| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * User-space Probes (UProbes) |
| 4 | * |
| 5 | * Copyright (C) IBM Corporation, 2008-2012 |
| 6 | * Authors: |
| 7 | * Srikar Dronamraju |
| 8 | * Jim Keniston |
| 9 | * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra |
| 10 | */ |
| 11 | |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/highmem.h> |
| 14 | #include <linux/pagemap.h> /* read_mapping_page */ |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/sched/mm.h> |
| 18 | #include <linux/export.h> |
| 19 | #include <linux/rmap.h> /* anon_vma_prepare */ |
| 20 | #include <linux/mmu_notifier.h> |
| 21 | #include <linux/swap.h> /* folio_free_swap */ |
| 22 | #include <linux/ptrace.h> /* user_enable_single_step */ |
| 23 | #include <linux/kdebug.h> /* notifier mechanism */ |
| 24 | #include <linux/percpu-rwsem.h> |
| 25 | #include <linux/task_work.h> |
| 26 | #include <linux/shmem_fs.h> |
| 27 | #include <linux/khugepaged.h> |
| 28 | #include <linux/rcupdate_trace.h> |
| 29 | #include <linux/workqueue.h> |
| 30 | #include <linux/srcu.h> |
| 31 | #include <linux/oom.h> /* check_stable_address_space */ |
| 32 | #include <linux/pagewalk.h> |
| 33 | |
| 34 | #include <linux/uprobes.h> |
| 35 | |
| 36 | #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) |
| 37 | #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE |
| 38 | |
| 39 | static struct rb_root uprobes_tree = RB_ROOT; |
| 40 | /* |
| 41 | * allows us to skip the uprobe_mmap if there are no uprobe events active |
| 42 | * at this time. Probably a fine grained per inode count is better? |
| 43 | */ |
| 44 | #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) |
| 45 | |
| 46 | static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ |
| 47 | static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); |
| 48 | |
| 49 | #define UPROBES_HASH_SZ 13 |
| 50 | /* serialize uprobe->pending_list */ |
| 51 | static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; |
| 52 | #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) |
| 53 | |
| 54 | DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); |
| 55 | |
| 56 | /* Covers return_instance's uprobe lifetime. */ |
| 57 | DEFINE_STATIC_SRCU(uretprobes_srcu); |
| 58 | |
| 59 | /* Have a copy of original instruction */ |
| 60 | #define UPROBE_COPY_INSN 0 |
| 61 | |
| 62 | struct uprobe { |
| 63 | struct rb_node rb_node; /* node in the rb tree */ |
| 64 | refcount_t ref; |
| 65 | struct rw_semaphore register_rwsem; |
| 66 | struct rw_semaphore consumer_rwsem; |
| 67 | struct list_head pending_list; |
| 68 | struct list_head consumers; |
| 69 | struct inode *inode; /* Also hold a ref to inode */ |
| 70 | union { |
| 71 | struct rcu_head rcu; |
| 72 | struct work_struct work; |
| 73 | }; |
| 74 | loff_t offset; |
| 75 | loff_t ref_ctr_offset; |
| 76 | unsigned long flags; /* "unsigned long" so bitops work */ |
| 77 | |
| 78 | /* |
| 79 | * The generic code assumes that it has two members of unknown type |
| 80 | * owned by the arch-specific code: |
| 81 | * |
| 82 | * insn - copy_insn() saves the original instruction here for |
| 83 | * arch_uprobe_analyze_insn(). |
| 84 | * |
| 85 | * ixol - potentially modified instruction to execute out of |
| 86 | * line, copied to xol_area by xol_get_insn_slot(). |
| 87 | */ |
| 88 | struct arch_uprobe arch; |
| 89 | }; |
| 90 | |
| 91 | struct delayed_uprobe { |
| 92 | struct list_head list; |
| 93 | struct uprobe *uprobe; |
| 94 | struct mm_struct *mm; |
| 95 | }; |
| 96 | |
| 97 | static DEFINE_MUTEX(delayed_uprobe_lock); |
| 98 | static LIST_HEAD(delayed_uprobe_list); |
| 99 | |
| 100 | /* |
| 101 | * Execute out of line area: anonymous executable mapping installed |
| 102 | * by the probed task to execute the copy of the original instruction |
| 103 | * mangled by set_swbp(). |
| 104 | * |
| 105 | * On a breakpoint hit, thread contests for a slot. It frees the |
| 106 | * slot after singlestep. Currently a fixed number of slots are |
| 107 | * allocated. |
| 108 | */ |
| 109 | struct xol_area { |
| 110 | wait_queue_head_t wq; /* if all slots are busy */ |
| 111 | unsigned long *bitmap; /* 0 = free slot */ |
| 112 | |
| 113 | struct page *page; |
| 114 | /* |
| 115 | * We keep the vma's vm_start rather than a pointer to the vma |
| 116 | * itself. The probed process or a naughty kernel module could make |
| 117 | * the vma go away, and we must handle that reasonably gracefully. |
| 118 | */ |
| 119 | unsigned long vaddr; /* Page(s) of instruction slots */ |
| 120 | }; |
| 121 | |
| 122 | static void uprobe_warn(struct task_struct *t, const char *msg) |
| 123 | { |
| 124 | pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * valid_vma: Verify if the specified vma is an executable vma |
| 129 | * Relax restrictions while unregistering: vm_flags might have |
| 130 | * changed after breakpoint was inserted. |
| 131 | * - is_register: indicates if we are in register context. |
| 132 | * - Return 1 if the specified virtual address is in an |
| 133 | * executable vma. |
| 134 | */ |
| 135 | static bool valid_vma(struct vm_area_struct *vma, bool is_register) |
| 136 | { |
| 137 | vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; |
| 138 | |
| 139 | if (is_register) |
| 140 | flags |= VM_WRITE; |
| 141 | |
| 142 | return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; |
| 143 | } |
| 144 | |
| 145 | static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) |
| 146 | { |
| 147 | return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| 148 | } |
| 149 | |
| 150 | static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) |
| 151 | { |
| 152 | return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); |
| 153 | } |
| 154 | |
| 155 | /** |
| 156 | * is_swbp_insn - check if instruction is breakpoint instruction. |
| 157 | * @insn: instruction to be checked. |
| 158 | * Default implementation of is_swbp_insn |
| 159 | * Returns true if @insn is a breakpoint instruction. |
| 160 | */ |
| 161 | bool __weak is_swbp_insn(uprobe_opcode_t *insn) |
| 162 | { |
| 163 | return *insn == UPROBE_SWBP_INSN; |
| 164 | } |
| 165 | |
| 166 | /** |
| 167 | * is_trap_insn - check if instruction is breakpoint instruction. |
| 168 | * @insn: instruction to be checked. |
| 169 | * Default implementation of is_trap_insn |
| 170 | * Returns true if @insn is a breakpoint instruction. |
| 171 | * |
| 172 | * This function is needed for the case where an architecture has multiple |
| 173 | * trap instructions (like powerpc). |
| 174 | */ |
| 175 | bool __weak is_trap_insn(uprobe_opcode_t *insn) |
| 176 | { |
| 177 | return is_swbp_insn(insn); |
| 178 | } |
| 179 | |
| 180 | static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) |
| 181 | { |
| 182 | void *kaddr = kmap_atomic(page); |
| 183 | memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); |
| 184 | kunmap_atomic(kaddr); |
| 185 | } |
| 186 | |
| 187 | static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) |
| 188 | { |
| 189 | void *kaddr = kmap_atomic(page); |
| 190 | memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); |
| 191 | kunmap_atomic(kaddr); |
| 192 | } |
| 193 | |
| 194 | static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) |
| 195 | { |
| 196 | uprobe_opcode_t old_opcode; |
| 197 | bool is_swbp; |
| 198 | |
| 199 | /* |
| 200 | * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. |
| 201 | * We do not check if it is any other 'trap variant' which could |
| 202 | * be conditional trap instruction such as the one powerpc supports. |
| 203 | * |
| 204 | * The logic is that we do not care if the underlying instruction |
| 205 | * is a trap variant; uprobes always wins over any other (gdb) |
| 206 | * breakpoint. |
| 207 | */ |
| 208 | copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); |
| 209 | is_swbp = is_swbp_insn(&old_opcode); |
| 210 | |
| 211 | if (is_swbp_insn(new_opcode)) { |
| 212 | if (is_swbp) /* register: already installed? */ |
| 213 | return 0; |
| 214 | } else { |
| 215 | if (!is_swbp) /* unregister: was it changed by us? */ |
| 216 | return 0; |
| 217 | } |
| 218 | |
| 219 | return 1; |
| 220 | } |
| 221 | |
| 222 | static struct delayed_uprobe * |
| 223 | delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) |
| 224 | { |
| 225 | struct delayed_uprobe *du; |
| 226 | |
| 227 | list_for_each_entry(du, &delayed_uprobe_list, list) |
| 228 | if (du->uprobe == uprobe && du->mm == mm) |
| 229 | return du; |
| 230 | return NULL; |
| 231 | } |
| 232 | |
| 233 | static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) |
| 234 | { |
| 235 | struct delayed_uprobe *du; |
| 236 | |
| 237 | if (delayed_uprobe_check(uprobe, mm)) |
| 238 | return 0; |
| 239 | |
| 240 | du = kzalloc(sizeof(*du), GFP_KERNEL); |
| 241 | if (!du) |
| 242 | return -ENOMEM; |
| 243 | |
| 244 | du->uprobe = uprobe; |
| 245 | du->mm = mm; |
| 246 | list_add(&du->list, &delayed_uprobe_list); |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | static void delayed_uprobe_delete(struct delayed_uprobe *du) |
| 251 | { |
| 252 | if (WARN_ON(!du)) |
| 253 | return; |
| 254 | list_del(&du->list); |
| 255 | kfree(du); |
| 256 | } |
| 257 | |
| 258 | static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) |
| 259 | { |
| 260 | struct list_head *pos, *q; |
| 261 | struct delayed_uprobe *du; |
| 262 | |
| 263 | if (!uprobe && !mm) |
| 264 | return; |
| 265 | |
| 266 | list_for_each_safe(pos, q, &delayed_uprobe_list) { |
| 267 | du = list_entry(pos, struct delayed_uprobe, list); |
| 268 | |
| 269 | if (uprobe && du->uprobe != uprobe) |
| 270 | continue; |
| 271 | if (mm && du->mm != mm) |
| 272 | continue; |
| 273 | |
| 274 | delayed_uprobe_delete(du); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static bool valid_ref_ctr_vma(struct uprobe *uprobe, |
| 279 | struct vm_area_struct *vma) |
| 280 | { |
| 281 | unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); |
| 282 | |
| 283 | return uprobe->ref_ctr_offset && |
| 284 | vma->vm_file && |
| 285 | file_inode(vma->vm_file) == uprobe->inode && |
| 286 | (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && |
| 287 | vma->vm_start <= vaddr && |
| 288 | vma->vm_end > vaddr; |
| 289 | } |
| 290 | |
| 291 | static struct vm_area_struct * |
| 292 | find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) |
| 293 | { |
| 294 | VMA_ITERATOR(vmi, mm, 0); |
| 295 | struct vm_area_struct *tmp; |
| 296 | |
| 297 | for_each_vma(vmi, tmp) |
| 298 | if (valid_ref_ctr_vma(uprobe, tmp)) |
| 299 | return tmp; |
| 300 | |
| 301 | return NULL; |
| 302 | } |
| 303 | |
| 304 | static int |
| 305 | __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) |
| 306 | { |
| 307 | void *kaddr; |
| 308 | struct page *page; |
| 309 | int ret; |
| 310 | short *ptr; |
| 311 | |
| 312 | if (!vaddr || !d) |
| 313 | return -EINVAL; |
| 314 | |
| 315 | ret = get_user_pages_remote(mm, vaddr, 1, |
| 316 | FOLL_WRITE, &page, NULL); |
| 317 | if (unlikely(ret <= 0)) { |
| 318 | /* |
| 319 | * We are asking for 1 page. If get_user_pages_remote() fails, |
| 320 | * it may return 0, in that case we have to return error. |
| 321 | */ |
| 322 | return ret == 0 ? -EBUSY : ret; |
| 323 | } |
| 324 | |
| 325 | kaddr = kmap_atomic(page); |
| 326 | ptr = kaddr + (vaddr & ~PAGE_MASK); |
| 327 | |
| 328 | if (unlikely(*ptr + d < 0)) { |
| 329 | pr_warn("ref_ctr going negative. vaddr: 0x%lx, " |
| 330 | "curr val: %d, delta: %d\n", vaddr, *ptr, d); |
| 331 | ret = -EINVAL; |
| 332 | goto out; |
| 333 | } |
| 334 | |
| 335 | *ptr += d; |
| 336 | ret = 0; |
| 337 | out: |
| 338 | kunmap_atomic(kaddr); |
| 339 | put_page(page); |
| 340 | return ret; |
| 341 | } |
| 342 | |
| 343 | static void update_ref_ctr_warn(struct uprobe *uprobe, |
| 344 | struct mm_struct *mm, short d) |
| 345 | { |
| 346 | pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " |
| 347 | "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n", |
| 348 | d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, |
| 349 | (unsigned long long) uprobe->offset, |
| 350 | (unsigned long long) uprobe->ref_ctr_offset, mm); |
| 351 | } |
| 352 | |
| 353 | static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, |
| 354 | short d) |
| 355 | { |
| 356 | struct vm_area_struct *rc_vma; |
| 357 | unsigned long rc_vaddr; |
| 358 | int ret = 0; |
| 359 | |
| 360 | rc_vma = find_ref_ctr_vma(uprobe, mm); |
| 361 | |
| 362 | if (rc_vma) { |
| 363 | rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); |
| 364 | ret = __update_ref_ctr(mm, rc_vaddr, d); |
| 365 | if (ret) |
| 366 | update_ref_ctr_warn(uprobe, mm, d); |
| 367 | |
| 368 | if (d > 0) |
| 369 | return ret; |
| 370 | } |
| 371 | |
| 372 | mutex_lock(&delayed_uprobe_lock); |
| 373 | if (d > 0) |
| 374 | ret = delayed_uprobe_add(uprobe, mm); |
| 375 | else |
| 376 | delayed_uprobe_remove(uprobe, mm); |
| 377 | mutex_unlock(&delayed_uprobe_lock); |
| 378 | |
| 379 | return ret; |
| 380 | } |
| 381 | |
| 382 | static bool orig_page_is_identical(struct vm_area_struct *vma, |
| 383 | unsigned long vaddr, struct page *page, bool *pmd_mappable) |
| 384 | { |
| 385 | const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT; |
| 386 | struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping, |
| 387 | index); |
| 388 | struct page *orig_page; |
| 389 | bool identical; |
| 390 | |
| 391 | if (IS_ERR(orig_folio)) |
| 392 | return false; |
| 393 | orig_page = folio_file_page(orig_folio, index); |
| 394 | |
| 395 | *pmd_mappable = folio_test_pmd_mappable(orig_folio); |
| 396 | identical = folio_test_uptodate(orig_folio) && |
| 397 | pages_identical(page, orig_page); |
| 398 | folio_put(orig_folio); |
| 399 | return identical; |
| 400 | } |
| 401 | |
| 402 | static int __uprobe_write_opcode(struct vm_area_struct *vma, |
| 403 | struct folio_walk *fw, struct folio *folio, |
| 404 | unsigned long opcode_vaddr, uprobe_opcode_t opcode) |
| 405 | { |
| 406 | const unsigned long vaddr = opcode_vaddr & PAGE_MASK; |
| 407 | const bool is_register = !!is_swbp_insn(&opcode); |
| 408 | bool pmd_mappable; |
| 409 | |
| 410 | /* For now, we'll only handle PTE-mapped folios. */ |
| 411 | if (fw->level != FW_LEVEL_PTE) |
| 412 | return -EFAULT; |
| 413 | |
| 414 | /* |
| 415 | * See can_follow_write_pte(): we'd actually prefer a writable PTE here, |
| 416 | * but the VMA might not be writable. |
| 417 | */ |
| 418 | if (!pte_write(fw->pte)) { |
| 419 | if (!PageAnonExclusive(fw->page)) |
| 420 | return -EFAULT; |
| 421 | if (unlikely(userfaultfd_pte_wp(vma, fw->pte))) |
| 422 | return -EFAULT; |
| 423 | /* SOFTDIRTY is handled via pte_mkdirty() below. */ |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * We'll temporarily unmap the page and flush the TLB, such that we can |
| 428 | * modify the page atomically. |
| 429 | */ |
| 430 | flush_cache_page(vma, vaddr, pte_pfn(fw->pte)); |
| 431 | fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep); |
| 432 | copy_to_page(fw->page, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); |
| 433 | |
| 434 | /* |
| 435 | * When unregistering, we may only zap a PTE if uffd is disabled and |
| 436 | * there are no unexpected folio references ... |
| 437 | */ |
| 438 | if (is_register || userfaultfd_missing(vma) || |
| 439 | (folio_ref_count(folio) != folio_mapcount(folio) + 1 + |
| 440 | folio_test_swapcache(folio) * folio_nr_pages(folio))) |
| 441 | goto remap; |
| 442 | |
| 443 | /* |
| 444 | * ... and the mapped page is identical to the original page that |
| 445 | * would get faulted in on next access. |
| 446 | */ |
| 447 | if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable)) |
| 448 | goto remap; |
| 449 | |
| 450 | dec_mm_counter(vma->vm_mm, MM_ANONPAGES); |
| 451 | folio_remove_rmap_pte(folio, fw->page, vma); |
| 452 | if (!folio_mapped(folio) && folio_test_swapcache(folio) && |
| 453 | folio_trylock(folio)) { |
| 454 | folio_free_swap(folio); |
| 455 | folio_unlock(folio); |
| 456 | } |
| 457 | folio_put(folio); |
| 458 | |
| 459 | return pmd_mappable; |
| 460 | remap: |
| 461 | /* |
| 462 | * Make sure that our copy_to_page() changes become visible before the |
| 463 | * set_pte_at() write. |
| 464 | */ |
| 465 | smp_wmb(); |
| 466 | /* We modified the page. Make sure to mark the PTE dirty. */ |
| 467 | set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte)); |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * NOTE: |
| 473 | * Expect the breakpoint instruction to be the smallest size instruction for |
| 474 | * the architecture. If an arch has variable length instruction and the |
| 475 | * breakpoint instruction is not of the smallest length instruction |
| 476 | * supported by that architecture then we need to modify is_trap_at_addr and |
| 477 | * uprobe_write_opcode accordingly. This would never be a problem for archs |
| 478 | * that have fixed length instructions. |
| 479 | * |
| 480 | * uprobe_write_opcode - write the opcode at a given virtual address. |
| 481 | * @auprobe: arch specific probepoint information. |
| 482 | * @vma: the probed virtual memory area. |
| 483 | * @opcode_vaddr: the virtual address to store the opcode. |
| 484 | * @opcode: opcode to be written at @opcode_vaddr. |
| 485 | * |
| 486 | * Called with mm->mmap_lock held for read or write. |
| 487 | * Return 0 (success) or a negative errno. |
| 488 | */ |
| 489 | int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma, |
| 490 | const unsigned long opcode_vaddr, uprobe_opcode_t opcode) |
| 491 | { |
| 492 | const unsigned long vaddr = opcode_vaddr & PAGE_MASK; |
| 493 | struct mm_struct *mm = vma->vm_mm; |
| 494 | struct uprobe *uprobe; |
| 495 | int ret, is_register, ref_ctr_updated = 0; |
| 496 | unsigned int gup_flags = FOLL_FORCE; |
| 497 | struct mmu_notifier_range range; |
| 498 | struct folio_walk fw; |
| 499 | struct folio *folio; |
| 500 | struct page *page; |
| 501 | |
| 502 | is_register = is_swbp_insn(&opcode); |
| 503 | uprobe = container_of(auprobe, struct uprobe, arch); |
| 504 | |
| 505 | if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags))) |
| 506 | return -EINVAL; |
| 507 | |
| 508 | /* |
| 509 | * When registering, we have to break COW to get an exclusive anonymous |
| 510 | * page that we can safely modify. Use FOLL_WRITE to trigger a write |
| 511 | * fault if required. When unregistering, we might be lucky and the |
| 512 | * anon page is already gone. So defer write faults until really |
| 513 | * required. Use FOLL_SPLIT_PMD, because __uprobe_write_opcode() |
| 514 | * cannot deal with PMDs yet. |
| 515 | */ |
| 516 | if (is_register) |
| 517 | gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; |
| 518 | |
| 519 | retry: |
| 520 | ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL); |
| 521 | if (ret <= 0) |
| 522 | goto out; |
| 523 | folio = page_folio(page); |
| 524 | |
| 525 | ret = verify_opcode(page, opcode_vaddr, &opcode); |
| 526 | if (ret <= 0) { |
| 527 | folio_put(folio); |
| 528 | goto out; |
| 529 | } |
| 530 | |
| 531 | /* We are going to replace instruction, update ref_ctr. */ |
| 532 | if (!ref_ctr_updated && uprobe->ref_ctr_offset) { |
| 533 | ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); |
| 534 | if (ret) { |
| 535 | folio_put(folio); |
| 536 | goto out; |
| 537 | } |
| 538 | |
| 539 | ref_ctr_updated = 1; |
| 540 | } |
| 541 | |
| 542 | ret = 0; |
| 543 | if (unlikely(!folio_test_anon(folio))) { |
| 544 | VM_WARN_ON_ONCE(is_register); |
| 545 | folio_put(folio); |
| 546 | goto out; |
| 547 | } |
| 548 | |
| 549 | if (!is_register) { |
| 550 | /* |
| 551 | * In the common case, we'll be able to zap the page when |
| 552 | * unregistering. So trigger MMU notifiers now, as we won't |
| 553 | * be able to do it under PTL. |
| 554 | */ |
| 555 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
| 556 | vaddr, vaddr + PAGE_SIZE); |
| 557 | mmu_notifier_invalidate_range_start(&range); |
| 558 | } |
| 559 | |
| 560 | ret = -EAGAIN; |
| 561 | /* Walk the page tables again, to perform the actual update. */ |
| 562 | if (folio_walk_start(&fw, vma, vaddr, 0)) { |
| 563 | if (fw.page == page) |
| 564 | ret = __uprobe_write_opcode(vma, &fw, folio, opcode_vaddr, opcode); |
| 565 | folio_walk_end(&fw, vma); |
| 566 | } |
| 567 | |
| 568 | if (!is_register) |
| 569 | mmu_notifier_invalidate_range_end(&range); |
| 570 | |
| 571 | folio_put(folio); |
| 572 | switch (ret) { |
| 573 | case -EFAULT: |
| 574 | gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; |
| 575 | fallthrough; |
| 576 | case -EAGAIN: |
| 577 | goto retry; |
| 578 | default: |
| 579 | break; |
| 580 | } |
| 581 | |
| 582 | out: |
| 583 | /* Revert back reference counter if instruction update failed. */ |
| 584 | if (ret < 0 && is_register && ref_ctr_updated) |
| 585 | update_ref_ctr(uprobe, mm, -1); |
| 586 | |
| 587 | /* try collapse pmd for compound page */ |
| 588 | if (ret > 0) |
| 589 | collapse_pte_mapped_thp(mm, vaddr, false); |
| 590 | |
| 591 | return ret < 0 ? ret : 0; |
| 592 | } |
| 593 | |
| 594 | /** |
| 595 | * set_swbp - store breakpoint at a given address. |
| 596 | * @auprobe: arch specific probepoint information. |
| 597 | * @vma: the probed virtual memory area. |
| 598 | * @vaddr: the virtual address to insert the opcode. |
| 599 | * |
| 600 | * For mm @mm, store the breakpoint instruction at @vaddr. |
| 601 | * Return 0 (success) or a negative errno. |
| 602 | */ |
| 603 | int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma, |
| 604 | unsigned long vaddr) |
| 605 | { |
| 606 | return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN); |
| 607 | } |
| 608 | |
| 609 | /** |
| 610 | * set_orig_insn - Restore the original instruction. |
| 611 | * @vma: the probed virtual memory area. |
| 612 | * @auprobe: arch specific probepoint information. |
| 613 | * @vaddr: the virtual address to insert the opcode. |
| 614 | * |
| 615 | * For mm @mm, restore the original opcode (opcode) at @vaddr. |
| 616 | * Return 0 (success) or a negative errno. |
| 617 | */ |
| 618 | int __weak set_orig_insn(struct arch_uprobe *auprobe, |
| 619 | struct vm_area_struct *vma, unsigned long vaddr) |
| 620 | { |
| 621 | return uprobe_write_opcode(auprobe, vma, vaddr, |
| 622 | *(uprobe_opcode_t *)&auprobe->insn); |
| 623 | } |
| 624 | |
| 625 | /* uprobe should have guaranteed positive refcount */ |
| 626 | static struct uprobe *get_uprobe(struct uprobe *uprobe) |
| 627 | { |
| 628 | refcount_inc(&uprobe->ref); |
| 629 | return uprobe; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * uprobe should have guaranteed lifetime, which can be either of: |
| 634 | * - caller already has refcount taken (and wants an extra one); |
| 635 | * - uprobe is RCU protected and won't be freed until after grace period; |
| 636 | * - we are holding uprobes_treelock (for read or write, doesn't matter). |
| 637 | */ |
| 638 | static struct uprobe *try_get_uprobe(struct uprobe *uprobe) |
| 639 | { |
| 640 | if (refcount_inc_not_zero(&uprobe->ref)) |
| 641 | return uprobe; |
| 642 | return NULL; |
| 643 | } |
| 644 | |
| 645 | static inline bool uprobe_is_active(struct uprobe *uprobe) |
| 646 | { |
| 647 | return !RB_EMPTY_NODE(&uprobe->rb_node); |
| 648 | } |
| 649 | |
| 650 | static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) |
| 651 | { |
| 652 | struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); |
| 653 | |
| 654 | kfree(uprobe); |
| 655 | } |
| 656 | |
| 657 | static void uprobe_free_srcu(struct rcu_head *rcu) |
| 658 | { |
| 659 | struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); |
| 660 | |
| 661 | call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); |
| 662 | } |
| 663 | |
| 664 | static void uprobe_free_deferred(struct work_struct *work) |
| 665 | { |
| 666 | struct uprobe *uprobe = container_of(work, struct uprobe, work); |
| 667 | |
| 668 | write_lock(&uprobes_treelock); |
| 669 | |
| 670 | if (uprobe_is_active(uprobe)) { |
| 671 | write_seqcount_begin(&uprobes_seqcount); |
| 672 | rb_erase(&uprobe->rb_node, &uprobes_tree); |
| 673 | write_seqcount_end(&uprobes_seqcount); |
| 674 | } |
| 675 | |
| 676 | write_unlock(&uprobes_treelock); |
| 677 | |
| 678 | /* |
| 679 | * If application munmap(exec_vma) before uprobe_unregister() |
| 680 | * gets called, we don't get a chance to remove uprobe from |
| 681 | * delayed_uprobe_list from remove_breakpoint(). Do it here. |
| 682 | */ |
| 683 | mutex_lock(&delayed_uprobe_lock); |
| 684 | delayed_uprobe_remove(uprobe, NULL); |
| 685 | mutex_unlock(&delayed_uprobe_lock); |
| 686 | |
| 687 | /* start srcu -> rcu_tasks_trace -> kfree chain */ |
| 688 | call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); |
| 689 | } |
| 690 | |
| 691 | static void put_uprobe(struct uprobe *uprobe) |
| 692 | { |
| 693 | if (!refcount_dec_and_test(&uprobe->ref)) |
| 694 | return; |
| 695 | |
| 696 | INIT_WORK(&uprobe->work, uprobe_free_deferred); |
| 697 | schedule_work(&uprobe->work); |
| 698 | } |
| 699 | |
| 700 | /* Initialize hprobe as SRCU-protected "leased" uprobe */ |
| 701 | static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) |
| 702 | { |
| 703 | WARN_ON(!uprobe); |
| 704 | hprobe->state = HPROBE_LEASED; |
| 705 | hprobe->uprobe = uprobe; |
| 706 | hprobe->srcu_idx = srcu_idx; |
| 707 | } |
| 708 | |
| 709 | /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ |
| 710 | static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) |
| 711 | { |
| 712 | hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; |
| 713 | hprobe->uprobe = uprobe; |
| 714 | hprobe->srcu_idx = -1; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * hprobe_consume() fetches hprobe's underlying uprobe and detects whether |
| 719 | * uprobe is SRCU protected or is refcounted. hprobe_consume() can be |
| 720 | * used only once for a given hprobe. |
| 721 | * |
| 722 | * Caller has to call hprobe_finalize() and pass previous hprobe_state, so |
| 723 | * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever |
| 724 | * is appropriate. |
| 725 | */ |
| 726 | static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) |
| 727 | { |
| 728 | *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); |
| 729 | switch (*hstate) { |
| 730 | case HPROBE_LEASED: |
| 731 | case HPROBE_STABLE: |
| 732 | return hprobe->uprobe; |
| 733 | case HPROBE_GONE: /* uprobe is NULL, no SRCU */ |
| 734 | case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ |
| 735 | return NULL; |
| 736 | default: |
| 737 | WARN(1, "hprobe invalid state %d", *hstate); |
| 738 | return NULL; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. |
| 744 | * hprobe_finalize() can only be used from current context after |
| 745 | * hprobe_consume() call (which determines uprobe and hstate value). |
| 746 | */ |
| 747 | static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) |
| 748 | { |
| 749 | switch (hstate) { |
| 750 | case HPROBE_LEASED: |
| 751 | __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); |
| 752 | break; |
| 753 | case HPROBE_STABLE: |
| 754 | put_uprobe(hprobe->uprobe); |
| 755 | break; |
| 756 | case HPROBE_GONE: |
| 757 | case HPROBE_CONSUMED: |
| 758 | break; |
| 759 | default: |
| 760 | WARN(1, "hprobe invalid state %d", hstate); |
| 761 | break; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) |
| 767 | * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of |
| 768 | * them can win the race to perform SRCU unlocking. Whoever wins must perform |
| 769 | * SRCU unlock. |
| 770 | * |
| 771 | * Returns underlying valid uprobe or NULL, if there was no underlying uprobe |
| 772 | * to begin with or we failed to bump its refcount and it's going away. |
| 773 | * |
| 774 | * Returned non-NULL uprobe can be still safely used within an ongoing SRCU |
| 775 | * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has |
| 776 | * an extra refcount for caller to assume and use. Otherwise, it's not |
| 777 | * guaranteed that returned uprobe has a positive refcount, so caller has to |
| 778 | * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current |
| 779 | * SRCU lock region. See dup_utask(). |
| 780 | */ |
| 781 | static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) |
| 782 | { |
| 783 | enum hprobe_state hstate; |
| 784 | |
| 785 | /* |
| 786 | * Caller should guarantee that return_instance is not going to be |
| 787 | * freed from under us. This can be achieved either through holding |
| 788 | * rcu_read_lock() or by owning return_instance in the first place. |
| 789 | * |
| 790 | * Underlying uprobe is itself protected from reuse by SRCU, so ensure |
| 791 | * SRCU lock is held properly. |
| 792 | */ |
| 793 | lockdep_assert(srcu_read_lock_held(&uretprobes_srcu)); |
| 794 | |
| 795 | hstate = READ_ONCE(hprobe->state); |
| 796 | switch (hstate) { |
| 797 | case HPROBE_STABLE: |
| 798 | /* uprobe has positive refcount, bump refcount, if necessary */ |
| 799 | return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; |
| 800 | case HPROBE_GONE: |
| 801 | /* |
| 802 | * SRCU was unlocked earlier and we didn't manage to take |
| 803 | * uprobe refcnt, so it's effectively NULL |
| 804 | */ |
| 805 | return NULL; |
| 806 | case HPROBE_CONSUMED: |
| 807 | /* |
| 808 | * uprobe was consumed, so it's effectively NULL as far as |
| 809 | * uretprobe processing logic is concerned |
| 810 | */ |
| 811 | return NULL; |
| 812 | case HPROBE_LEASED: { |
| 813 | struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); |
| 814 | /* |
| 815 | * Try to switch hprobe state, guarding against |
| 816 | * hprobe_consume() or another hprobe_expire() racing with us. |
| 817 | * Note, if we failed to get uprobe refcount, we use special |
| 818 | * HPROBE_GONE state to signal that hprobe->uprobe shouldn't |
| 819 | * be used as it will be freed after SRCU is unlocked. |
| 820 | */ |
| 821 | if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { |
| 822 | /* We won the race, we are the ones to unlock SRCU */ |
| 823 | __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); |
| 824 | return get ? get_uprobe(uprobe) : uprobe; |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * We lost the race, undo refcount bump (if it ever happened), |
| 829 | * unless caller would like an extra refcount anyways. |
| 830 | */ |
| 831 | if (uprobe && !get) |
| 832 | put_uprobe(uprobe); |
| 833 | /* |
| 834 | * Even if hprobe_consume() or another hprobe_expire() wins |
| 835 | * the state update race and unlocks SRCU from under us, we |
| 836 | * still have a guarantee that underyling uprobe won't be |
| 837 | * freed due to ongoing caller's SRCU lock region, so we can |
| 838 | * return it regardless. Also, if `get` was true, we also have |
| 839 | * an extra ref for the caller to own. This is used in dup_utask(). |
| 840 | */ |
| 841 | return uprobe; |
| 842 | } |
| 843 | default: |
| 844 | WARN(1, "unknown hprobe state %d", hstate); |
| 845 | return NULL; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | static __always_inline |
| 850 | int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, |
| 851 | const struct uprobe *r) |
| 852 | { |
| 853 | if (l_inode < r->inode) |
| 854 | return -1; |
| 855 | |
| 856 | if (l_inode > r->inode) |
| 857 | return 1; |
| 858 | |
| 859 | if (l_offset < r->offset) |
| 860 | return -1; |
| 861 | |
| 862 | if (l_offset > r->offset) |
| 863 | return 1; |
| 864 | |
| 865 | return 0; |
| 866 | } |
| 867 | |
| 868 | #define __node_2_uprobe(node) \ |
| 869 | rb_entry((node), struct uprobe, rb_node) |
| 870 | |
| 871 | struct __uprobe_key { |
| 872 | struct inode *inode; |
| 873 | loff_t offset; |
| 874 | }; |
| 875 | |
| 876 | static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) |
| 877 | { |
| 878 | const struct __uprobe_key *a = key; |
| 879 | return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); |
| 880 | } |
| 881 | |
| 882 | static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) |
| 883 | { |
| 884 | struct uprobe *u = __node_2_uprobe(a); |
| 885 | return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * Assumes being inside RCU protected region. |
| 890 | * No refcount is taken on returned uprobe. |
| 891 | */ |
| 892 | static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) |
| 893 | { |
| 894 | struct __uprobe_key key = { |
| 895 | .inode = inode, |
| 896 | .offset = offset, |
| 897 | }; |
| 898 | struct rb_node *node; |
| 899 | unsigned int seq; |
| 900 | |
| 901 | lockdep_assert(rcu_read_lock_trace_held()); |
| 902 | |
| 903 | do { |
| 904 | seq = read_seqcount_begin(&uprobes_seqcount); |
| 905 | node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); |
| 906 | /* |
| 907 | * Lockless RB-tree lookups can result only in false negatives. |
| 908 | * If the element is found, it is correct and can be returned |
| 909 | * under RCU protection. If we find nothing, we need to |
| 910 | * validate that seqcount didn't change. If it did, we have to |
| 911 | * try again as we might have missed the element (false |
| 912 | * negative). If seqcount is unchanged, search truly failed. |
| 913 | */ |
| 914 | if (node) |
| 915 | return __node_2_uprobe(node); |
| 916 | } while (read_seqcount_retry(&uprobes_seqcount, seq)); |
| 917 | |
| 918 | return NULL; |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * Attempt to insert a new uprobe into uprobes_tree. |
| 923 | * |
| 924 | * If uprobe already exists (for given inode+offset), we just increment |
| 925 | * refcount of previously existing uprobe. |
| 926 | * |
| 927 | * If not, a provided new instance of uprobe is inserted into the tree (with |
| 928 | * assumed initial refcount == 1). |
| 929 | * |
| 930 | * In any case, we return a uprobe instance that ends up being in uprobes_tree. |
| 931 | * Caller has to clean up new uprobe instance, if it ended up not being |
| 932 | * inserted into the tree. |
| 933 | * |
| 934 | * We assume that uprobes_treelock is held for writing. |
| 935 | */ |
| 936 | static struct uprobe *__insert_uprobe(struct uprobe *uprobe) |
| 937 | { |
| 938 | struct rb_node *node; |
| 939 | again: |
| 940 | node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); |
| 941 | if (node) { |
| 942 | struct uprobe *u = __node_2_uprobe(node); |
| 943 | |
| 944 | if (!try_get_uprobe(u)) { |
| 945 | rb_erase(node, &uprobes_tree); |
| 946 | RB_CLEAR_NODE(&u->rb_node); |
| 947 | goto again; |
| 948 | } |
| 949 | |
| 950 | return u; |
| 951 | } |
| 952 | |
| 953 | return uprobe; |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * Acquire uprobes_treelock and insert uprobe into uprobes_tree |
| 958 | * (or reuse existing one, see __insert_uprobe() comments above). |
| 959 | */ |
| 960 | static struct uprobe *insert_uprobe(struct uprobe *uprobe) |
| 961 | { |
| 962 | struct uprobe *u; |
| 963 | |
| 964 | write_lock(&uprobes_treelock); |
| 965 | write_seqcount_begin(&uprobes_seqcount); |
| 966 | u = __insert_uprobe(uprobe); |
| 967 | write_seqcount_end(&uprobes_seqcount); |
| 968 | write_unlock(&uprobes_treelock); |
| 969 | |
| 970 | return u; |
| 971 | } |
| 972 | |
| 973 | static void |
| 974 | ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) |
| 975 | { |
| 976 | pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " |
| 977 | "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", |
| 978 | uprobe->inode->i_ino, (unsigned long long) uprobe->offset, |
| 979 | (unsigned long long) cur_uprobe->ref_ctr_offset, |
| 980 | (unsigned long long) uprobe->ref_ctr_offset); |
| 981 | } |
| 982 | |
| 983 | static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, |
| 984 | loff_t ref_ctr_offset) |
| 985 | { |
| 986 | struct uprobe *uprobe, *cur_uprobe; |
| 987 | |
| 988 | uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); |
| 989 | if (!uprobe) |
| 990 | return ERR_PTR(-ENOMEM); |
| 991 | |
| 992 | uprobe->inode = inode; |
| 993 | uprobe->offset = offset; |
| 994 | uprobe->ref_ctr_offset = ref_ctr_offset; |
| 995 | INIT_LIST_HEAD(&uprobe->consumers); |
| 996 | init_rwsem(&uprobe->register_rwsem); |
| 997 | init_rwsem(&uprobe->consumer_rwsem); |
| 998 | RB_CLEAR_NODE(&uprobe->rb_node); |
| 999 | refcount_set(&uprobe->ref, 1); |
| 1000 | |
| 1001 | /* add to uprobes_tree, sorted on inode:offset */ |
| 1002 | cur_uprobe = insert_uprobe(uprobe); |
| 1003 | /* a uprobe exists for this inode:offset combination */ |
| 1004 | if (cur_uprobe != uprobe) { |
| 1005 | if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { |
| 1006 | ref_ctr_mismatch_warn(cur_uprobe, uprobe); |
| 1007 | put_uprobe(cur_uprobe); |
| 1008 | kfree(uprobe); |
| 1009 | return ERR_PTR(-EINVAL); |
| 1010 | } |
| 1011 | kfree(uprobe); |
| 1012 | uprobe = cur_uprobe; |
| 1013 | } |
| 1014 | |
| 1015 | return uprobe; |
| 1016 | } |
| 1017 | |
| 1018 | static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 1019 | { |
| 1020 | static atomic64_t id; |
| 1021 | |
| 1022 | down_write(&uprobe->consumer_rwsem); |
| 1023 | list_add_rcu(&uc->cons_node, &uprobe->consumers); |
| 1024 | uc->id = (__u64) atomic64_inc_return(&id); |
| 1025 | up_write(&uprobe->consumer_rwsem); |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * For uprobe @uprobe, delete the consumer @uc. |
| 1030 | * Should never be called with consumer that's not part of @uprobe->consumers. |
| 1031 | */ |
| 1032 | static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 1033 | { |
| 1034 | down_write(&uprobe->consumer_rwsem); |
| 1035 | list_del_rcu(&uc->cons_node); |
| 1036 | up_write(&uprobe->consumer_rwsem); |
| 1037 | } |
| 1038 | |
| 1039 | static int __copy_insn(struct address_space *mapping, struct file *filp, |
| 1040 | void *insn, int nbytes, loff_t offset) |
| 1041 | { |
| 1042 | struct page *page; |
| 1043 | /* |
| 1044 | * Ensure that the page that has the original instruction is populated |
| 1045 | * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), |
| 1046 | * see uprobe_register(). |
| 1047 | */ |
| 1048 | if (mapping->a_ops->read_folio) |
| 1049 | page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); |
| 1050 | else |
| 1051 | page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); |
| 1052 | if (IS_ERR(page)) |
| 1053 | return PTR_ERR(page); |
| 1054 | |
| 1055 | copy_from_page(page, offset, insn, nbytes); |
| 1056 | put_page(page); |
| 1057 | |
| 1058 | return 0; |
| 1059 | } |
| 1060 | |
| 1061 | static int copy_insn(struct uprobe *uprobe, struct file *filp) |
| 1062 | { |
| 1063 | struct address_space *mapping = uprobe->inode->i_mapping; |
| 1064 | loff_t offs = uprobe->offset; |
| 1065 | void *insn = &uprobe->arch.insn; |
| 1066 | int size = sizeof(uprobe->arch.insn); |
| 1067 | int len, err = -EIO; |
| 1068 | |
| 1069 | /* Copy only available bytes, -EIO if nothing was read */ |
| 1070 | do { |
| 1071 | if (offs >= i_size_read(uprobe->inode)) |
| 1072 | break; |
| 1073 | |
| 1074 | len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); |
| 1075 | err = __copy_insn(mapping, filp, insn, len, offs); |
| 1076 | if (err) |
| 1077 | break; |
| 1078 | |
| 1079 | insn += len; |
| 1080 | offs += len; |
| 1081 | size -= len; |
| 1082 | } while (size); |
| 1083 | |
| 1084 | return err; |
| 1085 | } |
| 1086 | |
| 1087 | static int prepare_uprobe(struct uprobe *uprobe, struct file *file, |
| 1088 | struct mm_struct *mm, unsigned long vaddr) |
| 1089 | { |
| 1090 | int ret = 0; |
| 1091 | |
| 1092 | if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) |
| 1093 | return ret; |
| 1094 | |
| 1095 | /* TODO: move this into _register, until then we abuse this sem. */ |
| 1096 | down_write(&uprobe->consumer_rwsem); |
| 1097 | if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) |
| 1098 | goto out; |
| 1099 | |
| 1100 | ret = copy_insn(uprobe, file); |
| 1101 | if (ret) |
| 1102 | goto out; |
| 1103 | |
| 1104 | ret = -ENOTSUPP; |
| 1105 | if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) |
| 1106 | goto out; |
| 1107 | |
| 1108 | ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); |
| 1109 | if (ret) |
| 1110 | goto out; |
| 1111 | |
| 1112 | smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ |
| 1113 | set_bit(UPROBE_COPY_INSN, &uprobe->flags); |
| 1114 | |
| 1115 | out: |
| 1116 | up_write(&uprobe->consumer_rwsem); |
| 1117 | |
| 1118 | return ret; |
| 1119 | } |
| 1120 | |
| 1121 | static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) |
| 1122 | { |
| 1123 | return !uc->filter || uc->filter(uc, mm); |
| 1124 | } |
| 1125 | |
| 1126 | static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) |
| 1127 | { |
| 1128 | struct uprobe_consumer *uc; |
| 1129 | bool ret = false; |
| 1130 | |
| 1131 | down_read(&uprobe->consumer_rwsem); |
| 1132 | list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { |
| 1133 | ret = consumer_filter(uc, mm); |
| 1134 | if (ret) |
| 1135 | break; |
| 1136 | } |
| 1137 | up_read(&uprobe->consumer_rwsem); |
| 1138 | |
| 1139 | return ret; |
| 1140 | } |
| 1141 | |
| 1142 | static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, |
| 1143 | unsigned long vaddr) |
| 1144 | { |
| 1145 | struct mm_struct *mm = vma->vm_mm; |
| 1146 | bool first_uprobe; |
| 1147 | int ret; |
| 1148 | |
| 1149 | ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); |
| 1150 | if (ret) |
| 1151 | return ret; |
| 1152 | |
| 1153 | /* |
| 1154 | * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), |
| 1155 | * the task can hit this breakpoint right after __replace_page(). |
| 1156 | */ |
| 1157 | first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); |
| 1158 | if (first_uprobe) |
| 1159 | set_bit(MMF_HAS_UPROBES, &mm->flags); |
| 1160 | |
| 1161 | ret = set_swbp(&uprobe->arch, vma, vaddr); |
| 1162 | if (!ret) |
| 1163 | clear_bit(MMF_RECALC_UPROBES, &mm->flags); |
| 1164 | else if (first_uprobe) |
| 1165 | clear_bit(MMF_HAS_UPROBES, &mm->flags); |
| 1166 | |
| 1167 | return ret; |
| 1168 | } |
| 1169 | |
| 1170 | static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, |
| 1171 | unsigned long vaddr) |
| 1172 | { |
| 1173 | struct mm_struct *mm = vma->vm_mm; |
| 1174 | |
| 1175 | set_bit(MMF_RECALC_UPROBES, &mm->flags); |
| 1176 | return set_orig_insn(&uprobe->arch, vma, vaddr); |
| 1177 | } |
| 1178 | |
| 1179 | struct map_info { |
| 1180 | struct map_info *next; |
| 1181 | struct mm_struct *mm; |
| 1182 | unsigned long vaddr; |
| 1183 | }; |
| 1184 | |
| 1185 | static inline struct map_info *free_map_info(struct map_info *info) |
| 1186 | { |
| 1187 | struct map_info *next = info->next; |
| 1188 | kfree(info); |
| 1189 | return next; |
| 1190 | } |
| 1191 | |
| 1192 | static struct map_info * |
| 1193 | build_map_info(struct address_space *mapping, loff_t offset, bool is_register) |
| 1194 | { |
| 1195 | unsigned long pgoff = offset >> PAGE_SHIFT; |
| 1196 | struct vm_area_struct *vma; |
| 1197 | struct map_info *curr = NULL; |
| 1198 | struct map_info *prev = NULL; |
| 1199 | struct map_info *info; |
| 1200 | int more = 0; |
| 1201 | |
| 1202 | again: |
| 1203 | i_mmap_lock_read(mapping); |
| 1204 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
| 1205 | if (!valid_vma(vma, is_register)) |
| 1206 | continue; |
| 1207 | |
| 1208 | if (!prev && !more) { |
| 1209 | /* |
| 1210 | * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through |
| 1211 | * reclaim. This is optimistic, no harm done if it fails. |
| 1212 | */ |
| 1213 | prev = kmalloc(sizeof(struct map_info), |
| 1214 | GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 1215 | if (prev) |
| 1216 | prev->next = NULL; |
| 1217 | } |
| 1218 | if (!prev) { |
| 1219 | more++; |
| 1220 | continue; |
| 1221 | } |
| 1222 | |
| 1223 | if (!mmget_not_zero(vma->vm_mm)) |
| 1224 | continue; |
| 1225 | |
| 1226 | info = prev; |
| 1227 | prev = prev->next; |
| 1228 | info->next = curr; |
| 1229 | curr = info; |
| 1230 | |
| 1231 | info->mm = vma->vm_mm; |
| 1232 | info->vaddr = offset_to_vaddr(vma, offset); |
| 1233 | } |
| 1234 | i_mmap_unlock_read(mapping); |
| 1235 | |
| 1236 | if (!more) |
| 1237 | goto out; |
| 1238 | |
| 1239 | prev = curr; |
| 1240 | while (curr) { |
| 1241 | mmput(curr->mm); |
| 1242 | curr = curr->next; |
| 1243 | } |
| 1244 | |
| 1245 | do { |
| 1246 | info = kmalloc(sizeof(struct map_info), GFP_KERNEL); |
| 1247 | if (!info) { |
| 1248 | curr = ERR_PTR(-ENOMEM); |
| 1249 | goto out; |
| 1250 | } |
| 1251 | info->next = prev; |
| 1252 | prev = info; |
| 1253 | } while (--more); |
| 1254 | |
| 1255 | goto again; |
| 1256 | out: |
| 1257 | while (prev) |
| 1258 | prev = free_map_info(prev); |
| 1259 | return curr; |
| 1260 | } |
| 1261 | |
| 1262 | static int |
| 1263 | register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) |
| 1264 | { |
| 1265 | bool is_register = !!new; |
| 1266 | struct map_info *info; |
| 1267 | int err = 0; |
| 1268 | |
| 1269 | percpu_down_write(&dup_mmap_sem); |
| 1270 | info = build_map_info(uprobe->inode->i_mapping, |
| 1271 | uprobe->offset, is_register); |
| 1272 | if (IS_ERR(info)) { |
| 1273 | err = PTR_ERR(info); |
| 1274 | goto out; |
| 1275 | } |
| 1276 | |
| 1277 | while (info) { |
| 1278 | struct mm_struct *mm = info->mm; |
| 1279 | struct vm_area_struct *vma; |
| 1280 | |
| 1281 | if (err && is_register) |
| 1282 | goto free; |
| 1283 | /* |
| 1284 | * We take mmap_lock for writing to avoid the race with |
| 1285 | * find_active_uprobe_rcu() which takes mmap_lock for reading. |
| 1286 | * Thus this install_breakpoint() can not make |
| 1287 | * is_trap_at_addr() true right after find_uprobe_rcu() |
| 1288 | * returns NULL in find_active_uprobe_rcu(). |
| 1289 | */ |
| 1290 | mmap_write_lock(mm); |
| 1291 | if (check_stable_address_space(mm)) |
| 1292 | goto unlock; |
| 1293 | |
| 1294 | vma = find_vma(mm, info->vaddr); |
| 1295 | if (!vma || !valid_vma(vma, is_register) || |
| 1296 | file_inode(vma->vm_file) != uprobe->inode) |
| 1297 | goto unlock; |
| 1298 | |
| 1299 | if (vma->vm_start > info->vaddr || |
| 1300 | vaddr_to_offset(vma, info->vaddr) != uprobe->offset) |
| 1301 | goto unlock; |
| 1302 | |
| 1303 | if (is_register) { |
| 1304 | /* consult only the "caller", new consumer. */ |
| 1305 | if (consumer_filter(new, mm)) |
| 1306 | err = install_breakpoint(uprobe, vma, info->vaddr); |
| 1307 | } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { |
| 1308 | if (!filter_chain(uprobe, mm)) |
| 1309 | err |= remove_breakpoint(uprobe, vma, info->vaddr); |
| 1310 | } |
| 1311 | |
| 1312 | unlock: |
| 1313 | mmap_write_unlock(mm); |
| 1314 | free: |
| 1315 | mmput(mm); |
| 1316 | info = free_map_info(info); |
| 1317 | } |
| 1318 | out: |
| 1319 | percpu_up_write(&dup_mmap_sem); |
| 1320 | return err; |
| 1321 | } |
| 1322 | |
| 1323 | /** |
| 1324 | * uprobe_unregister_nosync - unregister an already registered probe. |
| 1325 | * @uprobe: uprobe to remove |
| 1326 | * @uc: identify which probe if multiple probes are colocated. |
| 1327 | */ |
| 1328 | void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) |
| 1329 | { |
| 1330 | int err; |
| 1331 | |
| 1332 | down_write(&uprobe->register_rwsem); |
| 1333 | consumer_del(uprobe, uc); |
| 1334 | err = register_for_each_vma(uprobe, NULL); |
| 1335 | up_write(&uprobe->register_rwsem); |
| 1336 | |
| 1337 | /* TODO : cant unregister? schedule a worker thread */ |
| 1338 | if (unlikely(err)) { |
| 1339 | uprobe_warn(current, "unregister, leaking uprobe"); |
| 1340 | return; |
| 1341 | } |
| 1342 | |
| 1343 | put_uprobe(uprobe); |
| 1344 | } |
| 1345 | EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); |
| 1346 | |
| 1347 | void uprobe_unregister_sync(void) |
| 1348 | { |
| 1349 | /* |
| 1350 | * Now that handler_chain() and handle_uretprobe_chain() iterate over |
| 1351 | * uprobe->consumers list under RCU protection without holding |
| 1352 | * uprobe->register_rwsem, we need to wait for RCU grace period to |
| 1353 | * make sure that we can't call into just unregistered |
| 1354 | * uprobe_consumer's callbacks anymore. If we don't do that, fast and |
| 1355 | * unlucky enough caller can free consumer's memory and cause |
| 1356 | * handler_chain() or handle_uretprobe_chain() to do an use-after-free. |
| 1357 | */ |
| 1358 | synchronize_rcu_tasks_trace(); |
| 1359 | synchronize_srcu(&uretprobes_srcu); |
| 1360 | } |
| 1361 | EXPORT_SYMBOL_GPL(uprobe_unregister_sync); |
| 1362 | |
| 1363 | /** |
| 1364 | * uprobe_register - register a probe |
| 1365 | * @inode: the file in which the probe has to be placed. |
| 1366 | * @offset: offset from the start of the file. |
| 1367 | * @ref_ctr_offset: offset of SDT marker / reference counter |
| 1368 | * @uc: information on howto handle the probe.. |
| 1369 | * |
| 1370 | * Apart from the access refcount, uprobe_register() takes a creation |
| 1371 | * refcount (thro alloc_uprobe) if and only if this @uprobe is getting |
| 1372 | * inserted into the rbtree (i.e first consumer for a @inode:@offset |
| 1373 | * tuple). Creation refcount stops uprobe_unregister from freeing the |
| 1374 | * @uprobe even before the register operation is complete. Creation |
| 1375 | * refcount is released when the last @uc for the @uprobe |
| 1376 | * unregisters. Caller of uprobe_register() is required to keep @inode |
| 1377 | * (and the containing mount) referenced. |
| 1378 | * |
| 1379 | * Return: pointer to the new uprobe on success or an ERR_PTR on failure. |
| 1380 | */ |
| 1381 | struct uprobe *uprobe_register(struct inode *inode, |
| 1382 | loff_t offset, loff_t ref_ctr_offset, |
| 1383 | struct uprobe_consumer *uc) |
| 1384 | { |
| 1385 | struct uprobe *uprobe; |
| 1386 | int ret; |
| 1387 | |
| 1388 | /* Uprobe must have at least one set consumer */ |
| 1389 | if (!uc->handler && !uc->ret_handler) |
| 1390 | return ERR_PTR(-EINVAL); |
| 1391 | |
| 1392 | /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ |
| 1393 | if (!inode->i_mapping->a_ops->read_folio && |
| 1394 | !shmem_mapping(inode->i_mapping)) |
| 1395 | return ERR_PTR(-EIO); |
| 1396 | /* Racy, just to catch the obvious mistakes */ |
| 1397 | if (offset > i_size_read(inode)) |
| 1398 | return ERR_PTR(-EINVAL); |
| 1399 | |
| 1400 | /* |
| 1401 | * This ensures that copy_from_page(), copy_to_page() and |
| 1402 | * __update_ref_ctr() can't cross page boundary. |
| 1403 | */ |
| 1404 | if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) |
| 1405 | return ERR_PTR(-EINVAL); |
| 1406 | if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) |
| 1407 | return ERR_PTR(-EINVAL); |
| 1408 | |
| 1409 | uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); |
| 1410 | if (IS_ERR(uprobe)) |
| 1411 | return uprobe; |
| 1412 | |
| 1413 | down_write(&uprobe->register_rwsem); |
| 1414 | consumer_add(uprobe, uc); |
| 1415 | ret = register_for_each_vma(uprobe, uc); |
| 1416 | up_write(&uprobe->register_rwsem); |
| 1417 | |
| 1418 | if (ret) { |
| 1419 | uprobe_unregister_nosync(uprobe, uc); |
| 1420 | /* |
| 1421 | * Registration might have partially succeeded, so we can have |
| 1422 | * this consumer being called right at this time. We need to |
| 1423 | * sync here. It's ok, it's unlikely slow path. |
| 1424 | */ |
| 1425 | uprobe_unregister_sync(); |
| 1426 | return ERR_PTR(ret); |
| 1427 | } |
| 1428 | |
| 1429 | return uprobe; |
| 1430 | } |
| 1431 | EXPORT_SYMBOL_GPL(uprobe_register); |
| 1432 | |
| 1433 | /** |
| 1434 | * uprobe_apply - add or remove the breakpoints according to @uc->filter |
| 1435 | * @uprobe: uprobe which "owns" the breakpoint |
| 1436 | * @uc: consumer which wants to add more or remove some breakpoints |
| 1437 | * @add: add or remove the breakpoints |
| 1438 | * Return: 0 on success or negative error code. |
| 1439 | */ |
| 1440 | int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) |
| 1441 | { |
| 1442 | struct uprobe_consumer *con; |
| 1443 | int ret = -ENOENT; |
| 1444 | |
| 1445 | down_write(&uprobe->register_rwsem); |
| 1446 | |
| 1447 | rcu_read_lock_trace(); |
| 1448 | list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { |
| 1449 | if (con == uc) { |
| 1450 | ret = register_for_each_vma(uprobe, add ? uc : NULL); |
| 1451 | break; |
| 1452 | } |
| 1453 | } |
| 1454 | rcu_read_unlock_trace(); |
| 1455 | |
| 1456 | up_write(&uprobe->register_rwsem); |
| 1457 | |
| 1458 | return ret; |
| 1459 | } |
| 1460 | |
| 1461 | static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) |
| 1462 | { |
| 1463 | VMA_ITERATOR(vmi, mm, 0); |
| 1464 | struct vm_area_struct *vma; |
| 1465 | int err = 0; |
| 1466 | |
| 1467 | mmap_read_lock(mm); |
| 1468 | for_each_vma(vmi, vma) { |
| 1469 | unsigned long vaddr; |
| 1470 | loff_t offset; |
| 1471 | |
| 1472 | if (!valid_vma(vma, false) || |
| 1473 | file_inode(vma->vm_file) != uprobe->inode) |
| 1474 | continue; |
| 1475 | |
| 1476 | offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; |
| 1477 | if (uprobe->offset < offset || |
| 1478 | uprobe->offset >= offset + vma->vm_end - vma->vm_start) |
| 1479 | continue; |
| 1480 | |
| 1481 | vaddr = offset_to_vaddr(vma, uprobe->offset); |
| 1482 | err |= remove_breakpoint(uprobe, vma, vaddr); |
| 1483 | } |
| 1484 | mmap_read_unlock(mm); |
| 1485 | |
| 1486 | return err; |
| 1487 | } |
| 1488 | |
| 1489 | static struct rb_node * |
| 1490 | find_node_in_range(struct inode *inode, loff_t min, loff_t max) |
| 1491 | { |
| 1492 | struct rb_node *n = uprobes_tree.rb_node; |
| 1493 | |
| 1494 | while (n) { |
| 1495 | struct uprobe *u = rb_entry(n, struct uprobe, rb_node); |
| 1496 | |
| 1497 | if (inode < u->inode) { |
| 1498 | n = n->rb_left; |
| 1499 | } else if (inode > u->inode) { |
| 1500 | n = n->rb_right; |
| 1501 | } else { |
| 1502 | if (max < u->offset) |
| 1503 | n = n->rb_left; |
| 1504 | else if (min > u->offset) |
| 1505 | n = n->rb_right; |
| 1506 | else |
| 1507 | break; |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | return n; |
| 1512 | } |
| 1513 | |
| 1514 | /* |
| 1515 | * For a given range in vma, build a list of probes that need to be inserted. |
| 1516 | */ |
| 1517 | static void build_probe_list(struct inode *inode, |
| 1518 | struct vm_area_struct *vma, |
| 1519 | unsigned long start, unsigned long end, |
| 1520 | struct list_head *head) |
| 1521 | { |
| 1522 | loff_t min, max; |
| 1523 | struct rb_node *n, *t; |
| 1524 | struct uprobe *u; |
| 1525 | |
| 1526 | INIT_LIST_HEAD(head); |
| 1527 | min = vaddr_to_offset(vma, start); |
| 1528 | max = min + (end - start) - 1; |
| 1529 | |
| 1530 | read_lock(&uprobes_treelock); |
| 1531 | n = find_node_in_range(inode, min, max); |
| 1532 | if (n) { |
| 1533 | for (t = n; t; t = rb_prev(t)) { |
| 1534 | u = rb_entry(t, struct uprobe, rb_node); |
| 1535 | if (u->inode != inode || u->offset < min) |
| 1536 | break; |
| 1537 | /* if uprobe went away, it's safe to ignore it */ |
| 1538 | if (try_get_uprobe(u)) |
| 1539 | list_add(&u->pending_list, head); |
| 1540 | } |
| 1541 | for (t = n; (t = rb_next(t)); ) { |
| 1542 | u = rb_entry(t, struct uprobe, rb_node); |
| 1543 | if (u->inode != inode || u->offset > max) |
| 1544 | break; |
| 1545 | /* if uprobe went away, it's safe to ignore it */ |
| 1546 | if (try_get_uprobe(u)) |
| 1547 | list_add(&u->pending_list, head); |
| 1548 | } |
| 1549 | } |
| 1550 | read_unlock(&uprobes_treelock); |
| 1551 | } |
| 1552 | |
| 1553 | /* @vma contains reference counter, not the probed instruction. */ |
| 1554 | static int delayed_ref_ctr_inc(struct vm_area_struct *vma) |
| 1555 | { |
| 1556 | struct list_head *pos, *q; |
| 1557 | struct delayed_uprobe *du; |
| 1558 | unsigned long vaddr; |
| 1559 | int ret = 0, err = 0; |
| 1560 | |
| 1561 | mutex_lock(&delayed_uprobe_lock); |
| 1562 | list_for_each_safe(pos, q, &delayed_uprobe_list) { |
| 1563 | du = list_entry(pos, struct delayed_uprobe, list); |
| 1564 | |
| 1565 | if (du->mm != vma->vm_mm || |
| 1566 | !valid_ref_ctr_vma(du->uprobe, vma)) |
| 1567 | continue; |
| 1568 | |
| 1569 | vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); |
| 1570 | ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); |
| 1571 | if (ret) { |
| 1572 | update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); |
| 1573 | if (!err) |
| 1574 | err = ret; |
| 1575 | } |
| 1576 | delayed_uprobe_delete(du); |
| 1577 | } |
| 1578 | mutex_unlock(&delayed_uprobe_lock); |
| 1579 | return err; |
| 1580 | } |
| 1581 | |
| 1582 | /* |
| 1583 | * Called from mmap_region/vma_merge with mm->mmap_lock acquired. |
| 1584 | * |
| 1585 | * Currently we ignore all errors and always return 0, the callers |
| 1586 | * can't handle the failure anyway. |
| 1587 | */ |
| 1588 | int uprobe_mmap(struct vm_area_struct *vma) |
| 1589 | { |
| 1590 | struct list_head tmp_list; |
| 1591 | struct uprobe *uprobe, *u; |
| 1592 | struct inode *inode; |
| 1593 | |
| 1594 | if (no_uprobe_events()) |
| 1595 | return 0; |
| 1596 | |
| 1597 | if (vma->vm_file && |
| 1598 | (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && |
| 1599 | test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) |
| 1600 | delayed_ref_ctr_inc(vma); |
| 1601 | |
| 1602 | if (!valid_vma(vma, true)) |
| 1603 | return 0; |
| 1604 | |
| 1605 | inode = file_inode(vma->vm_file); |
| 1606 | if (!inode) |
| 1607 | return 0; |
| 1608 | |
| 1609 | mutex_lock(uprobes_mmap_hash(inode)); |
| 1610 | build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); |
| 1611 | /* |
| 1612 | * We can race with uprobe_unregister(), this uprobe can be already |
| 1613 | * removed. But in this case filter_chain() must return false, all |
| 1614 | * consumers have gone away. |
| 1615 | */ |
| 1616 | list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { |
| 1617 | if (!fatal_signal_pending(current) && |
| 1618 | filter_chain(uprobe, vma->vm_mm)) { |
| 1619 | unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); |
| 1620 | install_breakpoint(uprobe, vma, vaddr); |
| 1621 | } |
| 1622 | put_uprobe(uprobe); |
| 1623 | } |
| 1624 | mutex_unlock(uprobes_mmap_hash(inode)); |
| 1625 | |
| 1626 | return 0; |
| 1627 | } |
| 1628 | |
| 1629 | static bool |
| 1630 | vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1631 | { |
| 1632 | loff_t min, max; |
| 1633 | struct inode *inode; |
| 1634 | struct rb_node *n; |
| 1635 | |
| 1636 | inode = file_inode(vma->vm_file); |
| 1637 | |
| 1638 | min = vaddr_to_offset(vma, start); |
| 1639 | max = min + (end - start) - 1; |
| 1640 | |
| 1641 | read_lock(&uprobes_treelock); |
| 1642 | n = find_node_in_range(inode, min, max); |
| 1643 | read_unlock(&uprobes_treelock); |
| 1644 | |
| 1645 | return !!n; |
| 1646 | } |
| 1647 | |
| 1648 | /* |
| 1649 | * Called in context of a munmap of a vma. |
| 1650 | */ |
| 1651 | void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 1652 | { |
| 1653 | if (no_uprobe_events() || !valid_vma(vma, false)) |
| 1654 | return; |
| 1655 | |
| 1656 | if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ |
| 1657 | return; |
| 1658 | |
| 1659 | if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || |
| 1660 | test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) |
| 1661 | return; |
| 1662 | |
| 1663 | if (vma_has_uprobes(vma, start, end)) |
| 1664 | set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); |
| 1665 | } |
| 1666 | |
| 1667 | static vm_fault_t xol_fault(const struct vm_special_mapping *sm, |
| 1668 | struct vm_area_struct *vma, struct vm_fault *vmf) |
| 1669 | { |
| 1670 | struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; |
| 1671 | |
| 1672 | vmf->page = area->page; |
| 1673 | get_page(vmf->page); |
| 1674 | return 0; |
| 1675 | } |
| 1676 | |
| 1677 | static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) |
| 1678 | { |
| 1679 | return -EPERM; |
| 1680 | } |
| 1681 | |
| 1682 | static const struct vm_special_mapping xol_mapping = { |
| 1683 | .name = "[uprobes]", |
| 1684 | .fault = xol_fault, |
| 1685 | .mremap = xol_mremap, |
| 1686 | }; |
| 1687 | |
| 1688 | /* Slot allocation for XOL */ |
| 1689 | static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) |
| 1690 | { |
| 1691 | struct vm_area_struct *vma; |
| 1692 | int ret; |
| 1693 | |
| 1694 | if (mmap_write_lock_killable(mm)) |
| 1695 | return -EINTR; |
| 1696 | |
| 1697 | if (mm->uprobes_state.xol_area) { |
| 1698 | ret = -EALREADY; |
| 1699 | goto fail; |
| 1700 | } |
| 1701 | |
| 1702 | if (!area->vaddr) { |
| 1703 | /* Try to map as high as possible, this is only a hint. */ |
| 1704 | area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, |
| 1705 | PAGE_SIZE, 0, 0); |
| 1706 | if (IS_ERR_VALUE(area->vaddr)) { |
| 1707 | ret = area->vaddr; |
| 1708 | goto fail; |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, |
| 1713 | VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO| |
| 1714 | VM_SEALED_SYSMAP, |
| 1715 | &xol_mapping); |
| 1716 | if (IS_ERR(vma)) { |
| 1717 | ret = PTR_ERR(vma); |
| 1718 | goto fail; |
| 1719 | } |
| 1720 | |
| 1721 | ret = 0; |
| 1722 | /* pairs with get_xol_area() */ |
| 1723 | smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ |
| 1724 | fail: |
| 1725 | mmap_write_unlock(mm); |
| 1726 | |
| 1727 | return ret; |
| 1728 | } |
| 1729 | |
| 1730 | void * __weak arch_uprobe_trampoline(unsigned long *psize) |
| 1731 | { |
| 1732 | static uprobe_opcode_t insn = UPROBE_SWBP_INSN; |
| 1733 | |
| 1734 | *psize = UPROBE_SWBP_INSN_SIZE; |
| 1735 | return &insn; |
| 1736 | } |
| 1737 | |
| 1738 | static struct xol_area *__create_xol_area(unsigned long vaddr) |
| 1739 | { |
| 1740 | struct mm_struct *mm = current->mm; |
| 1741 | unsigned long insns_size; |
| 1742 | struct xol_area *area; |
| 1743 | void *insns; |
| 1744 | |
| 1745 | area = kzalloc(sizeof(*area), GFP_KERNEL); |
| 1746 | if (unlikely(!area)) |
| 1747 | goto out; |
| 1748 | |
| 1749 | area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), |
| 1750 | GFP_KERNEL); |
| 1751 | if (!area->bitmap) |
| 1752 | goto free_area; |
| 1753 | |
| 1754 | area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); |
| 1755 | if (!area->page) |
| 1756 | goto free_bitmap; |
| 1757 | |
| 1758 | area->vaddr = vaddr; |
| 1759 | init_waitqueue_head(&area->wq); |
| 1760 | /* Reserve the 1st slot for get_trampoline_vaddr() */ |
| 1761 | set_bit(0, area->bitmap); |
| 1762 | insns = arch_uprobe_trampoline(&insns_size); |
| 1763 | arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); |
| 1764 | |
| 1765 | if (!xol_add_vma(mm, area)) |
| 1766 | return area; |
| 1767 | |
| 1768 | __free_page(area->page); |
| 1769 | free_bitmap: |
| 1770 | kfree(area->bitmap); |
| 1771 | free_area: |
| 1772 | kfree(area); |
| 1773 | out: |
| 1774 | return NULL; |
| 1775 | } |
| 1776 | |
| 1777 | /* |
| 1778 | * get_xol_area - Allocate process's xol_area if necessary. |
| 1779 | * This area will be used for storing instructions for execution out of line. |
| 1780 | * |
| 1781 | * Returns the allocated area or NULL. |
| 1782 | */ |
| 1783 | static struct xol_area *get_xol_area(void) |
| 1784 | { |
| 1785 | struct mm_struct *mm = current->mm; |
| 1786 | struct xol_area *area; |
| 1787 | |
| 1788 | if (!mm->uprobes_state.xol_area) |
| 1789 | __create_xol_area(0); |
| 1790 | |
| 1791 | /* Pairs with xol_add_vma() smp_store_release() */ |
| 1792 | area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ |
| 1793 | return area; |
| 1794 | } |
| 1795 | |
| 1796 | /* |
| 1797 | * uprobe_clear_state - Free the area allocated for slots. |
| 1798 | */ |
| 1799 | void uprobe_clear_state(struct mm_struct *mm) |
| 1800 | { |
| 1801 | struct xol_area *area = mm->uprobes_state.xol_area; |
| 1802 | |
| 1803 | mutex_lock(&delayed_uprobe_lock); |
| 1804 | delayed_uprobe_remove(NULL, mm); |
| 1805 | mutex_unlock(&delayed_uprobe_lock); |
| 1806 | |
| 1807 | if (!area) |
| 1808 | return; |
| 1809 | |
| 1810 | put_page(area->page); |
| 1811 | kfree(area->bitmap); |
| 1812 | kfree(area); |
| 1813 | } |
| 1814 | |
| 1815 | void uprobe_start_dup_mmap(void) |
| 1816 | { |
| 1817 | percpu_down_read(&dup_mmap_sem); |
| 1818 | } |
| 1819 | |
| 1820 | void uprobe_end_dup_mmap(void) |
| 1821 | { |
| 1822 | percpu_up_read(&dup_mmap_sem); |
| 1823 | } |
| 1824 | |
| 1825 | void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) |
| 1826 | { |
| 1827 | if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { |
| 1828 | set_bit(MMF_HAS_UPROBES, &newmm->flags); |
| 1829 | /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ |
| 1830 | set_bit(MMF_RECALC_UPROBES, &newmm->flags); |
| 1831 | } |
| 1832 | } |
| 1833 | |
| 1834 | static unsigned long xol_get_slot_nr(struct xol_area *area) |
| 1835 | { |
| 1836 | unsigned long slot_nr; |
| 1837 | |
| 1838 | slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); |
| 1839 | if (slot_nr < UINSNS_PER_PAGE) { |
| 1840 | if (!test_and_set_bit(slot_nr, area->bitmap)) |
| 1841 | return slot_nr; |
| 1842 | } |
| 1843 | |
| 1844 | return UINSNS_PER_PAGE; |
| 1845 | } |
| 1846 | |
| 1847 | /* |
| 1848 | * xol_get_insn_slot - allocate a slot for xol. |
| 1849 | */ |
| 1850 | static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) |
| 1851 | { |
| 1852 | struct xol_area *area = get_xol_area(); |
| 1853 | unsigned long slot_nr; |
| 1854 | |
| 1855 | if (!area) |
| 1856 | return false; |
| 1857 | |
| 1858 | wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); |
| 1859 | |
| 1860 | utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; |
| 1861 | arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, |
| 1862 | &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); |
| 1863 | return true; |
| 1864 | } |
| 1865 | |
| 1866 | /* |
| 1867 | * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() |
| 1868 | */ |
| 1869 | static void xol_free_insn_slot(struct uprobe_task *utask) |
| 1870 | { |
| 1871 | struct xol_area *area = current->mm->uprobes_state.xol_area; |
| 1872 | unsigned long offset = utask->xol_vaddr - area->vaddr; |
| 1873 | unsigned int slot_nr; |
| 1874 | |
| 1875 | utask->xol_vaddr = 0; |
| 1876 | /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ |
| 1877 | if (WARN_ON_ONCE(offset >= PAGE_SIZE)) |
| 1878 | return; |
| 1879 | |
| 1880 | slot_nr = offset / UPROBE_XOL_SLOT_BYTES; |
| 1881 | clear_bit(slot_nr, area->bitmap); |
| 1882 | smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ |
| 1883 | if (waitqueue_active(&area->wq)) |
| 1884 | wake_up(&area->wq); |
| 1885 | } |
| 1886 | |
| 1887 | void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, |
| 1888 | void *src, unsigned long len) |
| 1889 | { |
| 1890 | /* Initialize the slot */ |
| 1891 | copy_to_page(page, vaddr, src, len); |
| 1892 | |
| 1893 | /* |
| 1894 | * We probably need flush_icache_user_page() but it needs vma. |
| 1895 | * This should work on most of architectures by default. If |
| 1896 | * architecture needs to do something different it can define |
| 1897 | * its own version of the function. |
| 1898 | */ |
| 1899 | flush_dcache_page(page); |
| 1900 | } |
| 1901 | |
| 1902 | /** |
| 1903 | * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs |
| 1904 | * @regs: Reflects the saved state of the task after it has hit a breakpoint |
| 1905 | * instruction. |
| 1906 | * Return the address of the breakpoint instruction. |
| 1907 | */ |
| 1908 | unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) |
| 1909 | { |
| 1910 | return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; |
| 1911 | } |
| 1912 | |
| 1913 | unsigned long uprobe_get_trap_addr(struct pt_regs *regs) |
| 1914 | { |
| 1915 | struct uprobe_task *utask = current->utask; |
| 1916 | |
| 1917 | if (unlikely(utask && utask->active_uprobe)) |
| 1918 | return utask->vaddr; |
| 1919 | |
| 1920 | return instruction_pointer(regs); |
| 1921 | } |
| 1922 | |
| 1923 | static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri) |
| 1924 | { |
| 1925 | ri->cons_cnt = 0; |
| 1926 | ri->next = utask->ri_pool; |
| 1927 | utask->ri_pool = ri; |
| 1928 | } |
| 1929 | |
| 1930 | static struct return_instance *ri_pool_pop(struct uprobe_task *utask) |
| 1931 | { |
| 1932 | struct return_instance *ri = utask->ri_pool; |
| 1933 | |
| 1934 | if (likely(ri)) |
| 1935 | utask->ri_pool = ri->next; |
| 1936 | |
| 1937 | return ri; |
| 1938 | } |
| 1939 | |
| 1940 | static void ri_free(struct return_instance *ri) |
| 1941 | { |
| 1942 | kfree(ri->extra_consumers); |
| 1943 | kfree_rcu(ri, rcu); |
| 1944 | } |
| 1945 | |
| 1946 | static void free_ret_instance(struct uprobe_task *utask, |
| 1947 | struct return_instance *ri, bool cleanup_hprobe) |
| 1948 | { |
| 1949 | unsigned seq; |
| 1950 | |
| 1951 | if (cleanup_hprobe) { |
| 1952 | enum hprobe_state hstate; |
| 1953 | |
| 1954 | (void)hprobe_consume(&ri->hprobe, &hstate); |
| 1955 | hprobe_finalize(&ri->hprobe, hstate); |
| 1956 | } |
| 1957 | |
| 1958 | /* |
| 1959 | * At this point return_instance is unlinked from utask's |
| 1960 | * return_instances list and this has become visible to ri_timer(). |
| 1961 | * If seqcount now indicates that ri_timer's return instance |
| 1962 | * processing loop isn't active, we can return ri into the pool of |
| 1963 | * to-be-reused return instances for future uretprobes. If ri_timer() |
| 1964 | * happens to be running right now, though, we fallback to safety and |
| 1965 | * just perform RCU-delated freeing of ri. |
| 1966 | * Admittedly, this is a rather simple use of seqcount, but it nicely |
| 1967 | * abstracts away all the necessary memory barriers, so we use |
| 1968 | * a well-supported kernel primitive here. |
| 1969 | */ |
| 1970 | if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) { |
| 1971 | /* immediate reuse of ri without RCU GP is OK */ |
| 1972 | ri_pool_push(utask, ri); |
| 1973 | } else { |
| 1974 | /* we might be racing with ri_timer(), so play it safe */ |
| 1975 | ri_free(ri); |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | /* |
| 1980 | * Called with no locks held. |
| 1981 | * Called in context of an exiting or an exec-ing thread. |
| 1982 | */ |
| 1983 | void uprobe_free_utask(struct task_struct *t) |
| 1984 | { |
| 1985 | struct uprobe_task *utask = t->utask; |
| 1986 | struct return_instance *ri, *ri_next; |
| 1987 | |
| 1988 | if (!utask) |
| 1989 | return; |
| 1990 | |
| 1991 | t->utask = NULL; |
| 1992 | WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); |
| 1993 | |
| 1994 | timer_delete_sync(&utask->ri_timer); |
| 1995 | |
| 1996 | ri = utask->return_instances; |
| 1997 | while (ri) { |
| 1998 | ri_next = ri->next; |
| 1999 | free_ret_instance(utask, ri, true /* cleanup_hprobe */); |
| 2000 | ri = ri_next; |
| 2001 | } |
| 2002 | |
| 2003 | /* free_ret_instance() above might add to ri_pool, so this loop should come last */ |
| 2004 | ri = utask->ri_pool; |
| 2005 | while (ri) { |
| 2006 | ri_next = ri->next; |
| 2007 | ri_free(ri); |
| 2008 | ri = ri_next; |
| 2009 | } |
| 2010 | |
| 2011 | kfree(utask); |
| 2012 | } |
| 2013 | |
| 2014 | #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ |
| 2015 | |
| 2016 | #define for_each_ret_instance_rcu(pos, head) \ |
| 2017 | for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) |
| 2018 | |
| 2019 | static void ri_timer(struct timer_list *timer) |
| 2020 | { |
| 2021 | struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); |
| 2022 | struct return_instance *ri; |
| 2023 | |
| 2024 | /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ |
| 2025 | guard(srcu)(&uretprobes_srcu); |
| 2026 | /* RCU protects return_instance from freeing. */ |
| 2027 | guard(rcu)(); |
| 2028 | |
| 2029 | /* |
| 2030 | * See free_ret_instance() for notes on seqcount use. |
| 2031 | * We also employ raw API variants to avoid lockdep false-positive |
| 2032 | * warning complaining about enabled preemption. The timer can only be |
| 2033 | * invoked once for a uprobe_task. Therefore there can only be one |
| 2034 | * writer. The reader does not require an even sequence count to make |
| 2035 | * progress, so it is OK to remain preemptible on PREEMPT_RT. |
| 2036 | */ |
| 2037 | raw_write_seqcount_begin(&utask->ri_seqcount); |
| 2038 | |
| 2039 | for_each_ret_instance_rcu(ri, utask->return_instances) |
| 2040 | hprobe_expire(&ri->hprobe, false); |
| 2041 | |
| 2042 | raw_write_seqcount_end(&utask->ri_seqcount); |
| 2043 | } |
| 2044 | |
| 2045 | static struct uprobe_task *alloc_utask(void) |
| 2046 | { |
| 2047 | struct uprobe_task *utask; |
| 2048 | |
| 2049 | utask = kzalloc(sizeof(*utask), GFP_KERNEL); |
| 2050 | if (!utask) |
| 2051 | return NULL; |
| 2052 | |
| 2053 | timer_setup(&utask->ri_timer, ri_timer, 0); |
| 2054 | seqcount_init(&utask->ri_seqcount); |
| 2055 | |
| 2056 | return utask; |
| 2057 | } |
| 2058 | |
| 2059 | /* |
| 2060 | * Allocate a uprobe_task object for the task if necessary. |
| 2061 | * Called when the thread hits a breakpoint. |
| 2062 | * |
| 2063 | * Returns: |
| 2064 | * - pointer to new uprobe_task on success |
| 2065 | * - NULL otherwise |
| 2066 | */ |
| 2067 | static struct uprobe_task *get_utask(void) |
| 2068 | { |
| 2069 | if (!current->utask) |
| 2070 | current->utask = alloc_utask(); |
| 2071 | return current->utask; |
| 2072 | } |
| 2073 | |
| 2074 | static struct return_instance *alloc_return_instance(struct uprobe_task *utask) |
| 2075 | { |
| 2076 | struct return_instance *ri; |
| 2077 | |
| 2078 | ri = ri_pool_pop(utask); |
| 2079 | if (ri) |
| 2080 | return ri; |
| 2081 | |
| 2082 | ri = kzalloc(sizeof(*ri), GFP_KERNEL); |
| 2083 | if (!ri) |
| 2084 | return ZERO_SIZE_PTR; |
| 2085 | |
| 2086 | return ri; |
| 2087 | } |
| 2088 | |
| 2089 | static struct return_instance *dup_return_instance(struct return_instance *old) |
| 2090 | { |
| 2091 | struct return_instance *ri; |
| 2092 | |
| 2093 | ri = kmemdup(old, sizeof(*ri), GFP_KERNEL); |
| 2094 | if (!ri) |
| 2095 | return NULL; |
| 2096 | |
| 2097 | if (unlikely(old->cons_cnt > 1)) { |
| 2098 | ri->extra_consumers = kmemdup(old->extra_consumers, |
| 2099 | sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1), |
| 2100 | GFP_KERNEL); |
| 2101 | if (!ri->extra_consumers) { |
| 2102 | kfree(ri); |
| 2103 | return NULL; |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | return ri; |
| 2108 | } |
| 2109 | |
| 2110 | static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) |
| 2111 | { |
| 2112 | struct uprobe_task *n_utask; |
| 2113 | struct return_instance **p, *o, *n; |
| 2114 | struct uprobe *uprobe; |
| 2115 | |
| 2116 | n_utask = alloc_utask(); |
| 2117 | if (!n_utask) |
| 2118 | return -ENOMEM; |
| 2119 | t->utask = n_utask; |
| 2120 | |
| 2121 | /* protect uprobes from freeing, we'll need try_get_uprobe() them */ |
| 2122 | guard(srcu)(&uretprobes_srcu); |
| 2123 | |
| 2124 | p = &n_utask->return_instances; |
| 2125 | for (o = o_utask->return_instances; o; o = o->next) { |
| 2126 | n = dup_return_instance(o); |
| 2127 | if (!n) |
| 2128 | return -ENOMEM; |
| 2129 | |
| 2130 | /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ |
| 2131 | uprobe = hprobe_expire(&o->hprobe, true); |
| 2132 | |
| 2133 | /* |
| 2134 | * New utask will have stable properly refcounted uprobe or |
| 2135 | * NULL. Even if we failed to get refcounted uprobe, we still |
| 2136 | * need to preserve full set of return_instances for proper |
| 2137 | * uretprobe handling and nesting in forked task. |
| 2138 | */ |
| 2139 | hprobe_init_stable(&n->hprobe, uprobe); |
| 2140 | |
| 2141 | n->next = NULL; |
| 2142 | rcu_assign_pointer(*p, n); |
| 2143 | p = &n->next; |
| 2144 | |
| 2145 | n_utask->depth++; |
| 2146 | } |
| 2147 | |
| 2148 | return 0; |
| 2149 | } |
| 2150 | |
| 2151 | static void dup_xol_work(struct callback_head *work) |
| 2152 | { |
| 2153 | if (current->flags & PF_EXITING) |
| 2154 | return; |
| 2155 | |
| 2156 | if (!__create_xol_area(current->utask->dup_xol_addr) && |
| 2157 | !fatal_signal_pending(current)) |
| 2158 | uprobe_warn(current, "dup xol area"); |
| 2159 | } |
| 2160 | |
| 2161 | /* |
| 2162 | * Called in context of a new clone/fork from copy_process. |
| 2163 | */ |
| 2164 | void uprobe_copy_process(struct task_struct *t, unsigned long flags) |
| 2165 | { |
| 2166 | struct uprobe_task *utask = current->utask; |
| 2167 | struct mm_struct *mm = current->mm; |
| 2168 | struct xol_area *area; |
| 2169 | |
| 2170 | t->utask = NULL; |
| 2171 | |
| 2172 | if (!utask || !utask->return_instances) |
| 2173 | return; |
| 2174 | |
| 2175 | if (mm == t->mm && !(flags & CLONE_VFORK)) |
| 2176 | return; |
| 2177 | |
| 2178 | if (dup_utask(t, utask)) |
| 2179 | return uprobe_warn(t, "dup ret instances"); |
| 2180 | |
| 2181 | /* The task can fork() after dup_xol_work() fails */ |
| 2182 | area = mm->uprobes_state.xol_area; |
| 2183 | if (!area) |
| 2184 | return uprobe_warn(t, "dup xol area"); |
| 2185 | |
| 2186 | if (mm == t->mm) |
| 2187 | return; |
| 2188 | |
| 2189 | t->utask->dup_xol_addr = area->vaddr; |
| 2190 | init_task_work(&t->utask->dup_xol_work, dup_xol_work); |
| 2191 | task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); |
| 2192 | } |
| 2193 | |
| 2194 | /* |
| 2195 | * Current area->vaddr notion assume the trampoline address is always |
| 2196 | * equal area->vaddr. |
| 2197 | * |
| 2198 | * Returns -1 in case the xol_area is not allocated. |
| 2199 | */ |
| 2200 | unsigned long uprobe_get_trampoline_vaddr(void) |
| 2201 | { |
| 2202 | unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR; |
| 2203 | struct xol_area *area; |
| 2204 | |
| 2205 | /* Pairs with xol_add_vma() smp_store_release() */ |
| 2206 | area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ |
| 2207 | if (area) |
| 2208 | trampoline_vaddr = area->vaddr; |
| 2209 | |
| 2210 | return trampoline_vaddr; |
| 2211 | } |
| 2212 | |
| 2213 | static void cleanup_return_instances(struct uprobe_task *utask, bool chained, |
| 2214 | struct pt_regs *regs) |
| 2215 | { |
| 2216 | struct return_instance *ri = utask->return_instances, *ri_next; |
| 2217 | enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; |
| 2218 | |
| 2219 | while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { |
| 2220 | ri_next = ri->next; |
| 2221 | rcu_assign_pointer(utask->return_instances, ri_next); |
| 2222 | utask->depth--; |
| 2223 | |
| 2224 | free_ret_instance(utask, ri, true /* cleanup_hprobe */); |
| 2225 | ri = ri_next; |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, |
| 2230 | struct return_instance *ri) |
| 2231 | { |
| 2232 | struct uprobe_task *utask = current->utask; |
| 2233 | unsigned long orig_ret_vaddr, trampoline_vaddr; |
| 2234 | bool chained; |
| 2235 | int srcu_idx; |
| 2236 | |
| 2237 | if (!get_xol_area()) |
| 2238 | goto free; |
| 2239 | |
| 2240 | if (utask->depth >= MAX_URETPROBE_DEPTH) { |
| 2241 | printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" |
| 2242 | " nestedness limit pid/tgid=%d/%d\n", |
| 2243 | current->pid, current->tgid); |
| 2244 | goto free; |
| 2245 | } |
| 2246 | |
| 2247 | trampoline_vaddr = uprobe_get_trampoline_vaddr(); |
| 2248 | orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); |
| 2249 | if (orig_ret_vaddr == -1) |
| 2250 | goto free; |
| 2251 | |
| 2252 | /* drop the entries invalidated by longjmp() */ |
| 2253 | chained = (orig_ret_vaddr == trampoline_vaddr); |
| 2254 | cleanup_return_instances(utask, chained, regs); |
| 2255 | |
| 2256 | /* |
| 2257 | * We don't want to keep trampoline address in stack, rather keep the |
| 2258 | * original return address of first caller thru all the consequent |
| 2259 | * instances. This also makes breakpoint unwrapping easier. |
| 2260 | */ |
| 2261 | if (chained) { |
| 2262 | if (!utask->return_instances) { |
| 2263 | /* |
| 2264 | * This situation is not possible. Likely we have an |
| 2265 | * attack from user-space. |
| 2266 | */ |
| 2267 | uprobe_warn(current, "handle tail call"); |
| 2268 | goto free; |
| 2269 | } |
| 2270 | orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; |
| 2271 | } |
| 2272 | |
| 2273 | /* __srcu_read_lock() because SRCU lock survives switch to user space */ |
| 2274 | srcu_idx = __srcu_read_lock(&uretprobes_srcu); |
| 2275 | |
| 2276 | ri->func = instruction_pointer(regs); |
| 2277 | ri->stack = user_stack_pointer(regs); |
| 2278 | ri->orig_ret_vaddr = orig_ret_vaddr; |
| 2279 | ri->chained = chained; |
| 2280 | |
| 2281 | utask->depth++; |
| 2282 | |
| 2283 | hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); |
| 2284 | ri->next = utask->return_instances; |
| 2285 | rcu_assign_pointer(utask->return_instances, ri); |
| 2286 | |
| 2287 | mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); |
| 2288 | |
| 2289 | return; |
| 2290 | free: |
| 2291 | ri_free(ri); |
| 2292 | } |
| 2293 | |
| 2294 | /* Prepare to single-step probed instruction out of line. */ |
| 2295 | static int |
| 2296 | pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) |
| 2297 | { |
| 2298 | struct uprobe_task *utask = current->utask; |
| 2299 | int err; |
| 2300 | |
| 2301 | if (!try_get_uprobe(uprobe)) |
| 2302 | return -EINVAL; |
| 2303 | |
| 2304 | if (!xol_get_insn_slot(uprobe, utask)) { |
| 2305 | err = -ENOMEM; |
| 2306 | goto err_out; |
| 2307 | } |
| 2308 | |
| 2309 | utask->vaddr = bp_vaddr; |
| 2310 | err = arch_uprobe_pre_xol(&uprobe->arch, regs); |
| 2311 | if (unlikely(err)) { |
| 2312 | xol_free_insn_slot(utask); |
| 2313 | goto err_out; |
| 2314 | } |
| 2315 | |
| 2316 | utask->active_uprobe = uprobe; |
| 2317 | utask->state = UTASK_SSTEP; |
| 2318 | return 0; |
| 2319 | err_out: |
| 2320 | put_uprobe(uprobe); |
| 2321 | return err; |
| 2322 | } |
| 2323 | |
| 2324 | /* |
| 2325 | * If we are singlestepping, then ensure this thread is not connected to |
| 2326 | * non-fatal signals until completion of singlestep. When xol insn itself |
| 2327 | * triggers the signal, restart the original insn even if the task is |
| 2328 | * already SIGKILL'ed (since coredump should report the correct ip). This |
| 2329 | * is even more important if the task has a handler for SIGSEGV/etc, The |
| 2330 | * _same_ instruction should be repeated again after return from the signal |
| 2331 | * handler, and SSTEP can never finish in this case. |
| 2332 | */ |
| 2333 | bool uprobe_deny_signal(void) |
| 2334 | { |
| 2335 | struct task_struct *t = current; |
| 2336 | struct uprobe_task *utask = t->utask; |
| 2337 | |
| 2338 | if (likely(!utask || !utask->active_uprobe)) |
| 2339 | return false; |
| 2340 | |
| 2341 | WARN_ON_ONCE(utask->state != UTASK_SSTEP); |
| 2342 | |
| 2343 | if (task_sigpending(t)) { |
| 2344 | utask->signal_denied = true; |
| 2345 | clear_tsk_thread_flag(t, TIF_SIGPENDING); |
| 2346 | |
| 2347 | if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { |
| 2348 | utask->state = UTASK_SSTEP_TRAPPED; |
| 2349 | set_tsk_thread_flag(t, TIF_UPROBE); |
| 2350 | } |
| 2351 | } |
| 2352 | |
| 2353 | return true; |
| 2354 | } |
| 2355 | |
| 2356 | static void mmf_recalc_uprobes(struct mm_struct *mm) |
| 2357 | { |
| 2358 | VMA_ITERATOR(vmi, mm, 0); |
| 2359 | struct vm_area_struct *vma; |
| 2360 | |
| 2361 | for_each_vma(vmi, vma) { |
| 2362 | if (!valid_vma(vma, false)) |
| 2363 | continue; |
| 2364 | /* |
| 2365 | * This is not strictly accurate, we can race with |
| 2366 | * uprobe_unregister() and see the already removed |
| 2367 | * uprobe if delete_uprobe() was not yet called. |
| 2368 | * Or this uprobe can be filtered out. |
| 2369 | */ |
| 2370 | if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) |
| 2371 | return; |
| 2372 | } |
| 2373 | |
| 2374 | clear_bit(MMF_HAS_UPROBES, &mm->flags); |
| 2375 | } |
| 2376 | |
| 2377 | static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) |
| 2378 | { |
| 2379 | struct page *page; |
| 2380 | uprobe_opcode_t opcode; |
| 2381 | int result; |
| 2382 | |
| 2383 | if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) |
| 2384 | return -EINVAL; |
| 2385 | |
| 2386 | pagefault_disable(); |
| 2387 | result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); |
| 2388 | pagefault_enable(); |
| 2389 | |
| 2390 | if (likely(result == 0)) |
| 2391 | goto out; |
| 2392 | |
| 2393 | result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); |
| 2394 | if (result < 0) |
| 2395 | return result; |
| 2396 | |
| 2397 | copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); |
| 2398 | put_page(page); |
| 2399 | out: |
| 2400 | /* This needs to return true for any variant of the trap insn */ |
| 2401 | return is_trap_insn(&opcode); |
| 2402 | } |
| 2403 | |
| 2404 | static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr) |
| 2405 | { |
| 2406 | struct mm_struct *mm = current->mm; |
| 2407 | struct uprobe *uprobe = NULL; |
| 2408 | struct vm_area_struct *vma; |
| 2409 | struct file *vm_file; |
| 2410 | loff_t offset; |
| 2411 | unsigned int seq; |
| 2412 | |
| 2413 | guard(rcu)(); |
| 2414 | |
| 2415 | if (!mmap_lock_speculate_try_begin(mm, &seq)) |
| 2416 | return NULL; |
| 2417 | |
| 2418 | vma = vma_lookup(mm, bp_vaddr); |
| 2419 | if (!vma) |
| 2420 | return NULL; |
| 2421 | |
| 2422 | /* |
| 2423 | * vm_file memory can be reused for another instance of struct file, |
| 2424 | * but can't be freed from under us, so it's safe to read fields from |
| 2425 | * it, even if the values are some garbage values; ultimately |
| 2426 | * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure |
| 2427 | * that whatever we speculatively found is correct |
| 2428 | */ |
| 2429 | vm_file = READ_ONCE(vma->vm_file); |
| 2430 | if (!vm_file) |
| 2431 | return NULL; |
| 2432 | |
| 2433 | offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start); |
| 2434 | uprobe = find_uprobe_rcu(vm_file->f_inode, offset); |
| 2435 | if (!uprobe) |
| 2436 | return NULL; |
| 2437 | |
| 2438 | /* now double check that nothing about MM changed */ |
| 2439 | if (mmap_lock_speculate_retry(mm, seq)) |
| 2440 | return NULL; |
| 2441 | |
| 2442 | return uprobe; |
| 2443 | } |
| 2444 | |
| 2445 | /* assumes being inside RCU protected region */ |
| 2446 | static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) |
| 2447 | { |
| 2448 | struct mm_struct *mm = current->mm; |
| 2449 | struct uprobe *uprobe = NULL; |
| 2450 | struct vm_area_struct *vma; |
| 2451 | |
| 2452 | uprobe = find_active_uprobe_speculative(bp_vaddr); |
| 2453 | if (uprobe) |
| 2454 | return uprobe; |
| 2455 | |
| 2456 | mmap_read_lock(mm); |
| 2457 | vma = vma_lookup(mm, bp_vaddr); |
| 2458 | if (vma) { |
| 2459 | if (vma->vm_file) { |
| 2460 | struct inode *inode = file_inode(vma->vm_file); |
| 2461 | loff_t offset = vaddr_to_offset(vma, bp_vaddr); |
| 2462 | |
| 2463 | uprobe = find_uprobe_rcu(inode, offset); |
| 2464 | } |
| 2465 | |
| 2466 | if (!uprobe) |
| 2467 | *is_swbp = is_trap_at_addr(mm, bp_vaddr); |
| 2468 | } else { |
| 2469 | *is_swbp = -EFAULT; |
| 2470 | } |
| 2471 | |
| 2472 | if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) |
| 2473 | mmf_recalc_uprobes(mm); |
| 2474 | mmap_read_unlock(mm); |
| 2475 | |
| 2476 | return uprobe; |
| 2477 | } |
| 2478 | |
| 2479 | static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie) |
| 2480 | { |
| 2481 | struct return_consumer *ric; |
| 2482 | |
| 2483 | if (unlikely(ri == ZERO_SIZE_PTR)) |
| 2484 | return ri; |
| 2485 | |
| 2486 | if (unlikely(ri->cons_cnt > 0)) { |
| 2487 | ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL); |
| 2488 | if (!ric) { |
| 2489 | ri_free(ri); |
| 2490 | return ZERO_SIZE_PTR; |
| 2491 | } |
| 2492 | ri->extra_consumers = ric; |
| 2493 | } |
| 2494 | |
| 2495 | ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1]; |
| 2496 | ric->id = id; |
| 2497 | ric->cookie = cookie; |
| 2498 | |
| 2499 | ri->cons_cnt++; |
| 2500 | return ri; |
| 2501 | } |
| 2502 | |
| 2503 | static struct return_consumer * |
| 2504 | return_consumer_find(struct return_instance *ri, int *iter, int id) |
| 2505 | { |
| 2506 | struct return_consumer *ric; |
| 2507 | int idx; |
| 2508 | |
| 2509 | for (idx = *iter; idx < ri->cons_cnt; idx++) |
| 2510 | { |
| 2511 | ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1]; |
| 2512 | if (ric->id == id) { |
| 2513 | *iter = idx + 1; |
| 2514 | return ric; |
| 2515 | } |
| 2516 | } |
| 2517 | |
| 2518 | return NULL; |
| 2519 | } |
| 2520 | |
| 2521 | static bool ignore_ret_handler(int rc) |
| 2522 | { |
| 2523 | return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; |
| 2524 | } |
| 2525 | |
| 2526 | static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) |
| 2527 | { |
| 2528 | struct uprobe_consumer *uc; |
| 2529 | bool has_consumers = false, remove = true; |
| 2530 | struct return_instance *ri = NULL; |
| 2531 | struct uprobe_task *utask = current->utask; |
| 2532 | |
| 2533 | utask->auprobe = &uprobe->arch; |
| 2534 | |
| 2535 | list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { |
| 2536 | bool session = uc->handler && uc->ret_handler; |
| 2537 | __u64 cookie = 0; |
| 2538 | int rc = 0; |
| 2539 | |
| 2540 | if (uc->handler) { |
| 2541 | rc = uc->handler(uc, regs, &cookie); |
| 2542 | WARN(rc < 0 || rc > 2, |
| 2543 | "bad rc=0x%x from %ps()\n", rc, uc->handler); |
| 2544 | } |
| 2545 | |
| 2546 | remove &= rc == UPROBE_HANDLER_REMOVE; |
| 2547 | has_consumers = true; |
| 2548 | |
| 2549 | if (!uc->ret_handler || ignore_ret_handler(rc)) |
| 2550 | continue; |
| 2551 | |
| 2552 | if (!ri) |
| 2553 | ri = alloc_return_instance(utask); |
| 2554 | |
| 2555 | if (session) |
| 2556 | ri = push_consumer(ri, uc->id, cookie); |
| 2557 | } |
| 2558 | utask->auprobe = NULL; |
| 2559 | |
| 2560 | if (!ZERO_OR_NULL_PTR(ri)) |
| 2561 | prepare_uretprobe(uprobe, regs, ri); |
| 2562 | |
| 2563 | if (remove && has_consumers) { |
| 2564 | down_read(&uprobe->register_rwsem); |
| 2565 | |
| 2566 | /* re-check that removal is still required, this time under lock */ |
| 2567 | if (!filter_chain(uprobe, current->mm)) { |
| 2568 | WARN_ON(!uprobe_is_active(uprobe)); |
| 2569 | unapply_uprobe(uprobe, current->mm); |
| 2570 | } |
| 2571 | |
| 2572 | up_read(&uprobe->register_rwsem); |
| 2573 | } |
| 2574 | } |
| 2575 | |
| 2576 | static void |
| 2577 | handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) |
| 2578 | { |
| 2579 | struct return_consumer *ric; |
| 2580 | struct uprobe_consumer *uc; |
| 2581 | int ric_idx = 0; |
| 2582 | |
| 2583 | /* all consumers unsubscribed meanwhile */ |
| 2584 | if (unlikely(!uprobe)) |
| 2585 | return; |
| 2586 | |
| 2587 | rcu_read_lock_trace(); |
| 2588 | list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { |
| 2589 | bool session = uc->handler && uc->ret_handler; |
| 2590 | |
| 2591 | if (uc->ret_handler) { |
| 2592 | ric = return_consumer_find(ri, &ric_idx, uc->id); |
| 2593 | if (!session || ric) |
| 2594 | uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); |
| 2595 | } |
| 2596 | } |
| 2597 | rcu_read_unlock_trace(); |
| 2598 | } |
| 2599 | |
| 2600 | static struct return_instance *find_next_ret_chain(struct return_instance *ri) |
| 2601 | { |
| 2602 | bool chained; |
| 2603 | |
| 2604 | do { |
| 2605 | chained = ri->chained; |
| 2606 | ri = ri->next; /* can't be NULL if chained */ |
| 2607 | } while (chained); |
| 2608 | |
| 2609 | return ri; |
| 2610 | } |
| 2611 | |
| 2612 | void uprobe_handle_trampoline(struct pt_regs *regs) |
| 2613 | { |
| 2614 | struct uprobe_task *utask; |
| 2615 | struct return_instance *ri, *ri_next, *next_chain; |
| 2616 | struct uprobe *uprobe; |
| 2617 | enum hprobe_state hstate; |
| 2618 | bool valid; |
| 2619 | |
| 2620 | utask = current->utask; |
| 2621 | if (!utask) |
| 2622 | goto sigill; |
| 2623 | |
| 2624 | ri = utask->return_instances; |
| 2625 | if (!ri) |
| 2626 | goto sigill; |
| 2627 | |
| 2628 | do { |
| 2629 | /* |
| 2630 | * We should throw out the frames invalidated by longjmp(). |
| 2631 | * If this chain is valid, then the next one should be alive |
| 2632 | * or NULL; the latter case means that nobody but ri->func |
| 2633 | * could hit this trampoline on return. TODO: sigaltstack(). |
| 2634 | */ |
| 2635 | next_chain = find_next_ret_chain(ri); |
| 2636 | valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs); |
| 2637 | |
| 2638 | instruction_pointer_set(regs, ri->orig_ret_vaddr); |
| 2639 | do { |
| 2640 | /* pop current instance from the stack of pending return instances, |
| 2641 | * as it's not pending anymore: we just fixed up original |
| 2642 | * instruction pointer in regs and are about to call handlers; |
| 2643 | * this allows fixup_uretprobe_trampoline_entries() to properly fix up |
| 2644 | * captured stack traces from uretprobe handlers, in which pending |
| 2645 | * trampoline addresses on the stack are replaced with correct |
| 2646 | * original return addresses |
| 2647 | */ |
| 2648 | ri_next = ri->next; |
| 2649 | rcu_assign_pointer(utask->return_instances, ri_next); |
| 2650 | utask->depth--; |
| 2651 | |
| 2652 | uprobe = hprobe_consume(&ri->hprobe, &hstate); |
| 2653 | if (valid) |
| 2654 | handle_uretprobe_chain(ri, uprobe, regs); |
| 2655 | hprobe_finalize(&ri->hprobe, hstate); |
| 2656 | |
| 2657 | /* We already took care of hprobe, no need to waste more time on that. */ |
| 2658 | free_ret_instance(utask, ri, false /* !cleanup_hprobe */); |
| 2659 | ri = ri_next; |
| 2660 | } while (ri != next_chain); |
| 2661 | } while (!valid); |
| 2662 | |
| 2663 | return; |
| 2664 | |
| 2665 | sigill: |
| 2666 | uprobe_warn(current, "handle uretprobe, sending SIGILL."); |
| 2667 | force_sig(SIGILL); |
| 2668 | } |
| 2669 | |
| 2670 | bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) |
| 2671 | { |
| 2672 | return false; |
| 2673 | } |
| 2674 | |
| 2675 | bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, |
| 2676 | struct pt_regs *regs) |
| 2677 | { |
| 2678 | return true; |
| 2679 | } |
| 2680 | |
| 2681 | /* |
| 2682 | * Run handler and ask thread to singlestep. |
| 2683 | * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. |
| 2684 | */ |
| 2685 | static void handle_swbp(struct pt_regs *regs) |
| 2686 | { |
| 2687 | struct uprobe *uprobe; |
| 2688 | unsigned long bp_vaddr; |
| 2689 | int is_swbp; |
| 2690 | |
| 2691 | bp_vaddr = uprobe_get_swbp_addr(regs); |
| 2692 | if (bp_vaddr == uprobe_get_trampoline_vaddr()) |
| 2693 | return uprobe_handle_trampoline(regs); |
| 2694 | |
| 2695 | rcu_read_lock_trace(); |
| 2696 | |
| 2697 | uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); |
| 2698 | if (!uprobe) { |
| 2699 | if (is_swbp > 0) { |
| 2700 | /* No matching uprobe; signal SIGTRAP. */ |
| 2701 | force_sig(SIGTRAP); |
| 2702 | } else { |
| 2703 | /* |
| 2704 | * Either we raced with uprobe_unregister() or we can't |
| 2705 | * access this memory. The latter is only possible if |
| 2706 | * another thread plays with our ->mm. In both cases |
| 2707 | * we can simply restart. If this vma was unmapped we |
| 2708 | * can pretend this insn was not executed yet and get |
| 2709 | * the (correct) SIGSEGV after restart. |
| 2710 | */ |
| 2711 | instruction_pointer_set(regs, bp_vaddr); |
| 2712 | } |
| 2713 | goto out; |
| 2714 | } |
| 2715 | |
| 2716 | /* change it in advance for ->handler() and restart */ |
| 2717 | instruction_pointer_set(regs, bp_vaddr); |
| 2718 | |
| 2719 | /* |
| 2720 | * TODO: move copy_insn/etc into _register and remove this hack. |
| 2721 | * After we hit the bp, _unregister + _register can install the |
| 2722 | * new and not-yet-analyzed uprobe at the same address, restart. |
| 2723 | */ |
| 2724 | if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) |
| 2725 | goto out; |
| 2726 | |
| 2727 | /* |
| 2728 | * Pairs with the smp_wmb() in prepare_uprobe(). |
| 2729 | * |
| 2730 | * Guarantees that if we see the UPROBE_COPY_INSN bit set, then |
| 2731 | * we must also see the stores to &uprobe->arch performed by the |
| 2732 | * prepare_uprobe() call. |
| 2733 | */ |
| 2734 | smp_rmb(); |
| 2735 | |
| 2736 | /* Tracing handlers use ->utask to communicate with fetch methods */ |
| 2737 | if (!get_utask()) |
| 2738 | goto out; |
| 2739 | |
| 2740 | if (arch_uprobe_ignore(&uprobe->arch, regs)) |
| 2741 | goto out; |
| 2742 | |
| 2743 | handler_chain(uprobe, regs); |
| 2744 | |
| 2745 | if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) |
| 2746 | goto out; |
| 2747 | |
| 2748 | if (pre_ssout(uprobe, regs, bp_vaddr)) |
| 2749 | goto out; |
| 2750 | |
| 2751 | out: |
| 2752 | /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ |
| 2753 | rcu_read_unlock_trace(); |
| 2754 | } |
| 2755 | |
| 2756 | /* |
| 2757 | * Perform required fix-ups and disable singlestep. |
| 2758 | * Allow pending signals to take effect. |
| 2759 | */ |
| 2760 | static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) |
| 2761 | { |
| 2762 | struct uprobe *uprobe; |
| 2763 | int err = 0; |
| 2764 | |
| 2765 | uprobe = utask->active_uprobe; |
| 2766 | if (utask->state == UTASK_SSTEP_ACK) |
| 2767 | err = arch_uprobe_post_xol(&uprobe->arch, regs); |
| 2768 | else if (utask->state == UTASK_SSTEP_TRAPPED) |
| 2769 | arch_uprobe_abort_xol(&uprobe->arch, regs); |
| 2770 | else |
| 2771 | WARN_ON_ONCE(1); |
| 2772 | |
| 2773 | put_uprobe(uprobe); |
| 2774 | utask->active_uprobe = NULL; |
| 2775 | utask->state = UTASK_RUNNING; |
| 2776 | xol_free_insn_slot(utask); |
| 2777 | |
| 2778 | if (utask->signal_denied) { |
| 2779 | set_thread_flag(TIF_SIGPENDING); |
| 2780 | utask->signal_denied = false; |
| 2781 | } |
| 2782 | |
| 2783 | if (unlikely(err)) { |
| 2784 | uprobe_warn(current, "execute the probed insn, sending SIGILL."); |
| 2785 | force_sig(SIGILL); |
| 2786 | } |
| 2787 | } |
| 2788 | |
| 2789 | /* |
| 2790 | * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and |
| 2791 | * allows the thread to return from interrupt. After that handle_swbp() |
| 2792 | * sets utask->active_uprobe. |
| 2793 | * |
| 2794 | * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag |
| 2795 | * and allows the thread to return from interrupt. |
| 2796 | * |
| 2797 | * While returning to userspace, thread notices the TIF_UPROBE flag and calls |
| 2798 | * uprobe_notify_resume(). |
| 2799 | */ |
| 2800 | void uprobe_notify_resume(struct pt_regs *regs) |
| 2801 | { |
| 2802 | struct uprobe_task *utask; |
| 2803 | |
| 2804 | clear_thread_flag(TIF_UPROBE); |
| 2805 | |
| 2806 | utask = current->utask; |
| 2807 | if (utask && utask->active_uprobe) |
| 2808 | handle_singlestep(utask, regs); |
| 2809 | else |
| 2810 | handle_swbp(regs); |
| 2811 | } |
| 2812 | |
| 2813 | /* |
| 2814 | * uprobe_pre_sstep_notifier gets called from interrupt context as part of |
| 2815 | * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. |
| 2816 | */ |
| 2817 | int uprobe_pre_sstep_notifier(struct pt_regs *regs) |
| 2818 | { |
| 2819 | if (!current->mm) |
| 2820 | return 0; |
| 2821 | |
| 2822 | if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && |
| 2823 | (!current->utask || !current->utask->return_instances)) |
| 2824 | return 0; |
| 2825 | |
| 2826 | set_thread_flag(TIF_UPROBE); |
| 2827 | return 1; |
| 2828 | } |
| 2829 | |
| 2830 | /* |
| 2831 | * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier |
| 2832 | * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. |
| 2833 | */ |
| 2834 | int uprobe_post_sstep_notifier(struct pt_regs *regs) |
| 2835 | { |
| 2836 | struct uprobe_task *utask = current->utask; |
| 2837 | |
| 2838 | if (!current->mm || !utask || !utask->active_uprobe) |
| 2839 | /* task is currently not uprobed */ |
| 2840 | return 0; |
| 2841 | |
| 2842 | utask->state = UTASK_SSTEP_ACK; |
| 2843 | set_thread_flag(TIF_UPROBE); |
| 2844 | return 1; |
| 2845 | } |
| 2846 | |
| 2847 | static struct notifier_block uprobe_exception_nb = { |
| 2848 | .notifier_call = arch_uprobe_exception_notify, |
| 2849 | .priority = INT_MAX-1, /* notified after kprobes, kgdb */ |
| 2850 | }; |
| 2851 | |
| 2852 | void __init uprobes_init(void) |
| 2853 | { |
| 2854 | int i; |
| 2855 | |
| 2856 | for (i = 0; i < UPROBES_HASH_SZ; i++) |
| 2857 | mutex_init(&uprobes_mmap_mutex[i]); |
| 2858 | |
| 2859 | BUG_ON(register_die_notifier(&uprobe_exception_nb)); |
| 2860 | } |