Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-block.git] / kernel / hrtimer.c
... / ...
CommitLineData
1/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/irq.h>
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
41#include <linux/kallsyms.h>
42#include <linux/interrupt.h>
43#include <linux/tick.h>
44#include <linux/seq_file.h>
45#include <linux/err.h>
46#include <linux/debugobjects.h>
47
48#include <asm/uaccess.h>
49
50/**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
55ktime_t ktime_get(void)
56{
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62}
63EXPORT_SYMBOL_GPL(ktime_get);
64
65/**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
70ktime_t ktime_get_real(void)
71{
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77}
78
79EXPORT_SYMBOL_GPL(ktime_get_real);
80
81/*
82 * The timer bases:
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
89 */
90DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91{
92
93 .clock_base =
94 {
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
98 .resolution = KTIME_LOW_RES,
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
103 .resolution = KTIME_LOW_RES,
104 },
105 }
106};
107
108/**
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
115 */
116void ktime_get_ts(struct timespec *ts)
117{
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130}
131EXPORT_SYMBOL_GPL(ktime_get_ts);
132
133/*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
137static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138{
139 ktime_t xtim, tomono;
140 struct timespec xts, tom;
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
145 xts = current_kernel_time();
146 tom = wall_to_monotonic;
147 } while (read_seqretry(&xtime_lock, seq));
148
149 xtim = timespec_to_ktime(xts);
150 tomono = timespec_to_ktime(tom);
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
154}
155
156/*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160#ifdef CONFIG_SMP
161
162/*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
174static
175struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
177{
178 struct hrtimer_clock_base *base;
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 }
189 cpu_relax();
190 }
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198{
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
201
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
215 if (unlikely(hrtimer_callback_running(timer)))
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
222 timer->base = new_base;
223 }
224 return new_base;
225}
226
227#else /* CONFIG_SMP */
228
229static inline struct hrtimer_clock_base *
230lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231{
232 struct hrtimer_clock_base *base = timer->base;
233
234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235
236 return base;
237}
238
239# define switch_hrtimer_base(t, b) (b)
240
241#endif /* !CONFIG_SMP */
242
243/*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247#if BITS_PER_LONG < 64
248# ifndef CONFIG_KTIME_SCALAR
249/**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257{
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269}
270
271EXPORT_SYMBOL_GPL(ktime_add_ns);
272
273/**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281{
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293}
294
295EXPORT_SYMBOL_GPL(ktime_sub_ns);
296# endif /* !CONFIG_KTIME_SCALAR */
297
298/*
299 * Divide a ktime value by a nanosecond value
300 */
301u64 ktime_divns(const ktime_t kt, s64 div)
302{
303 u64 dclc;
304 int sft = 0;
305
306 dclc = ktime_to_ns(kt);
307 /* Make sure the divisor is less than 2^32: */
308 while (div >> 32) {
309 sft++;
310 div >>= 1;
311 }
312 dclc >>= sft;
313 do_div(dclc, (unsigned long) div);
314
315 return dclc;
316}
317#endif /* BITS_PER_LONG >= 64 */
318
319/*
320 * Add two ktime values and do a safety check for overflow:
321 */
322ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323{
324 ktime_t res = ktime_add(lhs, rhs);
325
326 /*
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
329 */
330 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
331 res = ktime_set(KTIME_SEC_MAX, 0);
332
333 return res;
334}
335
336#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338static struct debug_obj_descr hrtimer_debug_descr;
339
340/*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345{
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364{
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377}
378
379/*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384{
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395}
396
397static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402};
403
404static inline void debug_hrtimer_init(struct hrtimer *timer)
405{
406 debug_object_init(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_activate(struct hrtimer *timer)
410{
411 debug_object_activate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415{
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_free(struct hrtimer *timer)
420{
421 debug_object_free(timer, &hrtimer_debug_descr);
422}
423
424static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429{
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432}
433
434void destroy_hrtimer_on_stack(struct hrtimer *timer)
435{
436 debug_object_free(timer, &hrtimer_debug_descr);
437}
438
439#else
440static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif
444
445/*
446 * Check, whether the timer is on the callback pending list
447 */
448static inline int hrtimer_cb_pending(const struct hrtimer *timer)
449{
450 return timer->state & HRTIMER_STATE_PENDING;
451}
452
453/*
454 * Remove a timer from the callback pending list
455 */
456static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
457{
458 list_del_init(&timer->cb_entry);
459}
460
461/* High resolution timer related functions */
462#ifdef CONFIG_HIGH_RES_TIMERS
463
464/*
465 * High resolution timer enabled ?
466 */
467static int hrtimer_hres_enabled __read_mostly = 1;
468
469/*
470 * Enable / Disable high resolution mode
471 */
472static int __init setup_hrtimer_hres(char *str)
473{
474 if (!strcmp(str, "off"))
475 hrtimer_hres_enabled = 0;
476 else if (!strcmp(str, "on"))
477 hrtimer_hres_enabled = 1;
478 else
479 return 0;
480 return 1;
481}
482
483__setup("highres=", setup_hrtimer_hres);
484
485/*
486 * hrtimer_high_res_enabled - query, if the highres mode is enabled
487 */
488static inline int hrtimer_is_hres_enabled(void)
489{
490 return hrtimer_hres_enabled;
491}
492
493/*
494 * Is the high resolution mode active ?
495 */
496static inline int hrtimer_hres_active(void)
497{
498 return __get_cpu_var(hrtimer_bases).hres_active;
499}
500
501/*
502 * Reprogram the event source with checking both queues for the
503 * next event
504 * Called with interrupts disabled and base->lock held
505 */
506static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
507{
508 int i;
509 struct hrtimer_clock_base *base = cpu_base->clock_base;
510 ktime_t expires;
511
512 cpu_base->expires_next.tv64 = KTIME_MAX;
513
514 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
515 struct hrtimer *timer;
516
517 if (!base->first)
518 continue;
519 timer = rb_entry(base->first, struct hrtimer, node);
520 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
521 if (expires.tv64 < cpu_base->expires_next.tv64)
522 cpu_base->expires_next = expires;
523 }
524
525 if (cpu_base->expires_next.tv64 != KTIME_MAX)
526 tick_program_event(cpu_base->expires_next, 1);
527}
528
529/*
530 * Shared reprogramming for clock_realtime and clock_monotonic
531 *
532 * When a timer is enqueued and expires earlier than the already enqueued
533 * timers, we have to check, whether it expires earlier than the timer for
534 * which the clock event device was armed.
535 *
536 * Called with interrupts disabled and base->cpu_base.lock held
537 */
538static int hrtimer_reprogram(struct hrtimer *timer,
539 struct hrtimer_clock_base *base)
540{
541 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
542 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
543 int res;
544
545 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
546
547 /*
548 * When the callback is running, we do not reprogram the clock event
549 * device. The timer callback is either running on a different CPU or
550 * the callback is executed in the hrtimer_interrupt context. The
551 * reprogramming is handled either by the softirq, which called the
552 * callback or at the end of the hrtimer_interrupt.
553 */
554 if (hrtimer_callback_running(timer))
555 return 0;
556
557 /*
558 * CLOCK_REALTIME timer might be requested with an absolute
559 * expiry time which is less than base->offset. Nothing wrong
560 * about that, just avoid to call into the tick code, which
561 * has now objections against negative expiry values.
562 */
563 if (expires.tv64 < 0)
564 return -ETIME;
565
566 if (expires.tv64 >= expires_next->tv64)
567 return 0;
568
569 /*
570 * Clockevents returns -ETIME, when the event was in the past.
571 */
572 res = tick_program_event(expires, 0);
573 if (!IS_ERR_VALUE(res))
574 *expires_next = expires;
575 return res;
576}
577
578
579/*
580 * Retrigger next event is called after clock was set
581 *
582 * Called with interrupts disabled via on_each_cpu()
583 */
584static void retrigger_next_event(void *arg)
585{
586 struct hrtimer_cpu_base *base;
587 struct timespec realtime_offset;
588 unsigned long seq;
589
590 if (!hrtimer_hres_active())
591 return;
592
593 do {
594 seq = read_seqbegin(&xtime_lock);
595 set_normalized_timespec(&realtime_offset,
596 -wall_to_monotonic.tv_sec,
597 -wall_to_monotonic.tv_nsec);
598 } while (read_seqretry(&xtime_lock, seq));
599
600 base = &__get_cpu_var(hrtimer_bases);
601
602 /* Adjust CLOCK_REALTIME offset */
603 spin_lock(&base->lock);
604 base->clock_base[CLOCK_REALTIME].offset =
605 timespec_to_ktime(realtime_offset);
606
607 hrtimer_force_reprogram(base);
608 spin_unlock(&base->lock);
609}
610
611/*
612 * Clock realtime was set
613 *
614 * Change the offset of the realtime clock vs. the monotonic
615 * clock.
616 *
617 * We might have to reprogram the high resolution timer interrupt. On
618 * SMP we call the architecture specific code to retrigger _all_ high
619 * resolution timer interrupts. On UP we just disable interrupts and
620 * call the high resolution interrupt code.
621 */
622void clock_was_set(void)
623{
624 /* Retrigger the CPU local events everywhere */
625 on_each_cpu(retrigger_next_event, NULL, 1);
626}
627
628/*
629 * During resume we might have to reprogram the high resolution timer
630 * interrupt (on the local CPU):
631 */
632void hres_timers_resume(void)
633{
634 /* Retrigger the CPU local events: */
635 retrigger_next_event(NULL);
636}
637
638/*
639 * Initialize the high resolution related parts of cpu_base
640 */
641static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
642{
643 base->expires_next.tv64 = KTIME_MAX;
644 base->hres_active = 0;
645}
646
647/*
648 * Initialize the high resolution related parts of a hrtimer
649 */
650static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
651{
652}
653
654/*
655 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
657 * check happens. The timer gets enqueued into the rbtree. The reprogramming
658 * and expiry check is done in the hrtimer_interrupt or in the softirq.
659 */
660static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
661 struct hrtimer_clock_base *base)
662{
663 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664
665 /* Timer is expired, act upon the callback mode */
666 switch(timer->cb_mode) {
667 case HRTIMER_CB_IRQSAFE_PERCPU:
668 case HRTIMER_CB_IRQSAFE_UNLOCKED:
669 /*
670 * This is solely for the sched tick emulation with
671 * dynamic tick support to ensure that we do not
672 * restart the tick right on the edge and end up with
673 * the tick timer in the softirq ! The calling site
674 * takes care of this. Also used for hrtimer sleeper !
675 */
676 debug_hrtimer_deactivate(timer);
677 return 1;
678 case HRTIMER_CB_SOFTIRQ:
679 /*
680 * Move everything else into the softirq pending list !
681 */
682 list_add_tail(&timer->cb_entry,
683 &base->cpu_base->cb_pending);
684 timer->state = HRTIMER_STATE_PENDING;
685 return 1;
686 default:
687 BUG();
688 }
689 }
690 return 0;
691}
692
693/*
694 * Switch to high resolution mode
695 */
696static int hrtimer_switch_to_hres(void)
697{
698 int cpu = smp_processor_id();
699 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
700 unsigned long flags;
701
702 if (base->hres_active)
703 return 1;
704
705 local_irq_save(flags);
706
707 if (tick_init_highres()) {
708 local_irq_restore(flags);
709 printk(KERN_WARNING "Could not switch to high resolution "
710 "mode on CPU %d\n", cpu);
711 return 0;
712 }
713 base->hres_active = 1;
714 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
715 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
716
717 tick_setup_sched_timer();
718
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL);
721 local_irq_restore(flags);
722 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
723 smp_processor_id());
724 return 1;
725}
726
727static inline void hrtimer_raise_softirq(void)
728{
729 raise_softirq(HRTIMER_SOFTIRQ);
730}
731
732#else
733
734static inline int hrtimer_hres_active(void) { return 0; }
735static inline int hrtimer_is_hres_enabled(void) { return 0; }
736static inline int hrtimer_switch_to_hres(void) { return 0; }
737static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
738static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
739 struct hrtimer_clock_base *base)
740{
741 return 0;
742}
743static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
744static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
745static inline int hrtimer_reprogram(struct hrtimer *timer,
746 struct hrtimer_clock_base *base)
747{
748 return 0;
749}
750static inline void hrtimer_raise_softirq(void) { }
751
752#endif /* CONFIG_HIGH_RES_TIMERS */
753
754#ifdef CONFIG_TIMER_STATS
755void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
756{
757 if (timer->start_site)
758 return;
759
760 timer->start_site = addr;
761 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
762 timer->start_pid = current->pid;
763}
764#endif
765
766/*
767 * Counterpart to lock_hrtimer_base above:
768 */
769static inline
770void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
771{
772 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
773}
774
775/**
776 * hrtimer_forward - forward the timer expiry
777 * @timer: hrtimer to forward
778 * @now: forward past this time
779 * @interval: the interval to forward
780 *
781 * Forward the timer expiry so it will expire in the future.
782 * Returns the number of overruns.
783 */
784u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
785{
786 u64 orun = 1;
787 ktime_t delta;
788
789 delta = ktime_sub(now, hrtimer_get_expires(timer));
790
791 if (delta.tv64 < 0)
792 return 0;
793
794 if (interval.tv64 < timer->base->resolution.tv64)
795 interval.tv64 = timer->base->resolution.tv64;
796
797 if (unlikely(delta.tv64 >= interval.tv64)) {
798 s64 incr = ktime_to_ns(interval);
799
800 orun = ktime_divns(delta, incr);
801 hrtimer_add_expires_ns(timer, incr * orun);
802 if (hrtimer_get_expires_tv64(timer) > now.tv64)
803 return orun;
804 /*
805 * This (and the ktime_add() below) is the
806 * correction for exact:
807 */
808 orun++;
809 }
810 hrtimer_add_expires(timer, interval);
811
812 return orun;
813}
814EXPORT_SYMBOL_GPL(hrtimer_forward);
815
816/*
817 * enqueue_hrtimer - internal function to (re)start a timer
818 *
819 * The timer is inserted in expiry order. Insertion into the
820 * red black tree is O(log(n)). Must hold the base lock.
821 */
822static void enqueue_hrtimer(struct hrtimer *timer,
823 struct hrtimer_clock_base *base, int reprogram)
824{
825 struct rb_node **link = &base->active.rb_node;
826 struct rb_node *parent = NULL;
827 struct hrtimer *entry;
828 int leftmost = 1;
829
830 debug_hrtimer_activate(timer);
831
832 /*
833 * Find the right place in the rbtree:
834 */
835 while (*link) {
836 parent = *link;
837 entry = rb_entry(parent, struct hrtimer, node);
838 /*
839 * We dont care about collisions. Nodes with
840 * the same expiry time stay together.
841 */
842 if (hrtimer_get_expires_tv64(timer) <
843 hrtimer_get_expires_tv64(entry)) {
844 link = &(*link)->rb_left;
845 } else {
846 link = &(*link)->rb_right;
847 leftmost = 0;
848 }
849 }
850
851 /*
852 * Insert the timer to the rbtree and check whether it
853 * replaces the first pending timer
854 */
855 if (leftmost) {
856 /*
857 * Reprogram the clock event device. When the timer is already
858 * expired hrtimer_enqueue_reprogram has either called the
859 * callback or added it to the pending list and raised the
860 * softirq.
861 *
862 * This is a NOP for !HIGHRES
863 */
864 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
865 return;
866
867 base->first = &timer->node;
868 }
869
870 rb_link_node(&timer->node, parent, link);
871 rb_insert_color(&timer->node, &base->active);
872 /*
873 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
874 * state of a possibly running callback.
875 */
876 timer->state |= HRTIMER_STATE_ENQUEUED;
877}
878
879/*
880 * __remove_hrtimer - internal function to remove a timer
881 *
882 * Caller must hold the base lock.
883 *
884 * High resolution timer mode reprograms the clock event device when the
885 * timer is the one which expires next. The caller can disable this by setting
886 * reprogram to zero. This is useful, when the context does a reprogramming
887 * anyway (e.g. timer interrupt)
888 */
889static void __remove_hrtimer(struct hrtimer *timer,
890 struct hrtimer_clock_base *base,
891 unsigned long newstate, int reprogram)
892{
893 /* High res. callback list. NOP for !HIGHRES */
894 if (hrtimer_cb_pending(timer))
895 hrtimer_remove_cb_pending(timer);
896 else {
897 /*
898 * Remove the timer from the rbtree and replace the
899 * first entry pointer if necessary.
900 */
901 if (base->first == &timer->node) {
902 base->first = rb_next(&timer->node);
903 /* Reprogram the clock event device. if enabled */
904 if (reprogram && hrtimer_hres_active())
905 hrtimer_force_reprogram(base->cpu_base);
906 }
907 rb_erase(&timer->node, &base->active);
908 }
909 timer->state = newstate;
910}
911
912/*
913 * remove hrtimer, called with base lock held
914 */
915static inline int
916remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
917{
918 if (hrtimer_is_queued(timer)) {
919 int reprogram;
920
921 /*
922 * Remove the timer and force reprogramming when high
923 * resolution mode is active and the timer is on the current
924 * CPU. If we remove a timer on another CPU, reprogramming is
925 * skipped. The interrupt event on this CPU is fired and
926 * reprogramming happens in the interrupt handler. This is a
927 * rare case and less expensive than a smp call.
928 */
929 debug_hrtimer_deactivate(timer);
930 timer_stats_hrtimer_clear_start_info(timer);
931 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
932 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
933 reprogram);
934 return 1;
935 }
936 return 0;
937}
938
939/**
940 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
941 * @timer: the timer to be added
942 * @tim: expiry time
943 * @delta_ns: "slack" range for the timer
944 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
945 *
946 * Returns:
947 * 0 on success
948 * 1 when the timer was active
949 */
950int
951hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
952 const enum hrtimer_mode mode)
953{
954 struct hrtimer_clock_base *base, *new_base;
955 unsigned long flags;
956 int ret, raise;
957
958 base = lock_hrtimer_base(timer, &flags);
959
960 /* Remove an active timer from the queue: */
961 ret = remove_hrtimer(timer, base);
962
963 /* Switch the timer base, if necessary: */
964 new_base = switch_hrtimer_base(timer, base);
965
966 if (mode == HRTIMER_MODE_REL) {
967 tim = ktime_add_safe(tim, new_base->get_time());
968 /*
969 * CONFIG_TIME_LOW_RES is a temporary way for architectures
970 * to signal that they simply return xtime in
971 * do_gettimeoffset(). In this case we want to round up by
972 * resolution when starting a relative timer, to avoid short
973 * timeouts. This will go away with the GTOD framework.
974 */
975#ifdef CONFIG_TIME_LOW_RES
976 tim = ktime_add_safe(tim, base->resolution);
977#endif
978 }
979
980 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
981
982 timer_stats_hrtimer_set_start_info(timer);
983
984 /*
985 * Only allow reprogramming if the new base is on this CPU.
986 * (it might still be on another CPU if the timer was pending)
987 */
988 enqueue_hrtimer(timer, new_base,
989 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
990
991 /*
992 * The timer may be expired and moved to the cb_pending
993 * list. We can not raise the softirq with base lock held due
994 * to a possible deadlock with runqueue lock.
995 */
996 raise = timer->state == HRTIMER_STATE_PENDING;
997
998 /*
999 * We use preempt_disable to prevent this task from migrating after
1000 * setting up the softirq and raising it. Otherwise, if me migrate
1001 * we will raise the softirq on the wrong CPU.
1002 */
1003 preempt_disable();
1004
1005 unlock_hrtimer_base(timer, &flags);
1006
1007 if (raise)
1008 hrtimer_raise_softirq();
1009 preempt_enable();
1010
1011 return ret;
1012}
1013EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1014
1015/**
1016 * hrtimer_start - (re)start an hrtimer on the current CPU
1017 * @timer: the timer to be added
1018 * @tim: expiry time
1019 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1020 *
1021 * Returns:
1022 * 0 on success
1023 * 1 when the timer was active
1024 */
1025int
1026hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1027{
1028 return hrtimer_start_range_ns(timer, tim, 0, mode);
1029}
1030EXPORT_SYMBOL_GPL(hrtimer_start);
1031
1032
1033/**
1034 * hrtimer_try_to_cancel - try to deactivate a timer
1035 * @timer: hrtimer to stop
1036 *
1037 * Returns:
1038 * 0 when the timer was not active
1039 * 1 when the timer was active
1040 * -1 when the timer is currently excuting the callback function and
1041 * cannot be stopped
1042 */
1043int hrtimer_try_to_cancel(struct hrtimer *timer)
1044{
1045 struct hrtimer_clock_base *base;
1046 unsigned long flags;
1047 int ret = -1;
1048
1049 base = lock_hrtimer_base(timer, &flags);
1050
1051 if (!hrtimer_callback_running(timer))
1052 ret = remove_hrtimer(timer, base);
1053
1054 unlock_hrtimer_base(timer, &flags);
1055
1056 return ret;
1057
1058}
1059EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1060
1061/**
1062 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1063 * @timer: the timer to be cancelled
1064 *
1065 * Returns:
1066 * 0 when the timer was not active
1067 * 1 when the timer was active
1068 */
1069int hrtimer_cancel(struct hrtimer *timer)
1070{
1071 for (;;) {
1072 int ret = hrtimer_try_to_cancel(timer);
1073
1074 if (ret >= 0)
1075 return ret;
1076 cpu_relax();
1077 }
1078}
1079EXPORT_SYMBOL_GPL(hrtimer_cancel);
1080
1081/**
1082 * hrtimer_get_remaining - get remaining time for the timer
1083 * @timer: the timer to read
1084 */
1085ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1086{
1087 struct hrtimer_clock_base *base;
1088 unsigned long flags;
1089 ktime_t rem;
1090
1091 base = lock_hrtimer_base(timer, &flags);
1092 rem = hrtimer_expires_remaining(timer);
1093 unlock_hrtimer_base(timer, &flags);
1094
1095 return rem;
1096}
1097EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1098
1099#ifdef CONFIG_NO_HZ
1100/**
1101 * hrtimer_get_next_event - get the time until next expiry event
1102 *
1103 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1104 * is pending.
1105 */
1106ktime_t hrtimer_get_next_event(void)
1107{
1108 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1109 struct hrtimer_clock_base *base = cpu_base->clock_base;
1110 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1111 unsigned long flags;
1112 int i;
1113
1114 spin_lock_irqsave(&cpu_base->lock, flags);
1115
1116 if (!hrtimer_hres_active()) {
1117 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1118 struct hrtimer *timer;
1119
1120 if (!base->first)
1121 continue;
1122
1123 timer = rb_entry(base->first, struct hrtimer, node);
1124 delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 delta = ktime_sub(delta, base->get_time());
1126 if (delta.tv64 < mindelta.tv64)
1127 mindelta.tv64 = delta.tv64;
1128 }
1129 }
1130
1131 spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133 if (mindelta.tv64 < 0)
1134 mindelta.tv64 = 0;
1135 return mindelta;
1136}
1137#endif
1138
1139static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 enum hrtimer_mode mode)
1141{
1142 struct hrtimer_cpu_base *cpu_base;
1143
1144 memset(timer, 0, sizeof(struct hrtimer));
1145
1146 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1147
1148 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1149 clock_id = CLOCK_MONOTONIC;
1150
1151 timer->base = &cpu_base->clock_base[clock_id];
1152 INIT_LIST_HEAD(&timer->cb_entry);
1153 hrtimer_init_timer_hres(timer);
1154
1155#ifdef CONFIG_TIMER_STATS
1156 timer->start_site = NULL;
1157 timer->start_pid = -1;
1158 memset(timer->start_comm, 0, TASK_COMM_LEN);
1159#endif
1160}
1161
1162/**
1163 * hrtimer_init - initialize a timer to the given clock
1164 * @timer: the timer to be initialized
1165 * @clock_id: the clock to be used
1166 * @mode: timer mode abs/rel
1167 */
1168void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1169 enum hrtimer_mode mode)
1170{
1171 debug_hrtimer_init(timer);
1172 __hrtimer_init(timer, clock_id, mode);
1173}
1174EXPORT_SYMBOL_GPL(hrtimer_init);
1175
1176/**
1177 * hrtimer_get_res - get the timer resolution for a clock
1178 * @which_clock: which clock to query
1179 * @tp: pointer to timespec variable to store the resolution
1180 *
1181 * Store the resolution of the clock selected by @which_clock in the
1182 * variable pointed to by @tp.
1183 */
1184int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1185{
1186 struct hrtimer_cpu_base *cpu_base;
1187
1188 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1189 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1190
1191 return 0;
1192}
1193EXPORT_SYMBOL_GPL(hrtimer_get_res);
1194
1195static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1196{
1197 spin_lock_irq(&cpu_base->lock);
1198
1199 while (!list_empty(&cpu_base->cb_pending)) {
1200 enum hrtimer_restart (*fn)(struct hrtimer *);
1201 struct hrtimer *timer;
1202 int restart;
1203 int emulate_hardirq_ctx = 0;
1204
1205 timer = list_entry(cpu_base->cb_pending.next,
1206 struct hrtimer, cb_entry);
1207
1208 debug_hrtimer_deactivate(timer);
1209 timer_stats_account_hrtimer(timer);
1210
1211 fn = timer->function;
1212 /*
1213 * A timer might have been added to the cb_pending list
1214 * when it was migrated during a cpu-offline operation.
1215 * Emulate hardirq context for such timers.
1216 */
1217 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1218 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED)
1219 emulate_hardirq_ctx = 1;
1220
1221 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1222 spin_unlock_irq(&cpu_base->lock);
1223
1224 if (unlikely(emulate_hardirq_ctx)) {
1225 local_irq_disable();
1226 restart = fn(timer);
1227 local_irq_enable();
1228 } else
1229 restart = fn(timer);
1230
1231 spin_lock_irq(&cpu_base->lock);
1232
1233 timer->state &= ~HRTIMER_STATE_CALLBACK;
1234 if (restart == HRTIMER_RESTART) {
1235 BUG_ON(hrtimer_active(timer));
1236 /*
1237 * Enqueue the timer, allow reprogramming of the event
1238 * device
1239 */
1240 enqueue_hrtimer(timer, timer->base, 1);
1241 } else if (hrtimer_active(timer)) {
1242 /*
1243 * If the timer was rearmed on another CPU, reprogram
1244 * the event device.
1245 */
1246 struct hrtimer_clock_base *base = timer->base;
1247
1248 if (base->first == &timer->node &&
1249 hrtimer_reprogram(timer, base)) {
1250 /*
1251 * Timer is expired. Thus move it from tree to
1252 * pending list again.
1253 */
1254 __remove_hrtimer(timer, base,
1255 HRTIMER_STATE_PENDING, 0);
1256 list_add_tail(&timer->cb_entry,
1257 &base->cpu_base->cb_pending);
1258 }
1259 }
1260 }
1261 spin_unlock_irq(&cpu_base->lock);
1262}
1263
1264static void __run_hrtimer(struct hrtimer *timer)
1265{
1266 struct hrtimer_clock_base *base = timer->base;
1267 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1268 enum hrtimer_restart (*fn)(struct hrtimer *);
1269 int restart;
1270
1271 debug_hrtimer_deactivate(timer);
1272 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1273 timer_stats_account_hrtimer(timer);
1274
1275 fn = timer->function;
1276 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1277 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
1278 /*
1279 * Used for scheduler timers, avoid lock inversion with
1280 * rq->lock and tasklist_lock.
1281 *
1282 * These timers are required to deal with enqueue expiry
1283 * themselves and are not allowed to migrate.
1284 */
1285 spin_unlock(&cpu_base->lock);
1286 restart = fn(timer);
1287 spin_lock(&cpu_base->lock);
1288 } else
1289 restart = fn(timer);
1290
1291 /*
1292 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1293 * reprogramming of the event hardware. This happens at the end of this
1294 * function anyway.
1295 */
1296 if (restart != HRTIMER_NORESTART) {
1297 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1298 enqueue_hrtimer(timer, base, 0);
1299 }
1300 timer->state &= ~HRTIMER_STATE_CALLBACK;
1301}
1302
1303#ifdef CONFIG_HIGH_RES_TIMERS
1304
1305/*
1306 * High resolution timer interrupt
1307 * Called with interrupts disabled
1308 */
1309void hrtimer_interrupt(struct clock_event_device *dev)
1310{
1311 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1312 struct hrtimer_clock_base *base;
1313 ktime_t expires_next, now;
1314 int i, raise = 0;
1315
1316 BUG_ON(!cpu_base->hres_active);
1317 cpu_base->nr_events++;
1318 dev->next_event.tv64 = KTIME_MAX;
1319
1320 retry:
1321 now = ktime_get();
1322
1323 expires_next.tv64 = KTIME_MAX;
1324
1325 base = cpu_base->clock_base;
1326
1327 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1328 ktime_t basenow;
1329 struct rb_node *node;
1330
1331 spin_lock(&cpu_base->lock);
1332
1333 basenow = ktime_add(now, base->offset);
1334
1335 while ((node = base->first)) {
1336 struct hrtimer *timer;
1337
1338 timer = rb_entry(node, struct hrtimer, node);
1339
1340 /*
1341 * The immediate goal for using the softexpires is
1342 * minimizing wakeups, not running timers at the
1343 * earliest interrupt after their soft expiration.
1344 * This allows us to avoid using a Priority Search
1345 * Tree, which can answer a stabbing querry for
1346 * overlapping intervals and instead use the simple
1347 * BST we already have.
1348 * We don't add extra wakeups by delaying timers that
1349 * are right-of a not yet expired timer, because that
1350 * timer will have to trigger a wakeup anyway.
1351 */
1352
1353 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1354 ktime_t expires;
1355
1356 expires = ktime_sub(hrtimer_get_expires(timer),
1357 base->offset);
1358 if (expires.tv64 < expires_next.tv64)
1359 expires_next = expires;
1360 break;
1361 }
1362
1363 /* Move softirq callbacks to the pending list */
1364 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1365 __remove_hrtimer(timer, base,
1366 HRTIMER_STATE_PENDING, 0);
1367 list_add_tail(&timer->cb_entry,
1368 &base->cpu_base->cb_pending);
1369 raise = 1;
1370 continue;
1371 }
1372
1373 __run_hrtimer(timer);
1374 }
1375 spin_unlock(&cpu_base->lock);
1376 base++;
1377 }
1378
1379 cpu_base->expires_next = expires_next;
1380
1381 /* Reprogramming necessary ? */
1382 if (expires_next.tv64 != KTIME_MAX) {
1383 if (tick_program_event(expires_next, 0))
1384 goto retry;
1385 }
1386
1387 /* Raise softirq ? */
1388 if (raise)
1389 raise_softirq(HRTIMER_SOFTIRQ);
1390}
1391
1392/**
1393 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1394 *
1395 * hrtimer_peek_ahead_timers will peek at the timer queue of
1396 * the current cpu and check if there are any timers for which
1397 * the soft expires time has passed. If any such timers exist,
1398 * they are run immediately and then removed from the timer queue.
1399 *
1400 */
1401void hrtimer_peek_ahead_timers(void)
1402{
1403 struct tick_device *td;
1404 unsigned long flags;
1405
1406 if (!hrtimer_hres_active())
1407 return;
1408
1409 local_irq_save(flags);
1410 td = &__get_cpu_var(tick_cpu_device);
1411 if (td && td->evtdev)
1412 hrtimer_interrupt(td->evtdev);
1413 local_irq_restore(flags);
1414}
1415
1416static void run_hrtimer_softirq(struct softirq_action *h)
1417{
1418 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1419}
1420
1421#endif /* CONFIG_HIGH_RES_TIMERS */
1422
1423/*
1424 * Called from timer softirq every jiffy, expire hrtimers:
1425 *
1426 * For HRT its the fall back code to run the softirq in the timer
1427 * softirq context in case the hrtimer initialization failed or has
1428 * not been done yet.
1429 */
1430void hrtimer_run_pending(void)
1431{
1432 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1433
1434 if (hrtimer_hres_active())
1435 return;
1436
1437 /*
1438 * This _is_ ugly: We have to check in the softirq context,
1439 * whether we can switch to highres and / or nohz mode. The
1440 * clocksource switch happens in the timer interrupt with
1441 * xtime_lock held. Notification from there only sets the
1442 * check bit in the tick_oneshot code, otherwise we might
1443 * deadlock vs. xtime_lock.
1444 */
1445 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1446 hrtimer_switch_to_hres();
1447
1448 run_hrtimer_pending(cpu_base);
1449}
1450
1451/*
1452 * Called from hardirq context every jiffy
1453 */
1454void hrtimer_run_queues(void)
1455{
1456 struct rb_node *node;
1457 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1458 struct hrtimer_clock_base *base;
1459 int index, gettime = 1;
1460
1461 if (hrtimer_hres_active())
1462 return;
1463
1464 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1465 base = &cpu_base->clock_base[index];
1466
1467 if (!base->first)
1468 continue;
1469
1470 if (gettime) {
1471 hrtimer_get_softirq_time(cpu_base);
1472 gettime = 0;
1473 }
1474
1475 spin_lock(&cpu_base->lock);
1476
1477 while ((node = base->first)) {
1478 struct hrtimer *timer;
1479
1480 timer = rb_entry(node, struct hrtimer, node);
1481 if (base->softirq_time.tv64 <=
1482 hrtimer_get_expires_tv64(timer))
1483 break;
1484
1485 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1486 __remove_hrtimer(timer, base,
1487 HRTIMER_STATE_PENDING, 0);
1488 list_add_tail(&timer->cb_entry,
1489 &base->cpu_base->cb_pending);
1490 continue;
1491 }
1492
1493 __run_hrtimer(timer);
1494 }
1495 spin_unlock(&cpu_base->lock);
1496 }
1497}
1498
1499/*
1500 * Sleep related functions:
1501 */
1502static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1503{
1504 struct hrtimer_sleeper *t =
1505 container_of(timer, struct hrtimer_sleeper, timer);
1506 struct task_struct *task = t->task;
1507
1508 t->task = NULL;
1509 if (task)
1510 wake_up_process(task);
1511
1512 return HRTIMER_NORESTART;
1513}
1514
1515void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1516{
1517 sl->timer.function = hrtimer_wakeup;
1518 sl->task = task;
1519#ifdef CONFIG_HIGH_RES_TIMERS
1520 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1521#endif
1522}
1523
1524static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1525{
1526 hrtimer_init_sleeper(t, current);
1527
1528 do {
1529 set_current_state(TASK_INTERRUPTIBLE);
1530 hrtimer_start_expires(&t->timer, mode);
1531 if (!hrtimer_active(&t->timer))
1532 t->task = NULL;
1533
1534 if (likely(t->task))
1535 schedule();
1536
1537 hrtimer_cancel(&t->timer);
1538 mode = HRTIMER_MODE_ABS;
1539
1540 } while (t->task && !signal_pending(current));
1541
1542 __set_current_state(TASK_RUNNING);
1543
1544 return t->task == NULL;
1545}
1546
1547static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1548{
1549 struct timespec rmt;
1550 ktime_t rem;
1551
1552 rem = hrtimer_expires_remaining(timer);
1553 if (rem.tv64 <= 0)
1554 return 0;
1555 rmt = ktime_to_timespec(rem);
1556
1557 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1558 return -EFAULT;
1559
1560 return 1;
1561}
1562
1563long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1564{
1565 struct hrtimer_sleeper t;
1566 struct timespec __user *rmtp;
1567 int ret = 0;
1568
1569 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1570 HRTIMER_MODE_ABS);
1571 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1572
1573 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1574 goto out;
1575
1576 rmtp = restart->nanosleep.rmtp;
1577 if (rmtp) {
1578 ret = update_rmtp(&t.timer, rmtp);
1579 if (ret <= 0)
1580 goto out;
1581 }
1582
1583 /* The other values in restart are already filled in */
1584 ret = -ERESTART_RESTARTBLOCK;
1585out:
1586 destroy_hrtimer_on_stack(&t.timer);
1587 return ret;
1588}
1589
1590long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1591 const enum hrtimer_mode mode, const clockid_t clockid)
1592{
1593 struct restart_block *restart;
1594 struct hrtimer_sleeper t;
1595 int ret = 0;
1596 unsigned long slack;
1597
1598 slack = current->timer_slack_ns;
1599 if (rt_task(current))
1600 slack = 0;
1601
1602 hrtimer_init_on_stack(&t.timer, clockid, mode);
1603 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1604 if (do_nanosleep(&t, mode))
1605 goto out;
1606
1607 /* Absolute timers do not update the rmtp value and restart: */
1608 if (mode == HRTIMER_MODE_ABS) {
1609 ret = -ERESTARTNOHAND;
1610 goto out;
1611 }
1612
1613 if (rmtp) {
1614 ret = update_rmtp(&t.timer, rmtp);
1615 if (ret <= 0)
1616 goto out;
1617 }
1618
1619 restart = &current_thread_info()->restart_block;
1620 restart->fn = hrtimer_nanosleep_restart;
1621 restart->nanosleep.index = t.timer.base->index;
1622 restart->nanosleep.rmtp = rmtp;
1623 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1624
1625 ret = -ERESTART_RESTARTBLOCK;
1626out:
1627 destroy_hrtimer_on_stack(&t.timer);
1628 return ret;
1629}
1630
1631asmlinkage long
1632sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1633{
1634 struct timespec tu;
1635
1636 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1637 return -EFAULT;
1638
1639 if (!timespec_valid(&tu))
1640 return -EINVAL;
1641
1642 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1643}
1644
1645/*
1646 * Functions related to boot-time initialization:
1647 */
1648static void __cpuinit init_hrtimers_cpu(int cpu)
1649{
1650 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1651 int i;
1652
1653 spin_lock_init(&cpu_base->lock);
1654
1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1656 cpu_base->clock_base[i].cpu_base = cpu_base;
1657
1658 INIT_LIST_HEAD(&cpu_base->cb_pending);
1659 hrtimer_init_hres(cpu_base);
1660}
1661
1662#ifdef CONFIG_HOTPLUG_CPU
1663
1664static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1665 struct hrtimer_clock_base *new_base, int dcpu)
1666{
1667 struct hrtimer *timer;
1668 struct rb_node *node;
1669 int raise = 0;
1670
1671 while ((node = rb_first(&old_base->active))) {
1672 timer = rb_entry(node, struct hrtimer, node);
1673 BUG_ON(hrtimer_callback_running(timer));
1674 debug_hrtimer_deactivate(timer);
1675
1676 /*
1677 * Should not happen. Per CPU timers should be
1678 * canceled _before_ the migration code is called
1679 */
1680 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
1681 __remove_hrtimer(timer, old_base,
1682 HRTIMER_STATE_INACTIVE, 0);
1683 WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
1684 timer, timer->function, dcpu);
1685 continue;
1686 }
1687
1688 /*
1689 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1690 * timer could be seen as !active and just vanish away
1691 * under us on another CPU
1692 */
1693 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1694 timer->base = new_base;
1695 /*
1696 * Enqueue the timer. Allow reprogramming of the event device
1697 */
1698 enqueue_hrtimer(timer, new_base, 1);
1699
1700#ifdef CONFIG_HIGH_RES_TIMERS
1701 /*
1702 * Happens with high res enabled when the timer was
1703 * already expired and the callback mode is
1704 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1705 * enqueue code does not move them to the soft irq
1706 * pending list for performance/latency reasons, but
1707 * in the migration state, we need to do that
1708 * otherwise we end up with a stale timer.
1709 */
1710 if (timer->state == HRTIMER_STATE_MIGRATE) {
1711 timer->state = HRTIMER_STATE_PENDING;
1712 list_add_tail(&timer->cb_entry,
1713 &new_base->cpu_base->cb_pending);
1714 raise = 1;
1715 }
1716#endif
1717 /* Clear the migration state bit */
1718 timer->state &= ~HRTIMER_STATE_MIGRATE;
1719 }
1720 return raise;
1721}
1722
1723#ifdef CONFIG_HIGH_RES_TIMERS
1724static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1725 struct hrtimer_cpu_base *new_base)
1726{
1727 struct hrtimer *timer;
1728 int raise = 0;
1729
1730 while (!list_empty(&old_base->cb_pending)) {
1731 timer = list_entry(old_base->cb_pending.next,
1732 struct hrtimer, cb_entry);
1733
1734 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1735 timer->base = &new_base->clock_base[timer->base->index];
1736 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1737 raise = 1;
1738 }
1739 return raise;
1740}
1741#else
1742static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1743 struct hrtimer_cpu_base *new_base)
1744{
1745 return 0;
1746}
1747#endif
1748
1749static void migrate_hrtimers(int cpu)
1750{
1751 struct hrtimer_cpu_base *old_base, *new_base;
1752 int i, raise = 0;
1753
1754 BUG_ON(cpu_online(cpu));
1755 old_base = &per_cpu(hrtimer_bases, cpu);
1756 new_base = &get_cpu_var(hrtimer_bases);
1757
1758 tick_cancel_sched_timer(cpu);
1759 /*
1760 * The caller is globally serialized and nobody else
1761 * takes two locks at once, deadlock is not possible.
1762 */
1763 spin_lock_irq(&new_base->lock);
1764 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1765
1766 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1767 if (migrate_hrtimer_list(&old_base->clock_base[i],
1768 &new_base->clock_base[i], cpu))
1769 raise = 1;
1770 }
1771
1772 if (migrate_hrtimer_pending(old_base, new_base))
1773 raise = 1;
1774
1775 spin_unlock(&old_base->lock);
1776 spin_unlock_irq(&new_base->lock);
1777 put_cpu_var(hrtimer_bases);
1778
1779 if (raise)
1780 hrtimer_raise_softirq();
1781}
1782#endif /* CONFIG_HOTPLUG_CPU */
1783
1784static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1785 unsigned long action, void *hcpu)
1786{
1787 unsigned int cpu = (long)hcpu;
1788
1789 switch (action) {
1790
1791 case CPU_UP_PREPARE:
1792 case CPU_UP_PREPARE_FROZEN:
1793 init_hrtimers_cpu(cpu);
1794 break;
1795
1796#ifdef CONFIG_HOTPLUG_CPU
1797 case CPU_DEAD:
1798 case CPU_DEAD_FROZEN:
1799 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1800 migrate_hrtimers(cpu);
1801 break;
1802#endif
1803
1804 default:
1805 break;
1806 }
1807
1808 return NOTIFY_OK;
1809}
1810
1811static struct notifier_block __cpuinitdata hrtimers_nb = {
1812 .notifier_call = hrtimer_cpu_notify,
1813};
1814
1815void __init hrtimers_init(void)
1816{
1817 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1818 (void *)(long)smp_processor_id());
1819 register_cpu_notifier(&hrtimers_nb);
1820#ifdef CONFIG_HIGH_RES_TIMERS
1821 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1822#endif
1823}
1824
1825/**
1826 * schedule_hrtimeout_range - sleep until timeout
1827 * @expires: timeout value (ktime_t)
1828 * @delta: slack in expires timeout (ktime_t)
1829 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1830 *
1831 * Make the current task sleep until the given expiry time has
1832 * elapsed. The routine will return immediately unless
1833 * the current task state has been set (see set_current_state()).
1834 *
1835 * The @delta argument gives the kernel the freedom to schedule the
1836 * actual wakeup to a time that is both power and performance friendly.
1837 * The kernel give the normal best effort behavior for "@expires+@delta",
1838 * but may decide to fire the timer earlier, but no earlier than @expires.
1839 *
1840 * You can set the task state as follows -
1841 *
1842 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1843 * pass before the routine returns.
1844 *
1845 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1846 * delivered to the current task.
1847 *
1848 * The current task state is guaranteed to be TASK_RUNNING when this
1849 * routine returns.
1850 *
1851 * Returns 0 when the timer has expired otherwise -EINTR
1852 */
1853int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1854 const enum hrtimer_mode mode)
1855{
1856 struct hrtimer_sleeper t;
1857
1858 /*
1859 * Optimize when a zero timeout value is given. It does not
1860 * matter whether this is an absolute or a relative time.
1861 */
1862 if (expires && !expires->tv64) {
1863 __set_current_state(TASK_RUNNING);
1864 return 0;
1865 }
1866
1867 /*
1868 * A NULL parameter means "inifinte"
1869 */
1870 if (!expires) {
1871 schedule();
1872 __set_current_state(TASK_RUNNING);
1873 return -EINTR;
1874 }
1875
1876 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1877 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1878
1879 hrtimer_init_sleeper(&t, current);
1880
1881 hrtimer_start_expires(&t.timer, mode);
1882 if (!hrtimer_active(&t.timer))
1883 t.task = NULL;
1884
1885 if (likely(t.task))
1886 schedule();
1887
1888 hrtimer_cancel(&t.timer);
1889 destroy_hrtimer_on_stack(&t.timer);
1890
1891 __set_current_state(TASK_RUNNING);
1892
1893 return !t.task ? 0 : -EINTR;
1894}
1895EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1896
1897/**
1898 * schedule_hrtimeout - sleep until timeout
1899 * @expires: timeout value (ktime_t)
1900 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1901 *
1902 * Make the current task sleep until the given expiry time has
1903 * elapsed. The routine will return immediately unless
1904 * the current task state has been set (see set_current_state()).
1905 *
1906 * You can set the task state as follows -
1907 *
1908 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1909 * pass before the routine returns.
1910 *
1911 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1912 * delivered to the current task.
1913 *
1914 * The current task state is guaranteed to be TASK_RUNNING when this
1915 * routine returns.
1916 *
1917 * Returns 0 when the timer has expired otherwise -EINTR
1918 */
1919int __sched schedule_hrtimeout(ktime_t *expires,
1920 const enum hrtimer_mode mode)
1921{
1922 return schedule_hrtimeout_range(expires, 0, mode);
1923}
1924EXPORT_SYMBOL_GPL(schedule_hrtimeout);