exit: wait: don't use zombie->real_parent
[linux-2.6-block.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/freezer.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct *tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78}
79
80/*
81 * This function expects the tasklist_lock write-locked.
82 */
83static void __exit_signal(struct task_struct *tsk)
84{
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on
127 * the signal_struct.
128 */
129 task_cputime(tsk, &utime, &stime);
130 write_seqlock(&sig->stats_lock);
131 sig->utime += utime;
132 sig->stime += stime;
133 sig->gtime += task_gtime(tsk);
134 sig->min_flt += tsk->min_flt;
135 sig->maj_flt += tsk->maj_flt;
136 sig->nvcsw += tsk->nvcsw;
137 sig->nivcsw += tsk->nivcsw;
138 sig->inblock += task_io_get_inblock(tsk);
139 sig->oublock += task_io_get_oublock(tsk);
140 task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144 write_sequnlock(&sig->stats_lock);
145
146 /*
147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 */
150 flush_sigqueue(&tsk->pending);
151 tsk->sighand = NULL;
152 spin_unlock(&sighand->siglock);
153
154 __cleanup_sighand(sighand);
155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 if (group_dead) {
157 flush_sigqueue(&sig->shared_pending);
158 tty_kref_put(tty);
159 }
160}
161
162static void delayed_put_task_struct(struct rcu_head *rhp)
163{
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165
166 perf_event_delayed_put(tsk);
167 trace_sched_process_free(tsk);
168 put_task_struct(tsk);
169}
170
171
172void release_task(struct task_struct *p)
173{
174 struct task_struct *leader;
175 int zap_leader;
176repeat:
177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 rcu_read_lock();
180 atomic_dec(&__task_cred(p)->user->processes);
181 rcu_read_unlock();
182
183 proc_flush_task(p);
184
185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p);
187 __exit_signal(p);
188
189 /*
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
193 */
194 zap_leader = 0;
195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader)
197 && leader->exit_state == EXIT_ZOMBIE) {
198 /*
199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader.
202 */
203 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD;
206 }
207
208 write_unlock_irq(&tasklist_lock);
209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct);
211
212 p = leader;
213 if (unlikely(zap_leader))
214 goto repeat;
215}
216
217/*
218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220 * without this...
221 *
222 * The caller must hold rcu lock or the tasklist lock.
223 */
224struct pid *session_of_pgrp(struct pid *pgrp)
225{
226 struct task_struct *p;
227 struct pid *sid = NULL;
228
229 p = pid_task(pgrp, PIDTYPE_PGID);
230 if (p == NULL)
231 p = pid_task(pgrp, PIDTYPE_PID);
232 if (p != NULL)
233 sid = task_session(p);
234
235 return sid;
236}
237
238/*
239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT.
243 *
244 * "I ask you, have you ever known what it is to be an orphan?"
245 */
246static int will_become_orphaned_pgrp(struct pid *pgrp,
247 struct task_struct *ignored_task)
248{
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263}
264
265int is_current_pgrp_orphaned(void)
266{
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274}
275
276static bool has_stopped_jobs(struct pid *pgrp)
277{
278 struct task_struct *p;
279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 return true;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return false;
286}
287
288/*
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */
293static void
294kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295{
296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk;
298
299 if (!parent)
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
302 */
303 parent = tsk->real_parent;
304 else
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
307 */
308 ignored_task = NULL;
309
310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 }
317}
318
319#ifdef CONFIG_MEMCG
320/*
321 * A task is exiting. If it owned this mm, find a new owner for the mm.
322 */
323void mm_update_next_owner(struct mm_struct *mm)
324{
325 struct task_struct *c, *g, *p = current;
326
327retry:
328 /*
329 * If the exiting or execing task is not the owner, it's
330 * someone else's problem.
331 */
332 if (mm->owner != p)
333 return;
334 /*
335 * The current owner is exiting/execing and there are no other
336 * candidates. Do not leave the mm pointing to a possibly
337 * freed task structure.
338 */
339 if (atomic_read(&mm->mm_users) <= 1) {
340 mm->owner = NULL;
341 return;
342 }
343
344 read_lock(&tasklist_lock);
345 /*
346 * Search in the children
347 */
348 list_for_each_entry(c, &p->children, sibling) {
349 if (c->mm == mm)
350 goto assign_new_owner;
351 }
352
353 /*
354 * Search in the siblings
355 */
356 list_for_each_entry(c, &p->real_parent->children, sibling) {
357 if (c->mm == mm)
358 goto assign_new_owner;
359 }
360
361 /*
362 * Search through everything else, we should not get here often.
363 */
364 for_each_process(g) {
365 if (g->flags & PF_KTHREAD)
366 continue;
367 for_each_thread(g, c) {
368 if (c->mm == mm)
369 goto assign_new_owner;
370 if (c->mm)
371 break;
372 }
373 }
374 read_unlock(&tasklist_lock);
375 /*
376 * We found no owner yet mm_users > 1: this implies that we are
377 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
379 */
380 mm->owner = NULL;
381 return;
382
383assign_new_owner:
384 BUG_ON(c == p);
385 get_task_struct(c);
386 /*
387 * The task_lock protects c->mm from changing.
388 * We always want mm->owner->mm == mm
389 */
390 task_lock(c);
391 /*
392 * Delay read_unlock() till we have the task_lock()
393 * to ensure that c does not slip away underneath us
394 */
395 read_unlock(&tasklist_lock);
396 if (c->mm != mm) {
397 task_unlock(c);
398 put_task_struct(c);
399 goto retry;
400 }
401 mm->owner = c;
402 task_unlock(c);
403 put_task_struct(c);
404}
405#endif /* CONFIG_MEMCG */
406
407/*
408 * Turn us into a lazy TLB process if we
409 * aren't already..
410 */
411static void exit_mm(struct task_struct *tsk)
412{
413 struct mm_struct *mm = tsk->mm;
414 struct core_state *core_state;
415
416 mm_release(tsk, mm);
417 if (!mm)
418 return;
419 sync_mm_rss(mm);
420 /*
421 * Serialize with any possible pending coredump.
422 * We must hold mmap_sem around checking core_state
423 * and clearing tsk->mm. The core-inducing thread
424 * will increment ->nr_threads for each thread in the
425 * group with ->mm != NULL.
426 */
427 down_read(&mm->mmap_sem);
428 core_state = mm->core_state;
429 if (core_state) {
430 struct core_thread self;
431
432 up_read(&mm->mmap_sem);
433
434 self.task = tsk;
435 self.next = xchg(&core_state->dumper.next, &self);
436 /*
437 * Implies mb(), the result of xchg() must be visible
438 * to core_state->dumper.
439 */
440 if (atomic_dec_and_test(&core_state->nr_threads))
441 complete(&core_state->startup);
442
443 for (;;) {
444 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
445 if (!self.task) /* see coredump_finish() */
446 break;
447 freezable_schedule();
448 }
449 __set_task_state(tsk, TASK_RUNNING);
450 down_read(&mm->mmap_sem);
451 }
452 atomic_inc(&mm->mm_count);
453 BUG_ON(mm != tsk->active_mm);
454 /* more a memory barrier than a real lock */
455 task_lock(tsk);
456 tsk->mm = NULL;
457 up_read(&mm->mmap_sem);
458 enter_lazy_tlb(mm, current);
459 task_unlock(tsk);
460 mm_update_next_owner(mm);
461 mmput(mm);
462 clear_thread_flag(TIF_MEMDIE);
463}
464
465/*
466 * When we die, we re-parent all our children, and try to:
467 * 1. give them to another thread in our thread group, if such a member exists
468 * 2. give it to the first ancestor process which prctl'd itself as a
469 * child_subreaper for its children (like a service manager)
470 * 3. give it to the init process (PID 1) in our pid namespace
471 */
472static struct task_struct *find_new_reaper(struct task_struct *father)
473 __releases(&tasklist_lock)
474 __acquires(&tasklist_lock)
475{
476 struct pid_namespace *pid_ns = task_active_pid_ns(father);
477 struct task_struct *thread;
478
479 thread = father;
480 while_each_thread(father, thread) {
481 if (thread->flags & PF_EXITING)
482 continue;
483 if (unlikely(pid_ns->child_reaper == father))
484 pid_ns->child_reaper = thread;
485 return thread;
486 }
487
488 if (unlikely(pid_ns->child_reaper == father)) {
489 write_unlock_irq(&tasklist_lock);
490 if (unlikely(pid_ns == &init_pid_ns)) {
491 panic("Attempted to kill init! exitcode=0x%08x\n",
492 father->signal->group_exit_code ?:
493 father->exit_code);
494 }
495
496 zap_pid_ns_processes(pid_ns);
497 write_lock_irq(&tasklist_lock);
498 } else if (father->signal->has_child_subreaper) {
499 struct task_struct *reaper;
500
501 /*
502 * Find the first ancestor marked as child_subreaper.
503 * Note that the code below checks same_thread_group(reaper,
504 * pid_ns->child_reaper). This is what we need to DTRT in a
505 * PID namespace. However we still need the check above, see
506 * http://marc.info/?l=linux-kernel&m=131385460420380
507 */
508 for (reaper = father->real_parent;
509 reaper != &init_task;
510 reaper = reaper->real_parent) {
511 if (same_thread_group(reaper, pid_ns->child_reaper))
512 break;
513 if (!reaper->signal->is_child_subreaper)
514 continue;
515 thread = reaper;
516 do {
517 if (!(thread->flags & PF_EXITING))
518 return reaper;
519 } while_each_thread(reaper, thread);
520 }
521 }
522
523 return pid_ns->child_reaper;
524}
525
526/*
527* Any that need to be release_task'd are put on the @dead list.
528 */
529static void reparent_leader(struct task_struct *father, struct task_struct *p,
530 struct list_head *dead)
531{
532 if (unlikely(p->exit_state == EXIT_DEAD))
533 return;
534
535 /* We don't want people slaying init. */
536 p->exit_signal = SIGCHLD;
537
538 /* If it has exited notify the new parent about this child's death. */
539 if (!p->ptrace &&
540 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
541 if (do_notify_parent(p, p->exit_signal)) {
542 p->exit_state = EXIT_DEAD;
543 list_add(&p->ptrace_entry, dead);
544 }
545 }
546
547 kill_orphaned_pgrp(p, father);
548}
549
550static void forget_original_parent(struct task_struct *father)
551{
552 struct task_struct *p, *t, *n, *reaper;
553 LIST_HEAD(dead_children);
554
555 write_lock_irq(&tasklist_lock);
556 if (unlikely(!list_empty(&father->ptraced)))
557 exit_ptrace(father, &dead_children);
558
559 /* Can drop and reacquire tasklist_lock */
560 reaper = find_new_reaper(father);
561 list_for_each_entry(p, &father->children, sibling) {
562 for_each_thread(p, t) {
563 t->real_parent = reaper;
564 BUG_ON((!t->ptrace) != (t->parent == father));
565 if (likely(!t->ptrace))
566 t->parent = t->real_parent;
567 if (t->pdeath_signal)
568 group_send_sig_info(t->pdeath_signal,
569 SEND_SIG_NOINFO, t);
570 }
571 /*
572 * If this is a threaded reparent there is no need to
573 * notify anyone anything has happened.
574 */
575 if (!same_thread_group(reaper, father))
576 reparent_leader(father, p, &dead_children);
577 }
578 list_splice_tail_init(&father->children, &reaper->children);
579 write_unlock_irq(&tasklist_lock);
580
581 list_for_each_entry_safe(p, n, &dead_children, ptrace_entry) {
582 list_del_init(&p->ptrace_entry);
583 release_task(p);
584 }
585}
586
587/*
588 * Send signals to all our closest relatives so that they know
589 * to properly mourn us..
590 */
591static void exit_notify(struct task_struct *tsk, int group_dead)
592{
593 bool autoreap;
594
595 /*
596 * This does two things:
597 *
598 * A. Make init inherit all the child processes
599 * B. Check to see if any process groups have become orphaned
600 * as a result of our exiting, and if they have any stopped
601 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
602 */
603 forget_original_parent(tsk);
604
605 write_lock_irq(&tasklist_lock);
606 if (group_dead)
607 kill_orphaned_pgrp(tsk->group_leader, NULL);
608
609 if (unlikely(tsk->ptrace)) {
610 int sig = thread_group_leader(tsk) &&
611 thread_group_empty(tsk) &&
612 !ptrace_reparented(tsk) ?
613 tsk->exit_signal : SIGCHLD;
614 autoreap = do_notify_parent(tsk, sig);
615 } else if (thread_group_leader(tsk)) {
616 autoreap = thread_group_empty(tsk) &&
617 do_notify_parent(tsk, tsk->exit_signal);
618 } else {
619 autoreap = true;
620 }
621
622 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
623
624 /* mt-exec, de_thread() is waiting for group leader */
625 if (unlikely(tsk->signal->notify_count < 0))
626 wake_up_process(tsk->signal->group_exit_task);
627 write_unlock_irq(&tasklist_lock);
628
629 /* If the process is dead, release it - nobody will wait for it */
630 if (autoreap)
631 release_task(tsk);
632}
633
634#ifdef CONFIG_DEBUG_STACK_USAGE
635static void check_stack_usage(void)
636{
637 static DEFINE_SPINLOCK(low_water_lock);
638 static int lowest_to_date = THREAD_SIZE;
639 unsigned long free;
640
641 free = stack_not_used(current);
642
643 if (free >= lowest_to_date)
644 return;
645
646 spin_lock(&low_water_lock);
647 if (free < lowest_to_date) {
648 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
649 current->comm, task_pid_nr(current), free);
650 lowest_to_date = free;
651 }
652 spin_unlock(&low_water_lock);
653}
654#else
655static inline void check_stack_usage(void) {}
656#endif
657
658void do_exit(long code)
659{
660 struct task_struct *tsk = current;
661 int group_dead;
662 TASKS_RCU(int tasks_rcu_i);
663
664 profile_task_exit(tsk);
665
666 WARN_ON(blk_needs_flush_plug(tsk));
667
668 if (unlikely(in_interrupt()))
669 panic("Aiee, killing interrupt handler!");
670 if (unlikely(!tsk->pid))
671 panic("Attempted to kill the idle task!");
672
673 /*
674 * If do_exit is called because this processes oopsed, it's possible
675 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
676 * continuing. Amongst other possible reasons, this is to prevent
677 * mm_release()->clear_child_tid() from writing to a user-controlled
678 * kernel address.
679 */
680 set_fs(USER_DS);
681
682 ptrace_event(PTRACE_EVENT_EXIT, code);
683
684 validate_creds_for_do_exit(tsk);
685
686 /*
687 * We're taking recursive faults here in do_exit. Safest is to just
688 * leave this task alone and wait for reboot.
689 */
690 if (unlikely(tsk->flags & PF_EXITING)) {
691 pr_alert("Fixing recursive fault but reboot is needed!\n");
692 /*
693 * We can do this unlocked here. The futex code uses
694 * this flag just to verify whether the pi state
695 * cleanup has been done or not. In the worst case it
696 * loops once more. We pretend that the cleanup was
697 * done as there is no way to return. Either the
698 * OWNER_DIED bit is set by now or we push the blocked
699 * task into the wait for ever nirwana as well.
700 */
701 tsk->flags |= PF_EXITPIDONE;
702 set_current_state(TASK_UNINTERRUPTIBLE);
703 schedule();
704 }
705
706 exit_signals(tsk); /* sets PF_EXITING */
707 /*
708 * tsk->flags are checked in the futex code to protect against
709 * an exiting task cleaning up the robust pi futexes.
710 */
711 smp_mb();
712 raw_spin_unlock_wait(&tsk->pi_lock);
713
714 if (unlikely(in_atomic()))
715 pr_info("note: %s[%d] exited with preempt_count %d\n",
716 current->comm, task_pid_nr(current),
717 preempt_count());
718
719 acct_update_integrals(tsk);
720 /* sync mm's RSS info before statistics gathering */
721 if (tsk->mm)
722 sync_mm_rss(tsk->mm);
723 group_dead = atomic_dec_and_test(&tsk->signal->live);
724 if (group_dead) {
725 hrtimer_cancel(&tsk->signal->real_timer);
726 exit_itimers(tsk->signal);
727 if (tsk->mm)
728 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
729 }
730 acct_collect(code, group_dead);
731 if (group_dead)
732 tty_audit_exit();
733 audit_free(tsk);
734
735 tsk->exit_code = code;
736 taskstats_exit(tsk, group_dead);
737
738 exit_mm(tsk);
739
740 if (group_dead)
741 acct_process();
742 trace_sched_process_exit(tsk);
743
744 exit_sem(tsk);
745 exit_shm(tsk);
746 exit_files(tsk);
747 exit_fs(tsk);
748 if (group_dead)
749 disassociate_ctty(1);
750 exit_task_namespaces(tsk);
751 exit_task_work(tsk);
752 exit_thread();
753
754 /*
755 * Flush inherited counters to the parent - before the parent
756 * gets woken up by child-exit notifications.
757 *
758 * because of cgroup mode, must be called before cgroup_exit()
759 */
760 perf_event_exit_task(tsk);
761
762 cgroup_exit(tsk);
763
764 module_put(task_thread_info(tsk)->exec_domain->module);
765
766 /*
767 * FIXME: do that only when needed, using sched_exit tracepoint
768 */
769 flush_ptrace_hw_breakpoint(tsk);
770
771 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
772 exit_notify(tsk, group_dead);
773 proc_exit_connector(tsk);
774#ifdef CONFIG_NUMA
775 task_lock(tsk);
776 mpol_put(tsk->mempolicy);
777 tsk->mempolicy = NULL;
778 task_unlock(tsk);
779#endif
780#ifdef CONFIG_FUTEX
781 if (unlikely(current->pi_state_cache))
782 kfree(current->pi_state_cache);
783#endif
784 /*
785 * Make sure we are holding no locks:
786 */
787 debug_check_no_locks_held();
788 /*
789 * We can do this unlocked here. The futex code uses this flag
790 * just to verify whether the pi state cleanup has been done
791 * or not. In the worst case it loops once more.
792 */
793 tsk->flags |= PF_EXITPIDONE;
794
795 if (tsk->io_context)
796 exit_io_context(tsk);
797
798 if (tsk->splice_pipe)
799 free_pipe_info(tsk->splice_pipe);
800
801 if (tsk->task_frag.page)
802 put_page(tsk->task_frag.page);
803
804 validate_creds_for_do_exit(tsk);
805
806 check_stack_usage();
807 preempt_disable();
808 if (tsk->nr_dirtied)
809 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
810 exit_rcu();
811 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
812
813 /*
814 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
815 * when the following two conditions become true.
816 * - There is race condition of mmap_sem (It is acquired by
817 * exit_mm()), and
818 * - SMI occurs before setting TASK_RUNINNG.
819 * (or hypervisor of virtual machine switches to other guest)
820 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
821 *
822 * To avoid it, we have to wait for releasing tsk->pi_lock which
823 * is held by try_to_wake_up()
824 */
825 smp_mb();
826 raw_spin_unlock_wait(&tsk->pi_lock);
827
828 /* causes final put_task_struct in finish_task_switch(). */
829 tsk->state = TASK_DEAD;
830 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
831 schedule();
832 BUG();
833 /* Avoid "noreturn function does return". */
834 for (;;)
835 cpu_relax(); /* For when BUG is null */
836}
837EXPORT_SYMBOL_GPL(do_exit);
838
839void complete_and_exit(struct completion *comp, long code)
840{
841 if (comp)
842 complete(comp);
843
844 do_exit(code);
845}
846EXPORT_SYMBOL(complete_and_exit);
847
848SYSCALL_DEFINE1(exit, int, error_code)
849{
850 do_exit((error_code&0xff)<<8);
851}
852
853/*
854 * Take down every thread in the group. This is called by fatal signals
855 * as well as by sys_exit_group (below).
856 */
857void
858do_group_exit(int exit_code)
859{
860 struct signal_struct *sig = current->signal;
861
862 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
863
864 if (signal_group_exit(sig))
865 exit_code = sig->group_exit_code;
866 else if (!thread_group_empty(current)) {
867 struct sighand_struct *const sighand = current->sighand;
868
869 spin_lock_irq(&sighand->siglock);
870 if (signal_group_exit(sig))
871 /* Another thread got here before we took the lock. */
872 exit_code = sig->group_exit_code;
873 else {
874 sig->group_exit_code = exit_code;
875 sig->flags = SIGNAL_GROUP_EXIT;
876 zap_other_threads(current);
877 }
878 spin_unlock_irq(&sighand->siglock);
879 }
880
881 do_exit(exit_code);
882 /* NOTREACHED */
883}
884
885/*
886 * this kills every thread in the thread group. Note that any externally
887 * wait4()-ing process will get the correct exit code - even if this
888 * thread is not the thread group leader.
889 */
890SYSCALL_DEFINE1(exit_group, int, error_code)
891{
892 do_group_exit((error_code & 0xff) << 8);
893 /* NOTREACHED */
894 return 0;
895}
896
897struct wait_opts {
898 enum pid_type wo_type;
899 int wo_flags;
900 struct pid *wo_pid;
901
902 struct siginfo __user *wo_info;
903 int __user *wo_stat;
904 struct rusage __user *wo_rusage;
905
906 wait_queue_t child_wait;
907 int notask_error;
908};
909
910static inline
911struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
912{
913 if (type != PIDTYPE_PID)
914 task = task->group_leader;
915 return task->pids[type].pid;
916}
917
918static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
919{
920 return wo->wo_type == PIDTYPE_MAX ||
921 task_pid_type(p, wo->wo_type) == wo->wo_pid;
922}
923
924static int eligible_child(struct wait_opts *wo, struct task_struct *p)
925{
926 if (!eligible_pid(wo, p))
927 return 0;
928 /* Wait for all children (clone and not) if __WALL is set;
929 * otherwise, wait for clone children *only* if __WCLONE is
930 * set; otherwise, wait for non-clone children *only*. (Note:
931 * A "clone" child here is one that reports to its parent
932 * using a signal other than SIGCHLD.) */
933 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
934 && !(wo->wo_flags & __WALL))
935 return 0;
936
937 return 1;
938}
939
940static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
941 pid_t pid, uid_t uid, int why, int status)
942{
943 struct siginfo __user *infop;
944 int retval = wo->wo_rusage
945 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
946
947 put_task_struct(p);
948 infop = wo->wo_info;
949 if (infop) {
950 if (!retval)
951 retval = put_user(SIGCHLD, &infop->si_signo);
952 if (!retval)
953 retval = put_user(0, &infop->si_errno);
954 if (!retval)
955 retval = put_user((short)why, &infop->si_code);
956 if (!retval)
957 retval = put_user(pid, &infop->si_pid);
958 if (!retval)
959 retval = put_user(uid, &infop->si_uid);
960 if (!retval)
961 retval = put_user(status, &infop->si_status);
962 }
963 if (!retval)
964 retval = pid;
965 return retval;
966}
967
968/*
969 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
970 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
971 * the lock and this task is uninteresting. If we return nonzero, we have
972 * released the lock and the system call should return.
973 */
974static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
975{
976 int state, retval, status;
977 pid_t pid = task_pid_vnr(p);
978 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
979 struct siginfo __user *infop;
980
981 if (!likely(wo->wo_flags & WEXITED))
982 return 0;
983
984 if (unlikely(wo->wo_flags & WNOWAIT)) {
985 int exit_code = p->exit_code;
986 int why;
987
988 get_task_struct(p);
989 read_unlock(&tasklist_lock);
990 sched_annotate_sleep();
991
992 if ((exit_code & 0x7f) == 0) {
993 why = CLD_EXITED;
994 status = exit_code >> 8;
995 } else {
996 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
997 status = exit_code & 0x7f;
998 }
999 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1000 }
1001 /*
1002 * Move the task's state to DEAD/TRACE, only one thread can do this.
1003 */
1004 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1005 EXIT_TRACE : EXIT_DEAD;
1006 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1007 return 0;
1008
1009 /*
1010 * Check thread_group_leader() to exclude the traced sub-threads.
1011 */
1012 if (state == EXIT_DEAD && thread_group_leader(p)) {
1013 struct signal_struct *sig = p->signal;
1014 struct signal_struct *psig = current->signal;
1015 unsigned long maxrss;
1016 cputime_t tgutime, tgstime;
1017
1018 /*
1019 * The resource counters for the group leader are in its
1020 * own task_struct. Those for dead threads in the group
1021 * are in its signal_struct, as are those for the child
1022 * processes it has previously reaped. All these
1023 * accumulate in the parent's signal_struct c* fields.
1024 *
1025 * We don't bother to take a lock here to protect these
1026 * p->signal fields because the whole thread group is dead
1027 * and nobody can change them.
1028 *
1029 * psig->stats_lock also protects us from our sub-theads
1030 * which can reap other children at the same time. Until
1031 * we change k_getrusage()-like users to rely on this lock
1032 * we have to take ->siglock as well.
1033 *
1034 * We use thread_group_cputime_adjusted() to get times for
1035 * the thread group, which consolidates times for all threads
1036 * in the group including the group leader.
1037 */
1038 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1039 spin_lock_irq(&current->sighand->siglock);
1040 write_seqlock(&psig->stats_lock);
1041 psig->cutime += tgutime + sig->cutime;
1042 psig->cstime += tgstime + sig->cstime;
1043 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1044 psig->cmin_flt +=
1045 p->min_flt + sig->min_flt + sig->cmin_flt;
1046 psig->cmaj_flt +=
1047 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1048 psig->cnvcsw +=
1049 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1050 psig->cnivcsw +=
1051 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1052 psig->cinblock +=
1053 task_io_get_inblock(p) +
1054 sig->inblock + sig->cinblock;
1055 psig->coublock +=
1056 task_io_get_oublock(p) +
1057 sig->oublock + sig->coublock;
1058 maxrss = max(sig->maxrss, sig->cmaxrss);
1059 if (psig->cmaxrss < maxrss)
1060 psig->cmaxrss = maxrss;
1061 task_io_accounting_add(&psig->ioac, &p->ioac);
1062 task_io_accounting_add(&psig->ioac, &sig->ioac);
1063 write_sequnlock(&psig->stats_lock);
1064 spin_unlock_irq(&current->sighand->siglock);
1065 }
1066
1067 /*
1068 * Now we are sure this task is interesting, and no other
1069 * thread can reap it because we its state == DEAD/TRACE.
1070 */
1071 read_unlock(&tasklist_lock);
1072 sched_annotate_sleep();
1073
1074 retval = wo->wo_rusage
1075 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1076 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1077 ? p->signal->group_exit_code : p->exit_code;
1078 if (!retval && wo->wo_stat)
1079 retval = put_user(status, wo->wo_stat);
1080
1081 infop = wo->wo_info;
1082 if (!retval && infop)
1083 retval = put_user(SIGCHLD, &infop->si_signo);
1084 if (!retval && infop)
1085 retval = put_user(0, &infop->si_errno);
1086 if (!retval && infop) {
1087 int why;
1088
1089 if ((status & 0x7f) == 0) {
1090 why = CLD_EXITED;
1091 status >>= 8;
1092 } else {
1093 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094 status &= 0x7f;
1095 }
1096 retval = put_user((short)why, &infop->si_code);
1097 if (!retval)
1098 retval = put_user(status, &infop->si_status);
1099 }
1100 if (!retval && infop)
1101 retval = put_user(pid, &infop->si_pid);
1102 if (!retval && infop)
1103 retval = put_user(uid, &infop->si_uid);
1104 if (!retval)
1105 retval = pid;
1106
1107 if (state == EXIT_TRACE) {
1108 write_lock_irq(&tasklist_lock);
1109 /* We dropped tasklist, ptracer could die and untrace */
1110 ptrace_unlink(p);
1111
1112 /* If parent wants a zombie, don't release it now */
1113 state = EXIT_ZOMBIE;
1114 if (do_notify_parent(p, p->exit_signal))
1115 state = EXIT_DEAD;
1116 p->exit_state = state;
1117 write_unlock_irq(&tasklist_lock);
1118 }
1119 if (state == EXIT_DEAD)
1120 release_task(p);
1121
1122 return retval;
1123}
1124
1125static int *task_stopped_code(struct task_struct *p, bool ptrace)
1126{
1127 if (ptrace) {
1128 if (task_is_stopped_or_traced(p) &&
1129 !(p->jobctl & JOBCTL_LISTENING))
1130 return &p->exit_code;
1131 } else {
1132 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1133 return &p->signal->group_exit_code;
1134 }
1135 return NULL;
1136}
1137
1138/**
1139 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1140 * @wo: wait options
1141 * @ptrace: is the wait for ptrace
1142 * @p: task to wait for
1143 *
1144 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145 *
1146 * CONTEXT:
1147 * read_lock(&tasklist_lock), which is released if return value is
1148 * non-zero. Also, grabs and releases @p->sighand->siglock.
1149 *
1150 * RETURNS:
1151 * 0 if wait condition didn't exist and search for other wait conditions
1152 * should continue. Non-zero return, -errno on failure and @p's pid on
1153 * success, implies that tasklist_lock is released and wait condition
1154 * search should terminate.
1155 */
1156static int wait_task_stopped(struct wait_opts *wo,
1157 int ptrace, struct task_struct *p)
1158{
1159 struct siginfo __user *infop;
1160 int retval, exit_code, *p_code, why;
1161 uid_t uid = 0; /* unneeded, required by compiler */
1162 pid_t pid;
1163
1164 /*
1165 * Traditionally we see ptrace'd stopped tasks regardless of options.
1166 */
1167 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1168 return 0;
1169
1170 if (!task_stopped_code(p, ptrace))
1171 return 0;
1172
1173 exit_code = 0;
1174 spin_lock_irq(&p->sighand->siglock);
1175
1176 p_code = task_stopped_code(p, ptrace);
1177 if (unlikely(!p_code))
1178 goto unlock_sig;
1179
1180 exit_code = *p_code;
1181 if (!exit_code)
1182 goto unlock_sig;
1183
1184 if (!unlikely(wo->wo_flags & WNOWAIT))
1185 *p_code = 0;
1186
1187 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1188unlock_sig:
1189 spin_unlock_irq(&p->sighand->siglock);
1190 if (!exit_code)
1191 return 0;
1192
1193 /*
1194 * Now we are pretty sure this task is interesting.
1195 * Make sure it doesn't get reaped out from under us while we
1196 * give up the lock and then examine it below. We don't want to
1197 * keep holding onto the tasklist_lock while we call getrusage and
1198 * possibly take page faults for user memory.
1199 */
1200 get_task_struct(p);
1201 pid = task_pid_vnr(p);
1202 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1203 read_unlock(&tasklist_lock);
1204 sched_annotate_sleep();
1205
1206 if (unlikely(wo->wo_flags & WNOWAIT))
1207 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1208
1209 retval = wo->wo_rusage
1210 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1211 if (!retval && wo->wo_stat)
1212 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1213
1214 infop = wo->wo_info;
1215 if (!retval && infop)
1216 retval = put_user(SIGCHLD, &infop->si_signo);
1217 if (!retval && infop)
1218 retval = put_user(0, &infop->si_errno);
1219 if (!retval && infop)
1220 retval = put_user((short)why, &infop->si_code);
1221 if (!retval && infop)
1222 retval = put_user(exit_code, &infop->si_status);
1223 if (!retval && infop)
1224 retval = put_user(pid, &infop->si_pid);
1225 if (!retval && infop)
1226 retval = put_user(uid, &infop->si_uid);
1227 if (!retval)
1228 retval = pid;
1229 put_task_struct(p);
1230
1231 BUG_ON(!retval);
1232 return retval;
1233}
1234
1235/*
1236 * Handle do_wait work for one task in a live, non-stopped state.
1237 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1238 * the lock and this task is uninteresting. If we return nonzero, we have
1239 * released the lock and the system call should return.
1240 */
1241static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1242{
1243 int retval;
1244 pid_t pid;
1245 uid_t uid;
1246
1247 if (!unlikely(wo->wo_flags & WCONTINUED))
1248 return 0;
1249
1250 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1251 return 0;
1252
1253 spin_lock_irq(&p->sighand->siglock);
1254 /* Re-check with the lock held. */
1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1256 spin_unlock_irq(&p->sighand->siglock);
1257 return 0;
1258 }
1259 if (!unlikely(wo->wo_flags & WNOWAIT))
1260 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1261 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1262 spin_unlock_irq(&p->sighand->siglock);
1263
1264 pid = task_pid_vnr(p);
1265 get_task_struct(p);
1266 read_unlock(&tasklist_lock);
1267 sched_annotate_sleep();
1268
1269 if (!wo->wo_info) {
1270 retval = wo->wo_rusage
1271 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1272 put_task_struct(p);
1273 if (!retval && wo->wo_stat)
1274 retval = put_user(0xffff, wo->wo_stat);
1275 if (!retval)
1276 retval = pid;
1277 } else {
1278 retval = wait_noreap_copyout(wo, p, pid, uid,
1279 CLD_CONTINUED, SIGCONT);
1280 BUG_ON(retval == 0);
1281 }
1282
1283 return retval;
1284}
1285
1286/*
1287 * Consider @p for a wait by @parent.
1288 *
1289 * -ECHILD should be in ->notask_error before the first call.
1290 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291 * Returns zero if the search for a child should continue;
1292 * then ->notask_error is 0 if @p is an eligible child,
1293 * or another error from security_task_wait(), or still -ECHILD.
1294 */
1295static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296 struct task_struct *p)
1297{
1298 int ret;
1299
1300 if (unlikely(p->exit_state == EXIT_DEAD))
1301 return 0;
1302
1303 ret = eligible_child(wo, p);
1304 if (!ret)
1305 return ret;
1306
1307 ret = security_task_wait(p);
1308 if (unlikely(ret < 0)) {
1309 /*
1310 * If we have not yet seen any eligible child,
1311 * then let this error code replace -ECHILD.
1312 * A permission error will give the user a clue
1313 * to look for security policy problems, rather
1314 * than for mysterious wait bugs.
1315 */
1316 if (wo->notask_error)
1317 wo->notask_error = ret;
1318 return 0;
1319 }
1320
1321 if (unlikely(p->exit_state == EXIT_TRACE)) {
1322 /*
1323 * ptrace == 0 means we are the natural parent. In this case
1324 * we should clear notask_error, debugger will notify us.
1325 */
1326 if (likely(!ptrace))
1327 wo->notask_error = 0;
1328 return 0;
1329 }
1330
1331 if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 /*
1333 * If it is traced by its real parent's group, just pretend
1334 * the caller is ptrace_do_wait() and reap this child if it
1335 * is zombie.
1336 *
1337 * This also hides group stop state from real parent; otherwise
1338 * a single stop can be reported twice as group and ptrace stop.
1339 * If a ptracer wants to distinguish these two events for its
1340 * own children it should create a separate process which takes
1341 * the role of real parent.
1342 */
1343 if (!ptrace_reparented(p))
1344 ptrace = 1;
1345 }
1346
1347 /* slay zombie? */
1348 if (p->exit_state == EXIT_ZOMBIE) {
1349 /* we don't reap group leaders with subthreads */
1350 if (!delay_group_leader(p)) {
1351 /*
1352 * A zombie ptracee is only visible to its ptracer.
1353 * Notification and reaping will be cascaded to the
1354 * real parent when the ptracer detaches.
1355 */
1356 if (unlikely(ptrace) || likely(!p->ptrace))
1357 return wait_task_zombie(wo, p);
1358 }
1359
1360 /*
1361 * Allow access to stopped/continued state via zombie by
1362 * falling through. Clearing of notask_error is complex.
1363 *
1364 * When !@ptrace:
1365 *
1366 * If WEXITED is set, notask_error should naturally be
1367 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1368 * so, if there are live subthreads, there are events to
1369 * wait for. If all subthreads are dead, it's still safe
1370 * to clear - this function will be called again in finite
1371 * amount time once all the subthreads are released and
1372 * will then return without clearing.
1373 *
1374 * When @ptrace:
1375 *
1376 * Stopped state is per-task and thus can't change once the
1377 * target task dies. Only continued and exited can happen.
1378 * Clear notask_error if WCONTINUED | WEXITED.
1379 */
1380 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381 wo->notask_error = 0;
1382 } else {
1383 /*
1384 * @p is alive and it's gonna stop, continue or exit, so
1385 * there always is something to wait for.
1386 */
1387 wo->notask_error = 0;
1388 }
1389
1390 /*
1391 * Wait for stopped. Depending on @ptrace, different stopped state
1392 * is used and the two don't interact with each other.
1393 */
1394 ret = wait_task_stopped(wo, ptrace, p);
1395 if (ret)
1396 return ret;
1397
1398 /*
1399 * Wait for continued. There's only one continued state and the
1400 * ptracer can consume it which can confuse the real parent. Don't
1401 * use WCONTINUED from ptracer. You don't need or want it.
1402 */
1403 return wait_task_continued(wo, p);
1404}
1405
1406/*
1407 * Do the work of do_wait() for one thread in the group, @tsk.
1408 *
1409 * -ECHILD should be in ->notask_error before the first call.
1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411 * Returns zero if the search for a child should continue; then
1412 * ->notask_error is 0 if there were any eligible children,
1413 * or another error from security_task_wait(), or still -ECHILD.
1414 */
1415static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416{
1417 struct task_struct *p;
1418
1419 list_for_each_entry(p, &tsk->children, sibling) {
1420 int ret = wait_consider_task(wo, 0, p);
1421
1422 if (ret)
1423 return ret;
1424 }
1425
1426 return 0;
1427}
1428
1429static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430{
1431 struct task_struct *p;
1432
1433 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1434 int ret = wait_consider_task(wo, 1, p);
1435
1436 if (ret)
1437 return ret;
1438 }
1439
1440 return 0;
1441}
1442
1443static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1444 int sync, void *key)
1445{
1446 struct wait_opts *wo = container_of(wait, struct wait_opts,
1447 child_wait);
1448 struct task_struct *p = key;
1449
1450 if (!eligible_pid(wo, p))
1451 return 0;
1452
1453 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1454 return 0;
1455
1456 return default_wake_function(wait, mode, sync, key);
1457}
1458
1459void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460{
1461 __wake_up_sync_key(&parent->signal->wait_chldexit,
1462 TASK_INTERRUPTIBLE, 1, p);
1463}
1464
1465static long do_wait(struct wait_opts *wo)
1466{
1467 struct task_struct *tsk;
1468 int retval;
1469
1470 trace_sched_process_wait(wo->wo_pid);
1471
1472 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1473 wo->child_wait.private = current;
1474 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475repeat:
1476 /*
1477 * If there is nothing that can match our critiera just get out.
1478 * We will clear ->notask_error to zero if we see any child that
1479 * might later match our criteria, even if we are not able to reap
1480 * it yet.
1481 */
1482 wo->notask_error = -ECHILD;
1483 if ((wo->wo_type < PIDTYPE_MAX) &&
1484 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1485 goto notask;
1486
1487 set_current_state(TASK_INTERRUPTIBLE);
1488 read_lock(&tasklist_lock);
1489 tsk = current;
1490 do {
1491 retval = do_wait_thread(wo, tsk);
1492 if (retval)
1493 goto end;
1494
1495 retval = ptrace_do_wait(wo, tsk);
1496 if (retval)
1497 goto end;
1498
1499 if (wo->wo_flags & __WNOTHREAD)
1500 break;
1501 } while_each_thread(current, tsk);
1502 read_unlock(&tasklist_lock);
1503
1504notask:
1505 retval = wo->notask_error;
1506 if (!retval && !(wo->wo_flags & WNOHANG)) {
1507 retval = -ERESTARTSYS;
1508 if (!signal_pending(current)) {
1509 schedule();
1510 goto repeat;
1511 }
1512 }
1513end:
1514 __set_current_state(TASK_RUNNING);
1515 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516 return retval;
1517}
1518
1519SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1520 infop, int, options, struct rusage __user *, ru)
1521{
1522 struct wait_opts wo;
1523 struct pid *pid = NULL;
1524 enum pid_type type;
1525 long ret;
1526
1527 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1528 return -EINVAL;
1529 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1530 return -EINVAL;
1531
1532 switch (which) {
1533 case P_ALL:
1534 type = PIDTYPE_MAX;
1535 break;
1536 case P_PID:
1537 type = PIDTYPE_PID;
1538 if (upid <= 0)
1539 return -EINVAL;
1540 break;
1541 case P_PGID:
1542 type = PIDTYPE_PGID;
1543 if (upid <= 0)
1544 return -EINVAL;
1545 break;
1546 default:
1547 return -EINVAL;
1548 }
1549
1550 if (type < PIDTYPE_MAX)
1551 pid = find_get_pid(upid);
1552
1553 wo.wo_type = type;
1554 wo.wo_pid = pid;
1555 wo.wo_flags = options;
1556 wo.wo_info = infop;
1557 wo.wo_stat = NULL;
1558 wo.wo_rusage = ru;
1559 ret = do_wait(&wo);
1560
1561 if (ret > 0) {
1562 ret = 0;
1563 } else if (infop) {
1564 /*
1565 * For a WNOHANG return, clear out all the fields
1566 * we would set so the user can easily tell the
1567 * difference.
1568 */
1569 if (!ret)
1570 ret = put_user(0, &infop->si_signo);
1571 if (!ret)
1572 ret = put_user(0, &infop->si_errno);
1573 if (!ret)
1574 ret = put_user(0, &infop->si_code);
1575 if (!ret)
1576 ret = put_user(0, &infop->si_pid);
1577 if (!ret)
1578 ret = put_user(0, &infop->si_uid);
1579 if (!ret)
1580 ret = put_user(0, &infop->si_status);
1581 }
1582
1583 put_pid(pid);
1584 return ret;
1585}
1586
1587SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1588 int, options, struct rusage __user *, ru)
1589{
1590 struct wait_opts wo;
1591 struct pid *pid = NULL;
1592 enum pid_type type;
1593 long ret;
1594
1595 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596 __WNOTHREAD|__WCLONE|__WALL))
1597 return -EINVAL;
1598
1599 if (upid == -1)
1600 type = PIDTYPE_MAX;
1601 else if (upid < 0) {
1602 type = PIDTYPE_PGID;
1603 pid = find_get_pid(-upid);
1604 } else if (upid == 0) {
1605 type = PIDTYPE_PGID;
1606 pid = get_task_pid(current, PIDTYPE_PGID);
1607 } else /* upid > 0 */ {
1608 type = PIDTYPE_PID;
1609 pid = find_get_pid(upid);
1610 }
1611
1612 wo.wo_type = type;
1613 wo.wo_pid = pid;
1614 wo.wo_flags = options | WEXITED;
1615 wo.wo_info = NULL;
1616 wo.wo_stat = stat_addr;
1617 wo.wo_rusage = ru;
1618 ret = do_wait(&wo);
1619 put_pid(pid);
1620
1621 return ret;
1622}
1623
1624#ifdef __ARCH_WANT_SYS_WAITPID
1625
1626/*
1627 * sys_waitpid() remains for compatibility. waitpid() should be
1628 * implemented by calling sys_wait4() from libc.a.
1629 */
1630SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631{
1632 return sys_wait4(pid, stat_addr, options, NULL);
1633}
1634
1635#endif