ptrace: make former thread ID available via PTRACE_GETEVENTMSG after PTRACE_EVENT_EXE...
[linux-2.6-block.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54
55#include <asm/uaccess.h>
56#include <asm/unistd.h>
57#include <asm/pgtable.h>
58#include <asm/mmu_context.h>
59
60static void exit_mm(struct task_struct * tsk);
61
62static void __unhash_process(struct task_struct *p, bool group_dead)
63{
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75}
76
77/*
78 * This function expects the tasklist_lock write-locked.
79 */
80static void __exit_signal(struct task_struct *tsk)
81{
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
98 /*
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
102 */
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
105
106 /*
107 * If there is any task waiting for the group exit
108 * then notify it:
109 */
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
112
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
115 /*
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
124 */
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 }
137
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
140
141 /*
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
148
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
154 }
155}
156
157static void delayed_put_task_struct(struct rcu_head *rhp)
158{
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164}
165
166
167void release_task(struct task_struct * p)
168{
169 struct task_struct *leader;
170 int zap_leader;
171repeat:
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock();
177
178 proc_flush_task(p);
179
180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p);
182 __exit_signal(p);
183
184 /*
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
188 */
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 /*
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
196 */
197 zap_leader = do_notify_parent(leader, leader->exit_signal);
198 if (zap_leader)
199 leader->exit_state = EXIT_DEAD;
200 }
201
202 write_unlock_irq(&tasklist_lock);
203 release_thread(p);
204 call_rcu(&p->rcu, delayed_put_task_struct);
205
206 p = leader;
207 if (unlikely(zap_leader))
208 goto repeat;
209}
210
211/*
212 * This checks not only the pgrp, but falls back on the pid if no
213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
214 * without this...
215 *
216 * The caller must hold rcu lock or the tasklist lock.
217 */
218struct pid *session_of_pgrp(struct pid *pgrp)
219{
220 struct task_struct *p;
221 struct pid *sid = NULL;
222
223 p = pid_task(pgrp, PIDTYPE_PGID);
224 if (p == NULL)
225 p = pid_task(pgrp, PIDTYPE_PID);
226 if (p != NULL)
227 sid = task_session(p);
228
229 return sid;
230}
231
232/*
233 * Determine if a process group is "orphaned", according to the POSIX
234 * definition in 2.2.2.52. Orphaned process groups are not to be affected
235 * by terminal-generated stop signals. Newly orphaned process groups are
236 * to receive a SIGHUP and a SIGCONT.
237 *
238 * "I ask you, have you ever known what it is to be an orphan?"
239 */
240static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
241{
242 struct task_struct *p;
243
244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
245 if ((p == ignored_task) ||
246 (p->exit_state && thread_group_empty(p)) ||
247 is_global_init(p->real_parent))
248 continue;
249
250 if (task_pgrp(p->real_parent) != pgrp &&
251 task_session(p->real_parent) == task_session(p))
252 return 0;
253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254
255 return 1;
256}
257
258int is_current_pgrp_orphaned(void)
259{
260 int retval;
261
262 read_lock(&tasklist_lock);
263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
264 read_unlock(&tasklist_lock);
265
266 return retval;
267}
268
269static int has_stopped_jobs(struct pid *pgrp)
270{
271 int retval = 0;
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (!task_is_stopped(p))
276 continue;
277 retval = 1;
278 break;
279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
280 return retval;
281}
282
283/*
284 * Check to see if any process groups have become orphaned as
285 * a result of our exiting, and if they have any stopped jobs,
286 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
287 */
288static void
289kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
290{
291 struct pid *pgrp = task_pgrp(tsk);
292 struct task_struct *ignored_task = tsk;
293
294 if (!parent)
295 /* exit: our father is in a different pgrp than
296 * we are and we were the only connection outside.
297 */
298 parent = tsk->real_parent;
299 else
300 /* reparent: our child is in a different pgrp than
301 * we are, and it was the only connection outside.
302 */
303 ignored_task = NULL;
304
305 if (task_pgrp(parent) != pgrp &&
306 task_session(parent) == task_session(tsk) &&
307 will_become_orphaned_pgrp(pgrp, ignored_task) &&
308 has_stopped_jobs(pgrp)) {
309 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
310 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
311 }
312}
313
314/**
315 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
316 *
317 * If a kernel thread is launched as a result of a system call, or if
318 * it ever exits, it should generally reparent itself to kthreadd so it
319 * isn't in the way of other processes and is correctly cleaned up on exit.
320 *
321 * The various task state such as scheduling policy and priority may have
322 * been inherited from a user process, so we reset them to sane values here.
323 *
324 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
325 */
326static void reparent_to_kthreadd(void)
327{
328 write_lock_irq(&tasklist_lock);
329
330 ptrace_unlink(current);
331 /* Reparent to init */
332 current->real_parent = current->parent = kthreadd_task;
333 list_move_tail(&current->sibling, &current->real_parent->children);
334
335 /* Set the exit signal to SIGCHLD so we signal init on exit */
336 current->exit_signal = SIGCHLD;
337
338 if (task_nice(current) < 0)
339 set_user_nice(current, 0);
340 /* cpus_allowed? */
341 /* rt_priority? */
342 /* signals? */
343 memcpy(current->signal->rlim, init_task.signal->rlim,
344 sizeof(current->signal->rlim));
345
346 atomic_inc(&init_cred.usage);
347 commit_creds(&init_cred);
348 write_unlock_irq(&tasklist_lock);
349}
350
351void __set_special_pids(struct pid *pid)
352{
353 struct task_struct *curr = current->group_leader;
354
355 if (task_session(curr) != pid)
356 change_pid(curr, PIDTYPE_SID, pid);
357
358 if (task_pgrp(curr) != pid)
359 change_pid(curr, PIDTYPE_PGID, pid);
360}
361
362static void set_special_pids(struct pid *pid)
363{
364 write_lock_irq(&tasklist_lock);
365 __set_special_pids(pid);
366 write_unlock_irq(&tasklist_lock);
367}
368
369/*
370 * Let kernel threads use this to say that they allow a certain signal.
371 * Must not be used if kthread was cloned with CLONE_SIGHAND.
372 */
373int allow_signal(int sig)
374{
375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL;
377
378 spin_lock_irq(&current->sighand->siglock);
379 /* This is only needed for daemonize()'ed kthreads */
380 sigdelset(&current->blocked, sig);
381 /*
382 * Kernel threads handle their own signals. Let the signal code
383 * know it'll be handled, so that they don't get converted to
384 * SIGKILL or just silently dropped.
385 */
386 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
390}
391
392EXPORT_SYMBOL(allow_signal);
393
394int disallow_signal(int sig)
395{
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
398
399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock);
403 return 0;
404}
405
406EXPORT_SYMBOL(disallow_signal);
407
408/*
409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs.
411 */
412
413void daemonize(const char *name, ...)
414{
415 va_list args;
416 sigset_t blocked;
417
418 va_start(args, name);
419 vsnprintf(current->comm, sizeof(current->comm), name, args);
420 va_end(args);
421
422 /*
423 * If we were started as result of loading a module, close all of the
424 * user space pages. We don't need them, and if we didn't close them
425 * they would be locked into memory.
426 */
427 exit_mm(current);
428 /*
429 * We don't want to have TIF_FREEZE set if the system-wide hibernation
430 * or suspend transition begins right now.
431 */
432 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
433
434 if (current->nsproxy != &init_nsproxy) {
435 get_nsproxy(&init_nsproxy);
436 switch_task_namespaces(current, &init_nsproxy);
437 }
438 set_special_pids(&init_struct_pid);
439 proc_clear_tty(current);
440
441 /* Block and flush all signals */
442 sigfillset(&blocked);
443 sigprocmask(SIG_BLOCK, &blocked, NULL);
444 flush_signals(current);
445
446 /* Become as one with the init task */
447
448 daemonize_fs_struct();
449 exit_files(current);
450 current->files = init_task.files;
451 atomic_inc(&current->files->count);
452
453 reparent_to_kthreadd();
454}
455
456EXPORT_SYMBOL(daemonize);
457
458static void close_files(struct files_struct * files)
459{
460 int i, j;
461 struct fdtable *fdt;
462
463 j = 0;
464
465 /*
466 * It is safe to dereference the fd table without RCU or
467 * ->file_lock because this is the last reference to the
468 * files structure. But use RCU to shut RCU-lockdep up.
469 */
470 rcu_read_lock();
471 fdt = files_fdtable(files);
472 rcu_read_unlock();
473 for (;;) {
474 unsigned long set;
475 i = j * __NFDBITS;
476 if (i >= fdt->max_fds)
477 break;
478 set = fdt->open_fds->fds_bits[j++];
479 while (set) {
480 if (set & 1) {
481 struct file * file = xchg(&fdt->fd[i], NULL);
482 if (file) {
483 filp_close(file, files);
484 cond_resched();
485 }
486 }
487 i++;
488 set >>= 1;
489 }
490 }
491}
492
493struct files_struct *get_files_struct(struct task_struct *task)
494{
495 struct files_struct *files;
496
497 task_lock(task);
498 files = task->files;
499 if (files)
500 atomic_inc(&files->count);
501 task_unlock(task);
502
503 return files;
504}
505
506void put_files_struct(struct files_struct *files)
507{
508 struct fdtable *fdt;
509
510 if (atomic_dec_and_test(&files->count)) {
511 close_files(files);
512 /*
513 * Free the fd and fdset arrays if we expanded them.
514 * If the fdtable was embedded, pass files for freeing
515 * at the end of the RCU grace period. Otherwise,
516 * you can free files immediately.
517 */
518 rcu_read_lock();
519 fdt = files_fdtable(files);
520 if (fdt != &files->fdtab)
521 kmem_cache_free(files_cachep, files);
522 free_fdtable(fdt);
523 rcu_read_unlock();
524 }
525}
526
527void reset_files_struct(struct files_struct *files)
528{
529 struct task_struct *tsk = current;
530 struct files_struct *old;
531
532 old = tsk->files;
533 task_lock(tsk);
534 tsk->files = files;
535 task_unlock(tsk);
536 put_files_struct(old);
537}
538
539void exit_files(struct task_struct *tsk)
540{
541 struct files_struct * files = tsk->files;
542
543 if (files) {
544 task_lock(tsk);
545 tsk->files = NULL;
546 task_unlock(tsk);
547 put_files_struct(files);
548 }
549}
550
551#ifdef CONFIG_MM_OWNER
552/*
553 * Task p is exiting and it owned mm, lets find a new owner for it
554 */
555static inline int
556mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
557{
558 /*
559 * If there are other users of the mm and the owner (us) is exiting
560 * we need to find a new owner to take on the responsibility.
561 */
562 if (atomic_read(&mm->mm_users) <= 1)
563 return 0;
564 if (mm->owner != p)
565 return 0;
566 return 1;
567}
568
569void mm_update_next_owner(struct mm_struct *mm)
570{
571 struct task_struct *c, *g, *p = current;
572
573retry:
574 if (!mm_need_new_owner(mm, p))
575 return;
576
577 read_lock(&tasklist_lock);
578 /*
579 * Search in the children
580 */
581 list_for_each_entry(c, &p->children, sibling) {
582 if (c->mm == mm)
583 goto assign_new_owner;
584 }
585
586 /*
587 * Search in the siblings
588 */
589 list_for_each_entry(c, &p->real_parent->children, sibling) {
590 if (c->mm == mm)
591 goto assign_new_owner;
592 }
593
594 /*
595 * Search through everything else. We should not get
596 * here often
597 */
598 do_each_thread(g, c) {
599 if (c->mm == mm)
600 goto assign_new_owner;
601 } while_each_thread(g, c);
602
603 read_unlock(&tasklist_lock);
604 /*
605 * We found no owner yet mm_users > 1: this implies that we are
606 * most likely racing with swapoff (try_to_unuse()) or /proc or
607 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
608 */
609 mm->owner = NULL;
610 return;
611
612assign_new_owner:
613 BUG_ON(c == p);
614 get_task_struct(c);
615 /*
616 * The task_lock protects c->mm from changing.
617 * We always want mm->owner->mm == mm
618 */
619 task_lock(c);
620 /*
621 * Delay read_unlock() till we have the task_lock()
622 * to ensure that c does not slip away underneath us
623 */
624 read_unlock(&tasklist_lock);
625 if (c->mm != mm) {
626 task_unlock(c);
627 put_task_struct(c);
628 goto retry;
629 }
630 mm->owner = c;
631 task_unlock(c);
632 put_task_struct(c);
633}
634#endif /* CONFIG_MM_OWNER */
635
636/*
637 * Turn us into a lazy TLB process if we
638 * aren't already..
639 */
640static void exit_mm(struct task_struct * tsk)
641{
642 struct mm_struct *mm = tsk->mm;
643 struct core_state *core_state;
644
645 mm_release(tsk, mm);
646 if (!mm)
647 return;
648 /*
649 * Serialize with any possible pending coredump.
650 * We must hold mmap_sem around checking core_state
651 * and clearing tsk->mm. The core-inducing thread
652 * will increment ->nr_threads for each thread in the
653 * group with ->mm != NULL.
654 */
655 down_read(&mm->mmap_sem);
656 core_state = mm->core_state;
657 if (core_state) {
658 struct core_thread self;
659 up_read(&mm->mmap_sem);
660
661 self.task = tsk;
662 self.next = xchg(&core_state->dumper.next, &self);
663 /*
664 * Implies mb(), the result of xchg() must be visible
665 * to core_state->dumper.
666 */
667 if (atomic_dec_and_test(&core_state->nr_threads))
668 complete(&core_state->startup);
669
670 for (;;) {
671 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
672 if (!self.task) /* see coredump_finish() */
673 break;
674 schedule();
675 }
676 __set_task_state(tsk, TASK_RUNNING);
677 down_read(&mm->mmap_sem);
678 }
679 atomic_inc(&mm->mm_count);
680 BUG_ON(mm != tsk->active_mm);
681 /* more a memory barrier than a real lock */
682 task_lock(tsk);
683 tsk->mm = NULL;
684 up_read(&mm->mmap_sem);
685 enter_lazy_tlb(mm, current);
686 /* We don't want this task to be frozen prematurely */
687 clear_freeze_flag(tsk);
688 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
689 atomic_dec(&mm->oom_disable_count);
690 task_unlock(tsk);
691 mm_update_next_owner(mm);
692 mmput(mm);
693}
694
695/*
696 * When we die, we re-parent all our children.
697 * Try to give them to another thread in our thread
698 * group, and if no such member exists, give it to
699 * the child reaper process (ie "init") in our pid
700 * space.
701 */
702static struct task_struct *find_new_reaper(struct task_struct *father)
703 __releases(&tasklist_lock)
704 __acquires(&tasklist_lock)
705{
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
708
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
716 }
717
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
722
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
725 /*
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 }
732
733 return pid_ns->child_reaper;
734}
735
736/*
737* Any that need to be release_task'd are put on the @dead list.
738 */
739static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
741{
742 list_move_tail(&p->sibling, &p->real_parent->children);
743
744 if (p->exit_state == EXIT_DEAD)
745 return;
746 /*
747 * If this is a threaded reparent there is no need to
748 * notify anyone anything has happened.
749 */
750 if (same_thread_group(p->real_parent, father))
751 return;
752
753 /* We don't want people slaying init. */
754 p->exit_signal = SIGCHLD;
755
756 /* If it has exited notify the new parent about this child's death. */
757 if (!p->ptrace &&
758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 if (do_notify_parent(p, p->exit_signal)) {
760 p->exit_state = EXIT_DEAD;
761 list_move_tail(&p->sibling, dead);
762 }
763 }
764
765 kill_orphaned_pgrp(p, father);
766}
767
768static void forget_original_parent(struct task_struct *father)
769{
770 struct task_struct *p, *n, *reaper;
771 LIST_HEAD(dead_children);
772
773 write_lock_irq(&tasklist_lock);
774 /*
775 * Note that exit_ptrace() and find_new_reaper() might
776 * drop tasklist_lock and reacquire it.
777 */
778 exit_ptrace(father);
779 reaper = find_new_reaper(father);
780
781 list_for_each_entry_safe(p, n, &father->children, sibling) {
782 struct task_struct *t = p;
783 do {
784 t->real_parent = reaper;
785 if (t->parent == father) {
786 BUG_ON(t->ptrace);
787 t->parent = t->real_parent;
788 }
789 if (t->pdeath_signal)
790 group_send_sig_info(t->pdeath_signal,
791 SEND_SIG_NOINFO, t);
792 } while_each_thread(p, t);
793 reparent_leader(father, p, &dead_children);
794 }
795 write_unlock_irq(&tasklist_lock);
796
797 BUG_ON(!list_empty(&father->children));
798
799 list_for_each_entry_safe(p, n, &dead_children, sibling) {
800 list_del_init(&p->sibling);
801 release_task(p);
802 }
803}
804
805/*
806 * Send signals to all our closest relatives so that they know
807 * to properly mourn us..
808 */
809static void exit_notify(struct task_struct *tsk, int group_dead)
810{
811 bool autoreap;
812
813 /*
814 * This does two things:
815 *
816 * A. Make init inherit all the child processes
817 * B. Check to see if any process groups have become orphaned
818 * as a result of our exiting, and if they have any stopped
819 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
820 */
821 forget_original_parent(tsk);
822 exit_task_namespaces(tsk);
823
824 write_lock_irq(&tasklist_lock);
825 if (group_dead)
826 kill_orphaned_pgrp(tsk->group_leader, NULL);
827
828 /* Let father know we died
829 *
830 * Thread signals are configurable, but you aren't going to use
831 * that to send signals to arbitrary processes.
832 * That stops right now.
833 *
834 * If the parent exec id doesn't match the exec id we saved
835 * when we started then we know the parent has changed security
836 * domain.
837 *
838 * If our self_exec id doesn't match our parent_exec_id then
839 * we have changed execution domain as these two values started
840 * the same after a fork.
841 */
842 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
843 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
844 tsk->self_exec_id != tsk->parent_exec_id))
845 tsk->exit_signal = SIGCHLD;
846
847 if (unlikely(tsk->ptrace)) {
848 int sig = thread_group_leader(tsk) &&
849 thread_group_empty(tsk) &&
850 !ptrace_reparented(tsk) ?
851 tsk->exit_signal : SIGCHLD;
852 autoreap = do_notify_parent(tsk, sig);
853 } else if (thread_group_leader(tsk)) {
854 autoreap = thread_group_empty(tsk) &&
855 do_notify_parent(tsk, tsk->exit_signal);
856 } else {
857 autoreap = true;
858 }
859
860 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
861
862 /* mt-exec, de_thread() is waiting for group leader */
863 if (unlikely(tsk->signal->notify_count < 0))
864 wake_up_process(tsk->signal->group_exit_task);
865 write_unlock_irq(&tasklist_lock);
866
867 /* If the process is dead, release it - nobody will wait for it */
868 if (autoreap)
869 release_task(tsk);
870}
871
872#ifdef CONFIG_DEBUG_STACK_USAGE
873static void check_stack_usage(void)
874{
875 static DEFINE_SPINLOCK(low_water_lock);
876 static int lowest_to_date = THREAD_SIZE;
877 unsigned long free;
878
879 free = stack_not_used(current);
880
881 if (free >= lowest_to_date)
882 return;
883
884 spin_lock(&low_water_lock);
885 if (free < lowest_to_date) {
886 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
887 "left\n",
888 current->comm, free);
889 lowest_to_date = free;
890 }
891 spin_unlock(&low_water_lock);
892}
893#else
894static inline void check_stack_usage(void) {}
895#endif
896
897NORET_TYPE void do_exit(long code)
898{
899 struct task_struct *tsk = current;
900 int group_dead;
901
902 profile_task_exit(tsk);
903
904 WARN_ON(atomic_read(&tsk->fs_excl));
905 WARN_ON(blk_needs_flush_plug(tsk));
906
907 if (unlikely(in_interrupt()))
908 panic("Aiee, killing interrupt handler!");
909 if (unlikely(!tsk->pid))
910 panic("Attempted to kill the idle task!");
911
912 /*
913 * If do_exit is called because this processes oopsed, it's possible
914 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
915 * continuing. Amongst other possible reasons, this is to prevent
916 * mm_release()->clear_child_tid() from writing to a user-controlled
917 * kernel address.
918 */
919 set_fs(USER_DS);
920
921 ptrace_event(PTRACE_EVENT_EXIT, code);
922
923 validate_creds_for_do_exit(tsk);
924
925 /*
926 * We're taking recursive faults here in do_exit. Safest is to just
927 * leave this task alone and wait for reboot.
928 */
929 if (unlikely(tsk->flags & PF_EXITING)) {
930 printk(KERN_ALERT
931 "Fixing recursive fault but reboot is needed!\n");
932 /*
933 * We can do this unlocked here. The futex code uses
934 * this flag just to verify whether the pi state
935 * cleanup has been done or not. In the worst case it
936 * loops once more. We pretend that the cleanup was
937 * done as there is no way to return. Either the
938 * OWNER_DIED bit is set by now or we push the blocked
939 * task into the wait for ever nirwana as well.
940 */
941 tsk->flags |= PF_EXITPIDONE;
942 set_current_state(TASK_UNINTERRUPTIBLE);
943 schedule();
944 }
945
946 exit_irq_thread();
947
948 exit_signals(tsk); /* sets PF_EXITING */
949 /*
950 * tsk->flags are checked in the futex code to protect against
951 * an exiting task cleaning up the robust pi futexes.
952 */
953 smp_mb();
954 raw_spin_unlock_wait(&tsk->pi_lock);
955
956 if (unlikely(in_atomic()))
957 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
958 current->comm, task_pid_nr(current),
959 preempt_count());
960
961 acct_update_integrals(tsk);
962 /* sync mm's RSS info before statistics gathering */
963 if (tsk->mm)
964 sync_mm_rss(tsk, tsk->mm);
965 group_dead = atomic_dec_and_test(&tsk->signal->live);
966 if (group_dead) {
967 hrtimer_cancel(&tsk->signal->real_timer);
968 exit_itimers(tsk->signal);
969 if (tsk->mm)
970 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
971 }
972 acct_collect(code, group_dead);
973 if (group_dead)
974 tty_audit_exit();
975 if (unlikely(tsk->audit_context))
976 audit_free(tsk);
977
978 tsk->exit_code = code;
979 taskstats_exit(tsk, group_dead);
980
981 exit_mm(tsk);
982
983 if (group_dead)
984 acct_process();
985 trace_sched_process_exit(tsk);
986
987 exit_sem(tsk);
988 exit_files(tsk);
989 exit_fs(tsk);
990 check_stack_usage();
991 exit_thread();
992
993 /*
994 * Flush inherited counters to the parent - before the parent
995 * gets woken up by child-exit notifications.
996 *
997 * because of cgroup mode, must be called before cgroup_exit()
998 */
999 perf_event_exit_task(tsk);
1000
1001 cgroup_exit(tsk, 1);
1002
1003 if (group_dead)
1004 disassociate_ctty(1);
1005
1006 module_put(task_thread_info(tsk)->exec_domain->module);
1007
1008 proc_exit_connector(tsk);
1009
1010 /*
1011 * FIXME: do that only when needed, using sched_exit tracepoint
1012 */
1013 ptrace_put_breakpoints(tsk);
1014
1015 exit_notify(tsk, group_dead);
1016#ifdef CONFIG_NUMA
1017 task_lock(tsk);
1018 mpol_put(tsk->mempolicy);
1019 tsk->mempolicy = NULL;
1020 task_unlock(tsk);
1021#endif
1022#ifdef CONFIG_FUTEX
1023 if (unlikely(current->pi_state_cache))
1024 kfree(current->pi_state_cache);
1025#endif
1026 /*
1027 * Make sure we are holding no locks:
1028 */
1029 debug_check_no_locks_held(tsk);
1030 /*
1031 * We can do this unlocked here. The futex code uses this flag
1032 * just to verify whether the pi state cleanup has been done
1033 * or not. In the worst case it loops once more.
1034 */
1035 tsk->flags |= PF_EXITPIDONE;
1036
1037 if (tsk->io_context)
1038 exit_io_context(tsk);
1039
1040 if (tsk->splice_pipe)
1041 __free_pipe_info(tsk->splice_pipe);
1042
1043 validate_creds_for_do_exit(tsk);
1044
1045 preempt_disable();
1046 exit_rcu();
1047 /* causes final put_task_struct in finish_task_switch(). */
1048 tsk->state = TASK_DEAD;
1049 schedule();
1050 BUG();
1051 /* Avoid "noreturn function does return". */
1052 for (;;)
1053 cpu_relax(); /* For when BUG is null */
1054}
1055
1056EXPORT_SYMBOL_GPL(do_exit);
1057
1058NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1059{
1060 if (comp)
1061 complete(comp);
1062
1063 do_exit(code);
1064}
1065
1066EXPORT_SYMBOL(complete_and_exit);
1067
1068SYSCALL_DEFINE1(exit, int, error_code)
1069{
1070 do_exit((error_code&0xff)<<8);
1071}
1072
1073/*
1074 * Take down every thread in the group. This is called by fatal signals
1075 * as well as by sys_exit_group (below).
1076 */
1077NORET_TYPE void
1078do_group_exit(int exit_code)
1079{
1080 struct signal_struct *sig = current->signal;
1081
1082 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1083
1084 if (signal_group_exit(sig))
1085 exit_code = sig->group_exit_code;
1086 else if (!thread_group_empty(current)) {
1087 struct sighand_struct *const sighand = current->sighand;
1088 spin_lock_irq(&sighand->siglock);
1089 if (signal_group_exit(sig))
1090 /* Another thread got here before we took the lock. */
1091 exit_code = sig->group_exit_code;
1092 else {
1093 sig->group_exit_code = exit_code;
1094 sig->flags = SIGNAL_GROUP_EXIT;
1095 zap_other_threads(current);
1096 }
1097 spin_unlock_irq(&sighand->siglock);
1098 }
1099
1100 do_exit(exit_code);
1101 /* NOTREACHED */
1102}
1103
1104/*
1105 * this kills every thread in the thread group. Note that any externally
1106 * wait4()-ing process will get the correct exit code - even if this
1107 * thread is not the thread group leader.
1108 */
1109SYSCALL_DEFINE1(exit_group, int, error_code)
1110{
1111 do_group_exit((error_code & 0xff) << 8);
1112 /* NOTREACHED */
1113 return 0;
1114}
1115
1116struct wait_opts {
1117 enum pid_type wo_type;
1118 int wo_flags;
1119 struct pid *wo_pid;
1120
1121 struct siginfo __user *wo_info;
1122 int __user *wo_stat;
1123 struct rusage __user *wo_rusage;
1124
1125 wait_queue_t child_wait;
1126 int notask_error;
1127};
1128
1129static inline
1130struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1131{
1132 if (type != PIDTYPE_PID)
1133 task = task->group_leader;
1134 return task->pids[type].pid;
1135}
1136
1137static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1138{
1139 return wo->wo_type == PIDTYPE_MAX ||
1140 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1141}
1142
1143static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1144{
1145 if (!eligible_pid(wo, p))
1146 return 0;
1147 /* Wait for all children (clone and not) if __WALL is set;
1148 * otherwise, wait for clone children *only* if __WCLONE is
1149 * set; otherwise, wait for non-clone children *only*. (Note:
1150 * A "clone" child here is one that reports to its parent
1151 * using a signal other than SIGCHLD.) */
1152 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1153 && !(wo->wo_flags & __WALL))
1154 return 0;
1155
1156 return 1;
1157}
1158
1159static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1160 pid_t pid, uid_t uid, int why, int status)
1161{
1162 struct siginfo __user *infop;
1163 int retval = wo->wo_rusage
1164 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1165
1166 put_task_struct(p);
1167 infop = wo->wo_info;
1168 if (infop) {
1169 if (!retval)
1170 retval = put_user(SIGCHLD, &infop->si_signo);
1171 if (!retval)
1172 retval = put_user(0, &infop->si_errno);
1173 if (!retval)
1174 retval = put_user((short)why, &infop->si_code);
1175 if (!retval)
1176 retval = put_user(pid, &infop->si_pid);
1177 if (!retval)
1178 retval = put_user(uid, &infop->si_uid);
1179 if (!retval)
1180 retval = put_user(status, &infop->si_status);
1181 }
1182 if (!retval)
1183 retval = pid;
1184 return retval;
1185}
1186
1187/*
1188 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1189 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1190 * the lock and this task is uninteresting. If we return nonzero, we have
1191 * released the lock and the system call should return.
1192 */
1193static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1194{
1195 unsigned long state;
1196 int retval, status, traced;
1197 pid_t pid = task_pid_vnr(p);
1198 uid_t uid = __task_cred(p)->uid;
1199 struct siginfo __user *infop;
1200
1201 if (!likely(wo->wo_flags & WEXITED))
1202 return 0;
1203
1204 if (unlikely(wo->wo_flags & WNOWAIT)) {
1205 int exit_code = p->exit_code;
1206 int why;
1207
1208 get_task_struct(p);
1209 read_unlock(&tasklist_lock);
1210 if ((exit_code & 0x7f) == 0) {
1211 why = CLD_EXITED;
1212 status = exit_code >> 8;
1213 } else {
1214 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 status = exit_code & 0x7f;
1216 }
1217 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1218 }
1219
1220 /*
1221 * Try to move the task's state to DEAD
1222 * only one thread is allowed to do this:
1223 */
1224 state = xchg(&p->exit_state, EXIT_DEAD);
1225 if (state != EXIT_ZOMBIE) {
1226 BUG_ON(state != EXIT_DEAD);
1227 return 0;
1228 }
1229
1230 traced = ptrace_reparented(p);
1231 /*
1232 * It can be ptraced but not reparented, check
1233 * thread_group_leader() to filter out sub-threads.
1234 */
1235 if (likely(!traced) && thread_group_leader(p)) {
1236 struct signal_struct *psig;
1237 struct signal_struct *sig;
1238 unsigned long maxrss;
1239 cputime_t tgutime, tgstime;
1240
1241 /*
1242 * The resource counters for the group leader are in its
1243 * own task_struct. Those for dead threads in the group
1244 * are in its signal_struct, as are those for the child
1245 * processes it has previously reaped. All these
1246 * accumulate in the parent's signal_struct c* fields.
1247 *
1248 * We don't bother to take a lock here to protect these
1249 * p->signal fields, because they are only touched by
1250 * __exit_signal, which runs with tasklist_lock
1251 * write-locked anyway, and so is excluded here. We do
1252 * need to protect the access to parent->signal fields,
1253 * as other threads in the parent group can be right
1254 * here reaping other children at the same time.
1255 *
1256 * We use thread_group_times() to get times for the thread
1257 * group, which consolidates times for all threads in the
1258 * group including the group leader.
1259 */
1260 thread_group_times(p, &tgutime, &tgstime);
1261 spin_lock_irq(&p->real_parent->sighand->siglock);
1262 psig = p->real_parent->signal;
1263 sig = p->signal;
1264 psig->cutime =
1265 cputime_add(psig->cutime,
1266 cputime_add(tgutime,
1267 sig->cutime));
1268 psig->cstime =
1269 cputime_add(psig->cstime,
1270 cputime_add(tgstime,
1271 sig->cstime));
1272 psig->cgtime =
1273 cputime_add(psig->cgtime,
1274 cputime_add(p->gtime,
1275 cputime_add(sig->gtime,
1276 sig->cgtime)));
1277 psig->cmin_flt +=
1278 p->min_flt + sig->min_flt + sig->cmin_flt;
1279 psig->cmaj_flt +=
1280 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1281 psig->cnvcsw +=
1282 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1283 psig->cnivcsw +=
1284 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1285 psig->cinblock +=
1286 task_io_get_inblock(p) +
1287 sig->inblock + sig->cinblock;
1288 psig->coublock +=
1289 task_io_get_oublock(p) +
1290 sig->oublock + sig->coublock;
1291 maxrss = max(sig->maxrss, sig->cmaxrss);
1292 if (psig->cmaxrss < maxrss)
1293 psig->cmaxrss = maxrss;
1294 task_io_accounting_add(&psig->ioac, &p->ioac);
1295 task_io_accounting_add(&psig->ioac, &sig->ioac);
1296 spin_unlock_irq(&p->real_parent->sighand->siglock);
1297 }
1298
1299 /*
1300 * Now we are sure this task is interesting, and no other
1301 * thread can reap it because we set its state to EXIT_DEAD.
1302 */
1303 read_unlock(&tasklist_lock);
1304
1305 retval = wo->wo_rusage
1306 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1307 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1308 ? p->signal->group_exit_code : p->exit_code;
1309 if (!retval && wo->wo_stat)
1310 retval = put_user(status, wo->wo_stat);
1311
1312 infop = wo->wo_info;
1313 if (!retval && infop)
1314 retval = put_user(SIGCHLD, &infop->si_signo);
1315 if (!retval && infop)
1316 retval = put_user(0, &infop->si_errno);
1317 if (!retval && infop) {
1318 int why;
1319
1320 if ((status & 0x7f) == 0) {
1321 why = CLD_EXITED;
1322 status >>= 8;
1323 } else {
1324 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1325 status &= 0x7f;
1326 }
1327 retval = put_user((short)why, &infop->si_code);
1328 if (!retval)
1329 retval = put_user(status, &infop->si_status);
1330 }
1331 if (!retval && infop)
1332 retval = put_user(pid, &infop->si_pid);
1333 if (!retval && infop)
1334 retval = put_user(uid, &infop->si_uid);
1335 if (!retval)
1336 retval = pid;
1337
1338 if (traced) {
1339 write_lock_irq(&tasklist_lock);
1340 /* We dropped tasklist, ptracer could die and untrace */
1341 ptrace_unlink(p);
1342 /*
1343 * If this is not a sub-thread, notify the parent.
1344 * If parent wants a zombie, don't release it now.
1345 */
1346 if (thread_group_leader(p) &&
1347 !do_notify_parent(p, p->exit_signal)) {
1348 p->exit_state = EXIT_ZOMBIE;
1349 p = NULL;
1350 }
1351 write_unlock_irq(&tasklist_lock);
1352 }
1353 if (p != NULL)
1354 release_task(p);
1355
1356 return retval;
1357}
1358
1359static int *task_stopped_code(struct task_struct *p, bool ptrace)
1360{
1361 if (ptrace) {
1362 if (task_is_stopped_or_traced(p) &&
1363 !(p->jobctl & JOBCTL_LISTENING))
1364 return &p->exit_code;
1365 } else {
1366 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1367 return &p->signal->group_exit_code;
1368 }
1369 return NULL;
1370}
1371
1372/**
1373 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1374 * @wo: wait options
1375 * @ptrace: is the wait for ptrace
1376 * @p: task to wait for
1377 *
1378 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1379 *
1380 * CONTEXT:
1381 * read_lock(&tasklist_lock), which is released if return value is
1382 * non-zero. Also, grabs and releases @p->sighand->siglock.
1383 *
1384 * RETURNS:
1385 * 0 if wait condition didn't exist and search for other wait conditions
1386 * should continue. Non-zero return, -errno on failure and @p's pid on
1387 * success, implies that tasklist_lock is released and wait condition
1388 * search should terminate.
1389 */
1390static int wait_task_stopped(struct wait_opts *wo,
1391 int ptrace, struct task_struct *p)
1392{
1393 struct siginfo __user *infop;
1394 int retval, exit_code, *p_code, why;
1395 uid_t uid = 0; /* unneeded, required by compiler */
1396 pid_t pid;
1397
1398 /*
1399 * Traditionally we see ptrace'd stopped tasks regardless of options.
1400 */
1401 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1402 return 0;
1403
1404 if (!task_stopped_code(p, ptrace))
1405 return 0;
1406
1407 exit_code = 0;
1408 spin_lock_irq(&p->sighand->siglock);
1409
1410 p_code = task_stopped_code(p, ptrace);
1411 if (unlikely(!p_code))
1412 goto unlock_sig;
1413
1414 exit_code = *p_code;
1415 if (!exit_code)
1416 goto unlock_sig;
1417
1418 if (!unlikely(wo->wo_flags & WNOWAIT))
1419 *p_code = 0;
1420
1421 uid = task_uid(p);
1422unlock_sig:
1423 spin_unlock_irq(&p->sighand->siglock);
1424 if (!exit_code)
1425 return 0;
1426
1427 /*
1428 * Now we are pretty sure this task is interesting.
1429 * Make sure it doesn't get reaped out from under us while we
1430 * give up the lock and then examine it below. We don't want to
1431 * keep holding onto the tasklist_lock while we call getrusage and
1432 * possibly take page faults for user memory.
1433 */
1434 get_task_struct(p);
1435 pid = task_pid_vnr(p);
1436 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1437 read_unlock(&tasklist_lock);
1438
1439 if (unlikely(wo->wo_flags & WNOWAIT))
1440 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1441
1442 retval = wo->wo_rusage
1443 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1444 if (!retval && wo->wo_stat)
1445 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1446
1447 infop = wo->wo_info;
1448 if (!retval && infop)
1449 retval = put_user(SIGCHLD, &infop->si_signo);
1450 if (!retval && infop)
1451 retval = put_user(0, &infop->si_errno);
1452 if (!retval && infop)
1453 retval = put_user((short)why, &infop->si_code);
1454 if (!retval && infop)
1455 retval = put_user(exit_code, &infop->si_status);
1456 if (!retval && infop)
1457 retval = put_user(pid, &infop->si_pid);
1458 if (!retval && infop)
1459 retval = put_user(uid, &infop->si_uid);
1460 if (!retval)
1461 retval = pid;
1462 put_task_struct(p);
1463
1464 BUG_ON(!retval);
1465 return retval;
1466}
1467
1468/*
1469 * Handle do_wait work for one task in a live, non-stopped state.
1470 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1471 * the lock and this task is uninteresting. If we return nonzero, we have
1472 * released the lock and the system call should return.
1473 */
1474static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1475{
1476 int retval;
1477 pid_t pid;
1478 uid_t uid;
1479
1480 if (!unlikely(wo->wo_flags & WCONTINUED))
1481 return 0;
1482
1483 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1484 return 0;
1485
1486 spin_lock_irq(&p->sighand->siglock);
1487 /* Re-check with the lock held. */
1488 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1489 spin_unlock_irq(&p->sighand->siglock);
1490 return 0;
1491 }
1492 if (!unlikely(wo->wo_flags & WNOWAIT))
1493 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1494 uid = task_uid(p);
1495 spin_unlock_irq(&p->sighand->siglock);
1496
1497 pid = task_pid_vnr(p);
1498 get_task_struct(p);
1499 read_unlock(&tasklist_lock);
1500
1501 if (!wo->wo_info) {
1502 retval = wo->wo_rusage
1503 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1504 put_task_struct(p);
1505 if (!retval && wo->wo_stat)
1506 retval = put_user(0xffff, wo->wo_stat);
1507 if (!retval)
1508 retval = pid;
1509 } else {
1510 retval = wait_noreap_copyout(wo, p, pid, uid,
1511 CLD_CONTINUED, SIGCONT);
1512 BUG_ON(retval == 0);
1513 }
1514
1515 return retval;
1516}
1517
1518/*
1519 * Consider @p for a wait by @parent.
1520 *
1521 * -ECHILD should be in ->notask_error before the first call.
1522 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1523 * Returns zero if the search for a child should continue;
1524 * then ->notask_error is 0 if @p is an eligible child,
1525 * or another error from security_task_wait(), or still -ECHILD.
1526 */
1527static int wait_consider_task(struct wait_opts *wo, int ptrace,
1528 struct task_struct *p)
1529{
1530 int ret = eligible_child(wo, p);
1531 if (!ret)
1532 return ret;
1533
1534 ret = security_task_wait(p);
1535 if (unlikely(ret < 0)) {
1536 /*
1537 * If we have not yet seen any eligible child,
1538 * then let this error code replace -ECHILD.
1539 * A permission error will give the user a clue
1540 * to look for security policy problems, rather
1541 * than for mysterious wait bugs.
1542 */
1543 if (wo->notask_error)
1544 wo->notask_error = ret;
1545 return 0;
1546 }
1547
1548 /* dead body doesn't have much to contribute */
1549 if (p->exit_state == EXIT_DEAD)
1550 return 0;
1551
1552 /* slay zombie? */
1553 if (p->exit_state == EXIT_ZOMBIE) {
1554 /*
1555 * A zombie ptracee is only visible to its ptracer.
1556 * Notification and reaping will be cascaded to the real
1557 * parent when the ptracer detaches.
1558 */
1559 if (likely(!ptrace) && unlikely(p->ptrace)) {
1560 /* it will become visible, clear notask_error */
1561 wo->notask_error = 0;
1562 return 0;
1563 }
1564
1565 /* we don't reap group leaders with subthreads */
1566 if (!delay_group_leader(p))
1567 return wait_task_zombie(wo, p);
1568
1569 /*
1570 * Allow access to stopped/continued state via zombie by
1571 * falling through. Clearing of notask_error is complex.
1572 *
1573 * When !@ptrace:
1574 *
1575 * If WEXITED is set, notask_error should naturally be
1576 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1577 * so, if there are live subthreads, there are events to
1578 * wait for. If all subthreads are dead, it's still safe
1579 * to clear - this function will be called again in finite
1580 * amount time once all the subthreads are released and
1581 * will then return without clearing.
1582 *
1583 * When @ptrace:
1584 *
1585 * Stopped state is per-task and thus can't change once the
1586 * target task dies. Only continued and exited can happen.
1587 * Clear notask_error if WCONTINUED | WEXITED.
1588 */
1589 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1590 wo->notask_error = 0;
1591 } else {
1592 /*
1593 * If @p is ptraced by a task in its real parent's group,
1594 * hide group stop/continued state when looking at @p as
1595 * the real parent; otherwise, a single stop can be
1596 * reported twice as group and ptrace stops.
1597 *
1598 * If a ptracer wants to distinguish the two events for its
1599 * own children, it should create a separate process which
1600 * takes the role of real parent.
1601 */
1602 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1603 return 0;
1604
1605 /*
1606 * @p is alive and it's gonna stop, continue or exit, so
1607 * there always is something to wait for.
1608 */
1609 wo->notask_error = 0;
1610 }
1611
1612 /*
1613 * Wait for stopped. Depending on @ptrace, different stopped state
1614 * is used and the two don't interact with each other.
1615 */
1616 ret = wait_task_stopped(wo, ptrace, p);
1617 if (ret)
1618 return ret;
1619
1620 /*
1621 * Wait for continued. There's only one continued state and the
1622 * ptracer can consume it which can confuse the real parent. Don't
1623 * use WCONTINUED from ptracer. You don't need or want it.
1624 */
1625 return wait_task_continued(wo, p);
1626}
1627
1628/*
1629 * Do the work of do_wait() for one thread in the group, @tsk.
1630 *
1631 * -ECHILD should be in ->notask_error before the first call.
1632 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1633 * Returns zero if the search for a child should continue; then
1634 * ->notask_error is 0 if there were any eligible children,
1635 * or another error from security_task_wait(), or still -ECHILD.
1636 */
1637static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1638{
1639 struct task_struct *p;
1640
1641 list_for_each_entry(p, &tsk->children, sibling) {
1642 int ret = wait_consider_task(wo, 0, p);
1643 if (ret)
1644 return ret;
1645 }
1646
1647 return 0;
1648}
1649
1650static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1651{
1652 struct task_struct *p;
1653
1654 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1655 int ret = wait_consider_task(wo, 1, p);
1656 if (ret)
1657 return ret;
1658 }
1659
1660 return 0;
1661}
1662
1663static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1664 int sync, void *key)
1665{
1666 struct wait_opts *wo = container_of(wait, struct wait_opts,
1667 child_wait);
1668 struct task_struct *p = key;
1669
1670 if (!eligible_pid(wo, p))
1671 return 0;
1672
1673 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1674 return 0;
1675
1676 return default_wake_function(wait, mode, sync, key);
1677}
1678
1679void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1680{
1681 __wake_up_sync_key(&parent->signal->wait_chldexit,
1682 TASK_INTERRUPTIBLE, 1, p);
1683}
1684
1685static long do_wait(struct wait_opts *wo)
1686{
1687 struct task_struct *tsk;
1688 int retval;
1689
1690 trace_sched_process_wait(wo->wo_pid);
1691
1692 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1693 wo->child_wait.private = current;
1694 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1695repeat:
1696 /*
1697 * If there is nothing that can match our critiera just get out.
1698 * We will clear ->notask_error to zero if we see any child that
1699 * might later match our criteria, even if we are not able to reap
1700 * it yet.
1701 */
1702 wo->notask_error = -ECHILD;
1703 if ((wo->wo_type < PIDTYPE_MAX) &&
1704 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1705 goto notask;
1706
1707 set_current_state(TASK_INTERRUPTIBLE);
1708 read_lock(&tasklist_lock);
1709 tsk = current;
1710 do {
1711 retval = do_wait_thread(wo, tsk);
1712 if (retval)
1713 goto end;
1714
1715 retval = ptrace_do_wait(wo, tsk);
1716 if (retval)
1717 goto end;
1718
1719 if (wo->wo_flags & __WNOTHREAD)
1720 break;
1721 } while_each_thread(current, tsk);
1722 read_unlock(&tasklist_lock);
1723
1724notask:
1725 retval = wo->notask_error;
1726 if (!retval && !(wo->wo_flags & WNOHANG)) {
1727 retval = -ERESTARTSYS;
1728 if (!signal_pending(current)) {
1729 schedule();
1730 goto repeat;
1731 }
1732 }
1733end:
1734 __set_current_state(TASK_RUNNING);
1735 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1736 return retval;
1737}
1738
1739SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1740 infop, int, options, struct rusage __user *, ru)
1741{
1742 struct wait_opts wo;
1743 struct pid *pid = NULL;
1744 enum pid_type type;
1745 long ret;
1746
1747 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1748 return -EINVAL;
1749 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1750 return -EINVAL;
1751
1752 switch (which) {
1753 case P_ALL:
1754 type = PIDTYPE_MAX;
1755 break;
1756 case P_PID:
1757 type = PIDTYPE_PID;
1758 if (upid <= 0)
1759 return -EINVAL;
1760 break;
1761 case P_PGID:
1762 type = PIDTYPE_PGID;
1763 if (upid <= 0)
1764 return -EINVAL;
1765 break;
1766 default:
1767 return -EINVAL;
1768 }
1769
1770 if (type < PIDTYPE_MAX)
1771 pid = find_get_pid(upid);
1772
1773 wo.wo_type = type;
1774 wo.wo_pid = pid;
1775 wo.wo_flags = options;
1776 wo.wo_info = infop;
1777 wo.wo_stat = NULL;
1778 wo.wo_rusage = ru;
1779 ret = do_wait(&wo);
1780
1781 if (ret > 0) {
1782 ret = 0;
1783 } else if (infop) {
1784 /*
1785 * For a WNOHANG return, clear out all the fields
1786 * we would set so the user can easily tell the
1787 * difference.
1788 */
1789 if (!ret)
1790 ret = put_user(0, &infop->si_signo);
1791 if (!ret)
1792 ret = put_user(0, &infop->si_errno);
1793 if (!ret)
1794 ret = put_user(0, &infop->si_code);
1795 if (!ret)
1796 ret = put_user(0, &infop->si_pid);
1797 if (!ret)
1798 ret = put_user(0, &infop->si_uid);
1799 if (!ret)
1800 ret = put_user(0, &infop->si_status);
1801 }
1802
1803 put_pid(pid);
1804
1805 /* avoid REGPARM breakage on x86: */
1806 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1807 return ret;
1808}
1809
1810SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1811 int, options, struct rusage __user *, ru)
1812{
1813 struct wait_opts wo;
1814 struct pid *pid = NULL;
1815 enum pid_type type;
1816 long ret;
1817
1818 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1819 __WNOTHREAD|__WCLONE|__WALL))
1820 return -EINVAL;
1821
1822 if (upid == -1)
1823 type = PIDTYPE_MAX;
1824 else if (upid < 0) {
1825 type = PIDTYPE_PGID;
1826 pid = find_get_pid(-upid);
1827 } else if (upid == 0) {
1828 type = PIDTYPE_PGID;
1829 pid = get_task_pid(current, PIDTYPE_PGID);
1830 } else /* upid > 0 */ {
1831 type = PIDTYPE_PID;
1832 pid = find_get_pid(upid);
1833 }
1834
1835 wo.wo_type = type;
1836 wo.wo_pid = pid;
1837 wo.wo_flags = options | WEXITED;
1838 wo.wo_info = NULL;
1839 wo.wo_stat = stat_addr;
1840 wo.wo_rusage = ru;
1841 ret = do_wait(&wo);
1842 put_pid(pid);
1843
1844 /* avoid REGPARM breakage on x86: */
1845 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1846 return ret;
1847}
1848
1849#ifdef __ARCH_WANT_SYS_WAITPID
1850
1851/*
1852 * sys_waitpid() remains for compatibility. waitpid() should be
1853 * implemented by calling sys_wait4() from libc.a.
1854 */
1855SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1856{
1857 return sys_wait4(pid, stat_addr, options, NULL);
1858}
1859
1860#endif