| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Kernel Probes (KProbes) |
| 4 | * |
| 5 | * Copyright (C) IBM Corporation, 2002, 2004 |
| 6 | * |
| 7 | * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| 8 | * Probes initial implementation (includes suggestions from |
| 9 | * Rusty Russell). |
| 10 | * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with |
| 11 | * hlists and exceptions notifier as suggested by Andi Kleen. |
| 12 | * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| 13 | * interface to access function arguments. |
| 14 | * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes |
| 15 | * exceptions notifier to be first on the priority list. |
| 16 | * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston |
| 17 | * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| 18 | * <prasanna@in.ibm.com> added function-return probes. |
| 19 | */ |
| 20 | |
| 21 | #define pr_fmt(fmt) "kprobes: " fmt |
| 22 | |
| 23 | #include <linux/kprobes.h> |
| 24 | #include <linux/hash.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/slab.h> |
| 27 | #include <linux/stddef.h> |
| 28 | #include <linux/export.h> |
| 29 | #include <linux/kallsyms.h> |
| 30 | #include <linux/freezer.h> |
| 31 | #include <linux/seq_file.h> |
| 32 | #include <linux/debugfs.h> |
| 33 | #include <linux/sysctl.h> |
| 34 | #include <linux/kdebug.h> |
| 35 | #include <linux/memory.h> |
| 36 | #include <linux/ftrace.h> |
| 37 | #include <linux/cpu.h> |
| 38 | #include <linux/jump_label.h> |
| 39 | #include <linux/static_call.h> |
| 40 | #include <linux/perf_event.h> |
| 41 | #include <linux/execmem.h> |
| 42 | #include <linux/cleanup.h> |
| 43 | |
| 44 | #include <asm/sections.h> |
| 45 | #include <asm/cacheflush.h> |
| 46 | #include <asm/errno.h> |
| 47 | #include <linux/uaccess.h> |
| 48 | |
| 49 | #define KPROBE_HASH_BITS 6 |
| 50 | #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) |
| 51 | |
| 52 | #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) |
| 53 | #define kprobe_sysctls_init() do { } while (0) |
| 54 | #endif |
| 55 | |
| 56 | static int kprobes_initialized; |
| 57 | /* kprobe_table can be accessed by |
| 58 | * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. |
| 59 | * Or |
| 60 | * - RCU hlist traversal under disabling preempt (breakpoint handlers) |
| 61 | */ |
| 62 | static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; |
| 63 | |
| 64 | /* NOTE: change this value only with 'kprobe_mutex' held */ |
| 65 | static bool kprobes_all_disarmed; |
| 66 | |
| 67 | /* This protects 'kprobe_table' and 'optimizing_list' */ |
| 68 | static DEFINE_MUTEX(kprobe_mutex); |
| 69 | static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); |
| 70 | |
| 71 | kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, |
| 72 | unsigned int __unused) |
| 73 | { |
| 74 | return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where |
| 79 | * kprobes can not probe. |
| 80 | */ |
| 81 | static LIST_HEAD(kprobe_blacklist); |
| 82 | |
| 83 | #ifdef __ARCH_WANT_KPROBES_INSN_SLOT |
| 84 | /* |
| 85 | * 'kprobe::ainsn.insn' points to the copy of the instruction to be |
| 86 | * single-stepped. x86_64, POWER4 and above have no-exec support and |
| 87 | * stepping on the instruction on a vmalloced/kmalloced/data page |
| 88 | * is a recipe for disaster |
| 89 | */ |
| 90 | struct kprobe_insn_page { |
| 91 | struct list_head list; |
| 92 | kprobe_opcode_t *insns; /* Page of instruction slots */ |
| 93 | struct kprobe_insn_cache *cache; |
| 94 | int nused; |
| 95 | int ngarbage; |
| 96 | char slot_used[]; |
| 97 | }; |
| 98 | |
| 99 | static int slots_per_page(struct kprobe_insn_cache *c) |
| 100 | { |
| 101 | return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); |
| 102 | } |
| 103 | |
| 104 | enum kprobe_slot_state { |
| 105 | SLOT_CLEAN = 0, |
| 106 | SLOT_DIRTY = 1, |
| 107 | SLOT_USED = 2, |
| 108 | }; |
| 109 | |
| 110 | void __weak *alloc_insn_page(void) |
| 111 | { |
| 112 | /* |
| 113 | * Use execmem_alloc() so this page is within +/- 2GB of where the |
| 114 | * kernel image and loaded module images reside. This is required |
| 115 | * for most of the architectures. |
| 116 | * (e.g. x86-64 needs this to handle the %rip-relative fixups.) |
| 117 | */ |
| 118 | return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); |
| 119 | } |
| 120 | |
| 121 | static void free_insn_page(void *page) |
| 122 | { |
| 123 | execmem_free(page); |
| 124 | } |
| 125 | |
| 126 | struct kprobe_insn_cache kprobe_insn_slots = { |
| 127 | .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), |
| 128 | .alloc = alloc_insn_page, |
| 129 | .free = free_insn_page, |
| 130 | .sym = KPROBE_INSN_PAGE_SYM, |
| 131 | .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), |
| 132 | .insn_size = MAX_INSN_SIZE, |
| 133 | .nr_garbage = 0, |
| 134 | }; |
| 135 | static int collect_garbage_slots(struct kprobe_insn_cache *c); |
| 136 | |
| 137 | /** |
| 138 | * __get_insn_slot() - Find a slot on an executable page for an instruction. |
| 139 | * We allocate an executable page if there's no room on existing ones. |
| 140 | */ |
| 141 | kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) |
| 142 | { |
| 143 | struct kprobe_insn_page *kip; |
| 144 | |
| 145 | /* Since the slot array is not protected by rcu, we need a mutex */ |
| 146 | guard(mutex)(&c->mutex); |
| 147 | do { |
| 148 | guard(rcu)(); |
| 149 | list_for_each_entry_rcu(kip, &c->pages, list) { |
| 150 | if (kip->nused < slots_per_page(c)) { |
| 151 | int i; |
| 152 | |
| 153 | for (i = 0; i < slots_per_page(c); i++) { |
| 154 | if (kip->slot_used[i] == SLOT_CLEAN) { |
| 155 | kip->slot_used[i] = SLOT_USED; |
| 156 | kip->nused++; |
| 157 | return kip->insns + (i * c->insn_size); |
| 158 | } |
| 159 | } |
| 160 | /* kip->nused is broken. Fix it. */ |
| 161 | kip->nused = slots_per_page(c); |
| 162 | WARN_ON(1); |
| 163 | } |
| 164 | } |
| 165 | /* If there are any garbage slots, collect it and try again. */ |
| 166 | } while (c->nr_garbage && collect_garbage_slots(c) == 0); |
| 167 | |
| 168 | /* All out of space. Need to allocate a new page. */ |
| 169 | kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL); |
| 170 | if (!kip) |
| 171 | return NULL; |
| 172 | |
| 173 | kip->insns = c->alloc(); |
| 174 | if (!kip->insns) { |
| 175 | kfree(kip); |
| 176 | return NULL; |
| 177 | } |
| 178 | INIT_LIST_HEAD(&kip->list); |
| 179 | memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); |
| 180 | kip->slot_used[0] = SLOT_USED; |
| 181 | kip->nused = 1; |
| 182 | kip->ngarbage = 0; |
| 183 | kip->cache = c; |
| 184 | list_add_rcu(&kip->list, &c->pages); |
| 185 | |
| 186 | /* Record the perf ksymbol register event after adding the page */ |
| 187 | perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, |
| 188 | PAGE_SIZE, false, c->sym); |
| 189 | |
| 190 | return kip->insns; |
| 191 | } |
| 192 | |
| 193 | /* Return true if all garbages are collected, otherwise false. */ |
| 194 | static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) |
| 195 | { |
| 196 | kip->slot_used[idx] = SLOT_CLEAN; |
| 197 | kip->nused--; |
| 198 | if (kip->nused != 0) |
| 199 | return false; |
| 200 | |
| 201 | /* |
| 202 | * Page is no longer in use. Free it unless |
| 203 | * it's the last one. We keep the last one |
| 204 | * so as not to have to set it up again the |
| 205 | * next time somebody inserts a probe. |
| 206 | */ |
| 207 | if (!list_is_singular(&kip->list)) { |
| 208 | /* |
| 209 | * Record perf ksymbol unregister event before removing |
| 210 | * the page. |
| 211 | */ |
| 212 | perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, |
| 213 | (unsigned long)kip->insns, PAGE_SIZE, true, |
| 214 | kip->cache->sym); |
| 215 | list_del_rcu(&kip->list); |
| 216 | synchronize_rcu(); |
| 217 | kip->cache->free(kip->insns); |
| 218 | kfree(kip); |
| 219 | } |
| 220 | return true; |
| 221 | } |
| 222 | |
| 223 | static int collect_garbage_slots(struct kprobe_insn_cache *c) |
| 224 | { |
| 225 | struct kprobe_insn_page *kip, *next; |
| 226 | |
| 227 | /* Ensure no-one is interrupted on the garbages */ |
| 228 | synchronize_rcu(); |
| 229 | |
| 230 | list_for_each_entry_safe(kip, next, &c->pages, list) { |
| 231 | int i; |
| 232 | |
| 233 | if (kip->ngarbage == 0) |
| 234 | continue; |
| 235 | kip->ngarbage = 0; /* we will collect all garbages */ |
| 236 | for (i = 0; i < slots_per_page(c); i++) { |
| 237 | if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) |
| 238 | break; |
| 239 | } |
| 240 | } |
| 241 | c->nr_garbage = 0; |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | static long __find_insn_page(struct kprobe_insn_cache *c, |
| 246 | kprobe_opcode_t *slot, struct kprobe_insn_page **pkip) |
| 247 | { |
| 248 | struct kprobe_insn_page *kip = NULL; |
| 249 | long idx; |
| 250 | |
| 251 | guard(rcu)(); |
| 252 | list_for_each_entry_rcu(kip, &c->pages, list) { |
| 253 | idx = ((long)slot - (long)kip->insns) / |
| 254 | (c->insn_size * sizeof(kprobe_opcode_t)); |
| 255 | if (idx >= 0 && idx < slots_per_page(c)) { |
| 256 | *pkip = kip; |
| 257 | return idx; |
| 258 | } |
| 259 | } |
| 260 | /* Could not find this slot. */ |
| 261 | WARN_ON(1); |
| 262 | *pkip = NULL; |
| 263 | return -1; |
| 264 | } |
| 265 | |
| 266 | void __free_insn_slot(struct kprobe_insn_cache *c, |
| 267 | kprobe_opcode_t *slot, int dirty) |
| 268 | { |
| 269 | struct kprobe_insn_page *kip = NULL; |
| 270 | long idx; |
| 271 | |
| 272 | guard(mutex)(&c->mutex); |
| 273 | idx = __find_insn_page(c, slot, &kip); |
| 274 | /* Mark and sweep: this may sleep */ |
| 275 | if (kip) { |
| 276 | /* Check double free */ |
| 277 | WARN_ON(kip->slot_used[idx] != SLOT_USED); |
| 278 | if (dirty) { |
| 279 | kip->slot_used[idx] = SLOT_DIRTY; |
| 280 | kip->ngarbage++; |
| 281 | if (++c->nr_garbage > slots_per_page(c)) |
| 282 | collect_garbage_slots(c); |
| 283 | } else { |
| 284 | collect_one_slot(kip, idx); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * Check given address is on the page of kprobe instruction slots. |
| 291 | * This will be used for checking whether the address on a stack |
| 292 | * is on a text area or not. |
| 293 | */ |
| 294 | bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) |
| 295 | { |
| 296 | struct kprobe_insn_page *kip; |
| 297 | bool ret = false; |
| 298 | |
| 299 | rcu_read_lock(); |
| 300 | list_for_each_entry_rcu(kip, &c->pages, list) { |
| 301 | if (addr >= (unsigned long)kip->insns && |
| 302 | addr < (unsigned long)kip->insns + PAGE_SIZE) { |
| 303 | ret = true; |
| 304 | break; |
| 305 | } |
| 306 | } |
| 307 | rcu_read_unlock(); |
| 308 | |
| 309 | return ret; |
| 310 | } |
| 311 | |
| 312 | int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, |
| 313 | unsigned long *value, char *type, char *sym) |
| 314 | { |
| 315 | struct kprobe_insn_page *kip; |
| 316 | int ret = -ERANGE; |
| 317 | |
| 318 | rcu_read_lock(); |
| 319 | list_for_each_entry_rcu(kip, &c->pages, list) { |
| 320 | if ((*symnum)--) |
| 321 | continue; |
| 322 | strscpy(sym, c->sym, KSYM_NAME_LEN); |
| 323 | *type = 't'; |
| 324 | *value = (unsigned long)kip->insns; |
| 325 | ret = 0; |
| 326 | break; |
| 327 | } |
| 328 | rcu_read_unlock(); |
| 329 | |
| 330 | return ret; |
| 331 | } |
| 332 | |
| 333 | #ifdef CONFIG_OPTPROBES |
| 334 | void __weak *alloc_optinsn_page(void) |
| 335 | { |
| 336 | return alloc_insn_page(); |
| 337 | } |
| 338 | |
| 339 | void __weak free_optinsn_page(void *page) |
| 340 | { |
| 341 | free_insn_page(page); |
| 342 | } |
| 343 | |
| 344 | /* For optimized_kprobe buffer */ |
| 345 | struct kprobe_insn_cache kprobe_optinsn_slots = { |
| 346 | .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), |
| 347 | .alloc = alloc_optinsn_page, |
| 348 | .free = free_optinsn_page, |
| 349 | .sym = KPROBE_OPTINSN_PAGE_SYM, |
| 350 | .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), |
| 351 | /* .insn_size is initialized later */ |
| 352 | .nr_garbage = 0, |
| 353 | }; |
| 354 | #endif /* CONFIG_OPTPROBES */ |
| 355 | #endif /* __ARCH_WANT_KPROBES_INSN_SLOT */ |
| 356 | |
| 357 | /* We have preemption disabled.. so it is safe to use __ versions */ |
| 358 | static inline void set_kprobe_instance(struct kprobe *kp) |
| 359 | { |
| 360 | __this_cpu_write(kprobe_instance, kp); |
| 361 | } |
| 362 | |
| 363 | static inline void reset_kprobe_instance(void) |
| 364 | { |
| 365 | __this_cpu_write(kprobe_instance, NULL); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * This routine is called either: |
| 370 | * - under the 'kprobe_mutex' - during kprobe_[un]register(). |
| 371 | * OR |
| 372 | * - with preemption disabled - from architecture specific code. |
| 373 | */ |
| 374 | struct kprobe *get_kprobe(void *addr) |
| 375 | { |
| 376 | struct hlist_head *head; |
| 377 | struct kprobe *p; |
| 378 | |
| 379 | head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; |
| 380 | hlist_for_each_entry_rcu(p, head, hlist, |
| 381 | lockdep_is_held(&kprobe_mutex)) { |
| 382 | if (p->addr == addr) |
| 383 | return p; |
| 384 | } |
| 385 | |
| 386 | return NULL; |
| 387 | } |
| 388 | NOKPROBE_SYMBOL(get_kprobe); |
| 389 | |
| 390 | static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); |
| 391 | |
| 392 | /* Return true if 'p' is an aggregator */ |
| 393 | static inline bool kprobe_aggrprobe(struct kprobe *p) |
| 394 | { |
| 395 | return p->pre_handler == aggr_pre_handler; |
| 396 | } |
| 397 | |
| 398 | /* Return true if 'p' is unused */ |
| 399 | static inline bool kprobe_unused(struct kprobe *p) |
| 400 | { |
| 401 | return kprobe_aggrprobe(p) && kprobe_disabled(p) && |
| 402 | list_empty(&p->list); |
| 403 | } |
| 404 | |
| 405 | /* Keep all fields in the kprobe consistent. */ |
| 406 | static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) |
| 407 | { |
| 408 | memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); |
| 409 | memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); |
| 410 | } |
| 411 | |
| 412 | #ifdef CONFIG_OPTPROBES |
| 413 | /* NOTE: This is protected by 'kprobe_mutex'. */ |
| 414 | static bool kprobes_allow_optimization; |
| 415 | |
| 416 | /* |
| 417 | * Call all 'kprobe::pre_handler' on the list, but ignores its return value. |
| 418 | * This must be called from arch-dep optimized caller. |
| 419 | */ |
| 420 | void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| 421 | { |
| 422 | struct kprobe *kp; |
| 423 | |
| 424 | list_for_each_entry_rcu(kp, &p->list, list) { |
| 425 | if (kp->pre_handler && likely(!kprobe_disabled(kp))) { |
| 426 | set_kprobe_instance(kp); |
| 427 | kp->pre_handler(kp, regs); |
| 428 | } |
| 429 | reset_kprobe_instance(); |
| 430 | } |
| 431 | } |
| 432 | NOKPROBE_SYMBOL(opt_pre_handler); |
| 433 | |
| 434 | /* Free optimized instructions and optimized_kprobe */ |
| 435 | static void free_aggr_kprobe(struct kprobe *p) |
| 436 | { |
| 437 | struct optimized_kprobe *op; |
| 438 | |
| 439 | op = container_of(p, struct optimized_kprobe, kp); |
| 440 | arch_remove_optimized_kprobe(op); |
| 441 | arch_remove_kprobe(p); |
| 442 | kfree(op); |
| 443 | } |
| 444 | |
| 445 | /* Return true if the kprobe is ready for optimization. */ |
| 446 | static inline int kprobe_optready(struct kprobe *p) |
| 447 | { |
| 448 | struct optimized_kprobe *op; |
| 449 | |
| 450 | if (kprobe_aggrprobe(p)) { |
| 451 | op = container_of(p, struct optimized_kprobe, kp); |
| 452 | return arch_prepared_optinsn(&op->optinsn); |
| 453 | } |
| 454 | |
| 455 | return 0; |
| 456 | } |
| 457 | |
| 458 | /* Return true if the kprobe is disarmed. Note: p must be on hash list */ |
| 459 | bool kprobe_disarmed(struct kprobe *p) |
| 460 | { |
| 461 | struct optimized_kprobe *op; |
| 462 | |
| 463 | /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ |
| 464 | if (!kprobe_aggrprobe(p)) |
| 465 | return kprobe_disabled(p); |
| 466 | |
| 467 | op = container_of(p, struct optimized_kprobe, kp); |
| 468 | |
| 469 | return kprobe_disabled(p) && list_empty(&op->list); |
| 470 | } |
| 471 | |
| 472 | /* Return true if the probe is queued on (un)optimizing lists */ |
| 473 | static bool kprobe_queued(struct kprobe *p) |
| 474 | { |
| 475 | struct optimized_kprobe *op; |
| 476 | |
| 477 | if (kprobe_aggrprobe(p)) { |
| 478 | op = container_of(p, struct optimized_kprobe, kp); |
| 479 | if (!list_empty(&op->list)) |
| 480 | return true; |
| 481 | } |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Return an optimized kprobe whose optimizing code replaces |
| 487 | * instructions including 'addr' (exclude breakpoint). |
| 488 | */ |
| 489 | static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) |
| 490 | { |
| 491 | int i; |
| 492 | struct kprobe *p = NULL; |
| 493 | struct optimized_kprobe *op; |
| 494 | |
| 495 | /* Don't check i == 0, since that is a breakpoint case. */ |
| 496 | for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) |
| 497 | p = get_kprobe(addr - i); |
| 498 | |
| 499 | if (p && kprobe_optready(p)) { |
| 500 | op = container_of(p, struct optimized_kprobe, kp); |
| 501 | if (arch_within_optimized_kprobe(op, addr)) |
| 502 | return p; |
| 503 | } |
| 504 | |
| 505 | return NULL; |
| 506 | } |
| 507 | |
| 508 | /* Optimization staging list, protected by 'kprobe_mutex' */ |
| 509 | static LIST_HEAD(optimizing_list); |
| 510 | static LIST_HEAD(unoptimizing_list); |
| 511 | static LIST_HEAD(freeing_list); |
| 512 | |
| 513 | static void kprobe_optimizer(struct work_struct *work); |
| 514 | static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); |
| 515 | #define OPTIMIZE_DELAY 5 |
| 516 | |
| 517 | /* |
| 518 | * Optimize (replace a breakpoint with a jump) kprobes listed on |
| 519 | * 'optimizing_list'. |
| 520 | */ |
| 521 | static void do_optimize_kprobes(void) |
| 522 | { |
| 523 | lockdep_assert_held(&text_mutex); |
| 524 | /* |
| 525 | * The optimization/unoptimization refers 'online_cpus' via |
| 526 | * stop_machine() and cpu-hotplug modifies the 'online_cpus'. |
| 527 | * And same time, 'text_mutex' will be held in cpu-hotplug and here. |
| 528 | * This combination can cause a deadlock (cpu-hotplug tries to lock |
| 529 | * 'text_mutex' but stop_machine() can not be done because |
| 530 | * the 'online_cpus' has been changed) |
| 531 | * To avoid this deadlock, caller must have locked cpu-hotplug |
| 532 | * for preventing cpu-hotplug outside of 'text_mutex' locking. |
| 533 | */ |
| 534 | lockdep_assert_cpus_held(); |
| 535 | |
| 536 | /* Optimization never be done when disarmed */ |
| 537 | if (kprobes_all_disarmed || !kprobes_allow_optimization || |
| 538 | list_empty(&optimizing_list)) |
| 539 | return; |
| 540 | |
| 541 | arch_optimize_kprobes(&optimizing_list); |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Unoptimize (replace a jump with a breakpoint and remove the breakpoint |
| 546 | * if need) kprobes listed on 'unoptimizing_list'. |
| 547 | */ |
| 548 | static void do_unoptimize_kprobes(void) |
| 549 | { |
| 550 | struct optimized_kprobe *op, *tmp; |
| 551 | |
| 552 | lockdep_assert_held(&text_mutex); |
| 553 | /* See comment in do_optimize_kprobes() */ |
| 554 | lockdep_assert_cpus_held(); |
| 555 | |
| 556 | if (!list_empty(&unoptimizing_list)) |
| 557 | arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); |
| 558 | |
| 559 | /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ |
| 560 | list_for_each_entry_safe(op, tmp, &freeing_list, list) { |
| 561 | /* Switching from detour code to origin */ |
| 562 | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; |
| 563 | /* Disarm probes if marked disabled and not gone */ |
| 564 | if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) |
| 565 | arch_disarm_kprobe(&op->kp); |
| 566 | if (kprobe_unused(&op->kp)) { |
| 567 | /* |
| 568 | * Remove unused probes from hash list. After waiting |
| 569 | * for synchronization, these probes are reclaimed. |
| 570 | * (reclaiming is done by do_free_cleaned_kprobes().) |
| 571 | */ |
| 572 | hlist_del_rcu(&op->kp.hlist); |
| 573 | } else |
| 574 | list_del_init(&op->list); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | /* Reclaim all kprobes on the 'freeing_list' */ |
| 579 | static void do_free_cleaned_kprobes(void) |
| 580 | { |
| 581 | struct optimized_kprobe *op, *tmp; |
| 582 | |
| 583 | list_for_each_entry_safe(op, tmp, &freeing_list, list) { |
| 584 | list_del_init(&op->list); |
| 585 | if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { |
| 586 | /* |
| 587 | * This must not happen, but if there is a kprobe |
| 588 | * still in use, keep it on kprobes hash list. |
| 589 | */ |
| 590 | continue; |
| 591 | } |
| 592 | free_aggr_kprobe(&op->kp); |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /* Start optimizer after OPTIMIZE_DELAY passed */ |
| 597 | static void kick_kprobe_optimizer(void) |
| 598 | { |
| 599 | schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); |
| 600 | } |
| 601 | |
| 602 | /* Kprobe jump optimizer */ |
| 603 | static void kprobe_optimizer(struct work_struct *work) |
| 604 | { |
| 605 | guard(mutex)(&kprobe_mutex); |
| 606 | |
| 607 | scoped_guard(cpus_read_lock) { |
| 608 | guard(mutex)(&text_mutex); |
| 609 | |
| 610 | /* |
| 611 | * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) |
| 612 | * kprobes before waiting for quiesence period. |
| 613 | */ |
| 614 | do_unoptimize_kprobes(); |
| 615 | |
| 616 | /* |
| 617 | * Step 2: Wait for quiesence period to ensure all potentially |
| 618 | * preempted tasks to have normally scheduled. Because optprobe |
| 619 | * may modify multiple instructions, there is a chance that Nth |
| 620 | * instruction is preempted. In that case, such tasks can return |
| 621 | * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. |
| 622 | * Note that on non-preemptive kernel, this is transparently converted |
| 623 | * to synchronoze_sched() to wait for all interrupts to have completed. |
| 624 | */ |
| 625 | synchronize_rcu_tasks(); |
| 626 | |
| 627 | /* Step 3: Optimize kprobes after quiesence period */ |
| 628 | do_optimize_kprobes(); |
| 629 | |
| 630 | /* Step 4: Free cleaned kprobes after quiesence period */ |
| 631 | do_free_cleaned_kprobes(); |
| 632 | } |
| 633 | |
| 634 | /* Step 5: Kick optimizer again if needed */ |
| 635 | if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) |
| 636 | kick_kprobe_optimizer(); |
| 637 | } |
| 638 | |
| 639 | static void wait_for_kprobe_optimizer_locked(void) |
| 640 | { |
| 641 | lockdep_assert_held(&kprobe_mutex); |
| 642 | |
| 643 | while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { |
| 644 | mutex_unlock(&kprobe_mutex); |
| 645 | |
| 646 | /* This will also make 'optimizing_work' execute immmediately */ |
| 647 | flush_delayed_work(&optimizing_work); |
| 648 | /* 'optimizing_work' might not have been queued yet, relax */ |
| 649 | cpu_relax(); |
| 650 | |
| 651 | mutex_lock(&kprobe_mutex); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | /* Wait for completing optimization and unoptimization */ |
| 656 | void wait_for_kprobe_optimizer(void) |
| 657 | { |
| 658 | guard(mutex)(&kprobe_mutex); |
| 659 | |
| 660 | wait_for_kprobe_optimizer_locked(); |
| 661 | } |
| 662 | |
| 663 | bool optprobe_queued_unopt(struct optimized_kprobe *op) |
| 664 | { |
| 665 | struct optimized_kprobe *_op; |
| 666 | |
| 667 | list_for_each_entry(_op, &unoptimizing_list, list) { |
| 668 | if (op == _op) |
| 669 | return true; |
| 670 | } |
| 671 | |
| 672 | return false; |
| 673 | } |
| 674 | |
| 675 | /* Optimize kprobe if p is ready to be optimized */ |
| 676 | static void optimize_kprobe(struct kprobe *p) |
| 677 | { |
| 678 | struct optimized_kprobe *op; |
| 679 | |
| 680 | /* Check if the kprobe is disabled or not ready for optimization. */ |
| 681 | if (!kprobe_optready(p) || !kprobes_allow_optimization || |
| 682 | (kprobe_disabled(p) || kprobes_all_disarmed)) |
| 683 | return; |
| 684 | |
| 685 | /* kprobes with 'post_handler' can not be optimized */ |
| 686 | if (p->post_handler) |
| 687 | return; |
| 688 | |
| 689 | op = container_of(p, struct optimized_kprobe, kp); |
| 690 | |
| 691 | /* Check there is no other kprobes at the optimized instructions */ |
| 692 | if (arch_check_optimized_kprobe(op) < 0) |
| 693 | return; |
| 694 | |
| 695 | /* Check if it is already optimized. */ |
| 696 | if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { |
| 697 | if (optprobe_queued_unopt(op)) { |
| 698 | /* This is under unoptimizing. Just dequeue the probe */ |
| 699 | list_del_init(&op->list); |
| 700 | } |
| 701 | return; |
| 702 | } |
| 703 | op->kp.flags |= KPROBE_FLAG_OPTIMIZED; |
| 704 | |
| 705 | /* |
| 706 | * On the 'unoptimizing_list' and 'optimizing_list', |
| 707 | * 'op' must have OPTIMIZED flag |
| 708 | */ |
| 709 | if (WARN_ON_ONCE(!list_empty(&op->list))) |
| 710 | return; |
| 711 | |
| 712 | list_add(&op->list, &optimizing_list); |
| 713 | kick_kprobe_optimizer(); |
| 714 | } |
| 715 | |
| 716 | /* Short cut to direct unoptimizing */ |
| 717 | static void force_unoptimize_kprobe(struct optimized_kprobe *op) |
| 718 | { |
| 719 | lockdep_assert_cpus_held(); |
| 720 | arch_unoptimize_kprobe(op); |
| 721 | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; |
| 722 | } |
| 723 | |
| 724 | /* Unoptimize a kprobe if p is optimized */ |
| 725 | static void unoptimize_kprobe(struct kprobe *p, bool force) |
| 726 | { |
| 727 | struct optimized_kprobe *op; |
| 728 | |
| 729 | if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) |
| 730 | return; /* This is not an optprobe nor optimized */ |
| 731 | |
| 732 | op = container_of(p, struct optimized_kprobe, kp); |
| 733 | if (!kprobe_optimized(p)) |
| 734 | return; |
| 735 | |
| 736 | if (!list_empty(&op->list)) { |
| 737 | if (optprobe_queued_unopt(op)) { |
| 738 | /* Queued in unoptimizing queue */ |
| 739 | if (force) { |
| 740 | /* |
| 741 | * Forcibly unoptimize the kprobe here, and queue it |
| 742 | * in the freeing list for release afterwards. |
| 743 | */ |
| 744 | force_unoptimize_kprobe(op); |
| 745 | list_move(&op->list, &freeing_list); |
| 746 | } |
| 747 | } else { |
| 748 | /* Dequeue from the optimizing queue */ |
| 749 | list_del_init(&op->list); |
| 750 | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; |
| 751 | } |
| 752 | return; |
| 753 | } |
| 754 | |
| 755 | /* Optimized kprobe case */ |
| 756 | if (force) { |
| 757 | /* Forcibly update the code: this is a special case */ |
| 758 | force_unoptimize_kprobe(op); |
| 759 | } else { |
| 760 | list_add(&op->list, &unoptimizing_list); |
| 761 | kick_kprobe_optimizer(); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* Cancel unoptimizing for reusing */ |
| 766 | static int reuse_unused_kprobe(struct kprobe *ap) |
| 767 | { |
| 768 | struct optimized_kprobe *op; |
| 769 | |
| 770 | /* |
| 771 | * Unused kprobe MUST be on the way of delayed unoptimizing (means |
| 772 | * there is still a relative jump) and disabled. |
| 773 | */ |
| 774 | op = container_of(ap, struct optimized_kprobe, kp); |
| 775 | WARN_ON_ONCE(list_empty(&op->list)); |
| 776 | /* Enable the probe again */ |
| 777 | ap->flags &= ~KPROBE_FLAG_DISABLED; |
| 778 | /* Optimize it again. (remove from 'op->list') */ |
| 779 | if (!kprobe_optready(ap)) |
| 780 | return -EINVAL; |
| 781 | |
| 782 | optimize_kprobe(ap); |
| 783 | return 0; |
| 784 | } |
| 785 | |
| 786 | /* Remove optimized instructions */ |
| 787 | static void kill_optimized_kprobe(struct kprobe *p) |
| 788 | { |
| 789 | struct optimized_kprobe *op; |
| 790 | |
| 791 | op = container_of(p, struct optimized_kprobe, kp); |
| 792 | if (!list_empty(&op->list)) |
| 793 | /* Dequeue from the (un)optimization queue */ |
| 794 | list_del_init(&op->list); |
| 795 | op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; |
| 796 | |
| 797 | if (kprobe_unused(p)) { |
| 798 | /* |
| 799 | * Unused kprobe is on unoptimizing or freeing list. We move it |
| 800 | * to freeing_list and let the kprobe_optimizer() remove it from |
| 801 | * the kprobe hash list and free it. |
| 802 | */ |
| 803 | if (optprobe_queued_unopt(op)) |
| 804 | list_move(&op->list, &freeing_list); |
| 805 | } |
| 806 | |
| 807 | /* Don't touch the code, because it is already freed. */ |
| 808 | arch_remove_optimized_kprobe(op); |
| 809 | } |
| 810 | |
| 811 | static inline |
| 812 | void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) |
| 813 | { |
| 814 | if (!kprobe_ftrace(p)) |
| 815 | arch_prepare_optimized_kprobe(op, p); |
| 816 | } |
| 817 | |
| 818 | /* Try to prepare optimized instructions */ |
| 819 | static void prepare_optimized_kprobe(struct kprobe *p) |
| 820 | { |
| 821 | struct optimized_kprobe *op; |
| 822 | |
| 823 | op = container_of(p, struct optimized_kprobe, kp); |
| 824 | __prepare_optimized_kprobe(op, p); |
| 825 | } |
| 826 | |
| 827 | /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ |
| 828 | static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) |
| 829 | { |
| 830 | struct optimized_kprobe *op; |
| 831 | |
| 832 | op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); |
| 833 | if (!op) |
| 834 | return NULL; |
| 835 | |
| 836 | INIT_LIST_HEAD(&op->list); |
| 837 | op->kp.addr = p->addr; |
| 838 | __prepare_optimized_kprobe(op, p); |
| 839 | |
| 840 | return &op->kp; |
| 841 | } |
| 842 | |
| 843 | static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); |
| 844 | |
| 845 | /* |
| 846 | * Prepare an optimized_kprobe and optimize it. |
| 847 | * NOTE: 'p' must be a normal registered kprobe. |
| 848 | */ |
| 849 | static void try_to_optimize_kprobe(struct kprobe *p) |
| 850 | { |
| 851 | struct kprobe *ap; |
| 852 | struct optimized_kprobe *op; |
| 853 | |
| 854 | /* Impossible to optimize ftrace-based kprobe. */ |
| 855 | if (kprobe_ftrace(p)) |
| 856 | return; |
| 857 | |
| 858 | /* For preparing optimization, jump_label_text_reserved() is called. */ |
| 859 | guard(cpus_read_lock)(); |
| 860 | guard(jump_label_lock)(); |
| 861 | guard(mutex)(&text_mutex); |
| 862 | |
| 863 | ap = alloc_aggr_kprobe(p); |
| 864 | if (!ap) |
| 865 | return; |
| 866 | |
| 867 | op = container_of(ap, struct optimized_kprobe, kp); |
| 868 | if (!arch_prepared_optinsn(&op->optinsn)) { |
| 869 | /* If failed to setup optimizing, fallback to kprobe. */ |
| 870 | arch_remove_optimized_kprobe(op); |
| 871 | kfree(op); |
| 872 | return; |
| 873 | } |
| 874 | |
| 875 | init_aggr_kprobe(ap, p); |
| 876 | optimize_kprobe(ap); /* This just kicks optimizer thread. */ |
| 877 | } |
| 878 | |
| 879 | static void optimize_all_kprobes(void) |
| 880 | { |
| 881 | struct hlist_head *head; |
| 882 | struct kprobe *p; |
| 883 | unsigned int i; |
| 884 | |
| 885 | guard(mutex)(&kprobe_mutex); |
| 886 | /* If optimization is already allowed, just return. */ |
| 887 | if (kprobes_allow_optimization) |
| 888 | return; |
| 889 | |
| 890 | cpus_read_lock(); |
| 891 | kprobes_allow_optimization = true; |
| 892 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 893 | head = &kprobe_table[i]; |
| 894 | hlist_for_each_entry(p, head, hlist) |
| 895 | if (!kprobe_disabled(p)) |
| 896 | optimize_kprobe(p); |
| 897 | } |
| 898 | cpus_read_unlock(); |
| 899 | pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); |
| 900 | } |
| 901 | |
| 902 | #ifdef CONFIG_SYSCTL |
| 903 | static void unoptimize_all_kprobes(void) |
| 904 | { |
| 905 | struct hlist_head *head; |
| 906 | struct kprobe *p; |
| 907 | unsigned int i; |
| 908 | |
| 909 | guard(mutex)(&kprobe_mutex); |
| 910 | /* If optimization is already prohibited, just return. */ |
| 911 | if (!kprobes_allow_optimization) |
| 912 | return; |
| 913 | |
| 914 | cpus_read_lock(); |
| 915 | kprobes_allow_optimization = false; |
| 916 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 917 | head = &kprobe_table[i]; |
| 918 | hlist_for_each_entry(p, head, hlist) { |
| 919 | if (!kprobe_disabled(p)) |
| 920 | unoptimize_kprobe(p, false); |
| 921 | } |
| 922 | } |
| 923 | cpus_read_unlock(); |
| 924 | /* Wait for unoptimizing completion. */ |
| 925 | wait_for_kprobe_optimizer_locked(); |
| 926 | pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); |
| 927 | } |
| 928 | |
| 929 | static DEFINE_MUTEX(kprobe_sysctl_mutex); |
| 930 | static int sysctl_kprobes_optimization; |
| 931 | static int proc_kprobes_optimization_handler(const struct ctl_table *table, |
| 932 | int write, void *buffer, |
| 933 | size_t *length, loff_t *ppos) |
| 934 | { |
| 935 | int ret; |
| 936 | |
| 937 | guard(mutex)(&kprobe_sysctl_mutex); |
| 938 | sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; |
| 939 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
| 940 | |
| 941 | if (sysctl_kprobes_optimization) |
| 942 | optimize_all_kprobes(); |
| 943 | else |
| 944 | unoptimize_all_kprobes(); |
| 945 | |
| 946 | return ret; |
| 947 | } |
| 948 | |
| 949 | static const struct ctl_table kprobe_sysctls[] = { |
| 950 | { |
| 951 | .procname = "kprobes-optimization", |
| 952 | .data = &sysctl_kprobes_optimization, |
| 953 | .maxlen = sizeof(int), |
| 954 | .mode = 0644, |
| 955 | .proc_handler = proc_kprobes_optimization_handler, |
| 956 | .extra1 = SYSCTL_ZERO, |
| 957 | .extra2 = SYSCTL_ONE, |
| 958 | }, |
| 959 | }; |
| 960 | |
| 961 | static void __init kprobe_sysctls_init(void) |
| 962 | { |
| 963 | register_sysctl_init("debug", kprobe_sysctls); |
| 964 | } |
| 965 | #endif /* CONFIG_SYSCTL */ |
| 966 | |
| 967 | /* Put a breakpoint for a probe. */ |
| 968 | static void __arm_kprobe(struct kprobe *p) |
| 969 | { |
| 970 | struct kprobe *_p; |
| 971 | |
| 972 | lockdep_assert_held(&text_mutex); |
| 973 | |
| 974 | /* Find the overlapping optimized kprobes. */ |
| 975 | _p = get_optimized_kprobe(p->addr); |
| 976 | if (unlikely(_p)) |
| 977 | /* Fallback to unoptimized kprobe */ |
| 978 | unoptimize_kprobe(_p, true); |
| 979 | |
| 980 | arch_arm_kprobe(p); |
| 981 | optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ |
| 982 | } |
| 983 | |
| 984 | /* Remove the breakpoint of a probe. */ |
| 985 | static void __disarm_kprobe(struct kprobe *p, bool reopt) |
| 986 | { |
| 987 | struct kprobe *_p; |
| 988 | |
| 989 | lockdep_assert_held(&text_mutex); |
| 990 | |
| 991 | /* Try to unoptimize */ |
| 992 | unoptimize_kprobe(p, kprobes_all_disarmed); |
| 993 | |
| 994 | if (!kprobe_queued(p)) { |
| 995 | arch_disarm_kprobe(p); |
| 996 | /* If another kprobe was blocked, re-optimize it. */ |
| 997 | _p = get_optimized_kprobe(p->addr); |
| 998 | if (unlikely(_p) && reopt) |
| 999 | optimize_kprobe(_p); |
| 1000 | } |
| 1001 | /* |
| 1002 | * TODO: Since unoptimization and real disarming will be done by |
| 1003 | * the worker thread, we can not check whether another probe are |
| 1004 | * unoptimized because of this probe here. It should be re-optimized |
| 1005 | * by the worker thread. |
| 1006 | */ |
| 1007 | } |
| 1008 | |
| 1009 | #else /* !CONFIG_OPTPROBES */ |
| 1010 | |
| 1011 | #define optimize_kprobe(p) do {} while (0) |
| 1012 | #define unoptimize_kprobe(p, f) do {} while (0) |
| 1013 | #define kill_optimized_kprobe(p) do {} while (0) |
| 1014 | #define prepare_optimized_kprobe(p) do {} while (0) |
| 1015 | #define try_to_optimize_kprobe(p) do {} while (0) |
| 1016 | #define __arm_kprobe(p) arch_arm_kprobe(p) |
| 1017 | #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) |
| 1018 | #define kprobe_disarmed(p) kprobe_disabled(p) |
| 1019 | #define wait_for_kprobe_optimizer_locked() \ |
| 1020 | lockdep_assert_held(&kprobe_mutex) |
| 1021 | |
| 1022 | static int reuse_unused_kprobe(struct kprobe *ap) |
| 1023 | { |
| 1024 | /* |
| 1025 | * If the optimized kprobe is NOT supported, the aggr kprobe is |
| 1026 | * released at the same time that the last aggregated kprobe is |
| 1027 | * unregistered. |
| 1028 | * Thus there should be no chance to reuse unused kprobe. |
| 1029 | */ |
| 1030 | WARN_ON_ONCE(1); |
| 1031 | return -EINVAL; |
| 1032 | } |
| 1033 | |
| 1034 | static void free_aggr_kprobe(struct kprobe *p) |
| 1035 | { |
| 1036 | arch_remove_kprobe(p); |
| 1037 | kfree(p); |
| 1038 | } |
| 1039 | |
| 1040 | static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) |
| 1041 | { |
| 1042 | return kzalloc(sizeof(struct kprobe), GFP_KERNEL); |
| 1043 | } |
| 1044 | #endif /* CONFIG_OPTPROBES */ |
| 1045 | |
| 1046 | #ifdef CONFIG_KPROBES_ON_FTRACE |
| 1047 | static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { |
| 1048 | .func = kprobe_ftrace_handler, |
| 1049 | .flags = FTRACE_OPS_FL_SAVE_REGS, |
| 1050 | }; |
| 1051 | |
| 1052 | static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { |
| 1053 | .func = kprobe_ftrace_handler, |
| 1054 | .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, |
| 1055 | }; |
| 1056 | |
| 1057 | static int kprobe_ipmodify_enabled; |
| 1058 | static int kprobe_ftrace_enabled; |
| 1059 | bool kprobe_ftrace_disabled; |
| 1060 | |
| 1061 | static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, |
| 1062 | int *cnt) |
| 1063 | { |
| 1064 | int ret; |
| 1065 | |
| 1066 | lockdep_assert_held(&kprobe_mutex); |
| 1067 | |
| 1068 | ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); |
| 1069 | if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) |
| 1070 | return ret; |
| 1071 | |
| 1072 | if (*cnt == 0) { |
| 1073 | ret = register_ftrace_function(ops); |
| 1074 | if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) { |
| 1075 | /* |
| 1076 | * At this point, sinec ops is not registered, we should be sefe from |
| 1077 | * registering empty filter. |
| 1078 | */ |
| 1079 | ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); |
| 1080 | return ret; |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | (*cnt)++; |
| 1085 | return ret; |
| 1086 | } |
| 1087 | |
| 1088 | static int arm_kprobe_ftrace(struct kprobe *p) |
| 1089 | { |
| 1090 | bool ipmodify = (p->post_handler != NULL); |
| 1091 | |
| 1092 | return __arm_kprobe_ftrace(p, |
| 1093 | ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, |
| 1094 | ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); |
| 1095 | } |
| 1096 | |
| 1097 | static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, |
| 1098 | int *cnt) |
| 1099 | { |
| 1100 | int ret; |
| 1101 | |
| 1102 | lockdep_assert_held(&kprobe_mutex); |
| 1103 | |
| 1104 | if (*cnt == 1) { |
| 1105 | ret = unregister_ftrace_function(ops); |
| 1106 | if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) |
| 1107 | return ret; |
| 1108 | } |
| 1109 | |
| 1110 | (*cnt)--; |
| 1111 | |
| 1112 | ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); |
| 1113 | WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", |
| 1114 | p->addr, ret); |
| 1115 | return ret; |
| 1116 | } |
| 1117 | |
| 1118 | static int disarm_kprobe_ftrace(struct kprobe *p) |
| 1119 | { |
| 1120 | bool ipmodify = (p->post_handler != NULL); |
| 1121 | |
| 1122 | return __disarm_kprobe_ftrace(p, |
| 1123 | ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, |
| 1124 | ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); |
| 1125 | } |
| 1126 | |
| 1127 | void kprobe_ftrace_kill(void) |
| 1128 | { |
| 1129 | kprobe_ftrace_disabled = true; |
| 1130 | } |
| 1131 | #else /* !CONFIG_KPROBES_ON_FTRACE */ |
| 1132 | static inline int arm_kprobe_ftrace(struct kprobe *p) |
| 1133 | { |
| 1134 | return -ENODEV; |
| 1135 | } |
| 1136 | |
| 1137 | static inline int disarm_kprobe_ftrace(struct kprobe *p) |
| 1138 | { |
| 1139 | return -ENODEV; |
| 1140 | } |
| 1141 | #endif |
| 1142 | |
| 1143 | static int prepare_kprobe(struct kprobe *p) |
| 1144 | { |
| 1145 | /* Must ensure p->addr is really on ftrace */ |
| 1146 | if (kprobe_ftrace(p)) |
| 1147 | return arch_prepare_kprobe_ftrace(p); |
| 1148 | |
| 1149 | return arch_prepare_kprobe(p); |
| 1150 | } |
| 1151 | |
| 1152 | static int arm_kprobe(struct kprobe *kp) |
| 1153 | { |
| 1154 | if (unlikely(kprobe_ftrace(kp))) |
| 1155 | return arm_kprobe_ftrace(kp); |
| 1156 | |
| 1157 | guard(cpus_read_lock)(); |
| 1158 | guard(mutex)(&text_mutex); |
| 1159 | __arm_kprobe(kp); |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static int disarm_kprobe(struct kprobe *kp, bool reopt) |
| 1164 | { |
| 1165 | if (unlikely(kprobe_ftrace(kp))) |
| 1166 | return disarm_kprobe_ftrace(kp); |
| 1167 | |
| 1168 | guard(cpus_read_lock)(); |
| 1169 | guard(mutex)(&text_mutex); |
| 1170 | __disarm_kprobe(kp, reopt); |
| 1171 | return 0; |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * Aggregate handlers for multiple kprobes support - these handlers |
| 1176 | * take care of invoking the individual kprobe handlers on p->list |
| 1177 | */ |
| 1178 | static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| 1179 | { |
| 1180 | struct kprobe *kp; |
| 1181 | |
| 1182 | list_for_each_entry_rcu(kp, &p->list, list) { |
| 1183 | if (kp->pre_handler && likely(!kprobe_disabled(kp))) { |
| 1184 | set_kprobe_instance(kp); |
| 1185 | if (kp->pre_handler(kp, regs)) |
| 1186 | return 1; |
| 1187 | } |
| 1188 | reset_kprobe_instance(); |
| 1189 | } |
| 1190 | return 0; |
| 1191 | } |
| 1192 | NOKPROBE_SYMBOL(aggr_pre_handler); |
| 1193 | |
| 1194 | static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, |
| 1195 | unsigned long flags) |
| 1196 | { |
| 1197 | struct kprobe *kp; |
| 1198 | |
| 1199 | list_for_each_entry_rcu(kp, &p->list, list) { |
| 1200 | if (kp->post_handler && likely(!kprobe_disabled(kp))) { |
| 1201 | set_kprobe_instance(kp); |
| 1202 | kp->post_handler(kp, regs, flags); |
| 1203 | reset_kprobe_instance(); |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | NOKPROBE_SYMBOL(aggr_post_handler); |
| 1208 | |
| 1209 | /* Walks the list and increments 'nmissed' if 'p' has child probes. */ |
| 1210 | void kprobes_inc_nmissed_count(struct kprobe *p) |
| 1211 | { |
| 1212 | struct kprobe *kp; |
| 1213 | |
| 1214 | if (!kprobe_aggrprobe(p)) { |
| 1215 | p->nmissed++; |
| 1216 | } else { |
| 1217 | list_for_each_entry_rcu(kp, &p->list, list) |
| 1218 | kp->nmissed++; |
| 1219 | } |
| 1220 | } |
| 1221 | NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); |
| 1222 | |
| 1223 | static struct kprobe kprobe_busy = { |
| 1224 | .addr = (void *) get_kprobe, |
| 1225 | }; |
| 1226 | |
| 1227 | void kprobe_busy_begin(void) |
| 1228 | { |
| 1229 | struct kprobe_ctlblk *kcb; |
| 1230 | |
| 1231 | preempt_disable(); |
| 1232 | __this_cpu_write(current_kprobe, &kprobe_busy); |
| 1233 | kcb = get_kprobe_ctlblk(); |
| 1234 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 1235 | } |
| 1236 | |
| 1237 | void kprobe_busy_end(void) |
| 1238 | { |
| 1239 | __this_cpu_write(current_kprobe, NULL); |
| 1240 | preempt_enable(); |
| 1241 | } |
| 1242 | |
| 1243 | /* Add the new probe to 'ap->list'. */ |
| 1244 | static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) |
| 1245 | { |
| 1246 | if (p->post_handler) |
| 1247 | unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ |
| 1248 | |
| 1249 | list_add_rcu(&p->list, &ap->list); |
| 1250 | if (p->post_handler && !ap->post_handler) |
| 1251 | ap->post_handler = aggr_post_handler; |
| 1252 | |
| 1253 | return 0; |
| 1254 | } |
| 1255 | |
| 1256 | /* |
| 1257 | * Fill in the required fields of the aggregator kprobe. Replace the |
| 1258 | * earlier kprobe in the hlist with the aggregator kprobe. |
| 1259 | */ |
| 1260 | static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) |
| 1261 | { |
| 1262 | /* Copy the insn slot of 'p' to 'ap'. */ |
| 1263 | copy_kprobe(p, ap); |
| 1264 | flush_insn_slot(ap); |
| 1265 | ap->addr = p->addr; |
| 1266 | ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; |
| 1267 | ap->pre_handler = aggr_pre_handler; |
| 1268 | /* We don't care the kprobe which has gone. */ |
| 1269 | if (p->post_handler && !kprobe_gone(p)) |
| 1270 | ap->post_handler = aggr_post_handler; |
| 1271 | |
| 1272 | INIT_LIST_HEAD(&ap->list); |
| 1273 | INIT_HLIST_NODE(&ap->hlist); |
| 1274 | |
| 1275 | list_add_rcu(&p->list, &ap->list); |
| 1276 | hlist_replace_rcu(&p->hlist, &ap->hlist); |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * This registers the second or subsequent kprobe at the same address. |
| 1281 | */ |
| 1282 | static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) |
| 1283 | { |
| 1284 | int ret = 0; |
| 1285 | struct kprobe *ap = orig_p; |
| 1286 | |
| 1287 | scoped_guard(cpus_read_lock) { |
| 1288 | /* For preparing optimization, jump_label_text_reserved() is called */ |
| 1289 | guard(jump_label_lock)(); |
| 1290 | guard(mutex)(&text_mutex); |
| 1291 | |
| 1292 | if (!kprobe_aggrprobe(orig_p)) { |
| 1293 | /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ |
| 1294 | ap = alloc_aggr_kprobe(orig_p); |
| 1295 | if (!ap) |
| 1296 | return -ENOMEM; |
| 1297 | init_aggr_kprobe(ap, orig_p); |
| 1298 | } else if (kprobe_unused(ap)) { |
| 1299 | /* This probe is going to die. Rescue it */ |
| 1300 | ret = reuse_unused_kprobe(ap); |
| 1301 | if (ret) |
| 1302 | return ret; |
| 1303 | } |
| 1304 | |
| 1305 | if (kprobe_gone(ap)) { |
| 1306 | /* |
| 1307 | * Attempting to insert new probe at the same location that |
| 1308 | * had a probe in the module vaddr area which already |
| 1309 | * freed. So, the instruction slot has already been |
| 1310 | * released. We need a new slot for the new probe. |
| 1311 | */ |
| 1312 | ret = arch_prepare_kprobe(ap); |
| 1313 | if (ret) |
| 1314 | /* |
| 1315 | * Even if fail to allocate new slot, don't need to |
| 1316 | * free the 'ap'. It will be used next time, or |
| 1317 | * freed by unregister_kprobe(). |
| 1318 | */ |
| 1319 | return ret; |
| 1320 | |
| 1321 | /* Prepare optimized instructions if possible. */ |
| 1322 | prepare_optimized_kprobe(ap); |
| 1323 | |
| 1324 | /* |
| 1325 | * Clear gone flag to prevent allocating new slot again, and |
| 1326 | * set disabled flag because it is not armed yet. |
| 1327 | */ |
| 1328 | ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) |
| 1329 | | KPROBE_FLAG_DISABLED; |
| 1330 | } |
| 1331 | |
| 1332 | /* Copy the insn slot of 'p' to 'ap'. */ |
| 1333 | copy_kprobe(ap, p); |
| 1334 | ret = add_new_kprobe(ap, p); |
| 1335 | } |
| 1336 | |
| 1337 | if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { |
| 1338 | ap->flags &= ~KPROBE_FLAG_DISABLED; |
| 1339 | if (!kprobes_all_disarmed) { |
| 1340 | /* Arm the breakpoint again. */ |
| 1341 | ret = arm_kprobe(ap); |
| 1342 | if (ret) { |
| 1343 | ap->flags |= KPROBE_FLAG_DISABLED; |
| 1344 | list_del_rcu(&p->list); |
| 1345 | synchronize_rcu(); |
| 1346 | } |
| 1347 | } |
| 1348 | } |
| 1349 | return ret; |
| 1350 | } |
| 1351 | |
| 1352 | bool __weak arch_within_kprobe_blacklist(unsigned long addr) |
| 1353 | { |
| 1354 | /* The '__kprobes' functions and entry code must not be probed. */ |
| 1355 | return addr >= (unsigned long)__kprobes_text_start && |
| 1356 | addr < (unsigned long)__kprobes_text_end; |
| 1357 | } |
| 1358 | |
| 1359 | static bool __within_kprobe_blacklist(unsigned long addr) |
| 1360 | { |
| 1361 | struct kprobe_blacklist_entry *ent; |
| 1362 | |
| 1363 | if (arch_within_kprobe_blacklist(addr)) |
| 1364 | return true; |
| 1365 | /* |
| 1366 | * If 'kprobe_blacklist' is defined, check the address and |
| 1367 | * reject any probe registration in the prohibited area. |
| 1368 | */ |
| 1369 | list_for_each_entry(ent, &kprobe_blacklist, list) { |
| 1370 | if (addr >= ent->start_addr && addr < ent->end_addr) |
| 1371 | return true; |
| 1372 | } |
| 1373 | return false; |
| 1374 | } |
| 1375 | |
| 1376 | bool within_kprobe_blacklist(unsigned long addr) |
| 1377 | { |
| 1378 | char symname[KSYM_NAME_LEN], *p; |
| 1379 | |
| 1380 | if (__within_kprobe_blacklist(addr)) |
| 1381 | return true; |
| 1382 | |
| 1383 | /* Check if the address is on a suffixed-symbol */ |
| 1384 | if (!lookup_symbol_name(addr, symname)) { |
| 1385 | p = strchr(symname, '.'); |
| 1386 | if (!p) |
| 1387 | return false; |
| 1388 | *p = '\0'; |
| 1389 | addr = (unsigned long)kprobe_lookup_name(symname, 0); |
| 1390 | if (addr) |
| 1391 | return __within_kprobe_blacklist(addr); |
| 1392 | } |
| 1393 | return false; |
| 1394 | } |
| 1395 | |
| 1396 | /* |
| 1397 | * arch_adjust_kprobe_addr - adjust the address |
| 1398 | * @addr: symbol base address |
| 1399 | * @offset: offset within the symbol |
| 1400 | * @on_func_entry: was this @addr+@offset on the function entry |
| 1401 | * |
| 1402 | * Typically returns @addr + @offset, except for special cases where the |
| 1403 | * function might be prefixed by a CFI landing pad, in that case any offset |
| 1404 | * inside the landing pad is mapped to the first 'real' instruction of the |
| 1405 | * symbol. |
| 1406 | * |
| 1407 | * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C |
| 1408 | * instruction at +0. |
| 1409 | */ |
| 1410 | kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, |
| 1411 | unsigned long offset, |
| 1412 | bool *on_func_entry) |
| 1413 | { |
| 1414 | *on_func_entry = !offset; |
| 1415 | return (kprobe_opcode_t *)(addr + offset); |
| 1416 | } |
| 1417 | |
| 1418 | /* |
| 1419 | * If 'symbol_name' is specified, look it up and add the 'offset' |
| 1420 | * to it. This way, we can specify a relative address to a symbol. |
| 1421 | * This returns encoded errors if it fails to look up symbol or invalid |
| 1422 | * combination of parameters. |
| 1423 | */ |
| 1424 | static kprobe_opcode_t * |
| 1425 | _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, |
| 1426 | unsigned long offset, bool *on_func_entry) |
| 1427 | { |
| 1428 | if ((symbol_name && addr) || (!symbol_name && !addr)) |
| 1429 | return ERR_PTR(-EINVAL); |
| 1430 | |
| 1431 | if (symbol_name) { |
| 1432 | /* |
| 1433 | * Input: @sym + @offset |
| 1434 | * Output: @addr + @offset |
| 1435 | * |
| 1436 | * NOTE: kprobe_lookup_name() does *NOT* fold the offset |
| 1437 | * argument into it's output! |
| 1438 | */ |
| 1439 | addr = kprobe_lookup_name(symbol_name, offset); |
| 1440 | if (!addr) |
| 1441 | return ERR_PTR(-ENOENT); |
| 1442 | } |
| 1443 | |
| 1444 | /* |
| 1445 | * So here we have @addr + @offset, displace it into a new |
| 1446 | * @addr' + @offset' where @addr' is the symbol start address. |
| 1447 | */ |
| 1448 | addr = (void *)addr + offset; |
| 1449 | if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) |
| 1450 | return ERR_PTR(-ENOENT); |
| 1451 | addr = (void *)addr - offset; |
| 1452 | |
| 1453 | /* |
| 1454 | * Then ask the architecture to re-combine them, taking care of |
| 1455 | * magical function entry details while telling us if this was indeed |
| 1456 | * at the start of the function. |
| 1457 | */ |
| 1458 | addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); |
| 1459 | if (!addr) |
| 1460 | return ERR_PTR(-EINVAL); |
| 1461 | |
| 1462 | return addr; |
| 1463 | } |
| 1464 | |
| 1465 | static kprobe_opcode_t *kprobe_addr(struct kprobe *p) |
| 1466 | { |
| 1467 | bool on_func_entry; |
| 1468 | |
| 1469 | return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * Check the 'p' is valid and return the aggregator kprobe |
| 1474 | * at the same address. |
| 1475 | */ |
| 1476 | static struct kprobe *__get_valid_kprobe(struct kprobe *p) |
| 1477 | { |
| 1478 | struct kprobe *ap, *list_p; |
| 1479 | |
| 1480 | lockdep_assert_held(&kprobe_mutex); |
| 1481 | |
| 1482 | ap = get_kprobe(p->addr); |
| 1483 | if (unlikely(!ap)) |
| 1484 | return NULL; |
| 1485 | |
| 1486 | if (p == ap) |
| 1487 | return ap; |
| 1488 | |
| 1489 | list_for_each_entry(list_p, &ap->list, list) |
| 1490 | if (list_p == p) |
| 1491 | /* kprobe p is a valid probe */ |
| 1492 | return ap; |
| 1493 | |
| 1494 | return NULL; |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * Warn and return error if the kprobe is being re-registered since |
| 1499 | * there must be a software bug. |
| 1500 | */ |
| 1501 | static inline int warn_kprobe_rereg(struct kprobe *p) |
| 1502 | { |
| 1503 | guard(mutex)(&kprobe_mutex); |
| 1504 | |
| 1505 | if (WARN_ON_ONCE(__get_valid_kprobe(p))) |
| 1506 | return -EINVAL; |
| 1507 | |
| 1508 | return 0; |
| 1509 | } |
| 1510 | |
| 1511 | static int check_ftrace_location(struct kprobe *p) |
| 1512 | { |
| 1513 | unsigned long addr = (unsigned long)p->addr; |
| 1514 | |
| 1515 | if (ftrace_location(addr) == addr) { |
| 1516 | #ifdef CONFIG_KPROBES_ON_FTRACE |
| 1517 | p->flags |= KPROBE_FLAG_FTRACE; |
| 1518 | #else |
| 1519 | return -EINVAL; |
| 1520 | #endif |
| 1521 | } |
| 1522 | return 0; |
| 1523 | } |
| 1524 | |
| 1525 | static bool is_cfi_preamble_symbol(unsigned long addr) |
| 1526 | { |
| 1527 | char symbuf[KSYM_NAME_LEN]; |
| 1528 | |
| 1529 | if (lookup_symbol_name(addr, symbuf)) |
| 1530 | return false; |
| 1531 | |
| 1532 | return str_has_prefix(symbuf, "__cfi_") || |
| 1533 | str_has_prefix(symbuf, "__pfx_"); |
| 1534 | } |
| 1535 | |
| 1536 | static int check_kprobe_address_safe(struct kprobe *p, |
| 1537 | struct module **probed_mod) |
| 1538 | { |
| 1539 | int ret; |
| 1540 | |
| 1541 | ret = check_ftrace_location(p); |
| 1542 | if (ret) |
| 1543 | return ret; |
| 1544 | |
| 1545 | guard(jump_label_lock)(); |
| 1546 | |
| 1547 | /* Ensure the address is in a text area, and find a module if exists. */ |
| 1548 | *probed_mod = NULL; |
| 1549 | if (!core_kernel_text((unsigned long) p->addr)) { |
| 1550 | guard(rcu)(); |
| 1551 | *probed_mod = __module_text_address((unsigned long) p->addr); |
| 1552 | if (!(*probed_mod)) |
| 1553 | return -EINVAL; |
| 1554 | |
| 1555 | /* |
| 1556 | * We must hold a refcount of the probed module while updating |
| 1557 | * its code to prohibit unexpected unloading. |
| 1558 | */ |
| 1559 | if (unlikely(!try_module_get(*probed_mod))) |
| 1560 | return -ENOENT; |
| 1561 | } |
| 1562 | /* Ensure it is not in reserved area. */ |
| 1563 | if (in_gate_area_no_mm((unsigned long) p->addr) || |
| 1564 | within_kprobe_blacklist((unsigned long) p->addr) || |
| 1565 | jump_label_text_reserved(p->addr, p->addr) || |
| 1566 | static_call_text_reserved(p->addr, p->addr) || |
| 1567 | find_bug((unsigned long)p->addr) || |
| 1568 | is_cfi_preamble_symbol((unsigned long)p->addr)) { |
| 1569 | module_put(*probed_mod); |
| 1570 | return -EINVAL; |
| 1571 | } |
| 1572 | |
| 1573 | /* Get module refcount and reject __init functions for loaded modules. */ |
| 1574 | if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) { |
| 1575 | /* |
| 1576 | * If the module freed '.init.text', we couldn't insert |
| 1577 | * kprobes in there. |
| 1578 | */ |
| 1579 | if (within_module_init((unsigned long)p->addr, *probed_mod) && |
| 1580 | !module_is_coming(*probed_mod)) { |
| 1581 | module_put(*probed_mod); |
| 1582 | return -ENOENT; |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | return 0; |
| 1587 | } |
| 1588 | |
| 1589 | static int __register_kprobe(struct kprobe *p) |
| 1590 | { |
| 1591 | int ret; |
| 1592 | struct kprobe *old_p; |
| 1593 | |
| 1594 | guard(mutex)(&kprobe_mutex); |
| 1595 | |
| 1596 | old_p = get_kprobe(p->addr); |
| 1597 | if (old_p) |
| 1598 | /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ |
| 1599 | return register_aggr_kprobe(old_p, p); |
| 1600 | |
| 1601 | scoped_guard(cpus_read_lock) { |
| 1602 | /* Prevent text modification */ |
| 1603 | guard(mutex)(&text_mutex); |
| 1604 | ret = prepare_kprobe(p); |
| 1605 | if (ret) |
| 1606 | return ret; |
| 1607 | } |
| 1608 | |
| 1609 | INIT_HLIST_NODE(&p->hlist); |
| 1610 | hlist_add_head_rcu(&p->hlist, |
| 1611 | &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); |
| 1612 | |
| 1613 | if (!kprobes_all_disarmed && !kprobe_disabled(p)) { |
| 1614 | ret = arm_kprobe(p); |
| 1615 | if (ret) { |
| 1616 | hlist_del_rcu(&p->hlist); |
| 1617 | synchronize_rcu(); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | /* Try to optimize kprobe */ |
| 1622 | try_to_optimize_kprobe(p); |
| 1623 | return 0; |
| 1624 | } |
| 1625 | |
| 1626 | int register_kprobe(struct kprobe *p) |
| 1627 | { |
| 1628 | int ret; |
| 1629 | struct module *probed_mod; |
| 1630 | kprobe_opcode_t *addr; |
| 1631 | bool on_func_entry; |
| 1632 | |
| 1633 | /* Canonicalize probe address from symbol */ |
| 1634 | addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); |
| 1635 | if (IS_ERR(addr)) |
| 1636 | return PTR_ERR(addr); |
| 1637 | p->addr = addr; |
| 1638 | |
| 1639 | ret = warn_kprobe_rereg(p); |
| 1640 | if (ret) |
| 1641 | return ret; |
| 1642 | |
| 1643 | /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ |
| 1644 | p->flags &= KPROBE_FLAG_DISABLED; |
| 1645 | if (on_func_entry) |
| 1646 | p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; |
| 1647 | p->nmissed = 0; |
| 1648 | INIT_LIST_HEAD(&p->list); |
| 1649 | |
| 1650 | ret = check_kprobe_address_safe(p, &probed_mod); |
| 1651 | if (ret) |
| 1652 | return ret; |
| 1653 | |
| 1654 | ret = __register_kprobe(p); |
| 1655 | |
| 1656 | if (probed_mod) |
| 1657 | module_put(probed_mod); |
| 1658 | |
| 1659 | return ret; |
| 1660 | } |
| 1661 | EXPORT_SYMBOL_GPL(register_kprobe); |
| 1662 | |
| 1663 | /* Check if all probes on the 'ap' are disabled. */ |
| 1664 | static bool aggr_kprobe_disabled(struct kprobe *ap) |
| 1665 | { |
| 1666 | struct kprobe *kp; |
| 1667 | |
| 1668 | lockdep_assert_held(&kprobe_mutex); |
| 1669 | |
| 1670 | list_for_each_entry(kp, &ap->list, list) |
| 1671 | if (!kprobe_disabled(kp)) |
| 1672 | /* |
| 1673 | * Since there is an active probe on the list, |
| 1674 | * we can't disable this 'ap'. |
| 1675 | */ |
| 1676 | return false; |
| 1677 | |
| 1678 | return true; |
| 1679 | } |
| 1680 | |
| 1681 | static struct kprobe *__disable_kprobe(struct kprobe *p) |
| 1682 | { |
| 1683 | struct kprobe *orig_p; |
| 1684 | int ret; |
| 1685 | |
| 1686 | lockdep_assert_held(&kprobe_mutex); |
| 1687 | |
| 1688 | /* Get an original kprobe for return */ |
| 1689 | orig_p = __get_valid_kprobe(p); |
| 1690 | if (unlikely(orig_p == NULL)) |
| 1691 | return ERR_PTR(-EINVAL); |
| 1692 | |
| 1693 | if (kprobe_disabled(p)) |
| 1694 | return orig_p; |
| 1695 | |
| 1696 | /* Disable probe if it is a child probe */ |
| 1697 | if (p != orig_p) |
| 1698 | p->flags |= KPROBE_FLAG_DISABLED; |
| 1699 | |
| 1700 | /* Try to disarm and disable this/parent probe */ |
| 1701 | if (p == orig_p || aggr_kprobe_disabled(orig_p)) { |
| 1702 | /* |
| 1703 | * Don't be lazy here. Even if 'kprobes_all_disarmed' |
| 1704 | * is false, 'orig_p' might not have been armed yet. |
| 1705 | * Note arm_all_kprobes() __tries__ to arm all kprobes |
| 1706 | * on the best effort basis. |
| 1707 | */ |
| 1708 | if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { |
| 1709 | ret = disarm_kprobe(orig_p, true); |
| 1710 | if (ret) { |
| 1711 | p->flags &= ~KPROBE_FLAG_DISABLED; |
| 1712 | return ERR_PTR(ret); |
| 1713 | } |
| 1714 | } |
| 1715 | orig_p->flags |= KPROBE_FLAG_DISABLED; |
| 1716 | } |
| 1717 | |
| 1718 | return orig_p; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * Unregister a kprobe without a scheduler synchronization. |
| 1723 | */ |
| 1724 | static int __unregister_kprobe_top(struct kprobe *p) |
| 1725 | { |
| 1726 | struct kprobe *ap, *list_p; |
| 1727 | |
| 1728 | /* Disable kprobe. This will disarm it if needed. */ |
| 1729 | ap = __disable_kprobe(p); |
| 1730 | if (IS_ERR(ap)) |
| 1731 | return PTR_ERR(ap); |
| 1732 | |
| 1733 | WARN_ON(ap != p && !kprobe_aggrprobe(ap)); |
| 1734 | |
| 1735 | /* |
| 1736 | * If the probe is an independent(and non-optimized) kprobe |
| 1737 | * (not an aggrprobe), the last kprobe on the aggrprobe, or |
| 1738 | * kprobe is already disarmed, just remove from the hash list. |
| 1739 | */ |
| 1740 | if (ap == p || |
| 1741 | (list_is_singular(&ap->list) && kprobe_disarmed(ap))) { |
| 1742 | /* |
| 1743 | * !disarmed could be happen if the probe is under delayed |
| 1744 | * unoptimizing. |
| 1745 | */ |
| 1746 | hlist_del_rcu(&ap->hlist); |
| 1747 | return 0; |
| 1748 | } |
| 1749 | |
| 1750 | /* If disabling probe has special handlers, update aggrprobe */ |
| 1751 | if (p->post_handler && !kprobe_gone(p)) { |
| 1752 | list_for_each_entry(list_p, &ap->list, list) { |
| 1753 | if ((list_p != p) && (list_p->post_handler)) |
| 1754 | break; |
| 1755 | } |
| 1756 | /* No other probe has post_handler */ |
| 1757 | if (list_entry_is_head(list_p, &ap->list, list)) { |
| 1758 | /* |
| 1759 | * For the kprobe-on-ftrace case, we keep the |
| 1760 | * post_handler setting to identify this aggrprobe |
| 1761 | * armed with kprobe_ipmodify_ops. |
| 1762 | */ |
| 1763 | if (!kprobe_ftrace(ap)) |
| 1764 | ap->post_handler = NULL; |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | /* |
| 1769 | * Remove from the aggrprobe: this path will do nothing in |
| 1770 | * __unregister_kprobe_bottom(). |
| 1771 | */ |
| 1772 | list_del_rcu(&p->list); |
| 1773 | if (!kprobe_disabled(ap) && !kprobes_all_disarmed) |
| 1774 | /* |
| 1775 | * Try to optimize this probe again, because post |
| 1776 | * handler may have been changed. |
| 1777 | */ |
| 1778 | optimize_kprobe(ap); |
| 1779 | return 0; |
| 1780 | |
| 1781 | } |
| 1782 | |
| 1783 | static void __unregister_kprobe_bottom(struct kprobe *p) |
| 1784 | { |
| 1785 | struct kprobe *ap; |
| 1786 | |
| 1787 | if (list_empty(&p->list)) |
| 1788 | /* This is an independent kprobe */ |
| 1789 | arch_remove_kprobe(p); |
| 1790 | else if (list_is_singular(&p->list)) { |
| 1791 | /* This is the last child of an aggrprobe */ |
| 1792 | ap = list_entry(p->list.next, struct kprobe, list); |
| 1793 | list_del(&p->list); |
| 1794 | free_aggr_kprobe(ap); |
| 1795 | } |
| 1796 | /* Otherwise, do nothing. */ |
| 1797 | } |
| 1798 | |
| 1799 | int register_kprobes(struct kprobe **kps, int num) |
| 1800 | { |
| 1801 | int i, ret = 0; |
| 1802 | |
| 1803 | if (num <= 0) |
| 1804 | return -EINVAL; |
| 1805 | for (i = 0; i < num; i++) { |
| 1806 | ret = register_kprobe(kps[i]); |
| 1807 | if (ret < 0) { |
| 1808 | if (i > 0) |
| 1809 | unregister_kprobes(kps, i); |
| 1810 | break; |
| 1811 | } |
| 1812 | } |
| 1813 | return ret; |
| 1814 | } |
| 1815 | EXPORT_SYMBOL_GPL(register_kprobes); |
| 1816 | |
| 1817 | void unregister_kprobe(struct kprobe *p) |
| 1818 | { |
| 1819 | unregister_kprobes(&p, 1); |
| 1820 | } |
| 1821 | EXPORT_SYMBOL_GPL(unregister_kprobe); |
| 1822 | |
| 1823 | void unregister_kprobes(struct kprobe **kps, int num) |
| 1824 | { |
| 1825 | int i; |
| 1826 | |
| 1827 | if (num <= 0) |
| 1828 | return; |
| 1829 | scoped_guard(mutex, &kprobe_mutex) { |
| 1830 | for (i = 0; i < num; i++) |
| 1831 | if (__unregister_kprobe_top(kps[i]) < 0) |
| 1832 | kps[i]->addr = NULL; |
| 1833 | } |
| 1834 | synchronize_rcu(); |
| 1835 | for (i = 0; i < num; i++) |
| 1836 | if (kps[i]->addr) |
| 1837 | __unregister_kprobe_bottom(kps[i]); |
| 1838 | } |
| 1839 | EXPORT_SYMBOL_GPL(unregister_kprobes); |
| 1840 | |
| 1841 | int __weak kprobe_exceptions_notify(struct notifier_block *self, |
| 1842 | unsigned long val, void *data) |
| 1843 | { |
| 1844 | return NOTIFY_DONE; |
| 1845 | } |
| 1846 | NOKPROBE_SYMBOL(kprobe_exceptions_notify); |
| 1847 | |
| 1848 | static struct notifier_block kprobe_exceptions_nb = { |
| 1849 | .notifier_call = kprobe_exceptions_notify, |
| 1850 | .priority = 0x7fffffff /* we need to be notified first */ |
| 1851 | }; |
| 1852 | |
| 1853 | #ifdef CONFIG_KRETPROBES |
| 1854 | |
| 1855 | #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) |
| 1856 | |
| 1857 | /* callbacks for objpool of kretprobe instances */ |
| 1858 | static int kretprobe_init_inst(void *nod, void *context) |
| 1859 | { |
| 1860 | struct kretprobe_instance *ri = nod; |
| 1861 | |
| 1862 | ri->rph = context; |
| 1863 | return 0; |
| 1864 | } |
| 1865 | static int kretprobe_fini_pool(struct objpool_head *head, void *context) |
| 1866 | { |
| 1867 | kfree(context); |
| 1868 | return 0; |
| 1869 | } |
| 1870 | |
| 1871 | static void free_rp_inst_rcu(struct rcu_head *head) |
| 1872 | { |
| 1873 | struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); |
| 1874 | struct kretprobe_holder *rph = ri->rph; |
| 1875 | |
| 1876 | objpool_drop(ri, &rph->pool); |
| 1877 | } |
| 1878 | NOKPROBE_SYMBOL(free_rp_inst_rcu); |
| 1879 | |
| 1880 | static void recycle_rp_inst(struct kretprobe_instance *ri) |
| 1881 | { |
| 1882 | struct kretprobe *rp = get_kretprobe(ri); |
| 1883 | |
| 1884 | if (likely(rp)) |
| 1885 | objpool_push(ri, &rp->rph->pool); |
| 1886 | else |
| 1887 | call_rcu(&ri->rcu, free_rp_inst_rcu); |
| 1888 | } |
| 1889 | NOKPROBE_SYMBOL(recycle_rp_inst); |
| 1890 | |
| 1891 | /* |
| 1892 | * This function is called from delayed_put_task_struct() when a task is |
| 1893 | * dead and cleaned up to recycle any kretprobe instances associated with |
| 1894 | * this task. These left over instances represent probed functions that |
| 1895 | * have been called but will never return. |
| 1896 | */ |
| 1897 | void kprobe_flush_task(struct task_struct *tk) |
| 1898 | { |
| 1899 | struct kretprobe_instance *ri; |
| 1900 | struct llist_node *node; |
| 1901 | |
| 1902 | /* Early boot, not yet initialized. */ |
| 1903 | if (unlikely(!kprobes_initialized)) |
| 1904 | return; |
| 1905 | |
| 1906 | kprobe_busy_begin(); |
| 1907 | |
| 1908 | node = __llist_del_all(&tk->kretprobe_instances); |
| 1909 | while (node) { |
| 1910 | ri = container_of(node, struct kretprobe_instance, llist); |
| 1911 | node = node->next; |
| 1912 | |
| 1913 | recycle_rp_inst(ri); |
| 1914 | } |
| 1915 | |
| 1916 | kprobe_busy_end(); |
| 1917 | } |
| 1918 | NOKPROBE_SYMBOL(kprobe_flush_task); |
| 1919 | |
| 1920 | static inline void free_rp_inst(struct kretprobe *rp) |
| 1921 | { |
| 1922 | struct kretprobe_holder *rph = rp->rph; |
| 1923 | |
| 1924 | if (!rph) |
| 1925 | return; |
| 1926 | rp->rph = NULL; |
| 1927 | objpool_fini(&rph->pool); |
| 1928 | } |
| 1929 | |
| 1930 | /* This assumes the 'tsk' is the current task or the is not running. */ |
| 1931 | static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, |
| 1932 | struct llist_node **cur) |
| 1933 | { |
| 1934 | struct kretprobe_instance *ri = NULL; |
| 1935 | struct llist_node *node = *cur; |
| 1936 | |
| 1937 | if (!node) |
| 1938 | node = tsk->kretprobe_instances.first; |
| 1939 | else |
| 1940 | node = node->next; |
| 1941 | |
| 1942 | while (node) { |
| 1943 | ri = container_of(node, struct kretprobe_instance, llist); |
| 1944 | if (ri->ret_addr != kretprobe_trampoline_addr()) { |
| 1945 | *cur = node; |
| 1946 | return ri->ret_addr; |
| 1947 | } |
| 1948 | node = node->next; |
| 1949 | } |
| 1950 | return NULL; |
| 1951 | } |
| 1952 | NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); |
| 1953 | |
| 1954 | /** |
| 1955 | * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe |
| 1956 | * @tsk: Target task |
| 1957 | * @fp: A frame pointer |
| 1958 | * @cur: a storage of the loop cursor llist_node pointer for next call |
| 1959 | * |
| 1960 | * Find the correct return address modified by a kretprobe on @tsk in unsigned |
| 1961 | * long type. If it finds the return address, this returns that address value, |
| 1962 | * or this returns 0. |
| 1963 | * The @tsk must be 'current' or a task which is not running. @fp is a hint |
| 1964 | * to get the currect return address - which is compared with the |
| 1965 | * kretprobe_instance::fp field. The @cur is a loop cursor for searching the |
| 1966 | * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the |
| 1967 | * first call, but '@cur' itself must NOT NULL. |
| 1968 | */ |
| 1969 | unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, |
| 1970 | struct llist_node **cur) |
| 1971 | { |
| 1972 | struct kretprobe_instance *ri; |
| 1973 | kprobe_opcode_t *ret; |
| 1974 | |
| 1975 | if (WARN_ON_ONCE(!cur)) |
| 1976 | return 0; |
| 1977 | |
| 1978 | do { |
| 1979 | ret = __kretprobe_find_ret_addr(tsk, cur); |
| 1980 | if (!ret) |
| 1981 | break; |
| 1982 | ri = container_of(*cur, struct kretprobe_instance, llist); |
| 1983 | } while (ri->fp != fp); |
| 1984 | |
| 1985 | return (unsigned long)ret; |
| 1986 | } |
| 1987 | NOKPROBE_SYMBOL(kretprobe_find_ret_addr); |
| 1988 | |
| 1989 | void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, |
| 1990 | kprobe_opcode_t *correct_ret_addr) |
| 1991 | { |
| 1992 | /* |
| 1993 | * Do nothing by default. Please fill this to update the fake return |
| 1994 | * address on the stack with the correct one on each arch if possible. |
| 1995 | */ |
| 1996 | } |
| 1997 | |
| 1998 | unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, |
| 1999 | void *frame_pointer) |
| 2000 | { |
| 2001 | struct kretprobe_instance *ri = NULL; |
| 2002 | struct llist_node *first, *node = NULL; |
| 2003 | kprobe_opcode_t *correct_ret_addr; |
| 2004 | struct kretprobe *rp; |
| 2005 | |
| 2006 | /* Find correct address and all nodes for this frame. */ |
| 2007 | correct_ret_addr = __kretprobe_find_ret_addr(current, &node); |
| 2008 | if (!correct_ret_addr) { |
| 2009 | pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); |
| 2010 | BUG_ON(1); |
| 2011 | } |
| 2012 | |
| 2013 | /* |
| 2014 | * Set the return address as the instruction pointer, because if the |
| 2015 | * user handler calls stack_trace_save_regs() with this 'regs', |
| 2016 | * the stack trace will start from the instruction pointer. |
| 2017 | */ |
| 2018 | instruction_pointer_set(regs, (unsigned long)correct_ret_addr); |
| 2019 | |
| 2020 | /* Run the user handler of the nodes. */ |
| 2021 | first = current->kretprobe_instances.first; |
| 2022 | while (first) { |
| 2023 | ri = container_of(first, struct kretprobe_instance, llist); |
| 2024 | |
| 2025 | if (WARN_ON_ONCE(ri->fp != frame_pointer)) |
| 2026 | break; |
| 2027 | |
| 2028 | rp = get_kretprobe(ri); |
| 2029 | if (rp && rp->handler) { |
| 2030 | struct kprobe *prev = kprobe_running(); |
| 2031 | |
| 2032 | __this_cpu_write(current_kprobe, &rp->kp); |
| 2033 | ri->ret_addr = correct_ret_addr; |
| 2034 | rp->handler(ri, regs); |
| 2035 | __this_cpu_write(current_kprobe, prev); |
| 2036 | } |
| 2037 | if (first == node) |
| 2038 | break; |
| 2039 | |
| 2040 | first = first->next; |
| 2041 | } |
| 2042 | |
| 2043 | arch_kretprobe_fixup_return(regs, correct_ret_addr); |
| 2044 | |
| 2045 | /* Unlink all nodes for this frame. */ |
| 2046 | first = current->kretprobe_instances.first; |
| 2047 | current->kretprobe_instances.first = node->next; |
| 2048 | node->next = NULL; |
| 2049 | |
| 2050 | /* Recycle free instances. */ |
| 2051 | while (first) { |
| 2052 | ri = container_of(first, struct kretprobe_instance, llist); |
| 2053 | first = first->next; |
| 2054 | |
| 2055 | recycle_rp_inst(ri); |
| 2056 | } |
| 2057 | |
| 2058 | return (unsigned long)correct_ret_addr; |
| 2059 | } |
| 2060 | NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) |
| 2061 | |
| 2062 | /* |
| 2063 | * This kprobe pre_handler is registered with every kretprobe. When probe |
| 2064 | * hits it will set up the return probe. |
| 2065 | */ |
| 2066 | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) |
| 2067 | { |
| 2068 | struct kretprobe *rp = container_of(p, struct kretprobe, kp); |
| 2069 | struct kretprobe_holder *rph = rp->rph; |
| 2070 | struct kretprobe_instance *ri; |
| 2071 | |
| 2072 | ri = objpool_pop(&rph->pool); |
| 2073 | if (!ri) { |
| 2074 | rp->nmissed++; |
| 2075 | return 0; |
| 2076 | } |
| 2077 | |
| 2078 | if (rp->entry_handler && rp->entry_handler(ri, regs)) { |
| 2079 | objpool_push(ri, &rph->pool); |
| 2080 | return 0; |
| 2081 | } |
| 2082 | |
| 2083 | arch_prepare_kretprobe(ri, regs); |
| 2084 | |
| 2085 | __llist_add(&ri->llist, ¤t->kretprobe_instances); |
| 2086 | |
| 2087 | return 0; |
| 2088 | } |
| 2089 | NOKPROBE_SYMBOL(pre_handler_kretprobe); |
| 2090 | #else /* CONFIG_KRETPROBE_ON_RETHOOK */ |
| 2091 | /* |
| 2092 | * This kprobe pre_handler is registered with every kretprobe. When probe |
| 2093 | * hits it will set up the return probe. |
| 2094 | */ |
| 2095 | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) |
| 2096 | { |
| 2097 | struct kretprobe *rp = container_of(p, struct kretprobe, kp); |
| 2098 | struct kretprobe_instance *ri; |
| 2099 | struct rethook_node *rhn; |
| 2100 | |
| 2101 | rhn = rethook_try_get(rp->rh); |
| 2102 | if (!rhn) { |
| 2103 | rp->nmissed++; |
| 2104 | return 0; |
| 2105 | } |
| 2106 | |
| 2107 | ri = container_of(rhn, struct kretprobe_instance, node); |
| 2108 | |
| 2109 | if (rp->entry_handler && rp->entry_handler(ri, regs)) |
| 2110 | rethook_recycle(rhn); |
| 2111 | else |
| 2112 | rethook_hook(rhn, regs, kprobe_ftrace(p)); |
| 2113 | |
| 2114 | return 0; |
| 2115 | } |
| 2116 | NOKPROBE_SYMBOL(pre_handler_kretprobe); |
| 2117 | |
| 2118 | static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, |
| 2119 | unsigned long ret_addr, |
| 2120 | struct pt_regs *regs) |
| 2121 | { |
| 2122 | struct kretprobe *rp = (struct kretprobe *)data; |
| 2123 | struct kretprobe_instance *ri; |
| 2124 | struct kprobe_ctlblk *kcb; |
| 2125 | |
| 2126 | /* The data must NOT be null. This means rethook data structure is broken. */ |
| 2127 | if (WARN_ON_ONCE(!data) || !rp->handler) |
| 2128 | return; |
| 2129 | |
| 2130 | __this_cpu_write(current_kprobe, &rp->kp); |
| 2131 | kcb = get_kprobe_ctlblk(); |
| 2132 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| 2133 | |
| 2134 | ri = container_of(rh, struct kretprobe_instance, node); |
| 2135 | rp->handler(ri, regs); |
| 2136 | |
| 2137 | __this_cpu_write(current_kprobe, NULL); |
| 2138 | } |
| 2139 | NOKPROBE_SYMBOL(kretprobe_rethook_handler); |
| 2140 | |
| 2141 | #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ |
| 2142 | |
| 2143 | /** |
| 2144 | * kprobe_on_func_entry() -- check whether given address is function entry |
| 2145 | * @addr: Target address |
| 2146 | * @sym: Target symbol name |
| 2147 | * @offset: The offset from the symbol or the address |
| 2148 | * |
| 2149 | * This checks whether the given @addr+@offset or @sym+@offset is on the |
| 2150 | * function entry address or not. |
| 2151 | * This returns 0 if it is the function entry, or -EINVAL if it is not. |
| 2152 | * And also it returns -ENOENT if it fails the symbol or address lookup. |
| 2153 | * Caller must pass @addr or @sym (either one must be NULL), or this |
| 2154 | * returns -EINVAL. |
| 2155 | */ |
| 2156 | int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) |
| 2157 | { |
| 2158 | bool on_func_entry; |
| 2159 | kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); |
| 2160 | |
| 2161 | if (IS_ERR(kp_addr)) |
| 2162 | return PTR_ERR(kp_addr); |
| 2163 | |
| 2164 | if (!on_func_entry) |
| 2165 | return -EINVAL; |
| 2166 | |
| 2167 | return 0; |
| 2168 | } |
| 2169 | |
| 2170 | int register_kretprobe(struct kretprobe *rp) |
| 2171 | { |
| 2172 | int ret; |
| 2173 | int i; |
| 2174 | void *addr; |
| 2175 | |
| 2176 | ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); |
| 2177 | if (ret) |
| 2178 | return ret; |
| 2179 | |
| 2180 | /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ |
| 2181 | if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) |
| 2182 | return -EINVAL; |
| 2183 | |
| 2184 | if (kretprobe_blacklist_size) { |
| 2185 | addr = kprobe_addr(&rp->kp); |
| 2186 | if (IS_ERR(addr)) |
| 2187 | return PTR_ERR(addr); |
| 2188 | |
| 2189 | for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { |
| 2190 | if (kretprobe_blacklist[i].addr == addr) |
| 2191 | return -EINVAL; |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) |
| 2196 | return -E2BIG; |
| 2197 | |
| 2198 | rp->kp.pre_handler = pre_handler_kretprobe; |
| 2199 | rp->kp.post_handler = NULL; |
| 2200 | |
| 2201 | /* Pre-allocate memory for max kretprobe instances */ |
| 2202 | if (rp->maxactive <= 0) |
| 2203 | rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); |
| 2204 | |
| 2205 | #ifdef CONFIG_KRETPROBE_ON_RETHOOK |
| 2206 | rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler, |
| 2207 | sizeof(struct kretprobe_instance) + |
| 2208 | rp->data_size, rp->maxactive); |
| 2209 | if (IS_ERR(rp->rh)) |
| 2210 | return PTR_ERR(rp->rh); |
| 2211 | |
| 2212 | rp->nmissed = 0; |
| 2213 | /* Establish function entry probe point */ |
| 2214 | ret = register_kprobe(&rp->kp); |
| 2215 | if (ret != 0) { |
| 2216 | rethook_free(rp->rh); |
| 2217 | rp->rh = NULL; |
| 2218 | } |
| 2219 | #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ |
| 2220 | rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); |
| 2221 | if (!rp->rph) |
| 2222 | return -ENOMEM; |
| 2223 | |
| 2224 | if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size + |
| 2225 | sizeof(struct kretprobe_instance), GFP_KERNEL, |
| 2226 | rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) { |
| 2227 | kfree(rp->rph); |
| 2228 | rp->rph = NULL; |
| 2229 | return -ENOMEM; |
| 2230 | } |
| 2231 | rcu_assign_pointer(rp->rph->rp, rp); |
| 2232 | rp->nmissed = 0; |
| 2233 | /* Establish function entry probe point */ |
| 2234 | ret = register_kprobe(&rp->kp); |
| 2235 | if (ret != 0) |
| 2236 | free_rp_inst(rp); |
| 2237 | #endif |
| 2238 | return ret; |
| 2239 | } |
| 2240 | EXPORT_SYMBOL_GPL(register_kretprobe); |
| 2241 | |
| 2242 | int register_kretprobes(struct kretprobe **rps, int num) |
| 2243 | { |
| 2244 | int ret = 0, i; |
| 2245 | |
| 2246 | if (num <= 0) |
| 2247 | return -EINVAL; |
| 2248 | for (i = 0; i < num; i++) { |
| 2249 | ret = register_kretprobe(rps[i]); |
| 2250 | if (ret < 0) { |
| 2251 | if (i > 0) |
| 2252 | unregister_kretprobes(rps, i); |
| 2253 | break; |
| 2254 | } |
| 2255 | } |
| 2256 | return ret; |
| 2257 | } |
| 2258 | EXPORT_SYMBOL_GPL(register_kretprobes); |
| 2259 | |
| 2260 | void unregister_kretprobe(struct kretprobe *rp) |
| 2261 | { |
| 2262 | unregister_kretprobes(&rp, 1); |
| 2263 | } |
| 2264 | EXPORT_SYMBOL_GPL(unregister_kretprobe); |
| 2265 | |
| 2266 | void unregister_kretprobes(struct kretprobe **rps, int num) |
| 2267 | { |
| 2268 | int i; |
| 2269 | |
| 2270 | if (num <= 0) |
| 2271 | return; |
| 2272 | for (i = 0; i < num; i++) { |
| 2273 | guard(mutex)(&kprobe_mutex); |
| 2274 | |
| 2275 | if (__unregister_kprobe_top(&rps[i]->kp) < 0) |
| 2276 | rps[i]->kp.addr = NULL; |
| 2277 | #ifdef CONFIG_KRETPROBE_ON_RETHOOK |
| 2278 | rethook_free(rps[i]->rh); |
| 2279 | #else |
| 2280 | rcu_assign_pointer(rps[i]->rph->rp, NULL); |
| 2281 | #endif |
| 2282 | } |
| 2283 | |
| 2284 | synchronize_rcu(); |
| 2285 | for (i = 0; i < num; i++) { |
| 2286 | if (rps[i]->kp.addr) { |
| 2287 | __unregister_kprobe_bottom(&rps[i]->kp); |
| 2288 | #ifndef CONFIG_KRETPROBE_ON_RETHOOK |
| 2289 | free_rp_inst(rps[i]); |
| 2290 | #endif |
| 2291 | } |
| 2292 | } |
| 2293 | } |
| 2294 | EXPORT_SYMBOL_GPL(unregister_kretprobes); |
| 2295 | |
| 2296 | #else /* CONFIG_KRETPROBES */ |
| 2297 | int register_kretprobe(struct kretprobe *rp) |
| 2298 | { |
| 2299 | return -EOPNOTSUPP; |
| 2300 | } |
| 2301 | EXPORT_SYMBOL_GPL(register_kretprobe); |
| 2302 | |
| 2303 | int register_kretprobes(struct kretprobe **rps, int num) |
| 2304 | { |
| 2305 | return -EOPNOTSUPP; |
| 2306 | } |
| 2307 | EXPORT_SYMBOL_GPL(register_kretprobes); |
| 2308 | |
| 2309 | void unregister_kretprobe(struct kretprobe *rp) |
| 2310 | { |
| 2311 | } |
| 2312 | EXPORT_SYMBOL_GPL(unregister_kretprobe); |
| 2313 | |
| 2314 | void unregister_kretprobes(struct kretprobe **rps, int num) |
| 2315 | { |
| 2316 | } |
| 2317 | EXPORT_SYMBOL_GPL(unregister_kretprobes); |
| 2318 | |
| 2319 | static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) |
| 2320 | { |
| 2321 | return 0; |
| 2322 | } |
| 2323 | NOKPROBE_SYMBOL(pre_handler_kretprobe); |
| 2324 | |
| 2325 | #endif /* CONFIG_KRETPROBES */ |
| 2326 | |
| 2327 | /* Set the kprobe gone and remove its instruction buffer. */ |
| 2328 | static void kill_kprobe(struct kprobe *p) |
| 2329 | { |
| 2330 | struct kprobe *kp; |
| 2331 | |
| 2332 | lockdep_assert_held(&kprobe_mutex); |
| 2333 | |
| 2334 | /* |
| 2335 | * The module is going away. We should disarm the kprobe which |
| 2336 | * is using ftrace, because ftrace framework is still available at |
| 2337 | * 'MODULE_STATE_GOING' notification. |
| 2338 | */ |
| 2339 | if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) |
| 2340 | disarm_kprobe_ftrace(p); |
| 2341 | |
| 2342 | p->flags |= KPROBE_FLAG_GONE; |
| 2343 | if (kprobe_aggrprobe(p)) { |
| 2344 | /* |
| 2345 | * If this is an aggr_kprobe, we have to list all the |
| 2346 | * chained probes and mark them GONE. |
| 2347 | */ |
| 2348 | list_for_each_entry(kp, &p->list, list) |
| 2349 | kp->flags |= KPROBE_FLAG_GONE; |
| 2350 | p->post_handler = NULL; |
| 2351 | kill_optimized_kprobe(p); |
| 2352 | } |
| 2353 | /* |
| 2354 | * Here, we can remove insn_slot safely, because no thread calls |
| 2355 | * the original probed function (which will be freed soon) any more. |
| 2356 | */ |
| 2357 | arch_remove_kprobe(p); |
| 2358 | } |
| 2359 | |
| 2360 | /* Disable one kprobe */ |
| 2361 | int disable_kprobe(struct kprobe *kp) |
| 2362 | { |
| 2363 | struct kprobe *p; |
| 2364 | |
| 2365 | guard(mutex)(&kprobe_mutex); |
| 2366 | |
| 2367 | /* Disable this kprobe */ |
| 2368 | p = __disable_kprobe(kp); |
| 2369 | |
| 2370 | return IS_ERR(p) ? PTR_ERR(p) : 0; |
| 2371 | } |
| 2372 | EXPORT_SYMBOL_GPL(disable_kprobe); |
| 2373 | |
| 2374 | /* Enable one kprobe */ |
| 2375 | int enable_kprobe(struct kprobe *kp) |
| 2376 | { |
| 2377 | int ret = 0; |
| 2378 | struct kprobe *p; |
| 2379 | |
| 2380 | guard(mutex)(&kprobe_mutex); |
| 2381 | |
| 2382 | /* Check whether specified probe is valid. */ |
| 2383 | p = __get_valid_kprobe(kp); |
| 2384 | if (unlikely(p == NULL)) |
| 2385 | return -EINVAL; |
| 2386 | |
| 2387 | if (kprobe_gone(kp)) |
| 2388 | /* This kprobe has gone, we couldn't enable it. */ |
| 2389 | return -EINVAL; |
| 2390 | |
| 2391 | if (p != kp) |
| 2392 | kp->flags &= ~KPROBE_FLAG_DISABLED; |
| 2393 | |
| 2394 | if (!kprobes_all_disarmed && kprobe_disabled(p)) { |
| 2395 | p->flags &= ~KPROBE_FLAG_DISABLED; |
| 2396 | ret = arm_kprobe(p); |
| 2397 | if (ret) { |
| 2398 | p->flags |= KPROBE_FLAG_DISABLED; |
| 2399 | if (p != kp) |
| 2400 | kp->flags |= KPROBE_FLAG_DISABLED; |
| 2401 | } |
| 2402 | } |
| 2403 | return ret; |
| 2404 | } |
| 2405 | EXPORT_SYMBOL_GPL(enable_kprobe); |
| 2406 | |
| 2407 | /* Caller must NOT call this in usual path. This is only for critical case */ |
| 2408 | void dump_kprobe(struct kprobe *kp) |
| 2409 | { |
| 2410 | pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", |
| 2411 | kp->symbol_name, kp->offset, kp->addr); |
| 2412 | } |
| 2413 | NOKPROBE_SYMBOL(dump_kprobe); |
| 2414 | |
| 2415 | int kprobe_add_ksym_blacklist(unsigned long entry) |
| 2416 | { |
| 2417 | struct kprobe_blacklist_entry *ent; |
| 2418 | unsigned long offset = 0, size = 0; |
| 2419 | |
| 2420 | if (!kernel_text_address(entry) || |
| 2421 | !kallsyms_lookup_size_offset(entry, &size, &offset)) |
| 2422 | return -EINVAL; |
| 2423 | |
| 2424 | ent = kmalloc(sizeof(*ent), GFP_KERNEL); |
| 2425 | if (!ent) |
| 2426 | return -ENOMEM; |
| 2427 | ent->start_addr = entry; |
| 2428 | ent->end_addr = entry + size; |
| 2429 | INIT_LIST_HEAD(&ent->list); |
| 2430 | list_add_tail(&ent->list, &kprobe_blacklist); |
| 2431 | |
| 2432 | return (int)size; |
| 2433 | } |
| 2434 | |
| 2435 | /* Add all symbols in given area into kprobe blacklist */ |
| 2436 | int kprobe_add_area_blacklist(unsigned long start, unsigned long end) |
| 2437 | { |
| 2438 | unsigned long entry; |
| 2439 | int ret = 0; |
| 2440 | |
| 2441 | for (entry = start; entry < end; entry += ret) { |
| 2442 | ret = kprobe_add_ksym_blacklist(entry); |
| 2443 | if (ret < 0) |
| 2444 | return ret; |
| 2445 | if (ret == 0) /* In case of alias symbol */ |
| 2446 | ret = 1; |
| 2447 | } |
| 2448 | return 0; |
| 2449 | } |
| 2450 | |
| 2451 | int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, |
| 2452 | char *type, char *sym) |
| 2453 | { |
| 2454 | return -ERANGE; |
| 2455 | } |
| 2456 | |
| 2457 | int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, |
| 2458 | char *sym) |
| 2459 | { |
| 2460 | #ifdef __ARCH_WANT_KPROBES_INSN_SLOT |
| 2461 | if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) |
| 2462 | return 0; |
| 2463 | #ifdef CONFIG_OPTPROBES |
| 2464 | if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) |
| 2465 | return 0; |
| 2466 | #endif |
| 2467 | #endif |
| 2468 | if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) |
| 2469 | return 0; |
| 2470 | return -ERANGE; |
| 2471 | } |
| 2472 | |
| 2473 | int __init __weak arch_populate_kprobe_blacklist(void) |
| 2474 | { |
| 2475 | return 0; |
| 2476 | } |
| 2477 | |
| 2478 | /* |
| 2479 | * Lookup and populate the kprobe_blacklist. |
| 2480 | * |
| 2481 | * Unlike the kretprobe blacklist, we'll need to determine |
| 2482 | * the range of addresses that belong to the said functions, |
| 2483 | * since a kprobe need not necessarily be at the beginning |
| 2484 | * of a function. |
| 2485 | */ |
| 2486 | static int __init populate_kprobe_blacklist(unsigned long *start, |
| 2487 | unsigned long *end) |
| 2488 | { |
| 2489 | unsigned long entry; |
| 2490 | unsigned long *iter; |
| 2491 | int ret; |
| 2492 | |
| 2493 | for (iter = start; iter < end; iter++) { |
| 2494 | entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); |
| 2495 | ret = kprobe_add_ksym_blacklist(entry); |
| 2496 | if (ret == -EINVAL) |
| 2497 | continue; |
| 2498 | if (ret < 0) |
| 2499 | return ret; |
| 2500 | } |
| 2501 | |
| 2502 | /* Symbols in '__kprobes_text' are blacklisted */ |
| 2503 | ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, |
| 2504 | (unsigned long)__kprobes_text_end); |
| 2505 | if (ret) |
| 2506 | return ret; |
| 2507 | |
| 2508 | /* Symbols in 'noinstr' section are blacklisted */ |
| 2509 | ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, |
| 2510 | (unsigned long)__noinstr_text_end); |
| 2511 | |
| 2512 | return ret ? : arch_populate_kprobe_blacklist(); |
| 2513 | } |
| 2514 | |
| 2515 | #ifdef CONFIG_MODULES |
| 2516 | /* Remove all symbols in given area from kprobe blacklist */ |
| 2517 | static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) |
| 2518 | { |
| 2519 | struct kprobe_blacklist_entry *ent, *n; |
| 2520 | |
| 2521 | list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { |
| 2522 | if (ent->start_addr < start || ent->start_addr >= end) |
| 2523 | continue; |
| 2524 | list_del(&ent->list); |
| 2525 | kfree(ent); |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | static void kprobe_remove_ksym_blacklist(unsigned long entry) |
| 2530 | { |
| 2531 | kprobe_remove_area_blacklist(entry, entry + 1); |
| 2532 | } |
| 2533 | |
| 2534 | static void add_module_kprobe_blacklist(struct module *mod) |
| 2535 | { |
| 2536 | unsigned long start, end; |
| 2537 | int i; |
| 2538 | |
| 2539 | if (mod->kprobe_blacklist) { |
| 2540 | for (i = 0; i < mod->num_kprobe_blacklist; i++) |
| 2541 | kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); |
| 2542 | } |
| 2543 | |
| 2544 | start = (unsigned long)mod->kprobes_text_start; |
| 2545 | if (start) { |
| 2546 | end = start + mod->kprobes_text_size; |
| 2547 | kprobe_add_area_blacklist(start, end); |
| 2548 | } |
| 2549 | |
| 2550 | start = (unsigned long)mod->noinstr_text_start; |
| 2551 | if (start) { |
| 2552 | end = start + mod->noinstr_text_size; |
| 2553 | kprobe_add_area_blacklist(start, end); |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | static void remove_module_kprobe_blacklist(struct module *mod) |
| 2558 | { |
| 2559 | unsigned long start, end; |
| 2560 | int i; |
| 2561 | |
| 2562 | if (mod->kprobe_blacklist) { |
| 2563 | for (i = 0; i < mod->num_kprobe_blacklist; i++) |
| 2564 | kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); |
| 2565 | } |
| 2566 | |
| 2567 | start = (unsigned long)mod->kprobes_text_start; |
| 2568 | if (start) { |
| 2569 | end = start + mod->kprobes_text_size; |
| 2570 | kprobe_remove_area_blacklist(start, end); |
| 2571 | } |
| 2572 | |
| 2573 | start = (unsigned long)mod->noinstr_text_start; |
| 2574 | if (start) { |
| 2575 | end = start + mod->noinstr_text_size; |
| 2576 | kprobe_remove_area_blacklist(start, end); |
| 2577 | } |
| 2578 | } |
| 2579 | |
| 2580 | /* Module notifier call back, checking kprobes on the module */ |
| 2581 | static int kprobes_module_callback(struct notifier_block *nb, |
| 2582 | unsigned long val, void *data) |
| 2583 | { |
| 2584 | struct module *mod = data; |
| 2585 | struct hlist_head *head; |
| 2586 | struct kprobe *p; |
| 2587 | unsigned int i; |
| 2588 | int checkcore = (val == MODULE_STATE_GOING); |
| 2589 | |
| 2590 | guard(mutex)(&kprobe_mutex); |
| 2591 | |
| 2592 | if (val == MODULE_STATE_COMING) |
| 2593 | add_module_kprobe_blacklist(mod); |
| 2594 | |
| 2595 | if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) |
| 2596 | return NOTIFY_DONE; |
| 2597 | |
| 2598 | /* |
| 2599 | * When 'MODULE_STATE_GOING' was notified, both of module '.text' and |
| 2600 | * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was |
| 2601 | * notified, only '.init.text' section would be freed. We need to |
| 2602 | * disable kprobes which have been inserted in the sections. |
| 2603 | */ |
| 2604 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 2605 | head = &kprobe_table[i]; |
| 2606 | hlist_for_each_entry(p, head, hlist) |
| 2607 | if (within_module_init((unsigned long)p->addr, mod) || |
| 2608 | (checkcore && |
| 2609 | within_module_core((unsigned long)p->addr, mod))) { |
| 2610 | /* |
| 2611 | * The vaddr this probe is installed will soon |
| 2612 | * be vfreed buy not synced to disk. Hence, |
| 2613 | * disarming the breakpoint isn't needed. |
| 2614 | * |
| 2615 | * Note, this will also move any optimized probes |
| 2616 | * that are pending to be removed from their |
| 2617 | * corresponding lists to the 'freeing_list' and |
| 2618 | * will not be touched by the delayed |
| 2619 | * kprobe_optimizer() work handler. |
| 2620 | */ |
| 2621 | kill_kprobe(p); |
| 2622 | } |
| 2623 | } |
| 2624 | if (val == MODULE_STATE_GOING) |
| 2625 | remove_module_kprobe_blacklist(mod); |
| 2626 | return NOTIFY_DONE; |
| 2627 | } |
| 2628 | |
| 2629 | static struct notifier_block kprobe_module_nb = { |
| 2630 | .notifier_call = kprobes_module_callback, |
| 2631 | .priority = 0 |
| 2632 | }; |
| 2633 | |
| 2634 | static int kprobe_register_module_notifier(void) |
| 2635 | { |
| 2636 | return register_module_notifier(&kprobe_module_nb); |
| 2637 | } |
| 2638 | #else |
| 2639 | static int kprobe_register_module_notifier(void) |
| 2640 | { |
| 2641 | return 0; |
| 2642 | } |
| 2643 | #endif /* CONFIG_MODULES */ |
| 2644 | |
| 2645 | void kprobe_free_init_mem(void) |
| 2646 | { |
| 2647 | void *start = (void *)(&__init_begin); |
| 2648 | void *end = (void *)(&__init_end); |
| 2649 | struct hlist_head *head; |
| 2650 | struct kprobe *p; |
| 2651 | int i; |
| 2652 | |
| 2653 | guard(mutex)(&kprobe_mutex); |
| 2654 | |
| 2655 | /* Kill all kprobes on initmem because the target code has been freed. */ |
| 2656 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 2657 | head = &kprobe_table[i]; |
| 2658 | hlist_for_each_entry(p, head, hlist) { |
| 2659 | if (start <= (void *)p->addr && (void *)p->addr < end) |
| 2660 | kill_kprobe(p); |
| 2661 | } |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | static int __init init_kprobes(void) |
| 2666 | { |
| 2667 | int i, err; |
| 2668 | |
| 2669 | /* FIXME allocate the probe table, currently defined statically */ |
| 2670 | /* initialize all list heads */ |
| 2671 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) |
| 2672 | INIT_HLIST_HEAD(&kprobe_table[i]); |
| 2673 | |
| 2674 | err = populate_kprobe_blacklist(__start_kprobe_blacklist, |
| 2675 | __stop_kprobe_blacklist); |
| 2676 | if (err) |
| 2677 | pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); |
| 2678 | |
| 2679 | if (kretprobe_blacklist_size) { |
| 2680 | /* lookup the function address from its name */ |
| 2681 | for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { |
| 2682 | kretprobe_blacklist[i].addr = |
| 2683 | kprobe_lookup_name(kretprobe_blacklist[i].name, 0); |
| 2684 | if (!kretprobe_blacklist[i].addr) |
| 2685 | pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", |
| 2686 | kretprobe_blacklist[i].name); |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | /* By default, kprobes are armed */ |
| 2691 | kprobes_all_disarmed = false; |
| 2692 | |
| 2693 | #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) |
| 2694 | /* Init 'kprobe_optinsn_slots' for allocation */ |
| 2695 | kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; |
| 2696 | #endif |
| 2697 | |
| 2698 | err = arch_init_kprobes(); |
| 2699 | if (!err) |
| 2700 | err = register_die_notifier(&kprobe_exceptions_nb); |
| 2701 | if (!err) |
| 2702 | err = kprobe_register_module_notifier(); |
| 2703 | |
| 2704 | kprobes_initialized = (err == 0); |
| 2705 | kprobe_sysctls_init(); |
| 2706 | return err; |
| 2707 | } |
| 2708 | early_initcall(init_kprobes); |
| 2709 | |
| 2710 | #if defined(CONFIG_OPTPROBES) |
| 2711 | static int __init init_optprobes(void) |
| 2712 | { |
| 2713 | /* |
| 2714 | * Enable kprobe optimization - this kicks the optimizer which |
| 2715 | * depends on synchronize_rcu_tasks() and ksoftirqd, that is |
| 2716 | * not spawned in early initcall. So delay the optimization. |
| 2717 | */ |
| 2718 | optimize_all_kprobes(); |
| 2719 | |
| 2720 | return 0; |
| 2721 | } |
| 2722 | subsys_initcall(init_optprobes); |
| 2723 | #endif |
| 2724 | |
| 2725 | #ifdef CONFIG_DEBUG_FS |
| 2726 | static void report_probe(struct seq_file *pi, struct kprobe *p, |
| 2727 | const char *sym, int offset, char *modname, struct kprobe *pp) |
| 2728 | { |
| 2729 | char *kprobe_type; |
| 2730 | void *addr = p->addr; |
| 2731 | |
| 2732 | if (p->pre_handler == pre_handler_kretprobe) |
| 2733 | kprobe_type = "r"; |
| 2734 | else |
| 2735 | kprobe_type = "k"; |
| 2736 | |
| 2737 | if (!kallsyms_show_value(pi->file->f_cred)) |
| 2738 | addr = NULL; |
| 2739 | |
| 2740 | if (sym) |
| 2741 | seq_printf(pi, "%px %s %s+0x%x %s ", |
| 2742 | addr, kprobe_type, sym, offset, |
| 2743 | (modname ? modname : " ")); |
| 2744 | else /* try to use %pS */ |
| 2745 | seq_printf(pi, "%px %s %pS ", |
| 2746 | addr, kprobe_type, p->addr); |
| 2747 | |
| 2748 | if (!pp) |
| 2749 | pp = p; |
| 2750 | seq_printf(pi, "%s%s%s%s\n", |
| 2751 | (kprobe_gone(p) ? "[GONE]" : ""), |
| 2752 | ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), |
| 2753 | (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), |
| 2754 | (kprobe_ftrace(pp) ? "[FTRACE]" : "")); |
| 2755 | } |
| 2756 | |
| 2757 | static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) |
| 2758 | { |
| 2759 | return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; |
| 2760 | } |
| 2761 | |
| 2762 | static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) |
| 2763 | { |
| 2764 | (*pos)++; |
| 2765 | if (*pos >= KPROBE_TABLE_SIZE) |
| 2766 | return NULL; |
| 2767 | return pos; |
| 2768 | } |
| 2769 | |
| 2770 | static void kprobe_seq_stop(struct seq_file *f, void *v) |
| 2771 | { |
| 2772 | /* Nothing to do */ |
| 2773 | } |
| 2774 | |
| 2775 | static int show_kprobe_addr(struct seq_file *pi, void *v) |
| 2776 | { |
| 2777 | struct hlist_head *head; |
| 2778 | struct kprobe *p, *kp; |
| 2779 | const char *sym; |
| 2780 | unsigned int i = *(loff_t *) v; |
| 2781 | unsigned long offset = 0; |
| 2782 | char *modname, namebuf[KSYM_NAME_LEN]; |
| 2783 | |
| 2784 | head = &kprobe_table[i]; |
| 2785 | preempt_disable(); |
| 2786 | hlist_for_each_entry_rcu(p, head, hlist) { |
| 2787 | sym = kallsyms_lookup((unsigned long)p->addr, NULL, |
| 2788 | &offset, &modname, namebuf); |
| 2789 | if (kprobe_aggrprobe(p)) { |
| 2790 | list_for_each_entry_rcu(kp, &p->list, list) |
| 2791 | report_probe(pi, kp, sym, offset, modname, p); |
| 2792 | } else |
| 2793 | report_probe(pi, p, sym, offset, modname, NULL); |
| 2794 | } |
| 2795 | preempt_enable(); |
| 2796 | return 0; |
| 2797 | } |
| 2798 | |
| 2799 | static const struct seq_operations kprobes_sops = { |
| 2800 | .start = kprobe_seq_start, |
| 2801 | .next = kprobe_seq_next, |
| 2802 | .stop = kprobe_seq_stop, |
| 2803 | .show = show_kprobe_addr |
| 2804 | }; |
| 2805 | |
| 2806 | DEFINE_SEQ_ATTRIBUTE(kprobes); |
| 2807 | |
| 2808 | /* kprobes/blacklist -- shows which functions can not be probed */ |
| 2809 | static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) |
| 2810 | { |
| 2811 | mutex_lock(&kprobe_mutex); |
| 2812 | return seq_list_start(&kprobe_blacklist, *pos); |
| 2813 | } |
| 2814 | |
| 2815 | static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) |
| 2816 | { |
| 2817 | return seq_list_next(v, &kprobe_blacklist, pos); |
| 2818 | } |
| 2819 | |
| 2820 | static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) |
| 2821 | { |
| 2822 | struct kprobe_blacklist_entry *ent = |
| 2823 | list_entry(v, struct kprobe_blacklist_entry, list); |
| 2824 | |
| 2825 | /* |
| 2826 | * If '/proc/kallsyms' is not showing kernel address, we won't |
| 2827 | * show them here either. |
| 2828 | */ |
| 2829 | if (!kallsyms_show_value(m->file->f_cred)) |
| 2830 | seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, |
| 2831 | (void *)ent->start_addr); |
| 2832 | else |
| 2833 | seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, |
| 2834 | (void *)ent->end_addr, (void *)ent->start_addr); |
| 2835 | return 0; |
| 2836 | } |
| 2837 | |
| 2838 | static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) |
| 2839 | { |
| 2840 | mutex_unlock(&kprobe_mutex); |
| 2841 | } |
| 2842 | |
| 2843 | static const struct seq_operations kprobe_blacklist_sops = { |
| 2844 | .start = kprobe_blacklist_seq_start, |
| 2845 | .next = kprobe_blacklist_seq_next, |
| 2846 | .stop = kprobe_blacklist_seq_stop, |
| 2847 | .show = kprobe_blacklist_seq_show, |
| 2848 | }; |
| 2849 | DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); |
| 2850 | |
| 2851 | static int arm_all_kprobes(void) |
| 2852 | { |
| 2853 | struct hlist_head *head; |
| 2854 | struct kprobe *p; |
| 2855 | unsigned int i, total = 0, errors = 0; |
| 2856 | int err, ret = 0; |
| 2857 | |
| 2858 | guard(mutex)(&kprobe_mutex); |
| 2859 | |
| 2860 | /* If kprobes are armed, just return */ |
| 2861 | if (!kprobes_all_disarmed) |
| 2862 | return 0; |
| 2863 | |
| 2864 | /* |
| 2865 | * optimize_kprobe() called by arm_kprobe() checks |
| 2866 | * kprobes_all_disarmed, so set kprobes_all_disarmed before |
| 2867 | * arm_kprobe. |
| 2868 | */ |
| 2869 | kprobes_all_disarmed = false; |
| 2870 | /* Arming kprobes doesn't optimize kprobe itself */ |
| 2871 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 2872 | head = &kprobe_table[i]; |
| 2873 | /* Arm all kprobes on a best-effort basis */ |
| 2874 | hlist_for_each_entry(p, head, hlist) { |
| 2875 | if (!kprobe_disabled(p)) { |
| 2876 | err = arm_kprobe(p); |
| 2877 | if (err) { |
| 2878 | errors++; |
| 2879 | ret = err; |
| 2880 | } |
| 2881 | total++; |
| 2882 | } |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | if (errors) |
| 2887 | pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", |
| 2888 | errors, total); |
| 2889 | else |
| 2890 | pr_info("Kprobes globally enabled\n"); |
| 2891 | |
| 2892 | return ret; |
| 2893 | } |
| 2894 | |
| 2895 | static int disarm_all_kprobes(void) |
| 2896 | { |
| 2897 | struct hlist_head *head; |
| 2898 | struct kprobe *p; |
| 2899 | unsigned int i, total = 0, errors = 0; |
| 2900 | int err, ret = 0; |
| 2901 | |
| 2902 | guard(mutex)(&kprobe_mutex); |
| 2903 | |
| 2904 | /* If kprobes are already disarmed, just return */ |
| 2905 | if (kprobes_all_disarmed) |
| 2906 | return 0; |
| 2907 | |
| 2908 | kprobes_all_disarmed = true; |
| 2909 | |
| 2910 | for (i = 0; i < KPROBE_TABLE_SIZE; i++) { |
| 2911 | head = &kprobe_table[i]; |
| 2912 | /* Disarm all kprobes on a best-effort basis */ |
| 2913 | hlist_for_each_entry(p, head, hlist) { |
| 2914 | if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { |
| 2915 | err = disarm_kprobe(p, false); |
| 2916 | if (err) { |
| 2917 | errors++; |
| 2918 | ret = err; |
| 2919 | } |
| 2920 | total++; |
| 2921 | } |
| 2922 | } |
| 2923 | } |
| 2924 | |
| 2925 | if (errors) |
| 2926 | pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", |
| 2927 | errors, total); |
| 2928 | else |
| 2929 | pr_info("Kprobes globally disabled\n"); |
| 2930 | |
| 2931 | /* Wait for disarming all kprobes by optimizer */ |
| 2932 | wait_for_kprobe_optimizer_locked(); |
| 2933 | return ret; |
| 2934 | } |
| 2935 | |
| 2936 | /* |
| 2937 | * XXX: The debugfs bool file interface doesn't allow for callbacks |
| 2938 | * when the bool state is switched. We can reuse that facility when |
| 2939 | * available |
| 2940 | */ |
| 2941 | static ssize_t read_enabled_file_bool(struct file *file, |
| 2942 | char __user *user_buf, size_t count, loff_t *ppos) |
| 2943 | { |
| 2944 | char buf[3]; |
| 2945 | |
| 2946 | if (!kprobes_all_disarmed) |
| 2947 | buf[0] = '1'; |
| 2948 | else |
| 2949 | buf[0] = '0'; |
| 2950 | buf[1] = '\n'; |
| 2951 | buf[2] = 0x00; |
| 2952 | return simple_read_from_buffer(user_buf, count, ppos, buf, 2); |
| 2953 | } |
| 2954 | |
| 2955 | static ssize_t write_enabled_file_bool(struct file *file, |
| 2956 | const char __user *user_buf, size_t count, loff_t *ppos) |
| 2957 | { |
| 2958 | bool enable; |
| 2959 | int ret; |
| 2960 | |
| 2961 | ret = kstrtobool_from_user(user_buf, count, &enable); |
| 2962 | if (ret) |
| 2963 | return ret; |
| 2964 | |
| 2965 | ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); |
| 2966 | if (ret) |
| 2967 | return ret; |
| 2968 | |
| 2969 | return count; |
| 2970 | } |
| 2971 | |
| 2972 | static const struct file_operations fops_kp = { |
| 2973 | .read = read_enabled_file_bool, |
| 2974 | .write = write_enabled_file_bool, |
| 2975 | .llseek = default_llseek, |
| 2976 | }; |
| 2977 | |
| 2978 | static int __init debugfs_kprobe_init(void) |
| 2979 | { |
| 2980 | struct dentry *dir; |
| 2981 | |
| 2982 | dir = debugfs_create_dir("kprobes", NULL); |
| 2983 | |
| 2984 | debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); |
| 2985 | |
| 2986 | debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); |
| 2987 | |
| 2988 | debugfs_create_file("blacklist", 0400, dir, NULL, |
| 2989 | &kprobe_blacklist_fops); |
| 2990 | |
| 2991 | return 0; |
| 2992 | } |
| 2993 | |
| 2994 | late_initcall(debugfs_kprobe_init); |
| 2995 | #endif /* CONFIG_DEBUG_FS */ |