block: rename bio bi_rw to bi_opf
[linux-2.6-block.git] / kernel / panic.c
... / ...
CommitLineData
1/*
2 * linux/kernel/panic.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
10 */
11#include <linux/debug_locks.h>
12#include <linux/interrupt.h>
13#include <linux/kmsg_dump.h>
14#include <linux/kallsyms.h>
15#include <linux/notifier.h>
16#include <linux/module.h>
17#include <linux/random.h>
18#include <linux/ftrace.h>
19#include <linux/reboot.h>
20#include <linux/delay.h>
21#include <linux/kexec.h>
22#include <linux/sched.h>
23#include <linux/sysrq.h>
24#include <linux/init.h>
25#include <linux/nmi.h>
26#include <linux/console.h>
27#include <linux/bug.h>
28
29#define PANIC_TIMER_STEP 100
30#define PANIC_BLINK_SPD 18
31
32int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
33static unsigned long tainted_mask;
34static int pause_on_oops;
35static int pause_on_oops_flag;
36static DEFINE_SPINLOCK(pause_on_oops_lock);
37bool crash_kexec_post_notifiers;
38int panic_on_warn __read_mostly;
39
40int panic_timeout = CONFIG_PANIC_TIMEOUT;
41EXPORT_SYMBOL_GPL(panic_timeout);
42
43ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
44
45EXPORT_SYMBOL(panic_notifier_list);
46
47static long no_blink(int state)
48{
49 return 0;
50}
51
52/* Returns how long it waited in ms */
53long (*panic_blink)(int state);
54EXPORT_SYMBOL(panic_blink);
55
56/*
57 * Stop ourself in panic -- architecture code may override this
58 */
59void __weak panic_smp_self_stop(void)
60{
61 while (1)
62 cpu_relax();
63}
64
65/*
66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
67 * may override this to prepare for crash dumping, e.g. save regs info.
68 */
69void __weak nmi_panic_self_stop(struct pt_regs *regs)
70{
71 panic_smp_self_stop();
72}
73
74atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
75
76/*
77 * A variant of panic() called from NMI context. We return if we've already
78 * panicked on this CPU. If another CPU already panicked, loop in
79 * nmi_panic_self_stop() which can provide architecture dependent code such
80 * as saving register state for crash dump.
81 */
82void nmi_panic(struct pt_regs *regs, const char *msg)
83{
84 int old_cpu, cpu;
85
86 cpu = raw_smp_processor_id();
87 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
88
89 if (old_cpu == PANIC_CPU_INVALID)
90 panic("%s", msg);
91 else if (old_cpu != cpu)
92 nmi_panic_self_stop(regs);
93}
94EXPORT_SYMBOL(nmi_panic);
95
96/**
97 * panic - halt the system
98 * @fmt: The text string to print
99 *
100 * Display a message, then perform cleanups.
101 *
102 * This function never returns.
103 */
104void panic(const char *fmt, ...)
105{
106 static char buf[1024];
107 va_list args;
108 long i, i_next = 0;
109 int state = 0;
110 int old_cpu, this_cpu;
111 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
112
113 /*
114 * Disable local interrupts. This will prevent panic_smp_self_stop
115 * from deadlocking the first cpu that invokes the panic, since
116 * there is nothing to prevent an interrupt handler (that runs
117 * after setting panic_cpu) from invoking panic() again.
118 */
119 local_irq_disable();
120
121 /*
122 * It's possible to come here directly from a panic-assertion and
123 * not have preempt disabled. Some functions called from here want
124 * preempt to be disabled. No point enabling it later though...
125 *
126 * Only one CPU is allowed to execute the panic code from here. For
127 * multiple parallel invocations of panic, all other CPUs either
128 * stop themself or will wait until they are stopped by the 1st CPU
129 * with smp_send_stop().
130 *
131 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
132 * comes here, so go ahead.
133 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
134 * panic_cpu to this CPU. In this case, this is also the 1st CPU.
135 */
136 this_cpu = raw_smp_processor_id();
137 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
138
139 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
140 panic_smp_self_stop();
141
142 console_verbose();
143 bust_spinlocks(1);
144 va_start(args, fmt);
145 vsnprintf(buf, sizeof(buf), fmt, args);
146 va_end(args);
147 pr_emerg("Kernel panic - not syncing: %s\n", buf);
148#ifdef CONFIG_DEBUG_BUGVERBOSE
149 /*
150 * Avoid nested stack-dumping if a panic occurs during oops processing
151 */
152 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
153 dump_stack();
154#endif
155
156 /*
157 * If we have crashed and we have a crash kernel loaded let it handle
158 * everything else.
159 * If we want to run this after calling panic_notifiers, pass
160 * the "crash_kexec_post_notifiers" option to the kernel.
161 *
162 * Bypass the panic_cpu check and call __crash_kexec directly.
163 */
164 if (!_crash_kexec_post_notifiers) {
165 printk_nmi_flush_on_panic();
166 __crash_kexec(NULL);
167 }
168
169 /*
170 * Note smp_send_stop is the usual smp shutdown function, which
171 * unfortunately means it may not be hardened to work in a panic
172 * situation.
173 */
174 smp_send_stop();
175
176 /*
177 * Run any panic handlers, including those that might need to
178 * add information to the kmsg dump output.
179 */
180 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
181
182 /* Call flush even twice. It tries harder with a single online CPU */
183 printk_nmi_flush_on_panic();
184 kmsg_dump(KMSG_DUMP_PANIC);
185
186 /*
187 * If you doubt kdump always works fine in any situation,
188 * "crash_kexec_post_notifiers" offers you a chance to run
189 * panic_notifiers and dumping kmsg before kdump.
190 * Note: since some panic_notifiers can make crashed kernel
191 * more unstable, it can increase risks of the kdump failure too.
192 *
193 * Bypass the panic_cpu check and call __crash_kexec directly.
194 */
195 if (_crash_kexec_post_notifiers)
196 __crash_kexec(NULL);
197
198 bust_spinlocks(0);
199
200 /*
201 * We may have ended up stopping the CPU holding the lock (in
202 * smp_send_stop()) while still having some valuable data in the console
203 * buffer. Try to acquire the lock then release it regardless of the
204 * result. The release will also print the buffers out. Locks debug
205 * should be disabled to avoid reporting bad unlock balance when
206 * panic() is not being callled from OOPS.
207 */
208 debug_locks_off();
209 console_flush_on_panic();
210
211 if (!panic_blink)
212 panic_blink = no_blink;
213
214 if (panic_timeout > 0) {
215 /*
216 * Delay timeout seconds before rebooting the machine.
217 * We can't use the "normal" timers since we just panicked.
218 */
219 pr_emerg("Rebooting in %d seconds..", panic_timeout);
220
221 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
222 touch_nmi_watchdog();
223 if (i >= i_next) {
224 i += panic_blink(state ^= 1);
225 i_next = i + 3600 / PANIC_BLINK_SPD;
226 }
227 mdelay(PANIC_TIMER_STEP);
228 }
229 }
230 if (panic_timeout != 0) {
231 /*
232 * This will not be a clean reboot, with everything
233 * shutting down. But if there is a chance of
234 * rebooting the system it will be rebooted.
235 */
236 emergency_restart();
237 }
238#ifdef __sparc__
239 {
240 extern int stop_a_enabled;
241 /* Make sure the user can actually press Stop-A (L1-A) */
242 stop_a_enabled = 1;
243 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
244 }
245#endif
246#if defined(CONFIG_S390)
247 {
248 unsigned long caller;
249
250 caller = (unsigned long)__builtin_return_address(0);
251 disabled_wait(caller);
252 }
253#endif
254 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
255 local_irq_enable();
256 for (i = 0; ; i += PANIC_TIMER_STEP) {
257 touch_softlockup_watchdog();
258 if (i >= i_next) {
259 i += panic_blink(state ^= 1);
260 i_next = i + 3600 / PANIC_BLINK_SPD;
261 }
262 mdelay(PANIC_TIMER_STEP);
263 }
264}
265
266EXPORT_SYMBOL(panic);
267
268
269struct tnt {
270 u8 bit;
271 char true;
272 char false;
273};
274
275static const struct tnt tnts[] = {
276 { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
277 { TAINT_FORCED_MODULE, 'F', ' ' },
278 { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' },
279 { TAINT_FORCED_RMMOD, 'R', ' ' },
280 { TAINT_MACHINE_CHECK, 'M', ' ' },
281 { TAINT_BAD_PAGE, 'B', ' ' },
282 { TAINT_USER, 'U', ' ' },
283 { TAINT_DIE, 'D', ' ' },
284 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
285 { TAINT_WARN, 'W', ' ' },
286 { TAINT_CRAP, 'C', ' ' },
287 { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' },
288 { TAINT_OOT_MODULE, 'O', ' ' },
289 { TAINT_UNSIGNED_MODULE, 'E', ' ' },
290 { TAINT_SOFTLOCKUP, 'L', ' ' },
291 { TAINT_LIVEPATCH, 'K', ' ' },
292};
293
294/**
295 * print_tainted - return a string to represent the kernel taint state.
296 *
297 * 'P' - Proprietary module has been loaded.
298 * 'F' - Module has been forcibly loaded.
299 * 'S' - SMP with CPUs not designed for SMP.
300 * 'R' - User forced a module unload.
301 * 'M' - System experienced a machine check exception.
302 * 'B' - System has hit bad_page.
303 * 'U' - Userspace-defined naughtiness.
304 * 'D' - Kernel has oopsed before
305 * 'A' - ACPI table overridden.
306 * 'W' - Taint on warning.
307 * 'C' - modules from drivers/staging are loaded.
308 * 'I' - Working around severe firmware bug.
309 * 'O' - Out-of-tree module has been loaded.
310 * 'E' - Unsigned module has been loaded.
311 * 'L' - A soft lockup has previously occurred.
312 * 'K' - Kernel has been live patched.
313 *
314 * The string is overwritten by the next call to print_tainted().
315 */
316const char *print_tainted(void)
317{
318 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
319
320 if (tainted_mask) {
321 char *s;
322 int i;
323
324 s = buf + sprintf(buf, "Tainted: ");
325 for (i = 0; i < ARRAY_SIZE(tnts); i++) {
326 const struct tnt *t = &tnts[i];
327 *s++ = test_bit(t->bit, &tainted_mask) ?
328 t->true : t->false;
329 }
330 *s = 0;
331 } else
332 snprintf(buf, sizeof(buf), "Not tainted");
333
334 return buf;
335}
336
337int test_taint(unsigned flag)
338{
339 return test_bit(flag, &tainted_mask);
340}
341EXPORT_SYMBOL(test_taint);
342
343unsigned long get_taint(void)
344{
345 return tainted_mask;
346}
347
348/**
349 * add_taint: add a taint flag if not already set.
350 * @flag: one of the TAINT_* constants.
351 * @lockdep_ok: whether lock debugging is still OK.
352 *
353 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
354 * some notewortht-but-not-corrupting cases, it can be set to true.
355 */
356void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
357{
358 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
359 pr_warn("Disabling lock debugging due to kernel taint\n");
360
361 set_bit(flag, &tainted_mask);
362}
363EXPORT_SYMBOL(add_taint);
364
365static void spin_msec(int msecs)
366{
367 int i;
368
369 for (i = 0; i < msecs; i++) {
370 touch_nmi_watchdog();
371 mdelay(1);
372 }
373}
374
375/*
376 * It just happens that oops_enter() and oops_exit() are identically
377 * implemented...
378 */
379static void do_oops_enter_exit(void)
380{
381 unsigned long flags;
382 static int spin_counter;
383
384 if (!pause_on_oops)
385 return;
386
387 spin_lock_irqsave(&pause_on_oops_lock, flags);
388 if (pause_on_oops_flag == 0) {
389 /* This CPU may now print the oops message */
390 pause_on_oops_flag = 1;
391 } else {
392 /* We need to stall this CPU */
393 if (!spin_counter) {
394 /* This CPU gets to do the counting */
395 spin_counter = pause_on_oops;
396 do {
397 spin_unlock(&pause_on_oops_lock);
398 spin_msec(MSEC_PER_SEC);
399 spin_lock(&pause_on_oops_lock);
400 } while (--spin_counter);
401 pause_on_oops_flag = 0;
402 } else {
403 /* This CPU waits for a different one */
404 while (spin_counter) {
405 spin_unlock(&pause_on_oops_lock);
406 spin_msec(1);
407 spin_lock(&pause_on_oops_lock);
408 }
409 }
410 }
411 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
412}
413
414/*
415 * Return true if the calling CPU is allowed to print oops-related info.
416 * This is a bit racy..
417 */
418int oops_may_print(void)
419{
420 return pause_on_oops_flag == 0;
421}
422
423/*
424 * Called when the architecture enters its oops handler, before it prints
425 * anything. If this is the first CPU to oops, and it's oopsing the first
426 * time then let it proceed.
427 *
428 * This is all enabled by the pause_on_oops kernel boot option. We do all
429 * this to ensure that oopses don't scroll off the screen. It has the
430 * side-effect of preventing later-oopsing CPUs from mucking up the display,
431 * too.
432 *
433 * It turns out that the CPU which is allowed to print ends up pausing for
434 * the right duration, whereas all the other CPUs pause for twice as long:
435 * once in oops_enter(), once in oops_exit().
436 */
437void oops_enter(void)
438{
439 tracing_off();
440 /* can't trust the integrity of the kernel anymore: */
441 debug_locks_off();
442 do_oops_enter_exit();
443}
444
445/*
446 * 64-bit random ID for oopses:
447 */
448static u64 oops_id;
449
450static int init_oops_id(void)
451{
452 if (!oops_id)
453 get_random_bytes(&oops_id, sizeof(oops_id));
454 else
455 oops_id++;
456
457 return 0;
458}
459late_initcall(init_oops_id);
460
461void print_oops_end_marker(void)
462{
463 init_oops_id();
464 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
465}
466
467/*
468 * Called when the architecture exits its oops handler, after printing
469 * everything.
470 */
471void oops_exit(void)
472{
473 do_oops_enter_exit();
474 print_oops_end_marker();
475 kmsg_dump(KMSG_DUMP_OOPS);
476}
477
478struct warn_args {
479 const char *fmt;
480 va_list args;
481};
482
483void __warn(const char *file, int line, void *caller, unsigned taint,
484 struct pt_regs *regs, struct warn_args *args)
485{
486 disable_trace_on_warning();
487
488 pr_warn("------------[ cut here ]------------\n");
489
490 if (file)
491 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
492 raw_smp_processor_id(), current->pid, file, line,
493 caller);
494 else
495 pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
496 raw_smp_processor_id(), current->pid, caller);
497
498 if (args)
499 vprintk(args->fmt, args->args);
500
501 if (panic_on_warn) {
502 /*
503 * This thread may hit another WARN() in the panic path.
504 * Resetting this prevents additional WARN() from panicking the
505 * system on this thread. Other threads are blocked by the
506 * panic_mutex in panic().
507 */
508 panic_on_warn = 0;
509 panic("panic_on_warn set ...\n");
510 }
511
512 print_modules();
513
514 if (regs)
515 show_regs(regs);
516 else
517 dump_stack();
518
519 print_oops_end_marker();
520
521 /* Just a warning, don't kill lockdep. */
522 add_taint(taint, LOCKDEP_STILL_OK);
523}
524
525#ifdef WANT_WARN_ON_SLOWPATH
526void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
527{
528 struct warn_args args;
529
530 args.fmt = fmt;
531 va_start(args.args, fmt);
532 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
533 &args);
534 va_end(args.args);
535}
536EXPORT_SYMBOL(warn_slowpath_fmt);
537
538void warn_slowpath_fmt_taint(const char *file, int line,
539 unsigned taint, const char *fmt, ...)
540{
541 struct warn_args args;
542
543 args.fmt = fmt;
544 va_start(args.args, fmt);
545 __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
546 va_end(args.args);
547}
548EXPORT_SYMBOL(warn_slowpath_fmt_taint);
549
550void warn_slowpath_null(const char *file, int line)
551{
552 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
553}
554EXPORT_SYMBOL(warn_slowpath_null);
555#endif
556
557#ifdef CONFIG_CC_STACKPROTECTOR
558
559/*
560 * Called when gcc's -fstack-protector feature is used, and
561 * gcc detects corruption of the on-stack canary value
562 */
563__visible void __stack_chk_fail(void)
564{
565 panic("stack-protector: Kernel stack is corrupted in: %p\n",
566 __builtin_return_address(0));
567}
568EXPORT_SYMBOL(__stack_chk_fail);
569
570#endif
571
572core_param(panic, panic_timeout, int, 0644);
573core_param(pause_on_oops, pause_on_oops, int, 0644);
574core_param(panic_on_warn, panic_on_warn, int, 0644);
575core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
576
577static int __init oops_setup(char *s)
578{
579 if (!s)
580 return -EINVAL;
581 if (!strcmp(s, "panic"))
582 panic_on_oops = 1;
583 return 0;
584}
585early_param("oops", oops_setup);