Hibernate: Do not oops on resume if image data are incorrect
[linux-block.git] / kernel / power / snapshot.c
... / ...
CommitLineData
1/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28
29#include <asm/uaccess.h>
30#include <asm/mmu_context.h>
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <asm/io.h>
34
35#include "power.h"
36
37static int swsusp_page_is_free(struct page *);
38static void swsusp_set_page_forbidden(struct page *);
39static void swsusp_unset_page_forbidden(struct page *);
40
41/* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
45 */
46struct pbe *restore_pblist;
47
48/* Pointer to an auxiliary buffer (1 page) */
49static void *buffer;
50
51/**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
56 *
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
59 */
60
61#define PG_ANY 0
62#define PG_SAFE 1
63#define PG_UNSAFE_CLEAR 1
64#define PG_UNSAFE_KEEP 0
65
66static unsigned int allocated_unsafe_pages;
67
68static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69{
70 void *res;
71
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
74 while (res && swsusp_page_is_free(virt_to_page(res))) {
75 /* The page is unsafe, mark it for swsusp_free() */
76 swsusp_set_page_forbidden(virt_to_page(res));
77 allocated_unsafe_pages++;
78 res = (void *)get_zeroed_page(gfp_mask);
79 }
80 if (res) {
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
83 }
84 return res;
85}
86
87unsigned long get_safe_page(gfp_t gfp_mask)
88{
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90}
91
92static struct page *alloc_image_page(gfp_t gfp_mask)
93{
94 struct page *page;
95
96 page = alloc_page(gfp_mask);
97 if (page) {
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
100 }
101 return page;
102}
103
104/**
105 * free_image_page - free page represented by @addr, allocated with
106 * get_image_page (page flags set by it must be cleared)
107 */
108
109static inline void free_image_page(void *addr, int clear_nosave_free)
110{
111 struct page *page;
112
113 BUG_ON(!virt_addr_valid(addr));
114
115 page = virt_to_page(addr);
116
117 swsusp_unset_page_forbidden(page);
118 if (clear_nosave_free)
119 swsusp_unset_page_free(page);
120
121 __free_page(page);
122}
123
124/* struct linked_page is used to build chains of pages */
125
126#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
127
128struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131} __attribute__((packed));
132
133static inline void
134free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135{
136 while (list) {
137 struct linked_page *lp = list->next;
138
139 free_image_page(list, clear_page_nosave);
140 list = lp;
141 }
142}
143
144/**
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
147 *
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
152 *
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
155 */
156
157struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
161 */
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
164};
165
166static void
167chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168{
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
173}
174
175static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176{
177 void *ret;
178
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
181
182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 if (!lp)
184 return NULL;
185
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
189 }
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
193}
194
195static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196{
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
199}
200
201/**
202 * Data types related to memory bitmaps.
203 *
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bitmap in which information is stored.
209 *
210 * struct memory_bitmap contains a pointer to the main list of zone
211 * bitmap objects, a struct bm_position used for browsing the bitmap,
212 * and a pointer to the list of pages used for allocating all of the
213 * zone bitmap objects and bitmap block objects.
214 *
215 * NOTE: It has to be possible to lay out the bitmap in memory
216 * using only allocations of order 0. Additionally, the bitmap is
217 * designed to work with arbitrary number of zones (this is over the
218 * top for now, but let's avoid making unnecessary assumptions ;-).
219 *
220 * struct zone_bitmap contains a pointer to a list of bitmap block
221 * objects and a pointer to the bitmap block object that has been
222 * most recently used for setting bits. Additionally, it contains the
223 * pfns that correspond to the start and end of the represented zone.
224 *
225 * struct bm_block contains a pointer to the memory page in which
226 * information is stored (in the form of a block of bitmap)
227 * It also contains the pfns that correspond to the start and end of
228 * the represented memory area.
229 */
230
231#define BM_END_OF_MAP (~0UL)
232
233#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
234
235struct bm_block {
236 struct bm_block *next; /* next element of the list */
237 unsigned long start_pfn; /* pfn represented by the first bit */
238 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
239 unsigned long *data; /* bitmap representing pages */
240};
241
242static inline unsigned long bm_block_bits(struct bm_block *bb)
243{
244 return bb->end_pfn - bb->start_pfn;
245}
246
247struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253};
254
255/* strcut bm_position is used for browsing memory bitmaps */
256
257struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int bit;
261};
262
263struct memory_bitmap {
264 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
265 struct linked_page *p_list; /* list of pages used to store zone
266 * bitmap objects and bitmap block
267 * objects
268 */
269 struct bm_position cur; /* most recently used bit position */
270};
271
272/* Functions that operate on memory bitmaps */
273
274static void memory_bm_position_reset(struct memory_bitmap *bm)
275{
276 struct zone_bitmap *zone_bm;
277
278 zone_bm = bm->zone_bm_list;
279 bm->cur.zone_bm = zone_bm;
280 bm->cur.block = zone_bm->bm_blocks;
281 bm->cur.bit = 0;
282}
283
284static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
285
286/**
287 * create_bm_block_list - create a list of block bitmap objects
288 */
289
290static inline struct bm_block *
291create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
292{
293 struct bm_block *bblist = NULL;
294
295 while (nr_blocks-- > 0) {
296 struct bm_block *bb;
297
298 bb = chain_alloc(ca, sizeof(struct bm_block));
299 if (!bb)
300 return NULL;
301
302 bb->next = bblist;
303 bblist = bb;
304 }
305 return bblist;
306}
307
308/**
309 * create_zone_bm_list - create a list of zone bitmap objects
310 */
311
312static inline struct zone_bitmap *
313create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
314{
315 struct zone_bitmap *zbmlist = NULL;
316
317 while (nr_zones-- > 0) {
318 struct zone_bitmap *zbm;
319
320 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
321 if (!zbm)
322 return NULL;
323
324 zbm->next = zbmlist;
325 zbmlist = zbm;
326 }
327 return zbmlist;
328}
329
330/**
331 * memory_bm_create - allocate memory for a memory bitmap
332 */
333
334static int
335memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
336{
337 struct chain_allocator ca;
338 struct zone *zone;
339 struct zone_bitmap *zone_bm;
340 struct bm_block *bb;
341 unsigned int nr;
342
343 chain_init(&ca, gfp_mask, safe_needed);
344
345 /* Compute the number of zones */
346 nr = 0;
347 for_each_zone(zone)
348 if (populated_zone(zone))
349 nr++;
350
351 /* Allocate the list of zones bitmap objects */
352 zone_bm = create_zone_bm_list(nr, &ca);
353 bm->zone_bm_list = zone_bm;
354 if (!zone_bm) {
355 chain_free(&ca, PG_UNSAFE_CLEAR);
356 return -ENOMEM;
357 }
358
359 /* Initialize the zone bitmap objects */
360 for_each_zone(zone) {
361 unsigned long pfn;
362
363 if (!populated_zone(zone))
364 continue;
365
366 zone_bm->start_pfn = zone->zone_start_pfn;
367 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
368 /* Allocate the list of bitmap block objects */
369 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
370 bb = create_bm_block_list(nr, &ca);
371 zone_bm->bm_blocks = bb;
372 zone_bm->cur_block = bb;
373 if (!bb)
374 goto Free;
375
376 nr = zone->spanned_pages;
377 pfn = zone->zone_start_pfn;
378 /* Initialize the bitmap block objects */
379 while (bb) {
380 unsigned long *ptr;
381
382 ptr = get_image_page(gfp_mask, safe_needed);
383 bb->data = ptr;
384 if (!ptr)
385 goto Free;
386
387 bb->start_pfn = pfn;
388 if (nr >= BM_BITS_PER_BLOCK) {
389 pfn += BM_BITS_PER_BLOCK;
390 nr -= BM_BITS_PER_BLOCK;
391 } else {
392 /* This is executed only once in the loop */
393 pfn += nr;
394 }
395 bb->end_pfn = pfn;
396 bb = bb->next;
397 }
398 zone_bm = zone_bm->next;
399 }
400 bm->p_list = ca.chain;
401 memory_bm_position_reset(bm);
402 return 0;
403
404 Free:
405 bm->p_list = ca.chain;
406 memory_bm_free(bm, PG_UNSAFE_CLEAR);
407 return -ENOMEM;
408}
409
410/**
411 * memory_bm_free - free memory occupied by the memory bitmap @bm
412 */
413
414static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
415{
416 struct zone_bitmap *zone_bm;
417
418 /* Free the list of bit blocks for each zone_bitmap object */
419 zone_bm = bm->zone_bm_list;
420 while (zone_bm) {
421 struct bm_block *bb;
422
423 bb = zone_bm->bm_blocks;
424 while (bb) {
425 if (bb->data)
426 free_image_page(bb->data, clear_nosave_free);
427 bb = bb->next;
428 }
429 zone_bm = zone_bm->next;
430 }
431 free_list_of_pages(bm->p_list, clear_nosave_free);
432 bm->zone_bm_list = NULL;
433}
434
435/**
436 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
437 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
438 * of @bm->cur_zone_bm are updated.
439 */
440
441static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
442 void **addr, unsigned int *bit_nr)
443{
444 struct zone_bitmap *zone_bm;
445 struct bm_block *bb;
446
447 /* Check if the pfn is from the current zone */
448 zone_bm = bm->cur.zone_bm;
449 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
450 zone_bm = bm->zone_bm_list;
451 /* We don't assume that the zones are sorted by pfns */
452 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
453 zone_bm = zone_bm->next;
454
455 if (!zone_bm)
456 return -EFAULT;
457 }
458 bm->cur.zone_bm = zone_bm;
459 }
460 /* Check if the pfn corresponds to the current bitmap block */
461 bb = zone_bm->cur_block;
462 if (pfn < bb->start_pfn)
463 bb = zone_bm->bm_blocks;
464
465 while (pfn >= bb->end_pfn) {
466 bb = bb->next;
467
468 BUG_ON(!bb);
469 }
470 zone_bm->cur_block = bb;
471 pfn -= bb->start_pfn;
472 *bit_nr = pfn;
473 *addr = bb->data;
474 return 0;
475}
476
477static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
478{
479 void *addr;
480 unsigned int bit;
481 int error;
482
483 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
484 BUG_ON(error);
485 set_bit(bit, addr);
486}
487
488static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
489{
490 void *addr;
491 unsigned int bit;
492 int error;
493
494 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
495 if (!error)
496 set_bit(bit, addr);
497 return error;
498}
499
500static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
501{
502 void *addr;
503 unsigned int bit;
504 int error;
505
506 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
507 BUG_ON(error);
508 clear_bit(bit, addr);
509}
510
511static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
512{
513 void *addr;
514 unsigned int bit;
515 int error;
516
517 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 BUG_ON(error);
519 return test_bit(bit, addr);
520}
521
522static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
523{
524 void *addr;
525 unsigned int bit;
526
527 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
528}
529
530/**
531 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
532 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
533 * returned.
534 *
535 * It is required to run memory_bm_position_reset() before the first call to
536 * this function.
537 */
538
539static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
540{
541 struct zone_bitmap *zone_bm;
542 struct bm_block *bb;
543 int bit;
544
545 do {
546 bb = bm->cur.block;
547 do {
548 bit = bm->cur.bit;
549 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
550 if (bit < bm_block_bits(bb))
551 goto Return_pfn;
552
553 bb = bb->next;
554 bm->cur.block = bb;
555 bm->cur.bit = 0;
556 } while (bb);
557 zone_bm = bm->cur.zone_bm->next;
558 if (zone_bm) {
559 bm->cur.zone_bm = zone_bm;
560 bm->cur.block = zone_bm->bm_blocks;
561 bm->cur.bit = 0;
562 }
563 } while (zone_bm);
564 memory_bm_position_reset(bm);
565 return BM_END_OF_MAP;
566
567 Return_pfn:
568 bm->cur.bit = bit + 1;
569 return bb->start_pfn + bit;
570}
571
572/**
573 * This structure represents a range of page frames the contents of which
574 * should not be saved during the suspend.
575 */
576
577struct nosave_region {
578 struct list_head list;
579 unsigned long start_pfn;
580 unsigned long end_pfn;
581};
582
583static LIST_HEAD(nosave_regions);
584
585/**
586 * register_nosave_region - register a range of page frames the contents
587 * of which should not be saved during the suspend (to be used in the early
588 * initialization code)
589 */
590
591void __init
592__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
593 int use_kmalloc)
594{
595 struct nosave_region *region;
596
597 if (start_pfn >= end_pfn)
598 return;
599
600 if (!list_empty(&nosave_regions)) {
601 /* Try to extend the previous region (they should be sorted) */
602 region = list_entry(nosave_regions.prev,
603 struct nosave_region, list);
604 if (region->end_pfn == start_pfn) {
605 region->end_pfn = end_pfn;
606 goto Report;
607 }
608 }
609 if (use_kmalloc) {
610 /* during init, this shouldn't fail */
611 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
612 BUG_ON(!region);
613 } else
614 /* This allocation cannot fail */
615 region = alloc_bootmem_low(sizeof(struct nosave_region));
616 region->start_pfn = start_pfn;
617 region->end_pfn = end_pfn;
618 list_add_tail(&region->list, &nosave_regions);
619 Report:
620 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
621 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
622}
623
624/*
625 * Set bits in this map correspond to the page frames the contents of which
626 * should not be saved during the suspend.
627 */
628static struct memory_bitmap *forbidden_pages_map;
629
630/* Set bits in this map correspond to free page frames. */
631static struct memory_bitmap *free_pages_map;
632
633/*
634 * Each page frame allocated for creating the image is marked by setting the
635 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
636 */
637
638void swsusp_set_page_free(struct page *page)
639{
640 if (free_pages_map)
641 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
642}
643
644static int swsusp_page_is_free(struct page *page)
645{
646 return free_pages_map ?
647 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
648}
649
650void swsusp_unset_page_free(struct page *page)
651{
652 if (free_pages_map)
653 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
654}
655
656static void swsusp_set_page_forbidden(struct page *page)
657{
658 if (forbidden_pages_map)
659 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
660}
661
662int swsusp_page_is_forbidden(struct page *page)
663{
664 return forbidden_pages_map ?
665 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
666}
667
668static void swsusp_unset_page_forbidden(struct page *page)
669{
670 if (forbidden_pages_map)
671 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
672}
673
674/**
675 * mark_nosave_pages - set bits corresponding to the page frames the
676 * contents of which should not be saved in a given bitmap.
677 */
678
679static void mark_nosave_pages(struct memory_bitmap *bm)
680{
681 struct nosave_region *region;
682
683 if (list_empty(&nosave_regions))
684 return;
685
686 list_for_each_entry(region, &nosave_regions, list) {
687 unsigned long pfn;
688
689 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
690 region->start_pfn << PAGE_SHIFT,
691 region->end_pfn << PAGE_SHIFT);
692
693 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
694 if (pfn_valid(pfn)) {
695 /*
696 * It is safe to ignore the result of
697 * mem_bm_set_bit_check() here, since we won't
698 * touch the PFNs for which the error is
699 * returned anyway.
700 */
701 mem_bm_set_bit_check(bm, pfn);
702 }
703 }
704}
705
706/**
707 * create_basic_memory_bitmaps - create bitmaps needed for marking page
708 * frames that should not be saved and free page frames. The pointers
709 * forbidden_pages_map and free_pages_map are only modified if everything
710 * goes well, because we don't want the bits to be used before both bitmaps
711 * are set up.
712 */
713
714int create_basic_memory_bitmaps(void)
715{
716 struct memory_bitmap *bm1, *bm2;
717 int error = 0;
718
719 BUG_ON(forbidden_pages_map || free_pages_map);
720
721 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
722 if (!bm1)
723 return -ENOMEM;
724
725 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
726 if (error)
727 goto Free_first_object;
728
729 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
730 if (!bm2)
731 goto Free_first_bitmap;
732
733 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
734 if (error)
735 goto Free_second_object;
736
737 forbidden_pages_map = bm1;
738 free_pages_map = bm2;
739 mark_nosave_pages(forbidden_pages_map);
740
741 pr_debug("PM: Basic memory bitmaps created\n");
742
743 return 0;
744
745 Free_second_object:
746 kfree(bm2);
747 Free_first_bitmap:
748 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
749 Free_first_object:
750 kfree(bm1);
751 return -ENOMEM;
752}
753
754/**
755 * free_basic_memory_bitmaps - free memory bitmaps allocated by
756 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
757 * so that the bitmaps themselves are not referred to while they are being
758 * freed.
759 */
760
761void free_basic_memory_bitmaps(void)
762{
763 struct memory_bitmap *bm1, *bm2;
764
765 BUG_ON(!(forbidden_pages_map && free_pages_map));
766
767 bm1 = forbidden_pages_map;
768 bm2 = free_pages_map;
769 forbidden_pages_map = NULL;
770 free_pages_map = NULL;
771 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
772 kfree(bm1);
773 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
774 kfree(bm2);
775
776 pr_debug("PM: Basic memory bitmaps freed\n");
777}
778
779/**
780 * snapshot_additional_pages - estimate the number of additional pages
781 * be needed for setting up the suspend image data structures for given
782 * zone (usually the returned value is greater than the exact number)
783 */
784
785unsigned int snapshot_additional_pages(struct zone *zone)
786{
787 unsigned int res;
788
789 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
790 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
791 return 2 * res;
792}
793
794#ifdef CONFIG_HIGHMEM
795/**
796 * count_free_highmem_pages - compute the total number of free highmem
797 * pages, system-wide.
798 */
799
800static unsigned int count_free_highmem_pages(void)
801{
802 struct zone *zone;
803 unsigned int cnt = 0;
804
805 for_each_zone(zone)
806 if (populated_zone(zone) && is_highmem(zone))
807 cnt += zone_page_state(zone, NR_FREE_PAGES);
808
809 return cnt;
810}
811
812/**
813 * saveable_highmem_page - Determine whether a highmem page should be
814 * included in the suspend image.
815 *
816 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
817 * and it isn't a part of a free chunk of pages.
818 */
819
820static struct page *saveable_highmem_page(unsigned long pfn)
821{
822 struct page *page;
823
824 if (!pfn_valid(pfn))
825 return NULL;
826
827 page = pfn_to_page(pfn);
828
829 BUG_ON(!PageHighMem(page));
830
831 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
832 PageReserved(page))
833 return NULL;
834
835 return page;
836}
837
838/**
839 * count_highmem_pages - compute the total number of saveable highmem
840 * pages.
841 */
842
843unsigned int count_highmem_pages(void)
844{
845 struct zone *zone;
846 unsigned int n = 0;
847
848 for_each_zone(zone) {
849 unsigned long pfn, max_zone_pfn;
850
851 if (!is_highmem(zone))
852 continue;
853
854 mark_free_pages(zone);
855 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
856 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
857 if (saveable_highmem_page(pfn))
858 n++;
859 }
860 return n;
861}
862#else
863static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
864#endif /* CONFIG_HIGHMEM */
865
866/**
867 * saveable_page - Determine whether a non-highmem page should be included
868 * in the suspend image.
869 *
870 * We should save the page if it isn't Nosave, and is not in the range
871 * of pages statically defined as 'unsaveable', and it isn't a part of
872 * a free chunk of pages.
873 */
874
875static struct page *saveable_page(unsigned long pfn)
876{
877 struct page *page;
878
879 if (!pfn_valid(pfn))
880 return NULL;
881
882 page = pfn_to_page(pfn);
883
884 BUG_ON(PageHighMem(page));
885
886 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
887 return NULL;
888
889 if (PageReserved(page)
890 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
891 return NULL;
892
893 return page;
894}
895
896/**
897 * count_data_pages - compute the total number of saveable non-highmem
898 * pages.
899 */
900
901unsigned int count_data_pages(void)
902{
903 struct zone *zone;
904 unsigned long pfn, max_zone_pfn;
905 unsigned int n = 0;
906
907 for_each_zone(zone) {
908 if (is_highmem(zone))
909 continue;
910
911 mark_free_pages(zone);
912 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
913 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
914 if(saveable_page(pfn))
915 n++;
916 }
917 return n;
918}
919
920/* This is needed, because copy_page and memcpy are not usable for copying
921 * task structs.
922 */
923static inline void do_copy_page(long *dst, long *src)
924{
925 int n;
926
927 for (n = PAGE_SIZE / sizeof(long); n; n--)
928 *dst++ = *src++;
929}
930
931
932/**
933 * safe_copy_page - check if the page we are going to copy is marked as
934 * present in the kernel page tables (this always is the case if
935 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
936 * kernel_page_present() always returns 'true').
937 */
938static void safe_copy_page(void *dst, struct page *s_page)
939{
940 if (kernel_page_present(s_page)) {
941 do_copy_page(dst, page_address(s_page));
942 } else {
943 kernel_map_pages(s_page, 1, 1);
944 do_copy_page(dst, page_address(s_page));
945 kernel_map_pages(s_page, 1, 0);
946 }
947}
948
949
950#ifdef CONFIG_HIGHMEM
951static inline struct page *
952page_is_saveable(struct zone *zone, unsigned long pfn)
953{
954 return is_highmem(zone) ?
955 saveable_highmem_page(pfn) : saveable_page(pfn);
956}
957
958static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
959{
960 struct page *s_page, *d_page;
961 void *src, *dst;
962
963 s_page = pfn_to_page(src_pfn);
964 d_page = pfn_to_page(dst_pfn);
965 if (PageHighMem(s_page)) {
966 src = kmap_atomic(s_page, KM_USER0);
967 dst = kmap_atomic(d_page, KM_USER1);
968 do_copy_page(dst, src);
969 kunmap_atomic(src, KM_USER0);
970 kunmap_atomic(dst, KM_USER1);
971 } else {
972 if (PageHighMem(d_page)) {
973 /* Page pointed to by src may contain some kernel
974 * data modified by kmap_atomic()
975 */
976 safe_copy_page(buffer, s_page);
977 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
978 memcpy(dst, buffer, PAGE_SIZE);
979 kunmap_atomic(dst, KM_USER0);
980 } else {
981 safe_copy_page(page_address(d_page), s_page);
982 }
983 }
984}
985#else
986#define page_is_saveable(zone, pfn) saveable_page(pfn)
987
988static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989{
990 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
991 pfn_to_page(src_pfn));
992}
993#endif /* CONFIG_HIGHMEM */
994
995static void
996copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
997{
998 struct zone *zone;
999 unsigned long pfn;
1000
1001 for_each_zone(zone) {
1002 unsigned long max_zone_pfn;
1003
1004 mark_free_pages(zone);
1005 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1006 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1007 if (page_is_saveable(zone, pfn))
1008 memory_bm_set_bit(orig_bm, pfn);
1009 }
1010 memory_bm_position_reset(orig_bm);
1011 memory_bm_position_reset(copy_bm);
1012 for(;;) {
1013 pfn = memory_bm_next_pfn(orig_bm);
1014 if (unlikely(pfn == BM_END_OF_MAP))
1015 break;
1016 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1017 }
1018}
1019
1020/* Total number of image pages */
1021static unsigned int nr_copy_pages;
1022/* Number of pages needed for saving the original pfns of the image pages */
1023static unsigned int nr_meta_pages;
1024
1025/**
1026 * swsusp_free - free pages allocated for the suspend.
1027 *
1028 * Suspend pages are alocated before the atomic copy is made, so we
1029 * need to release them after the resume.
1030 */
1031
1032void swsusp_free(void)
1033{
1034 struct zone *zone;
1035 unsigned long pfn, max_zone_pfn;
1036
1037 for_each_zone(zone) {
1038 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1039 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1040 if (pfn_valid(pfn)) {
1041 struct page *page = pfn_to_page(pfn);
1042
1043 if (swsusp_page_is_forbidden(page) &&
1044 swsusp_page_is_free(page)) {
1045 swsusp_unset_page_forbidden(page);
1046 swsusp_unset_page_free(page);
1047 __free_page(page);
1048 }
1049 }
1050 }
1051 nr_copy_pages = 0;
1052 nr_meta_pages = 0;
1053 restore_pblist = NULL;
1054 buffer = NULL;
1055}
1056
1057#ifdef CONFIG_HIGHMEM
1058/**
1059 * count_pages_for_highmem - compute the number of non-highmem pages
1060 * that will be necessary for creating copies of highmem pages.
1061 */
1062
1063static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1064{
1065 unsigned int free_highmem = count_free_highmem_pages();
1066
1067 if (free_highmem >= nr_highmem)
1068 nr_highmem = 0;
1069 else
1070 nr_highmem -= free_highmem;
1071
1072 return nr_highmem;
1073}
1074#else
1075static unsigned int
1076count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1077#endif /* CONFIG_HIGHMEM */
1078
1079/**
1080 * enough_free_mem - Make sure we have enough free memory for the
1081 * snapshot image.
1082 */
1083
1084static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1085{
1086 struct zone *zone;
1087 unsigned int free = 0, meta = 0;
1088
1089 for_each_zone(zone) {
1090 meta += snapshot_additional_pages(zone);
1091 if (!is_highmem(zone))
1092 free += zone_page_state(zone, NR_FREE_PAGES);
1093 }
1094
1095 nr_pages += count_pages_for_highmem(nr_highmem);
1096 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1097 nr_pages, PAGES_FOR_IO, meta, free);
1098
1099 return free > nr_pages + PAGES_FOR_IO + meta;
1100}
1101
1102#ifdef CONFIG_HIGHMEM
1103/**
1104 * get_highmem_buffer - if there are some highmem pages in the suspend
1105 * image, we may need the buffer to copy them and/or load their data.
1106 */
1107
1108static inline int get_highmem_buffer(int safe_needed)
1109{
1110 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1111 return buffer ? 0 : -ENOMEM;
1112}
1113
1114/**
1115 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1116 * Try to allocate as many pages as needed, but if the number of free
1117 * highmem pages is lesser than that, allocate them all.
1118 */
1119
1120static inline unsigned int
1121alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1122{
1123 unsigned int to_alloc = count_free_highmem_pages();
1124
1125 if (to_alloc > nr_highmem)
1126 to_alloc = nr_highmem;
1127
1128 nr_highmem -= to_alloc;
1129 while (to_alloc-- > 0) {
1130 struct page *page;
1131
1132 page = alloc_image_page(__GFP_HIGHMEM);
1133 memory_bm_set_bit(bm, page_to_pfn(page));
1134 }
1135 return nr_highmem;
1136}
1137#else
1138static inline int get_highmem_buffer(int safe_needed) { return 0; }
1139
1140static inline unsigned int
1141alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1142#endif /* CONFIG_HIGHMEM */
1143
1144/**
1145 * swsusp_alloc - allocate memory for the suspend image
1146 *
1147 * We first try to allocate as many highmem pages as there are
1148 * saveable highmem pages in the system. If that fails, we allocate
1149 * non-highmem pages for the copies of the remaining highmem ones.
1150 *
1151 * In this approach it is likely that the copies of highmem pages will
1152 * also be located in the high memory, because of the way in which
1153 * copy_data_pages() works.
1154 */
1155
1156static int
1157swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1158 unsigned int nr_pages, unsigned int nr_highmem)
1159{
1160 int error;
1161
1162 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1163 if (error)
1164 goto Free;
1165
1166 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1167 if (error)
1168 goto Free;
1169
1170 if (nr_highmem > 0) {
1171 error = get_highmem_buffer(PG_ANY);
1172 if (error)
1173 goto Free;
1174
1175 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1176 }
1177 while (nr_pages-- > 0) {
1178 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1179
1180 if (!page)
1181 goto Free;
1182
1183 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1184 }
1185 return 0;
1186
1187 Free:
1188 swsusp_free();
1189 return -ENOMEM;
1190}
1191
1192/* Memory bitmap used for marking saveable pages (during suspend) or the
1193 * suspend image pages (during resume)
1194 */
1195static struct memory_bitmap orig_bm;
1196/* Memory bitmap used on suspend for marking allocated pages that will contain
1197 * the copies of saveable pages. During resume it is initially used for
1198 * marking the suspend image pages, but then its set bits are duplicated in
1199 * @orig_bm and it is released. Next, on systems with high memory, it may be
1200 * used for marking "safe" highmem pages, but it has to be reinitialized for
1201 * this purpose.
1202 */
1203static struct memory_bitmap copy_bm;
1204
1205asmlinkage int swsusp_save(void)
1206{
1207 unsigned int nr_pages, nr_highmem;
1208
1209 printk(KERN_INFO "PM: Creating hibernation image: \n");
1210
1211 drain_local_pages(NULL);
1212 nr_pages = count_data_pages();
1213 nr_highmem = count_highmem_pages();
1214 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1215
1216 if (!enough_free_mem(nr_pages, nr_highmem)) {
1217 printk(KERN_ERR "PM: Not enough free memory\n");
1218 return -ENOMEM;
1219 }
1220
1221 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1222 printk(KERN_ERR "PM: Memory allocation failed\n");
1223 return -ENOMEM;
1224 }
1225
1226 /* During allocating of suspend pagedir, new cold pages may appear.
1227 * Kill them.
1228 */
1229 drain_local_pages(NULL);
1230 copy_data_pages(&copy_bm, &orig_bm);
1231
1232 /*
1233 * End of critical section. From now on, we can write to memory,
1234 * but we should not touch disk. This specially means we must _not_
1235 * touch swap space! Except we must write out our image of course.
1236 */
1237
1238 nr_pages += nr_highmem;
1239 nr_copy_pages = nr_pages;
1240 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1241
1242 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1243 nr_pages);
1244
1245 return 0;
1246}
1247
1248#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1249static int init_header_complete(struct swsusp_info *info)
1250{
1251 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1252 info->version_code = LINUX_VERSION_CODE;
1253 return 0;
1254}
1255
1256static char *check_image_kernel(struct swsusp_info *info)
1257{
1258 if (info->version_code != LINUX_VERSION_CODE)
1259 return "kernel version";
1260 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1261 return "system type";
1262 if (strcmp(info->uts.release,init_utsname()->release))
1263 return "kernel release";
1264 if (strcmp(info->uts.version,init_utsname()->version))
1265 return "version";
1266 if (strcmp(info->uts.machine,init_utsname()->machine))
1267 return "machine";
1268 return NULL;
1269}
1270#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1271
1272unsigned long snapshot_get_image_size(void)
1273{
1274 return nr_copy_pages + nr_meta_pages + 1;
1275}
1276
1277static int init_header(struct swsusp_info *info)
1278{
1279 memset(info, 0, sizeof(struct swsusp_info));
1280 info->num_physpages = num_physpages;
1281 info->image_pages = nr_copy_pages;
1282 info->pages = snapshot_get_image_size();
1283 info->size = info->pages;
1284 info->size <<= PAGE_SHIFT;
1285 return init_header_complete(info);
1286}
1287
1288/**
1289 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1290 * are stored in the array @buf[] (1 page at a time)
1291 */
1292
1293static inline void
1294pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1295{
1296 int j;
1297
1298 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1299 buf[j] = memory_bm_next_pfn(bm);
1300 if (unlikely(buf[j] == BM_END_OF_MAP))
1301 break;
1302 }
1303}
1304
1305/**
1306 * snapshot_read_next - used for reading the system memory snapshot.
1307 *
1308 * On the first call to it @handle should point to a zeroed
1309 * snapshot_handle structure. The structure gets updated and a pointer
1310 * to it should be passed to this function every next time.
1311 *
1312 * The @count parameter should contain the number of bytes the caller
1313 * wants to read from the snapshot. It must not be zero.
1314 *
1315 * On success the function returns a positive number. Then, the caller
1316 * is allowed to read up to the returned number of bytes from the memory
1317 * location computed by the data_of() macro. The number returned
1318 * may be smaller than @count, but this only happens if the read would
1319 * cross a page boundary otherwise.
1320 *
1321 * The function returns 0 to indicate the end of data stream condition,
1322 * and a negative number is returned on error. In such cases the
1323 * structure pointed to by @handle is not updated and should not be used
1324 * any more.
1325 */
1326
1327int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1328{
1329 if (handle->cur > nr_meta_pages + nr_copy_pages)
1330 return 0;
1331
1332 if (!buffer) {
1333 /* This makes the buffer be freed by swsusp_free() */
1334 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1335 if (!buffer)
1336 return -ENOMEM;
1337 }
1338 if (!handle->offset) {
1339 int error;
1340
1341 error = init_header((struct swsusp_info *)buffer);
1342 if (error)
1343 return error;
1344 handle->buffer = buffer;
1345 memory_bm_position_reset(&orig_bm);
1346 memory_bm_position_reset(&copy_bm);
1347 }
1348 if (handle->prev < handle->cur) {
1349 if (handle->cur <= nr_meta_pages) {
1350 memset(buffer, 0, PAGE_SIZE);
1351 pack_pfns(buffer, &orig_bm);
1352 } else {
1353 struct page *page;
1354
1355 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1356 if (PageHighMem(page)) {
1357 /* Highmem pages are copied to the buffer,
1358 * because we can't return with a kmapped
1359 * highmem page (we may not be called again).
1360 */
1361 void *kaddr;
1362
1363 kaddr = kmap_atomic(page, KM_USER0);
1364 memcpy(buffer, kaddr, PAGE_SIZE);
1365 kunmap_atomic(kaddr, KM_USER0);
1366 handle->buffer = buffer;
1367 } else {
1368 handle->buffer = page_address(page);
1369 }
1370 }
1371 handle->prev = handle->cur;
1372 }
1373 handle->buf_offset = handle->cur_offset;
1374 if (handle->cur_offset + count >= PAGE_SIZE) {
1375 count = PAGE_SIZE - handle->cur_offset;
1376 handle->cur_offset = 0;
1377 handle->cur++;
1378 } else {
1379 handle->cur_offset += count;
1380 }
1381 handle->offset += count;
1382 return count;
1383}
1384
1385/**
1386 * mark_unsafe_pages - mark the pages that cannot be used for storing
1387 * the image during resume, because they conflict with the pages that
1388 * had been used before suspend
1389 */
1390
1391static int mark_unsafe_pages(struct memory_bitmap *bm)
1392{
1393 struct zone *zone;
1394 unsigned long pfn, max_zone_pfn;
1395
1396 /* Clear page flags */
1397 for_each_zone(zone) {
1398 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1399 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1400 if (pfn_valid(pfn))
1401 swsusp_unset_page_free(pfn_to_page(pfn));
1402 }
1403
1404 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1405 memory_bm_position_reset(bm);
1406 do {
1407 pfn = memory_bm_next_pfn(bm);
1408 if (likely(pfn != BM_END_OF_MAP)) {
1409 if (likely(pfn_valid(pfn)))
1410 swsusp_set_page_free(pfn_to_page(pfn));
1411 else
1412 return -EFAULT;
1413 }
1414 } while (pfn != BM_END_OF_MAP);
1415
1416 allocated_unsafe_pages = 0;
1417
1418 return 0;
1419}
1420
1421static void
1422duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1423{
1424 unsigned long pfn;
1425
1426 memory_bm_position_reset(src);
1427 pfn = memory_bm_next_pfn(src);
1428 while (pfn != BM_END_OF_MAP) {
1429 memory_bm_set_bit(dst, pfn);
1430 pfn = memory_bm_next_pfn(src);
1431 }
1432}
1433
1434static int check_header(struct swsusp_info *info)
1435{
1436 char *reason;
1437
1438 reason = check_image_kernel(info);
1439 if (!reason && info->num_physpages != num_physpages)
1440 reason = "memory size";
1441 if (reason) {
1442 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1443 return -EPERM;
1444 }
1445 return 0;
1446}
1447
1448/**
1449 * load header - check the image header and copy data from it
1450 */
1451
1452static int
1453load_header(struct swsusp_info *info)
1454{
1455 int error;
1456
1457 restore_pblist = NULL;
1458 error = check_header(info);
1459 if (!error) {
1460 nr_copy_pages = info->image_pages;
1461 nr_meta_pages = info->pages - info->image_pages - 1;
1462 }
1463 return error;
1464}
1465
1466/**
1467 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1468 * the corresponding bit in the memory bitmap @bm
1469 */
1470static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1471{
1472 int j;
1473
1474 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1475 if (unlikely(buf[j] == BM_END_OF_MAP))
1476 break;
1477
1478 if (memory_bm_pfn_present(bm, buf[j]))
1479 memory_bm_set_bit(bm, buf[j]);
1480 else
1481 return -EFAULT;
1482 }
1483
1484 return 0;
1485}
1486
1487/* List of "safe" pages that may be used to store data loaded from the suspend
1488 * image
1489 */
1490static struct linked_page *safe_pages_list;
1491
1492#ifdef CONFIG_HIGHMEM
1493/* struct highmem_pbe is used for creating the list of highmem pages that
1494 * should be restored atomically during the resume from disk, because the page
1495 * frames they have occupied before the suspend are in use.
1496 */
1497struct highmem_pbe {
1498 struct page *copy_page; /* data is here now */
1499 struct page *orig_page; /* data was here before the suspend */
1500 struct highmem_pbe *next;
1501};
1502
1503/* List of highmem PBEs needed for restoring the highmem pages that were
1504 * allocated before the suspend and included in the suspend image, but have
1505 * also been allocated by the "resume" kernel, so their contents cannot be
1506 * written directly to their "original" page frames.
1507 */
1508static struct highmem_pbe *highmem_pblist;
1509
1510/**
1511 * count_highmem_image_pages - compute the number of highmem pages in the
1512 * suspend image. The bits in the memory bitmap @bm that correspond to the
1513 * image pages are assumed to be set.
1514 */
1515
1516static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1517{
1518 unsigned long pfn;
1519 unsigned int cnt = 0;
1520
1521 memory_bm_position_reset(bm);
1522 pfn = memory_bm_next_pfn(bm);
1523 while (pfn != BM_END_OF_MAP) {
1524 if (PageHighMem(pfn_to_page(pfn)))
1525 cnt++;
1526
1527 pfn = memory_bm_next_pfn(bm);
1528 }
1529 return cnt;
1530}
1531
1532/**
1533 * prepare_highmem_image - try to allocate as many highmem pages as
1534 * there are highmem image pages (@nr_highmem_p points to the variable
1535 * containing the number of highmem image pages). The pages that are
1536 * "safe" (ie. will not be overwritten when the suspend image is
1537 * restored) have the corresponding bits set in @bm (it must be
1538 * unitialized).
1539 *
1540 * NOTE: This function should not be called if there are no highmem
1541 * image pages.
1542 */
1543
1544static unsigned int safe_highmem_pages;
1545
1546static struct memory_bitmap *safe_highmem_bm;
1547
1548static int
1549prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1550{
1551 unsigned int to_alloc;
1552
1553 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1554 return -ENOMEM;
1555
1556 if (get_highmem_buffer(PG_SAFE))
1557 return -ENOMEM;
1558
1559 to_alloc = count_free_highmem_pages();
1560 if (to_alloc > *nr_highmem_p)
1561 to_alloc = *nr_highmem_p;
1562 else
1563 *nr_highmem_p = to_alloc;
1564
1565 safe_highmem_pages = 0;
1566 while (to_alloc-- > 0) {
1567 struct page *page;
1568
1569 page = alloc_page(__GFP_HIGHMEM);
1570 if (!swsusp_page_is_free(page)) {
1571 /* The page is "safe", set its bit the bitmap */
1572 memory_bm_set_bit(bm, page_to_pfn(page));
1573 safe_highmem_pages++;
1574 }
1575 /* Mark the page as allocated */
1576 swsusp_set_page_forbidden(page);
1577 swsusp_set_page_free(page);
1578 }
1579 memory_bm_position_reset(bm);
1580 safe_highmem_bm = bm;
1581 return 0;
1582}
1583
1584/**
1585 * get_highmem_page_buffer - for given highmem image page find the buffer
1586 * that suspend_write_next() should set for its caller to write to.
1587 *
1588 * If the page is to be saved to its "original" page frame or a copy of
1589 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1590 * the copy of the page is to be made in normal memory, so the address of
1591 * the copy is returned.
1592 *
1593 * If @buffer is returned, the caller of suspend_write_next() will write
1594 * the page's contents to @buffer, so they will have to be copied to the
1595 * right location on the next call to suspend_write_next() and it is done
1596 * with the help of copy_last_highmem_page(). For this purpose, if
1597 * @buffer is returned, @last_highmem page is set to the page to which
1598 * the data will have to be copied from @buffer.
1599 */
1600
1601static struct page *last_highmem_page;
1602
1603static void *
1604get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1605{
1606 struct highmem_pbe *pbe;
1607 void *kaddr;
1608
1609 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1610 /* We have allocated the "original" page frame and we can
1611 * use it directly to store the loaded page.
1612 */
1613 last_highmem_page = page;
1614 return buffer;
1615 }
1616 /* The "original" page frame has not been allocated and we have to
1617 * use a "safe" page frame to store the loaded page.
1618 */
1619 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1620 if (!pbe) {
1621 swsusp_free();
1622 return ERR_PTR(-ENOMEM);
1623 }
1624 pbe->orig_page = page;
1625 if (safe_highmem_pages > 0) {
1626 struct page *tmp;
1627
1628 /* Copy of the page will be stored in high memory */
1629 kaddr = buffer;
1630 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1631 safe_highmem_pages--;
1632 last_highmem_page = tmp;
1633 pbe->copy_page = tmp;
1634 } else {
1635 /* Copy of the page will be stored in normal memory */
1636 kaddr = safe_pages_list;
1637 safe_pages_list = safe_pages_list->next;
1638 pbe->copy_page = virt_to_page(kaddr);
1639 }
1640 pbe->next = highmem_pblist;
1641 highmem_pblist = pbe;
1642 return kaddr;
1643}
1644
1645/**
1646 * copy_last_highmem_page - copy the contents of a highmem image from
1647 * @buffer, where the caller of snapshot_write_next() has place them,
1648 * to the right location represented by @last_highmem_page .
1649 */
1650
1651static void copy_last_highmem_page(void)
1652{
1653 if (last_highmem_page) {
1654 void *dst;
1655
1656 dst = kmap_atomic(last_highmem_page, KM_USER0);
1657 memcpy(dst, buffer, PAGE_SIZE);
1658 kunmap_atomic(dst, KM_USER0);
1659 last_highmem_page = NULL;
1660 }
1661}
1662
1663static inline int last_highmem_page_copied(void)
1664{
1665 return !last_highmem_page;
1666}
1667
1668static inline void free_highmem_data(void)
1669{
1670 if (safe_highmem_bm)
1671 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1672
1673 if (buffer)
1674 free_image_page(buffer, PG_UNSAFE_CLEAR);
1675}
1676#else
1677static inline int get_safe_write_buffer(void) { return 0; }
1678
1679static unsigned int
1680count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1681
1682static inline int
1683prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1684{
1685 return 0;
1686}
1687
1688static inline void *
1689get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1690{
1691 return ERR_PTR(-EINVAL);
1692}
1693
1694static inline void copy_last_highmem_page(void) {}
1695static inline int last_highmem_page_copied(void) { return 1; }
1696static inline void free_highmem_data(void) {}
1697#endif /* CONFIG_HIGHMEM */
1698
1699/**
1700 * prepare_image - use the memory bitmap @bm to mark the pages that will
1701 * be overwritten in the process of restoring the system memory state
1702 * from the suspend image ("unsafe" pages) and allocate memory for the
1703 * image.
1704 *
1705 * The idea is to allocate a new memory bitmap first and then allocate
1706 * as many pages as needed for the image data, but not to assign these
1707 * pages to specific tasks initially. Instead, we just mark them as
1708 * allocated and create a lists of "safe" pages that will be used
1709 * later. On systems with high memory a list of "safe" highmem pages is
1710 * also created.
1711 */
1712
1713#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1714
1715static int
1716prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1717{
1718 unsigned int nr_pages, nr_highmem;
1719 struct linked_page *sp_list, *lp;
1720 int error;
1721
1722 /* If there is no highmem, the buffer will not be necessary */
1723 free_image_page(buffer, PG_UNSAFE_CLEAR);
1724 buffer = NULL;
1725
1726 nr_highmem = count_highmem_image_pages(bm);
1727 error = mark_unsafe_pages(bm);
1728 if (error)
1729 goto Free;
1730
1731 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1732 if (error)
1733 goto Free;
1734
1735 duplicate_memory_bitmap(new_bm, bm);
1736 memory_bm_free(bm, PG_UNSAFE_KEEP);
1737 if (nr_highmem > 0) {
1738 error = prepare_highmem_image(bm, &nr_highmem);
1739 if (error)
1740 goto Free;
1741 }
1742 /* Reserve some safe pages for potential later use.
1743 *
1744 * NOTE: This way we make sure there will be enough safe pages for the
1745 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1746 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1747 */
1748 sp_list = NULL;
1749 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1750 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1751 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1752 while (nr_pages > 0) {
1753 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1754 if (!lp) {
1755 error = -ENOMEM;
1756 goto Free;
1757 }
1758 lp->next = sp_list;
1759 sp_list = lp;
1760 nr_pages--;
1761 }
1762 /* Preallocate memory for the image */
1763 safe_pages_list = NULL;
1764 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1765 while (nr_pages > 0) {
1766 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1767 if (!lp) {
1768 error = -ENOMEM;
1769 goto Free;
1770 }
1771 if (!swsusp_page_is_free(virt_to_page(lp))) {
1772 /* The page is "safe", add it to the list */
1773 lp->next = safe_pages_list;
1774 safe_pages_list = lp;
1775 }
1776 /* Mark the page as allocated */
1777 swsusp_set_page_forbidden(virt_to_page(lp));
1778 swsusp_set_page_free(virt_to_page(lp));
1779 nr_pages--;
1780 }
1781 /* Free the reserved safe pages so that chain_alloc() can use them */
1782 while (sp_list) {
1783 lp = sp_list->next;
1784 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1785 sp_list = lp;
1786 }
1787 return 0;
1788
1789 Free:
1790 swsusp_free();
1791 return error;
1792}
1793
1794/**
1795 * get_buffer - compute the address that snapshot_write_next() should
1796 * set for its caller to write to.
1797 */
1798
1799static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1800{
1801 struct pbe *pbe;
1802 struct page *page;
1803 unsigned long pfn = memory_bm_next_pfn(bm);
1804
1805 if (pfn == BM_END_OF_MAP)
1806 return ERR_PTR(-EFAULT);
1807
1808 page = pfn_to_page(pfn);
1809 if (PageHighMem(page))
1810 return get_highmem_page_buffer(page, ca);
1811
1812 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1813 /* We have allocated the "original" page frame and we can
1814 * use it directly to store the loaded page.
1815 */
1816 return page_address(page);
1817
1818 /* The "original" page frame has not been allocated and we have to
1819 * use a "safe" page frame to store the loaded page.
1820 */
1821 pbe = chain_alloc(ca, sizeof(struct pbe));
1822 if (!pbe) {
1823 swsusp_free();
1824 return ERR_PTR(-ENOMEM);
1825 }
1826 pbe->orig_address = page_address(page);
1827 pbe->address = safe_pages_list;
1828 safe_pages_list = safe_pages_list->next;
1829 pbe->next = restore_pblist;
1830 restore_pblist = pbe;
1831 return pbe->address;
1832}
1833
1834/**
1835 * snapshot_write_next - used for writing the system memory snapshot.
1836 *
1837 * On the first call to it @handle should point to a zeroed
1838 * snapshot_handle structure. The structure gets updated and a pointer
1839 * to it should be passed to this function every next time.
1840 *
1841 * The @count parameter should contain the number of bytes the caller
1842 * wants to write to the image. It must not be zero.
1843 *
1844 * On success the function returns a positive number. Then, the caller
1845 * is allowed to write up to the returned number of bytes to the memory
1846 * location computed by the data_of() macro. The number returned
1847 * may be smaller than @count, but this only happens if the write would
1848 * cross a page boundary otherwise.
1849 *
1850 * The function returns 0 to indicate the "end of file" condition,
1851 * and a negative number is returned on error. In such cases the
1852 * structure pointed to by @handle is not updated and should not be used
1853 * any more.
1854 */
1855
1856int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1857{
1858 static struct chain_allocator ca;
1859 int error = 0;
1860
1861 /* Check if we have already loaded the entire image */
1862 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1863 return 0;
1864
1865 if (handle->offset == 0) {
1866 if (!buffer)
1867 /* This makes the buffer be freed by swsusp_free() */
1868 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1869
1870 if (!buffer)
1871 return -ENOMEM;
1872
1873 handle->buffer = buffer;
1874 }
1875 handle->sync_read = 1;
1876 if (handle->prev < handle->cur) {
1877 if (handle->prev == 0) {
1878 error = load_header(buffer);
1879 if (error)
1880 return error;
1881
1882 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1883 if (error)
1884 return error;
1885
1886 } else if (handle->prev <= nr_meta_pages) {
1887 error = unpack_orig_pfns(buffer, &copy_bm);
1888 if (error)
1889 return error;
1890
1891 if (handle->prev == nr_meta_pages) {
1892 error = prepare_image(&orig_bm, &copy_bm);
1893 if (error)
1894 return error;
1895
1896 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1897 memory_bm_position_reset(&orig_bm);
1898 restore_pblist = NULL;
1899 handle->buffer = get_buffer(&orig_bm, &ca);
1900 handle->sync_read = 0;
1901 if (IS_ERR(handle->buffer))
1902 return PTR_ERR(handle->buffer);
1903 }
1904 } else {
1905 copy_last_highmem_page();
1906 handle->buffer = get_buffer(&orig_bm, &ca);
1907 if (IS_ERR(handle->buffer))
1908 return PTR_ERR(handle->buffer);
1909 if (handle->buffer != buffer)
1910 handle->sync_read = 0;
1911 }
1912 handle->prev = handle->cur;
1913 }
1914 handle->buf_offset = handle->cur_offset;
1915 if (handle->cur_offset + count >= PAGE_SIZE) {
1916 count = PAGE_SIZE - handle->cur_offset;
1917 handle->cur_offset = 0;
1918 handle->cur++;
1919 } else {
1920 handle->cur_offset += count;
1921 }
1922 handle->offset += count;
1923 return count;
1924}
1925
1926/**
1927 * snapshot_write_finalize - must be called after the last call to
1928 * snapshot_write_next() in case the last page in the image happens
1929 * to be a highmem page and its contents should be stored in the
1930 * highmem. Additionally, it releases the memory that will not be
1931 * used any more.
1932 */
1933
1934void snapshot_write_finalize(struct snapshot_handle *handle)
1935{
1936 copy_last_highmem_page();
1937 /* Free only if we have loaded the image entirely */
1938 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1939 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1940 free_highmem_data();
1941 }
1942}
1943
1944int snapshot_image_loaded(struct snapshot_handle *handle)
1945{
1946 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1947 handle->cur <= nr_meta_pages + nr_copy_pages);
1948}
1949
1950#ifdef CONFIG_HIGHMEM
1951/* Assumes that @buf is ready and points to a "safe" page */
1952static inline void
1953swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1954{
1955 void *kaddr1, *kaddr2;
1956
1957 kaddr1 = kmap_atomic(p1, KM_USER0);
1958 kaddr2 = kmap_atomic(p2, KM_USER1);
1959 memcpy(buf, kaddr1, PAGE_SIZE);
1960 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1961 memcpy(kaddr2, buf, PAGE_SIZE);
1962 kunmap_atomic(kaddr1, KM_USER0);
1963 kunmap_atomic(kaddr2, KM_USER1);
1964}
1965
1966/**
1967 * restore_highmem - for each highmem page that was allocated before
1968 * the suspend and included in the suspend image, and also has been
1969 * allocated by the "resume" kernel swap its current (ie. "before
1970 * resume") contents with the previous (ie. "before suspend") one.
1971 *
1972 * If the resume eventually fails, we can call this function once
1973 * again and restore the "before resume" highmem state.
1974 */
1975
1976int restore_highmem(void)
1977{
1978 struct highmem_pbe *pbe = highmem_pblist;
1979 void *buf;
1980
1981 if (!pbe)
1982 return 0;
1983
1984 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1985 if (!buf)
1986 return -ENOMEM;
1987
1988 while (pbe) {
1989 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1990 pbe = pbe->next;
1991 }
1992 free_image_page(buf, PG_UNSAFE_CLEAR);
1993 return 0;
1994}
1995#endif /* CONFIG_HIGHMEM */