | |
| 302 | pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n", |
| 303 | rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), |
| 304 | rcu_task_cb_adjust, rcu_task_cpu_ids); |
| 305 | } |
| 306 | |
| 307 | // Compute wakeup time for lazy callback timer. |
| 308 | static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) |
| 309 | { |
| 310 | return jiffies + rtp->lazy_jiffies; |
| 311 | } |
| 312 | |
| 313 | // Timer handler that unlazifies lazy callbacks. |
| 314 | static void call_rcu_tasks_generic_timer(struct timer_list *tlp) |
| 315 | { |
| 316 | unsigned long flags; |
| 317 | bool needwake = false; |
| 318 | struct rcu_tasks *rtp; |
| 319 | struct rcu_tasks_percpu *rtpcp = timer_container_of(rtpcp, tlp, |
| 320 | lazy_timer); |
| 321 | |
| 322 | rtp = rtpcp->rtpp; |
| 323 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 324 | if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { |
| 325 | if (!rtpcp->urgent_gp) |
| 326 | rtpcp->urgent_gp = 1; |
| 327 | needwake = true; |
| 328 | mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); |
| 329 | } |
| 330 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 331 | if (needwake) |
| 332 | rcuwait_wake_up(&rtp->cbs_wait); |
| 333 | } |
| 334 | |
| 335 | // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). |
| 336 | static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) |
| 337 | { |
| 338 | struct rcu_tasks *rtp; |
| 339 | struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); |
| 340 | |
| 341 | rtp = rtpcp->rtpp; |
| 342 | rcuwait_wake_up(&rtp->cbs_wait); |
| 343 | } |
| 344 | |
| 345 | // Enqueue a callback for the specified flavor of Tasks RCU. |
| 346 | static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, |
| 347 | struct rcu_tasks *rtp) |
| 348 | { |
| 349 | int chosen_cpu; |
| 350 | unsigned long flags; |
| 351 | bool havekthread = smp_load_acquire(&rtp->kthread_ptr); |
| 352 | int ideal_cpu; |
| 353 | unsigned long j; |
| 354 | bool needadjust = false; |
| 355 | bool needwake; |
| 356 | struct rcu_tasks_percpu *rtpcp; |
| 357 | |
| 358 | rhp->next = NULL; |
| 359 | rhp->func = func; |
| 360 | local_irq_save(flags); |
| 361 | rcu_read_lock(); |
| 362 | ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); |
| 363 | chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); |
| 364 | WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids); |
| 365 | rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); |
| 366 | if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. |
| 367 | raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. |
| 368 | j = jiffies; |
| 369 | if (rtpcp->rtp_jiffies != j) { |
| 370 | rtpcp->rtp_jiffies = j; |
| 371 | rtpcp->rtp_n_lock_retries = 0; |
| 372 | } |
| 373 | if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && |
| 374 | READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids) |
| 375 | needadjust = true; // Defer adjustment to avoid deadlock. |
| 376 | } |
| 377 | // Queuing callbacks before initialization not yet supported. |
| 378 | if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) |
| 379 | rcu_segcblist_init(&rtpcp->cblist); |
| 380 | needwake = (func == wakeme_after_rcu) || |
| 381 | (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); |
| 382 | if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { |
| 383 | if (rtp->lazy_jiffies) |
| 384 | mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); |
| 385 | else |
| 386 | needwake = rcu_segcblist_empty(&rtpcp->cblist); |
| 387 | } |
| 388 | if (needwake) |
| 389 | rtpcp->urgent_gp = 3; |
| 390 | rcu_segcblist_enqueue(&rtpcp->cblist, rhp); |
| 391 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 392 | if (unlikely(needadjust)) { |
| 393 | raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| 394 | if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) { |
| 395 | WRITE_ONCE(rtp->percpu_enqueue_shift, 0); |
| 396 | WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids); |
| 397 | smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids); |
| 398 | pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); |
| 399 | } |
| 400 | raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| 401 | } |
| 402 | rcu_read_unlock(); |
| 403 | /* We can't create the thread unless interrupts are enabled. */ |
| 404 | if (needwake && READ_ONCE(rtp->kthread_ptr)) |
| 405 | irq_work_queue(&rtpcp->rtp_irq_work); |
| 406 | } |
| 407 | |
| 408 | // RCU callback function for rcu_barrier_tasks_generic(). |
| 409 | static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) |
| 410 | { |
| 411 | struct rcu_tasks *rtp; |
| 412 | struct rcu_tasks_percpu *rtpcp; |
| 413 | |
| 414 | rhp->next = rhp; // Mark the callback as having been invoked. |
| 415 | rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); |
| 416 | rtp = rtpcp->rtpp; |
| 417 | if (atomic_dec_and_test(&rtp->barrier_q_count)) |
| 418 | complete(&rtp->barrier_q_completion); |
| 419 | } |
| 420 | |
| 421 | // Wait for all in-flight callbacks for the specified RCU Tasks flavor. |
| 422 | // Operates in a manner similar to rcu_barrier(). |
| 423 | static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp) |
| 424 | { |
| 425 | int cpu; |
| 426 | unsigned long flags; |
| 427 | struct rcu_tasks_percpu *rtpcp; |
| 428 | unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); |
| 429 | |
| 430 | mutex_lock(&rtp->barrier_q_mutex); |
| 431 | if (rcu_seq_done(&rtp->barrier_q_seq, s)) { |
| 432 | smp_mb(); |
| 433 | mutex_unlock(&rtp->barrier_q_mutex); |
| 434 | return; |
| 435 | } |
| 436 | rtp->barrier_q_start = jiffies; |
| 437 | rcu_seq_start(&rtp->barrier_q_seq); |
| 438 | init_completion(&rtp->barrier_q_completion); |
| 439 | atomic_set(&rtp->barrier_q_count, 2); |
| 440 | for_each_possible_cpu(cpu) { |
| 441 | if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) |
| 442 | break; |
| 443 | rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 444 | rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; |
| 445 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 446 | if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) |
| 447 | atomic_inc(&rtp->barrier_q_count); |
| 448 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 449 | } |
| 450 | if (atomic_sub_and_test(2, &rtp->barrier_q_count)) |
| 451 | complete(&rtp->barrier_q_completion); |
| 452 | wait_for_completion(&rtp->barrier_q_completion); |
| 453 | rcu_seq_end(&rtp->barrier_q_seq); |
| 454 | mutex_unlock(&rtp->barrier_q_mutex); |
| 455 | } |
| 456 | |
| 457 | // Advance callbacks and indicate whether either a grace period or |
| 458 | // callback invocation is needed. |
| 459 | static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) |
| 460 | { |
| 461 | int cpu; |
| 462 | int dequeue_limit; |
| 463 | unsigned long flags; |
| 464 | bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); |
| 465 | long n; |
| 466 | long ncbs = 0; |
| 467 | long ncbsnz = 0; |
| 468 | int needgpcb = 0; |
| 469 | |
| 470 | dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); |
| 471 | for (cpu = 0; cpu < dequeue_limit; cpu++) { |
| 472 | if (!cpu_possible(cpu)) |
| 473 | continue; |
| 474 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 475 | |
| 476 | /* Advance and accelerate any new callbacks. */ |
| 477 | if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) |
| 478 | continue; |
| 479 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 480 | // Should we shrink down to a single callback queue? |
| 481 | n = rcu_segcblist_n_cbs(&rtpcp->cblist); |
| 482 | if (n) { |
| 483 | ncbs += n; |
| 484 | if (cpu > 0) |
| 485 | ncbsnz += n; |
| 486 | } |
| 487 | rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); |
| 488 | (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); |
| 489 | if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { |
| 490 | if (rtp->lazy_jiffies) |
| 491 | rtpcp->urgent_gp--; |
| 492 | needgpcb |= 0x3; |
| 493 | } else if (rcu_segcblist_empty(&rtpcp->cblist)) { |
| 494 | rtpcp->urgent_gp = 0; |
| 495 | } |
| 496 | if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) |
| 497 | needgpcb |= 0x1; |
| 498 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 499 | } |
| 500 | |
| 501 | // Shrink down to a single callback queue if appropriate. |
| 502 | // This is done in two stages: (1) If there are no more than |
| 503 | // rcu_task_collapse_lim callbacks on CPU 0 and none on any other |
| 504 | // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, |
| 505 | // if there has not been an increase in callbacks, limit dequeuing |
| 506 | // to CPU 0. Note the matching RCU read-side critical section in |
| 507 | // call_rcu_tasks_generic(). |
| 508 | if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { |
| 509 | raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| 510 | if (rtp->percpu_enqueue_lim > 1) { |
| 511 | WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids)); |
| 512 | smp_store_release(&rtp->percpu_enqueue_lim, 1); |
| 513 | rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); |
| 514 | gpdone = false; |
| 515 | pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); |
| 516 | } |
| 517 | raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| 518 | } |
| 519 | if (rcu_task_cb_adjust && !ncbsnz && gpdone) { |
| 520 | raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| 521 | if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { |
| 522 | WRITE_ONCE(rtp->percpu_dequeue_lim, 1); |
| 523 | pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); |
| 524 | } |
| 525 | if (rtp->percpu_dequeue_lim == 1) { |
| 526 | for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) { |
| 527 | if (!cpu_possible(cpu)) |
| 528 | continue; |
| 529 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 530 | |
| 531 | WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); |
| 532 | } |
| 533 | } |
| 534 | raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| 535 | } |
| 536 | |
| 537 | return needgpcb; |
| 538 | } |
| 539 | |
| 540 | // Advance callbacks and invoke any that are ready. |
| 541 | static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) |
| 542 | { |
| 543 | int cpuwq; |
| 544 | unsigned long flags; |
| 545 | int len; |
| 546 | int index; |
| 547 | struct rcu_head *rhp; |
| 548 | struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); |
| 549 | struct rcu_tasks_percpu *rtpcp_next; |
| 550 | |
| 551 | index = rtpcp->index * 2 + 1; |
| 552 | if (index < num_possible_cpus()) { |
| 553 | rtpcp_next = rtp->rtpcp_array[index]; |
| 554 | if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { |
| 555 | cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; |
| 556 | queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); |
| 557 | index++; |
| 558 | if (index < num_possible_cpus()) { |
| 559 | rtpcp_next = rtp->rtpcp_array[index]; |
| 560 | if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { |
| 561 | cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; |
| 562 | queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); |
| 563 | } |
| 564 | } |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | if (rcu_segcblist_empty(&rtpcp->cblist)) |
| 569 | return; |
| 570 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 571 | rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); |
| 572 | rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); |
| 573 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 574 | len = rcl.len; |
| 575 | for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { |
| 576 | debug_rcu_head_callback(rhp); |
| 577 | local_bh_disable(); |
| 578 | rhp->func(rhp); |
| 579 | local_bh_enable(); |
| 580 | cond_resched(); |
| 581 | } |
| 582 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 583 | rcu_segcblist_add_len(&rtpcp->cblist, -len); |
| 584 | (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); |
| 585 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 586 | } |
| 587 | |
| 588 | // Workqueue flood to advance callbacks and invoke any that are ready. |
| 589 | static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) |
| 590 | { |
| 591 | struct rcu_tasks *rtp; |
| 592 | struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); |
| 593 | |
| 594 | rtp = rtpcp->rtpp; |
| 595 | rcu_tasks_invoke_cbs(rtp, rtpcp); |
| 596 | } |
| 597 | |
| 598 | // Wait for one grace period. |
| 599 | static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) |
| 600 | { |
| 601 | int needgpcb; |
| 602 | |
| 603 | mutex_lock(&rtp->tasks_gp_mutex); |
| 604 | |
| 605 | // If there were none, wait a bit and start over. |
| 606 | if (unlikely(midboot)) { |
| 607 | needgpcb = 0x2; |
| 608 | } else { |
| 609 | mutex_unlock(&rtp->tasks_gp_mutex); |
| 610 | set_tasks_gp_state(rtp, RTGS_WAIT_CBS); |
| 611 | rcuwait_wait_event(&rtp->cbs_wait, |
| 612 | (needgpcb = rcu_tasks_need_gpcb(rtp)), |
| 613 | TASK_IDLE); |
| 614 | mutex_lock(&rtp->tasks_gp_mutex); |
| 615 | } |
| 616 | |
| 617 | if (needgpcb & 0x2) { |
| 618 | // Wait for one grace period. |
| 619 | set_tasks_gp_state(rtp, RTGS_WAIT_GP); |
| 620 | rtp->gp_start = jiffies; |
| 621 | rcu_seq_start(&rtp->tasks_gp_seq); |
| 622 | rtp->gp_func(rtp); |
| 623 | rcu_seq_end(&rtp->tasks_gp_seq); |
| 624 | } |
| 625 | |
| 626 | // Invoke callbacks. |
| 627 | set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); |
| 628 | rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); |
| 629 | mutex_unlock(&rtp->tasks_gp_mutex); |
| 630 | } |
| 631 | |
| 632 | // RCU-tasks kthread that detects grace periods and invokes callbacks. |
| 633 | static int __noreturn rcu_tasks_kthread(void *arg) |
| 634 | { |
| 635 | int cpu; |
| 636 | struct rcu_tasks *rtp = arg; |
| 637 | |
| 638 | for_each_possible_cpu(cpu) { |
| 639 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 640 | |
| 641 | timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); |
| 642 | rtpcp->urgent_gp = 1; |
| 643 | } |
| 644 | |
| 645 | /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ |
| 646 | housekeeping_affine(current, HK_TYPE_RCU); |
| 647 | smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! |
| 648 | |
| 649 | /* |
| 650 | * Each pass through the following loop makes one check for |
| 651 | * newly arrived callbacks, and, if there are some, waits for |
| 652 | * one RCU-tasks grace period and then invokes the callbacks. |
| 653 | * This loop is terminated by the system going down. ;-) |
| 654 | */ |
| 655 | for (;;) { |
| 656 | // Wait for one grace period and invoke any callbacks |
| 657 | // that are ready. |
| 658 | rcu_tasks_one_gp(rtp, false); |
| 659 | |
| 660 | // Paranoid sleep to keep this from entering a tight loop. |
| 661 | schedule_timeout_idle(rtp->gp_sleep); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | // Wait for a grace period for the specified flavor of Tasks RCU. |
| 666 | static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) |
| 667 | { |
| 668 | /* Complain if the scheduler has not started. */ |
| 669 | if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, |
| 670 | "synchronize_%s() called too soon", rtp->name)) |
| 671 | return; |
| 672 | |
| 673 | // If the grace-period kthread is running, use it. |
| 674 | if (READ_ONCE(rtp->kthread_ptr)) { |
| 675 | wait_rcu_gp_state(rtp->wait_state, rtp->call_func); |
| 676 | return; |
| 677 | } |
| 678 | rcu_tasks_one_gp(rtp, true); |
| 679 | } |
| 680 | |
| 681 | /* Spawn RCU-tasks grace-period kthread. */ |
| 682 | static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) |
| 683 | { |
| 684 | struct task_struct *t; |
| 685 | |
| 686 | t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); |
| 687 | if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) |
| 688 | return; |
| 689 | smp_mb(); /* Ensure others see full kthread. */ |
| 690 | } |
| 691 | |
| 692 | #ifndef CONFIG_TINY_RCU |
| 693 | |
| 694 | /* |
| 695 | * Print any non-default Tasks RCU settings. |
| 696 | */ |
| 697 | static void __init rcu_tasks_bootup_oddness(void) |
| 698 | { |
| 699 | #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| 700 | int rtsimc; |
| 701 | |
| 702 | if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) |
| 703 | pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); |
| 704 | rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); |
| 705 | if (rtsimc != rcu_task_stall_info_mult) { |
| 706 | pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); |
| 707 | rcu_task_stall_info_mult = rtsimc; |
| 708 | } |
| 709 | #endif /* #ifdef CONFIG_TASKS_RCU */ |
| 710 | #ifdef CONFIG_TASKS_RCU |
| 711 | pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); |
| 712 | #endif /* #ifdef CONFIG_TASKS_RCU */ |
| 713 | #ifdef CONFIG_TASKS_RUDE_RCU |
| 714 | pr_info("\tRude variant of Tasks RCU enabled.\n"); |
| 715 | #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| 716 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 717 | pr_info("\tTracing variant of Tasks RCU enabled.\n"); |
| 718 | #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 719 | } |
| 720 | |
| 721 | |
| 722 | /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ |
| 723 | static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) |
| 724 | { |
| 725 | int cpu; |
| 726 | bool havecbs = false; |
| 727 | bool haveurgent = false; |
| 728 | bool haveurgentcbs = false; |
| 729 | |
| 730 | for_each_possible_cpu(cpu) { |
| 731 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 732 | |
| 733 | if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) |
| 734 | havecbs = true; |
| 735 | if (data_race(rtpcp->urgent_gp)) |
| 736 | haveurgent = true; |
| 737 | if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) |
| 738 | haveurgentcbs = true; |
| 739 | if (havecbs && haveurgent && haveurgentcbs) |
| 740 | break; |
| 741 | } |
| 742 | pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", |
| 743 | rtp->kname, |
| 744 | tasks_gp_state_getname(rtp), data_race(rtp->gp_state), |
| 745 | jiffies - data_race(rtp->gp_jiffies), |
| 746 | data_race(rcu_seq_current(&rtp->tasks_gp_seq)), |
| 747 | data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), |
| 748 | ".k"[!!data_race(rtp->kthread_ptr)], |
| 749 | ".C"[havecbs], |
| 750 | ".u"[haveurgent], |
| 751 | ".U"[haveurgentcbs], |
| 752 | rtp->lazy_jiffies, |
| 753 | s); |
| 754 | } |
| 755 | |
| 756 | /* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */ |
| 757 | static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt, |
| 758 | char *tf, char *tst) |
| 759 | { |
| 760 | cpumask_var_t cm; |
| 761 | int cpu; |
| 762 | bool gotcb = false; |
| 763 | unsigned long j = jiffies; |
| 764 | |
| 765 | pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n", |
| 766 | tt, tf, tst, data_race(rtp->tasks_gp_seq), |
| 767 | j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies), |
| 768 | data_race(rtp->gp_state), tasks_gp_state_getname(rtp)); |
| 769 | pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n", |
| 770 | data_race(rtp->percpu_enqueue_shift), |
| 771 | data_race(rtp->percpu_enqueue_lim), |
| 772 | data_race(rtp->percpu_dequeue_lim), |
| 773 | data_race(rtp->percpu_dequeue_gpseq)); |
| 774 | (void)zalloc_cpumask_var(&cm, GFP_KERNEL); |
| 775 | pr_alert("\tCallback counts:"); |
| 776 | for_each_possible_cpu(cpu) { |
| 777 | long n; |
| 778 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| 779 | |
| 780 | if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head)) |
| 781 | cpumask_set_cpu(cpu, cm); |
| 782 | n = rcu_segcblist_n_cbs(&rtpcp->cblist); |
| 783 | if (!n) |
| 784 | continue; |
| 785 | pr_cont(" %d:%ld", cpu, n); |
| 786 | gotcb = true; |
| 787 | } |
| 788 | if (gotcb) |
| 789 | pr_cont(".\n"); |
| 790 | else |
| 791 | pr_cont(" (none).\n"); |
| 792 | pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ", |
| 793 | data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start), |
| 794 | atomic_read(&rtp->barrier_q_count)); |
| 795 | if (cpumask_available(cm) && !cpumask_empty(cm)) |
| 796 | pr_cont(" %*pbl.\n", cpumask_pr_args(cm)); |
| 797 | else |
| 798 | pr_cont("(none).\n"); |
| 799 | free_cpumask_var(cm); |
| 800 | } |
| 801 | |
| 802 | #endif // #ifndef CONFIG_TINY_RCU |
| 803 | |
| 804 | static void exit_tasks_rcu_finish_trace(struct task_struct *t); |
| 805 | |
| 806 | #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| 807 | |
| 808 | //////////////////////////////////////////////////////////////////////// |
| 809 | // |
| 810 | // Shared code between task-list-scanning variants of Tasks RCU. |
| 811 | |
| 812 | /* Wait for one RCU-tasks grace period. */ |
| 813 | static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) |
| 814 | { |
| 815 | struct task_struct *g; |
| 816 | int fract; |
| 817 | LIST_HEAD(holdouts); |
| 818 | unsigned long j; |
| 819 | unsigned long lastinfo; |
| 820 | unsigned long lastreport; |
| 821 | bool reported = false; |
| 822 | int rtsi; |
| 823 | struct task_struct *t; |
| 824 | |
| 825 | set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); |
| 826 | rtp->pregp_func(&holdouts); |
| 827 | |
| 828 | /* |
| 829 | * There were callbacks, so we need to wait for an RCU-tasks |
| 830 | * grace period. Start off by scanning the task list for tasks |
| 831 | * that are not already voluntarily blocked. Mark these tasks |
| 832 | * and make a list of them in holdouts. |
| 833 | */ |
| 834 | set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); |
| 835 | if (rtp->pertask_func) { |
| 836 | rcu_read_lock(); |
| 837 | for_each_process_thread(g, t) |
| 838 | rtp->pertask_func(t, &holdouts); |
| 839 | rcu_read_unlock(); |
| 840 | } |
| 841 | |
| 842 | set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); |
| 843 | rtp->postscan_func(&holdouts); |
| 844 | |
| 845 | /* |
| 846 | * Each pass through the following loop scans the list of holdout |
| 847 | * tasks, removing any that are no longer holdouts. When the list |
| 848 | * is empty, we are done. |
| 849 | */ |
| 850 | lastreport = jiffies; |
| 851 | lastinfo = lastreport; |
| 852 | rtsi = READ_ONCE(rcu_task_stall_info); |
| 853 | |
| 854 | // Start off with initial wait and slowly back off to 1 HZ wait. |
| 855 | fract = rtp->init_fract; |
| 856 | |
| 857 | while (!list_empty(&holdouts)) { |
| 858 | ktime_t exp; |
| 859 | bool firstreport; |
| 860 | bool needreport; |
| 861 | int rtst; |
| 862 | |
| 863 | // Slowly back off waiting for holdouts |
| 864 | set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); |
| 865 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| 866 | schedule_timeout_idle(fract); |
| 867 | } else { |
| 868 | exp = jiffies_to_nsecs(fract); |
| 869 | __set_current_state(TASK_IDLE); |
| 870 | schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); |
| 871 | } |
| 872 | |
| 873 | if (fract < HZ) |
| 874 | fract++; |
| 875 | |
| 876 | rtst = READ_ONCE(rcu_task_stall_timeout); |
| 877 | needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); |
| 878 | if (needreport) { |
| 879 | lastreport = jiffies; |
| 880 | reported = true; |
| 881 | } |
| 882 | firstreport = true; |
| 883 | WARN_ON(signal_pending(current)); |
| 884 | set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); |
| 885 | rtp->holdouts_func(&holdouts, needreport, &firstreport); |
| 886 | |
| 887 | // Print pre-stall informational messages if needed. |
| 888 | j = jiffies; |
| 889 | if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { |
| 890 | lastinfo = j; |
| 891 | rtsi = rtsi * rcu_task_stall_info_mult; |
| 892 | pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", |
| 893 | __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | set_tasks_gp_state(rtp, RTGS_POST_GP); |
| 898 | rtp->postgp_func(rtp); |
| 899 | } |
| 900 | |
| 901 | #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ |
| 902 | |
| 903 | #ifdef CONFIG_TASKS_RCU |
| 904 | |
| 905 | //////////////////////////////////////////////////////////////////////// |
| 906 | // |
| 907 | // Simple variant of RCU whose quiescent states are voluntary context |
| 908 | // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. |
| 909 | // As such, grace periods can take one good long time. There are no |
| 910 | // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() |
| 911 | // because this implementation is intended to get the system into a safe |
| 912 | // state for some of the manipulations involved in tracing and the like. |
| 913 | // Finally, this implementation does not support high call_rcu_tasks() |
| 914 | // rates from multiple CPUs. If this is required, per-CPU callback lists |
| 915 | // will be needed. |
| 916 | // |
| 917 | // The implementation uses rcu_tasks_wait_gp(), which relies on function |
| 918 | // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() |
| 919 | // function sets these function pointers up so that rcu_tasks_wait_gp() |
| 920 | // invokes these functions in this order: |
| 921 | // |
| 922 | // rcu_tasks_pregp_step(): |
| 923 | // Invokes synchronize_rcu() in order to wait for all in-flight |
| 924 | // t->on_rq and t->nvcsw transitions to complete. This works because |
| 925 | // all such transitions are carried out with interrupts disabled. |
| 926 | // rcu_tasks_pertask(), invoked on every non-idle task: |
| 927 | // For every runnable non-idle task other than the current one, use |
| 928 | // get_task_struct() to pin down that task, snapshot that task's |
| 929 | // number of voluntary context switches, and add that task to the |
| 930 | // holdout list. |
| 931 | // rcu_tasks_postscan(): |
| 932 | // Gather per-CPU lists of tasks in do_exit() to ensure that all |
| 933 | // tasks that were in the process of exiting (and which thus might |
| 934 | // not know to synchronize with this RCU Tasks grace period) have |
| 935 | // completed exiting. The synchronize_rcu() in rcu_tasks_postgp() |
| 936 | // will take care of any tasks stuck in the non-preemptible region |
| 937 | // of do_exit() following its call to exit_tasks_rcu_finish(). |
| 938 | // check_all_holdout_tasks(), repeatedly until holdout list is empty: |
| 939 | // Scans the holdout list, attempting to identify a quiescent state |
| 940 | // for each task on the list. If there is a quiescent state, the |
| 941 | // corresponding task is removed from the holdout list. |
| 942 | // rcu_tasks_postgp(): |
| 943 | // Invokes synchronize_rcu() in order to ensure that all prior |
| 944 | // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks |
| 945 | // to have happened before the end of this RCU Tasks grace period. |
| 946 | // Again, this works because all such transitions are carried out |
| 947 | // with interrupts disabled. |
| 948 | // |
| 949 | // For each exiting task, the exit_tasks_rcu_start() and |
| 950 | // exit_tasks_rcu_finish() functions add and remove, respectively, the |
| 951 | // current task to a per-CPU list of tasks that rcu_tasks_postscan() must |
| 952 | // wait on. This is necessary because rcu_tasks_postscan() must wait on |
| 953 | // tasks that have already been removed from the global list of tasks. |
| 954 | // |
| 955 | // Pre-grace-period update-side code is ordered before the grace |
| 956 | // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code |
| 957 | // is ordered before the grace period via synchronize_rcu() call in |
| 958 | // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt |
| 959 | // disabling. |
| 960 | |
| 961 | /* Pre-grace-period preparation. */ |
| 962 | static void rcu_tasks_pregp_step(struct list_head *hop) |
| 963 | { |
| 964 | /* |
| 965 | * Wait for all pre-existing t->on_rq and t->nvcsw transitions |
| 966 | * to complete. Invoking synchronize_rcu() suffices because all |
| 967 | * these transitions occur with interrupts disabled. Without this |
| 968 | * synchronize_rcu(), a read-side critical section that started |
| 969 | * before the grace period might be incorrectly seen as having |
| 970 | * started after the grace period. |
| 971 | * |
| 972 | * This synchronize_rcu() also dispenses with the need for a |
| 973 | * memory barrier on the first store to t->rcu_tasks_holdout, |
| 974 | * as it forces the store to happen after the beginning of the |
| 975 | * grace period. |
| 976 | */ |
| 977 | synchronize_rcu(); |
| 978 | } |
| 979 | |
| 980 | /* Check for quiescent states since the pregp's synchronize_rcu() */ |
| 981 | static bool rcu_tasks_is_holdout(struct task_struct *t) |
| 982 | { |
| 983 | int cpu; |
| 984 | |
| 985 | /* Has the task been seen voluntarily sleeping? */ |
| 986 | if (!READ_ONCE(t->on_rq)) |
| 987 | return false; |
| 988 | |
| 989 | /* |
| 990 | * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but |
| 991 | * since it is a spurious state (it will transition into the |
| 992 | * traditional blocked state or get woken up without outside |
| 993 | * dependencies), not considering it such should only affect timing. |
| 994 | * |
| 995 | * Be conservative for now and not include it. |
| 996 | */ |
| 997 | |
| 998 | /* |
| 999 | * Idle tasks (or idle injection) within the idle loop are RCU-tasks |
| 1000 | * quiescent states. But CPU boot code performed by the idle task |
| 1001 | * isn't a quiescent state. |
| 1002 | */ |
| 1003 | if (is_idle_task(t)) |
| 1004 | return false; |
| 1005 | |
| 1006 | cpu = task_cpu(t); |
| 1007 | |
| 1008 | /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ |
| 1009 | if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) |
| 1010 | return false; |
| 1011 | |
| 1012 | return true; |
| 1013 | } |
| 1014 | |
| 1015 | /* Per-task initial processing. */ |
| 1016 | static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) |
| 1017 | { |
| 1018 | if (t != current && rcu_tasks_is_holdout(t)) { |
| 1019 | get_task_struct(t); |
| 1020 | t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); |
| 1021 | WRITE_ONCE(t->rcu_tasks_holdout, true); |
| 1022 | list_add(&t->rcu_tasks_holdout_list, hop); |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); |
| 1027 | DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); |
| 1028 | |
| 1029 | /* Processing between scanning taskslist and draining the holdout list. */ |
| 1030 | static void rcu_tasks_postscan(struct list_head *hop) |
| 1031 | { |
| 1032 | int cpu; |
| 1033 | int rtsi = READ_ONCE(rcu_task_stall_info); |
| 1034 | |
| 1035 | if (!IS_ENABLED(CONFIG_TINY_RCU)) { |
| 1036 | tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; |
| 1037 | add_timer(&tasks_rcu_exit_srcu_stall_timer); |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Exiting tasks may escape the tasklist scan. Those are vulnerable |
| 1042 | * until their final schedule() with TASK_DEAD state. To cope with |
| 1043 | * this, divide the fragile exit path part in two intersecting |
| 1044 | * read side critical sections: |
| 1045 | * |
| 1046 | * 1) A task_struct list addition before calling exit_notify(), |
| 1047 | * which may remove the task from the tasklist, with the |
| 1048 | * removal after the final preempt_disable() call in do_exit(). |
| 1049 | * |
| 1050 | * 2) An _RCU_ read side starting with the final preempt_disable() |
| 1051 | * call in do_exit() and ending with the final call to schedule() |
| 1052 | * with TASK_DEAD state. |
| 1053 | * |
| 1054 | * This handles the part 1). And postgp will handle part 2) with a |
| 1055 | * call to synchronize_rcu(). |
| 1056 | */ |
| 1057 | |
| 1058 | for_each_possible_cpu(cpu) { |
| 1059 | unsigned long j = jiffies + 1; |
| 1060 | struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); |
| 1061 | struct task_struct *t; |
| 1062 | struct task_struct *t1; |
| 1063 | struct list_head tmp; |
| 1064 | |
| 1065 | raw_spin_lock_irq_rcu_node(rtpcp); |
| 1066 | list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { |
| 1067 | if (list_empty(&t->rcu_tasks_holdout_list)) |
| 1068 | rcu_tasks_pertask(t, hop); |
| 1069 | |
| 1070 | // RT kernels need frequent pauses, otherwise |
| 1071 | // pause at least once per pair of jiffies. |
| 1072 | if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) |
| 1073 | continue; |
| 1074 | |
| 1075 | // Keep our place in the list while pausing. |
| 1076 | // Nothing else traverses this list, so adding a |
| 1077 | // bare list_head is OK. |
| 1078 | list_add(&tmp, &t->rcu_tasks_exit_list); |
| 1079 | raw_spin_unlock_irq_rcu_node(rtpcp); |
| 1080 | cond_resched(); // For CONFIG_PREEMPT=n kernels |
| 1081 | raw_spin_lock_irq_rcu_node(rtpcp); |
| 1082 | t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); |
| 1083 | list_del(&tmp); |
| 1084 | j = jiffies + 1; |
| 1085 | } |
| 1086 | raw_spin_unlock_irq_rcu_node(rtpcp); |
| 1087 | } |
| 1088 | |
| 1089 | if (!IS_ENABLED(CONFIG_TINY_RCU)) |
| 1090 | timer_delete_sync(&tasks_rcu_exit_srcu_stall_timer); |
| 1091 | } |
| 1092 | |
| 1093 | /* See if tasks are still holding out, complain if so. */ |
| 1094 | static void check_holdout_task(struct task_struct *t, |
| 1095 | bool needreport, bool *firstreport) |
| 1096 | { |
| 1097 | int cpu; |
| 1098 | |
| 1099 | if (!READ_ONCE(t->rcu_tasks_holdout) || |
| 1100 | t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || |
| 1101 | !rcu_tasks_is_holdout(t) || |
| 1102 | (IS_ENABLED(CONFIG_NO_HZ_FULL) && |
| 1103 | !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { |
| 1104 | WRITE_ONCE(t->rcu_tasks_holdout, false); |
| 1105 | list_del_init(&t->rcu_tasks_holdout_list); |
| 1106 | put_task_struct(t); |
| 1107 | return; |
| 1108 | } |
| 1109 | rcu_request_urgent_qs_task(t); |
| 1110 | if (!needreport) |
| 1111 | return; |
| 1112 | if (*firstreport) { |
| 1113 | pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); |
| 1114 | *firstreport = false; |
| 1115 | } |
| 1116 | cpu = task_cpu(t); |
| 1117 | pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", |
| 1118 | t, ".I"[is_idle_task(t)], |
| 1119 | "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], |
| 1120 | t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, |
| 1121 | data_race(t->rcu_tasks_idle_cpu), cpu); |
| 1122 | sched_show_task(t); |
| 1123 | } |
| 1124 | |
| 1125 | /* Scan the holdout lists for tasks no longer holding out. */ |
| 1126 | static void check_all_holdout_tasks(struct list_head *hop, |
| 1127 | bool needreport, bool *firstreport) |
| 1128 | { |
| 1129 | struct task_struct *t, *t1; |
| 1130 | |
| 1131 | list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { |
| 1132 | check_holdout_task(t, needreport, firstreport); |
| 1133 | cond_resched(); |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | /* Finish off the Tasks-RCU grace period. */ |
| 1138 | static void rcu_tasks_postgp(struct rcu_tasks *rtp) |
| 1139 | { |
| 1140 | /* |
| 1141 | * Because ->on_rq and ->nvcsw are not guaranteed to have a full |
| 1142 | * memory barriers prior to them in the schedule() path, memory |
| 1143 | * reordering on other CPUs could cause their RCU-tasks read-side |
| 1144 | * critical sections to extend past the end of the grace period. |
| 1145 | * However, because these ->nvcsw updates are carried out with |
| 1146 | * interrupts disabled, we can use synchronize_rcu() to force the |
| 1147 | * needed ordering on all such CPUs. |
| 1148 | * |
| 1149 | * This synchronize_rcu() also confines all ->rcu_tasks_holdout |
| 1150 | * accesses to be within the grace period, avoiding the need for |
| 1151 | * memory barriers for ->rcu_tasks_holdout accesses. |
| 1152 | * |
| 1153 | * In addition, this synchronize_rcu() waits for exiting tasks |
| 1154 | * to complete their final preempt_disable() region of execution, |
| 1155 | * enforcing the whole region before tasklist removal until |
| 1156 | * the final schedule() with TASK_DEAD state to be an RCU TASKS |
| 1157 | * read side critical section. |
| 1158 | */ |
| 1159 | synchronize_rcu(); |
| 1160 | } |
| 1161 | |
| 1162 | static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) |
| 1163 | { |
| 1164 | #ifndef CONFIG_TINY_RCU |
| 1165 | int rtsi; |
| 1166 | |
| 1167 | rtsi = READ_ONCE(rcu_task_stall_info); |
| 1168 | pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", |
| 1169 | __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, |
| 1170 | tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); |
| 1171 | pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); |
| 1172 | tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; |
| 1173 | add_timer(&tasks_rcu_exit_srcu_stall_timer); |
| 1174 | #endif // #ifndef CONFIG_TINY_RCU |
| 1175 | } |
| 1176 | |
| 1177 | /** |
| 1178 | * call_rcu_tasks() - Queue an RCU for invocation task-based grace period |
| 1179 | * @rhp: structure to be used for queueing the RCU updates. |
| 1180 | * @func: actual callback function to be invoked after the grace period |
| 1181 | * |
| 1182 | * The callback function will be invoked some time after a full grace |
| 1183 | * period elapses, in other words after all currently executing RCU |
| 1184 | * read-side critical sections have completed. call_rcu_tasks() assumes |
| 1185 | * that the read-side critical sections end at a voluntary context |
| 1186 | * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, |
| 1187 | * or transition to usermode execution. As such, there are no read-side |
| 1188 | * primitives analogous to rcu_read_lock() and rcu_read_unlock() because |
| 1189 | * this primitive is intended to determine that all tasks have passed |
| 1190 | * through a safe state, not so much for data-structure synchronization. |
| 1191 | * |
| 1192 | * See the description of call_rcu() for more detailed information on |
| 1193 | * memory ordering guarantees. |
| 1194 | */ |
| 1195 | void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) |
| 1196 | { |
| 1197 | call_rcu_tasks_generic(rhp, func, &rcu_tasks); |
| 1198 | } |
| 1199 | EXPORT_SYMBOL_GPL(call_rcu_tasks); |
| 1200 | |
| 1201 | /** |
| 1202 | * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. |
| 1203 | * |
| 1204 | * Control will return to the caller some time after a full rcu-tasks |
| 1205 | * grace period has elapsed, in other words after all currently |
| 1206 | * executing rcu-tasks read-side critical sections have elapsed. These |
| 1207 | * read-side critical sections are delimited by calls to schedule(), |
| 1208 | * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls |
| 1209 | * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). |
| 1210 | * |
| 1211 | * This is a very specialized primitive, intended only for a few uses in |
| 1212 | * tracing and other situations requiring manipulation of function |
| 1213 | * preambles and profiling hooks. The synchronize_rcu_tasks() function |
| 1214 | * is not (yet) intended for heavy use from multiple CPUs. |
| 1215 | * |
| 1216 | * See the description of synchronize_rcu() for more detailed information |
| 1217 | * on memory ordering guarantees. |
| 1218 | */ |
| 1219 | void synchronize_rcu_tasks(void) |
| 1220 | { |
| 1221 | synchronize_rcu_tasks_generic(&rcu_tasks); |
| 1222 | } |
| 1223 | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); |
| 1224 | |
| 1225 | /** |
| 1226 | * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. |
| 1227 | * |
| 1228 | * Although the current implementation is guaranteed to wait, it is not |
| 1229 | * obligated to, for example, if there are no pending callbacks. |
| 1230 | */ |
| 1231 | void rcu_barrier_tasks(void) |
| 1232 | { |
| 1233 | rcu_barrier_tasks_generic(&rcu_tasks); |
| 1234 | } |
| 1235 | EXPORT_SYMBOL_GPL(rcu_barrier_tasks); |
| 1236 | |
| 1237 | static int rcu_tasks_lazy_ms = -1; |
| 1238 | module_param(rcu_tasks_lazy_ms, int, 0444); |
| 1239 | |
| 1240 | static int __init rcu_spawn_tasks_kthread(void) |
| 1241 | { |
| 1242 | rcu_tasks.gp_sleep = HZ / 10; |
| 1243 | rcu_tasks.init_fract = HZ / 10; |
| 1244 | if (rcu_tasks_lazy_ms >= 0) |
| 1245 | rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); |
| 1246 | rcu_tasks.pregp_func = rcu_tasks_pregp_step; |
| 1247 | rcu_tasks.pertask_func = rcu_tasks_pertask; |
| 1248 | rcu_tasks.postscan_func = rcu_tasks_postscan; |
| 1249 | rcu_tasks.holdouts_func = check_all_holdout_tasks; |
| 1250 | rcu_tasks.postgp_func = rcu_tasks_postgp; |
| 1251 | rcu_tasks.wait_state = TASK_IDLE; |
| 1252 | rcu_spawn_tasks_kthread_generic(&rcu_tasks); |
| 1253 | return 0; |
| 1254 | } |
| 1255 | |
| 1256 | #if !defined(CONFIG_TINY_RCU) |
| 1257 | void show_rcu_tasks_classic_gp_kthread(void) |
| 1258 | { |
| 1259 | show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); |
| 1260 | } |
| 1261 | EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); |
| 1262 | |
| 1263 | void rcu_tasks_torture_stats_print(char *tt, char *tf) |
| 1264 | { |
| 1265 | rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, ""); |
| 1266 | } |
| 1267 | EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print); |
| 1268 | #endif // !defined(CONFIG_TINY_RCU) |
| 1269 | |
| 1270 | struct task_struct *get_rcu_tasks_gp_kthread(void) |
| 1271 | { |
| 1272 | return rcu_tasks.kthread_ptr; |
| 1273 | } |
| 1274 | EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); |
| 1275 | |
| 1276 | void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq) |
| 1277 | { |
| 1278 | *flags = 0; |
| 1279 | *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq); |
| 1280 | } |
| 1281 | EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data); |
| 1282 | |
| 1283 | /* |
| 1284 | * Protect against tasklist scan blind spot while the task is exiting and |
| 1285 | * may be removed from the tasklist. Do this by adding the task to yet |
| 1286 | * another list. |
| 1287 | * |
| 1288 | * Note that the task will remove itself from this list, so there is no |
| 1289 | * need for get_task_struct(), except in the case where rcu_tasks_pertask() |
| 1290 | * adds it to the holdout list, in which case rcu_tasks_pertask() supplies |
| 1291 | * the needed get_task_struct(). |
| 1292 | */ |
| 1293 | void exit_tasks_rcu_start(void) |
| 1294 | { |
| 1295 | unsigned long flags; |
| 1296 | struct rcu_tasks_percpu *rtpcp; |
| 1297 | struct task_struct *t = current; |
| 1298 | |
| 1299 | WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); |
| 1300 | preempt_disable(); |
| 1301 | rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); |
| 1302 | t->rcu_tasks_exit_cpu = smp_processor_id(); |
| 1303 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 1304 | WARN_ON_ONCE(!rtpcp->rtp_exit_list.next); |
| 1305 | list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); |
| 1306 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1307 | preempt_enable(); |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | * Remove the task from the "yet another list" because do_exit() is now |
| 1312 | * non-preemptible, allowing synchronize_rcu() to wait beyond this point. |
| 1313 | */ |
| 1314 | void exit_tasks_rcu_finish(void) |
| 1315 | { |
| 1316 | unsigned long flags; |
| 1317 | struct rcu_tasks_percpu *rtpcp; |
| 1318 | struct task_struct *t = current; |
| 1319 | |
| 1320 | WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); |
| 1321 | rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); |
| 1322 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 1323 | list_del_init(&t->rcu_tasks_exit_list); |
| 1324 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1325 | |
| 1326 | exit_tasks_rcu_finish_trace(t); |
| 1327 | } |
| 1328 | |
| 1329 | #else /* #ifdef CONFIG_TASKS_RCU */ |
| 1330 | void exit_tasks_rcu_start(void) { } |
| 1331 | void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } |
| 1332 | #endif /* #else #ifdef CONFIG_TASKS_RCU */ |
| 1333 | |
| 1334 | #ifdef CONFIG_TASKS_RUDE_RCU |
| 1335 | |
| 1336 | //////////////////////////////////////////////////////////////////////// |
| 1337 | // |
| 1338 | // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's |
| 1339 | // trick of passing an empty function to schedule_on_each_cpu(). |
| 1340 | // This approach provides batching of concurrent calls to the synchronous |
| 1341 | // synchronize_rcu_tasks_rude() API. This invokes schedule_on_each_cpu() |
| 1342 | // in order to send IPIs far and wide and induces otherwise unnecessary |
| 1343 | // context switches on all online CPUs, whether idle or not. |
| 1344 | // |
| 1345 | // Callback handling is provided by the rcu_tasks_kthread() function. |
| 1346 | // |
| 1347 | // Ordering is provided by the scheduler's context-switch code. |
| 1348 | |
| 1349 | // Empty function to allow workqueues to force a context switch. |
| 1350 | static void rcu_tasks_be_rude(struct work_struct *work) |
| 1351 | { |
| 1352 | } |
| 1353 | |
| 1354 | // Wait for one rude RCU-tasks grace period. |
| 1355 | static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) |
| 1356 | { |
| 1357 | rtp->n_ipis += cpumask_weight(cpu_online_mask); |
| 1358 | schedule_on_each_cpu(rcu_tasks_be_rude); |
| 1359 | } |
| 1360 | |
| 1361 | static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); |
| 1362 | DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, |
| 1363 | "RCU Tasks Rude"); |
| 1364 | |
| 1365 | /* |
| 1366 | * call_rcu_tasks_rude() - Queue a callback rude task-based grace period |
| 1367 | * @rhp: structure to be used for queueing the RCU updates. |
| 1368 | * @func: actual callback function to be invoked after the grace period |
| 1369 | * |
| 1370 | * The callback function will be invoked some time after a full grace |
| 1371 | * period elapses, in other words after all currently executing RCU |
| 1372 | * read-side critical sections have completed. call_rcu_tasks_rude() |
| 1373 | * assumes that the read-side critical sections end at context switch, |
| 1374 | * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as |
| 1375 | * usermode execution is schedulable). As such, there are no read-side |
| 1376 | * primitives analogous to rcu_read_lock() and rcu_read_unlock() because |
| 1377 | * this primitive is intended to determine that all tasks have passed |
| 1378 | * through a safe state, not so much for data-structure synchronization. |
| 1379 | * |
| 1380 | * See the description of call_rcu() for more detailed information on |
| 1381 | * memory ordering guarantees. |
| 1382 | * |
| 1383 | * This is no longer exported, and is instead reserved for use by |
| 1384 | * synchronize_rcu_tasks_rude(). |
| 1385 | */ |
| 1386 | static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) |
| 1387 | { |
| 1388 | call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); |
| 1389 | } |
| 1390 | |
| 1391 | /** |
| 1392 | * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period |
| 1393 | * |
| 1394 | * Control will return to the caller some time after a rude rcu-tasks |
| 1395 | * grace period has elapsed, in other words after all currently |
| 1396 | * executing rcu-tasks read-side critical sections have elapsed. These |
| 1397 | * read-side critical sections are delimited by calls to schedule(), |
| 1398 | * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable |
| 1399 | * context), and (in theory, anyway) cond_resched(). |
| 1400 | * |
| 1401 | * This is a very specialized primitive, intended only for a few uses in |
| 1402 | * tracing and other situations requiring manipulation of function preambles |
| 1403 | * and profiling hooks. The synchronize_rcu_tasks_rude() function is not |
| 1404 | * (yet) intended for heavy use from multiple CPUs. |
| 1405 | * |
| 1406 | * See the description of synchronize_rcu() for more detailed information |
| 1407 | * on memory ordering guarantees. |
| 1408 | */ |
| 1409 | void synchronize_rcu_tasks_rude(void) |
| 1410 | { |
| 1411 | if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU)) |
| 1412 | synchronize_rcu_tasks_generic(&rcu_tasks_rude); |
| 1413 | } |
| 1414 | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); |
| 1415 | |
| 1416 | static int __init rcu_spawn_tasks_rude_kthread(void) |
| 1417 | { |
| 1418 | rcu_tasks_rude.gp_sleep = HZ / 10; |
| 1419 | rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); |
| 1420 | return 0; |
| 1421 | } |
| 1422 | |
| 1423 | #if !defined(CONFIG_TINY_RCU) |
| 1424 | void show_rcu_tasks_rude_gp_kthread(void) |
| 1425 | { |
| 1426 | show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); |
| 1427 | } |
| 1428 | EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); |
| 1429 | |
| 1430 | void rcu_tasks_rude_torture_stats_print(char *tt, char *tf) |
| 1431 | { |
| 1432 | rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, ""); |
| 1433 | } |
| 1434 | EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print); |
| 1435 | #endif // !defined(CONFIG_TINY_RCU) |
| 1436 | |
| 1437 | struct task_struct *get_rcu_tasks_rude_gp_kthread(void) |
| 1438 | { |
| 1439 | return rcu_tasks_rude.kthread_ptr; |
| 1440 | } |
| 1441 | EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); |
| 1442 | |
| 1443 | void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq) |
| 1444 | { |
| 1445 | *flags = 0; |
| 1446 | *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq); |
| 1447 | } |
| 1448 | EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data); |
| 1449 | |
| 1450 | #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| 1451 | |
| 1452 | //////////////////////////////////////////////////////////////////////// |
| 1453 | // |
| 1454 | // Tracing variant of Tasks RCU. This variant is designed to be used |
| 1455 | // to protect tracing hooks, including those of BPF. This variant |
| 1456 | // therefore: |
| 1457 | // |
| 1458 | // 1. Has explicit read-side markers to allow finite grace periods |
| 1459 | // in the face of in-kernel loops for PREEMPT=n builds. |
| 1460 | // |
| 1461 | // 2. Protects code in the idle loop, exception entry/exit, and |
| 1462 | // CPU-hotplug code paths, similar to the capabilities of SRCU. |
| 1463 | // |
| 1464 | // 3. Avoids expensive read-side instructions, having overhead similar |
| 1465 | // to that of Preemptible RCU. |
| 1466 | // |
| 1467 | // There are of course downsides. For example, the grace-period code |
| 1468 | // can send IPIs to CPUs, even when those CPUs are in the idle loop or |
| 1469 | // in nohz_full userspace. If needed, these downsides can be at least |
| 1470 | // partially remedied. |
| 1471 | // |
| 1472 | // Perhaps most important, this variant of RCU does not affect the vanilla |
| 1473 | // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace |
| 1474 | // readers can operate from idle, offline, and exception entry/exit in no |
| 1475 | // way allows rcu_preempt and rcu_sched readers to also do so. |
| 1476 | // |
| 1477 | // The implementation uses rcu_tasks_wait_gp(), which relies on function |
| 1478 | // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() |
| 1479 | // function sets these function pointers up so that rcu_tasks_wait_gp() |
| 1480 | // invokes these functions in this order: |
| 1481 | // |
| 1482 | // rcu_tasks_trace_pregp_step(): |
| 1483 | // Disables CPU hotplug, adds all currently executing tasks to the |
| 1484 | // holdout list, then checks the state of all tasks that blocked |
| 1485 | // or were preempted within their current RCU Tasks Trace read-side |
| 1486 | // critical section, adding them to the holdout list if appropriate. |
| 1487 | // Finally, this function re-enables CPU hotplug. |
| 1488 | // The ->pertask_func() pointer is NULL, so there is no per-task processing. |
| 1489 | // rcu_tasks_trace_postscan(): |
| 1490 | // Invokes synchronize_rcu() to wait for late-stage exiting tasks |
| 1491 | // to finish exiting. |
| 1492 | // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: |
| 1493 | // Scans the holdout list, attempting to identify a quiescent state |
| 1494 | // for each task on the list. If there is a quiescent state, the |
| 1495 | // corresponding task is removed from the holdout list. Once this |
| 1496 | // list is empty, the grace period has completed. |
| 1497 | // rcu_tasks_trace_postgp(): |
| 1498 | // Provides the needed full memory barrier and does debug checks. |
| 1499 | // |
| 1500 | // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. |
| 1501 | // |
| 1502 | // Pre-grace-period update-side code is ordered before the grace period |
| 1503 | // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period |
| 1504 | // read-side code is ordered before the grace period by atomic operations |
| 1505 | // on .b.need_qs flag of each task involved in this process, or by scheduler |
| 1506 | // context-switch ordering (for locked-down non-running readers). |
| 1507 | |
| 1508 | // The lockdep state must be outside of #ifdef to be useful. |
| 1509 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 1510 | static struct lock_class_key rcu_lock_trace_key; |
| 1511 | struct lockdep_map rcu_trace_lock_map = |
| 1512 | STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); |
| 1513 | EXPORT_SYMBOL_GPL(rcu_trace_lock_map); |
| 1514 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| 1515 | |
| 1516 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 1517 | |
| 1518 | // Record outstanding IPIs to each CPU. No point in sending two... |
| 1519 | static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); |
| 1520 | |
| 1521 | // The number of detections of task quiescent state relying on |
| 1522 | // heavyweight readers executing explicit memory barriers. |
| 1523 | static unsigned long n_heavy_reader_attempts; |
| 1524 | static unsigned long n_heavy_reader_updates; |
| 1525 | static unsigned long n_heavy_reader_ofl_updates; |
| 1526 | static unsigned long n_trc_holdouts; |
| 1527 | |
| 1528 | void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); |
| 1529 | DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, |
| 1530 | "RCU Tasks Trace"); |
| 1531 | |
| 1532 | /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ |
| 1533 | static u8 rcu_ld_need_qs(struct task_struct *t) |
| 1534 | { |
| 1535 | smp_mb(); // Enforce full grace-period ordering. |
| 1536 | return smp_load_acquire(&t->trc_reader_special.b.need_qs); |
| 1537 | } |
| 1538 | |
| 1539 | /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ |
| 1540 | static void rcu_st_need_qs(struct task_struct *t, u8 v) |
| 1541 | { |
| 1542 | smp_store_release(&t->trc_reader_special.b.need_qs, v); |
| 1543 | smp_mb(); // Enforce full grace-period ordering. |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for |
| 1548 | * the four-byte operand-size restriction of some platforms. |
| 1549 | * |
| 1550 | * Returns the old value, which is often ignored. |
| 1551 | */ |
| 1552 | u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) |
| 1553 | { |
| 1554 | return cmpxchg(&t->trc_reader_special.b.need_qs, old, new); |
| 1555 | } |
| 1556 | EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); |
| 1557 | |
| 1558 | /* |
| 1559 | * If we are the last reader, signal the grace-period kthread. |
| 1560 | * Also remove from the per-CPU list of blocked tasks. |
| 1561 | */ |
| 1562 | void rcu_read_unlock_trace_special(struct task_struct *t) |
| 1563 | { |
| 1564 | unsigned long flags; |
| 1565 | struct rcu_tasks_percpu *rtpcp; |
| 1566 | union rcu_special trs; |
| 1567 | |
| 1568 | // Open-coded full-word version of rcu_ld_need_qs(). |
| 1569 | smp_mb(); // Enforce full grace-period ordering. |
| 1570 | trs = smp_load_acquire(&t->trc_reader_special); |
| 1571 | |
| 1572 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) |
| 1573 | smp_mb(); // Pairs with update-side barriers. |
| 1574 | // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. |
| 1575 | if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { |
| 1576 | u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, |
| 1577 | TRC_NEED_QS_CHECKED); |
| 1578 | |
| 1579 | WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); |
| 1580 | } |
| 1581 | if (trs.b.blocked) { |
| 1582 | rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); |
| 1583 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 1584 | list_del_init(&t->trc_blkd_node); |
| 1585 | WRITE_ONCE(t->trc_reader_special.b.blocked, false); |
| 1586 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1587 | } |
| 1588 | WRITE_ONCE(t->trc_reader_nesting, 0); |
| 1589 | } |
| 1590 | EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); |
| 1591 | |
| 1592 | /* Add a newly blocked reader task to its CPU's list. */ |
| 1593 | void rcu_tasks_trace_qs_blkd(struct task_struct *t) |
| 1594 | { |
| 1595 | unsigned long flags; |
| 1596 | struct rcu_tasks_percpu *rtpcp; |
| 1597 | |
| 1598 | local_irq_save(flags); |
| 1599 | rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); |
| 1600 | raw_spin_lock_rcu_node(rtpcp); // irqs already disabled |
| 1601 | t->trc_blkd_cpu = smp_processor_id(); |
| 1602 | if (!rtpcp->rtp_blkd_tasks.next) |
| 1603 | INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); |
| 1604 | list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); |
| 1605 | WRITE_ONCE(t->trc_reader_special.b.blocked, true); |
| 1606 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1607 | } |
| 1608 | EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); |
| 1609 | |
| 1610 | /* Add a task to the holdout list, if it is not already on the list. */ |
| 1611 | static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) |
| 1612 | { |
| 1613 | if (list_empty(&t->trc_holdout_list)) { |
| 1614 | get_task_struct(t); |
| 1615 | list_add(&t->trc_holdout_list, bhp); |
| 1616 | n_trc_holdouts++; |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | /* Remove a task from the holdout list, if it is in fact present. */ |
| 1621 | static void trc_del_holdout(struct task_struct *t) |
| 1622 | { |
| 1623 | if (!list_empty(&t->trc_holdout_list)) { |
| 1624 | list_del_init(&t->trc_holdout_list); |
| 1625 | put_task_struct(t); |
| 1626 | n_trc_holdouts--; |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | /* IPI handler to check task state. */ |
| 1631 | static void trc_read_check_handler(void *t_in) |
| 1632 | { |
| 1633 | int nesting; |
| 1634 | struct task_struct *t = current; |
| 1635 | struct task_struct *texp = t_in; |
| 1636 | |
| 1637 | // If the task is no longer running on this CPU, leave. |
| 1638 | if (unlikely(texp != t)) |
| 1639 | goto reset_ipi; // Already on holdout list, so will check later. |
| 1640 | |
| 1641 | // If the task is not in a read-side critical section, and |
| 1642 | // if this is the last reader, awaken the grace-period kthread. |
| 1643 | nesting = READ_ONCE(t->trc_reader_nesting); |
| 1644 | if (likely(!nesting)) { |
| 1645 | rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| 1646 | goto reset_ipi; |
| 1647 | } |
| 1648 | // If we are racing with an rcu_read_unlock_trace(), try again later. |
| 1649 | if (unlikely(nesting < 0)) |
| 1650 | goto reset_ipi; |
| 1651 | |
| 1652 | // Get here if the task is in a read-side critical section. |
| 1653 | // Set its state so that it will update state for the grace-period |
| 1654 | // kthread upon exit from that critical section. |
| 1655 | rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); |
| 1656 | |
| 1657 | reset_ipi: |
| 1658 | // Allow future IPIs to be sent on CPU and for task. |
| 1659 | // Also order this IPI handler against any later manipulations of |
| 1660 | // the intended task. |
| 1661 | smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ |
| 1662 | smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ |
| 1663 | } |
| 1664 | |
| 1665 | /* Callback function for scheduler to check locked-down task. */ |
| 1666 | static int trc_inspect_reader(struct task_struct *t, void *bhp_in) |
| 1667 | { |
| 1668 | struct list_head *bhp = bhp_in; |
| 1669 | int cpu = task_cpu(t); |
| 1670 | int nesting; |
| 1671 | bool ofl = cpu_is_offline(cpu); |
| 1672 | |
| 1673 | if (task_curr(t) && !ofl) { |
| 1674 | // If no chance of heavyweight readers, do it the hard way. |
| 1675 | if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| 1676 | return -EINVAL; |
| 1677 | |
| 1678 | // If heavyweight readers are enabled on the remote task, |
| 1679 | // we can inspect its state despite its currently running. |
| 1680 | // However, we cannot safely change its state. |
| 1681 | n_heavy_reader_attempts++; |
| 1682 | // Check for "running" idle tasks on offline CPUs. |
| 1683 | if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting)) |
| 1684 | return -EINVAL; // No quiescent state, do it the hard way. |
| 1685 | n_heavy_reader_updates++; |
| 1686 | nesting = 0; |
| 1687 | } else { |
| 1688 | // The task is not running, so C-language access is safe. |
| 1689 | nesting = t->trc_reader_nesting; |
| 1690 | WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); |
| 1691 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) |
| 1692 | n_heavy_reader_ofl_updates++; |
| 1693 | } |
| 1694 | |
| 1695 | // If not exiting a read-side critical section, mark as checked |
| 1696 | // so that the grace-period kthread will remove it from the |
| 1697 | // holdout list. |
| 1698 | if (!nesting) { |
| 1699 | rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| 1700 | return 0; // In QS, so done. |
| 1701 | } |
| 1702 | if (nesting < 0) |
| 1703 | return -EINVAL; // Reader transitioning, try again later. |
| 1704 | |
| 1705 | // The task is in a read-side critical section, so set up its |
| 1706 | // state so that it will update state upon exit from that critical |
| 1707 | // section. |
| 1708 | if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) |
| 1709 | trc_add_holdout(t, bhp); |
| 1710 | return 0; |
| 1711 | } |
| 1712 | |
| 1713 | /* Attempt to extract the state for the specified task. */ |
| 1714 | static void trc_wait_for_one_reader(struct task_struct *t, |
| 1715 | struct list_head *bhp) |
| 1716 | { |
| 1717 | int cpu; |
| 1718 | |
| 1719 | // If a previous IPI is still in flight, let it complete. |
| 1720 | if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI |
| 1721 | return; |
| 1722 | |
| 1723 | // The current task had better be in a quiescent state. |
| 1724 | if (t == current) { |
| 1725 | rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| 1726 | WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); |
| 1727 | return; |
| 1728 | } |
| 1729 | |
| 1730 | // Attempt to nail down the task for inspection. |
| 1731 | get_task_struct(t); |
| 1732 | if (!task_call_func(t, trc_inspect_reader, bhp)) { |
| 1733 | put_task_struct(t); |
| 1734 | return; |
| 1735 | } |
| 1736 | put_task_struct(t); |
| 1737 | |
| 1738 | // If this task is not yet on the holdout list, then we are in |
| 1739 | // an RCU read-side critical section. Otherwise, the invocation of |
| 1740 | // trc_add_holdout() that added it to the list did the necessary |
| 1741 | // get_task_struct(). Either way, the task cannot be freed out |
| 1742 | // from under this code. |
| 1743 | |
| 1744 | // If currently running, send an IPI, either way, add to list. |
| 1745 | trc_add_holdout(t, bhp); |
| 1746 | if (task_curr(t) && |
| 1747 | time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { |
| 1748 | // The task is currently running, so try IPIing it. |
| 1749 | cpu = task_cpu(t); |
| 1750 | |
| 1751 | // If there is already an IPI outstanding, let it happen. |
| 1752 | if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) |
| 1753 | return; |
| 1754 | |
| 1755 | per_cpu(trc_ipi_to_cpu, cpu) = true; |
| 1756 | t->trc_ipi_to_cpu = cpu; |
| 1757 | rcu_tasks_trace.n_ipis++; |
| 1758 | if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { |
| 1759 | // Just in case there is some other reason for |
| 1760 | // failure than the target CPU being offline. |
| 1761 | WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", |
| 1762 | __func__, cpu); |
| 1763 | rcu_tasks_trace.n_ipis_fails++; |
| 1764 | per_cpu(trc_ipi_to_cpu, cpu) = false; |
| 1765 | t->trc_ipi_to_cpu = -1; |
| 1766 | } |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | /* |
| 1771 | * Initialize for first-round processing for the specified task. |
| 1772 | * Return false if task is NULL or already taken care of, true otherwise. |
| 1773 | */ |
| 1774 | static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) |
| 1775 | { |
| 1776 | // During early boot when there is only the one boot CPU, there |
| 1777 | // is no idle task for the other CPUs. Also, the grace-period |
| 1778 | // kthread is always in a quiescent state. In addition, just return |
| 1779 | // if this task is already on the list. |
| 1780 | if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) |
| 1781 | return false; |
| 1782 | |
| 1783 | rcu_st_need_qs(t, 0); |
| 1784 | t->trc_ipi_to_cpu = -1; |
| 1785 | return true; |
| 1786 | } |
| 1787 | |
| 1788 | /* Do first-round processing for the specified task. */ |
| 1789 | static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) |
| 1790 | { |
| 1791 | if (rcu_tasks_trace_pertask_prep(t, true)) |
| 1792 | trc_wait_for_one_reader(t, hop); |
| 1793 | } |
| 1794 | |
| 1795 | /* Initialize for a new RCU-tasks-trace grace period. */ |
| 1796 | static void rcu_tasks_trace_pregp_step(struct list_head *hop) |
| 1797 | { |
| 1798 | LIST_HEAD(blkd_tasks); |
| 1799 | int cpu; |
| 1800 | unsigned long flags; |
| 1801 | struct rcu_tasks_percpu *rtpcp; |
| 1802 | struct task_struct *t; |
| 1803 | |
| 1804 | // There shouldn't be any old IPIs, but... |
| 1805 | for_each_possible_cpu(cpu) |
| 1806 | WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); |
| 1807 | |
| 1808 | // Disable CPU hotplug across the CPU scan for the benefit of |
| 1809 | // any IPIs that might be needed. This also waits for all readers |
| 1810 | // in CPU-hotplug code paths. |
| 1811 | cpus_read_lock(); |
| 1812 | |
| 1813 | // These rcu_tasks_trace_pertask_prep() calls are serialized to |
| 1814 | // allow safe access to the hop list. |
| 1815 | for_each_online_cpu(cpu) { |
| 1816 | rcu_read_lock(); |
| 1817 | // Note that cpu_curr_snapshot() picks up the target |
| 1818 | // CPU's current task while its runqueue is locked with |
| 1819 | // an smp_mb__after_spinlock(). This ensures that either |
| 1820 | // the grace-period kthread will see that task's read-side |
| 1821 | // critical section or the task will see the updater's pre-GP |
| 1822 | // accesses. The trailing smp_mb() in cpu_curr_snapshot() |
| 1823 | // does not currently play a role other than simplify |
| 1824 | // that function's ordering semantics. If these simplified |
| 1825 | // ordering semantics continue to be redundant, that smp_mb() |
| 1826 | // might be removed. |
| 1827 | t = cpu_curr_snapshot(cpu); |
| 1828 | if (rcu_tasks_trace_pertask_prep(t, true)) |
| 1829 | trc_add_holdout(t, hop); |
| 1830 | rcu_read_unlock(); |
| 1831 | cond_resched_tasks_rcu_qs(); |
| 1832 | } |
| 1833 | |
| 1834 | // Only after all running tasks have been accounted for is it |
| 1835 | // safe to take care of the tasks that have blocked within their |
| 1836 | // current RCU tasks trace read-side critical section. |
| 1837 | for_each_possible_cpu(cpu) { |
| 1838 | rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); |
| 1839 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 1840 | list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); |
| 1841 | while (!list_empty(&blkd_tasks)) { |
| 1842 | rcu_read_lock(); |
| 1843 | t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); |
| 1844 | list_del_init(&t->trc_blkd_node); |
| 1845 | list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); |
| 1846 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1847 | rcu_tasks_trace_pertask(t, hop); |
| 1848 | rcu_read_unlock(); |
| 1849 | raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| 1850 | } |
| 1851 | raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| 1852 | cond_resched_tasks_rcu_qs(); |
| 1853 | } |
| 1854 | |
| 1855 | // Re-enable CPU hotplug now that the holdout list is populated. |
| 1856 | cpus_read_unlock(); |
| 1857 | } |
| 1858 | |
| 1859 | /* |
| 1860 | * Do intermediate processing between task and holdout scans. |
| 1861 | */ |
| 1862 | static void rcu_tasks_trace_postscan(struct list_head *hop) |
| 1863 | { |
| 1864 | // Wait for late-stage exiting tasks to finish exiting. |
| 1865 | // These might have passed the call to exit_tasks_rcu_finish(). |
| 1866 | |
| 1867 | // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! |
| 1868 | synchronize_rcu(); |
| 1869 | // Any tasks that exit after this point will set |
| 1870 | // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. |
| 1871 | } |
| 1872 | |
| 1873 | /* Communicate task state back to the RCU tasks trace stall warning request. */ |
| 1874 | struct trc_stall_chk_rdr { |
| 1875 | int nesting; |
| 1876 | int ipi_to_cpu; |
| 1877 | u8 needqs; |
| 1878 | }; |
| 1879 | |
| 1880 | static int trc_check_slow_task(struct task_struct *t, void *arg) |
| 1881 | { |
| 1882 | struct trc_stall_chk_rdr *trc_rdrp = arg; |
| 1883 | |
| 1884 | if (task_curr(t) && cpu_online(task_cpu(t))) |
| 1885 | return false; // It is running, so decline to inspect it. |
| 1886 | trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); |
| 1887 | trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); |
| 1888 | trc_rdrp->needqs = rcu_ld_need_qs(t); |
| 1889 | return true; |
| 1890 | } |
| 1891 | |
| 1892 | /* Show the state of a task stalling the current RCU tasks trace GP. */ |
| 1893 | static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) |
| 1894 | { |
| 1895 | int cpu; |
| 1896 | struct trc_stall_chk_rdr trc_rdr; |
| 1897 | bool is_idle_tsk = is_idle_task(t); |
| 1898 | |
| 1899 | if (*firstreport) { |
| 1900 | pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); |
| 1901 | *firstreport = false; |
| 1902 | } |
| 1903 | cpu = task_cpu(t); |
| 1904 | if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) |
| 1905 | pr_alert("P%d: %c%c\n", |
| 1906 | t->pid, |
| 1907 | ".I"[t->trc_ipi_to_cpu >= 0], |
| 1908 | ".i"[is_idle_tsk]); |
| 1909 | else |
| 1910 | pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", |
| 1911 | t->pid, |
| 1912 | ".I"[trc_rdr.ipi_to_cpu >= 0], |
| 1913 | ".i"[is_idle_tsk], |
| 1914 | ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], |
| 1915 | ".B"[!!data_race(t->trc_reader_special.b.blocked)], |
| 1916 | trc_rdr.nesting, |
| 1917 | " !CN"[trc_rdr.needqs & 0x3], |
| 1918 | " ?"[trc_rdr.needqs > 0x3], |
| 1919 | cpu, cpu_online(cpu) ? "" : "(offline)"); |
| 1920 | sched_show_task(t); |
| 1921 | } |
| 1922 | |
| 1923 | /* List stalled IPIs for RCU tasks trace. */ |
| 1924 | static void show_stalled_ipi_trace(void) |
| 1925 | { |
| 1926 | int cpu; |
| 1927 | |
| 1928 | for_each_possible_cpu(cpu) |
| 1929 | if (per_cpu(trc_ipi_to_cpu, cpu)) |
| 1930 | pr_alert("\tIPI outstanding to CPU %d\n", cpu); |
| 1931 | } |
| 1932 | |
| 1933 | /* Do one scan of the holdout list. */ |
| 1934 | static void check_all_holdout_tasks_trace(struct list_head *hop, |
| 1935 | bool needreport, bool *firstreport) |
| 1936 | { |
| 1937 | struct task_struct *g, *t; |
| 1938 | |
| 1939 | // Disable CPU hotplug across the holdout list scan for IPIs. |
| 1940 | cpus_read_lock(); |
| 1941 | |
| 1942 | list_for_each_entry_safe(t, g, hop, trc_holdout_list) { |
| 1943 | // If safe and needed, try to check the current task. |
| 1944 | if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && |
| 1945 | !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) |
| 1946 | trc_wait_for_one_reader(t, hop); |
| 1947 | |
| 1948 | // If check succeeded, remove this task from the list. |
| 1949 | if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && |
| 1950 | rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) |
| 1951 | trc_del_holdout(t); |
| 1952 | else if (needreport) |
| 1953 | show_stalled_task_trace(t, firstreport); |
| 1954 | cond_resched_tasks_rcu_qs(); |
| 1955 | } |
| 1956 | |
| 1957 | // Re-enable CPU hotplug now that the holdout list scan has completed. |
| 1958 | cpus_read_unlock(); |
| 1959 | |
| 1960 | if (needreport) { |
| 1961 | if (*firstreport) |
| 1962 | pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); |
| 1963 | show_stalled_ipi_trace(); |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | static void rcu_tasks_trace_empty_fn(void *unused) |
| 1968 | { |
| 1969 | } |
| 1970 | |
| 1971 | /* Wait for grace period to complete and provide ordering. */ |
| 1972 | static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) |
| 1973 | { |
| 1974 | int cpu; |
| 1975 | |
| 1976 | // Wait for any lingering IPI handlers to complete. Note that |
| 1977 | // if a CPU has gone offline or transitioned to userspace in the |
| 1978 | // meantime, all IPI handlers should have been drained beforehand. |
| 1979 | // Yes, this assumes that CPUs process IPIs in order. If that ever |
| 1980 | // changes, there will need to be a recheck and/or timed wait. |
| 1981 | for_each_online_cpu(cpu) |
| 1982 | if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) |
| 1983 | smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); |
| 1984 | |
| 1985 | smp_mb(); // Caller's code must be ordered after wakeup. |
| 1986 | // Pairs with pretty much every ordering primitive. |
| 1987 | } |
| 1988 | |
| 1989 | /* Report any needed quiescent state for this exiting task. */ |
| 1990 | static void exit_tasks_rcu_finish_trace(struct task_struct *t) |
| 1991 | { |
| 1992 | union rcu_special trs = READ_ONCE(t->trc_reader_special); |
| 1993 | |
| 1994 | rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| 1995 | WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); |
| 1996 | if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) |
| 1997 | rcu_read_unlock_trace_special(t); |
| 1998 | else |
| 1999 | WRITE_ONCE(t->trc_reader_nesting, 0); |
| 2000 | } |
| 2001 | |
| 2002 | /** |
| 2003 | * call_rcu_tasks_trace() - Queue a callback trace task-based grace period |
| 2004 | * @rhp: structure to be used for queueing the RCU updates. |
| 2005 | * @func: actual callback function to be invoked after the grace period |
| 2006 | * |
| 2007 | * The callback function will be invoked some time after a trace rcu-tasks |
| 2008 | * grace period elapses, in other words after all currently executing |
| 2009 | * trace rcu-tasks read-side critical sections have completed. These |
| 2010 | * read-side critical sections are delimited by calls to rcu_read_lock_trace() |
| 2011 | * and rcu_read_unlock_trace(). |
| 2012 | * |
| 2013 | * See the description of call_rcu() for more detailed information on |
| 2014 | * memory ordering guarantees. |
| 2015 | */ |
| 2016 | void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) |
| 2017 | { |
| 2018 | call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); |
| 2019 | } |
| 2020 | EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); |
| 2021 | |
| 2022 | /** |
| 2023 | * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period |
| 2024 | * |
| 2025 | * Control will return to the caller some time after a trace rcu-tasks |
| 2026 | * grace period has elapsed, in other words after all currently executing |
| 2027 | * trace rcu-tasks read-side critical sections have elapsed. These read-side |
| 2028 | * critical sections are delimited by calls to rcu_read_lock_trace() |
| 2029 | * and rcu_read_unlock_trace(). |
| 2030 | * |
| 2031 | * This is a very specialized primitive, intended only for a few uses in |
| 2032 | * tracing and other situations requiring manipulation of function preambles |
| 2033 | * and profiling hooks. The synchronize_rcu_tasks_trace() function is not |
| 2034 | * (yet) intended for heavy use from multiple CPUs. |
| 2035 | * |
| 2036 | * See the description of synchronize_rcu() for more detailed information |
| 2037 | * on memory ordering guarantees. |
| 2038 | */ |
| 2039 | void synchronize_rcu_tasks_trace(void) |
| 2040 | { |
| 2041 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); |
| 2042 | synchronize_rcu_tasks_generic(&rcu_tasks_trace); |
| 2043 | } |
| 2044 | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); |
| 2045 | |
| 2046 | /** |
| 2047 | * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. |
| 2048 | * |
| 2049 | * Although the current implementation is guaranteed to wait, it is not |
| 2050 | * obligated to, for example, if there are no pending callbacks. |
| 2051 | */ |
| 2052 | void rcu_barrier_tasks_trace(void) |
| 2053 | { |
| 2054 | rcu_barrier_tasks_generic(&rcu_tasks_trace); |
| 2055 | } |
| 2056 | EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); |
| 2057 | |
| 2058 | int rcu_tasks_trace_lazy_ms = -1; |
| 2059 | module_param(rcu_tasks_trace_lazy_ms, int, 0444); |
| 2060 | |
| 2061 | static int __init rcu_spawn_tasks_trace_kthread(void) |
| 2062 | { |
| 2063 | if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { |
| 2064 | rcu_tasks_trace.gp_sleep = HZ / 10; |
| 2065 | rcu_tasks_trace.init_fract = HZ / 10; |
| 2066 | } else { |
| 2067 | rcu_tasks_trace.gp_sleep = HZ / 200; |
| 2068 | if (rcu_tasks_trace.gp_sleep <= 0) |
| 2069 | rcu_tasks_trace.gp_sleep = 1; |
| 2070 | rcu_tasks_trace.init_fract = HZ / 200; |
| 2071 | if (rcu_tasks_trace.init_fract <= 0) |
| 2072 | rcu_tasks_trace.init_fract = 1; |
| 2073 | } |
| 2074 | if (rcu_tasks_trace_lazy_ms >= 0) |
| 2075 | rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); |
| 2076 | rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; |
| 2077 | rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; |
| 2078 | rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; |
| 2079 | rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; |
| 2080 | rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); |
| 2081 | return 0; |
| 2082 | } |
| 2083 | |
| 2084 | #if !defined(CONFIG_TINY_RCU) |
| 2085 | void show_rcu_tasks_trace_gp_kthread(void) |
| 2086 | { |
| 2087 | char buf[64]; |
| 2088 | |
| 2089 | snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", |
| 2090 | data_race(n_trc_holdouts), |
| 2091 | data_race(n_heavy_reader_ofl_updates), |
| 2092 | data_race(n_heavy_reader_updates), |
| 2093 | data_race(n_heavy_reader_attempts)); |
| 2094 | show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); |
| 2095 | } |
| 2096 | EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); |
| 2097 | |
| 2098 | void rcu_tasks_trace_torture_stats_print(char *tt, char *tf) |
| 2099 | { |
| 2100 | rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, ""); |
| 2101 | } |
| 2102 | EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print); |
| 2103 | #endif // !defined(CONFIG_TINY_RCU) |
| 2104 | |
| 2105 | struct task_struct *get_rcu_tasks_trace_gp_kthread(void) |
| 2106 | { |
| 2107 | return rcu_tasks_trace.kthread_ptr; |
| 2108 | } |
| 2109 | EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); |
| 2110 | |
| 2111 | void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq) |
| 2112 | { |
| 2113 | *flags = 0; |
| 2114 | *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq); |
| 2115 | } |
| 2116 | EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data); |
| 2117 | |
| 2118 | #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 2119 | static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } |
| 2120 | #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ |
| 2121 | |
| 2122 | #ifndef CONFIG_TINY_RCU |
| 2123 | void show_rcu_tasks_gp_kthreads(void) |
| 2124 | { |
| 2125 | show_rcu_tasks_classic_gp_kthread(); |
| 2126 | show_rcu_tasks_rude_gp_kthread(); |
| 2127 | show_rcu_tasks_trace_gp_kthread(); |
| 2128 | } |
| 2129 | #endif /* #ifndef CONFIG_TINY_RCU */ |
| 2130 | |
| 2131 | #ifdef CONFIG_PROVE_RCU |
| 2132 | struct rcu_tasks_test_desc { |
| 2133 | struct rcu_head rh; |
| 2134 | const char *name; |
| 2135 | bool notrun; |
| 2136 | unsigned long runstart; |
| 2137 | }; |
| 2138 | |
| 2139 | static struct rcu_tasks_test_desc tests[] = { |
| 2140 | { |
| 2141 | .name = "call_rcu_tasks()", |
| 2142 | /* If not defined, the test is skipped. */ |
| 2143 | .notrun = IS_ENABLED(CONFIG_TASKS_RCU), |
| 2144 | }, |
| 2145 | { |
| 2146 | .name = "call_rcu_tasks_trace()", |
| 2147 | /* If not defined, the test is skipped. */ |
| 2148 | .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) |
| 2149 | } |
| 2150 | }; |
| 2151 | |
| 2152 | #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| 2153 | static void test_rcu_tasks_callback(struct rcu_head *rhp) |
| 2154 | { |
| 2155 | struct rcu_tasks_test_desc *rttd = |
| 2156 | container_of(rhp, struct rcu_tasks_test_desc, rh); |
| 2157 | |
| 2158 | pr_info("Callback from %s invoked.\n", rttd->name); |
| 2159 | |
| 2160 | rttd->notrun = false; |
| 2161 | } |
| 2162 | #endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| 2163 | |
| 2164 | static void rcu_tasks_initiate_self_tests(void) |
| 2165 | { |
| 2166 | #ifdef CONFIG_TASKS_RCU |
| 2167 | pr_info("Running RCU Tasks wait API self tests\n"); |
| 2168 | tests[0].runstart = jiffies; |
| 2169 | synchronize_rcu_tasks(); |
| 2170 | call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); |
| 2171 | #endif |
| 2172 | |
| 2173 | #ifdef CONFIG_TASKS_RUDE_RCU |
| 2174 | pr_info("Running RCU Tasks Rude wait API self tests\n"); |
| 2175 | synchronize_rcu_tasks_rude(); |
| 2176 | #endif |
| 2177 | |
| 2178 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 2179 | pr_info("Running RCU Tasks Trace wait API self tests\n"); |
| 2180 | tests[1].runstart = jiffies; |
| 2181 | synchronize_rcu_tasks_trace(); |
| 2182 | call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback); |
| 2183 | #endif |
| 2184 | } |
| 2185 | |
| 2186 | /* |
| 2187 | * Return: 0 - test passed |
| 2188 | * 1 - test failed, but have not timed out yet |
| 2189 | * -1 - test failed and timed out |
| 2190 | */ |
| 2191 | static int rcu_tasks_verify_self_tests(void) |
| 2192 | { |
| 2193 | int ret = 0; |
| 2194 | int i; |
| 2195 | unsigned long bst = rcu_task_stall_timeout; |
| 2196 | |
| 2197 | if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) |
| 2198 | bst = RCU_TASK_BOOT_STALL_TIMEOUT; |
| 2199 | for (i = 0; i < ARRAY_SIZE(tests); i++) { |
| 2200 | while (tests[i].notrun) { // still hanging. |
| 2201 | if (time_after(jiffies, tests[i].runstart + bst)) { |
| 2202 | pr_err("%s has failed boot-time tests.\n", tests[i].name); |
| 2203 | ret = -1; |
| 2204 | break; |
| 2205 | } |
| 2206 | ret = 1; |
| 2207 | break; |
| 2208 | } |
| 2209 | } |
| 2210 | WARN_ON(ret < 0); |
| 2211 | |
| 2212 | return ret; |
| 2213 | } |
| 2214 | |
| 2215 | /* |
| 2216 | * Repeat the rcu_tasks_verify_self_tests() call once every second until the |
| 2217 | * test passes or has timed out. |
| 2218 | */ |
| 2219 | static struct delayed_work rcu_tasks_verify_work; |
| 2220 | static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) |
| 2221 | { |
| 2222 | int ret = rcu_tasks_verify_self_tests(); |
| 2223 | |
| 2224 | if (ret <= 0) |
| 2225 | return; |
| 2226 | |
| 2227 | /* Test fails but not timed out yet, reschedule another check */ |
| 2228 | schedule_delayed_work(&rcu_tasks_verify_work, HZ); |
| 2229 | } |
| 2230 | |
| 2231 | static int rcu_tasks_verify_schedule_work(void) |
| 2232 | { |
| 2233 | INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); |
| 2234 | rcu_tasks_verify_work_fn(NULL); |
| 2235 | return 0; |
| 2236 | } |
| 2237 | late_initcall(rcu_tasks_verify_schedule_work); |
| 2238 | #else /* #ifdef CONFIG_PROVE_RCU */ |
| 2239 | static void rcu_tasks_initiate_self_tests(void) { } |
| 2240 | #endif /* #else #ifdef CONFIG_PROVE_RCU */ |
| 2241 | |
| 2242 | void __init tasks_cblist_init_generic(void) |
| 2243 | { |
| 2244 | lockdep_assert_irqs_disabled(); |
| 2245 | WARN_ON(num_online_cpus() > 1); |
| 2246 | |
| 2247 | #ifdef CONFIG_TASKS_RCU |
| 2248 | cblist_init_generic(&rcu_tasks); |
| 2249 | #endif |
| 2250 | |
| 2251 | #ifdef CONFIG_TASKS_RUDE_RCU |
| 2252 | cblist_init_generic(&rcu_tasks_rude); |
| 2253 | #endif |
| 2254 | |
| 2255 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 2256 | cblist_init_generic(&rcu_tasks_trace); |
| 2257 | #endif |
| 2258 | } |
| 2259 | |
| 2260 | static int __init rcu_init_tasks_generic(void) |
| 2261 | { |
| 2262 | #ifdef CONFIG_TASKS_RCU |
| 2263 | rcu_spawn_tasks_kthread(); |
| 2264 | #endif |
| 2265 | |
| 2266 | #ifdef CONFIG_TASKS_RUDE_RCU |
| 2267 | rcu_spawn_tasks_rude_kthread(); |
| 2268 | #endif |
| 2269 | |
| 2270 | #ifdef CONFIG_TASKS_TRACE_RCU |
| 2271 | rcu_spawn_tasks_trace_kthread(); |
| 2272 | #endif |
| 2273 | |
| 2274 | // Run the self-tests. |
| 2275 | rcu_tasks_initiate_self_tests(); |
| 2276 | |
| 2277 | return 0; |
| 2278 | } |
| 2279 | core_initcall(rcu_init_tasks_generic); |
| 2280 | |
| 2281 | #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ |
| 2282 | static inline void rcu_tasks_bootup_oddness(void) {} |
| 2283 | #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |