coredump: elf_fdpic_core_dump: use core_state->dumper list
[linux-2.6-block.git] / kernel / exit.c
... / ...
CommitLineData
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/mnt_namespace.h>
16#include <linux/iocontext.h>
17#include <linux/key.h>
18#include <linux/security.h>
19#include <linux/cpu.h>
20#include <linux/acct.h>
21#include <linux/tsacct_kern.h>
22#include <linux/file.h>
23#include <linux/fdtable.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/freezer.h>
36#include <linux/cgroup.h>
37#include <linux/syscalls.h>
38#include <linux/signal.h>
39#include <linux/posix-timers.h>
40#include <linux/cn_proc.h>
41#include <linux/mutex.h>
42#include <linux/futex.h>
43#include <linux/compat.h>
44#include <linux/pipe_fs_i.h>
45#include <linux/audit.h> /* for audit_free() */
46#include <linux/resource.h>
47#include <linux/blkdev.h>
48#include <linux/task_io_accounting_ops.h>
49
50#include <asm/uaccess.h>
51#include <asm/unistd.h>
52#include <asm/pgtable.h>
53#include <asm/mmu_context.h>
54
55static void exit_mm(struct task_struct * tsk);
56
57static inline int task_detached(struct task_struct *p)
58{
59 return p->exit_signal == -1;
60}
61
62static void __unhash_process(struct task_struct *p)
63{
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75}
76
77/*
78 * This function expects the tasklist_lock write-locked.
79 */
80static void __exit_signal(struct task_struct *tsk)
81{
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
95 /*
96 * If there is any task waiting for the group exit
97 * then notify it:
98 */
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
101
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
104 /*
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
113 */
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
125 }
126
127 __unhash_process(tsk);
128
129 /*
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 */
133 flush_sigqueue(&tsk->pending);
134
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 __cleanup_signal(sig);
145 }
146}
147
148static void delayed_put_task_struct(struct rcu_head *rhp)
149{
150 put_task_struct(container_of(rhp, struct task_struct, rcu));
151}
152
153/*
154 * Do final ptrace-related cleanup of a zombie being reaped.
155 *
156 * Called with write_lock(&tasklist_lock) held.
157 */
158static void ptrace_release_task(struct task_struct *p)
159{
160 BUG_ON(!list_empty(&p->ptraced));
161 ptrace_unlink(p);
162 BUG_ON(!list_empty(&p->ptrace_entry));
163}
164
165void release_task(struct task_struct * p)
166{
167 struct task_struct *leader;
168 int zap_leader;
169repeat:
170 atomic_dec(&p->user->processes);
171 proc_flush_task(p);
172 write_lock_irq(&tasklist_lock);
173 ptrace_release_task(p);
174 __exit_signal(p);
175
176 /*
177 * If we are the last non-leader member of the thread
178 * group, and the leader is zombie, then notify the
179 * group leader's parent process. (if it wants notification.)
180 */
181 zap_leader = 0;
182 leader = p->group_leader;
183 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
184 BUG_ON(task_detached(leader));
185 do_notify_parent(leader, leader->exit_signal);
186 /*
187 * If we were the last child thread and the leader has
188 * exited already, and the leader's parent ignores SIGCHLD,
189 * then we are the one who should release the leader.
190 *
191 * do_notify_parent() will have marked it self-reaping in
192 * that case.
193 */
194 zap_leader = task_detached(leader);
195 }
196
197 write_unlock_irq(&tasklist_lock);
198 release_thread(p);
199 call_rcu(&p->rcu, delayed_put_task_struct);
200
201 p = leader;
202 if (unlikely(zap_leader))
203 goto repeat;
204}
205
206/*
207 * This checks not only the pgrp, but falls back on the pid if no
208 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
209 * without this...
210 *
211 * The caller must hold rcu lock or the tasklist lock.
212 */
213struct pid *session_of_pgrp(struct pid *pgrp)
214{
215 struct task_struct *p;
216 struct pid *sid = NULL;
217
218 p = pid_task(pgrp, PIDTYPE_PGID);
219 if (p == NULL)
220 p = pid_task(pgrp, PIDTYPE_PID);
221 if (p != NULL)
222 sid = task_session(p);
223
224 return sid;
225}
226
227/*
228 * Determine if a process group is "orphaned", according to the POSIX
229 * definition in 2.2.2.52. Orphaned process groups are not to be affected
230 * by terminal-generated stop signals. Newly orphaned process groups are
231 * to receive a SIGHUP and a SIGCONT.
232 *
233 * "I ask you, have you ever known what it is to be an orphan?"
234 */
235static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
236{
237 struct task_struct *p;
238
239 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
240 if ((p == ignored_task) ||
241 (p->exit_state && thread_group_empty(p)) ||
242 is_global_init(p->real_parent))
243 continue;
244
245 if (task_pgrp(p->real_parent) != pgrp &&
246 task_session(p->real_parent) == task_session(p))
247 return 0;
248 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
249
250 return 1;
251}
252
253int is_current_pgrp_orphaned(void)
254{
255 int retval;
256
257 read_lock(&tasklist_lock);
258 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
259 read_unlock(&tasklist_lock);
260
261 return retval;
262}
263
264static int has_stopped_jobs(struct pid *pgrp)
265{
266 int retval = 0;
267 struct task_struct *p;
268
269 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 if (!task_is_stopped(p))
271 continue;
272 retval = 1;
273 break;
274 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
275 return retval;
276}
277
278/*
279 * Check to see if any process groups have become orphaned as
280 * a result of our exiting, and if they have any stopped jobs,
281 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
282 */
283static void
284kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
285{
286 struct pid *pgrp = task_pgrp(tsk);
287 struct task_struct *ignored_task = tsk;
288
289 if (!parent)
290 /* exit: our father is in a different pgrp than
291 * we are and we were the only connection outside.
292 */
293 parent = tsk->real_parent;
294 else
295 /* reparent: our child is in a different pgrp than
296 * we are, and it was the only connection outside.
297 */
298 ignored_task = NULL;
299
300 if (task_pgrp(parent) != pgrp &&
301 task_session(parent) == task_session(tsk) &&
302 will_become_orphaned_pgrp(pgrp, ignored_task) &&
303 has_stopped_jobs(pgrp)) {
304 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
305 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
306 }
307}
308
309/**
310 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
311 *
312 * If a kernel thread is launched as a result of a system call, or if
313 * it ever exits, it should generally reparent itself to kthreadd so it
314 * isn't in the way of other processes and is correctly cleaned up on exit.
315 *
316 * The various task state such as scheduling policy and priority may have
317 * been inherited from a user process, so we reset them to sane values here.
318 *
319 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
320 */
321static void reparent_to_kthreadd(void)
322{
323 write_lock_irq(&tasklist_lock);
324
325 ptrace_unlink(current);
326 /* Reparent to init */
327 current->real_parent = current->parent = kthreadd_task;
328 list_move_tail(&current->sibling, &current->real_parent->children);
329
330 /* Set the exit signal to SIGCHLD so we signal init on exit */
331 current->exit_signal = SIGCHLD;
332
333 if (task_nice(current) < 0)
334 set_user_nice(current, 0);
335 /* cpus_allowed? */
336 /* rt_priority? */
337 /* signals? */
338 security_task_reparent_to_init(current);
339 memcpy(current->signal->rlim, init_task.signal->rlim,
340 sizeof(current->signal->rlim));
341 atomic_inc(&(INIT_USER->__count));
342 write_unlock_irq(&tasklist_lock);
343 switch_uid(INIT_USER);
344}
345
346void __set_special_pids(struct pid *pid)
347{
348 struct task_struct *curr = current->group_leader;
349 pid_t nr = pid_nr(pid);
350
351 if (task_session(curr) != pid) {
352 change_pid(curr, PIDTYPE_SID, pid);
353 set_task_session(curr, nr);
354 }
355 if (task_pgrp(curr) != pid) {
356 change_pid(curr, PIDTYPE_PGID, pid);
357 set_task_pgrp(curr, nr);
358 }
359}
360
361static void set_special_pids(struct pid *pid)
362{
363 write_lock_irq(&tasklist_lock);
364 __set_special_pids(pid);
365 write_unlock_irq(&tasklist_lock);
366}
367
368/*
369 * Let kernel threads use this to say that they
370 * allow a certain signal (since daemonize() will
371 * have disabled all of them by default).
372 */
373int allow_signal(int sig)
374{
375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL;
377
378 spin_lock_irq(&current->sighand->siglock);
379 sigdelset(&current->blocked, sig);
380 if (!current->mm) {
381 /* Kernel threads handle their own signals.
382 Let the signal code know it'll be handled, so
383 that they don't get converted to SIGKILL or
384 just silently dropped */
385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 }
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
390}
391
392EXPORT_SYMBOL(allow_signal);
393
394int disallow_signal(int sig)
395{
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
398
399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock);
403 return 0;
404}
405
406EXPORT_SYMBOL(disallow_signal);
407
408/*
409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs.
411 */
412
413void daemonize(const char *name, ...)
414{
415 va_list args;
416 struct fs_struct *fs;
417 sigset_t blocked;
418
419 va_start(args, name);
420 vsnprintf(current->comm, sizeof(current->comm), name, args);
421 va_end(args);
422
423 /*
424 * If we were started as result of loading a module, close all of the
425 * user space pages. We don't need them, and if we didn't close them
426 * they would be locked into memory.
427 */
428 exit_mm(current);
429 /*
430 * We don't want to have TIF_FREEZE set if the system-wide hibernation
431 * or suspend transition begins right now.
432 */
433 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434
435 if (current->nsproxy != &init_nsproxy) {
436 get_nsproxy(&init_nsproxy);
437 switch_task_namespaces(current, &init_nsproxy);
438 }
439 set_special_pids(&init_struct_pid);
440 proc_clear_tty(current);
441
442 /* Block and flush all signals */
443 sigfillset(&blocked);
444 sigprocmask(SIG_BLOCK, &blocked, NULL);
445 flush_signals(current);
446
447 /* Become as one with the init task */
448
449 exit_fs(current); /* current->fs->count--; */
450 fs = init_task.fs;
451 current->fs = fs;
452 atomic_inc(&fs->count);
453
454 exit_files(current);
455 current->files = init_task.files;
456 atomic_inc(&current->files->count);
457
458 reparent_to_kthreadd();
459}
460
461EXPORT_SYMBOL(daemonize);
462
463static void close_files(struct files_struct * files)
464{
465 int i, j;
466 struct fdtable *fdt;
467
468 j = 0;
469
470 /*
471 * It is safe to dereference the fd table without RCU or
472 * ->file_lock because this is the last reference to the
473 * files structure.
474 */
475 fdt = files_fdtable(files);
476 for (;;) {
477 unsigned long set;
478 i = j * __NFDBITS;
479 if (i >= fdt->max_fds)
480 break;
481 set = fdt->open_fds->fds_bits[j++];
482 while (set) {
483 if (set & 1) {
484 struct file * file = xchg(&fdt->fd[i], NULL);
485 if (file) {
486 filp_close(file, files);
487 cond_resched();
488 }
489 }
490 i++;
491 set >>= 1;
492 }
493 }
494}
495
496struct files_struct *get_files_struct(struct task_struct *task)
497{
498 struct files_struct *files;
499
500 task_lock(task);
501 files = task->files;
502 if (files)
503 atomic_inc(&files->count);
504 task_unlock(task);
505
506 return files;
507}
508
509void put_files_struct(struct files_struct *files)
510{
511 struct fdtable *fdt;
512
513 if (atomic_dec_and_test(&files->count)) {
514 close_files(files);
515 /*
516 * Free the fd and fdset arrays if we expanded them.
517 * If the fdtable was embedded, pass files for freeing
518 * at the end of the RCU grace period. Otherwise,
519 * you can free files immediately.
520 */
521 fdt = files_fdtable(files);
522 if (fdt != &files->fdtab)
523 kmem_cache_free(files_cachep, files);
524 free_fdtable(fdt);
525 }
526}
527
528void reset_files_struct(struct files_struct *files)
529{
530 struct task_struct *tsk = current;
531 struct files_struct *old;
532
533 old = tsk->files;
534 task_lock(tsk);
535 tsk->files = files;
536 task_unlock(tsk);
537 put_files_struct(old);
538}
539
540void exit_files(struct task_struct *tsk)
541{
542 struct files_struct * files = tsk->files;
543
544 if (files) {
545 task_lock(tsk);
546 tsk->files = NULL;
547 task_unlock(tsk);
548 put_files_struct(files);
549 }
550}
551
552void put_fs_struct(struct fs_struct *fs)
553{
554 /* No need to hold fs->lock if we are killing it */
555 if (atomic_dec_and_test(&fs->count)) {
556 path_put(&fs->root);
557 path_put(&fs->pwd);
558 if (fs->altroot.dentry)
559 path_put(&fs->altroot);
560 kmem_cache_free(fs_cachep, fs);
561 }
562}
563
564void exit_fs(struct task_struct *tsk)
565{
566 struct fs_struct * fs = tsk->fs;
567
568 if (fs) {
569 task_lock(tsk);
570 tsk->fs = NULL;
571 task_unlock(tsk);
572 put_fs_struct(fs);
573 }
574}
575
576EXPORT_SYMBOL_GPL(exit_fs);
577
578#ifdef CONFIG_MM_OWNER
579/*
580 * Task p is exiting and it owned mm, lets find a new owner for it
581 */
582static inline int
583mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
584{
585 /*
586 * If there are other users of the mm and the owner (us) is exiting
587 * we need to find a new owner to take on the responsibility.
588 */
589 if (!mm)
590 return 0;
591 if (atomic_read(&mm->mm_users) <= 1)
592 return 0;
593 if (mm->owner != p)
594 return 0;
595 return 1;
596}
597
598void mm_update_next_owner(struct mm_struct *mm)
599{
600 struct task_struct *c, *g, *p = current;
601
602retry:
603 if (!mm_need_new_owner(mm, p))
604 return;
605
606 read_lock(&tasklist_lock);
607 /*
608 * Search in the children
609 */
610 list_for_each_entry(c, &p->children, sibling) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 }
614
615 /*
616 * Search in the siblings
617 */
618 list_for_each_entry(c, &p->parent->children, sibling) {
619 if (c->mm == mm)
620 goto assign_new_owner;
621 }
622
623 /*
624 * Search through everything else. We should not get
625 * here often
626 */
627 do_each_thread(g, c) {
628 if (c->mm == mm)
629 goto assign_new_owner;
630 } while_each_thread(g, c);
631
632 read_unlock(&tasklist_lock);
633 return;
634
635assign_new_owner:
636 BUG_ON(c == p);
637 get_task_struct(c);
638 /*
639 * The task_lock protects c->mm from changing.
640 * We always want mm->owner->mm == mm
641 */
642 task_lock(c);
643 /*
644 * Delay read_unlock() till we have the task_lock()
645 * to ensure that c does not slip away underneath us
646 */
647 read_unlock(&tasklist_lock);
648 if (c->mm != mm) {
649 task_unlock(c);
650 put_task_struct(c);
651 goto retry;
652 }
653 cgroup_mm_owner_callbacks(mm->owner, c);
654 mm->owner = c;
655 task_unlock(c);
656 put_task_struct(c);
657}
658#endif /* CONFIG_MM_OWNER */
659
660/*
661 * Turn us into a lazy TLB process if we
662 * aren't already..
663 */
664static void exit_mm(struct task_struct * tsk)
665{
666 struct mm_struct *mm = tsk->mm;
667 struct core_state *core_state;
668
669 mm_release(tsk, mm);
670 if (!mm)
671 return;
672 /*
673 * Serialize with any possible pending coredump.
674 * We must hold mmap_sem around checking core_state
675 * and clearing tsk->mm. The core-inducing thread
676 * will increment ->nr_threads for each thread in the
677 * group with ->mm != NULL.
678 */
679 down_read(&mm->mmap_sem);
680 core_state = mm->core_state;
681 if (core_state) {
682 struct core_thread self;
683 up_read(&mm->mmap_sem);
684
685 self.task = tsk;
686 self.next = xchg(&core_state->dumper.next, &self);
687 /*
688 * Implies mb(), the result of xchg() must be visible
689 * to core_state->dumper.
690 */
691 if (atomic_dec_and_test(&core_state->nr_threads))
692 complete(&core_state->startup);
693
694 wait_for_completion(&mm->core_done);
695 down_read(&mm->mmap_sem);
696 }
697 atomic_inc(&mm->mm_count);
698 BUG_ON(mm != tsk->active_mm);
699 /* more a memory barrier than a real lock */
700 task_lock(tsk);
701 tsk->mm = NULL;
702 up_read(&mm->mmap_sem);
703 enter_lazy_tlb(mm, current);
704 /* We don't want this task to be frozen prematurely */
705 clear_freeze_flag(tsk);
706 task_unlock(tsk);
707 mm_update_next_owner(mm);
708 mmput(mm);
709}
710
711/*
712 * Return nonzero if @parent's children should reap themselves.
713 *
714 * Called with write_lock_irq(&tasklist_lock) held.
715 */
716static int ignoring_children(struct task_struct *parent)
717{
718 int ret;
719 struct sighand_struct *psig = parent->sighand;
720 unsigned long flags;
721 spin_lock_irqsave(&psig->siglock, flags);
722 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
723 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
724 spin_unlock_irqrestore(&psig->siglock, flags);
725 return ret;
726}
727
728/*
729 * Detach all tasks we were using ptrace on.
730 * Any that need to be release_task'd are put on the @dead list.
731 *
732 * Called with write_lock(&tasklist_lock) held.
733 */
734static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
735{
736 struct task_struct *p, *n;
737 int ign = -1;
738
739 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
740 __ptrace_unlink(p);
741
742 if (p->exit_state != EXIT_ZOMBIE)
743 continue;
744
745 /*
746 * If it's a zombie, our attachedness prevented normal
747 * parent notification or self-reaping. Do notification
748 * now if it would have happened earlier. If it should
749 * reap itself, add it to the @dead list. We can't call
750 * release_task() here because we already hold tasklist_lock.
751 *
752 * If it's our own child, there is no notification to do.
753 * But if our normal children self-reap, then this child
754 * was prevented by ptrace and we must reap it now.
755 */
756 if (!task_detached(p) && thread_group_empty(p)) {
757 if (!same_thread_group(p->real_parent, parent))
758 do_notify_parent(p, p->exit_signal);
759 else {
760 if (ign < 0)
761 ign = ignoring_children(parent);
762 if (ign)
763 p->exit_signal = -1;
764 }
765 }
766
767 if (task_detached(p)) {
768 /*
769 * Mark it as in the process of being reaped.
770 */
771 p->exit_state = EXIT_DEAD;
772 list_add(&p->ptrace_entry, dead);
773 }
774 }
775}
776
777/*
778 * Finish up exit-time ptrace cleanup.
779 *
780 * Called without locks.
781 */
782static void ptrace_exit_finish(struct task_struct *parent,
783 struct list_head *dead)
784{
785 struct task_struct *p, *n;
786
787 BUG_ON(!list_empty(&parent->ptraced));
788
789 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
790 list_del_init(&p->ptrace_entry);
791 release_task(p);
792 }
793}
794
795static void reparent_thread(struct task_struct *p, struct task_struct *father)
796{
797 if (p->pdeath_signal)
798 /* We already hold the tasklist_lock here. */
799 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
800
801 list_move_tail(&p->sibling, &p->real_parent->children);
802
803 /* If this is a threaded reparent there is no need to
804 * notify anyone anything has happened.
805 */
806 if (same_thread_group(p->real_parent, father))
807 return;
808
809 /* We don't want people slaying init. */
810 if (!task_detached(p))
811 p->exit_signal = SIGCHLD;
812
813 /* If we'd notified the old parent about this child's death,
814 * also notify the new parent.
815 */
816 if (!ptrace_reparented(p) &&
817 p->exit_state == EXIT_ZOMBIE &&
818 !task_detached(p) && thread_group_empty(p))
819 do_notify_parent(p, p->exit_signal);
820
821 kill_orphaned_pgrp(p, father);
822}
823
824/*
825 * When we die, we re-parent all our children.
826 * Try to give them to another thread in our thread
827 * group, and if no such member exists, give it to
828 * the child reaper process (ie "init") in our pid
829 * space.
830 */
831static void forget_original_parent(struct task_struct *father)
832{
833 struct task_struct *p, *n, *reaper = father;
834 LIST_HEAD(ptrace_dead);
835
836 write_lock_irq(&tasklist_lock);
837
838 /*
839 * First clean up ptrace if we were using it.
840 */
841 ptrace_exit(father, &ptrace_dead);
842
843 do {
844 reaper = next_thread(reaper);
845 if (reaper == father) {
846 reaper = task_child_reaper(father);
847 break;
848 }
849 } while (reaper->flags & PF_EXITING);
850
851 list_for_each_entry_safe(p, n, &father->children, sibling) {
852 p->real_parent = reaper;
853 if (p->parent == father) {
854 BUG_ON(p->ptrace);
855 p->parent = p->real_parent;
856 }
857 reparent_thread(p, father);
858 }
859
860 write_unlock_irq(&tasklist_lock);
861 BUG_ON(!list_empty(&father->children));
862
863 ptrace_exit_finish(father, &ptrace_dead);
864}
865
866/*
867 * Send signals to all our closest relatives so that they know
868 * to properly mourn us..
869 */
870static void exit_notify(struct task_struct *tsk, int group_dead)
871{
872 int state;
873
874 /*
875 * This does two things:
876 *
877 * A. Make init inherit all the child processes
878 * B. Check to see if any process groups have become orphaned
879 * as a result of our exiting, and if they have any stopped
880 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
881 */
882 forget_original_parent(tsk);
883 exit_task_namespaces(tsk);
884
885 write_lock_irq(&tasklist_lock);
886 if (group_dead)
887 kill_orphaned_pgrp(tsk->group_leader, NULL);
888
889 /* Let father know we died
890 *
891 * Thread signals are configurable, but you aren't going to use
892 * that to send signals to arbitary processes.
893 * That stops right now.
894 *
895 * If the parent exec id doesn't match the exec id we saved
896 * when we started then we know the parent has changed security
897 * domain.
898 *
899 * If our self_exec id doesn't match our parent_exec_id then
900 * we have changed execution domain as these two values started
901 * the same after a fork.
902 */
903 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
904 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
905 tsk->self_exec_id != tsk->parent_exec_id) &&
906 !capable(CAP_KILL))
907 tsk->exit_signal = SIGCHLD;
908
909 /* If something other than our normal parent is ptracing us, then
910 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
911 * only has special meaning to our real parent.
912 */
913 if (!task_detached(tsk) && thread_group_empty(tsk)) {
914 int signal = ptrace_reparented(tsk) ?
915 SIGCHLD : tsk->exit_signal;
916 do_notify_parent(tsk, signal);
917 } else if (tsk->ptrace) {
918 do_notify_parent(tsk, SIGCHLD);
919 }
920
921 state = EXIT_ZOMBIE;
922 if (task_detached(tsk) && likely(!tsk->ptrace))
923 state = EXIT_DEAD;
924 tsk->exit_state = state;
925
926 /* mt-exec, de_thread() is waiting for us */
927 if (thread_group_leader(tsk) &&
928 tsk->signal->notify_count < 0 &&
929 tsk->signal->group_exit_task)
930 wake_up_process(tsk->signal->group_exit_task);
931
932 write_unlock_irq(&tasklist_lock);
933
934 /* If the process is dead, release it - nobody will wait for it */
935 if (state == EXIT_DEAD)
936 release_task(tsk);
937}
938
939#ifdef CONFIG_DEBUG_STACK_USAGE
940static void check_stack_usage(void)
941{
942 static DEFINE_SPINLOCK(low_water_lock);
943 static int lowest_to_date = THREAD_SIZE;
944 unsigned long *n = end_of_stack(current);
945 unsigned long free;
946
947 while (*n == 0)
948 n++;
949 free = (unsigned long)n - (unsigned long)end_of_stack(current);
950
951 if (free >= lowest_to_date)
952 return;
953
954 spin_lock(&low_water_lock);
955 if (free < lowest_to_date) {
956 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
957 "left\n",
958 current->comm, free);
959 lowest_to_date = free;
960 }
961 spin_unlock(&low_water_lock);
962}
963#else
964static inline void check_stack_usage(void) {}
965#endif
966
967static inline void exit_child_reaper(struct task_struct *tsk)
968{
969 if (likely(tsk->group_leader != task_child_reaper(tsk)))
970 return;
971
972 if (tsk->nsproxy->pid_ns == &init_pid_ns)
973 panic("Attempted to kill init!");
974
975 /*
976 * @tsk is the last thread in the 'cgroup-init' and is exiting.
977 * Terminate all remaining processes in the namespace and reap them
978 * before exiting @tsk.
979 *
980 * Note that @tsk (last thread of cgroup-init) may not necessarily
981 * be the child-reaper (i.e main thread of cgroup-init) of the
982 * namespace i.e the child_reaper may have already exited.
983 *
984 * Even after a child_reaper exits, we let it inherit orphaned children,
985 * because, pid_ns->child_reaper remains valid as long as there is
986 * at least one living sub-thread in the cgroup init.
987
988 * This living sub-thread of the cgroup-init will be notified when
989 * a child inherited by the 'child-reaper' exits (do_notify_parent()
990 * uses __group_send_sig_info()). Further, when reaping child processes,
991 * do_wait() iterates over children of all living sub threads.
992
993 * i.e even though 'child_reaper' thread is listed as the parent of the
994 * orphaned children, any living sub-thread in the cgroup-init can
995 * perform the role of the child_reaper.
996 */
997 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
998}
999
1000NORET_TYPE void do_exit(long code)
1001{
1002 struct task_struct *tsk = current;
1003 int group_dead;
1004
1005 profile_task_exit(tsk);
1006
1007 WARN_ON(atomic_read(&tsk->fs_excl));
1008
1009 if (unlikely(in_interrupt()))
1010 panic("Aiee, killing interrupt handler!");
1011 if (unlikely(!tsk->pid))
1012 panic("Attempted to kill the idle task!");
1013
1014 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
1015 current->ptrace_message = code;
1016 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
1017 }
1018
1019 /*
1020 * We're taking recursive faults here in do_exit. Safest is to just
1021 * leave this task alone and wait for reboot.
1022 */
1023 if (unlikely(tsk->flags & PF_EXITING)) {
1024 printk(KERN_ALERT
1025 "Fixing recursive fault but reboot is needed!\n");
1026 /*
1027 * We can do this unlocked here. The futex code uses
1028 * this flag just to verify whether the pi state
1029 * cleanup has been done or not. In the worst case it
1030 * loops once more. We pretend that the cleanup was
1031 * done as there is no way to return. Either the
1032 * OWNER_DIED bit is set by now or we push the blocked
1033 * task into the wait for ever nirwana as well.
1034 */
1035 tsk->flags |= PF_EXITPIDONE;
1036 if (tsk->io_context)
1037 exit_io_context();
1038 set_current_state(TASK_UNINTERRUPTIBLE);
1039 schedule();
1040 }
1041
1042 exit_signals(tsk); /* sets PF_EXITING */
1043 /*
1044 * tsk->flags are checked in the futex code to protect against
1045 * an exiting task cleaning up the robust pi futexes.
1046 */
1047 smp_mb();
1048 spin_unlock_wait(&tsk->pi_lock);
1049
1050 if (unlikely(in_atomic()))
1051 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1052 current->comm, task_pid_nr(current),
1053 preempt_count());
1054
1055 acct_update_integrals(tsk);
1056 if (tsk->mm) {
1057 update_hiwater_rss(tsk->mm);
1058 update_hiwater_vm(tsk->mm);
1059 }
1060 group_dead = atomic_dec_and_test(&tsk->signal->live);
1061 if (group_dead) {
1062 exit_child_reaper(tsk);
1063 hrtimer_cancel(&tsk->signal->real_timer);
1064 exit_itimers(tsk->signal);
1065 }
1066 acct_collect(code, group_dead);
1067#ifdef CONFIG_FUTEX
1068 if (unlikely(tsk->robust_list))
1069 exit_robust_list(tsk);
1070#ifdef CONFIG_COMPAT
1071 if (unlikely(tsk->compat_robust_list))
1072 compat_exit_robust_list(tsk);
1073#endif
1074#endif
1075 if (group_dead)
1076 tty_audit_exit();
1077 if (unlikely(tsk->audit_context))
1078 audit_free(tsk);
1079
1080 tsk->exit_code = code;
1081 taskstats_exit(tsk, group_dead);
1082
1083 exit_mm(tsk);
1084
1085 if (group_dead)
1086 acct_process();
1087 exit_sem(tsk);
1088 exit_files(tsk);
1089 exit_fs(tsk);
1090 check_stack_usage();
1091 exit_thread();
1092 cgroup_exit(tsk, 1);
1093 exit_keys(tsk);
1094
1095 if (group_dead && tsk->signal->leader)
1096 disassociate_ctty(1);
1097
1098 module_put(task_thread_info(tsk)->exec_domain->module);
1099 if (tsk->binfmt)
1100 module_put(tsk->binfmt->module);
1101
1102 proc_exit_connector(tsk);
1103 exit_notify(tsk, group_dead);
1104#ifdef CONFIG_NUMA
1105 mpol_put(tsk->mempolicy);
1106 tsk->mempolicy = NULL;
1107#endif
1108#ifdef CONFIG_FUTEX
1109 /*
1110 * This must happen late, after the PID is not
1111 * hashed anymore:
1112 */
1113 if (unlikely(!list_empty(&tsk->pi_state_list)))
1114 exit_pi_state_list(tsk);
1115 if (unlikely(current->pi_state_cache))
1116 kfree(current->pi_state_cache);
1117#endif
1118 /*
1119 * Make sure we are holding no locks:
1120 */
1121 debug_check_no_locks_held(tsk);
1122 /*
1123 * We can do this unlocked here. The futex code uses this flag
1124 * just to verify whether the pi state cleanup has been done
1125 * or not. In the worst case it loops once more.
1126 */
1127 tsk->flags |= PF_EXITPIDONE;
1128
1129 if (tsk->io_context)
1130 exit_io_context();
1131
1132 if (tsk->splice_pipe)
1133 __free_pipe_info(tsk->splice_pipe);
1134
1135 preempt_disable();
1136 /* causes final put_task_struct in finish_task_switch(). */
1137 tsk->state = TASK_DEAD;
1138
1139 schedule();
1140 BUG();
1141 /* Avoid "noreturn function does return". */
1142 for (;;)
1143 cpu_relax(); /* For when BUG is null */
1144}
1145
1146EXPORT_SYMBOL_GPL(do_exit);
1147
1148NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1149{
1150 if (comp)
1151 complete(comp);
1152
1153 do_exit(code);
1154}
1155
1156EXPORT_SYMBOL(complete_and_exit);
1157
1158asmlinkage long sys_exit(int error_code)
1159{
1160 do_exit((error_code&0xff)<<8);
1161}
1162
1163/*
1164 * Take down every thread in the group. This is called by fatal signals
1165 * as well as by sys_exit_group (below).
1166 */
1167NORET_TYPE void
1168do_group_exit(int exit_code)
1169{
1170 struct signal_struct *sig = current->signal;
1171
1172 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1173
1174 if (signal_group_exit(sig))
1175 exit_code = sig->group_exit_code;
1176 else if (!thread_group_empty(current)) {
1177 struct sighand_struct *const sighand = current->sighand;
1178 spin_lock_irq(&sighand->siglock);
1179 if (signal_group_exit(sig))
1180 /* Another thread got here before we took the lock. */
1181 exit_code = sig->group_exit_code;
1182 else {
1183 sig->group_exit_code = exit_code;
1184 sig->flags = SIGNAL_GROUP_EXIT;
1185 zap_other_threads(current);
1186 }
1187 spin_unlock_irq(&sighand->siglock);
1188 }
1189
1190 do_exit(exit_code);
1191 /* NOTREACHED */
1192}
1193
1194/*
1195 * this kills every thread in the thread group. Note that any externally
1196 * wait4()-ing process will get the correct exit code - even if this
1197 * thread is not the thread group leader.
1198 */
1199asmlinkage void sys_exit_group(int error_code)
1200{
1201 do_group_exit((error_code & 0xff) << 8);
1202}
1203
1204static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1205{
1206 struct pid *pid = NULL;
1207 if (type == PIDTYPE_PID)
1208 pid = task->pids[type].pid;
1209 else if (type < PIDTYPE_MAX)
1210 pid = task->group_leader->pids[type].pid;
1211 return pid;
1212}
1213
1214static int eligible_child(enum pid_type type, struct pid *pid, int options,
1215 struct task_struct *p)
1216{
1217 int err;
1218
1219 if (type < PIDTYPE_MAX) {
1220 if (task_pid_type(p, type) != pid)
1221 return 0;
1222 }
1223
1224 /* Wait for all children (clone and not) if __WALL is set;
1225 * otherwise, wait for clone children *only* if __WCLONE is
1226 * set; otherwise, wait for non-clone children *only*. (Note:
1227 * A "clone" child here is one that reports to its parent
1228 * using a signal other than SIGCHLD.) */
1229 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1230 && !(options & __WALL))
1231 return 0;
1232
1233 err = security_task_wait(p);
1234 if (err)
1235 return err;
1236
1237 return 1;
1238}
1239
1240static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1241 int why, int status,
1242 struct siginfo __user *infop,
1243 struct rusage __user *rusagep)
1244{
1245 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1246
1247 put_task_struct(p);
1248 if (!retval)
1249 retval = put_user(SIGCHLD, &infop->si_signo);
1250 if (!retval)
1251 retval = put_user(0, &infop->si_errno);
1252 if (!retval)
1253 retval = put_user((short)why, &infop->si_code);
1254 if (!retval)
1255 retval = put_user(pid, &infop->si_pid);
1256 if (!retval)
1257 retval = put_user(uid, &infop->si_uid);
1258 if (!retval)
1259 retval = put_user(status, &infop->si_status);
1260 if (!retval)
1261 retval = pid;
1262 return retval;
1263}
1264
1265/*
1266 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1267 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1268 * the lock and this task is uninteresting. If we return nonzero, we have
1269 * released the lock and the system call should return.
1270 */
1271static int wait_task_zombie(struct task_struct *p, int options,
1272 struct siginfo __user *infop,
1273 int __user *stat_addr, struct rusage __user *ru)
1274{
1275 unsigned long state;
1276 int retval, status, traced;
1277 pid_t pid = task_pid_vnr(p);
1278
1279 if (!likely(options & WEXITED))
1280 return 0;
1281
1282 if (unlikely(options & WNOWAIT)) {
1283 uid_t uid = p->uid;
1284 int exit_code = p->exit_code;
1285 int why, status;
1286
1287 get_task_struct(p);
1288 read_unlock(&tasklist_lock);
1289 if ((exit_code & 0x7f) == 0) {
1290 why = CLD_EXITED;
1291 status = exit_code >> 8;
1292 } else {
1293 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1294 status = exit_code & 0x7f;
1295 }
1296 return wait_noreap_copyout(p, pid, uid, why,
1297 status, infop, ru);
1298 }
1299
1300 /*
1301 * Try to move the task's state to DEAD
1302 * only one thread is allowed to do this:
1303 */
1304 state = xchg(&p->exit_state, EXIT_DEAD);
1305 if (state != EXIT_ZOMBIE) {
1306 BUG_ON(state != EXIT_DEAD);
1307 return 0;
1308 }
1309
1310 traced = ptrace_reparented(p);
1311
1312 if (likely(!traced)) {
1313 struct signal_struct *psig;
1314 struct signal_struct *sig;
1315
1316 /*
1317 * The resource counters for the group leader are in its
1318 * own task_struct. Those for dead threads in the group
1319 * are in its signal_struct, as are those for the child
1320 * processes it has previously reaped. All these
1321 * accumulate in the parent's signal_struct c* fields.
1322 *
1323 * We don't bother to take a lock here to protect these
1324 * p->signal fields, because they are only touched by
1325 * __exit_signal, which runs with tasklist_lock
1326 * write-locked anyway, and so is excluded here. We do
1327 * need to protect the access to p->parent->signal fields,
1328 * as other threads in the parent group can be right
1329 * here reaping other children at the same time.
1330 */
1331 spin_lock_irq(&p->parent->sighand->siglock);
1332 psig = p->parent->signal;
1333 sig = p->signal;
1334 psig->cutime =
1335 cputime_add(psig->cutime,
1336 cputime_add(p->utime,
1337 cputime_add(sig->utime,
1338 sig->cutime)));
1339 psig->cstime =
1340 cputime_add(psig->cstime,
1341 cputime_add(p->stime,
1342 cputime_add(sig->stime,
1343 sig->cstime)));
1344 psig->cgtime =
1345 cputime_add(psig->cgtime,
1346 cputime_add(p->gtime,
1347 cputime_add(sig->gtime,
1348 sig->cgtime)));
1349 psig->cmin_flt +=
1350 p->min_flt + sig->min_flt + sig->cmin_flt;
1351 psig->cmaj_flt +=
1352 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1353 psig->cnvcsw +=
1354 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1355 psig->cnivcsw +=
1356 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1357 psig->cinblock +=
1358 task_io_get_inblock(p) +
1359 sig->inblock + sig->cinblock;
1360 psig->coublock +=
1361 task_io_get_oublock(p) +
1362 sig->oublock + sig->coublock;
1363 spin_unlock_irq(&p->parent->sighand->siglock);
1364 }
1365
1366 /*
1367 * Now we are sure this task is interesting, and no other
1368 * thread can reap it because we set its state to EXIT_DEAD.
1369 */
1370 read_unlock(&tasklist_lock);
1371
1372 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1373 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1374 ? p->signal->group_exit_code : p->exit_code;
1375 if (!retval && stat_addr)
1376 retval = put_user(status, stat_addr);
1377 if (!retval && infop)
1378 retval = put_user(SIGCHLD, &infop->si_signo);
1379 if (!retval && infop)
1380 retval = put_user(0, &infop->si_errno);
1381 if (!retval && infop) {
1382 int why;
1383
1384 if ((status & 0x7f) == 0) {
1385 why = CLD_EXITED;
1386 status >>= 8;
1387 } else {
1388 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1389 status &= 0x7f;
1390 }
1391 retval = put_user((short)why, &infop->si_code);
1392 if (!retval)
1393 retval = put_user(status, &infop->si_status);
1394 }
1395 if (!retval && infop)
1396 retval = put_user(pid, &infop->si_pid);
1397 if (!retval && infop)
1398 retval = put_user(p->uid, &infop->si_uid);
1399 if (!retval)
1400 retval = pid;
1401
1402 if (traced) {
1403 write_lock_irq(&tasklist_lock);
1404 /* We dropped tasklist, ptracer could die and untrace */
1405 ptrace_unlink(p);
1406 /*
1407 * If this is not a detached task, notify the parent.
1408 * If it's still not detached after that, don't release
1409 * it now.
1410 */
1411 if (!task_detached(p)) {
1412 do_notify_parent(p, p->exit_signal);
1413 if (!task_detached(p)) {
1414 p->exit_state = EXIT_ZOMBIE;
1415 p = NULL;
1416 }
1417 }
1418 write_unlock_irq(&tasklist_lock);
1419 }
1420 if (p != NULL)
1421 release_task(p);
1422
1423 return retval;
1424}
1425
1426/*
1427 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1428 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1429 * the lock and this task is uninteresting. If we return nonzero, we have
1430 * released the lock and the system call should return.
1431 */
1432static int wait_task_stopped(int ptrace, struct task_struct *p,
1433 int options, struct siginfo __user *infop,
1434 int __user *stat_addr, struct rusage __user *ru)
1435{
1436 int retval, exit_code, why;
1437 uid_t uid = 0; /* unneeded, required by compiler */
1438 pid_t pid;
1439
1440 if (!(options & WUNTRACED))
1441 return 0;
1442
1443 exit_code = 0;
1444 spin_lock_irq(&p->sighand->siglock);
1445
1446 if (unlikely(!task_is_stopped_or_traced(p)))
1447 goto unlock_sig;
1448
1449 if (!ptrace && p->signal->group_stop_count > 0)
1450 /*
1451 * A group stop is in progress and this is the group leader.
1452 * We won't report until all threads have stopped.
1453 */
1454 goto unlock_sig;
1455
1456 exit_code = p->exit_code;
1457 if (!exit_code)
1458 goto unlock_sig;
1459
1460 if (!unlikely(options & WNOWAIT))
1461 p->exit_code = 0;
1462
1463 uid = p->uid;
1464unlock_sig:
1465 spin_unlock_irq(&p->sighand->siglock);
1466 if (!exit_code)
1467 return 0;
1468
1469 /*
1470 * Now we are pretty sure this task is interesting.
1471 * Make sure it doesn't get reaped out from under us while we
1472 * give up the lock and then examine it below. We don't want to
1473 * keep holding onto the tasklist_lock while we call getrusage and
1474 * possibly take page faults for user memory.
1475 */
1476 get_task_struct(p);
1477 pid = task_pid_vnr(p);
1478 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1479 read_unlock(&tasklist_lock);
1480
1481 if (unlikely(options & WNOWAIT))
1482 return wait_noreap_copyout(p, pid, uid,
1483 why, exit_code,
1484 infop, ru);
1485
1486 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1487 if (!retval && stat_addr)
1488 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1489 if (!retval && infop)
1490 retval = put_user(SIGCHLD, &infop->si_signo);
1491 if (!retval && infop)
1492 retval = put_user(0, &infop->si_errno);
1493 if (!retval && infop)
1494 retval = put_user((short)why, &infop->si_code);
1495 if (!retval && infop)
1496 retval = put_user(exit_code, &infop->si_status);
1497 if (!retval && infop)
1498 retval = put_user(pid, &infop->si_pid);
1499 if (!retval && infop)
1500 retval = put_user(uid, &infop->si_uid);
1501 if (!retval)
1502 retval = pid;
1503 put_task_struct(p);
1504
1505 BUG_ON(!retval);
1506 return retval;
1507}
1508
1509/*
1510 * Handle do_wait work for one task in a live, non-stopped state.
1511 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1512 * the lock and this task is uninteresting. If we return nonzero, we have
1513 * released the lock and the system call should return.
1514 */
1515static int wait_task_continued(struct task_struct *p, int options,
1516 struct siginfo __user *infop,
1517 int __user *stat_addr, struct rusage __user *ru)
1518{
1519 int retval;
1520 pid_t pid;
1521 uid_t uid;
1522
1523 if (!unlikely(options & WCONTINUED))
1524 return 0;
1525
1526 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1527 return 0;
1528
1529 spin_lock_irq(&p->sighand->siglock);
1530 /* Re-check with the lock held. */
1531 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1532 spin_unlock_irq(&p->sighand->siglock);
1533 return 0;
1534 }
1535 if (!unlikely(options & WNOWAIT))
1536 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1537 spin_unlock_irq(&p->sighand->siglock);
1538
1539 pid = task_pid_vnr(p);
1540 uid = p->uid;
1541 get_task_struct(p);
1542 read_unlock(&tasklist_lock);
1543
1544 if (!infop) {
1545 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1546 put_task_struct(p);
1547 if (!retval && stat_addr)
1548 retval = put_user(0xffff, stat_addr);
1549 if (!retval)
1550 retval = pid;
1551 } else {
1552 retval = wait_noreap_copyout(p, pid, uid,
1553 CLD_CONTINUED, SIGCONT,
1554 infop, ru);
1555 BUG_ON(retval == 0);
1556 }
1557
1558 return retval;
1559}
1560
1561/*
1562 * Consider @p for a wait by @parent.
1563 *
1564 * -ECHILD should be in *@notask_error before the first call.
1565 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1566 * Returns zero if the search for a child should continue;
1567 * then *@notask_error is 0 if @p is an eligible child,
1568 * or another error from security_task_wait(), or still -ECHILD.
1569 */
1570static int wait_consider_task(struct task_struct *parent, int ptrace,
1571 struct task_struct *p, int *notask_error,
1572 enum pid_type type, struct pid *pid, int options,
1573 struct siginfo __user *infop,
1574 int __user *stat_addr, struct rusage __user *ru)
1575{
1576 int ret = eligible_child(type, pid, options, p);
1577 if (!ret)
1578 return ret;
1579
1580 if (unlikely(ret < 0)) {
1581 /*
1582 * If we have not yet seen any eligible child,
1583 * then let this error code replace -ECHILD.
1584 * A permission error will give the user a clue
1585 * to look for security policy problems, rather
1586 * than for mysterious wait bugs.
1587 */
1588 if (*notask_error)
1589 *notask_error = ret;
1590 }
1591
1592 if (likely(!ptrace) && unlikely(p->ptrace)) {
1593 /*
1594 * This child is hidden by ptrace.
1595 * We aren't allowed to see it now, but eventually we will.
1596 */
1597 *notask_error = 0;
1598 return 0;
1599 }
1600
1601 if (p->exit_state == EXIT_DEAD)
1602 return 0;
1603
1604 /*
1605 * We don't reap group leaders with subthreads.
1606 */
1607 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1608 return wait_task_zombie(p, options, infop, stat_addr, ru);
1609
1610 /*
1611 * It's stopped or running now, so it might
1612 * later continue, exit, or stop again.
1613 */
1614 *notask_error = 0;
1615
1616 if (task_is_stopped_or_traced(p))
1617 return wait_task_stopped(ptrace, p, options,
1618 infop, stat_addr, ru);
1619
1620 return wait_task_continued(p, options, infop, stat_addr, ru);
1621}
1622
1623/*
1624 * Do the work of do_wait() for one thread in the group, @tsk.
1625 *
1626 * -ECHILD should be in *@notask_error before the first call.
1627 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1628 * Returns zero if the search for a child should continue; then
1629 * *@notask_error is 0 if there were any eligible children,
1630 * or another error from security_task_wait(), or still -ECHILD.
1631 */
1632static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1633 enum pid_type type, struct pid *pid, int options,
1634 struct siginfo __user *infop, int __user *stat_addr,
1635 struct rusage __user *ru)
1636{
1637 struct task_struct *p;
1638
1639 list_for_each_entry(p, &tsk->children, sibling) {
1640 /*
1641 * Do not consider detached threads.
1642 */
1643 if (!task_detached(p)) {
1644 int ret = wait_consider_task(tsk, 0, p, notask_error,
1645 type, pid, options,
1646 infop, stat_addr, ru);
1647 if (ret)
1648 return ret;
1649 }
1650 }
1651
1652 return 0;
1653}
1654
1655static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1656 enum pid_type type, struct pid *pid, int options,
1657 struct siginfo __user *infop, int __user *stat_addr,
1658 struct rusage __user *ru)
1659{
1660 struct task_struct *p;
1661
1662 /*
1663 * Traditionally we see ptrace'd stopped tasks regardless of options.
1664 */
1665 options |= WUNTRACED;
1666
1667 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1668 int ret = wait_consider_task(tsk, 1, p, notask_error,
1669 type, pid, options,
1670 infop, stat_addr, ru);
1671 if (ret)
1672 return ret;
1673 }
1674
1675 return 0;
1676}
1677
1678static long do_wait(enum pid_type type, struct pid *pid, int options,
1679 struct siginfo __user *infop, int __user *stat_addr,
1680 struct rusage __user *ru)
1681{
1682 DECLARE_WAITQUEUE(wait, current);
1683 struct task_struct *tsk;
1684 int retval;
1685
1686 add_wait_queue(&current->signal->wait_chldexit,&wait);
1687repeat:
1688 /*
1689 * If there is nothing that can match our critiera just get out.
1690 * We will clear @retval to zero if we see any child that might later
1691 * match our criteria, even if we are not able to reap it yet.
1692 */
1693 retval = -ECHILD;
1694 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1695 goto end;
1696
1697 current->state = TASK_INTERRUPTIBLE;
1698 read_lock(&tasklist_lock);
1699 tsk = current;
1700 do {
1701 int tsk_result = do_wait_thread(tsk, &retval,
1702 type, pid, options,
1703 infop, stat_addr, ru);
1704 if (!tsk_result)
1705 tsk_result = ptrace_do_wait(tsk, &retval,
1706 type, pid, options,
1707 infop, stat_addr, ru);
1708 if (tsk_result) {
1709 /*
1710 * tasklist_lock is unlocked and we have a final result.
1711 */
1712 retval = tsk_result;
1713 goto end;
1714 }
1715
1716 if (options & __WNOTHREAD)
1717 break;
1718 tsk = next_thread(tsk);
1719 BUG_ON(tsk->signal != current->signal);
1720 } while (tsk != current);
1721 read_unlock(&tasklist_lock);
1722
1723 if (!retval && !(options & WNOHANG)) {
1724 retval = -ERESTARTSYS;
1725 if (!signal_pending(current)) {
1726 schedule();
1727 goto repeat;
1728 }
1729 }
1730
1731end:
1732 current->state = TASK_RUNNING;
1733 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1734 if (infop) {
1735 if (retval > 0)
1736 retval = 0;
1737 else {
1738 /*
1739 * For a WNOHANG return, clear out all the fields
1740 * we would set so the user can easily tell the
1741 * difference.
1742 */
1743 if (!retval)
1744 retval = put_user(0, &infop->si_signo);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_errno);
1747 if (!retval)
1748 retval = put_user(0, &infop->si_code);
1749 if (!retval)
1750 retval = put_user(0, &infop->si_pid);
1751 if (!retval)
1752 retval = put_user(0, &infop->si_uid);
1753 if (!retval)
1754 retval = put_user(0, &infop->si_status);
1755 }
1756 }
1757 return retval;
1758}
1759
1760asmlinkage long sys_waitid(int which, pid_t upid,
1761 struct siginfo __user *infop, int options,
1762 struct rusage __user *ru)
1763{
1764 struct pid *pid = NULL;
1765 enum pid_type type;
1766 long ret;
1767
1768 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1769 return -EINVAL;
1770 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1771 return -EINVAL;
1772
1773 switch (which) {
1774 case P_ALL:
1775 type = PIDTYPE_MAX;
1776 break;
1777 case P_PID:
1778 type = PIDTYPE_PID;
1779 if (upid <= 0)
1780 return -EINVAL;
1781 break;
1782 case P_PGID:
1783 type = PIDTYPE_PGID;
1784 if (upid <= 0)
1785 return -EINVAL;
1786 break;
1787 default:
1788 return -EINVAL;
1789 }
1790
1791 if (type < PIDTYPE_MAX)
1792 pid = find_get_pid(upid);
1793 ret = do_wait(type, pid, options, infop, NULL, ru);
1794 put_pid(pid);
1795
1796 /* avoid REGPARM breakage on x86: */
1797 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1798 return ret;
1799}
1800
1801asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1802 int options, struct rusage __user *ru)
1803{
1804 struct pid *pid = NULL;
1805 enum pid_type type;
1806 long ret;
1807
1808 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 __WNOTHREAD|__WCLONE|__WALL))
1810 return -EINVAL;
1811
1812 if (upid == -1)
1813 type = PIDTYPE_MAX;
1814 else if (upid < 0) {
1815 type = PIDTYPE_PGID;
1816 pid = find_get_pid(-upid);
1817 } else if (upid == 0) {
1818 type = PIDTYPE_PGID;
1819 pid = get_pid(task_pgrp(current));
1820 } else /* upid > 0 */ {
1821 type = PIDTYPE_PID;
1822 pid = find_get_pid(upid);
1823 }
1824
1825 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1826 put_pid(pid);
1827
1828 /* avoid REGPARM breakage on x86: */
1829 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1830 return ret;
1831}
1832
1833#ifdef __ARCH_WANT_SYS_WAITPID
1834
1835/*
1836 * sys_waitpid() remains for compatibility. waitpid() should be
1837 * implemented by calling sys_wait4() from libc.a.
1838 */
1839asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1840{
1841 return sys_wait4(pid, stat_addr, options, NULL);
1842}
1843
1844#endif