Merge tag 'thunderbolt-for-v6.8-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / exit.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/task_io_accounting_ops.h>
52#include <linux/blkdev.h>
53#include <linux/task_work.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/kmsan.h>
64#include <linux/random.h>
65#include <linux/rcuwait.h>
66#include <linux/compat.h>
67#include <linux/io_uring.h>
68#include <linux/kprobes.h>
69#include <linux/rethook.h>
70#include <linux/sysfs.h>
71#include <linux/user_events.h>
72#include <linux/uaccess.h>
73
74#include <uapi/linux/wait.h>
75
76#include <asm/unistd.h>
77#include <asm/mmu_context.h>
78
79#include "exit.h"
80
81/*
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
85 */
86static unsigned int oops_limit = 10000;
87
88#ifdef CONFIG_SYSCTL
89static struct ctl_table kern_exit_table[] = {
90 {
91 .procname = "oops_limit",
92 .data = &oops_limit,
93 .maxlen = sizeof(oops_limit),
94 .mode = 0644,
95 .proc_handler = proc_douintvec,
96 },
97 { }
98};
99
100static __init int kernel_exit_sysctls_init(void)
101{
102 register_sysctl_init("kernel", kern_exit_table);
103 return 0;
104}
105late_initcall(kernel_exit_sysctls_init);
106#endif
107
108static atomic_t oops_count = ATOMIC_INIT(0);
109
110#ifdef CONFIG_SYSFS
111static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 char *page)
113{
114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115}
116
117static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119static __init int kernel_exit_sysfs_init(void)
120{
121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 return 0;
123}
124late_initcall(kernel_exit_sysfs_init);
125#endif
126
127static void __unhash_process(struct task_struct *p, bool group_dead)
128{
129 nr_threads--;
130 detach_pid(p, PIDTYPE_PID);
131 if (group_dead) {
132 detach_pid(p, PIDTYPE_TGID);
133 detach_pid(p, PIDTYPE_PGID);
134 detach_pid(p, PIDTYPE_SID);
135
136 list_del_rcu(&p->tasks);
137 list_del_init(&p->sibling);
138 __this_cpu_dec(process_counts);
139 }
140 list_del_rcu(&p->thread_node);
141}
142
143/*
144 * This function expects the tasklist_lock write-locked.
145 */
146static void __exit_signal(struct task_struct *tsk)
147{
148 struct signal_struct *sig = tsk->signal;
149 bool group_dead = thread_group_leader(tsk);
150 struct sighand_struct *sighand;
151 struct tty_struct *tty;
152 u64 utime, stime;
153
154 sighand = rcu_dereference_check(tsk->sighand,
155 lockdep_tasklist_lock_is_held());
156 spin_lock(&sighand->siglock);
157
158#ifdef CONFIG_POSIX_TIMERS
159 posix_cpu_timers_exit(tsk);
160 if (group_dead)
161 posix_cpu_timers_exit_group(tsk);
162#endif
163
164 if (group_dead) {
165 tty = sig->tty;
166 sig->tty = NULL;
167 } else {
168 /*
169 * If there is any task waiting for the group exit
170 * then notify it:
171 */
172 if (sig->notify_count > 0 && !--sig->notify_count)
173 wake_up_process(sig->group_exec_task);
174
175 if (tsk == sig->curr_target)
176 sig->curr_target = next_thread(tsk);
177 }
178
179 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
180 sizeof(unsigned long long));
181
182 /*
183 * Accumulate here the counters for all threads as they die. We could
184 * skip the group leader because it is the last user of signal_struct,
185 * but we want to avoid the race with thread_group_cputime() which can
186 * see the empty ->thread_head list.
187 */
188 task_cputime(tsk, &utime, &stime);
189 write_seqlock(&sig->stats_lock);
190 sig->utime += utime;
191 sig->stime += stime;
192 sig->gtime += task_gtime(tsk);
193 sig->min_flt += tsk->min_flt;
194 sig->maj_flt += tsk->maj_flt;
195 sig->nvcsw += tsk->nvcsw;
196 sig->nivcsw += tsk->nivcsw;
197 sig->inblock += task_io_get_inblock(tsk);
198 sig->oublock += task_io_get_oublock(tsk);
199 task_io_accounting_add(&sig->ioac, &tsk->ioac);
200 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201 sig->nr_threads--;
202 __unhash_process(tsk, group_dead);
203 write_sequnlock(&sig->stats_lock);
204
205 /*
206 * Do this under ->siglock, we can race with another thread
207 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208 */
209 flush_sigqueue(&tsk->pending);
210 tsk->sighand = NULL;
211 spin_unlock(&sighand->siglock);
212
213 __cleanup_sighand(sighand);
214 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215 if (group_dead) {
216 flush_sigqueue(&sig->shared_pending);
217 tty_kref_put(tty);
218 }
219}
220
221static void delayed_put_task_struct(struct rcu_head *rhp)
222{
223 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224
225 kprobe_flush_task(tsk);
226 rethook_flush_task(tsk);
227 perf_event_delayed_put(tsk);
228 trace_sched_process_free(tsk);
229 put_task_struct(tsk);
230}
231
232void put_task_struct_rcu_user(struct task_struct *task)
233{
234 if (refcount_dec_and_test(&task->rcu_users))
235 call_rcu(&task->rcu, delayed_put_task_struct);
236}
237
238void __weak release_thread(struct task_struct *dead_task)
239{
240}
241
242void release_task(struct task_struct *p)
243{
244 struct task_struct *leader;
245 struct pid *thread_pid;
246 int zap_leader;
247repeat:
248 /* don't need to get the RCU readlock here - the process is dead and
249 * can't be modifying its own credentials. But shut RCU-lockdep up */
250 rcu_read_lock();
251 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
252 rcu_read_unlock();
253
254 cgroup_release(p);
255
256 write_lock_irq(&tasklist_lock);
257 ptrace_release_task(p);
258 thread_pid = get_pid(p->thread_pid);
259 __exit_signal(p);
260
261 /*
262 * If we are the last non-leader member of the thread
263 * group, and the leader is zombie, then notify the
264 * group leader's parent process. (if it wants notification.)
265 */
266 zap_leader = 0;
267 leader = p->group_leader;
268 if (leader != p && thread_group_empty(leader)
269 && leader->exit_state == EXIT_ZOMBIE) {
270 /*
271 * If we were the last child thread and the leader has
272 * exited already, and the leader's parent ignores SIGCHLD,
273 * then we are the one who should release the leader.
274 */
275 zap_leader = do_notify_parent(leader, leader->exit_signal);
276 if (zap_leader)
277 leader->exit_state = EXIT_DEAD;
278 }
279
280 write_unlock_irq(&tasklist_lock);
281 seccomp_filter_release(p);
282 proc_flush_pid(thread_pid);
283 put_pid(thread_pid);
284 release_thread(p);
285 put_task_struct_rcu_user(p);
286
287 p = leader;
288 if (unlikely(zap_leader))
289 goto repeat;
290}
291
292int rcuwait_wake_up(struct rcuwait *w)
293{
294 int ret = 0;
295 struct task_struct *task;
296
297 rcu_read_lock();
298
299 /*
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
304 *
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
309 */
310 smp_mb(); /* (B) */
311
312 task = rcu_dereference(w->task);
313 if (task)
314 ret = wake_up_process(task);
315 rcu_read_unlock();
316
317 return ret;
318}
319EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320
321/*
322 * Determine if a process group is "orphaned", according to the POSIX
323 * definition in 2.2.2.52. Orphaned process groups are not to be affected
324 * by terminal-generated stop signals. Newly orphaned process groups are
325 * to receive a SIGHUP and a SIGCONT.
326 *
327 * "I ask you, have you ever known what it is to be an orphan?"
328 */
329static int will_become_orphaned_pgrp(struct pid *pgrp,
330 struct task_struct *ignored_task)
331{
332 struct task_struct *p;
333
334 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 if ((p == ignored_task) ||
336 (p->exit_state && thread_group_empty(p)) ||
337 is_global_init(p->real_parent))
338 continue;
339
340 if (task_pgrp(p->real_parent) != pgrp &&
341 task_session(p->real_parent) == task_session(p))
342 return 0;
343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344
345 return 1;
346}
347
348int is_current_pgrp_orphaned(void)
349{
350 int retval;
351
352 read_lock(&tasklist_lock);
353 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 read_unlock(&tasklist_lock);
355
356 return retval;
357}
358
359static bool has_stopped_jobs(struct pid *pgrp)
360{
361 struct task_struct *p;
362
363 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 return true;
366 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368 return false;
369}
370
371/*
372 * Check to see if any process groups have become orphaned as
373 * a result of our exiting, and if they have any stopped jobs,
374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375 */
376static void
377kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378{
379 struct pid *pgrp = task_pgrp(tsk);
380 struct task_struct *ignored_task = tsk;
381
382 if (!parent)
383 /* exit: our father is in a different pgrp than
384 * we are and we were the only connection outside.
385 */
386 parent = tsk->real_parent;
387 else
388 /* reparent: our child is in a different pgrp than
389 * we are, and it was the only connection outside.
390 */
391 ignored_task = NULL;
392
393 if (task_pgrp(parent) != pgrp &&
394 task_session(parent) == task_session(tsk) &&
395 will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 has_stopped_jobs(pgrp)) {
397 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 }
400}
401
402static void coredump_task_exit(struct task_struct *tsk)
403{
404 struct core_state *core_state;
405
406 /*
407 * Serialize with any possible pending coredump.
408 * We must hold siglock around checking core_state
409 * and setting PF_POSTCOREDUMP. The core-inducing thread
410 * will increment ->nr_threads for each thread in the
411 * group without PF_POSTCOREDUMP set.
412 */
413 spin_lock_irq(&tsk->sighand->siglock);
414 tsk->flags |= PF_POSTCOREDUMP;
415 core_state = tsk->signal->core_state;
416 spin_unlock_irq(&tsk->sighand->siglock);
417
418 /* The vhost_worker does not particpate in coredumps */
419 if (core_state &&
420 ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
421 struct core_thread self;
422
423 self.task = current;
424 if (self.task->flags & PF_SIGNALED)
425 self.next = xchg(&core_state->dumper.next, &self);
426 else
427 self.task = NULL;
428 /*
429 * Implies mb(), the result of xchg() must be visible
430 * to core_state->dumper.
431 */
432 if (atomic_dec_and_test(&core_state->nr_threads))
433 complete(&core_state->startup);
434
435 for (;;) {
436 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
437 if (!self.task) /* see coredump_finish() */
438 break;
439 schedule();
440 }
441 __set_current_state(TASK_RUNNING);
442 }
443}
444
445#ifdef CONFIG_MEMCG
446/*
447 * A task is exiting. If it owned this mm, find a new owner for the mm.
448 */
449void mm_update_next_owner(struct mm_struct *mm)
450{
451 struct task_struct *c, *g, *p = current;
452
453retry:
454 /*
455 * If the exiting or execing task is not the owner, it's
456 * someone else's problem.
457 */
458 if (mm->owner != p)
459 return;
460 /*
461 * The current owner is exiting/execing and there are no other
462 * candidates. Do not leave the mm pointing to a possibly
463 * freed task structure.
464 */
465 if (atomic_read(&mm->mm_users) <= 1) {
466 WRITE_ONCE(mm->owner, NULL);
467 return;
468 }
469
470 read_lock(&tasklist_lock);
471 /*
472 * Search in the children
473 */
474 list_for_each_entry(c, &p->children, sibling) {
475 if (c->mm == mm)
476 goto assign_new_owner;
477 }
478
479 /*
480 * Search in the siblings
481 */
482 list_for_each_entry(c, &p->real_parent->children, sibling) {
483 if (c->mm == mm)
484 goto assign_new_owner;
485 }
486
487 /*
488 * Search through everything else, we should not get here often.
489 */
490 for_each_process(g) {
491 if (g->flags & PF_KTHREAD)
492 continue;
493 for_each_thread(g, c) {
494 if (c->mm == mm)
495 goto assign_new_owner;
496 if (c->mm)
497 break;
498 }
499 }
500 read_unlock(&tasklist_lock);
501 /*
502 * We found no owner yet mm_users > 1: this implies that we are
503 * most likely racing with swapoff (try_to_unuse()) or /proc or
504 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
505 */
506 WRITE_ONCE(mm->owner, NULL);
507 return;
508
509assign_new_owner:
510 BUG_ON(c == p);
511 get_task_struct(c);
512 /*
513 * The task_lock protects c->mm from changing.
514 * We always want mm->owner->mm == mm
515 */
516 task_lock(c);
517 /*
518 * Delay read_unlock() till we have the task_lock()
519 * to ensure that c does not slip away underneath us
520 */
521 read_unlock(&tasklist_lock);
522 if (c->mm != mm) {
523 task_unlock(c);
524 put_task_struct(c);
525 goto retry;
526 }
527 WRITE_ONCE(mm->owner, c);
528 lru_gen_migrate_mm(mm);
529 task_unlock(c);
530 put_task_struct(c);
531}
532#endif /* CONFIG_MEMCG */
533
534/*
535 * Turn us into a lazy TLB process if we
536 * aren't already..
537 */
538static void exit_mm(void)
539{
540 struct mm_struct *mm = current->mm;
541
542 exit_mm_release(current, mm);
543 if (!mm)
544 return;
545 mmap_read_lock(mm);
546 mmgrab_lazy_tlb(mm);
547 BUG_ON(mm != current->active_mm);
548 /* more a memory barrier than a real lock */
549 task_lock(current);
550 /*
551 * When a thread stops operating on an address space, the loop
552 * in membarrier_private_expedited() may not observe that
553 * tsk->mm, and the loop in membarrier_global_expedited() may
554 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 * rq->membarrier_state, so those would not issue an IPI.
556 * Membarrier requires a memory barrier after accessing
557 * user-space memory, before clearing tsk->mm or the
558 * rq->membarrier_state.
559 */
560 smp_mb__after_spinlock();
561 local_irq_disable();
562 current->mm = NULL;
563 membarrier_update_current_mm(NULL);
564 enter_lazy_tlb(mm, current);
565 local_irq_enable();
566 task_unlock(current);
567 mmap_read_unlock(mm);
568 mm_update_next_owner(mm);
569 mmput(mm);
570 if (test_thread_flag(TIF_MEMDIE))
571 exit_oom_victim();
572}
573
574static struct task_struct *find_alive_thread(struct task_struct *p)
575{
576 struct task_struct *t;
577
578 for_each_thread(p, t) {
579 if (!(t->flags & PF_EXITING))
580 return t;
581 }
582 return NULL;
583}
584
585static struct task_struct *find_child_reaper(struct task_struct *father,
586 struct list_head *dead)
587 __releases(&tasklist_lock)
588 __acquires(&tasklist_lock)
589{
590 struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 struct task_struct *reaper = pid_ns->child_reaper;
592 struct task_struct *p, *n;
593
594 if (likely(reaper != father))
595 return reaper;
596
597 reaper = find_alive_thread(father);
598 if (reaper) {
599 pid_ns->child_reaper = reaper;
600 return reaper;
601 }
602
603 write_unlock_irq(&tasklist_lock);
604
605 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 list_del_init(&p->ptrace_entry);
607 release_task(p);
608 }
609
610 zap_pid_ns_processes(pid_ns);
611 write_lock_irq(&tasklist_lock);
612
613 return father;
614}
615
616/*
617 * When we die, we re-parent all our children, and try to:
618 * 1. give them to another thread in our thread group, if such a member exists
619 * 2. give it to the first ancestor process which prctl'd itself as a
620 * child_subreaper for its children (like a service manager)
621 * 3. give it to the init process (PID 1) in our pid namespace
622 */
623static struct task_struct *find_new_reaper(struct task_struct *father,
624 struct task_struct *child_reaper)
625{
626 struct task_struct *thread, *reaper;
627
628 thread = find_alive_thread(father);
629 if (thread)
630 return thread;
631
632 if (father->signal->has_child_subreaper) {
633 unsigned int ns_level = task_pid(father)->level;
634 /*
635 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 * We can't check reaper != child_reaper to ensure we do not
637 * cross the namespaces, the exiting parent could be injected
638 * by setns() + fork().
639 * We check pid->level, this is slightly more efficient than
640 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641 */
642 for (reaper = father->real_parent;
643 task_pid(reaper)->level == ns_level;
644 reaper = reaper->real_parent) {
645 if (reaper == &init_task)
646 break;
647 if (!reaper->signal->is_child_subreaper)
648 continue;
649 thread = find_alive_thread(reaper);
650 if (thread)
651 return thread;
652 }
653 }
654
655 return child_reaper;
656}
657
658/*
659* Any that need to be release_task'd are put on the @dead list.
660 */
661static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 struct list_head *dead)
663{
664 if (unlikely(p->exit_state == EXIT_DEAD))
665 return;
666
667 /* We don't want people slaying init. */
668 p->exit_signal = SIGCHLD;
669
670 /* If it has exited notify the new parent about this child's death. */
671 if (!p->ptrace &&
672 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 if (do_notify_parent(p, p->exit_signal)) {
674 p->exit_state = EXIT_DEAD;
675 list_add(&p->ptrace_entry, dead);
676 }
677 }
678
679 kill_orphaned_pgrp(p, father);
680}
681
682/*
683 * This does two things:
684 *
685 * A. Make init inherit all the child processes
686 * B. Check to see if any process groups have become orphaned
687 * as a result of our exiting, and if they have any stopped
688 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
689 */
690static void forget_original_parent(struct task_struct *father,
691 struct list_head *dead)
692{
693 struct task_struct *p, *t, *reaper;
694
695 if (unlikely(!list_empty(&father->ptraced)))
696 exit_ptrace(father, dead);
697
698 /* Can drop and reacquire tasklist_lock */
699 reaper = find_child_reaper(father, dead);
700 if (list_empty(&father->children))
701 return;
702
703 reaper = find_new_reaper(father, reaper);
704 list_for_each_entry(p, &father->children, sibling) {
705 for_each_thread(p, t) {
706 RCU_INIT_POINTER(t->real_parent, reaper);
707 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 if (likely(!t->ptrace))
709 t->parent = t->real_parent;
710 if (t->pdeath_signal)
711 group_send_sig_info(t->pdeath_signal,
712 SEND_SIG_NOINFO, t,
713 PIDTYPE_TGID);
714 }
715 /*
716 * If this is a threaded reparent there is no need to
717 * notify anyone anything has happened.
718 */
719 if (!same_thread_group(reaper, father))
720 reparent_leader(father, p, dead);
721 }
722 list_splice_tail_init(&father->children, &reaper->children);
723}
724
725/*
726 * Send signals to all our closest relatives so that they know
727 * to properly mourn us..
728 */
729static void exit_notify(struct task_struct *tsk, int group_dead)
730{
731 bool autoreap;
732 struct task_struct *p, *n;
733 LIST_HEAD(dead);
734
735 write_lock_irq(&tasklist_lock);
736 forget_original_parent(tsk, &dead);
737
738 if (group_dead)
739 kill_orphaned_pgrp(tsk->group_leader, NULL);
740
741 tsk->exit_state = EXIT_ZOMBIE;
742 if (unlikely(tsk->ptrace)) {
743 int sig = thread_group_leader(tsk) &&
744 thread_group_empty(tsk) &&
745 !ptrace_reparented(tsk) ?
746 tsk->exit_signal : SIGCHLD;
747 autoreap = do_notify_parent(tsk, sig);
748 } else if (thread_group_leader(tsk)) {
749 autoreap = thread_group_empty(tsk) &&
750 do_notify_parent(tsk, tsk->exit_signal);
751 } else {
752 autoreap = true;
753 }
754
755 if (autoreap) {
756 tsk->exit_state = EXIT_DEAD;
757 list_add(&tsk->ptrace_entry, &dead);
758 }
759
760 /* mt-exec, de_thread() is waiting for group leader */
761 if (unlikely(tsk->signal->notify_count < 0))
762 wake_up_process(tsk->signal->group_exec_task);
763 write_unlock_irq(&tasklist_lock);
764
765 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766 list_del_init(&p->ptrace_entry);
767 release_task(p);
768 }
769}
770
771#ifdef CONFIG_DEBUG_STACK_USAGE
772static void check_stack_usage(void)
773{
774 static DEFINE_SPINLOCK(low_water_lock);
775 static int lowest_to_date = THREAD_SIZE;
776 unsigned long free;
777
778 free = stack_not_used(current);
779
780 if (free >= lowest_to_date)
781 return;
782
783 spin_lock(&low_water_lock);
784 if (free < lowest_to_date) {
785 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786 current->comm, task_pid_nr(current), free);
787 lowest_to_date = free;
788 }
789 spin_unlock(&low_water_lock);
790}
791#else
792static inline void check_stack_usage(void) {}
793#endif
794
795static void synchronize_group_exit(struct task_struct *tsk, long code)
796{
797 struct sighand_struct *sighand = tsk->sighand;
798 struct signal_struct *signal = tsk->signal;
799
800 spin_lock_irq(&sighand->siglock);
801 signal->quick_threads--;
802 if ((signal->quick_threads == 0) &&
803 !(signal->flags & SIGNAL_GROUP_EXIT)) {
804 signal->flags = SIGNAL_GROUP_EXIT;
805 signal->group_exit_code = code;
806 signal->group_stop_count = 0;
807 }
808 spin_unlock_irq(&sighand->siglock);
809}
810
811void __noreturn do_exit(long code)
812{
813 struct task_struct *tsk = current;
814 int group_dead;
815
816 WARN_ON(irqs_disabled());
817
818 synchronize_group_exit(tsk, code);
819
820 WARN_ON(tsk->plug);
821
822 kcov_task_exit(tsk);
823 kmsan_task_exit(tsk);
824
825 coredump_task_exit(tsk);
826 ptrace_event(PTRACE_EVENT_EXIT, code);
827 user_events_exit(tsk);
828
829 io_uring_files_cancel();
830 exit_signals(tsk); /* sets PF_EXITING */
831
832 acct_update_integrals(tsk);
833 group_dead = atomic_dec_and_test(&tsk->signal->live);
834 if (group_dead) {
835 /*
836 * If the last thread of global init has exited, panic
837 * immediately to get a useable coredump.
838 */
839 if (unlikely(is_global_init(tsk)))
840 panic("Attempted to kill init! exitcode=0x%08x\n",
841 tsk->signal->group_exit_code ?: (int)code);
842
843#ifdef CONFIG_POSIX_TIMERS
844 hrtimer_cancel(&tsk->signal->real_timer);
845 exit_itimers(tsk);
846#endif
847 if (tsk->mm)
848 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
849 }
850 acct_collect(code, group_dead);
851 if (group_dead)
852 tty_audit_exit();
853 audit_free(tsk);
854
855 tsk->exit_code = code;
856 taskstats_exit(tsk, group_dead);
857
858 exit_mm();
859
860 if (group_dead)
861 acct_process();
862 trace_sched_process_exit(tsk);
863
864 exit_sem(tsk);
865 exit_shm(tsk);
866 exit_files(tsk);
867 exit_fs(tsk);
868 if (group_dead)
869 disassociate_ctty(1);
870 exit_task_namespaces(tsk);
871 exit_task_work(tsk);
872 exit_thread(tsk);
873
874 /*
875 * Flush inherited counters to the parent - before the parent
876 * gets woken up by child-exit notifications.
877 *
878 * because of cgroup mode, must be called before cgroup_exit()
879 */
880 perf_event_exit_task(tsk);
881
882 sched_autogroup_exit_task(tsk);
883 cgroup_exit(tsk);
884
885 /*
886 * FIXME: do that only when needed, using sched_exit tracepoint
887 */
888 flush_ptrace_hw_breakpoint(tsk);
889
890 exit_tasks_rcu_start();
891 exit_notify(tsk, group_dead);
892 proc_exit_connector(tsk);
893 mpol_put_task_policy(tsk);
894#ifdef CONFIG_FUTEX
895 if (unlikely(current->pi_state_cache))
896 kfree(current->pi_state_cache);
897#endif
898 /*
899 * Make sure we are holding no locks:
900 */
901 debug_check_no_locks_held();
902
903 if (tsk->io_context)
904 exit_io_context(tsk);
905
906 if (tsk->splice_pipe)
907 free_pipe_info(tsk->splice_pipe);
908
909 if (tsk->task_frag.page)
910 put_page(tsk->task_frag.page);
911
912 exit_task_stack_account(tsk);
913
914 check_stack_usage();
915 preempt_disable();
916 if (tsk->nr_dirtied)
917 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918 exit_rcu();
919 exit_tasks_rcu_finish();
920
921 lockdep_free_task(tsk);
922 do_task_dead();
923}
924
925void __noreturn make_task_dead(int signr)
926{
927 /*
928 * Take the task off the cpu after something catastrophic has
929 * happened.
930 *
931 * We can get here from a kernel oops, sometimes with preemption off.
932 * Start by checking for critical errors.
933 * Then fix up important state like USER_DS and preemption.
934 * Then do everything else.
935 */
936 struct task_struct *tsk = current;
937 unsigned int limit;
938
939 if (unlikely(in_interrupt()))
940 panic("Aiee, killing interrupt handler!");
941 if (unlikely(!tsk->pid))
942 panic("Attempted to kill the idle task!");
943
944 if (unlikely(irqs_disabled())) {
945 pr_info("note: %s[%d] exited with irqs disabled\n",
946 current->comm, task_pid_nr(current));
947 local_irq_enable();
948 }
949 if (unlikely(in_atomic())) {
950 pr_info("note: %s[%d] exited with preempt_count %d\n",
951 current->comm, task_pid_nr(current),
952 preempt_count());
953 preempt_count_set(PREEMPT_ENABLED);
954 }
955
956 /*
957 * Every time the system oopses, if the oops happens while a reference
958 * to an object was held, the reference leaks.
959 * If the oops doesn't also leak memory, repeated oopsing can cause
960 * reference counters to wrap around (if they're not using refcount_t).
961 * This means that repeated oopsing can make unexploitable-looking bugs
962 * exploitable through repeated oopsing.
963 * To make sure this can't happen, place an upper bound on how often the
964 * kernel may oops without panic().
965 */
966 limit = READ_ONCE(oops_limit);
967 if (atomic_inc_return(&oops_count) >= limit && limit)
968 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
969
970 /*
971 * We're taking recursive faults here in make_task_dead. Safest is to just
972 * leave this task alone and wait for reboot.
973 */
974 if (unlikely(tsk->flags & PF_EXITING)) {
975 pr_alert("Fixing recursive fault but reboot is needed!\n");
976 futex_exit_recursive(tsk);
977 tsk->exit_state = EXIT_DEAD;
978 refcount_inc(&tsk->rcu_users);
979 do_task_dead();
980 }
981
982 do_exit(signr);
983}
984
985SYSCALL_DEFINE1(exit, int, error_code)
986{
987 do_exit((error_code&0xff)<<8);
988}
989
990/*
991 * Take down every thread in the group. This is called by fatal signals
992 * as well as by sys_exit_group (below).
993 */
994void __noreturn
995do_group_exit(int exit_code)
996{
997 struct signal_struct *sig = current->signal;
998
999 if (sig->flags & SIGNAL_GROUP_EXIT)
1000 exit_code = sig->group_exit_code;
1001 else if (sig->group_exec_task)
1002 exit_code = 0;
1003 else {
1004 struct sighand_struct *const sighand = current->sighand;
1005
1006 spin_lock_irq(&sighand->siglock);
1007 if (sig->flags & SIGNAL_GROUP_EXIT)
1008 /* Another thread got here before we took the lock. */
1009 exit_code = sig->group_exit_code;
1010 else if (sig->group_exec_task)
1011 exit_code = 0;
1012 else {
1013 sig->group_exit_code = exit_code;
1014 sig->flags = SIGNAL_GROUP_EXIT;
1015 zap_other_threads(current);
1016 }
1017 spin_unlock_irq(&sighand->siglock);
1018 }
1019
1020 do_exit(exit_code);
1021 /* NOTREACHED */
1022}
1023
1024/*
1025 * this kills every thread in the thread group. Note that any externally
1026 * wait4()-ing process will get the correct exit code - even if this
1027 * thread is not the thread group leader.
1028 */
1029SYSCALL_DEFINE1(exit_group, int, error_code)
1030{
1031 do_group_exit((error_code & 0xff) << 8);
1032 /* NOTREACHED */
1033 return 0;
1034}
1035
1036static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1037{
1038 return wo->wo_type == PIDTYPE_MAX ||
1039 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1040}
1041
1042static int
1043eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1044{
1045 if (!eligible_pid(wo, p))
1046 return 0;
1047
1048 /*
1049 * Wait for all children (clone and not) if __WALL is set or
1050 * if it is traced by us.
1051 */
1052 if (ptrace || (wo->wo_flags & __WALL))
1053 return 1;
1054
1055 /*
1056 * Otherwise, wait for clone children *only* if __WCLONE is set;
1057 * otherwise, wait for non-clone children *only*.
1058 *
1059 * Note: a "clone" child here is one that reports to its parent
1060 * using a signal other than SIGCHLD, or a non-leader thread which
1061 * we can only see if it is traced by us.
1062 */
1063 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1064 return 0;
1065
1066 return 1;
1067}
1068
1069/*
1070 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1071 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1072 * the lock and this task is uninteresting. If we return nonzero, we have
1073 * released the lock and the system call should return.
1074 */
1075static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1076{
1077 int state, status;
1078 pid_t pid = task_pid_vnr(p);
1079 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1080 struct waitid_info *infop;
1081
1082 if (!likely(wo->wo_flags & WEXITED))
1083 return 0;
1084
1085 if (unlikely(wo->wo_flags & WNOWAIT)) {
1086 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1087 ? p->signal->group_exit_code : p->exit_code;
1088 get_task_struct(p);
1089 read_unlock(&tasklist_lock);
1090 sched_annotate_sleep();
1091 if (wo->wo_rusage)
1092 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1093 put_task_struct(p);
1094 goto out_info;
1095 }
1096 /*
1097 * Move the task's state to DEAD/TRACE, only one thread can do this.
1098 */
1099 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1100 EXIT_TRACE : EXIT_DEAD;
1101 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1102 return 0;
1103 /*
1104 * We own this thread, nobody else can reap it.
1105 */
1106 read_unlock(&tasklist_lock);
1107 sched_annotate_sleep();
1108
1109 /*
1110 * Check thread_group_leader() to exclude the traced sub-threads.
1111 */
1112 if (state == EXIT_DEAD && thread_group_leader(p)) {
1113 struct signal_struct *sig = p->signal;
1114 struct signal_struct *psig = current->signal;
1115 unsigned long maxrss;
1116 u64 tgutime, tgstime;
1117
1118 /*
1119 * The resource counters for the group leader are in its
1120 * own task_struct. Those for dead threads in the group
1121 * are in its signal_struct, as are those for the child
1122 * processes it has previously reaped. All these
1123 * accumulate in the parent's signal_struct c* fields.
1124 *
1125 * We don't bother to take a lock here to protect these
1126 * p->signal fields because the whole thread group is dead
1127 * and nobody can change them.
1128 *
1129 * psig->stats_lock also protects us from our sub-threads
1130 * which can reap other children at the same time. Until
1131 * we change k_getrusage()-like users to rely on this lock
1132 * we have to take ->siglock as well.
1133 *
1134 * We use thread_group_cputime_adjusted() to get times for
1135 * the thread group, which consolidates times for all threads
1136 * in the group including the group leader.
1137 */
1138 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1139 spin_lock_irq(&current->sighand->siglock);
1140 write_seqlock(&psig->stats_lock);
1141 psig->cutime += tgutime + sig->cutime;
1142 psig->cstime += tgstime + sig->cstime;
1143 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144 psig->cmin_flt +=
1145 p->min_flt + sig->min_flt + sig->cmin_flt;
1146 psig->cmaj_flt +=
1147 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148 psig->cnvcsw +=
1149 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150 psig->cnivcsw +=
1151 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152 psig->cinblock +=
1153 task_io_get_inblock(p) +
1154 sig->inblock + sig->cinblock;
1155 psig->coublock +=
1156 task_io_get_oublock(p) +
1157 sig->oublock + sig->coublock;
1158 maxrss = max(sig->maxrss, sig->cmaxrss);
1159 if (psig->cmaxrss < maxrss)
1160 psig->cmaxrss = maxrss;
1161 task_io_accounting_add(&psig->ioac, &p->ioac);
1162 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163 write_sequnlock(&psig->stats_lock);
1164 spin_unlock_irq(&current->sighand->siglock);
1165 }
1166
1167 if (wo->wo_rusage)
1168 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1169 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170 ? p->signal->group_exit_code : p->exit_code;
1171 wo->wo_stat = status;
1172
1173 if (state == EXIT_TRACE) {
1174 write_lock_irq(&tasklist_lock);
1175 /* We dropped tasklist, ptracer could die and untrace */
1176 ptrace_unlink(p);
1177
1178 /* If parent wants a zombie, don't release it now */
1179 state = EXIT_ZOMBIE;
1180 if (do_notify_parent(p, p->exit_signal))
1181 state = EXIT_DEAD;
1182 p->exit_state = state;
1183 write_unlock_irq(&tasklist_lock);
1184 }
1185 if (state == EXIT_DEAD)
1186 release_task(p);
1187
1188out_info:
1189 infop = wo->wo_info;
1190 if (infop) {
1191 if ((status & 0x7f) == 0) {
1192 infop->cause = CLD_EXITED;
1193 infop->status = status >> 8;
1194 } else {
1195 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 infop->status = status & 0x7f;
1197 }
1198 infop->pid = pid;
1199 infop->uid = uid;
1200 }
1201
1202 return pid;
1203}
1204
1205static int *task_stopped_code(struct task_struct *p, bool ptrace)
1206{
1207 if (ptrace) {
1208 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1209 return &p->exit_code;
1210 } else {
1211 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1212 return &p->signal->group_exit_code;
1213 }
1214 return NULL;
1215}
1216
1217/**
1218 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1219 * @wo: wait options
1220 * @ptrace: is the wait for ptrace
1221 * @p: task to wait for
1222 *
1223 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1224 *
1225 * CONTEXT:
1226 * read_lock(&tasklist_lock), which is released if return value is
1227 * non-zero. Also, grabs and releases @p->sighand->siglock.
1228 *
1229 * RETURNS:
1230 * 0 if wait condition didn't exist and search for other wait conditions
1231 * should continue. Non-zero return, -errno on failure and @p's pid on
1232 * success, implies that tasklist_lock is released and wait condition
1233 * search should terminate.
1234 */
1235static int wait_task_stopped(struct wait_opts *wo,
1236 int ptrace, struct task_struct *p)
1237{
1238 struct waitid_info *infop;
1239 int exit_code, *p_code, why;
1240 uid_t uid = 0; /* unneeded, required by compiler */
1241 pid_t pid;
1242
1243 /*
1244 * Traditionally we see ptrace'd stopped tasks regardless of options.
1245 */
1246 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1247 return 0;
1248
1249 if (!task_stopped_code(p, ptrace))
1250 return 0;
1251
1252 exit_code = 0;
1253 spin_lock_irq(&p->sighand->siglock);
1254
1255 p_code = task_stopped_code(p, ptrace);
1256 if (unlikely(!p_code))
1257 goto unlock_sig;
1258
1259 exit_code = *p_code;
1260 if (!exit_code)
1261 goto unlock_sig;
1262
1263 if (!unlikely(wo->wo_flags & WNOWAIT))
1264 *p_code = 0;
1265
1266 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267unlock_sig:
1268 spin_unlock_irq(&p->sighand->siglock);
1269 if (!exit_code)
1270 return 0;
1271
1272 /*
1273 * Now we are pretty sure this task is interesting.
1274 * Make sure it doesn't get reaped out from under us while we
1275 * give up the lock and then examine it below. We don't want to
1276 * keep holding onto the tasklist_lock while we call getrusage and
1277 * possibly take page faults for user memory.
1278 */
1279 get_task_struct(p);
1280 pid = task_pid_vnr(p);
1281 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1282 read_unlock(&tasklist_lock);
1283 sched_annotate_sleep();
1284 if (wo->wo_rusage)
1285 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1286 put_task_struct(p);
1287
1288 if (likely(!(wo->wo_flags & WNOWAIT)))
1289 wo->wo_stat = (exit_code << 8) | 0x7f;
1290
1291 infop = wo->wo_info;
1292 if (infop) {
1293 infop->cause = why;
1294 infop->status = exit_code;
1295 infop->pid = pid;
1296 infop->uid = uid;
1297 }
1298 return pid;
1299}
1300
1301/*
1302 * Handle do_wait work for one task in a live, non-stopped state.
1303 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1304 * the lock and this task is uninteresting. If we return nonzero, we have
1305 * released the lock and the system call should return.
1306 */
1307static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1308{
1309 struct waitid_info *infop;
1310 pid_t pid;
1311 uid_t uid;
1312
1313 if (!unlikely(wo->wo_flags & WCONTINUED))
1314 return 0;
1315
1316 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1317 return 0;
1318
1319 spin_lock_irq(&p->sighand->siglock);
1320 /* Re-check with the lock held. */
1321 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1322 spin_unlock_irq(&p->sighand->siglock);
1323 return 0;
1324 }
1325 if (!unlikely(wo->wo_flags & WNOWAIT))
1326 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1327 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1328 spin_unlock_irq(&p->sighand->siglock);
1329
1330 pid = task_pid_vnr(p);
1331 get_task_struct(p);
1332 read_unlock(&tasklist_lock);
1333 sched_annotate_sleep();
1334 if (wo->wo_rusage)
1335 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1336 put_task_struct(p);
1337
1338 infop = wo->wo_info;
1339 if (!infop) {
1340 wo->wo_stat = 0xffff;
1341 } else {
1342 infop->cause = CLD_CONTINUED;
1343 infop->pid = pid;
1344 infop->uid = uid;
1345 infop->status = SIGCONT;
1346 }
1347 return pid;
1348}
1349
1350/*
1351 * Consider @p for a wait by @parent.
1352 *
1353 * -ECHILD should be in ->notask_error before the first call.
1354 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1355 * Returns zero if the search for a child should continue;
1356 * then ->notask_error is 0 if @p is an eligible child,
1357 * or still -ECHILD.
1358 */
1359static int wait_consider_task(struct wait_opts *wo, int ptrace,
1360 struct task_struct *p)
1361{
1362 /*
1363 * We can race with wait_task_zombie() from another thread.
1364 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1365 * can't confuse the checks below.
1366 */
1367 int exit_state = READ_ONCE(p->exit_state);
1368 int ret;
1369
1370 if (unlikely(exit_state == EXIT_DEAD))
1371 return 0;
1372
1373 ret = eligible_child(wo, ptrace, p);
1374 if (!ret)
1375 return ret;
1376
1377 if (unlikely(exit_state == EXIT_TRACE)) {
1378 /*
1379 * ptrace == 0 means we are the natural parent. In this case
1380 * we should clear notask_error, debugger will notify us.
1381 */
1382 if (likely(!ptrace))
1383 wo->notask_error = 0;
1384 return 0;
1385 }
1386
1387 if (likely(!ptrace) && unlikely(p->ptrace)) {
1388 /*
1389 * If it is traced by its real parent's group, just pretend
1390 * the caller is ptrace_do_wait() and reap this child if it
1391 * is zombie.
1392 *
1393 * This also hides group stop state from real parent; otherwise
1394 * a single stop can be reported twice as group and ptrace stop.
1395 * If a ptracer wants to distinguish these two events for its
1396 * own children it should create a separate process which takes
1397 * the role of real parent.
1398 */
1399 if (!ptrace_reparented(p))
1400 ptrace = 1;
1401 }
1402
1403 /* slay zombie? */
1404 if (exit_state == EXIT_ZOMBIE) {
1405 /* we don't reap group leaders with subthreads */
1406 if (!delay_group_leader(p)) {
1407 /*
1408 * A zombie ptracee is only visible to its ptracer.
1409 * Notification and reaping will be cascaded to the
1410 * real parent when the ptracer detaches.
1411 */
1412 if (unlikely(ptrace) || likely(!p->ptrace))
1413 return wait_task_zombie(wo, p);
1414 }
1415
1416 /*
1417 * Allow access to stopped/continued state via zombie by
1418 * falling through. Clearing of notask_error is complex.
1419 *
1420 * When !@ptrace:
1421 *
1422 * If WEXITED is set, notask_error should naturally be
1423 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1424 * so, if there are live subthreads, there are events to
1425 * wait for. If all subthreads are dead, it's still safe
1426 * to clear - this function will be called again in finite
1427 * amount time once all the subthreads are released and
1428 * will then return without clearing.
1429 *
1430 * When @ptrace:
1431 *
1432 * Stopped state is per-task and thus can't change once the
1433 * target task dies. Only continued and exited can happen.
1434 * Clear notask_error if WCONTINUED | WEXITED.
1435 */
1436 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1437 wo->notask_error = 0;
1438 } else {
1439 /*
1440 * @p is alive and it's gonna stop, continue or exit, so
1441 * there always is something to wait for.
1442 */
1443 wo->notask_error = 0;
1444 }
1445
1446 /*
1447 * Wait for stopped. Depending on @ptrace, different stopped state
1448 * is used and the two don't interact with each other.
1449 */
1450 ret = wait_task_stopped(wo, ptrace, p);
1451 if (ret)
1452 return ret;
1453
1454 /*
1455 * Wait for continued. There's only one continued state and the
1456 * ptracer can consume it which can confuse the real parent. Don't
1457 * use WCONTINUED from ptracer. You don't need or want it.
1458 */
1459 return wait_task_continued(wo, p);
1460}
1461
1462/*
1463 * Do the work of do_wait() for one thread in the group, @tsk.
1464 *
1465 * -ECHILD should be in ->notask_error before the first call.
1466 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1467 * Returns zero if the search for a child should continue; then
1468 * ->notask_error is 0 if there were any eligible children,
1469 * or still -ECHILD.
1470 */
1471static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472{
1473 struct task_struct *p;
1474
1475 list_for_each_entry(p, &tsk->children, sibling) {
1476 int ret = wait_consider_task(wo, 0, p);
1477
1478 if (ret)
1479 return ret;
1480 }
1481
1482 return 0;
1483}
1484
1485static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1486{
1487 struct task_struct *p;
1488
1489 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1490 int ret = wait_consider_task(wo, 1, p);
1491
1492 if (ret)
1493 return ret;
1494 }
1495
1496 return 0;
1497}
1498
1499bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1500{
1501 if (!eligible_pid(wo, p))
1502 return false;
1503
1504 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1505 return false;
1506
1507 return true;
1508}
1509
1510static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1511 int sync, void *key)
1512{
1513 struct wait_opts *wo = container_of(wait, struct wait_opts,
1514 child_wait);
1515 struct task_struct *p = key;
1516
1517 if (pid_child_should_wake(wo, p))
1518 return default_wake_function(wait, mode, sync, key);
1519
1520 return 0;
1521}
1522
1523void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1524{
1525 __wake_up_sync_key(&parent->signal->wait_chldexit,
1526 TASK_INTERRUPTIBLE, p);
1527}
1528
1529static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1530 struct task_struct *target)
1531{
1532 struct task_struct *parent =
1533 !ptrace ? target->real_parent : target->parent;
1534
1535 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1536 same_thread_group(current, parent));
1537}
1538
1539/*
1540 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1541 * and tracee lists to find the target task.
1542 */
1543static int do_wait_pid(struct wait_opts *wo)
1544{
1545 bool ptrace;
1546 struct task_struct *target;
1547 int retval;
1548
1549 ptrace = false;
1550 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1551 if (target && is_effectively_child(wo, ptrace, target)) {
1552 retval = wait_consider_task(wo, ptrace, target);
1553 if (retval)
1554 return retval;
1555 }
1556
1557 ptrace = true;
1558 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1559 if (target && target->ptrace &&
1560 is_effectively_child(wo, ptrace, target)) {
1561 retval = wait_consider_task(wo, ptrace, target);
1562 if (retval)
1563 return retval;
1564 }
1565
1566 return 0;
1567}
1568
1569long __do_wait(struct wait_opts *wo)
1570{
1571 long retval;
1572
1573 /*
1574 * If there is nothing that can match our criteria, just get out.
1575 * We will clear ->notask_error to zero if we see any child that
1576 * might later match our criteria, even if we are not able to reap
1577 * it yet.
1578 */
1579 wo->notask_error = -ECHILD;
1580 if ((wo->wo_type < PIDTYPE_MAX) &&
1581 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1582 goto notask;
1583
1584 read_lock(&tasklist_lock);
1585
1586 if (wo->wo_type == PIDTYPE_PID) {
1587 retval = do_wait_pid(wo);
1588 if (retval)
1589 return retval;
1590 } else {
1591 struct task_struct *tsk = current;
1592
1593 do {
1594 retval = do_wait_thread(wo, tsk);
1595 if (retval)
1596 return retval;
1597
1598 retval = ptrace_do_wait(wo, tsk);
1599 if (retval)
1600 return retval;
1601
1602 if (wo->wo_flags & __WNOTHREAD)
1603 break;
1604 } while_each_thread(current, tsk);
1605 }
1606 read_unlock(&tasklist_lock);
1607
1608notask:
1609 retval = wo->notask_error;
1610 if (!retval && !(wo->wo_flags & WNOHANG))
1611 return -ERESTARTSYS;
1612
1613 return retval;
1614}
1615
1616static long do_wait(struct wait_opts *wo)
1617{
1618 int retval;
1619
1620 trace_sched_process_wait(wo->wo_pid);
1621
1622 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623 wo->child_wait.private = current;
1624 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1625
1626 do {
1627 set_current_state(TASK_INTERRUPTIBLE);
1628 retval = __do_wait(wo);
1629 if (retval != -ERESTARTSYS)
1630 break;
1631 if (signal_pending(current))
1632 break;
1633 schedule();
1634 } while (1);
1635
1636 __set_current_state(TASK_RUNNING);
1637 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1638 return retval;
1639}
1640
1641int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1642 struct waitid_info *infop, int options,
1643 struct rusage *ru)
1644{
1645 unsigned int f_flags = 0;
1646 struct pid *pid = NULL;
1647 enum pid_type type;
1648
1649 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1650 __WNOTHREAD|__WCLONE|__WALL))
1651 return -EINVAL;
1652 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1653 return -EINVAL;
1654
1655 switch (which) {
1656 case P_ALL:
1657 type = PIDTYPE_MAX;
1658 break;
1659 case P_PID:
1660 type = PIDTYPE_PID;
1661 if (upid <= 0)
1662 return -EINVAL;
1663
1664 pid = find_get_pid(upid);
1665 break;
1666 case P_PGID:
1667 type = PIDTYPE_PGID;
1668 if (upid < 0)
1669 return -EINVAL;
1670
1671 if (upid)
1672 pid = find_get_pid(upid);
1673 else
1674 pid = get_task_pid(current, PIDTYPE_PGID);
1675 break;
1676 case P_PIDFD:
1677 type = PIDTYPE_PID;
1678 if (upid < 0)
1679 return -EINVAL;
1680
1681 pid = pidfd_get_pid(upid, &f_flags);
1682 if (IS_ERR(pid))
1683 return PTR_ERR(pid);
1684
1685 break;
1686 default:
1687 return -EINVAL;
1688 }
1689
1690 wo->wo_type = type;
1691 wo->wo_pid = pid;
1692 wo->wo_flags = options;
1693 wo->wo_info = infop;
1694 wo->wo_rusage = ru;
1695 if (f_flags & O_NONBLOCK)
1696 wo->wo_flags |= WNOHANG;
1697
1698 return 0;
1699}
1700
1701static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1702 int options, struct rusage *ru)
1703{
1704 struct wait_opts wo;
1705 long ret;
1706
1707 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1708 if (ret)
1709 return ret;
1710
1711 ret = do_wait(&wo);
1712 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1713 ret = -EAGAIN;
1714
1715 put_pid(wo.wo_pid);
1716 return ret;
1717}
1718
1719SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1720 infop, int, options, struct rusage __user *, ru)
1721{
1722 struct rusage r;
1723 struct waitid_info info = {.status = 0};
1724 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1725 int signo = 0;
1726
1727 if (err > 0) {
1728 signo = SIGCHLD;
1729 err = 0;
1730 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1731 return -EFAULT;
1732 }
1733 if (!infop)
1734 return err;
1735
1736 if (!user_write_access_begin(infop, sizeof(*infop)))
1737 return -EFAULT;
1738
1739 unsafe_put_user(signo, &infop->si_signo, Efault);
1740 unsafe_put_user(0, &infop->si_errno, Efault);
1741 unsafe_put_user(info.cause, &infop->si_code, Efault);
1742 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1743 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1744 unsafe_put_user(info.status, &infop->si_status, Efault);
1745 user_write_access_end();
1746 return err;
1747Efault:
1748 user_write_access_end();
1749 return -EFAULT;
1750}
1751
1752long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1753 struct rusage *ru)
1754{
1755 struct wait_opts wo;
1756 struct pid *pid = NULL;
1757 enum pid_type type;
1758 long ret;
1759
1760 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1761 __WNOTHREAD|__WCLONE|__WALL))
1762 return -EINVAL;
1763
1764 /* -INT_MIN is not defined */
1765 if (upid == INT_MIN)
1766 return -ESRCH;
1767
1768 if (upid == -1)
1769 type = PIDTYPE_MAX;
1770 else if (upid < 0) {
1771 type = PIDTYPE_PGID;
1772 pid = find_get_pid(-upid);
1773 } else if (upid == 0) {
1774 type = PIDTYPE_PGID;
1775 pid = get_task_pid(current, PIDTYPE_PGID);
1776 } else /* upid > 0 */ {
1777 type = PIDTYPE_PID;
1778 pid = find_get_pid(upid);
1779 }
1780
1781 wo.wo_type = type;
1782 wo.wo_pid = pid;
1783 wo.wo_flags = options | WEXITED;
1784 wo.wo_info = NULL;
1785 wo.wo_stat = 0;
1786 wo.wo_rusage = ru;
1787 ret = do_wait(&wo);
1788 put_pid(pid);
1789 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1790 ret = -EFAULT;
1791
1792 return ret;
1793}
1794
1795int kernel_wait(pid_t pid, int *stat)
1796{
1797 struct wait_opts wo = {
1798 .wo_type = PIDTYPE_PID,
1799 .wo_pid = find_get_pid(pid),
1800 .wo_flags = WEXITED,
1801 };
1802 int ret;
1803
1804 ret = do_wait(&wo);
1805 if (ret > 0 && wo.wo_stat)
1806 *stat = wo.wo_stat;
1807 put_pid(wo.wo_pid);
1808 return ret;
1809}
1810
1811SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1812 int, options, struct rusage __user *, ru)
1813{
1814 struct rusage r;
1815 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1816
1817 if (err > 0) {
1818 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1819 return -EFAULT;
1820 }
1821 return err;
1822}
1823
1824#ifdef __ARCH_WANT_SYS_WAITPID
1825
1826/*
1827 * sys_waitpid() remains for compatibility. waitpid() should be
1828 * implemented by calling sys_wait4() from libc.a.
1829 */
1830SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1831{
1832 return kernel_wait4(pid, stat_addr, options, NULL);
1833}
1834
1835#endif
1836
1837#ifdef CONFIG_COMPAT
1838COMPAT_SYSCALL_DEFINE4(wait4,
1839 compat_pid_t, pid,
1840 compat_uint_t __user *, stat_addr,
1841 int, options,
1842 struct compat_rusage __user *, ru)
1843{
1844 struct rusage r;
1845 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1846 if (err > 0) {
1847 if (ru && put_compat_rusage(&r, ru))
1848 return -EFAULT;
1849 }
1850 return err;
1851}
1852
1853COMPAT_SYSCALL_DEFINE5(waitid,
1854 int, which, compat_pid_t, pid,
1855 struct compat_siginfo __user *, infop, int, options,
1856 struct compat_rusage __user *, uru)
1857{
1858 struct rusage ru;
1859 struct waitid_info info = {.status = 0};
1860 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1861 int signo = 0;
1862 if (err > 0) {
1863 signo = SIGCHLD;
1864 err = 0;
1865 if (uru) {
1866 /* kernel_waitid() overwrites everything in ru */
1867 if (COMPAT_USE_64BIT_TIME)
1868 err = copy_to_user(uru, &ru, sizeof(ru));
1869 else
1870 err = put_compat_rusage(&ru, uru);
1871 if (err)
1872 return -EFAULT;
1873 }
1874 }
1875
1876 if (!infop)
1877 return err;
1878
1879 if (!user_write_access_begin(infop, sizeof(*infop)))
1880 return -EFAULT;
1881
1882 unsafe_put_user(signo, &infop->si_signo, Efault);
1883 unsafe_put_user(0, &infop->si_errno, Efault);
1884 unsafe_put_user(info.cause, &infop->si_code, Efault);
1885 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1886 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1887 unsafe_put_user(info.status, &infop->si_status, Efault);
1888 user_write_access_end();
1889 return err;
1890Efault:
1891 user_write_access_end();
1892 return -EFAULT;
1893}
1894#endif
1895
1896/**
1897 * thread_group_exited - check that a thread group has exited
1898 * @pid: tgid of thread group to be checked.
1899 *
1900 * Test if the thread group represented by tgid has exited (all
1901 * threads are zombies, dead or completely gone).
1902 *
1903 * Return: true if the thread group has exited. false otherwise.
1904 */
1905bool thread_group_exited(struct pid *pid)
1906{
1907 struct task_struct *task;
1908 bool exited;
1909
1910 rcu_read_lock();
1911 task = pid_task(pid, PIDTYPE_PID);
1912 exited = !task ||
1913 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1914 rcu_read_unlock();
1915
1916 return exited;
1917}
1918EXPORT_SYMBOL(thread_group_exited);
1919
1920/*
1921 * This needs to be __function_aligned as GCC implicitly makes any
1922 * implementation of abort() cold and drops alignment specified by
1923 * -falign-functions=N.
1924 *
1925 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1926 */
1927__weak __function_aligned void abort(void)
1928{
1929 BUG();
1930
1931 /* if that doesn't kill us, halt */
1932 panic("Oops failed to kill thread");
1933}
1934EXPORT_SYMBOL(abort);