| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Performance events core code: |
| 4 | * |
| 5 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| 6 | * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar |
| 7 | * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra |
| 8 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| 9 | */ |
| 10 | |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/cpu.h> |
| 14 | #include <linux/smp.h> |
| 15 | #include <linux/idr.h> |
| 16 | #include <linux/file.h> |
| 17 | #include <linux/poll.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/hash.h> |
| 20 | #include <linux/tick.h> |
| 21 | #include <linux/sysfs.h> |
| 22 | #include <linux/dcache.h> |
| 23 | #include <linux/percpu.h> |
| 24 | #include <linux/ptrace.h> |
| 25 | #include <linux/reboot.h> |
| 26 | #include <linux/vmstat.h> |
| 27 | #include <linux/device.h> |
| 28 | #include <linux/export.h> |
| 29 | #include <linux/vmalloc.h> |
| 30 | #include <linux/hardirq.h> |
| 31 | #include <linux/hugetlb.h> |
| 32 | #include <linux/rculist.h> |
| 33 | #include <linux/uaccess.h> |
| 34 | #include <linux/syscalls.h> |
| 35 | #include <linux/anon_inodes.h> |
| 36 | #include <linux/kernel_stat.h> |
| 37 | #include <linux/cgroup.h> |
| 38 | #include <linux/perf_event.h> |
| 39 | #include <linux/trace_events.h> |
| 40 | #include <linux/hw_breakpoint.h> |
| 41 | #include <linux/mm_types.h> |
| 42 | #include <linux/module.h> |
| 43 | #include <linux/mman.h> |
| 44 | #include <linux/compat.h> |
| 45 | #include <linux/bpf.h> |
| 46 | #include <linux/filter.h> |
| 47 | #include <linux/namei.h> |
| 48 | #include <linux/parser.h> |
| 49 | #include <linux/sched/clock.h> |
| 50 | #include <linux/sched/mm.h> |
| 51 | #include <linux/proc_ns.h> |
| 52 | #include <linux/mount.h> |
| 53 | #include <linux/min_heap.h> |
| 54 | #include <linux/highmem.h> |
| 55 | #include <linux/pgtable.h> |
| 56 | #include <linux/buildid.h> |
| 57 | #include <linux/task_work.h> |
| 58 | #include <linux/percpu-rwsem.h> |
| 59 | |
| 60 | #include "internal.h" |
| 61 | |
| 62 | #include <asm/irq_regs.h> |
| 63 | |
| 64 | typedef int (*remote_function_f)(void *); |
| 65 | |
| 66 | struct remote_function_call { |
| 67 | struct task_struct *p; |
| 68 | remote_function_f func; |
| 69 | void *info; |
| 70 | int ret; |
| 71 | }; |
| 72 | |
| 73 | static void remote_function(void *data) |
| 74 | { |
| 75 | struct remote_function_call *tfc = data; |
| 76 | struct task_struct *p = tfc->p; |
| 77 | |
| 78 | if (p) { |
| 79 | /* -EAGAIN */ |
| 80 | if (task_cpu(p) != smp_processor_id()) |
| 81 | return; |
| 82 | |
| 83 | /* |
| 84 | * Now that we're on right CPU with IRQs disabled, we can test |
| 85 | * if we hit the right task without races. |
| 86 | */ |
| 87 | |
| 88 | tfc->ret = -ESRCH; /* No such (running) process */ |
| 89 | if (p != current) |
| 90 | return; |
| 91 | } |
| 92 | |
| 93 | tfc->ret = tfc->func(tfc->info); |
| 94 | } |
| 95 | |
| 96 | /** |
| 97 | * task_function_call - call a function on the cpu on which a task runs |
| 98 | * @p: the task to evaluate |
| 99 | * @func: the function to be called |
| 100 | * @info: the function call argument |
| 101 | * |
| 102 | * Calls the function @func when the task is currently running. This might |
| 103 | * be on the current CPU, which just calls the function directly. This will |
| 104 | * retry due to any failures in smp_call_function_single(), such as if the |
| 105 | * task_cpu() goes offline concurrently. |
| 106 | * |
| 107 | * returns @func return value or -ESRCH or -ENXIO when the process isn't running |
| 108 | */ |
| 109 | static int |
| 110 | task_function_call(struct task_struct *p, remote_function_f func, void *info) |
| 111 | { |
| 112 | struct remote_function_call data = { |
| 113 | .p = p, |
| 114 | .func = func, |
| 115 | .info = info, |
| 116 | .ret = -EAGAIN, |
| 117 | }; |
| 118 | int ret; |
| 119 | |
| 120 | for (;;) { |
| 121 | ret = smp_call_function_single(task_cpu(p), remote_function, |
| 122 | &data, 1); |
| 123 | if (!ret) |
| 124 | ret = data.ret; |
| 125 | |
| 126 | if (ret != -EAGAIN) |
| 127 | break; |
| 128 | |
| 129 | cond_resched(); |
| 130 | } |
| 131 | |
| 132 | return ret; |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * cpu_function_call - call a function on the cpu |
| 137 | * @cpu: target cpu to queue this function |
| 138 | * @func: the function to be called |
| 139 | * @info: the function call argument |
| 140 | * |
| 141 | * Calls the function @func on the remote cpu. |
| 142 | * |
| 143 | * returns: @func return value or -ENXIO when the cpu is offline |
| 144 | */ |
| 145 | static int cpu_function_call(int cpu, remote_function_f func, void *info) |
| 146 | { |
| 147 | struct remote_function_call data = { |
| 148 | .p = NULL, |
| 149 | .func = func, |
| 150 | .info = info, |
| 151 | .ret = -ENXIO, /* No such CPU */ |
| 152 | }; |
| 153 | |
| 154 | smp_call_function_single(cpu, remote_function, &data, 1); |
| 155 | |
| 156 | return data.ret; |
| 157 | } |
| 158 | |
| 159 | enum event_type_t { |
| 160 | EVENT_FLEXIBLE = 0x01, |
| 161 | EVENT_PINNED = 0x02, |
| 162 | EVENT_TIME = 0x04, |
| 163 | EVENT_FROZEN = 0x08, |
| 164 | /* see ctx_resched() for details */ |
| 165 | EVENT_CPU = 0x10, |
| 166 | EVENT_CGROUP = 0x20, |
| 167 | |
| 168 | /* compound helpers */ |
| 169 | EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, |
| 170 | EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN, |
| 171 | }; |
| 172 | |
| 173 | static inline void __perf_ctx_lock(struct perf_event_context *ctx) |
| 174 | { |
| 175 | raw_spin_lock(&ctx->lock); |
| 176 | WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN); |
| 177 | } |
| 178 | |
| 179 | static void perf_ctx_lock(struct perf_cpu_context *cpuctx, |
| 180 | struct perf_event_context *ctx) |
| 181 | { |
| 182 | __perf_ctx_lock(&cpuctx->ctx); |
| 183 | if (ctx) |
| 184 | __perf_ctx_lock(ctx); |
| 185 | } |
| 186 | |
| 187 | static inline void __perf_ctx_unlock(struct perf_event_context *ctx) |
| 188 | { |
| 189 | /* |
| 190 | * If ctx_sched_in() didn't again set any ALL flags, clean up |
| 191 | * after ctx_sched_out() by clearing is_active. |
| 192 | */ |
| 193 | if (ctx->is_active & EVENT_FROZEN) { |
| 194 | if (!(ctx->is_active & EVENT_ALL)) |
| 195 | ctx->is_active = 0; |
| 196 | else |
| 197 | ctx->is_active &= ~EVENT_FROZEN; |
| 198 | } |
| 199 | raw_spin_unlock(&ctx->lock); |
| 200 | } |
| 201 | |
| 202 | static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, |
| 203 | struct perf_event_context *ctx) |
| 204 | { |
| 205 | if (ctx) |
| 206 | __perf_ctx_unlock(ctx); |
| 207 | __perf_ctx_unlock(&cpuctx->ctx); |
| 208 | } |
| 209 | |
| 210 | typedef struct { |
| 211 | struct perf_cpu_context *cpuctx; |
| 212 | struct perf_event_context *ctx; |
| 213 | } class_perf_ctx_lock_t; |
| 214 | |
| 215 | static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T) |
| 216 | { perf_ctx_unlock(_T->cpuctx, _T->ctx); } |
| 217 | |
| 218 | static inline class_perf_ctx_lock_t |
| 219 | class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx, |
| 220 | struct perf_event_context *ctx) |
| 221 | { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; } |
| 222 | |
| 223 | #define TASK_TOMBSTONE ((void *)-1L) |
| 224 | |
| 225 | static bool is_kernel_event(struct perf_event *event) |
| 226 | { |
| 227 | return READ_ONCE(event->owner) == TASK_TOMBSTONE; |
| 228 | } |
| 229 | |
| 230 | static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); |
| 231 | |
| 232 | struct perf_event_context *perf_cpu_task_ctx(void) |
| 233 | { |
| 234 | lockdep_assert_irqs_disabled(); |
| 235 | return this_cpu_ptr(&perf_cpu_context)->task_ctx; |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * On task ctx scheduling... |
| 240 | * |
| 241 | * When !ctx->nr_events a task context will not be scheduled. This means |
| 242 | * we can disable the scheduler hooks (for performance) without leaving |
| 243 | * pending task ctx state. |
| 244 | * |
| 245 | * This however results in two special cases: |
| 246 | * |
| 247 | * - removing the last event from a task ctx; this is relatively straight |
| 248 | * forward and is done in __perf_remove_from_context. |
| 249 | * |
| 250 | * - adding the first event to a task ctx; this is tricky because we cannot |
| 251 | * rely on ctx->is_active and therefore cannot use event_function_call(). |
| 252 | * See perf_install_in_context(). |
| 253 | * |
| 254 | * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. |
| 255 | */ |
| 256 | |
| 257 | typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, |
| 258 | struct perf_event_context *, void *); |
| 259 | |
| 260 | struct event_function_struct { |
| 261 | struct perf_event *event; |
| 262 | event_f func; |
| 263 | void *data; |
| 264 | }; |
| 265 | |
| 266 | static int event_function(void *info) |
| 267 | { |
| 268 | struct event_function_struct *efs = info; |
| 269 | struct perf_event *event = efs->event; |
| 270 | struct perf_event_context *ctx = event->ctx; |
| 271 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 272 | struct perf_event_context *task_ctx = cpuctx->task_ctx; |
| 273 | int ret = 0; |
| 274 | |
| 275 | lockdep_assert_irqs_disabled(); |
| 276 | |
| 277 | perf_ctx_lock(cpuctx, task_ctx); |
| 278 | /* |
| 279 | * Since we do the IPI call without holding ctx->lock things can have |
| 280 | * changed, double check we hit the task we set out to hit. |
| 281 | */ |
| 282 | if (ctx->task) { |
| 283 | if (ctx->task != current) { |
| 284 | ret = -ESRCH; |
| 285 | goto unlock; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * We only use event_function_call() on established contexts, |
| 290 | * and event_function() is only ever called when active (or |
| 291 | * rather, we'll have bailed in task_function_call() or the |
| 292 | * above ctx->task != current test), therefore we must have |
| 293 | * ctx->is_active here. |
| 294 | */ |
| 295 | WARN_ON_ONCE(!ctx->is_active); |
| 296 | /* |
| 297 | * And since we have ctx->is_active, cpuctx->task_ctx must |
| 298 | * match. |
| 299 | */ |
| 300 | WARN_ON_ONCE(task_ctx != ctx); |
| 301 | } else { |
| 302 | WARN_ON_ONCE(&cpuctx->ctx != ctx); |
| 303 | } |
| 304 | |
| 305 | efs->func(event, cpuctx, ctx, efs->data); |
| 306 | unlock: |
| 307 | perf_ctx_unlock(cpuctx, task_ctx); |
| 308 | |
| 309 | return ret; |
| 310 | } |
| 311 | |
| 312 | static void event_function_call(struct perf_event *event, event_f func, void *data) |
| 313 | { |
| 314 | struct perf_event_context *ctx = event->ctx; |
| 315 | struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ |
| 316 | struct perf_cpu_context *cpuctx; |
| 317 | struct event_function_struct efs = { |
| 318 | .event = event, |
| 319 | .func = func, |
| 320 | .data = data, |
| 321 | }; |
| 322 | |
| 323 | if (!event->parent) { |
| 324 | /* |
| 325 | * If this is a !child event, we must hold ctx::mutex to |
| 326 | * stabilize the event->ctx relation. See |
| 327 | * perf_event_ctx_lock(). |
| 328 | */ |
| 329 | lockdep_assert_held(&ctx->mutex); |
| 330 | } |
| 331 | |
| 332 | if (!task) { |
| 333 | cpu_function_call(event->cpu, event_function, &efs); |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | if (task == TASK_TOMBSTONE) |
| 338 | return; |
| 339 | |
| 340 | again: |
| 341 | if (!task_function_call(task, event_function, &efs)) |
| 342 | return; |
| 343 | |
| 344 | local_irq_disable(); |
| 345 | cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 346 | perf_ctx_lock(cpuctx, ctx); |
| 347 | /* |
| 348 | * Reload the task pointer, it might have been changed by |
| 349 | * a concurrent perf_event_context_sched_out(). |
| 350 | */ |
| 351 | task = ctx->task; |
| 352 | if (task == TASK_TOMBSTONE) |
| 353 | goto unlock; |
| 354 | if (ctx->is_active) { |
| 355 | perf_ctx_unlock(cpuctx, ctx); |
| 356 | local_irq_enable(); |
| 357 | goto again; |
| 358 | } |
| 359 | func(event, NULL, ctx, data); |
| 360 | unlock: |
| 361 | perf_ctx_unlock(cpuctx, ctx); |
| 362 | local_irq_enable(); |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Similar to event_function_call() + event_function(), but hard assumes IRQs |
| 367 | * are already disabled and we're on the right CPU. |
| 368 | */ |
| 369 | static void event_function_local(struct perf_event *event, event_f func, void *data) |
| 370 | { |
| 371 | struct perf_event_context *ctx = event->ctx; |
| 372 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 373 | struct task_struct *task = READ_ONCE(ctx->task); |
| 374 | struct perf_event_context *task_ctx = NULL; |
| 375 | |
| 376 | lockdep_assert_irqs_disabled(); |
| 377 | |
| 378 | if (task) { |
| 379 | if (task == TASK_TOMBSTONE) |
| 380 | return; |
| 381 | |
| 382 | task_ctx = ctx; |
| 383 | } |
| 384 | |
| 385 | perf_ctx_lock(cpuctx, task_ctx); |
| 386 | |
| 387 | task = ctx->task; |
| 388 | if (task == TASK_TOMBSTONE) |
| 389 | goto unlock; |
| 390 | |
| 391 | if (task) { |
| 392 | /* |
| 393 | * We must be either inactive or active and the right task, |
| 394 | * otherwise we're screwed, since we cannot IPI to somewhere |
| 395 | * else. |
| 396 | */ |
| 397 | if (ctx->is_active) { |
| 398 | if (WARN_ON_ONCE(task != current)) |
| 399 | goto unlock; |
| 400 | |
| 401 | if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) |
| 402 | goto unlock; |
| 403 | } |
| 404 | } else { |
| 405 | WARN_ON_ONCE(&cpuctx->ctx != ctx); |
| 406 | } |
| 407 | |
| 408 | func(event, cpuctx, ctx, data); |
| 409 | unlock: |
| 410 | perf_ctx_unlock(cpuctx, task_ctx); |
| 411 | } |
| 412 | |
| 413 | #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ |
| 414 | PERF_FLAG_FD_OUTPUT |\ |
| 415 | PERF_FLAG_PID_CGROUP |\ |
| 416 | PERF_FLAG_FD_CLOEXEC) |
| 417 | |
| 418 | /* |
| 419 | * branch priv levels that need permission checks |
| 420 | */ |
| 421 | #define PERF_SAMPLE_BRANCH_PERM_PLM \ |
| 422 | (PERF_SAMPLE_BRANCH_KERNEL |\ |
| 423 | PERF_SAMPLE_BRANCH_HV) |
| 424 | |
| 425 | /* |
| 426 | * perf_sched_events : >0 events exist |
| 427 | */ |
| 428 | |
| 429 | static void perf_sched_delayed(struct work_struct *work); |
| 430 | DEFINE_STATIC_KEY_FALSE(perf_sched_events); |
| 431 | static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); |
| 432 | static DEFINE_MUTEX(perf_sched_mutex); |
| 433 | static atomic_t perf_sched_count; |
| 434 | |
| 435 | static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); |
| 436 | |
| 437 | static atomic_t nr_mmap_events __read_mostly; |
| 438 | static atomic_t nr_comm_events __read_mostly; |
| 439 | static atomic_t nr_namespaces_events __read_mostly; |
| 440 | static atomic_t nr_task_events __read_mostly; |
| 441 | static atomic_t nr_freq_events __read_mostly; |
| 442 | static atomic_t nr_switch_events __read_mostly; |
| 443 | static atomic_t nr_ksymbol_events __read_mostly; |
| 444 | static atomic_t nr_bpf_events __read_mostly; |
| 445 | static atomic_t nr_cgroup_events __read_mostly; |
| 446 | static atomic_t nr_text_poke_events __read_mostly; |
| 447 | static atomic_t nr_build_id_events __read_mostly; |
| 448 | |
| 449 | static LIST_HEAD(pmus); |
| 450 | static DEFINE_MUTEX(pmus_lock); |
| 451 | static struct srcu_struct pmus_srcu; |
| 452 | static cpumask_var_t perf_online_mask; |
| 453 | static cpumask_var_t perf_online_core_mask; |
| 454 | static cpumask_var_t perf_online_die_mask; |
| 455 | static cpumask_var_t perf_online_cluster_mask; |
| 456 | static cpumask_var_t perf_online_pkg_mask; |
| 457 | static cpumask_var_t perf_online_sys_mask; |
| 458 | static struct kmem_cache *perf_event_cache; |
| 459 | |
| 460 | /* |
| 461 | * perf event paranoia level: |
| 462 | * -1 - not paranoid at all |
| 463 | * 0 - disallow raw tracepoint access for unpriv |
| 464 | * 1 - disallow cpu events for unpriv |
| 465 | * 2 - disallow kernel profiling for unpriv |
| 466 | */ |
| 467 | int sysctl_perf_event_paranoid __read_mostly = 2; |
| 468 | |
| 469 | /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */ |
| 470 | static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); |
| 471 | |
| 472 | /* |
| 473 | * max perf event sample rate |
| 474 | */ |
| 475 | #define DEFAULT_MAX_SAMPLE_RATE 100000 |
| 476 | #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) |
| 477 | #define DEFAULT_CPU_TIME_MAX_PERCENT 25 |
| 478 | |
| 479 | int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; |
| 480 | static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; |
| 481 | |
| 482 | static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); |
| 483 | static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; |
| 484 | |
| 485 | static int perf_sample_allowed_ns __read_mostly = |
| 486 | DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; |
| 487 | |
| 488 | static void update_perf_cpu_limits(void) |
| 489 | { |
| 490 | u64 tmp = perf_sample_period_ns; |
| 491 | |
| 492 | tmp *= sysctl_perf_cpu_time_max_percent; |
| 493 | tmp = div_u64(tmp, 100); |
| 494 | if (!tmp) |
| 495 | tmp = 1; |
| 496 | |
| 497 | WRITE_ONCE(perf_sample_allowed_ns, tmp); |
| 498 | } |
| 499 | |
| 500 | static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); |
| 501 | |
| 502 | static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write, |
| 503 | void *buffer, size_t *lenp, loff_t *ppos) |
| 504 | { |
| 505 | int ret; |
| 506 | int perf_cpu = sysctl_perf_cpu_time_max_percent; |
| 507 | /* |
| 508 | * If throttling is disabled don't allow the write: |
| 509 | */ |
| 510 | if (write && (perf_cpu == 100 || perf_cpu == 0)) |
| 511 | return -EINVAL; |
| 512 | |
| 513 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 514 | if (ret || !write) |
| 515 | return ret; |
| 516 | |
| 517 | max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); |
| 518 | perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; |
| 519 | update_perf_cpu_limits(); |
| 520 | |
| 521 | return 0; |
| 522 | } |
| 523 | |
| 524 | static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write, |
| 525 | void *buffer, size_t *lenp, loff_t *ppos) |
| 526 | { |
| 527 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 528 | |
| 529 | if (ret || !write) |
| 530 | return ret; |
| 531 | |
| 532 | if (sysctl_perf_cpu_time_max_percent == 100 || |
| 533 | sysctl_perf_cpu_time_max_percent == 0) { |
| 534 | printk(KERN_WARNING |
| 535 | "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); |
| 536 | WRITE_ONCE(perf_sample_allowed_ns, 0); |
| 537 | } else { |
| 538 | update_perf_cpu_limits(); |
| 539 | } |
| 540 | |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | static const struct ctl_table events_core_sysctl_table[] = { |
| 545 | /* |
| 546 | * User-space relies on this file as a feature check for |
| 547 | * perf_events being enabled. It's an ABI, do not remove! |
| 548 | */ |
| 549 | { |
| 550 | .procname = "perf_event_paranoid", |
| 551 | .data = &sysctl_perf_event_paranoid, |
| 552 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
| 553 | .mode = 0644, |
| 554 | .proc_handler = proc_dointvec, |
| 555 | }, |
| 556 | { |
| 557 | .procname = "perf_event_mlock_kb", |
| 558 | .data = &sysctl_perf_event_mlock, |
| 559 | .maxlen = sizeof(sysctl_perf_event_mlock), |
| 560 | .mode = 0644, |
| 561 | .proc_handler = proc_dointvec, |
| 562 | }, |
| 563 | { |
| 564 | .procname = "perf_event_max_sample_rate", |
| 565 | .data = &sysctl_perf_event_sample_rate, |
| 566 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
| 567 | .mode = 0644, |
| 568 | .proc_handler = perf_event_max_sample_rate_handler, |
| 569 | .extra1 = SYSCTL_ONE, |
| 570 | }, |
| 571 | { |
| 572 | .procname = "perf_cpu_time_max_percent", |
| 573 | .data = &sysctl_perf_cpu_time_max_percent, |
| 574 | .maxlen = sizeof(sysctl_perf_cpu_time_max_percent), |
| 575 | .mode = 0644, |
| 576 | .proc_handler = perf_cpu_time_max_percent_handler, |
| 577 | .extra1 = SYSCTL_ZERO, |
| 578 | .extra2 = SYSCTL_ONE_HUNDRED, |
| 579 | }, |
| 580 | }; |
| 581 | |
| 582 | static int __init init_events_core_sysctls(void) |
| 583 | { |
| 584 | register_sysctl_init("kernel", events_core_sysctl_table); |
| 585 | return 0; |
| 586 | } |
| 587 | core_initcall(init_events_core_sysctls); |
| 588 | |
| 589 | |
| 590 | /* |
| 591 | * perf samples are done in some very critical code paths (NMIs). |
| 592 | * If they take too much CPU time, the system can lock up and not |
| 593 | * get any real work done. This will drop the sample rate when |
| 594 | * we detect that events are taking too long. |
| 595 | */ |
| 596 | #define NR_ACCUMULATED_SAMPLES 128 |
| 597 | static DEFINE_PER_CPU(u64, running_sample_length); |
| 598 | |
| 599 | static u64 __report_avg; |
| 600 | static u64 __report_allowed; |
| 601 | |
| 602 | static void perf_duration_warn(struct irq_work *w) |
| 603 | { |
| 604 | printk_ratelimited(KERN_INFO |
| 605 | "perf: interrupt took too long (%lld > %lld), lowering " |
| 606 | "kernel.perf_event_max_sample_rate to %d\n", |
| 607 | __report_avg, __report_allowed, |
| 608 | sysctl_perf_event_sample_rate); |
| 609 | } |
| 610 | |
| 611 | static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); |
| 612 | |
| 613 | void perf_sample_event_took(u64 sample_len_ns) |
| 614 | { |
| 615 | u64 max_len = READ_ONCE(perf_sample_allowed_ns); |
| 616 | u64 running_len; |
| 617 | u64 avg_len; |
| 618 | u32 max; |
| 619 | |
| 620 | if (max_len == 0) |
| 621 | return; |
| 622 | |
| 623 | /* Decay the counter by 1 average sample. */ |
| 624 | running_len = __this_cpu_read(running_sample_length); |
| 625 | running_len -= running_len/NR_ACCUMULATED_SAMPLES; |
| 626 | running_len += sample_len_ns; |
| 627 | __this_cpu_write(running_sample_length, running_len); |
| 628 | |
| 629 | /* |
| 630 | * Note: this will be biased artificially low until we have |
| 631 | * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us |
| 632 | * from having to maintain a count. |
| 633 | */ |
| 634 | avg_len = running_len/NR_ACCUMULATED_SAMPLES; |
| 635 | if (avg_len <= max_len) |
| 636 | return; |
| 637 | |
| 638 | __report_avg = avg_len; |
| 639 | __report_allowed = max_len; |
| 640 | |
| 641 | /* |
| 642 | * Compute a throttle threshold 25% below the current duration. |
| 643 | */ |
| 644 | avg_len += avg_len / 4; |
| 645 | max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; |
| 646 | if (avg_len < max) |
| 647 | max /= (u32)avg_len; |
| 648 | else |
| 649 | max = 1; |
| 650 | |
| 651 | WRITE_ONCE(perf_sample_allowed_ns, avg_len); |
| 652 | WRITE_ONCE(max_samples_per_tick, max); |
| 653 | |
| 654 | sysctl_perf_event_sample_rate = max * HZ; |
| 655 | perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; |
| 656 | |
| 657 | if (!irq_work_queue(&perf_duration_work)) { |
| 658 | early_printk("perf: interrupt took too long (%lld > %lld), lowering " |
| 659 | "kernel.perf_event_max_sample_rate to %d\n", |
| 660 | __report_avg, __report_allowed, |
| 661 | sysctl_perf_event_sample_rate); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | static atomic64_t perf_event_id; |
| 666 | |
| 667 | static void update_context_time(struct perf_event_context *ctx); |
| 668 | static u64 perf_event_time(struct perf_event *event); |
| 669 | |
| 670 | void __weak perf_event_print_debug(void) { } |
| 671 | |
| 672 | static inline u64 perf_clock(void) |
| 673 | { |
| 674 | return local_clock(); |
| 675 | } |
| 676 | |
| 677 | static inline u64 perf_event_clock(struct perf_event *event) |
| 678 | { |
| 679 | return event->clock(); |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * State based event timekeeping... |
| 684 | * |
| 685 | * The basic idea is to use event->state to determine which (if any) time |
| 686 | * fields to increment with the current delta. This means we only need to |
| 687 | * update timestamps when we change state or when they are explicitly requested |
| 688 | * (read). |
| 689 | * |
| 690 | * Event groups make things a little more complicated, but not terribly so. The |
| 691 | * rules for a group are that if the group leader is OFF the entire group is |
| 692 | * OFF, irrespective of what the group member states are. This results in |
| 693 | * __perf_effective_state(). |
| 694 | * |
| 695 | * A further ramification is that when a group leader flips between OFF and |
| 696 | * !OFF, we need to update all group member times. |
| 697 | * |
| 698 | * |
| 699 | * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we |
| 700 | * need to make sure the relevant context time is updated before we try and |
| 701 | * update our timestamps. |
| 702 | */ |
| 703 | |
| 704 | static __always_inline enum perf_event_state |
| 705 | __perf_effective_state(struct perf_event *event) |
| 706 | { |
| 707 | struct perf_event *leader = event->group_leader; |
| 708 | |
| 709 | if (leader->state <= PERF_EVENT_STATE_OFF) |
| 710 | return leader->state; |
| 711 | |
| 712 | return event->state; |
| 713 | } |
| 714 | |
| 715 | static __always_inline void |
| 716 | __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) |
| 717 | { |
| 718 | enum perf_event_state state = __perf_effective_state(event); |
| 719 | u64 delta = now - event->tstamp; |
| 720 | |
| 721 | *enabled = event->total_time_enabled; |
| 722 | if (state >= PERF_EVENT_STATE_INACTIVE) |
| 723 | *enabled += delta; |
| 724 | |
| 725 | *running = event->total_time_running; |
| 726 | if (state >= PERF_EVENT_STATE_ACTIVE) |
| 727 | *running += delta; |
| 728 | } |
| 729 | |
| 730 | static void perf_event_update_time(struct perf_event *event) |
| 731 | { |
| 732 | u64 now = perf_event_time(event); |
| 733 | |
| 734 | __perf_update_times(event, now, &event->total_time_enabled, |
| 735 | &event->total_time_running); |
| 736 | event->tstamp = now; |
| 737 | } |
| 738 | |
| 739 | static void perf_event_update_sibling_time(struct perf_event *leader) |
| 740 | { |
| 741 | struct perf_event *sibling; |
| 742 | |
| 743 | for_each_sibling_event(sibling, leader) |
| 744 | perf_event_update_time(sibling); |
| 745 | } |
| 746 | |
| 747 | static void |
| 748 | perf_event_set_state(struct perf_event *event, enum perf_event_state state) |
| 749 | { |
| 750 | if (event->state == state) |
| 751 | return; |
| 752 | |
| 753 | perf_event_update_time(event); |
| 754 | /* |
| 755 | * If a group leader gets enabled/disabled all its siblings |
| 756 | * are affected too. |
| 757 | */ |
| 758 | if ((event->state < 0) ^ (state < 0)) |
| 759 | perf_event_update_sibling_time(event); |
| 760 | |
| 761 | WRITE_ONCE(event->state, state); |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * UP store-release, load-acquire |
| 766 | */ |
| 767 | |
| 768 | #define __store_release(ptr, val) \ |
| 769 | do { \ |
| 770 | barrier(); \ |
| 771 | WRITE_ONCE(*(ptr), (val)); \ |
| 772 | } while (0) |
| 773 | |
| 774 | #define __load_acquire(ptr) \ |
| 775 | ({ \ |
| 776 | __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ |
| 777 | barrier(); \ |
| 778 | ___p; \ |
| 779 | }) |
| 780 | |
| 781 | #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \ |
| 782 | list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \ |
| 783 | if (_cgroup && !_epc->nr_cgroups) \ |
| 784 | continue; \ |
| 785 | else if (_pmu && _epc->pmu != _pmu) \ |
| 786 | continue; \ |
| 787 | else |
| 788 | |
| 789 | static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) |
| 790 | { |
| 791 | struct perf_event_pmu_context *pmu_ctx; |
| 792 | |
| 793 | for_each_epc(pmu_ctx, ctx, NULL, cgroup) |
| 794 | perf_pmu_disable(pmu_ctx->pmu); |
| 795 | } |
| 796 | |
| 797 | static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) |
| 798 | { |
| 799 | struct perf_event_pmu_context *pmu_ctx; |
| 800 | |
| 801 | for_each_epc(pmu_ctx, ctx, NULL, cgroup) |
| 802 | perf_pmu_enable(pmu_ctx->pmu); |
| 803 | } |
| 804 | |
| 805 | static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); |
| 806 | static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type); |
| 807 | |
| 808 | #ifdef CONFIG_CGROUP_PERF |
| 809 | |
| 810 | static inline bool |
| 811 | perf_cgroup_match(struct perf_event *event) |
| 812 | { |
| 813 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 814 | |
| 815 | /* @event doesn't care about cgroup */ |
| 816 | if (!event->cgrp) |
| 817 | return true; |
| 818 | |
| 819 | /* wants specific cgroup scope but @cpuctx isn't associated with any */ |
| 820 | if (!cpuctx->cgrp) |
| 821 | return false; |
| 822 | |
| 823 | /* |
| 824 | * Cgroup scoping is recursive. An event enabled for a cgroup is |
| 825 | * also enabled for all its descendant cgroups. If @cpuctx's |
| 826 | * cgroup is a descendant of @event's (the test covers identity |
| 827 | * case), it's a match. |
| 828 | */ |
| 829 | return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, |
| 830 | event->cgrp->css.cgroup); |
| 831 | } |
| 832 | |
| 833 | static inline void perf_detach_cgroup(struct perf_event *event) |
| 834 | { |
| 835 | css_put(&event->cgrp->css); |
| 836 | event->cgrp = NULL; |
| 837 | } |
| 838 | |
| 839 | static inline int is_cgroup_event(struct perf_event *event) |
| 840 | { |
| 841 | return event->cgrp != NULL; |
| 842 | } |
| 843 | |
| 844 | static inline u64 perf_cgroup_event_time(struct perf_event *event) |
| 845 | { |
| 846 | struct perf_cgroup_info *t; |
| 847 | |
| 848 | t = per_cpu_ptr(event->cgrp->info, event->cpu); |
| 849 | return t->time; |
| 850 | } |
| 851 | |
| 852 | static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) |
| 853 | { |
| 854 | struct perf_cgroup_info *t; |
| 855 | |
| 856 | t = per_cpu_ptr(event->cgrp->info, event->cpu); |
| 857 | if (!__load_acquire(&t->active)) |
| 858 | return t->time; |
| 859 | now += READ_ONCE(t->timeoffset); |
| 860 | return now; |
| 861 | } |
| 862 | |
| 863 | static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) |
| 864 | { |
| 865 | if (adv) |
| 866 | info->time += now - info->timestamp; |
| 867 | info->timestamp = now; |
| 868 | /* |
| 869 | * see update_context_time() |
| 870 | */ |
| 871 | WRITE_ONCE(info->timeoffset, info->time - info->timestamp); |
| 872 | } |
| 873 | |
| 874 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) |
| 875 | { |
| 876 | struct perf_cgroup *cgrp = cpuctx->cgrp; |
| 877 | struct cgroup_subsys_state *css; |
| 878 | struct perf_cgroup_info *info; |
| 879 | |
| 880 | if (cgrp) { |
| 881 | u64 now = perf_clock(); |
| 882 | |
| 883 | for (css = &cgrp->css; css; css = css->parent) { |
| 884 | cgrp = container_of(css, struct perf_cgroup, css); |
| 885 | info = this_cpu_ptr(cgrp->info); |
| 886 | |
| 887 | __update_cgrp_time(info, now, true); |
| 888 | if (final) |
| 889 | __store_release(&info->active, 0); |
| 890 | } |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | static inline void update_cgrp_time_from_event(struct perf_event *event) |
| 895 | { |
| 896 | struct perf_cgroup_info *info; |
| 897 | |
| 898 | /* |
| 899 | * ensure we access cgroup data only when needed and |
| 900 | * when we know the cgroup is pinned (css_get) |
| 901 | */ |
| 902 | if (!is_cgroup_event(event)) |
| 903 | return; |
| 904 | |
| 905 | info = this_cpu_ptr(event->cgrp->info); |
| 906 | /* |
| 907 | * Do not update time when cgroup is not active |
| 908 | */ |
| 909 | if (info->active) |
| 910 | __update_cgrp_time(info, perf_clock(), true); |
| 911 | } |
| 912 | |
| 913 | static inline void |
| 914 | perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) |
| 915 | { |
| 916 | struct perf_event_context *ctx = &cpuctx->ctx; |
| 917 | struct perf_cgroup *cgrp = cpuctx->cgrp; |
| 918 | struct perf_cgroup_info *info; |
| 919 | struct cgroup_subsys_state *css; |
| 920 | |
| 921 | /* |
| 922 | * ctx->lock held by caller |
| 923 | * ensure we do not access cgroup data |
| 924 | * unless we have the cgroup pinned (css_get) |
| 925 | */ |
| 926 | if (!cgrp) |
| 927 | return; |
| 928 | |
| 929 | WARN_ON_ONCE(!ctx->nr_cgroups); |
| 930 | |
| 931 | for (css = &cgrp->css; css; css = css->parent) { |
| 932 | cgrp = container_of(css, struct perf_cgroup, css); |
| 933 | info = this_cpu_ptr(cgrp->info); |
| 934 | __update_cgrp_time(info, ctx->timestamp, false); |
| 935 | __store_release(&info->active, 1); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * reschedule events based on the cgroup constraint of task. |
| 941 | */ |
| 942 | static void perf_cgroup_switch(struct task_struct *task) |
| 943 | { |
| 944 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 945 | struct perf_cgroup *cgrp; |
| 946 | |
| 947 | /* |
| 948 | * cpuctx->cgrp is set when the first cgroup event enabled, |
| 949 | * and is cleared when the last cgroup event disabled. |
| 950 | */ |
| 951 | if (READ_ONCE(cpuctx->cgrp) == NULL) |
| 952 | return; |
| 953 | |
| 954 | cgrp = perf_cgroup_from_task(task, NULL); |
| 955 | if (READ_ONCE(cpuctx->cgrp) == cgrp) |
| 956 | return; |
| 957 | |
| 958 | guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx); |
| 959 | /* |
| 960 | * Re-check, could've raced vs perf_remove_from_context(). |
| 961 | */ |
| 962 | if (READ_ONCE(cpuctx->cgrp) == NULL) |
| 963 | return; |
| 964 | |
| 965 | WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); |
| 966 | |
| 967 | perf_ctx_disable(&cpuctx->ctx, true); |
| 968 | |
| 969 | ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); |
| 970 | /* |
| 971 | * must not be done before ctxswout due |
| 972 | * to update_cgrp_time_from_cpuctx() in |
| 973 | * ctx_sched_out() |
| 974 | */ |
| 975 | cpuctx->cgrp = cgrp; |
| 976 | /* |
| 977 | * set cgrp before ctxsw in to allow |
| 978 | * perf_cgroup_set_timestamp() in ctx_sched_in() |
| 979 | * to not have to pass task around |
| 980 | */ |
| 981 | ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP); |
| 982 | |
| 983 | perf_ctx_enable(&cpuctx->ctx, true); |
| 984 | } |
| 985 | |
| 986 | static int perf_cgroup_ensure_storage(struct perf_event *event, |
| 987 | struct cgroup_subsys_state *css) |
| 988 | { |
| 989 | struct perf_cpu_context *cpuctx; |
| 990 | struct perf_event **storage; |
| 991 | int cpu, heap_size, ret = 0; |
| 992 | |
| 993 | /* |
| 994 | * Allow storage to have sufficient space for an iterator for each |
| 995 | * possibly nested cgroup plus an iterator for events with no cgroup. |
| 996 | */ |
| 997 | for (heap_size = 1; css; css = css->parent) |
| 998 | heap_size++; |
| 999 | |
| 1000 | for_each_possible_cpu(cpu) { |
| 1001 | cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); |
| 1002 | if (heap_size <= cpuctx->heap_size) |
| 1003 | continue; |
| 1004 | |
| 1005 | storage = kmalloc_node(heap_size * sizeof(struct perf_event *), |
| 1006 | GFP_KERNEL, cpu_to_node(cpu)); |
| 1007 | if (!storage) { |
| 1008 | ret = -ENOMEM; |
| 1009 | break; |
| 1010 | } |
| 1011 | |
| 1012 | raw_spin_lock_irq(&cpuctx->ctx.lock); |
| 1013 | if (cpuctx->heap_size < heap_size) { |
| 1014 | swap(cpuctx->heap, storage); |
| 1015 | if (storage == cpuctx->heap_default) |
| 1016 | storage = NULL; |
| 1017 | cpuctx->heap_size = heap_size; |
| 1018 | } |
| 1019 | raw_spin_unlock_irq(&cpuctx->ctx.lock); |
| 1020 | |
| 1021 | kfree(storage); |
| 1022 | } |
| 1023 | |
| 1024 | return ret; |
| 1025 | } |
| 1026 | |
| 1027 | static inline int perf_cgroup_connect(int fd, struct perf_event *event, |
| 1028 | struct perf_event_attr *attr, |
| 1029 | struct perf_event *group_leader) |
| 1030 | { |
| 1031 | struct perf_cgroup *cgrp; |
| 1032 | struct cgroup_subsys_state *css; |
| 1033 | CLASS(fd, f)(fd); |
| 1034 | int ret = 0; |
| 1035 | |
| 1036 | if (fd_empty(f)) |
| 1037 | return -EBADF; |
| 1038 | |
| 1039 | css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry, |
| 1040 | &perf_event_cgrp_subsys); |
| 1041 | if (IS_ERR(css)) |
| 1042 | return PTR_ERR(css); |
| 1043 | |
| 1044 | ret = perf_cgroup_ensure_storage(event, css); |
| 1045 | if (ret) |
| 1046 | return ret; |
| 1047 | |
| 1048 | cgrp = container_of(css, struct perf_cgroup, css); |
| 1049 | event->cgrp = cgrp; |
| 1050 | |
| 1051 | /* |
| 1052 | * all events in a group must monitor |
| 1053 | * the same cgroup because a task belongs |
| 1054 | * to only one perf cgroup at a time |
| 1055 | */ |
| 1056 | if (group_leader && group_leader->cgrp != cgrp) { |
| 1057 | perf_detach_cgroup(event); |
| 1058 | ret = -EINVAL; |
| 1059 | } |
| 1060 | return ret; |
| 1061 | } |
| 1062 | |
| 1063 | static inline void |
| 1064 | perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) |
| 1065 | { |
| 1066 | struct perf_cpu_context *cpuctx; |
| 1067 | |
| 1068 | if (!is_cgroup_event(event)) |
| 1069 | return; |
| 1070 | |
| 1071 | event->pmu_ctx->nr_cgroups++; |
| 1072 | |
| 1073 | /* |
| 1074 | * Because cgroup events are always per-cpu events, |
| 1075 | * @ctx == &cpuctx->ctx. |
| 1076 | */ |
| 1077 | cpuctx = container_of(ctx, struct perf_cpu_context, ctx); |
| 1078 | |
| 1079 | if (ctx->nr_cgroups++) |
| 1080 | return; |
| 1081 | |
| 1082 | cpuctx->cgrp = perf_cgroup_from_task(current, ctx); |
| 1083 | } |
| 1084 | |
| 1085 | static inline void |
| 1086 | perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) |
| 1087 | { |
| 1088 | struct perf_cpu_context *cpuctx; |
| 1089 | |
| 1090 | if (!is_cgroup_event(event)) |
| 1091 | return; |
| 1092 | |
| 1093 | event->pmu_ctx->nr_cgroups--; |
| 1094 | |
| 1095 | /* |
| 1096 | * Because cgroup events are always per-cpu events, |
| 1097 | * @ctx == &cpuctx->ctx. |
| 1098 | */ |
| 1099 | cpuctx = container_of(ctx, struct perf_cpu_context, ctx); |
| 1100 | |
| 1101 | if (--ctx->nr_cgroups) |
| 1102 | return; |
| 1103 | |
| 1104 | cpuctx->cgrp = NULL; |
| 1105 | } |
| 1106 | |
| 1107 | #else /* !CONFIG_CGROUP_PERF */ |
| 1108 | |
| 1109 | static inline bool |
| 1110 | perf_cgroup_match(struct perf_event *event) |
| 1111 | { |
| 1112 | return true; |
| 1113 | } |
| 1114 | |
| 1115 | static inline void perf_detach_cgroup(struct perf_event *event) |
| 1116 | {} |
| 1117 | |
| 1118 | static inline int is_cgroup_event(struct perf_event *event) |
| 1119 | { |
| 1120 | return 0; |
| 1121 | } |
| 1122 | |
| 1123 | static inline void update_cgrp_time_from_event(struct perf_event *event) |
| 1124 | { |
| 1125 | } |
| 1126 | |
| 1127 | static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, |
| 1128 | bool final) |
| 1129 | { |
| 1130 | } |
| 1131 | |
| 1132 | static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, |
| 1133 | struct perf_event_attr *attr, |
| 1134 | struct perf_event *group_leader) |
| 1135 | { |
| 1136 | return -EINVAL; |
| 1137 | } |
| 1138 | |
| 1139 | static inline void |
| 1140 | perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) |
| 1141 | { |
| 1142 | } |
| 1143 | |
| 1144 | static inline u64 perf_cgroup_event_time(struct perf_event *event) |
| 1145 | { |
| 1146 | return 0; |
| 1147 | } |
| 1148 | |
| 1149 | static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) |
| 1150 | { |
| 1151 | return 0; |
| 1152 | } |
| 1153 | |
| 1154 | static inline void |
| 1155 | perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) |
| 1156 | { |
| 1157 | } |
| 1158 | |
| 1159 | static inline void |
| 1160 | perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) |
| 1161 | { |
| 1162 | } |
| 1163 | |
| 1164 | static void perf_cgroup_switch(struct task_struct *task) |
| 1165 | { |
| 1166 | } |
| 1167 | #endif |
| 1168 | |
| 1169 | /* |
| 1170 | * set default to be dependent on timer tick just |
| 1171 | * like original code |
| 1172 | */ |
| 1173 | #define PERF_CPU_HRTIMER (1000 / HZ) |
| 1174 | /* |
| 1175 | * function must be called with interrupts disabled |
| 1176 | */ |
| 1177 | static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) |
| 1178 | { |
| 1179 | struct perf_cpu_pmu_context *cpc; |
| 1180 | bool rotations; |
| 1181 | |
| 1182 | lockdep_assert_irqs_disabled(); |
| 1183 | |
| 1184 | cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); |
| 1185 | rotations = perf_rotate_context(cpc); |
| 1186 | |
| 1187 | raw_spin_lock(&cpc->hrtimer_lock); |
| 1188 | if (rotations) |
| 1189 | hrtimer_forward_now(hr, cpc->hrtimer_interval); |
| 1190 | else |
| 1191 | cpc->hrtimer_active = 0; |
| 1192 | raw_spin_unlock(&cpc->hrtimer_lock); |
| 1193 | |
| 1194 | return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; |
| 1195 | } |
| 1196 | |
| 1197 | static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) |
| 1198 | { |
| 1199 | struct hrtimer *timer = &cpc->hrtimer; |
| 1200 | struct pmu *pmu = cpc->epc.pmu; |
| 1201 | u64 interval; |
| 1202 | |
| 1203 | /* |
| 1204 | * check default is sane, if not set then force to |
| 1205 | * default interval (1/tick) |
| 1206 | */ |
| 1207 | interval = pmu->hrtimer_interval_ms; |
| 1208 | if (interval < 1) |
| 1209 | interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; |
| 1210 | |
| 1211 | cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); |
| 1212 | |
| 1213 | raw_spin_lock_init(&cpc->hrtimer_lock); |
| 1214 | hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC, |
| 1215 | HRTIMER_MODE_ABS_PINNED_HARD); |
| 1216 | } |
| 1217 | |
| 1218 | static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) |
| 1219 | { |
| 1220 | struct hrtimer *timer = &cpc->hrtimer; |
| 1221 | unsigned long flags; |
| 1222 | |
| 1223 | raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); |
| 1224 | if (!cpc->hrtimer_active) { |
| 1225 | cpc->hrtimer_active = 1; |
| 1226 | hrtimer_forward_now(timer, cpc->hrtimer_interval); |
| 1227 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); |
| 1228 | } |
| 1229 | raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); |
| 1230 | |
| 1231 | return 0; |
| 1232 | } |
| 1233 | |
| 1234 | static int perf_mux_hrtimer_restart_ipi(void *arg) |
| 1235 | { |
| 1236 | return perf_mux_hrtimer_restart(arg); |
| 1237 | } |
| 1238 | |
| 1239 | static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu) |
| 1240 | { |
| 1241 | return *this_cpu_ptr(pmu->cpu_pmu_context); |
| 1242 | } |
| 1243 | |
| 1244 | void perf_pmu_disable(struct pmu *pmu) |
| 1245 | { |
| 1246 | int *count = &this_cpc(pmu)->pmu_disable_count; |
| 1247 | if (!(*count)++) |
| 1248 | pmu->pmu_disable(pmu); |
| 1249 | } |
| 1250 | |
| 1251 | void perf_pmu_enable(struct pmu *pmu) |
| 1252 | { |
| 1253 | int *count = &this_cpc(pmu)->pmu_disable_count; |
| 1254 | if (!--(*count)) |
| 1255 | pmu->pmu_enable(pmu); |
| 1256 | } |
| 1257 | |
| 1258 | static void perf_assert_pmu_disabled(struct pmu *pmu) |
| 1259 | { |
| 1260 | int *count = &this_cpc(pmu)->pmu_disable_count; |
| 1261 | WARN_ON_ONCE(*count == 0); |
| 1262 | } |
| 1263 | |
| 1264 | static inline void perf_pmu_read(struct perf_event *event) |
| 1265 | { |
| 1266 | if (event->state == PERF_EVENT_STATE_ACTIVE) |
| 1267 | event->pmu->read(event); |
| 1268 | } |
| 1269 | |
| 1270 | static void get_ctx(struct perf_event_context *ctx) |
| 1271 | { |
| 1272 | refcount_inc(&ctx->refcount); |
| 1273 | } |
| 1274 | |
| 1275 | static void free_ctx(struct rcu_head *head) |
| 1276 | { |
| 1277 | struct perf_event_context *ctx; |
| 1278 | |
| 1279 | ctx = container_of(head, struct perf_event_context, rcu_head); |
| 1280 | kfree(ctx); |
| 1281 | } |
| 1282 | |
| 1283 | static void put_ctx(struct perf_event_context *ctx) |
| 1284 | { |
| 1285 | if (refcount_dec_and_test(&ctx->refcount)) { |
| 1286 | if (ctx->parent_ctx) |
| 1287 | put_ctx(ctx->parent_ctx); |
| 1288 | if (ctx->task && ctx->task != TASK_TOMBSTONE) |
| 1289 | put_task_struct(ctx->task); |
| 1290 | call_rcu(&ctx->rcu_head, free_ctx); |
| 1291 | } else { |
| 1292 | smp_mb__after_atomic(); /* pairs with wait_var_event() */ |
| 1293 | if (ctx->task == TASK_TOMBSTONE) |
| 1294 | wake_up_var(&ctx->refcount); |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * Because of perf_event::ctx migration in sys_perf_event_open::move_group and |
| 1300 | * perf_pmu_migrate_context() we need some magic. |
| 1301 | * |
| 1302 | * Those places that change perf_event::ctx will hold both |
| 1303 | * perf_event_ctx::mutex of the 'old' and 'new' ctx value. |
| 1304 | * |
| 1305 | * Lock ordering is by mutex address. There are two other sites where |
| 1306 | * perf_event_context::mutex nests and those are: |
| 1307 | * |
| 1308 | * - perf_event_exit_task_context() [ child , 0 ] |
| 1309 | * perf_event_exit_event() |
| 1310 | * put_event() [ parent, 1 ] |
| 1311 | * |
| 1312 | * - perf_event_init_context() [ parent, 0 ] |
| 1313 | * inherit_task_group() |
| 1314 | * inherit_group() |
| 1315 | * inherit_event() |
| 1316 | * perf_event_alloc() |
| 1317 | * perf_init_event() |
| 1318 | * perf_try_init_event() [ child , 1 ] |
| 1319 | * |
| 1320 | * While it appears there is an obvious deadlock here -- the parent and child |
| 1321 | * nesting levels are inverted between the two. This is in fact safe because |
| 1322 | * life-time rules separate them. That is an exiting task cannot fork, and a |
| 1323 | * spawning task cannot (yet) exit. |
| 1324 | * |
| 1325 | * But remember that these are parent<->child context relations, and |
| 1326 | * migration does not affect children, therefore these two orderings should not |
| 1327 | * interact. |
| 1328 | * |
| 1329 | * The change in perf_event::ctx does not affect children (as claimed above) |
| 1330 | * because the sys_perf_event_open() case will install a new event and break |
| 1331 | * the ctx parent<->child relation, and perf_pmu_migrate_context() is only |
| 1332 | * concerned with cpuctx and that doesn't have children. |
| 1333 | * |
| 1334 | * The places that change perf_event::ctx will issue: |
| 1335 | * |
| 1336 | * perf_remove_from_context(); |
| 1337 | * synchronize_rcu(); |
| 1338 | * perf_install_in_context(); |
| 1339 | * |
| 1340 | * to affect the change. The remove_from_context() + synchronize_rcu() should |
| 1341 | * quiesce the event, after which we can install it in the new location. This |
| 1342 | * means that only external vectors (perf_fops, prctl) can perturb the event |
| 1343 | * while in transit. Therefore all such accessors should also acquire |
| 1344 | * perf_event_context::mutex to serialize against this. |
| 1345 | * |
| 1346 | * However; because event->ctx can change while we're waiting to acquire |
| 1347 | * ctx->mutex we must be careful and use the below perf_event_ctx_lock() |
| 1348 | * function. |
| 1349 | * |
| 1350 | * Lock order: |
| 1351 | * exec_update_lock |
| 1352 | * task_struct::perf_event_mutex |
| 1353 | * perf_event_context::mutex |
| 1354 | * perf_event::child_mutex; |
| 1355 | * perf_event_context::lock |
| 1356 | * mmap_lock |
| 1357 | * perf_event::mmap_mutex |
| 1358 | * perf_buffer::aux_mutex |
| 1359 | * perf_addr_filters_head::lock |
| 1360 | * |
| 1361 | * cpu_hotplug_lock |
| 1362 | * pmus_lock |
| 1363 | * cpuctx->mutex / perf_event_context::mutex |
| 1364 | */ |
| 1365 | static struct perf_event_context * |
| 1366 | perf_event_ctx_lock_nested(struct perf_event *event, int nesting) |
| 1367 | { |
| 1368 | struct perf_event_context *ctx; |
| 1369 | |
| 1370 | again: |
| 1371 | rcu_read_lock(); |
| 1372 | ctx = READ_ONCE(event->ctx); |
| 1373 | if (!refcount_inc_not_zero(&ctx->refcount)) { |
| 1374 | rcu_read_unlock(); |
| 1375 | goto again; |
| 1376 | } |
| 1377 | rcu_read_unlock(); |
| 1378 | |
| 1379 | mutex_lock_nested(&ctx->mutex, nesting); |
| 1380 | if (event->ctx != ctx) { |
| 1381 | mutex_unlock(&ctx->mutex); |
| 1382 | put_ctx(ctx); |
| 1383 | goto again; |
| 1384 | } |
| 1385 | |
| 1386 | return ctx; |
| 1387 | } |
| 1388 | |
| 1389 | static inline struct perf_event_context * |
| 1390 | perf_event_ctx_lock(struct perf_event *event) |
| 1391 | { |
| 1392 | return perf_event_ctx_lock_nested(event, 0); |
| 1393 | } |
| 1394 | |
| 1395 | static void perf_event_ctx_unlock(struct perf_event *event, |
| 1396 | struct perf_event_context *ctx) |
| 1397 | { |
| 1398 | mutex_unlock(&ctx->mutex); |
| 1399 | put_ctx(ctx); |
| 1400 | } |
| 1401 | |
| 1402 | /* |
| 1403 | * This must be done under the ctx->lock, such as to serialize against |
| 1404 | * context_equiv(), therefore we cannot call put_ctx() since that might end up |
| 1405 | * calling scheduler related locks and ctx->lock nests inside those. |
| 1406 | */ |
| 1407 | static __must_check struct perf_event_context * |
| 1408 | unclone_ctx(struct perf_event_context *ctx) |
| 1409 | { |
| 1410 | struct perf_event_context *parent_ctx = ctx->parent_ctx; |
| 1411 | |
| 1412 | lockdep_assert_held(&ctx->lock); |
| 1413 | |
| 1414 | if (parent_ctx) |
| 1415 | ctx->parent_ctx = NULL; |
| 1416 | ctx->generation++; |
| 1417 | |
| 1418 | return parent_ctx; |
| 1419 | } |
| 1420 | |
| 1421 | static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, |
| 1422 | enum pid_type type) |
| 1423 | { |
| 1424 | u32 nr; |
| 1425 | /* |
| 1426 | * only top level events have the pid namespace they were created in |
| 1427 | */ |
| 1428 | if (event->parent) |
| 1429 | event = event->parent; |
| 1430 | |
| 1431 | nr = __task_pid_nr_ns(p, type, event->ns); |
| 1432 | /* avoid -1 if it is idle thread or runs in another ns */ |
| 1433 | if (!nr && !pid_alive(p)) |
| 1434 | nr = -1; |
| 1435 | return nr; |
| 1436 | } |
| 1437 | |
| 1438 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) |
| 1439 | { |
| 1440 | return perf_event_pid_type(event, p, PIDTYPE_TGID); |
| 1441 | } |
| 1442 | |
| 1443 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) |
| 1444 | { |
| 1445 | return perf_event_pid_type(event, p, PIDTYPE_PID); |
| 1446 | } |
| 1447 | |
| 1448 | /* |
| 1449 | * If we inherit events we want to return the parent event id |
| 1450 | * to userspace. |
| 1451 | */ |
| 1452 | static u64 primary_event_id(struct perf_event *event) |
| 1453 | { |
| 1454 | u64 id = event->id; |
| 1455 | |
| 1456 | if (event->parent) |
| 1457 | id = event->parent->id; |
| 1458 | |
| 1459 | return id; |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * Get the perf_event_context for a task and lock it. |
| 1464 | * |
| 1465 | * This has to cope with the fact that until it is locked, |
| 1466 | * the context could get moved to another task. |
| 1467 | */ |
| 1468 | static struct perf_event_context * |
| 1469 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) |
| 1470 | { |
| 1471 | struct perf_event_context *ctx; |
| 1472 | |
| 1473 | retry: |
| 1474 | /* |
| 1475 | * One of the few rules of preemptible RCU is that one cannot do |
| 1476 | * rcu_read_unlock() while holding a scheduler (or nested) lock when |
| 1477 | * part of the read side critical section was irqs-enabled -- see |
| 1478 | * rcu_read_unlock_special(). |
| 1479 | * |
| 1480 | * Since ctx->lock nests under rq->lock we must ensure the entire read |
| 1481 | * side critical section has interrupts disabled. |
| 1482 | */ |
| 1483 | local_irq_save(*flags); |
| 1484 | rcu_read_lock(); |
| 1485 | ctx = rcu_dereference(task->perf_event_ctxp); |
| 1486 | if (ctx) { |
| 1487 | /* |
| 1488 | * If this context is a clone of another, it might |
| 1489 | * get swapped for another underneath us by |
| 1490 | * perf_event_task_sched_out, though the |
| 1491 | * rcu_read_lock() protects us from any context |
| 1492 | * getting freed. Lock the context and check if it |
| 1493 | * got swapped before we could get the lock, and retry |
| 1494 | * if so. If we locked the right context, then it |
| 1495 | * can't get swapped on us any more. |
| 1496 | */ |
| 1497 | raw_spin_lock(&ctx->lock); |
| 1498 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { |
| 1499 | raw_spin_unlock(&ctx->lock); |
| 1500 | rcu_read_unlock(); |
| 1501 | local_irq_restore(*flags); |
| 1502 | goto retry; |
| 1503 | } |
| 1504 | |
| 1505 | if (ctx->task == TASK_TOMBSTONE || |
| 1506 | !refcount_inc_not_zero(&ctx->refcount)) { |
| 1507 | raw_spin_unlock(&ctx->lock); |
| 1508 | ctx = NULL; |
| 1509 | } else { |
| 1510 | WARN_ON_ONCE(ctx->task != task); |
| 1511 | } |
| 1512 | } |
| 1513 | rcu_read_unlock(); |
| 1514 | if (!ctx) |
| 1515 | local_irq_restore(*flags); |
| 1516 | return ctx; |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * Get the context for a task and increment its pin_count so it |
| 1521 | * can't get swapped to another task. This also increments its |
| 1522 | * reference count so that the context can't get freed. |
| 1523 | */ |
| 1524 | static struct perf_event_context * |
| 1525 | perf_pin_task_context(struct task_struct *task) |
| 1526 | { |
| 1527 | struct perf_event_context *ctx; |
| 1528 | unsigned long flags; |
| 1529 | |
| 1530 | ctx = perf_lock_task_context(task, &flags); |
| 1531 | if (ctx) { |
| 1532 | ++ctx->pin_count; |
| 1533 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 1534 | } |
| 1535 | return ctx; |
| 1536 | } |
| 1537 | |
| 1538 | static void perf_unpin_context(struct perf_event_context *ctx) |
| 1539 | { |
| 1540 | unsigned long flags; |
| 1541 | |
| 1542 | raw_spin_lock_irqsave(&ctx->lock, flags); |
| 1543 | --ctx->pin_count; |
| 1544 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 1545 | } |
| 1546 | |
| 1547 | /* |
| 1548 | * Update the record of the current time in a context. |
| 1549 | */ |
| 1550 | static void __update_context_time(struct perf_event_context *ctx, bool adv) |
| 1551 | { |
| 1552 | u64 now = perf_clock(); |
| 1553 | |
| 1554 | lockdep_assert_held(&ctx->lock); |
| 1555 | |
| 1556 | if (adv) |
| 1557 | ctx->time += now - ctx->timestamp; |
| 1558 | ctx->timestamp = now; |
| 1559 | |
| 1560 | /* |
| 1561 | * The above: time' = time + (now - timestamp), can be re-arranged |
| 1562 | * into: time` = now + (time - timestamp), which gives a single value |
| 1563 | * offset to compute future time without locks on. |
| 1564 | * |
| 1565 | * See perf_event_time_now(), which can be used from NMI context where |
| 1566 | * it's (obviously) not possible to acquire ctx->lock in order to read |
| 1567 | * both the above values in a consistent manner. |
| 1568 | */ |
| 1569 | WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); |
| 1570 | } |
| 1571 | |
| 1572 | static void update_context_time(struct perf_event_context *ctx) |
| 1573 | { |
| 1574 | __update_context_time(ctx, true); |
| 1575 | } |
| 1576 | |
| 1577 | static u64 perf_event_time(struct perf_event *event) |
| 1578 | { |
| 1579 | struct perf_event_context *ctx = event->ctx; |
| 1580 | |
| 1581 | if (unlikely(!ctx)) |
| 1582 | return 0; |
| 1583 | |
| 1584 | if (is_cgroup_event(event)) |
| 1585 | return perf_cgroup_event_time(event); |
| 1586 | |
| 1587 | return ctx->time; |
| 1588 | } |
| 1589 | |
| 1590 | static u64 perf_event_time_now(struct perf_event *event, u64 now) |
| 1591 | { |
| 1592 | struct perf_event_context *ctx = event->ctx; |
| 1593 | |
| 1594 | if (unlikely(!ctx)) |
| 1595 | return 0; |
| 1596 | |
| 1597 | if (is_cgroup_event(event)) |
| 1598 | return perf_cgroup_event_time_now(event, now); |
| 1599 | |
| 1600 | if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) |
| 1601 | return ctx->time; |
| 1602 | |
| 1603 | now += READ_ONCE(ctx->timeoffset); |
| 1604 | return now; |
| 1605 | } |
| 1606 | |
| 1607 | static enum event_type_t get_event_type(struct perf_event *event) |
| 1608 | { |
| 1609 | struct perf_event_context *ctx = event->ctx; |
| 1610 | enum event_type_t event_type; |
| 1611 | |
| 1612 | lockdep_assert_held(&ctx->lock); |
| 1613 | |
| 1614 | /* |
| 1615 | * It's 'group type', really, because if our group leader is |
| 1616 | * pinned, so are we. |
| 1617 | */ |
| 1618 | if (event->group_leader != event) |
| 1619 | event = event->group_leader; |
| 1620 | |
| 1621 | event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; |
| 1622 | if (!ctx->task) |
| 1623 | event_type |= EVENT_CPU; |
| 1624 | |
| 1625 | return event_type; |
| 1626 | } |
| 1627 | |
| 1628 | /* |
| 1629 | * Helper function to initialize event group nodes. |
| 1630 | */ |
| 1631 | static void init_event_group(struct perf_event *event) |
| 1632 | { |
| 1633 | RB_CLEAR_NODE(&event->group_node); |
| 1634 | event->group_index = 0; |
| 1635 | } |
| 1636 | |
| 1637 | /* |
| 1638 | * Extract pinned or flexible groups from the context |
| 1639 | * based on event attrs bits. |
| 1640 | */ |
| 1641 | static struct perf_event_groups * |
| 1642 | get_event_groups(struct perf_event *event, struct perf_event_context *ctx) |
| 1643 | { |
| 1644 | if (event->attr.pinned) |
| 1645 | return &ctx->pinned_groups; |
| 1646 | else |
| 1647 | return &ctx->flexible_groups; |
| 1648 | } |
| 1649 | |
| 1650 | /* |
| 1651 | * Helper function to initializes perf_event_group trees. |
| 1652 | */ |
| 1653 | static void perf_event_groups_init(struct perf_event_groups *groups) |
| 1654 | { |
| 1655 | groups->tree = RB_ROOT; |
| 1656 | groups->index = 0; |
| 1657 | } |
| 1658 | |
| 1659 | static inline struct cgroup *event_cgroup(const struct perf_event *event) |
| 1660 | { |
| 1661 | struct cgroup *cgroup = NULL; |
| 1662 | |
| 1663 | #ifdef CONFIG_CGROUP_PERF |
| 1664 | if (event->cgrp) |
| 1665 | cgroup = event->cgrp->css.cgroup; |
| 1666 | #endif |
| 1667 | |
| 1668 | return cgroup; |
| 1669 | } |
| 1670 | |
| 1671 | /* |
| 1672 | * Compare function for event groups; |
| 1673 | * |
| 1674 | * Implements complex key that first sorts by CPU and then by virtual index |
| 1675 | * which provides ordering when rotating groups for the same CPU. |
| 1676 | */ |
| 1677 | static __always_inline int |
| 1678 | perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, |
| 1679 | const struct cgroup *left_cgroup, const u64 left_group_index, |
| 1680 | const struct perf_event *right) |
| 1681 | { |
| 1682 | if (left_cpu < right->cpu) |
| 1683 | return -1; |
| 1684 | if (left_cpu > right->cpu) |
| 1685 | return 1; |
| 1686 | |
| 1687 | if (left_pmu) { |
| 1688 | if (left_pmu < right->pmu_ctx->pmu) |
| 1689 | return -1; |
| 1690 | if (left_pmu > right->pmu_ctx->pmu) |
| 1691 | return 1; |
| 1692 | } |
| 1693 | |
| 1694 | #ifdef CONFIG_CGROUP_PERF |
| 1695 | { |
| 1696 | const struct cgroup *right_cgroup = event_cgroup(right); |
| 1697 | |
| 1698 | if (left_cgroup != right_cgroup) { |
| 1699 | if (!left_cgroup) { |
| 1700 | /* |
| 1701 | * Left has no cgroup but right does, no |
| 1702 | * cgroups come first. |
| 1703 | */ |
| 1704 | return -1; |
| 1705 | } |
| 1706 | if (!right_cgroup) { |
| 1707 | /* |
| 1708 | * Right has no cgroup but left does, no |
| 1709 | * cgroups come first. |
| 1710 | */ |
| 1711 | return 1; |
| 1712 | } |
| 1713 | /* Two dissimilar cgroups, order by id. */ |
| 1714 | if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) |
| 1715 | return -1; |
| 1716 | |
| 1717 | return 1; |
| 1718 | } |
| 1719 | } |
| 1720 | #endif |
| 1721 | |
| 1722 | if (left_group_index < right->group_index) |
| 1723 | return -1; |
| 1724 | if (left_group_index > right->group_index) |
| 1725 | return 1; |
| 1726 | |
| 1727 | return 0; |
| 1728 | } |
| 1729 | |
| 1730 | #define __node_2_pe(node) \ |
| 1731 | rb_entry((node), struct perf_event, group_node) |
| 1732 | |
| 1733 | static inline bool __group_less(struct rb_node *a, const struct rb_node *b) |
| 1734 | { |
| 1735 | struct perf_event *e = __node_2_pe(a); |
| 1736 | return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), |
| 1737 | e->group_index, __node_2_pe(b)) < 0; |
| 1738 | } |
| 1739 | |
| 1740 | struct __group_key { |
| 1741 | int cpu; |
| 1742 | struct pmu *pmu; |
| 1743 | struct cgroup *cgroup; |
| 1744 | }; |
| 1745 | |
| 1746 | static inline int __group_cmp(const void *key, const struct rb_node *node) |
| 1747 | { |
| 1748 | const struct __group_key *a = key; |
| 1749 | const struct perf_event *b = __node_2_pe(node); |
| 1750 | |
| 1751 | /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ |
| 1752 | return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); |
| 1753 | } |
| 1754 | |
| 1755 | static inline int |
| 1756 | __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) |
| 1757 | { |
| 1758 | const struct __group_key *a = key; |
| 1759 | const struct perf_event *b = __node_2_pe(node); |
| 1760 | |
| 1761 | /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ |
| 1762 | return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), |
| 1763 | b->group_index, b); |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * Insert @event into @groups' tree; using |
| 1768 | * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} |
| 1769 | * as key. This places it last inside the {cpu,pmu,cgroup} subtree. |
| 1770 | */ |
| 1771 | static void |
| 1772 | perf_event_groups_insert(struct perf_event_groups *groups, |
| 1773 | struct perf_event *event) |
| 1774 | { |
| 1775 | event->group_index = ++groups->index; |
| 1776 | |
| 1777 | rb_add(&event->group_node, &groups->tree, __group_less); |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * Helper function to insert event into the pinned or flexible groups. |
| 1782 | */ |
| 1783 | static void |
| 1784 | add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) |
| 1785 | { |
| 1786 | struct perf_event_groups *groups; |
| 1787 | |
| 1788 | groups = get_event_groups(event, ctx); |
| 1789 | perf_event_groups_insert(groups, event); |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * Delete a group from a tree. |
| 1794 | */ |
| 1795 | static void |
| 1796 | perf_event_groups_delete(struct perf_event_groups *groups, |
| 1797 | struct perf_event *event) |
| 1798 | { |
| 1799 | WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || |
| 1800 | RB_EMPTY_ROOT(&groups->tree)); |
| 1801 | |
| 1802 | rb_erase(&event->group_node, &groups->tree); |
| 1803 | init_event_group(event); |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * Helper function to delete event from its groups. |
| 1808 | */ |
| 1809 | static void |
| 1810 | del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) |
| 1811 | { |
| 1812 | struct perf_event_groups *groups; |
| 1813 | |
| 1814 | groups = get_event_groups(event, ctx); |
| 1815 | perf_event_groups_delete(groups, event); |
| 1816 | } |
| 1817 | |
| 1818 | /* |
| 1819 | * Get the leftmost event in the {cpu,pmu,cgroup} subtree. |
| 1820 | */ |
| 1821 | static struct perf_event * |
| 1822 | perf_event_groups_first(struct perf_event_groups *groups, int cpu, |
| 1823 | struct pmu *pmu, struct cgroup *cgrp) |
| 1824 | { |
| 1825 | struct __group_key key = { |
| 1826 | .cpu = cpu, |
| 1827 | .pmu = pmu, |
| 1828 | .cgroup = cgrp, |
| 1829 | }; |
| 1830 | struct rb_node *node; |
| 1831 | |
| 1832 | node = rb_find_first(&key, &groups->tree, __group_cmp); |
| 1833 | if (node) |
| 1834 | return __node_2_pe(node); |
| 1835 | |
| 1836 | return NULL; |
| 1837 | } |
| 1838 | |
| 1839 | static struct perf_event * |
| 1840 | perf_event_groups_next(struct perf_event *event, struct pmu *pmu) |
| 1841 | { |
| 1842 | struct __group_key key = { |
| 1843 | .cpu = event->cpu, |
| 1844 | .pmu = pmu, |
| 1845 | .cgroup = event_cgroup(event), |
| 1846 | }; |
| 1847 | struct rb_node *next; |
| 1848 | |
| 1849 | next = rb_next_match(&key, &event->group_node, __group_cmp); |
| 1850 | if (next) |
| 1851 | return __node_2_pe(next); |
| 1852 | |
| 1853 | return NULL; |
| 1854 | } |
| 1855 | |
| 1856 | #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ |
| 1857 | for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ |
| 1858 | event; event = perf_event_groups_next(event, pmu)) |
| 1859 | |
| 1860 | /* |
| 1861 | * Iterate through the whole groups tree. |
| 1862 | */ |
| 1863 | #define perf_event_groups_for_each(event, groups) \ |
| 1864 | for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ |
| 1865 | typeof(*event), group_node); event; \ |
| 1866 | event = rb_entry_safe(rb_next(&event->group_node), \ |
| 1867 | typeof(*event), group_node)) |
| 1868 | |
| 1869 | /* |
| 1870 | * Does the event attribute request inherit with PERF_SAMPLE_READ |
| 1871 | */ |
| 1872 | static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr) |
| 1873 | { |
| 1874 | return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ); |
| 1875 | } |
| 1876 | |
| 1877 | /* |
| 1878 | * Add an event from the lists for its context. |
| 1879 | * Must be called with ctx->mutex and ctx->lock held. |
| 1880 | */ |
| 1881 | static void |
| 1882 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) |
| 1883 | { |
| 1884 | lockdep_assert_held(&ctx->lock); |
| 1885 | |
| 1886 | WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); |
| 1887 | event->attach_state |= PERF_ATTACH_CONTEXT; |
| 1888 | |
| 1889 | event->tstamp = perf_event_time(event); |
| 1890 | |
| 1891 | /* |
| 1892 | * If we're a stand alone event or group leader, we go to the context |
| 1893 | * list, group events are kept attached to the group so that |
| 1894 | * perf_group_detach can, at all times, locate all siblings. |
| 1895 | */ |
| 1896 | if (event->group_leader == event) { |
| 1897 | event->group_caps = event->event_caps; |
| 1898 | add_event_to_groups(event, ctx); |
| 1899 | } |
| 1900 | |
| 1901 | list_add_rcu(&event->event_entry, &ctx->event_list); |
| 1902 | ctx->nr_events++; |
| 1903 | if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) |
| 1904 | ctx->nr_user++; |
| 1905 | if (event->attr.inherit_stat) |
| 1906 | ctx->nr_stat++; |
| 1907 | if (has_inherit_and_sample_read(&event->attr)) |
| 1908 | local_inc(&ctx->nr_no_switch_fast); |
| 1909 | |
| 1910 | if (event->state > PERF_EVENT_STATE_OFF) |
| 1911 | perf_cgroup_event_enable(event, ctx); |
| 1912 | |
| 1913 | ctx->generation++; |
| 1914 | event->pmu_ctx->nr_events++; |
| 1915 | } |
| 1916 | |
| 1917 | /* |
| 1918 | * Initialize event state based on the perf_event_attr::disabled. |
| 1919 | */ |
| 1920 | static inline void perf_event__state_init(struct perf_event *event) |
| 1921 | { |
| 1922 | event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : |
| 1923 | PERF_EVENT_STATE_INACTIVE; |
| 1924 | } |
| 1925 | |
| 1926 | static int __perf_event_read_size(u64 read_format, int nr_siblings) |
| 1927 | { |
| 1928 | int entry = sizeof(u64); /* value */ |
| 1929 | int size = 0; |
| 1930 | int nr = 1; |
| 1931 | |
| 1932 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| 1933 | size += sizeof(u64); |
| 1934 | |
| 1935 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| 1936 | size += sizeof(u64); |
| 1937 | |
| 1938 | if (read_format & PERF_FORMAT_ID) |
| 1939 | entry += sizeof(u64); |
| 1940 | |
| 1941 | if (read_format & PERF_FORMAT_LOST) |
| 1942 | entry += sizeof(u64); |
| 1943 | |
| 1944 | if (read_format & PERF_FORMAT_GROUP) { |
| 1945 | nr += nr_siblings; |
| 1946 | size += sizeof(u64); |
| 1947 | } |
| 1948 | |
| 1949 | /* |
| 1950 | * Since perf_event_validate_size() limits this to 16k and inhibits |
| 1951 | * adding more siblings, this will never overflow. |
| 1952 | */ |
| 1953 | return size + nr * entry; |
| 1954 | } |
| 1955 | |
| 1956 | static void __perf_event_header_size(struct perf_event *event, u64 sample_type) |
| 1957 | { |
| 1958 | struct perf_sample_data *data; |
| 1959 | u16 size = 0; |
| 1960 | |
| 1961 | if (sample_type & PERF_SAMPLE_IP) |
| 1962 | size += sizeof(data->ip); |
| 1963 | |
| 1964 | if (sample_type & PERF_SAMPLE_ADDR) |
| 1965 | size += sizeof(data->addr); |
| 1966 | |
| 1967 | if (sample_type & PERF_SAMPLE_PERIOD) |
| 1968 | size += sizeof(data->period); |
| 1969 | |
| 1970 | if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) |
| 1971 | size += sizeof(data->weight.full); |
| 1972 | |
| 1973 | if (sample_type & PERF_SAMPLE_READ) |
| 1974 | size += event->read_size; |
| 1975 | |
| 1976 | if (sample_type & PERF_SAMPLE_DATA_SRC) |
| 1977 | size += sizeof(data->data_src.val); |
| 1978 | |
| 1979 | if (sample_type & PERF_SAMPLE_TRANSACTION) |
| 1980 | size += sizeof(data->txn); |
| 1981 | |
| 1982 | if (sample_type & PERF_SAMPLE_PHYS_ADDR) |
| 1983 | size += sizeof(data->phys_addr); |
| 1984 | |
| 1985 | if (sample_type & PERF_SAMPLE_CGROUP) |
| 1986 | size += sizeof(data->cgroup); |
| 1987 | |
| 1988 | if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) |
| 1989 | size += sizeof(data->data_page_size); |
| 1990 | |
| 1991 | if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) |
| 1992 | size += sizeof(data->code_page_size); |
| 1993 | |
| 1994 | event->header_size = size; |
| 1995 | } |
| 1996 | |
| 1997 | /* |
| 1998 | * Called at perf_event creation and when events are attached/detached from a |
| 1999 | * group. |
| 2000 | */ |
| 2001 | static void perf_event__header_size(struct perf_event *event) |
| 2002 | { |
| 2003 | event->read_size = |
| 2004 | __perf_event_read_size(event->attr.read_format, |
| 2005 | event->group_leader->nr_siblings); |
| 2006 | __perf_event_header_size(event, event->attr.sample_type); |
| 2007 | } |
| 2008 | |
| 2009 | static void perf_event__id_header_size(struct perf_event *event) |
| 2010 | { |
| 2011 | struct perf_sample_data *data; |
| 2012 | u64 sample_type = event->attr.sample_type; |
| 2013 | u16 size = 0; |
| 2014 | |
| 2015 | if (sample_type & PERF_SAMPLE_TID) |
| 2016 | size += sizeof(data->tid_entry); |
| 2017 | |
| 2018 | if (sample_type & PERF_SAMPLE_TIME) |
| 2019 | size += sizeof(data->time); |
| 2020 | |
| 2021 | if (sample_type & PERF_SAMPLE_IDENTIFIER) |
| 2022 | size += sizeof(data->id); |
| 2023 | |
| 2024 | if (sample_type & PERF_SAMPLE_ID) |
| 2025 | size += sizeof(data->id); |
| 2026 | |
| 2027 | if (sample_type & PERF_SAMPLE_STREAM_ID) |
| 2028 | size += sizeof(data->stream_id); |
| 2029 | |
| 2030 | if (sample_type & PERF_SAMPLE_CPU) |
| 2031 | size += sizeof(data->cpu_entry); |
| 2032 | |
| 2033 | event->id_header_size = size; |
| 2034 | } |
| 2035 | |
| 2036 | /* |
| 2037 | * Check that adding an event to the group does not result in anybody |
| 2038 | * overflowing the 64k event limit imposed by the output buffer. |
| 2039 | * |
| 2040 | * Specifically, check that the read_size for the event does not exceed 16k, |
| 2041 | * read_size being the one term that grows with groups size. Since read_size |
| 2042 | * depends on per-event read_format, also (re)check the existing events. |
| 2043 | * |
| 2044 | * This leaves 48k for the constant size fields and things like callchains, |
| 2045 | * branch stacks and register sets. |
| 2046 | */ |
| 2047 | static bool perf_event_validate_size(struct perf_event *event) |
| 2048 | { |
| 2049 | struct perf_event *sibling, *group_leader = event->group_leader; |
| 2050 | |
| 2051 | if (__perf_event_read_size(event->attr.read_format, |
| 2052 | group_leader->nr_siblings + 1) > 16*1024) |
| 2053 | return false; |
| 2054 | |
| 2055 | if (__perf_event_read_size(group_leader->attr.read_format, |
| 2056 | group_leader->nr_siblings + 1) > 16*1024) |
| 2057 | return false; |
| 2058 | |
| 2059 | /* |
| 2060 | * When creating a new group leader, group_leader->ctx is initialized |
| 2061 | * after the size has been validated, but we cannot safely use |
| 2062 | * for_each_sibling_event() until group_leader->ctx is set. A new group |
| 2063 | * leader cannot have any siblings yet, so we can safely skip checking |
| 2064 | * the non-existent siblings. |
| 2065 | */ |
| 2066 | if (event == group_leader) |
| 2067 | return true; |
| 2068 | |
| 2069 | for_each_sibling_event(sibling, group_leader) { |
| 2070 | if (__perf_event_read_size(sibling->attr.read_format, |
| 2071 | group_leader->nr_siblings + 1) > 16*1024) |
| 2072 | return false; |
| 2073 | } |
| 2074 | |
| 2075 | return true; |
| 2076 | } |
| 2077 | |
| 2078 | static void perf_group_attach(struct perf_event *event) |
| 2079 | { |
| 2080 | struct perf_event *group_leader = event->group_leader, *pos; |
| 2081 | |
| 2082 | lockdep_assert_held(&event->ctx->lock); |
| 2083 | |
| 2084 | /* |
| 2085 | * We can have double attach due to group movement (move_group) in |
| 2086 | * perf_event_open(). |
| 2087 | */ |
| 2088 | if (event->attach_state & PERF_ATTACH_GROUP) |
| 2089 | return; |
| 2090 | |
| 2091 | event->attach_state |= PERF_ATTACH_GROUP; |
| 2092 | |
| 2093 | if (group_leader == event) |
| 2094 | return; |
| 2095 | |
| 2096 | WARN_ON_ONCE(group_leader->ctx != event->ctx); |
| 2097 | |
| 2098 | group_leader->group_caps &= event->event_caps; |
| 2099 | |
| 2100 | list_add_tail(&event->sibling_list, &group_leader->sibling_list); |
| 2101 | group_leader->nr_siblings++; |
| 2102 | group_leader->group_generation++; |
| 2103 | |
| 2104 | perf_event__header_size(group_leader); |
| 2105 | |
| 2106 | for_each_sibling_event(pos, group_leader) |
| 2107 | perf_event__header_size(pos); |
| 2108 | } |
| 2109 | |
| 2110 | /* |
| 2111 | * Remove an event from the lists for its context. |
| 2112 | * Must be called with ctx->mutex and ctx->lock held. |
| 2113 | */ |
| 2114 | static void |
| 2115 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
| 2116 | { |
| 2117 | WARN_ON_ONCE(event->ctx != ctx); |
| 2118 | lockdep_assert_held(&ctx->lock); |
| 2119 | |
| 2120 | /* |
| 2121 | * We can have double detach due to exit/hot-unplug + close. |
| 2122 | */ |
| 2123 | if (!(event->attach_state & PERF_ATTACH_CONTEXT)) |
| 2124 | return; |
| 2125 | |
| 2126 | event->attach_state &= ~PERF_ATTACH_CONTEXT; |
| 2127 | |
| 2128 | ctx->nr_events--; |
| 2129 | if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) |
| 2130 | ctx->nr_user--; |
| 2131 | if (event->attr.inherit_stat) |
| 2132 | ctx->nr_stat--; |
| 2133 | if (has_inherit_and_sample_read(&event->attr)) |
| 2134 | local_dec(&ctx->nr_no_switch_fast); |
| 2135 | |
| 2136 | list_del_rcu(&event->event_entry); |
| 2137 | |
| 2138 | if (event->group_leader == event) |
| 2139 | del_event_from_groups(event, ctx); |
| 2140 | |
| 2141 | ctx->generation++; |
| 2142 | event->pmu_ctx->nr_events--; |
| 2143 | } |
| 2144 | |
| 2145 | static int |
| 2146 | perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) |
| 2147 | { |
| 2148 | if (!has_aux(aux_event)) |
| 2149 | return 0; |
| 2150 | |
| 2151 | if (!event->pmu->aux_output_match) |
| 2152 | return 0; |
| 2153 | |
| 2154 | return event->pmu->aux_output_match(aux_event); |
| 2155 | } |
| 2156 | |
| 2157 | static void put_event(struct perf_event *event); |
| 2158 | static void __event_disable(struct perf_event *event, |
| 2159 | struct perf_event_context *ctx, |
| 2160 | enum perf_event_state state); |
| 2161 | |
| 2162 | static void perf_put_aux_event(struct perf_event *event) |
| 2163 | { |
| 2164 | struct perf_event_context *ctx = event->ctx; |
| 2165 | struct perf_event *iter; |
| 2166 | |
| 2167 | /* |
| 2168 | * If event uses aux_event tear down the link |
| 2169 | */ |
| 2170 | if (event->aux_event) { |
| 2171 | iter = event->aux_event; |
| 2172 | event->aux_event = NULL; |
| 2173 | put_event(iter); |
| 2174 | return; |
| 2175 | } |
| 2176 | |
| 2177 | /* |
| 2178 | * If the event is an aux_event, tear down all links to |
| 2179 | * it from other events. |
| 2180 | */ |
| 2181 | for_each_sibling_event(iter, event) { |
| 2182 | if (iter->aux_event != event) |
| 2183 | continue; |
| 2184 | |
| 2185 | iter->aux_event = NULL; |
| 2186 | put_event(event); |
| 2187 | |
| 2188 | /* |
| 2189 | * If it's ACTIVE, schedule it out and put it into ERROR |
| 2190 | * state so that we don't try to schedule it again. Note |
| 2191 | * that perf_event_enable() will clear the ERROR status. |
| 2192 | */ |
| 2193 | __event_disable(iter, ctx, PERF_EVENT_STATE_ERROR); |
| 2194 | } |
| 2195 | } |
| 2196 | |
| 2197 | static bool perf_need_aux_event(struct perf_event *event) |
| 2198 | { |
| 2199 | return event->attr.aux_output || has_aux_action(event); |
| 2200 | } |
| 2201 | |
| 2202 | static int perf_get_aux_event(struct perf_event *event, |
| 2203 | struct perf_event *group_leader) |
| 2204 | { |
| 2205 | /* |
| 2206 | * Our group leader must be an aux event if we want to be |
| 2207 | * an aux_output. This way, the aux event will precede its |
| 2208 | * aux_output events in the group, and therefore will always |
| 2209 | * schedule first. |
| 2210 | */ |
| 2211 | if (!group_leader) |
| 2212 | return 0; |
| 2213 | |
| 2214 | /* |
| 2215 | * aux_output and aux_sample_size are mutually exclusive. |
| 2216 | */ |
| 2217 | if (event->attr.aux_output && event->attr.aux_sample_size) |
| 2218 | return 0; |
| 2219 | |
| 2220 | if (event->attr.aux_output && |
| 2221 | !perf_aux_output_match(event, group_leader)) |
| 2222 | return 0; |
| 2223 | |
| 2224 | if ((event->attr.aux_pause || event->attr.aux_resume) && |
| 2225 | !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) |
| 2226 | return 0; |
| 2227 | |
| 2228 | if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) |
| 2229 | return 0; |
| 2230 | |
| 2231 | if (!atomic_long_inc_not_zero(&group_leader->refcount)) |
| 2232 | return 0; |
| 2233 | |
| 2234 | /* |
| 2235 | * Link aux_outputs to their aux event; this is undone in |
| 2236 | * perf_group_detach() by perf_put_aux_event(). When the |
| 2237 | * group in torn down, the aux_output events loose their |
| 2238 | * link to the aux_event and can't schedule any more. |
| 2239 | */ |
| 2240 | event->aux_event = group_leader; |
| 2241 | |
| 2242 | return 1; |
| 2243 | } |
| 2244 | |
| 2245 | static inline struct list_head *get_event_list(struct perf_event *event) |
| 2246 | { |
| 2247 | return event->attr.pinned ? &event->pmu_ctx->pinned_active : |
| 2248 | &event->pmu_ctx->flexible_active; |
| 2249 | } |
| 2250 | |
| 2251 | static void perf_group_detach(struct perf_event *event) |
| 2252 | { |
| 2253 | struct perf_event *leader = event->group_leader; |
| 2254 | struct perf_event *sibling, *tmp; |
| 2255 | struct perf_event_context *ctx = event->ctx; |
| 2256 | |
| 2257 | lockdep_assert_held(&ctx->lock); |
| 2258 | |
| 2259 | /* |
| 2260 | * We can have double detach due to exit/hot-unplug + close. |
| 2261 | */ |
| 2262 | if (!(event->attach_state & PERF_ATTACH_GROUP)) |
| 2263 | return; |
| 2264 | |
| 2265 | event->attach_state &= ~PERF_ATTACH_GROUP; |
| 2266 | |
| 2267 | perf_put_aux_event(event); |
| 2268 | |
| 2269 | /* |
| 2270 | * If this is a sibling, remove it from its group. |
| 2271 | */ |
| 2272 | if (leader != event) { |
| 2273 | list_del_init(&event->sibling_list); |
| 2274 | event->group_leader->nr_siblings--; |
| 2275 | event->group_leader->group_generation++; |
| 2276 | goto out; |
| 2277 | } |
| 2278 | |
| 2279 | /* |
| 2280 | * If this was a group event with sibling events then |
| 2281 | * upgrade the siblings to singleton events by adding them |
| 2282 | * to whatever list we are on. |
| 2283 | */ |
| 2284 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { |
| 2285 | |
| 2286 | /* |
| 2287 | * Events that have PERF_EV_CAP_SIBLING require being part of |
| 2288 | * a group and cannot exist on their own, schedule them out |
| 2289 | * and move them into the ERROR state. Also see |
| 2290 | * _perf_event_enable(), it will not be able to recover this |
| 2291 | * ERROR state. |
| 2292 | */ |
| 2293 | if (sibling->event_caps & PERF_EV_CAP_SIBLING) |
| 2294 | __event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR); |
| 2295 | |
| 2296 | sibling->group_leader = sibling; |
| 2297 | list_del_init(&sibling->sibling_list); |
| 2298 | |
| 2299 | /* Inherit group flags from the previous leader */ |
| 2300 | sibling->group_caps = event->group_caps; |
| 2301 | |
| 2302 | if (sibling->attach_state & PERF_ATTACH_CONTEXT) { |
| 2303 | add_event_to_groups(sibling, event->ctx); |
| 2304 | |
| 2305 | if (sibling->state == PERF_EVENT_STATE_ACTIVE) |
| 2306 | list_add_tail(&sibling->active_list, get_event_list(sibling)); |
| 2307 | } |
| 2308 | |
| 2309 | WARN_ON_ONCE(sibling->ctx != event->ctx); |
| 2310 | } |
| 2311 | |
| 2312 | out: |
| 2313 | for_each_sibling_event(tmp, leader) |
| 2314 | perf_event__header_size(tmp); |
| 2315 | |
| 2316 | perf_event__header_size(leader); |
| 2317 | } |
| 2318 | |
| 2319 | static void sync_child_event(struct perf_event *child_event); |
| 2320 | |
| 2321 | static void perf_child_detach(struct perf_event *event) |
| 2322 | { |
| 2323 | struct perf_event *parent_event = event->parent; |
| 2324 | |
| 2325 | if (!(event->attach_state & PERF_ATTACH_CHILD)) |
| 2326 | return; |
| 2327 | |
| 2328 | event->attach_state &= ~PERF_ATTACH_CHILD; |
| 2329 | |
| 2330 | if (WARN_ON_ONCE(!parent_event)) |
| 2331 | return; |
| 2332 | |
| 2333 | /* |
| 2334 | * Can't check this from an IPI, the holder is likey another CPU. |
| 2335 | * |
| 2336 | lockdep_assert_held(&parent_event->child_mutex); |
| 2337 | */ |
| 2338 | |
| 2339 | sync_child_event(event); |
| 2340 | list_del_init(&event->child_list); |
| 2341 | } |
| 2342 | |
| 2343 | static bool is_orphaned_event(struct perf_event *event) |
| 2344 | { |
| 2345 | return event->state == PERF_EVENT_STATE_DEAD; |
| 2346 | } |
| 2347 | |
| 2348 | static inline int |
| 2349 | event_filter_match(struct perf_event *event) |
| 2350 | { |
| 2351 | return (event->cpu == -1 || event->cpu == smp_processor_id()) && |
| 2352 | perf_cgroup_match(event); |
| 2353 | } |
| 2354 | |
| 2355 | static inline bool is_event_in_freq_mode(struct perf_event *event) |
| 2356 | { |
| 2357 | return event->attr.freq && event->attr.sample_freq; |
| 2358 | } |
| 2359 | |
| 2360 | static void |
| 2361 | event_sched_out(struct perf_event *event, struct perf_event_context *ctx) |
| 2362 | { |
| 2363 | struct perf_event_pmu_context *epc = event->pmu_ctx; |
| 2364 | struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); |
| 2365 | enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; |
| 2366 | |
| 2367 | // XXX cpc serialization, probably per-cpu IRQ disabled |
| 2368 | |
| 2369 | WARN_ON_ONCE(event->ctx != ctx); |
| 2370 | lockdep_assert_held(&ctx->lock); |
| 2371 | |
| 2372 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
| 2373 | return; |
| 2374 | |
| 2375 | /* |
| 2376 | * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but |
| 2377 | * we can schedule events _OUT_ individually through things like |
| 2378 | * __perf_remove_from_context(). |
| 2379 | */ |
| 2380 | list_del_init(&event->active_list); |
| 2381 | |
| 2382 | perf_pmu_disable(event->pmu); |
| 2383 | |
| 2384 | event->pmu->del(event, 0); |
| 2385 | event->oncpu = -1; |
| 2386 | |
| 2387 | if (event->pending_disable) { |
| 2388 | event->pending_disable = 0; |
| 2389 | perf_cgroup_event_disable(event, ctx); |
| 2390 | state = PERF_EVENT_STATE_OFF; |
| 2391 | } |
| 2392 | |
| 2393 | perf_event_set_state(event, state); |
| 2394 | |
| 2395 | if (!is_software_event(event)) |
| 2396 | cpc->active_oncpu--; |
| 2397 | if (is_event_in_freq_mode(event)) { |
| 2398 | ctx->nr_freq--; |
| 2399 | epc->nr_freq--; |
| 2400 | } |
| 2401 | if (event->attr.exclusive || !cpc->active_oncpu) |
| 2402 | cpc->exclusive = 0; |
| 2403 | |
| 2404 | perf_pmu_enable(event->pmu); |
| 2405 | } |
| 2406 | |
| 2407 | static void |
| 2408 | group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) |
| 2409 | { |
| 2410 | struct perf_event *event; |
| 2411 | |
| 2412 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) |
| 2413 | return; |
| 2414 | |
| 2415 | perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); |
| 2416 | |
| 2417 | event_sched_out(group_event, ctx); |
| 2418 | |
| 2419 | /* |
| 2420 | * Schedule out siblings (if any): |
| 2421 | */ |
| 2422 | for_each_sibling_event(event, group_event) |
| 2423 | event_sched_out(event, ctx); |
| 2424 | } |
| 2425 | |
| 2426 | static inline void |
| 2427 | __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final) |
| 2428 | { |
| 2429 | if (ctx->is_active & EVENT_TIME) { |
| 2430 | if (ctx->is_active & EVENT_FROZEN) |
| 2431 | return; |
| 2432 | update_context_time(ctx); |
| 2433 | update_cgrp_time_from_cpuctx(cpuctx, final); |
| 2434 | } |
| 2435 | } |
| 2436 | |
| 2437 | static inline void |
| 2438 | ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) |
| 2439 | { |
| 2440 | __ctx_time_update(cpuctx, ctx, false); |
| 2441 | } |
| 2442 | |
| 2443 | /* |
| 2444 | * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock(). |
| 2445 | */ |
| 2446 | static inline void |
| 2447 | ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) |
| 2448 | { |
| 2449 | ctx_time_update(cpuctx, ctx); |
| 2450 | if (ctx->is_active & EVENT_TIME) |
| 2451 | ctx->is_active |= EVENT_FROZEN; |
| 2452 | } |
| 2453 | |
| 2454 | static inline void |
| 2455 | ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event) |
| 2456 | { |
| 2457 | if (ctx->is_active & EVENT_TIME) { |
| 2458 | if (ctx->is_active & EVENT_FROZEN) |
| 2459 | return; |
| 2460 | update_context_time(ctx); |
| 2461 | update_cgrp_time_from_event(event); |
| 2462 | } |
| 2463 | } |
| 2464 | |
| 2465 | #define DETACH_GROUP 0x01UL |
| 2466 | #define DETACH_CHILD 0x02UL |
| 2467 | #define DETACH_EXIT 0x04UL |
| 2468 | #define DETACH_REVOKE 0x08UL |
| 2469 | #define DETACH_DEAD 0x10UL |
| 2470 | |
| 2471 | /* |
| 2472 | * Cross CPU call to remove a performance event |
| 2473 | * |
| 2474 | * We disable the event on the hardware level first. After that we |
| 2475 | * remove it from the context list. |
| 2476 | */ |
| 2477 | static void |
| 2478 | __perf_remove_from_context(struct perf_event *event, |
| 2479 | struct perf_cpu_context *cpuctx, |
| 2480 | struct perf_event_context *ctx, |
| 2481 | void *info) |
| 2482 | { |
| 2483 | struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; |
| 2484 | enum perf_event_state state = PERF_EVENT_STATE_OFF; |
| 2485 | unsigned long flags = (unsigned long)info; |
| 2486 | |
| 2487 | ctx_time_update(cpuctx, ctx); |
| 2488 | |
| 2489 | /* |
| 2490 | * Ensure event_sched_out() switches to OFF, at the very least |
| 2491 | * this avoids raising perf_pending_task() at this time. |
| 2492 | */ |
| 2493 | if (flags & DETACH_EXIT) |
| 2494 | state = PERF_EVENT_STATE_EXIT; |
| 2495 | if (flags & DETACH_REVOKE) |
| 2496 | state = PERF_EVENT_STATE_REVOKED; |
| 2497 | if (flags & DETACH_DEAD) |
| 2498 | state = PERF_EVENT_STATE_DEAD; |
| 2499 | |
| 2500 | event_sched_out(event, ctx); |
| 2501 | |
| 2502 | if (event->state > PERF_EVENT_STATE_OFF) |
| 2503 | perf_cgroup_event_disable(event, ctx); |
| 2504 | |
| 2505 | perf_event_set_state(event, min(event->state, state)); |
| 2506 | |
| 2507 | if (flags & DETACH_GROUP) |
| 2508 | perf_group_detach(event); |
| 2509 | if (flags & DETACH_CHILD) |
| 2510 | perf_child_detach(event); |
| 2511 | list_del_event(event, ctx); |
| 2512 | |
| 2513 | if (!pmu_ctx->nr_events) { |
| 2514 | pmu_ctx->rotate_necessary = 0; |
| 2515 | |
| 2516 | if (ctx->task && ctx->is_active) { |
| 2517 | struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu); |
| 2518 | |
| 2519 | WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); |
| 2520 | cpc->task_epc = NULL; |
| 2521 | } |
| 2522 | } |
| 2523 | |
| 2524 | if (!ctx->nr_events && ctx->is_active) { |
| 2525 | if (ctx == &cpuctx->ctx) |
| 2526 | update_cgrp_time_from_cpuctx(cpuctx, true); |
| 2527 | |
| 2528 | ctx->is_active = 0; |
| 2529 | if (ctx->task) { |
| 2530 | WARN_ON_ONCE(cpuctx->task_ctx != ctx); |
| 2531 | cpuctx->task_ctx = NULL; |
| 2532 | } |
| 2533 | } |
| 2534 | } |
| 2535 | |
| 2536 | /* |
| 2537 | * Remove the event from a task's (or a CPU's) list of events. |
| 2538 | * |
| 2539 | * If event->ctx is a cloned context, callers must make sure that |
| 2540 | * every task struct that event->ctx->task could possibly point to |
| 2541 | * remains valid. This is OK when called from perf_release since |
| 2542 | * that only calls us on the top-level context, which can't be a clone. |
| 2543 | * When called from perf_event_exit_task, it's OK because the |
| 2544 | * context has been detached from its task. |
| 2545 | */ |
| 2546 | static void perf_remove_from_context(struct perf_event *event, unsigned long flags) |
| 2547 | { |
| 2548 | struct perf_event_context *ctx = event->ctx; |
| 2549 | |
| 2550 | lockdep_assert_held(&ctx->mutex); |
| 2551 | |
| 2552 | /* |
| 2553 | * Because of perf_event_exit_task(), perf_remove_from_context() ought |
| 2554 | * to work in the face of TASK_TOMBSTONE, unlike every other |
| 2555 | * event_function_call() user. |
| 2556 | */ |
| 2557 | raw_spin_lock_irq(&ctx->lock); |
| 2558 | if (!ctx->is_active) { |
| 2559 | __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), |
| 2560 | ctx, (void *)flags); |
| 2561 | raw_spin_unlock_irq(&ctx->lock); |
| 2562 | return; |
| 2563 | } |
| 2564 | raw_spin_unlock_irq(&ctx->lock); |
| 2565 | |
| 2566 | event_function_call(event, __perf_remove_from_context, (void *)flags); |
| 2567 | } |
| 2568 | |
| 2569 | static void __event_disable(struct perf_event *event, |
| 2570 | struct perf_event_context *ctx, |
| 2571 | enum perf_event_state state) |
| 2572 | { |
| 2573 | event_sched_out(event, ctx); |
| 2574 | perf_cgroup_event_disable(event, ctx); |
| 2575 | perf_event_set_state(event, state); |
| 2576 | } |
| 2577 | |
| 2578 | /* |
| 2579 | * Cross CPU call to disable a performance event |
| 2580 | */ |
| 2581 | static void __perf_event_disable(struct perf_event *event, |
| 2582 | struct perf_cpu_context *cpuctx, |
| 2583 | struct perf_event_context *ctx, |
| 2584 | void *info) |
| 2585 | { |
| 2586 | if (event->state < PERF_EVENT_STATE_INACTIVE) |
| 2587 | return; |
| 2588 | |
| 2589 | perf_pmu_disable(event->pmu_ctx->pmu); |
| 2590 | ctx_time_update_event(ctx, event); |
| 2591 | |
| 2592 | /* |
| 2593 | * When disabling a group leader, the whole group becomes ineligible |
| 2594 | * to run, so schedule out the full group. |
| 2595 | */ |
| 2596 | if (event == event->group_leader) |
| 2597 | group_sched_out(event, ctx); |
| 2598 | |
| 2599 | /* |
| 2600 | * But only mark the leader OFF; the siblings will remain |
| 2601 | * INACTIVE. |
| 2602 | */ |
| 2603 | __event_disable(event, ctx, PERF_EVENT_STATE_OFF); |
| 2604 | |
| 2605 | perf_pmu_enable(event->pmu_ctx->pmu); |
| 2606 | } |
| 2607 | |
| 2608 | /* |
| 2609 | * Disable an event. |
| 2610 | * |
| 2611 | * If event->ctx is a cloned context, callers must make sure that |
| 2612 | * every task struct that event->ctx->task could possibly point to |
| 2613 | * remains valid. This condition is satisfied when called through |
| 2614 | * perf_event_for_each_child or perf_event_for_each because they |
| 2615 | * hold the top-level event's child_mutex, so any descendant that |
| 2616 | * goes to exit will block in perf_event_exit_event(). |
| 2617 | * |
| 2618 | * When called from perf_pending_disable it's OK because event->ctx |
| 2619 | * is the current context on this CPU and preemption is disabled, |
| 2620 | * hence we can't get into perf_event_task_sched_out for this context. |
| 2621 | */ |
| 2622 | static void _perf_event_disable(struct perf_event *event) |
| 2623 | { |
| 2624 | struct perf_event_context *ctx = event->ctx; |
| 2625 | |
| 2626 | raw_spin_lock_irq(&ctx->lock); |
| 2627 | if (event->state <= PERF_EVENT_STATE_OFF) { |
| 2628 | raw_spin_unlock_irq(&ctx->lock); |
| 2629 | return; |
| 2630 | } |
| 2631 | raw_spin_unlock_irq(&ctx->lock); |
| 2632 | |
| 2633 | event_function_call(event, __perf_event_disable, NULL); |
| 2634 | } |
| 2635 | |
| 2636 | void perf_event_disable_local(struct perf_event *event) |
| 2637 | { |
| 2638 | event_function_local(event, __perf_event_disable, NULL); |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * Strictly speaking kernel users cannot create groups and therefore this |
| 2643 | * interface does not need the perf_event_ctx_lock() magic. |
| 2644 | */ |
| 2645 | void perf_event_disable(struct perf_event *event) |
| 2646 | { |
| 2647 | struct perf_event_context *ctx; |
| 2648 | |
| 2649 | ctx = perf_event_ctx_lock(event); |
| 2650 | _perf_event_disable(event); |
| 2651 | perf_event_ctx_unlock(event, ctx); |
| 2652 | } |
| 2653 | EXPORT_SYMBOL_GPL(perf_event_disable); |
| 2654 | |
| 2655 | void perf_event_disable_inatomic(struct perf_event *event) |
| 2656 | { |
| 2657 | event->pending_disable = 1; |
| 2658 | irq_work_queue(&event->pending_disable_irq); |
| 2659 | } |
| 2660 | |
| 2661 | #define MAX_INTERRUPTS (~0ULL) |
| 2662 | |
| 2663 | static void perf_log_throttle(struct perf_event *event, int enable); |
| 2664 | static void perf_log_itrace_start(struct perf_event *event); |
| 2665 | |
| 2666 | static void perf_event_unthrottle(struct perf_event *event, bool start) |
| 2667 | { |
| 2668 | event->hw.interrupts = 0; |
| 2669 | if (start) |
| 2670 | event->pmu->start(event, 0); |
| 2671 | if (event == event->group_leader) |
| 2672 | perf_log_throttle(event, 1); |
| 2673 | } |
| 2674 | |
| 2675 | static void perf_event_throttle(struct perf_event *event) |
| 2676 | { |
| 2677 | event->hw.interrupts = MAX_INTERRUPTS; |
| 2678 | event->pmu->stop(event, 0); |
| 2679 | if (event == event->group_leader) |
| 2680 | perf_log_throttle(event, 0); |
| 2681 | } |
| 2682 | |
| 2683 | static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event) |
| 2684 | { |
| 2685 | struct perf_event *sibling, *leader = event->group_leader; |
| 2686 | |
| 2687 | perf_event_unthrottle(leader, skip_start_event ? leader != event : true); |
| 2688 | for_each_sibling_event(sibling, leader) |
| 2689 | perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true); |
| 2690 | } |
| 2691 | |
| 2692 | static void perf_event_throttle_group(struct perf_event *event) |
| 2693 | { |
| 2694 | struct perf_event *sibling, *leader = event->group_leader; |
| 2695 | |
| 2696 | perf_event_throttle(leader); |
| 2697 | for_each_sibling_event(sibling, leader) |
| 2698 | perf_event_throttle(sibling); |
| 2699 | } |
| 2700 | |
| 2701 | static int |
| 2702 | event_sched_in(struct perf_event *event, struct perf_event_context *ctx) |
| 2703 | { |
| 2704 | struct perf_event_pmu_context *epc = event->pmu_ctx; |
| 2705 | struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); |
| 2706 | int ret = 0; |
| 2707 | |
| 2708 | WARN_ON_ONCE(event->ctx != ctx); |
| 2709 | |
| 2710 | lockdep_assert_held(&ctx->lock); |
| 2711 | |
| 2712 | if (event->state <= PERF_EVENT_STATE_OFF) |
| 2713 | return 0; |
| 2714 | |
| 2715 | WRITE_ONCE(event->oncpu, smp_processor_id()); |
| 2716 | /* |
| 2717 | * Order event::oncpu write to happen before the ACTIVE state is |
| 2718 | * visible. This allows perf_event_{stop,read}() to observe the correct |
| 2719 | * ->oncpu if it sees ACTIVE. |
| 2720 | */ |
| 2721 | smp_wmb(); |
| 2722 | perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); |
| 2723 | |
| 2724 | /* |
| 2725 | * Unthrottle events, since we scheduled we might have missed several |
| 2726 | * ticks already, also for a heavily scheduling task there is little |
| 2727 | * guarantee it'll get a tick in a timely manner. |
| 2728 | */ |
| 2729 | if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) |
| 2730 | perf_event_unthrottle(event, false); |
| 2731 | |
| 2732 | perf_pmu_disable(event->pmu); |
| 2733 | |
| 2734 | perf_log_itrace_start(event); |
| 2735 | |
| 2736 | if (event->pmu->add(event, PERF_EF_START)) { |
| 2737 | perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); |
| 2738 | event->oncpu = -1; |
| 2739 | ret = -EAGAIN; |
| 2740 | goto out; |
| 2741 | } |
| 2742 | |
| 2743 | if (!is_software_event(event)) |
| 2744 | cpc->active_oncpu++; |
| 2745 | if (is_event_in_freq_mode(event)) { |
| 2746 | ctx->nr_freq++; |
| 2747 | epc->nr_freq++; |
| 2748 | } |
| 2749 | if (event->attr.exclusive) |
| 2750 | cpc->exclusive = 1; |
| 2751 | |
| 2752 | out: |
| 2753 | perf_pmu_enable(event->pmu); |
| 2754 | |
| 2755 | return ret; |
| 2756 | } |
| 2757 | |
| 2758 | static int |
| 2759 | group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) |
| 2760 | { |
| 2761 | struct perf_event *event, *partial_group = NULL; |
| 2762 | struct pmu *pmu = group_event->pmu_ctx->pmu; |
| 2763 | |
| 2764 | if (group_event->state == PERF_EVENT_STATE_OFF) |
| 2765 | return 0; |
| 2766 | |
| 2767 | pmu->start_txn(pmu, PERF_PMU_TXN_ADD); |
| 2768 | |
| 2769 | if (event_sched_in(group_event, ctx)) |
| 2770 | goto error; |
| 2771 | |
| 2772 | /* |
| 2773 | * Schedule in siblings as one group (if any): |
| 2774 | */ |
| 2775 | for_each_sibling_event(event, group_event) { |
| 2776 | if (event_sched_in(event, ctx)) { |
| 2777 | partial_group = event; |
| 2778 | goto group_error; |
| 2779 | } |
| 2780 | } |
| 2781 | |
| 2782 | if (!pmu->commit_txn(pmu)) |
| 2783 | return 0; |
| 2784 | |
| 2785 | group_error: |
| 2786 | /* |
| 2787 | * Groups can be scheduled in as one unit only, so undo any |
| 2788 | * partial group before returning: |
| 2789 | * The events up to the failed event are scheduled out normally. |
| 2790 | */ |
| 2791 | for_each_sibling_event(event, group_event) { |
| 2792 | if (event == partial_group) |
| 2793 | break; |
| 2794 | |
| 2795 | event_sched_out(event, ctx); |
| 2796 | } |
| 2797 | event_sched_out(group_event, ctx); |
| 2798 | |
| 2799 | error: |
| 2800 | pmu->cancel_txn(pmu); |
| 2801 | return -EAGAIN; |
| 2802 | } |
| 2803 | |
| 2804 | /* |
| 2805 | * Work out whether we can put this event group on the CPU now. |
| 2806 | */ |
| 2807 | static int group_can_go_on(struct perf_event *event, int can_add_hw) |
| 2808 | { |
| 2809 | struct perf_event_pmu_context *epc = event->pmu_ctx; |
| 2810 | struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu); |
| 2811 | |
| 2812 | /* |
| 2813 | * Groups consisting entirely of software events can always go on. |
| 2814 | */ |
| 2815 | if (event->group_caps & PERF_EV_CAP_SOFTWARE) |
| 2816 | return 1; |
| 2817 | /* |
| 2818 | * If an exclusive group is already on, no other hardware |
| 2819 | * events can go on. |
| 2820 | */ |
| 2821 | if (cpc->exclusive) |
| 2822 | return 0; |
| 2823 | /* |
| 2824 | * If this group is exclusive and there are already |
| 2825 | * events on the CPU, it can't go on. |
| 2826 | */ |
| 2827 | if (event->attr.exclusive && !list_empty(get_event_list(event))) |
| 2828 | return 0; |
| 2829 | /* |
| 2830 | * Otherwise, try to add it if all previous groups were able |
| 2831 | * to go on. |
| 2832 | */ |
| 2833 | return can_add_hw; |
| 2834 | } |
| 2835 | |
| 2836 | static void add_event_to_ctx(struct perf_event *event, |
| 2837 | struct perf_event_context *ctx) |
| 2838 | { |
| 2839 | list_add_event(event, ctx); |
| 2840 | perf_group_attach(event); |
| 2841 | } |
| 2842 | |
| 2843 | static void task_ctx_sched_out(struct perf_event_context *ctx, |
| 2844 | struct pmu *pmu, |
| 2845 | enum event_type_t event_type) |
| 2846 | { |
| 2847 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 2848 | |
| 2849 | if (!cpuctx->task_ctx) |
| 2850 | return; |
| 2851 | |
| 2852 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
| 2853 | return; |
| 2854 | |
| 2855 | ctx_sched_out(ctx, pmu, event_type); |
| 2856 | } |
| 2857 | |
| 2858 | static void perf_event_sched_in(struct perf_cpu_context *cpuctx, |
| 2859 | struct perf_event_context *ctx, |
| 2860 | struct pmu *pmu) |
| 2861 | { |
| 2862 | ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED); |
| 2863 | if (ctx) |
| 2864 | ctx_sched_in(ctx, pmu, EVENT_PINNED); |
| 2865 | ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); |
| 2866 | if (ctx) |
| 2867 | ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE); |
| 2868 | } |
| 2869 | |
| 2870 | /* |
| 2871 | * We want to maintain the following priority of scheduling: |
| 2872 | * - CPU pinned (EVENT_CPU | EVENT_PINNED) |
| 2873 | * - task pinned (EVENT_PINNED) |
| 2874 | * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) |
| 2875 | * - task flexible (EVENT_FLEXIBLE). |
| 2876 | * |
| 2877 | * In order to avoid unscheduling and scheduling back in everything every |
| 2878 | * time an event is added, only do it for the groups of equal priority and |
| 2879 | * below. |
| 2880 | * |
| 2881 | * This can be called after a batch operation on task events, in which case |
| 2882 | * event_type is a bit mask of the types of events involved. For CPU events, |
| 2883 | * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. |
| 2884 | */ |
| 2885 | static void ctx_resched(struct perf_cpu_context *cpuctx, |
| 2886 | struct perf_event_context *task_ctx, |
| 2887 | struct pmu *pmu, enum event_type_t event_type) |
| 2888 | { |
| 2889 | bool cpu_event = !!(event_type & EVENT_CPU); |
| 2890 | struct perf_event_pmu_context *epc; |
| 2891 | |
| 2892 | /* |
| 2893 | * If pinned groups are involved, flexible groups also need to be |
| 2894 | * scheduled out. |
| 2895 | */ |
| 2896 | if (event_type & EVENT_PINNED) |
| 2897 | event_type |= EVENT_FLEXIBLE; |
| 2898 | |
| 2899 | event_type &= EVENT_ALL; |
| 2900 | |
| 2901 | for_each_epc(epc, &cpuctx->ctx, pmu, false) |
| 2902 | perf_pmu_disable(epc->pmu); |
| 2903 | |
| 2904 | if (task_ctx) { |
| 2905 | for_each_epc(epc, task_ctx, pmu, false) |
| 2906 | perf_pmu_disable(epc->pmu); |
| 2907 | |
| 2908 | task_ctx_sched_out(task_ctx, pmu, event_type); |
| 2909 | } |
| 2910 | |
| 2911 | /* |
| 2912 | * Decide which cpu ctx groups to schedule out based on the types |
| 2913 | * of events that caused rescheduling: |
| 2914 | * - EVENT_CPU: schedule out corresponding groups; |
| 2915 | * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; |
| 2916 | * - otherwise, do nothing more. |
| 2917 | */ |
| 2918 | if (cpu_event) |
| 2919 | ctx_sched_out(&cpuctx->ctx, pmu, event_type); |
| 2920 | else if (event_type & EVENT_PINNED) |
| 2921 | ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE); |
| 2922 | |
| 2923 | perf_event_sched_in(cpuctx, task_ctx, pmu); |
| 2924 | |
| 2925 | for_each_epc(epc, &cpuctx->ctx, pmu, false) |
| 2926 | perf_pmu_enable(epc->pmu); |
| 2927 | |
| 2928 | if (task_ctx) { |
| 2929 | for_each_epc(epc, task_ctx, pmu, false) |
| 2930 | perf_pmu_enable(epc->pmu); |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | void perf_pmu_resched(struct pmu *pmu) |
| 2935 | { |
| 2936 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 2937 | struct perf_event_context *task_ctx = cpuctx->task_ctx; |
| 2938 | |
| 2939 | perf_ctx_lock(cpuctx, task_ctx); |
| 2940 | ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU); |
| 2941 | perf_ctx_unlock(cpuctx, task_ctx); |
| 2942 | } |
| 2943 | |
| 2944 | /* |
| 2945 | * Cross CPU call to install and enable a performance event |
| 2946 | * |
| 2947 | * Very similar to remote_function() + event_function() but cannot assume that |
| 2948 | * things like ctx->is_active and cpuctx->task_ctx are set. |
| 2949 | */ |
| 2950 | static int __perf_install_in_context(void *info) |
| 2951 | { |
| 2952 | struct perf_event *event = info; |
| 2953 | struct perf_event_context *ctx = event->ctx; |
| 2954 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 2955 | struct perf_event_context *task_ctx = cpuctx->task_ctx; |
| 2956 | bool reprogram = true; |
| 2957 | int ret = 0; |
| 2958 | |
| 2959 | raw_spin_lock(&cpuctx->ctx.lock); |
| 2960 | if (ctx->task) { |
| 2961 | raw_spin_lock(&ctx->lock); |
| 2962 | task_ctx = ctx; |
| 2963 | |
| 2964 | reprogram = (ctx->task == current); |
| 2965 | |
| 2966 | /* |
| 2967 | * If the task is running, it must be running on this CPU, |
| 2968 | * otherwise we cannot reprogram things. |
| 2969 | * |
| 2970 | * If its not running, we don't care, ctx->lock will |
| 2971 | * serialize against it becoming runnable. |
| 2972 | */ |
| 2973 | if (task_curr(ctx->task) && !reprogram) { |
| 2974 | ret = -ESRCH; |
| 2975 | goto unlock; |
| 2976 | } |
| 2977 | |
| 2978 | WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); |
| 2979 | } else if (task_ctx) { |
| 2980 | raw_spin_lock(&task_ctx->lock); |
| 2981 | } |
| 2982 | |
| 2983 | #ifdef CONFIG_CGROUP_PERF |
| 2984 | if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { |
| 2985 | /* |
| 2986 | * If the current cgroup doesn't match the event's |
| 2987 | * cgroup, we should not try to schedule it. |
| 2988 | */ |
| 2989 | struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); |
| 2990 | reprogram = cgroup_is_descendant(cgrp->css.cgroup, |
| 2991 | event->cgrp->css.cgroup); |
| 2992 | } |
| 2993 | #endif |
| 2994 | |
| 2995 | if (reprogram) { |
| 2996 | ctx_time_freeze(cpuctx, ctx); |
| 2997 | add_event_to_ctx(event, ctx); |
| 2998 | ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, |
| 2999 | get_event_type(event)); |
| 3000 | } else { |
| 3001 | add_event_to_ctx(event, ctx); |
| 3002 | } |
| 3003 | |
| 3004 | unlock: |
| 3005 | perf_ctx_unlock(cpuctx, task_ctx); |
| 3006 | |
| 3007 | return ret; |
| 3008 | } |
| 3009 | |
| 3010 | static bool exclusive_event_installable(struct perf_event *event, |
| 3011 | struct perf_event_context *ctx); |
| 3012 | |
| 3013 | /* |
| 3014 | * Attach a performance event to a context. |
| 3015 | * |
| 3016 | * Very similar to event_function_call, see comment there. |
| 3017 | */ |
| 3018 | static void |
| 3019 | perf_install_in_context(struct perf_event_context *ctx, |
| 3020 | struct perf_event *event, |
| 3021 | int cpu) |
| 3022 | { |
| 3023 | struct task_struct *task = READ_ONCE(ctx->task); |
| 3024 | |
| 3025 | lockdep_assert_held(&ctx->mutex); |
| 3026 | |
| 3027 | WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); |
| 3028 | |
| 3029 | if (event->cpu != -1) |
| 3030 | WARN_ON_ONCE(event->cpu != cpu); |
| 3031 | |
| 3032 | /* |
| 3033 | * Ensures that if we can observe event->ctx, both the event and ctx |
| 3034 | * will be 'complete'. See perf_iterate_sb_cpu(). |
| 3035 | */ |
| 3036 | smp_store_release(&event->ctx, ctx); |
| 3037 | |
| 3038 | /* |
| 3039 | * perf_event_attr::disabled events will not run and can be initialized |
| 3040 | * without IPI. Except when this is the first event for the context, in |
| 3041 | * that case we need the magic of the IPI to set ctx->is_active. |
| 3042 | * |
| 3043 | * The IOC_ENABLE that is sure to follow the creation of a disabled |
| 3044 | * event will issue the IPI and reprogram the hardware. |
| 3045 | */ |
| 3046 | if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && |
| 3047 | ctx->nr_events && !is_cgroup_event(event)) { |
| 3048 | raw_spin_lock_irq(&ctx->lock); |
| 3049 | if (ctx->task == TASK_TOMBSTONE) { |
| 3050 | raw_spin_unlock_irq(&ctx->lock); |
| 3051 | return; |
| 3052 | } |
| 3053 | add_event_to_ctx(event, ctx); |
| 3054 | raw_spin_unlock_irq(&ctx->lock); |
| 3055 | return; |
| 3056 | } |
| 3057 | |
| 3058 | if (!task) { |
| 3059 | cpu_function_call(cpu, __perf_install_in_context, event); |
| 3060 | return; |
| 3061 | } |
| 3062 | |
| 3063 | /* |
| 3064 | * Should not happen, we validate the ctx is still alive before calling. |
| 3065 | */ |
| 3066 | if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) |
| 3067 | return; |
| 3068 | |
| 3069 | /* |
| 3070 | * Installing events is tricky because we cannot rely on ctx->is_active |
| 3071 | * to be set in case this is the nr_events 0 -> 1 transition. |
| 3072 | * |
| 3073 | * Instead we use task_curr(), which tells us if the task is running. |
| 3074 | * However, since we use task_curr() outside of rq::lock, we can race |
| 3075 | * against the actual state. This means the result can be wrong. |
| 3076 | * |
| 3077 | * If we get a false positive, we retry, this is harmless. |
| 3078 | * |
| 3079 | * If we get a false negative, things are complicated. If we are after |
| 3080 | * perf_event_context_sched_in() ctx::lock will serialize us, and the |
| 3081 | * value must be correct. If we're before, it doesn't matter since |
| 3082 | * perf_event_context_sched_in() will program the counter. |
| 3083 | * |
| 3084 | * However, this hinges on the remote context switch having observed |
| 3085 | * our task->perf_event_ctxp[] store, such that it will in fact take |
| 3086 | * ctx::lock in perf_event_context_sched_in(). |
| 3087 | * |
| 3088 | * We do this by task_function_call(), if the IPI fails to hit the task |
| 3089 | * we know any future context switch of task must see the |
| 3090 | * perf_event_ctpx[] store. |
| 3091 | */ |
| 3092 | |
| 3093 | /* |
| 3094 | * This smp_mb() orders the task->perf_event_ctxp[] store with the |
| 3095 | * task_cpu() load, such that if the IPI then does not find the task |
| 3096 | * running, a future context switch of that task must observe the |
| 3097 | * store. |
| 3098 | */ |
| 3099 | smp_mb(); |
| 3100 | again: |
| 3101 | if (!task_function_call(task, __perf_install_in_context, event)) |
| 3102 | return; |
| 3103 | |
| 3104 | raw_spin_lock_irq(&ctx->lock); |
| 3105 | task = ctx->task; |
| 3106 | if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { |
| 3107 | /* |
| 3108 | * Cannot happen because we already checked above (which also |
| 3109 | * cannot happen), and we hold ctx->mutex, which serializes us |
| 3110 | * against perf_event_exit_task_context(). |
| 3111 | */ |
| 3112 | raw_spin_unlock_irq(&ctx->lock); |
| 3113 | return; |
| 3114 | } |
| 3115 | /* |
| 3116 | * If the task is not running, ctx->lock will avoid it becoming so, |
| 3117 | * thus we can safely install the event. |
| 3118 | */ |
| 3119 | if (task_curr(task)) { |
| 3120 | raw_spin_unlock_irq(&ctx->lock); |
| 3121 | goto again; |
| 3122 | } |
| 3123 | add_event_to_ctx(event, ctx); |
| 3124 | raw_spin_unlock_irq(&ctx->lock); |
| 3125 | } |
| 3126 | |
| 3127 | /* |
| 3128 | * Cross CPU call to enable a performance event |
| 3129 | */ |
| 3130 | static void __perf_event_enable(struct perf_event *event, |
| 3131 | struct perf_cpu_context *cpuctx, |
| 3132 | struct perf_event_context *ctx, |
| 3133 | void *info) |
| 3134 | { |
| 3135 | struct perf_event *leader = event->group_leader; |
| 3136 | struct perf_event_context *task_ctx; |
| 3137 | |
| 3138 | if (event->state >= PERF_EVENT_STATE_INACTIVE || |
| 3139 | event->state <= PERF_EVENT_STATE_ERROR) |
| 3140 | return; |
| 3141 | |
| 3142 | ctx_time_freeze(cpuctx, ctx); |
| 3143 | |
| 3144 | perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); |
| 3145 | perf_cgroup_event_enable(event, ctx); |
| 3146 | |
| 3147 | if (!ctx->is_active) |
| 3148 | return; |
| 3149 | |
| 3150 | if (!event_filter_match(event)) |
| 3151 | return; |
| 3152 | |
| 3153 | /* |
| 3154 | * If the event is in a group and isn't the group leader, |
| 3155 | * then don't put it on unless the group is on. |
| 3156 | */ |
| 3157 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) |
| 3158 | return; |
| 3159 | |
| 3160 | task_ctx = cpuctx->task_ctx; |
| 3161 | if (ctx->task) |
| 3162 | WARN_ON_ONCE(task_ctx != ctx); |
| 3163 | |
| 3164 | ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event)); |
| 3165 | } |
| 3166 | |
| 3167 | /* |
| 3168 | * Enable an event. |
| 3169 | * |
| 3170 | * If event->ctx is a cloned context, callers must make sure that |
| 3171 | * every task struct that event->ctx->task could possibly point to |
| 3172 | * remains valid. This condition is satisfied when called through |
| 3173 | * perf_event_for_each_child or perf_event_for_each as described |
| 3174 | * for perf_event_disable. |
| 3175 | */ |
| 3176 | static void _perf_event_enable(struct perf_event *event) |
| 3177 | { |
| 3178 | struct perf_event_context *ctx = event->ctx; |
| 3179 | |
| 3180 | raw_spin_lock_irq(&ctx->lock); |
| 3181 | if (event->state >= PERF_EVENT_STATE_INACTIVE || |
| 3182 | event->state < PERF_EVENT_STATE_ERROR) { |
| 3183 | out: |
| 3184 | raw_spin_unlock_irq(&ctx->lock); |
| 3185 | return; |
| 3186 | } |
| 3187 | |
| 3188 | /* |
| 3189 | * If the event is in error state, clear that first. |
| 3190 | * |
| 3191 | * That way, if we see the event in error state below, we know that it |
| 3192 | * has gone back into error state, as distinct from the task having |
| 3193 | * been scheduled away before the cross-call arrived. |
| 3194 | */ |
| 3195 | if (event->state == PERF_EVENT_STATE_ERROR) { |
| 3196 | /* |
| 3197 | * Detached SIBLING events cannot leave ERROR state. |
| 3198 | */ |
| 3199 | if (event->event_caps & PERF_EV_CAP_SIBLING && |
| 3200 | event->group_leader == event) |
| 3201 | goto out; |
| 3202 | |
| 3203 | event->state = PERF_EVENT_STATE_OFF; |
| 3204 | } |
| 3205 | raw_spin_unlock_irq(&ctx->lock); |
| 3206 | |
| 3207 | event_function_call(event, __perf_event_enable, NULL); |
| 3208 | } |
| 3209 | |
| 3210 | /* |
| 3211 | * See perf_event_disable(); |
| 3212 | */ |
| 3213 | void perf_event_enable(struct perf_event *event) |
| 3214 | { |
| 3215 | struct perf_event_context *ctx; |
| 3216 | |
| 3217 | ctx = perf_event_ctx_lock(event); |
| 3218 | _perf_event_enable(event); |
| 3219 | perf_event_ctx_unlock(event, ctx); |
| 3220 | } |
| 3221 | EXPORT_SYMBOL_GPL(perf_event_enable); |
| 3222 | |
| 3223 | struct stop_event_data { |
| 3224 | struct perf_event *event; |
| 3225 | unsigned int restart; |
| 3226 | }; |
| 3227 | |
| 3228 | static int __perf_event_stop(void *info) |
| 3229 | { |
| 3230 | struct stop_event_data *sd = info; |
| 3231 | struct perf_event *event = sd->event; |
| 3232 | |
| 3233 | /* if it's already INACTIVE, do nothing */ |
| 3234 | if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) |
| 3235 | return 0; |
| 3236 | |
| 3237 | /* matches smp_wmb() in event_sched_in() */ |
| 3238 | smp_rmb(); |
| 3239 | |
| 3240 | /* |
| 3241 | * There is a window with interrupts enabled before we get here, |
| 3242 | * so we need to check again lest we try to stop another CPU's event. |
| 3243 | */ |
| 3244 | if (READ_ONCE(event->oncpu) != smp_processor_id()) |
| 3245 | return -EAGAIN; |
| 3246 | |
| 3247 | event->pmu->stop(event, PERF_EF_UPDATE); |
| 3248 | |
| 3249 | /* |
| 3250 | * May race with the actual stop (through perf_pmu_output_stop()), |
| 3251 | * but it is only used for events with AUX ring buffer, and such |
| 3252 | * events will refuse to restart because of rb::aux_mmap_count==0, |
| 3253 | * see comments in perf_aux_output_begin(). |
| 3254 | * |
| 3255 | * Since this is happening on an event-local CPU, no trace is lost |
| 3256 | * while restarting. |
| 3257 | */ |
| 3258 | if (sd->restart) |
| 3259 | event->pmu->start(event, 0); |
| 3260 | |
| 3261 | return 0; |
| 3262 | } |
| 3263 | |
| 3264 | static int perf_event_stop(struct perf_event *event, int restart) |
| 3265 | { |
| 3266 | struct stop_event_data sd = { |
| 3267 | .event = event, |
| 3268 | .restart = restart, |
| 3269 | }; |
| 3270 | int ret = 0; |
| 3271 | |
| 3272 | do { |
| 3273 | if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) |
| 3274 | return 0; |
| 3275 | |
| 3276 | /* matches smp_wmb() in event_sched_in() */ |
| 3277 | smp_rmb(); |
| 3278 | |
| 3279 | /* |
| 3280 | * We only want to restart ACTIVE events, so if the event goes |
| 3281 | * inactive here (event->oncpu==-1), there's nothing more to do; |
| 3282 | * fall through with ret==-ENXIO. |
| 3283 | */ |
| 3284 | ret = cpu_function_call(READ_ONCE(event->oncpu), |
| 3285 | __perf_event_stop, &sd); |
| 3286 | } while (ret == -EAGAIN); |
| 3287 | |
| 3288 | return ret; |
| 3289 | } |
| 3290 | |
| 3291 | /* |
| 3292 | * In order to contain the amount of racy and tricky in the address filter |
| 3293 | * configuration management, it is a two part process: |
| 3294 | * |
| 3295 | * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, |
| 3296 | * we update the addresses of corresponding vmas in |
| 3297 | * event::addr_filter_ranges array and bump the event::addr_filters_gen; |
| 3298 | * (p2) when an event is scheduled in (pmu::add), it calls |
| 3299 | * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() |
| 3300 | * if the generation has changed since the previous call. |
| 3301 | * |
| 3302 | * If (p1) happens while the event is active, we restart it to force (p2). |
| 3303 | * |
| 3304 | * (1) perf_addr_filters_apply(): adjusting filters' offsets based on |
| 3305 | * pre-existing mappings, called once when new filters arrive via SET_FILTER |
| 3306 | * ioctl; |
| 3307 | * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly |
| 3308 | * registered mapping, called for every new mmap(), with mm::mmap_lock down |
| 3309 | * for reading; |
| 3310 | * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process |
| 3311 | * of exec. |
| 3312 | */ |
| 3313 | void perf_event_addr_filters_sync(struct perf_event *event) |
| 3314 | { |
| 3315 | struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); |
| 3316 | |
| 3317 | if (!has_addr_filter(event)) |
| 3318 | return; |
| 3319 | |
| 3320 | raw_spin_lock(&ifh->lock); |
| 3321 | if (event->addr_filters_gen != event->hw.addr_filters_gen) { |
| 3322 | event->pmu->addr_filters_sync(event); |
| 3323 | event->hw.addr_filters_gen = event->addr_filters_gen; |
| 3324 | } |
| 3325 | raw_spin_unlock(&ifh->lock); |
| 3326 | } |
| 3327 | EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); |
| 3328 | |
| 3329 | static int _perf_event_refresh(struct perf_event *event, int refresh) |
| 3330 | { |
| 3331 | /* |
| 3332 | * not supported on inherited events |
| 3333 | */ |
| 3334 | if (event->attr.inherit || !is_sampling_event(event)) |
| 3335 | return -EINVAL; |
| 3336 | |
| 3337 | atomic_add(refresh, &event->event_limit); |
| 3338 | _perf_event_enable(event); |
| 3339 | |
| 3340 | return 0; |
| 3341 | } |
| 3342 | |
| 3343 | /* |
| 3344 | * See perf_event_disable() |
| 3345 | */ |
| 3346 | int perf_event_refresh(struct perf_event *event, int refresh) |
| 3347 | { |
| 3348 | struct perf_event_context *ctx; |
| 3349 | int ret; |
| 3350 | |
| 3351 | ctx = perf_event_ctx_lock(event); |
| 3352 | ret = _perf_event_refresh(event, refresh); |
| 3353 | perf_event_ctx_unlock(event, ctx); |
| 3354 | |
| 3355 | return ret; |
| 3356 | } |
| 3357 | EXPORT_SYMBOL_GPL(perf_event_refresh); |
| 3358 | |
| 3359 | static int perf_event_modify_breakpoint(struct perf_event *bp, |
| 3360 | struct perf_event_attr *attr) |
| 3361 | { |
| 3362 | int err; |
| 3363 | |
| 3364 | _perf_event_disable(bp); |
| 3365 | |
| 3366 | err = modify_user_hw_breakpoint_check(bp, attr, true); |
| 3367 | |
| 3368 | if (!bp->attr.disabled) |
| 3369 | _perf_event_enable(bp); |
| 3370 | |
| 3371 | return err; |
| 3372 | } |
| 3373 | |
| 3374 | /* |
| 3375 | * Copy event-type-independent attributes that may be modified. |
| 3376 | */ |
| 3377 | static void perf_event_modify_copy_attr(struct perf_event_attr *to, |
| 3378 | const struct perf_event_attr *from) |
| 3379 | { |
| 3380 | to->sig_data = from->sig_data; |
| 3381 | } |
| 3382 | |
| 3383 | static int perf_event_modify_attr(struct perf_event *event, |
| 3384 | struct perf_event_attr *attr) |
| 3385 | { |
| 3386 | int (*func)(struct perf_event *, struct perf_event_attr *); |
| 3387 | struct perf_event *child; |
| 3388 | int err; |
| 3389 | |
| 3390 | if (event->attr.type != attr->type) |
| 3391 | return -EINVAL; |
| 3392 | |
| 3393 | switch (event->attr.type) { |
| 3394 | case PERF_TYPE_BREAKPOINT: |
| 3395 | func = perf_event_modify_breakpoint; |
| 3396 | break; |
| 3397 | default: |
| 3398 | /* Place holder for future additions. */ |
| 3399 | return -EOPNOTSUPP; |
| 3400 | } |
| 3401 | |
| 3402 | WARN_ON_ONCE(event->ctx->parent_ctx); |
| 3403 | |
| 3404 | mutex_lock(&event->child_mutex); |
| 3405 | /* |
| 3406 | * Event-type-independent attributes must be copied before event-type |
| 3407 | * modification, which will validate that final attributes match the |
| 3408 | * source attributes after all relevant attributes have been copied. |
| 3409 | */ |
| 3410 | perf_event_modify_copy_attr(&event->attr, attr); |
| 3411 | err = func(event, attr); |
| 3412 | if (err) |
| 3413 | goto out; |
| 3414 | list_for_each_entry(child, &event->child_list, child_list) { |
| 3415 | perf_event_modify_copy_attr(&child->attr, attr); |
| 3416 | err = func(child, attr); |
| 3417 | if (err) |
| 3418 | goto out; |
| 3419 | } |
| 3420 | out: |
| 3421 | mutex_unlock(&event->child_mutex); |
| 3422 | return err; |
| 3423 | } |
| 3424 | |
| 3425 | static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, |
| 3426 | enum event_type_t event_type) |
| 3427 | { |
| 3428 | struct perf_event_context *ctx = pmu_ctx->ctx; |
| 3429 | struct perf_event *event, *tmp; |
| 3430 | struct pmu *pmu = pmu_ctx->pmu; |
| 3431 | |
| 3432 | if (ctx->task && !(ctx->is_active & EVENT_ALL)) { |
| 3433 | struct perf_cpu_pmu_context *cpc = this_cpc(pmu); |
| 3434 | |
| 3435 | WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); |
| 3436 | cpc->task_epc = NULL; |
| 3437 | } |
| 3438 | |
| 3439 | if (!(event_type & EVENT_ALL)) |
| 3440 | return; |
| 3441 | |
| 3442 | perf_pmu_disable(pmu); |
| 3443 | if (event_type & EVENT_PINNED) { |
| 3444 | list_for_each_entry_safe(event, tmp, |
| 3445 | &pmu_ctx->pinned_active, |
| 3446 | active_list) |
| 3447 | group_sched_out(event, ctx); |
| 3448 | } |
| 3449 | |
| 3450 | if (event_type & EVENT_FLEXIBLE) { |
| 3451 | list_for_each_entry_safe(event, tmp, |
| 3452 | &pmu_ctx->flexible_active, |
| 3453 | active_list) |
| 3454 | group_sched_out(event, ctx); |
| 3455 | /* |
| 3456 | * Since we cleared EVENT_FLEXIBLE, also clear |
| 3457 | * rotate_necessary, is will be reset by |
| 3458 | * ctx_flexible_sched_in() when needed. |
| 3459 | */ |
| 3460 | pmu_ctx->rotate_necessary = 0; |
| 3461 | } |
| 3462 | perf_pmu_enable(pmu); |
| 3463 | } |
| 3464 | |
| 3465 | /* |
| 3466 | * Be very careful with the @pmu argument since this will change ctx state. |
| 3467 | * The @pmu argument works for ctx_resched(), because that is symmetric in |
| 3468 | * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant. |
| 3469 | * |
| 3470 | * However, if you were to be asymmetrical, you could end up with messed up |
| 3471 | * state, eg. ctx->is_active cleared even though most EPCs would still actually |
| 3472 | * be active. |
| 3473 | */ |
| 3474 | static void |
| 3475 | ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) |
| 3476 | { |
| 3477 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 3478 | struct perf_event_pmu_context *pmu_ctx; |
| 3479 | int is_active = ctx->is_active; |
| 3480 | bool cgroup = event_type & EVENT_CGROUP; |
| 3481 | |
| 3482 | event_type &= ~EVENT_CGROUP; |
| 3483 | |
| 3484 | lockdep_assert_held(&ctx->lock); |
| 3485 | |
| 3486 | if (likely(!ctx->nr_events)) { |
| 3487 | /* |
| 3488 | * See __perf_remove_from_context(). |
| 3489 | */ |
| 3490 | WARN_ON_ONCE(ctx->is_active); |
| 3491 | if (ctx->task) |
| 3492 | WARN_ON_ONCE(cpuctx->task_ctx); |
| 3493 | return; |
| 3494 | } |
| 3495 | |
| 3496 | /* |
| 3497 | * Always update time if it was set; not only when it changes. |
| 3498 | * Otherwise we can 'forget' to update time for any but the last |
| 3499 | * context we sched out. For example: |
| 3500 | * |
| 3501 | * ctx_sched_out(.event_type = EVENT_FLEXIBLE) |
| 3502 | * ctx_sched_out(.event_type = EVENT_PINNED) |
| 3503 | * |
| 3504 | * would only update time for the pinned events. |
| 3505 | */ |
| 3506 | __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx); |
| 3507 | |
| 3508 | /* |
| 3509 | * CPU-release for the below ->is_active store, |
| 3510 | * see __load_acquire() in perf_event_time_now() |
| 3511 | */ |
| 3512 | barrier(); |
| 3513 | ctx->is_active &= ~event_type; |
| 3514 | |
| 3515 | if (!(ctx->is_active & EVENT_ALL)) { |
| 3516 | /* |
| 3517 | * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now() |
| 3518 | * does not observe a hole. perf_ctx_unlock() will clean up. |
| 3519 | */ |
| 3520 | if (ctx->is_active & EVENT_FROZEN) |
| 3521 | ctx->is_active &= EVENT_TIME_FROZEN; |
| 3522 | else |
| 3523 | ctx->is_active = 0; |
| 3524 | } |
| 3525 | |
| 3526 | if (ctx->task) { |
| 3527 | WARN_ON_ONCE(cpuctx->task_ctx != ctx); |
| 3528 | if (!(ctx->is_active & EVENT_ALL)) |
| 3529 | cpuctx->task_ctx = NULL; |
| 3530 | } |
| 3531 | |
| 3532 | is_active ^= ctx->is_active; /* changed bits */ |
| 3533 | |
| 3534 | for_each_epc(pmu_ctx, ctx, pmu, cgroup) |
| 3535 | __pmu_ctx_sched_out(pmu_ctx, is_active); |
| 3536 | } |
| 3537 | |
| 3538 | /* |
| 3539 | * Test whether two contexts are equivalent, i.e. whether they have both been |
| 3540 | * cloned from the same version of the same context. |
| 3541 | * |
| 3542 | * Equivalence is measured using a generation number in the context that is |
| 3543 | * incremented on each modification to it; see unclone_ctx(), list_add_event() |
| 3544 | * and list_del_event(). |
| 3545 | */ |
| 3546 | static int context_equiv(struct perf_event_context *ctx1, |
| 3547 | struct perf_event_context *ctx2) |
| 3548 | { |
| 3549 | lockdep_assert_held(&ctx1->lock); |
| 3550 | lockdep_assert_held(&ctx2->lock); |
| 3551 | |
| 3552 | /* Pinning disables the swap optimization */ |
| 3553 | if (ctx1->pin_count || ctx2->pin_count) |
| 3554 | return 0; |
| 3555 | |
| 3556 | /* If ctx1 is the parent of ctx2 */ |
| 3557 | if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) |
| 3558 | return 1; |
| 3559 | |
| 3560 | /* If ctx2 is the parent of ctx1 */ |
| 3561 | if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) |
| 3562 | return 1; |
| 3563 | |
| 3564 | /* |
| 3565 | * If ctx1 and ctx2 have the same parent; we flatten the parent |
| 3566 | * hierarchy, see perf_event_init_context(). |
| 3567 | */ |
| 3568 | if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && |
| 3569 | ctx1->parent_gen == ctx2->parent_gen) |
| 3570 | return 1; |
| 3571 | |
| 3572 | /* Unmatched */ |
| 3573 | return 0; |
| 3574 | } |
| 3575 | |
| 3576 | static void __perf_event_sync_stat(struct perf_event *event, |
| 3577 | struct perf_event *next_event) |
| 3578 | { |
| 3579 | u64 value; |
| 3580 | |
| 3581 | if (!event->attr.inherit_stat) |
| 3582 | return; |
| 3583 | |
| 3584 | /* |
| 3585 | * Update the event value, we cannot use perf_event_read() |
| 3586 | * because we're in the middle of a context switch and have IRQs |
| 3587 | * disabled, which upsets smp_call_function_single(), however |
| 3588 | * we know the event must be on the current CPU, therefore we |
| 3589 | * don't need to use it. |
| 3590 | */ |
| 3591 | perf_pmu_read(event); |
| 3592 | |
| 3593 | perf_event_update_time(event); |
| 3594 | |
| 3595 | /* |
| 3596 | * In order to keep per-task stats reliable we need to flip the event |
| 3597 | * values when we flip the contexts. |
| 3598 | */ |
| 3599 | value = local64_read(&next_event->count); |
| 3600 | value = local64_xchg(&event->count, value); |
| 3601 | local64_set(&next_event->count, value); |
| 3602 | |
| 3603 | swap(event->total_time_enabled, next_event->total_time_enabled); |
| 3604 | swap(event->total_time_running, next_event->total_time_running); |
| 3605 | |
| 3606 | /* |
| 3607 | * Since we swizzled the values, update the user visible data too. |
| 3608 | */ |
| 3609 | perf_event_update_userpage(event); |
| 3610 | perf_event_update_userpage(next_event); |
| 3611 | } |
| 3612 | |
| 3613 | static void perf_event_sync_stat(struct perf_event_context *ctx, |
| 3614 | struct perf_event_context *next_ctx) |
| 3615 | { |
| 3616 | struct perf_event *event, *next_event; |
| 3617 | |
| 3618 | if (!ctx->nr_stat) |
| 3619 | return; |
| 3620 | |
| 3621 | update_context_time(ctx); |
| 3622 | |
| 3623 | event = list_first_entry(&ctx->event_list, |
| 3624 | struct perf_event, event_entry); |
| 3625 | |
| 3626 | next_event = list_first_entry(&next_ctx->event_list, |
| 3627 | struct perf_event, event_entry); |
| 3628 | |
| 3629 | while (&event->event_entry != &ctx->event_list && |
| 3630 | &next_event->event_entry != &next_ctx->event_list) { |
| 3631 | |
| 3632 | __perf_event_sync_stat(event, next_event); |
| 3633 | |
| 3634 | event = list_next_entry(event, event_entry); |
| 3635 | next_event = list_next_entry(next_event, event_entry); |
| 3636 | } |
| 3637 | } |
| 3638 | |
| 3639 | static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, |
| 3640 | struct task_struct *task, bool sched_in) |
| 3641 | { |
| 3642 | struct perf_event_pmu_context *pmu_ctx; |
| 3643 | struct perf_cpu_pmu_context *cpc; |
| 3644 | |
| 3645 | list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { |
| 3646 | cpc = this_cpc(pmu_ctx->pmu); |
| 3647 | |
| 3648 | if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) |
| 3649 | pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in); |
| 3650 | } |
| 3651 | } |
| 3652 | |
| 3653 | static void |
| 3654 | perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) |
| 3655 | { |
| 3656 | struct perf_event_context *ctx = task->perf_event_ctxp; |
| 3657 | struct perf_event_context *next_ctx; |
| 3658 | struct perf_event_context *parent, *next_parent; |
| 3659 | int do_switch = 1; |
| 3660 | |
| 3661 | if (likely(!ctx)) |
| 3662 | return; |
| 3663 | |
| 3664 | rcu_read_lock(); |
| 3665 | next_ctx = rcu_dereference(next->perf_event_ctxp); |
| 3666 | if (!next_ctx) |
| 3667 | goto unlock; |
| 3668 | |
| 3669 | parent = rcu_dereference(ctx->parent_ctx); |
| 3670 | next_parent = rcu_dereference(next_ctx->parent_ctx); |
| 3671 | |
| 3672 | /* If neither context have a parent context; they cannot be clones. */ |
| 3673 | if (!parent && !next_parent) |
| 3674 | goto unlock; |
| 3675 | |
| 3676 | if (next_parent == ctx || next_ctx == parent || next_parent == parent) { |
| 3677 | /* |
| 3678 | * Looks like the two contexts are clones, so we might be |
| 3679 | * able to optimize the context switch. We lock both |
| 3680 | * contexts and check that they are clones under the |
| 3681 | * lock (including re-checking that neither has been |
| 3682 | * uncloned in the meantime). It doesn't matter which |
| 3683 | * order we take the locks because no other cpu could |
| 3684 | * be trying to lock both of these tasks. |
| 3685 | */ |
| 3686 | raw_spin_lock(&ctx->lock); |
| 3687 | raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); |
| 3688 | if (context_equiv(ctx, next_ctx)) { |
| 3689 | |
| 3690 | perf_ctx_disable(ctx, false); |
| 3691 | |
| 3692 | /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */ |
| 3693 | if (local_read(&ctx->nr_no_switch_fast) || |
| 3694 | local_read(&next_ctx->nr_no_switch_fast)) { |
| 3695 | /* |
| 3696 | * Must not swap out ctx when there's pending |
| 3697 | * events that rely on the ctx->task relation. |
| 3698 | * |
| 3699 | * Likewise, when a context contains inherit + |
| 3700 | * SAMPLE_READ events they should be switched |
| 3701 | * out using the slow path so that they are |
| 3702 | * treated as if they were distinct contexts. |
| 3703 | */ |
| 3704 | raw_spin_unlock(&next_ctx->lock); |
| 3705 | rcu_read_unlock(); |
| 3706 | goto inside_switch; |
| 3707 | } |
| 3708 | |
| 3709 | WRITE_ONCE(ctx->task, next); |
| 3710 | WRITE_ONCE(next_ctx->task, task); |
| 3711 | |
| 3712 | perf_ctx_sched_task_cb(ctx, task, false); |
| 3713 | |
| 3714 | perf_ctx_enable(ctx, false); |
| 3715 | |
| 3716 | /* |
| 3717 | * RCU_INIT_POINTER here is safe because we've not |
| 3718 | * modified the ctx and the above modification of |
| 3719 | * ctx->task is immaterial since this value is |
| 3720 | * always verified under ctx->lock which we're now |
| 3721 | * holding. |
| 3722 | */ |
| 3723 | RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); |
| 3724 | RCU_INIT_POINTER(next->perf_event_ctxp, ctx); |
| 3725 | |
| 3726 | do_switch = 0; |
| 3727 | |
| 3728 | perf_event_sync_stat(ctx, next_ctx); |
| 3729 | } |
| 3730 | raw_spin_unlock(&next_ctx->lock); |
| 3731 | raw_spin_unlock(&ctx->lock); |
| 3732 | } |
| 3733 | unlock: |
| 3734 | rcu_read_unlock(); |
| 3735 | |
| 3736 | if (do_switch) { |
| 3737 | raw_spin_lock(&ctx->lock); |
| 3738 | perf_ctx_disable(ctx, false); |
| 3739 | |
| 3740 | inside_switch: |
| 3741 | perf_ctx_sched_task_cb(ctx, task, false); |
| 3742 | task_ctx_sched_out(ctx, NULL, EVENT_ALL); |
| 3743 | |
| 3744 | perf_ctx_enable(ctx, false); |
| 3745 | raw_spin_unlock(&ctx->lock); |
| 3746 | } |
| 3747 | } |
| 3748 | |
| 3749 | static DEFINE_PER_CPU(struct list_head, sched_cb_list); |
| 3750 | static DEFINE_PER_CPU(int, perf_sched_cb_usages); |
| 3751 | |
| 3752 | void perf_sched_cb_dec(struct pmu *pmu) |
| 3753 | { |
| 3754 | struct perf_cpu_pmu_context *cpc = this_cpc(pmu); |
| 3755 | |
| 3756 | this_cpu_dec(perf_sched_cb_usages); |
| 3757 | barrier(); |
| 3758 | |
| 3759 | if (!--cpc->sched_cb_usage) |
| 3760 | list_del(&cpc->sched_cb_entry); |
| 3761 | } |
| 3762 | |
| 3763 | |
| 3764 | void perf_sched_cb_inc(struct pmu *pmu) |
| 3765 | { |
| 3766 | struct perf_cpu_pmu_context *cpc = this_cpc(pmu); |
| 3767 | |
| 3768 | if (!cpc->sched_cb_usage++) |
| 3769 | list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); |
| 3770 | |
| 3771 | barrier(); |
| 3772 | this_cpu_inc(perf_sched_cb_usages); |
| 3773 | } |
| 3774 | |
| 3775 | /* |
| 3776 | * This function provides the context switch callback to the lower code |
| 3777 | * layer. It is invoked ONLY when the context switch callback is enabled. |
| 3778 | * |
| 3779 | * This callback is relevant even to per-cpu events; for example multi event |
| 3780 | * PEBS requires this to provide PID/TID information. This requires we flush |
| 3781 | * all queued PEBS records before we context switch to a new task. |
| 3782 | */ |
| 3783 | static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, |
| 3784 | struct task_struct *task, bool sched_in) |
| 3785 | { |
| 3786 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 3787 | struct pmu *pmu; |
| 3788 | |
| 3789 | pmu = cpc->epc.pmu; |
| 3790 | |
| 3791 | /* software PMUs will not have sched_task */ |
| 3792 | if (WARN_ON_ONCE(!pmu->sched_task)) |
| 3793 | return; |
| 3794 | |
| 3795 | perf_ctx_lock(cpuctx, cpuctx->task_ctx); |
| 3796 | perf_pmu_disable(pmu); |
| 3797 | |
| 3798 | pmu->sched_task(cpc->task_epc, task, sched_in); |
| 3799 | |
| 3800 | perf_pmu_enable(pmu); |
| 3801 | perf_ctx_unlock(cpuctx, cpuctx->task_ctx); |
| 3802 | } |
| 3803 | |
| 3804 | static void perf_pmu_sched_task(struct task_struct *prev, |
| 3805 | struct task_struct *next, |
| 3806 | bool sched_in) |
| 3807 | { |
| 3808 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 3809 | struct perf_cpu_pmu_context *cpc; |
| 3810 | |
| 3811 | /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ |
| 3812 | if (prev == next || cpuctx->task_ctx) |
| 3813 | return; |
| 3814 | |
| 3815 | list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) |
| 3816 | __perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in); |
| 3817 | } |
| 3818 | |
| 3819 | static void perf_event_switch(struct task_struct *task, |
| 3820 | struct task_struct *next_prev, bool sched_in); |
| 3821 | |
| 3822 | /* |
| 3823 | * Called from scheduler to remove the events of the current task, |
| 3824 | * with interrupts disabled. |
| 3825 | * |
| 3826 | * We stop each event and update the event value in event->count. |
| 3827 | * |
| 3828 | * This does not protect us against NMI, but disable() |
| 3829 | * sets the disabled bit in the control field of event _before_ |
| 3830 | * accessing the event control register. If a NMI hits, then it will |
| 3831 | * not restart the event. |
| 3832 | */ |
| 3833 | void __perf_event_task_sched_out(struct task_struct *task, |
| 3834 | struct task_struct *next) |
| 3835 | { |
| 3836 | if (__this_cpu_read(perf_sched_cb_usages)) |
| 3837 | perf_pmu_sched_task(task, next, false); |
| 3838 | |
| 3839 | if (atomic_read(&nr_switch_events)) |
| 3840 | perf_event_switch(task, next, false); |
| 3841 | |
| 3842 | perf_event_context_sched_out(task, next); |
| 3843 | |
| 3844 | /* |
| 3845 | * if cgroup events exist on this CPU, then we need |
| 3846 | * to check if we have to switch out PMU state. |
| 3847 | * cgroup event are system-wide mode only |
| 3848 | */ |
| 3849 | perf_cgroup_switch(next); |
| 3850 | } |
| 3851 | |
| 3852 | static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args) |
| 3853 | { |
| 3854 | const struct perf_event *le = *(const struct perf_event **)l; |
| 3855 | const struct perf_event *re = *(const struct perf_event **)r; |
| 3856 | |
| 3857 | return le->group_index < re->group_index; |
| 3858 | } |
| 3859 | |
| 3860 | DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap); |
| 3861 | |
| 3862 | static const struct min_heap_callbacks perf_min_heap = { |
| 3863 | .less = perf_less_group_idx, |
| 3864 | .swp = NULL, |
| 3865 | }; |
| 3866 | |
| 3867 | static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event) |
| 3868 | { |
| 3869 | struct perf_event **itrs = heap->data; |
| 3870 | |
| 3871 | if (event) { |
| 3872 | itrs[heap->nr] = event; |
| 3873 | heap->nr++; |
| 3874 | } |
| 3875 | } |
| 3876 | |
| 3877 | static void __link_epc(struct perf_event_pmu_context *pmu_ctx) |
| 3878 | { |
| 3879 | struct perf_cpu_pmu_context *cpc; |
| 3880 | |
| 3881 | if (!pmu_ctx->ctx->task) |
| 3882 | return; |
| 3883 | |
| 3884 | cpc = this_cpc(pmu_ctx->pmu); |
| 3885 | WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); |
| 3886 | cpc->task_epc = pmu_ctx; |
| 3887 | } |
| 3888 | |
| 3889 | static noinline int visit_groups_merge(struct perf_event_context *ctx, |
| 3890 | struct perf_event_groups *groups, int cpu, |
| 3891 | struct pmu *pmu, |
| 3892 | int (*func)(struct perf_event *, void *), |
| 3893 | void *data) |
| 3894 | { |
| 3895 | #ifdef CONFIG_CGROUP_PERF |
| 3896 | struct cgroup_subsys_state *css = NULL; |
| 3897 | #endif |
| 3898 | struct perf_cpu_context *cpuctx = NULL; |
| 3899 | /* Space for per CPU and/or any CPU event iterators. */ |
| 3900 | struct perf_event *itrs[2]; |
| 3901 | struct perf_event_min_heap event_heap; |
| 3902 | struct perf_event **evt; |
| 3903 | int ret; |
| 3904 | |
| 3905 | if (pmu->filter && pmu->filter(pmu, cpu)) |
| 3906 | return 0; |
| 3907 | |
| 3908 | if (!ctx->task) { |
| 3909 | cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 3910 | event_heap = (struct perf_event_min_heap){ |
| 3911 | .data = cpuctx->heap, |
| 3912 | .nr = 0, |
| 3913 | .size = cpuctx->heap_size, |
| 3914 | }; |
| 3915 | |
| 3916 | lockdep_assert_held(&cpuctx->ctx.lock); |
| 3917 | |
| 3918 | #ifdef CONFIG_CGROUP_PERF |
| 3919 | if (cpuctx->cgrp) |
| 3920 | css = &cpuctx->cgrp->css; |
| 3921 | #endif |
| 3922 | } else { |
| 3923 | event_heap = (struct perf_event_min_heap){ |
| 3924 | .data = itrs, |
| 3925 | .nr = 0, |
| 3926 | .size = ARRAY_SIZE(itrs), |
| 3927 | }; |
| 3928 | /* Events not within a CPU context may be on any CPU. */ |
| 3929 | __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); |
| 3930 | } |
| 3931 | evt = event_heap.data; |
| 3932 | |
| 3933 | __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); |
| 3934 | |
| 3935 | #ifdef CONFIG_CGROUP_PERF |
| 3936 | for (; css; css = css->parent) |
| 3937 | __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); |
| 3938 | #endif |
| 3939 | |
| 3940 | if (event_heap.nr) { |
| 3941 | __link_epc((*evt)->pmu_ctx); |
| 3942 | perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); |
| 3943 | } |
| 3944 | |
| 3945 | min_heapify_all_inline(&event_heap, &perf_min_heap, NULL); |
| 3946 | |
| 3947 | while (event_heap.nr) { |
| 3948 | ret = func(*evt, data); |
| 3949 | if (ret) |
| 3950 | return ret; |
| 3951 | |
| 3952 | *evt = perf_event_groups_next(*evt, pmu); |
| 3953 | if (*evt) |
| 3954 | min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL); |
| 3955 | else |
| 3956 | min_heap_pop_inline(&event_heap, &perf_min_heap, NULL); |
| 3957 | } |
| 3958 | |
| 3959 | return 0; |
| 3960 | } |
| 3961 | |
| 3962 | /* |
| 3963 | * Because the userpage is strictly per-event (there is no concept of context, |
| 3964 | * so there cannot be a context indirection), every userpage must be updated |
| 3965 | * when context time starts :-( |
| 3966 | * |
| 3967 | * IOW, we must not miss EVENT_TIME edges. |
| 3968 | */ |
| 3969 | static inline bool event_update_userpage(struct perf_event *event) |
| 3970 | { |
| 3971 | if (likely(!atomic_read(&event->mmap_count))) |
| 3972 | return false; |
| 3973 | |
| 3974 | perf_event_update_time(event); |
| 3975 | perf_event_update_userpage(event); |
| 3976 | |
| 3977 | return true; |
| 3978 | } |
| 3979 | |
| 3980 | static inline void group_update_userpage(struct perf_event *group_event) |
| 3981 | { |
| 3982 | struct perf_event *event; |
| 3983 | |
| 3984 | if (!event_update_userpage(group_event)) |
| 3985 | return; |
| 3986 | |
| 3987 | for_each_sibling_event(event, group_event) |
| 3988 | event_update_userpage(event); |
| 3989 | } |
| 3990 | |
| 3991 | static int merge_sched_in(struct perf_event *event, void *data) |
| 3992 | { |
| 3993 | struct perf_event_context *ctx = event->ctx; |
| 3994 | int *can_add_hw = data; |
| 3995 | |
| 3996 | if (event->state <= PERF_EVENT_STATE_OFF) |
| 3997 | return 0; |
| 3998 | |
| 3999 | if (!event_filter_match(event)) |
| 4000 | return 0; |
| 4001 | |
| 4002 | if (group_can_go_on(event, *can_add_hw)) { |
| 4003 | if (!group_sched_in(event, ctx)) |
| 4004 | list_add_tail(&event->active_list, get_event_list(event)); |
| 4005 | } |
| 4006 | |
| 4007 | if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| 4008 | *can_add_hw = 0; |
| 4009 | if (event->attr.pinned) { |
| 4010 | perf_cgroup_event_disable(event, ctx); |
| 4011 | perf_event_set_state(event, PERF_EVENT_STATE_ERROR); |
| 4012 | |
| 4013 | if (*perf_event_fasync(event)) |
| 4014 | event->pending_kill = POLL_ERR; |
| 4015 | |
| 4016 | perf_event_wakeup(event); |
| 4017 | } else { |
| 4018 | struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu); |
| 4019 | |
| 4020 | event->pmu_ctx->rotate_necessary = 1; |
| 4021 | perf_mux_hrtimer_restart(cpc); |
| 4022 | group_update_userpage(event); |
| 4023 | } |
| 4024 | } |
| 4025 | |
| 4026 | return 0; |
| 4027 | } |
| 4028 | |
| 4029 | static void pmu_groups_sched_in(struct perf_event_context *ctx, |
| 4030 | struct perf_event_groups *groups, |
| 4031 | struct pmu *pmu) |
| 4032 | { |
| 4033 | int can_add_hw = 1; |
| 4034 | visit_groups_merge(ctx, groups, smp_processor_id(), pmu, |
| 4035 | merge_sched_in, &can_add_hw); |
| 4036 | } |
| 4037 | |
| 4038 | static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx, |
| 4039 | enum event_type_t event_type) |
| 4040 | { |
| 4041 | struct perf_event_context *ctx = pmu_ctx->ctx; |
| 4042 | |
| 4043 | if (event_type & EVENT_PINNED) |
| 4044 | pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu); |
| 4045 | if (event_type & EVENT_FLEXIBLE) |
| 4046 | pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu); |
| 4047 | } |
| 4048 | |
| 4049 | static void |
| 4050 | ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type) |
| 4051 | { |
| 4052 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4053 | struct perf_event_pmu_context *pmu_ctx; |
| 4054 | int is_active = ctx->is_active; |
| 4055 | bool cgroup = event_type & EVENT_CGROUP; |
| 4056 | |
| 4057 | event_type &= ~EVENT_CGROUP; |
| 4058 | |
| 4059 | lockdep_assert_held(&ctx->lock); |
| 4060 | |
| 4061 | if (likely(!ctx->nr_events)) |
| 4062 | return; |
| 4063 | |
| 4064 | if (!(is_active & EVENT_TIME)) { |
| 4065 | /* start ctx time */ |
| 4066 | __update_context_time(ctx, false); |
| 4067 | perf_cgroup_set_timestamp(cpuctx); |
| 4068 | /* |
| 4069 | * CPU-release for the below ->is_active store, |
| 4070 | * see __load_acquire() in perf_event_time_now() |
| 4071 | */ |
| 4072 | barrier(); |
| 4073 | } |
| 4074 | |
| 4075 | ctx->is_active |= (event_type | EVENT_TIME); |
| 4076 | if (ctx->task) { |
| 4077 | if (!(is_active & EVENT_ALL)) |
| 4078 | cpuctx->task_ctx = ctx; |
| 4079 | else |
| 4080 | WARN_ON_ONCE(cpuctx->task_ctx != ctx); |
| 4081 | } |
| 4082 | |
| 4083 | is_active ^= ctx->is_active; /* changed bits */ |
| 4084 | |
| 4085 | /* |
| 4086 | * First go through the list and put on any pinned groups |
| 4087 | * in order to give them the best chance of going on. |
| 4088 | */ |
| 4089 | if (is_active & EVENT_PINNED) { |
| 4090 | for_each_epc(pmu_ctx, ctx, pmu, cgroup) |
| 4091 | __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED); |
| 4092 | } |
| 4093 | |
| 4094 | /* Then walk through the lower prio flexible groups */ |
| 4095 | if (is_active & EVENT_FLEXIBLE) { |
| 4096 | for_each_epc(pmu_ctx, ctx, pmu, cgroup) |
| 4097 | __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE); |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | static void perf_event_context_sched_in(struct task_struct *task) |
| 4102 | { |
| 4103 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4104 | struct perf_event_context *ctx; |
| 4105 | |
| 4106 | rcu_read_lock(); |
| 4107 | ctx = rcu_dereference(task->perf_event_ctxp); |
| 4108 | if (!ctx) |
| 4109 | goto rcu_unlock; |
| 4110 | |
| 4111 | if (cpuctx->task_ctx == ctx) { |
| 4112 | perf_ctx_lock(cpuctx, ctx); |
| 4113 | perf_ctx_disable(ctx, false); |
| 4114 | |
| 4115 | perf_ctx_sched_task_cb(ctx, task, true); |
| 4116 | |
| 4117 | perf_ctx_enable(ctx, false); |
| 4118 | perf_ctx_unlock(cpuctx, ctx); |
| 4119 | goto rcu_unlock; |
| 4120 | } |
| 4121 | |
| 4122 | perf_ctx_lock(cpuctx, ctx); |
| 4123 | /* |
| 4124 | * We must check ctx->nr_events while holding ctx->lock, such |
| 4125 | * that we serialize against perf_install_in_context(). |
| 4126 | */ |
| 4127 | if (!ctx->nr_events) |
| 4128 | goto unlock; |
| 4129 | |
| 4130 | perf_ctx_disable(ctx, false); |
| 4131 | /* |
| 4132 | * We want to keep the following priority order: |
| 4133 | * cpu pinned (that don't need to move), task pinned, |
| 4134 | * cpu flexible, task flexible. |
| 4135 | * |
| 4136 | * However, if task's ctx is not carrying any pinned |
| 4137 | * events, no need to flip the cpuctx's events around. |
| 4138 | */ |
| 4139 | if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { |
| 4140 | perf_ctx_disable(&cpuctx->ctx, false); |
| 4141 | ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE); |
| 4142 | } |
| 4143 | |
| 4144 | perf_event_sched_in(cpuctx, ctx, NULL); |
| 4145 | |
| 4146 | perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true); |
| 4147 | |
| 4148 | if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) |
| 4149 | perf_ctx_enable(&cpuctx->ctx, false); |
| 4150 | |
| 4151 | perf_ctx_enable(ctx, false); |
| 4152 | |
| 4153 | unlock: |
| 4154 | perf_ctx_unlock(cpuctx, ctx); |
| 4155 | rcu_unlock: |
| 4156 | rcu_read_unlock(); |
| 4157 | } |
| 4158 | |
| 4159 | /* |
| 4160 | * Called from scheduler to add the events of the current task |
| 4161 | * with interrupts disabled. |
| 4162 | * |
| 4163 | * We restore the event value and then enable it. |
| 4164 | * |
| 4165 | * This does not protect us against NMI, but enable() |
| 4166 | * sets the enabled bit in the control field of event _before_ |
| 4167 | * accessing the event control register. If a NMI hits, then it will |
| 4168 | * keep the event running. |
| 4169 | */ |
| 4170 | void __perf_event_task_sched_in(struct task_struct *prev, |
| 4171 | struct task_struct *task) |
| 4172 | { |
| 4173 | perf_event_context_sched_in(task); |
| 4174 | |
| 4175 | if (atomic_read(&nr_switch_events)) |
| 4176 | perf_event_switch(task, prev, true); |
| 4177 | |
| 4178 | if (__this_cpu_read(perf_sched_cb_usages)) |
| 4179 | perf_pmu_sched_task(prev, task, true); |
| 4180 | } |
| 4181 | |
| 4182 | static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) |
| 4183 | { |
| 4184 | u64 frequency = event->attr.sample_freq; |
| 4185 | u64 sec = NSEC_PER_SEC; |
| 4186 | u64 divisor, dividend; |
| 4187 | |
| 4188 | int count_fls, nsec_fls, frequency_fls, sec_fls; |
| 4189 | |
| 4190 | count_fls = fls64(count); |
| 4191 | nsec_fls = fls64(nsec); |
| 4192 | frequency_fls = fls64(frequency); |
| 4193 | sec_fls = 30; |
| 4194 | |
| 4195 | /* |
| 4196 | * We got @count in @nsec, with a target of sample_freq HZ |
| 4197 | * the target period becomes: |
| 4198 | * |
| 4199 | * @count * 10^9 |
| 4200 | * period = ------------------- |
| 4201 | * @nsec * sample_freq |
| 4202 | * |
| 4203 | */ |
| 4204 | |
| 4205 | /* |
| 4206 | * Reduce accuracy by one bit such that @a and @b converge |
| 4207 | * to a similar magnitude. |
| 4208 | */ |
| 4209 | #define REDUCE_FLS(a, b) \ |
| 4210 | do { \ |
| 4211 | if (a##_fls > b##_fls) { \ |
| 4212 | a >>= 1; \ |
| 4213 | a##_fls--; \ |
| 4214 | } else { \ |
| 4215 | b >>= 1; \ |
| 4216 | b##_fls--; \ |
| 4217 | } \ |
| 4218 | } while (0) |
| 4219 | |
| 4220 | /* |
| 4221 | * Reduce accuracy until either term fits in a u64, then proceed with |
| 4222 | * the other, so that finally we can do a u64/u64 division. |
| 4223 | */ |
| 4224 | while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { |
| 4225 | REDUCE_FLS(nsec, frequency); |
| 4226 | REDUCE_FLS(sec, count); |
| 4227 | } |
| 4228 | |
| 4229 | if (count_fls + sec_fls > 64) { |
| 4230 | divisor = nsec * frequency; |
| 4231 | |
| 4232 | while (count_fls + sec_fls > 64) { |
| 4233 | REDUCE_FLS(count, sec); |
| 4234 | divisor >>= 1; |
| 4235 | } |
| 4236 | |
| 4237 | dividend = count * sec; |
| 4238 | } else { |
| 4239 | dividend = count * sec; |
| 4240 | |
| 4241 | while (nsec_fls + frequency_fls > 64) { |
| 4242 | REDUCE_FLS(nsec, frequency); |
| 4243 | dividend >>= 1; |
| 4244 | } |
| 4245 | |
| 4246 | divisor = nsec * frequency; |
| 4247 | } |
| 4248 | |
| 4249 | if (!divisor) |
| 4250 | return dividend; |
| 4251 | |
| 4252 | return div64_u64(dividend, divisor); |
| 4253 | } |
| 4254 | |
| 4255 | static DEFINE_PER_CPU(int, perf_throttled_count); |
| 4256 | static DEFINE_PER_CPU(u64, perf_throttled_seq); |
| 4257 | |
| 4258 | static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) |
| 4259 | { |
| 4260 | struct hw_perf_event *hwc = &event->hw; |
| 4261 | s64 period, sample_period; |
| 4262 | s64 delta; |
| 4263 | |
| 4264 | period = perf_calculate_period(event, nsec, count); |
| 4265 | |
| 4266 | delta = (s64)(period - hwc->sample_period); |
| 4267 | if (delta >= 0) |
| 4268 | delta += 7; |
| 4269 | else |
| 4270 | delta -= 7; |
| 4271 | delta /= 8; /* low pass filter */ |
| 4272 | |
| 4273 | sample_period = hwc->sample_period + delta; |
| 4274 | |
| 4275 | if (!sample_period) |
| 4276 | sample_period = 1; |
| 4277 | |
| 4278 | hwc->sample_period = sample_period; |
| 4279 | |
| 4280 | if (local64_read(&hwc->period_left) > 8*sample_period) { |
| 4281 | if (disable) |
| 4282 | event->pmu->stop(event, PERF_EF_UPDATE); |
| 4283 | |
| 4284 | local64_set(&hwc->period_left, 0); |
| 4285 | |
| 4286 | if (disable) |
| 4287 | event->pmu->start(event, PERF_EF_RELOAD); |
| 4288 | } |
| 4289 | } |
| 4290 | |
| 4291 | static void perf_adjust_freq_unthr_events(struct list_head *event_list) |
| 4292 | { |
| 4293 | struct perf_event *event; |
| 4294 | struct hw_perf_event *hwc; |
| 4295 | u64 now, period = TICK_NSEC; |
| 4296 | s64 delta; |
| 4297 | |
| 4298 | list_for_each_entry(event, event_list, active_list) { |
| 4299 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
| 4300 | continue; |
| 4301 | |
| 4302 | // XXX use visit thingy to avoid the -1,cpu match |
| 4303 | if (!event_filter_match(event)) |
| 4304 | continue; |
| 4305 | |
| 4306 | hwc = &event->hw; |
| 4307 | |
| 4308 | if (hwc->interrupts == MAX_INTERRUPTS) |
| 4309 | perf_event_unthrottle_group(event, is_event_in_freq_mode(event)); |
| 4310 | |
| 4311 | if (!is_event_in_freq_mode(event)) |
| 4312 | continue; |
| 4313 | |
| 4314 | /* |
| 4315 | * stop the event and update event->count |
| 4316 | */ |
| 4317 | event->pmu->stop(event, PERF_EF_UPDATE); |
| 4318 | |
| 4319 | now = local64_read(&event->count); |
| 4320 | delta = now - hwc->freq_count_stamp; |
| 4321 | hwc->freq_count_stamp = now; |
| 4322 | |
| 4323 | /* |
| 4324 | * restart the event |
| 4325 | * reload only if value has changed |
| 4326 | * we have stopped the event so tell that |
| 4327 | * to perf_adjust_period() to avoid stopping it |
| 4328 | * twice. |
| 4329 | */ |
| 4330 | if (delta > 0) |
| 4331 | perf_adjust_period(event, period, delta, false); |
| 4332 | |
| 4333 | event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); |
| 4334 | } |
| 4335 | } |
| 4336 | |
| 4337 | /* |
| 4338 | * combine freq adjustment with unthrottling to avoid two passes over the |
| 4339 | * events. At the same time, make sure, having freq events does not change |
| 4340 | * the rate of unthrottling as that would introduce bias. |
| 4341 | */ |
| 4342 | static void |
| 4343 | perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) |
| 4344 | { |
| 4345 | struct perf_event_pmu_context *pmu_ctx; |
| 4346 | |
| 4347 | /* |
| 4348 | * only need to iterate over all events iff: |
| 4349 | * - context have events in frequency mode (needs freq adjust) |
| 4350 | * - there are events to unthrottle on this cpu |
| 4351 | */ |
| 4352 | if (!(ctx->nr_freq || unthrottle)) |
| 4353 | return; |
| 4354 | |
| 4355 | raw_spin_lock(&ctx->lock); |
| 4356 | |
| 4357 | list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { |
| 4358 | if (!(pmu_ctx->nr_freq || unthrottle)) |
| 4359 | continue; |
| 4360 | if (!perf_pmu_ctx_is_active(pmu_ctx)) |
| 4361 | continue; |
| 4362 | if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) |
| 4363 | continue; |
| 4364 | |
| 4365 | perf_pmu_disable(pmu_ctx->pmu); |
| 4366 | perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active); |
| 4367 | perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active); |
| 4368 | perf_pmu_enable(pmu_ctx->pmu); |
| 4369 | } |
| 4370 | |
| 4371 | raw_spin_unlock(&ctx->lock); |
| 4372 | } |
| 4373 | |
| 4374 | /* |
| 4375 | * Move @event to the tail of the @ctx's elegible events. |
| 4376 | */ |
| 4377 | static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) |
| 4378 | { |
| 4379 | /* |
| 4380 | * Rotate the first entry last of non-pinned groups. Rotation might be |
| 4381 | * disabled by the inheritance code. |
| 4382 | */ |
| 4383 | if (ctx->rotate_disable) |
| 4384 | return; |
| 4385 | |
| 4386 | perf_event_groups_delete(&ctx->flexible_groups, event); |
| 4387 | perf_event_groups_insert(&ctx->flexible_groups, event); |
| 4388 | } |
| 4389 | |
| 4390 | /* pick an event from the flexible_groups to rotate */ |
| 4391 | static inline struct perf_event * |
| 4392 | ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) |
| 4393 | { |
| 4394 | struct perf_event *event; |
| 4395 | struct rb_node *node; |
| 4396 | struct rb_root *tree; |
| 4397 | struct __group_key key = { |
| 4398 | .pmu = pmu_ctx->pmu, |
| 4399 | }; |
| 4400 | |
| 4401 | /* pick the first active flexible event */ |
| 4402 | event = list_first_entry_or_null(&pmu_ctx->flexible_active, |
| 4403 | struct perf_event, active_list); |
| 4404 | if (event) |
| 4405 | goto out; |
| 4406 | |
| 4407 | /* if no active flexible event, pick the first event */ |
| 4408 | tree = &pmu_ctx->ctx->flexible_groups.tree; |
| 4409 | |
| 4410 | if (!pmu_ctx->ctx->task) { |
| 4411 | key.cpu = smp_processor_id(); |
| 4412 | |
| 4413 | node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); |
| 4414 | if (node) |
| 4415 | event = __node_2_pe(node); |
| 4416 | goto out; |
| 4417 | } |
| 4418 | |
| 4419 | key.cpu = -1; |
| 4420 | node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); |
| 4421 | if (node) { |
| 4422 | event = __node_2_pe(node); |
| 4423 | goto out; |
| 4424 | } |
| 4425 | |
| 4426 | key.cpu = smp_processor_id(); |
| 4427 | node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); |
| 4428 | if (node) |
| 4429 | event = __node_2_pe(node); |
| 4430 | |
| 4431 | out: |
| 4432 | /* |
| 4433 | * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() |
| 4434 | * finds there are unschedulable events, it will set it again. |
| 4435 | */ |
| 4436 | pmu_ctx->rotate_necessary = 0; |
| 4437 | |
| 4438 | return event; |
| 4439 | } |
| 4440 | |
| 4441 | static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) |
| 4442 | { |
| 4443 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4444 | struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; |
| 4445 | struct perf_event *cpu_event = NULL, *task_event = NULL; |
| 4446 | int cpu_rotate, task_rotate; |
| 4447 | struct pmu *pmu; |
| 4448 | |
| 4449 | /* |
| 4450 | * Since we run this from IRQ context, nobody can install new |
| 4451 | * events, thus the event count values are stable. |
| 4452 | */ |
| 4453 | |
| 4454 | cpu_epc = &cpc->epc; |
| 4455 | pmu = cpu_epc->pmu; |
| 4456 | task_epc = cpc->task_epc; |
| 4457 | |
| 4458 | cpu_rotate = cpu_epc->rotate_necessary; |
| 4459 | task_rotate = task_epc ? task_epc->rotate_necessary : 0; |
| 4460 | |
| 4461 | if (!(cpu_rotate || task_rotate)) |
| 4462 | return false; |
| 4463 | |
| 4464 | perf_ctx_lock(cpuctx, cpuctx->task_ctx); |
| 4465 | perf_pmu_disable(pmu); |
| 4466 | |
| 4467 | if (task_rotate) |
| 4468 | task_event = ctx_event_to_rotate(task_epc); |
| 4469 | if (cpu_rotate) |
| 4470 | cpu_event = ctx_event_to_rotate(cpu_epc); |
| 4471 | |
| 4472 | /* |
| 4473 | * As per the order given at ctx_resched() first 'pop' task flexible |
| 4474 | * and then, if needed CPU flexible. |
| 4475 | */ |
| 4476 | if (task_event || (task_epc && cpu_event)) { |
| 4477 | update_context_time(task_epc->ctx); |
| 4478 | __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); |
| 4479 | } |
| 4480 | |
| 4481 | if (cpu_event) { |
| 4482 | update_context_time(&cpuctx->ctx); |
| 4483 | __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); |
| 4484 | rotate_ctx(&cpuctx->ctx, cpu_event); |
| 4485 | __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE); |
| 4486 | } |
| 4487 | |
| 4488 | if (task_event) |
| 4489 | rotate_ctx(task_epc->ctx, task_event); |
| 4490 | |
| 4491 | if (task_event || (task_epc && cpu_event)) |
| 4492 | __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE); |
| 4493 | |
| 4494 | perf_pmu_enable(pmu); |
| 4495 | perf_ctx_unlock(cpuctx, cpuctx->task_ctx); |
| 4496 | |
| 4497 | return true; |
| 4498 | } |
| 4499 | |
| 4500 | void perf_event_task_tick(void) |
| 4501 | { |
| 4502 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4503 | struct perf_event_context *ctx; |
| 4504 | int throttled; |
| 4505 | |
| 4506 | lockdep_assert_irqs_disabled(); |
| 4507 | |
| 4508 | __this_cpu_inc(perf_throttled_seq); |
| 4509 | throttled = __this_cpu_xchg(perf_throttled_count, 0); |
| 4510 | tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); |
| 4511 | |
| 4512 | perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); |
| 4513 | |
| 4514 | rcu_read_lock(); |
| 4515 | ctx = rcu_dereference(current->perf_event_ctxp); |
| 4516 | if (ctx) |
| 4517 | perf_adjust_freq_unthr_context(ctx, !!throttled); |
| 4518 | rcu_read_unlock(); |
| 4519 | } |
| 4520 | |
| 4521 | static int event_enable_on_exec(struct perf_event *event, |
| 4522 | struct perf_event_context *ctx) |
| 4523 | { |
| 4524 | if (!event->attr.enable_on_exec) |
| 4525 | return 0; |
| 4526 | |
| 4527 | event->attr.enable_on_exec = 0; |
| 4528 | if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| 4529 | return 0; |
| 4530 | |
| 4531 | perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); |
| 4532 | |
| 4533 | return 1; |
| 4534 | } |
| 4535 | |
| 4536 | /* |
| 4537 | * Enable all of a task's events that have been marked enable-on-exec. |
| 4538 | * This expects task == current. |
| 4539 | */ |
| 4540 | static void perf_event_enable_on_exec(struct perf_event_context *ctx) |
| 4541 | { |
| 4542 | struct perf_event_context *clone_ctx = NULL; |
| 4543 | enum event_type_t event_type = 0; |
| 4544 | struct perf_cpu_context *cpuctx; |
| 4545 | struct perf_event *event; |
| 4546 | unsigned long flags; |
| 4547 | int enabled = 0; |
| 4548 | |
| 4549 | local_irq_save(flags); |
| 4550 | if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) |
| 4551 | goto out; |
| 4552 | |
| 4553 | if (!ctx->nr_events) |
| 4554 | goto out; |
| 4555 | |
| 4556 | cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4557 | perf_ctx_lock(cpuctx, ctx); |
| 4558 | ctx_time_freeze(cpuctx, ctx); |
| 4559 | |
| 4560 | list_for_each_entry(event, &ctx->event_list, event_entry) { |
| 4561 | enabled |= event_enable_on_exec(event, ctx); |
| 4562 | event_type |= get_event_type(event); |
| 4563 | } |
| 4564 | |
| 4565 | /* |
| 4566 | * Unclone and reschedule this context if we enabled any event. |
| 4567 | */ |
| 4568 | if (enabled) { |
| 4569 | clone_ctx = unclone_ctx(ctx); |
| 4570 | ctx_resched(cpuctx, ctx, NULL, event_type); |
| 4571 | } |
| 4572 | perf_ctx_unlock(cpuctx, ctx); |
| 4573 | |
| 4574 | out: |
| 4575 | local_irq_restore(flags); |
| 4576 | |
| 4577 | if (clone_ctx) |
| 4578 | put_ctx(clone_ctx); |
| 4579 | } |
| 4580 | |
| 4581 | static void perf_remove_from_owner(struct perf_event *event); |
| 4582 | static void perf_event_exit_event(struct perf_event *event, |
| 4583 | struct perf_event_context *ctx, |
| 4584 | bool revoke); |
| 4585 | |
| 4586 | /* |
| 4587 | * Removes all events from the current task that have been marked |
| 4588 | * remove-on-exec, and feeds their values back to parent events. |
| 4589 | */ |
| 4590 | static void perf_event_remove_on_exec(struct perf_event_context *ctx) |
| 4591 | { |
| 4592 | struct perf_event_context *clone_ctx = NULL; |
| 4593 | struct perf_event *event, *next; |
| 4594 | unsigned long flags; |
| 4595 | bool modified = false; |
| 4596 | |
| 4597 | mutex_lock(&ctx->mutex); |
| 4598 | |
| 4599 | if (WARN_ON_ONCE(ctx->task != current)) |
| 4600 | goto unlock; |
| 4601 | |
| 4602 | list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { |
| 4603 | if (!event->attr.remove_on_exec) |
| 4604 | continue; |
| 4605 | |
| 4606 | if (!is_kernel_event(event)) |
| 4607 | perf_remove_from_owner(event); |
| 4608 | |
| 4609 | modified = true; |
| 4610 | |
| 4611 | perf_event_exit_event(event, ctx, false); |
| 4612 | } |
| 4613 | |
| 4614 | raw_spin_lock_irqsave(&ctx->lock, flags); |
| 4615 | if (modified) |
| 4616 | clone_ctx = unclone_ctx(ctx); |
| 4617 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 4618 | |
| 4619 | unlock: |
| 4620 | mutex_unlock(&ctx->mutex); |
| 4621 | |
| 4622 | if (clone_ctx) |
| 4623 | put_ctx(clone_ctx); |
| 4624 | } |
| 4625 | |
| 4626 | struct perf_read_data { |
| 4627 | struct perf_event *event; |
| 4628 | bool group; |
| 4629 | int ret; |
| 4630 | }; |
| 4631 | |
| 4632 | static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu); |
| 4633 | |
| 4634 | static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) |
| 4635 | { |
| 4636 | int local_cpu = smp_processor_id(); |
| 4637 | u16 local_pkg, event_pkg; |
| 4638 | |
| 4639 | if ((unsigned)event_cpu >= nr_cpu_ids) |
| 4640 | return event_cpu; |
| 4641 | |
| 4642 | if (event->group_caps & PERF_EV_CAP_READ_SCOPE) { |
| 4643 | const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu); |
| 4644 | |
| 4645 | if (cpumask && cpumask_test_cpu(local_cpu, cpumask)) |
| 4646 | return local_cpu; |
| 4647 | } |
| 4648 | |
| 4649 | if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { |
| 4650 | event_pkg = topology_physical_package_id(event_cpu); |
| 4651 | local_pkg = topology_physical_package_id(local_cpu); |
| 4652 | |
| 4653 | if (event_pkg == local_pkg) |
| 4654 | return local_cpu; |
| 4655 | } |
| 4656 | |
| 4657 | return event_cpu; |
| 4658 | } |
| 4659 | |
| 4660 | /* |
| 4661 | * Cross CPU call to read the hardware event |
| 4662 | */ |
| 4663 | static void __perf_event_read(void *info) |
| 4664 | { |
| 4665 | struct perf_read_data *data = info; |
| 4666 | struct perf_event *sub, *event = data->event; |
| 4667 | struct perf_event_context *ctx = event->ctx; |
| 4668 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 4669 | struct pmu *pmu = event->pmu; |
| 4670 | |
| 4671 | /* |
| 4672 | * If this is a task context, we need to check whether it is |
| 4673 | * the current task context of this cpu. If not it has been |
| 4674 | * scheduled out before the smp call arrived. In that case |
| 4675 | * event->count would have been updated to a recent sample |
| 4676 | * when the event was scheduled out. |
| 4677 | */ |
| 4678 | if (ctx->task && cpuctx->task_ctx != ctx) |
| 4679 | return; |
| 4680 | |
| 4681 | raw_spin_lock(&ctx->lock); |
| 4682 | ctx_time_update_event(ctx, event); |
| 4683 | |
| 4684 | perf_event_update_time(event); |
| 4685 | if (data->group) |
| 4686 | perf_event_update_sibling_time(event); |
| 4687 | |
| 4688 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
| 4689 | goto unlock; |
| 4690 | |
| 4691 | if (!data->group) { |
| 4692 | pmu->read(event); |
| 4693 | data->ret = 0; |
| 4694 | goto unlock; |
| 4695 | } |
| 4696 | |
| 4697 | pmu->start_txn(pmu, PERF_PMU_TXN_READ); |
| 4698 | |
| 4699 | pmu->read(event); |
| 4700 | |
| 4701 | for_each_sibling_event(sub, event) |
| 4702 | perf_pmu_read(sub); |
| 4703 | |
| 4704 | data->ret = pmu->commit_txn(pmu); |
| 4705 | |
| 4706 | unlock: |
| 4707 | raw_spin_unlock(&ctx->lock); |
| 4708 | } |
| 4709 | |
| 4710 | static inline u64 perf_event_count(struct perf_event *event, bool self) |
| 4711 | { |
| 4712 | if (self) |
| 4713 | return local64_read(&event->count); |
| 4714 | |
| 4715 | return local64_read(&event->count) + atomic64_read(&event->child_count); |
| 4716 | } |
| 4717 | |
| 4718 | static void calc_timer_values(struct perf_event *event, |
| 4719 | u64 *now, |
| 4720 | u64 *enabled, |
| 4721 | u64 *running) |
| 4722 | { |
| 4723 | u64 ctx_time; |
| 4724 | |
| 4725 | *now = perf_clock(); |
| 4726 | ctx_time = perf_event_time_now(event, *now); |
| 4727 | __perf_update_times(event, ctx_time, enabled, running); |
| 4728 | } |
| 4729 | |
| 4730 | /* |
| 4731 | * NMI-safe method to read a local event, that is an event that |
| 4732 | * is: |
| 4733 | * - either for the current task, or for this CPU |
| 4734 | * - does not have inherit set, for inherited task events |
| 4735 | * will not be local and we cannot read them atomically |
| 4736 | * - must not have a pmu::count method |
| 4737 | */ |
| 4738 | int perf_event_read_local(struct perf_event *event, u64 *value, |
| 4739 | u64 *enabled, u64 *running) |
| 4740 | { |
| 4741 | unsigned long flags; |
| 4742 | int event_oncpu; |
| 4743 | int event_cpu; |
| 4744 | int ret = 0; |
| 4745 | |
| 4746 | /* |
| 4747 | * Disabling interrupts avoids all counter scheduling (context |
| 4748 | * switches, timer based rotation and IPIs). |
| 4749 | */ |
| 4750 | local_irq_save(flags); |
| 4751 | |
| 4752 | /* |
| 4753 | * It must not be an event with inherit set, we cannot read |
| 4754 | * all child counters from atomic context. |
| 4755 | */ |
| 4756 | if (event->attr.inherit) { |
| 4757 | ret = -EOPNOTSUPP; |
| 4758 | goto out; |
| 4759 | } |
| 4760 | |
| 4761 | /* If this is a per-task event, it must be for current */ |
| 4762 | if ((event->attach_state & PERF_ATTACH_TASK) && |
| 4763 | event->hw.target != current) { |
| 4764 | ret = -EINVAL; |
| 4765 | goto out; |
| 4766 | } |
| 4767 | |
| 4768 | /* |
| 4769 | * Get the event CPU numbers, and adjust them to local if the event is |
| 4770 | * a per-package event that can be read locally |
| 4771 | */ |
| 4772 | event_oncpu = __perf_event_read_cpu(event, event->oncpu); |
| 4773 | event_cpu = __perf_event_read_cpu(event, event->cpu); |
| 4774 | |
| 4775 | /* If this is a per-CPU event, it must be for this CPU */ |
| 4776 | if (!(event->attach_state & PERF_ATTACH_TASK) && |
| 4777 | event_cpu != smp_processor_id()) { |
| 4778 | ret = -EINVAL; |
| 4779 | goto out; |
| 4780 | } |
| 4781 | |
| 4782 | /* If this is a pinned event it must be running on this CPU */ |
| 4783 | if (event->attr.pinned && event_oncpu != smp_processor_id()) { |
| 4784 | ret = -EBUSY; |
| 4785 | goto out; |
| 4786 | } |
| 4787 | |
| 4788 | /* |
| 4789 | * If the event is currently on this CPU, its either a per-task event, |
| 4790 | * or local to this CPU. Furthermore it means its ACTIVE (otherwise |
| 4791 | * oncpu == -1). |
| 4792 | */ |
| 4793 | if (event_oncpu == smp_processor_id()) |
| 4794 | event->pmu->read(event); |
| 4795 | |
| 4796 | *value = local64_read(&event->count); |
| 4797 | if (enabled || running) { |
| 4798 | u64 __enabled, __running, __now; |
| 4799 | |
| 4800 | calc_timer_values(event, &__now, &__enabled, &__running); |
| 4801 | if (enabled) |
| 4802 | *enabled = __enabled; |
| 4803 | if (running) |
| 4804 | *running = __running; |
| 4805 | } |
| 4806 | out: |
| 4807 | local_irq_restore(flags); |
| 4808 | |
| 4809 | return ret; |
| 4810 | } |
| 4811 | |
| 4812 | static int perf_event_read(struct perf_event *event, bool group) |
| 4813 | { |
| 4814 | enum perf_event_state state = READ_ONCE(event->state); |
| 4815 | int event_cpu, ret = 0; |
| 4816 | |
| 4817 | /* |
| 4818 | * If event is enabled and currently active on a CPU, update the |
| 4819 | * value in the event structure: |
| 4820 | */ |
| 4821 | again: |
| 4822 | if (state == PERF_EVENT_STATE_ACTIVE) { |
| 4823 | struct perf_read_data data; |
| 4824 | |
| 4825 | /* |
| 4826 | * Orders the ->state and ->oncpu loads such that if we see |
| 4827 | * ACTIVE we must also see the right ->oncpu. |
| 4828 | * |
| 4829 | * Matches the smp_wmb() from event_sched_in(). |
| 4830 | */ |
| 4831 | smp_rmb(); |
| 4832 | |
| 4833 | event_cpu = READ_ONCE(event->oncpu); |
| 4834 | if ((unsigned)event_cpu >= nr_cpu_ids) |
| 4835 | return 0; |
| 4836 | |
| 4837 | data = (struct perf_read_data){ |
| 4838 | .event = event, |
| 4839 | .group = group, |
| 4840 | .ret = 0, |
| 4841 | }; |
| 4842 | |
| 4843 | preempt_disable(); |
| 4844 | event_cpu = __perf_event_read_cpu(event, event_cpu); |
| 4845 | |
| 4846 | /* |
| 4847 | * Purposely ignore the smp_call_function_single() return |
| 4848 | * value. |
| 4849 | * |
| 4850 | * If event_cpu isn't a valid CPU it means the event got |
| 4851 | * scheduled out and that will have updated the event count. |
| 4852 | * |
| 4853 | * Therefore, either way, we'll have an up-to-date event count |
| 4854 | * after this. |
| 4855 | */ |
| 4856 | (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); |
| 4857 | preempt_enable(); |
| 4858 | ret = data.ret; |
| 4859 | |
| 4860 | } else if (state == PERF_EVENT_STATE_INACTIVE) { |
| 4861 | struct perf_event_context *ctx = event->ctx; |
| 4862 | unsigned long flags; |
| 4863 | |
| 4864 | raw_spin_lock_irqsave(&ctx->lock, flags); |
| 4865 | state = event->state; |
| 4866 | if (state != PERF_EVENT_STATE_INACTIVE) { |
| 4867 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 4868 | goto again; |
| 4869 | } |
| 4870 | |
| 4871 | /* |
| 4872 | * May read while context is not active (e.g., thread is |
| 4873 | * blocked), in that case we cannot update context time |
| 4874 | */ |
| 4875 | ctx_time_update_event(ctx, event); |
| 4876 | |
| 4877 | perf_event_update_time(event); |
| 4878 | if (group) |
| 4879 | perf_event_update_sibling_time(event); |
| 4880 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 4881 | } |
| 4882 | |
| 4883 | return ret; |
| 4884 | } |
| 4885 | |
| 4886 | /* |
| 4887 | * Initialize the perf_event context in a task_struct: |
| 4888 | */ |
| 4889 | static void __perf_event_init_context(struct perf_event_context *ctx) |
| 4890 | { |
| 4891 | raw_spin_lock_init(&ctx->lock); |
| 4892 | mutex_init(&ctx->mutex); |
| 4893 | INIT_LIST_HEAD(&ctx->pmu_ctx_list); |
| 4894 | perf_event_groups_init(&ctx->pinned_groups); |
| 4895 | perf_event_groups_init(&ctx->flexible_groups); |
| 4896 | INIT_LIST_HEAD(&ctx->event_list); |
| 4897 | refcount_set(&ctx->refcount, 1); |
| 4898 | } |
| 4899 | |
| 4900 | static void |
| 4901 | __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) |
| 4902 | { |
| 4903 | epc->pmu = pmu; |
| 4904 | INIT_LIST_HEAD(&epc->pmu_ctx_entry); |
| 4905 | INIT_LIST_HEAD(&epc->pinned_active); |
| 4906 | INIT_LIST_HEAD(&epc->flexible_active); |
| 4907 | atomic_set(&epc->refcount, 1); |
| 4908 | } |
| 4909 | |
| 4910 | static struct perf_event_context * |
| 4911 | alloc_perf_context(struct task_struct *task) |
| 4912 | { |
| 4913 | struct perf_event_context *ctx; |
| 4914 | |
| 4915 | ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
| 4916 | if (!ctx) |
| 4917 | return NULL; |
| 4918 | |
| 4919 | __perf_event_init_context(ctx); |
| 4920 | if (task) |
| 4921 | ctx->task = get_task_struct(task); |
| 4922 | |
| 4923 | return ctx; |
| 4924 | } |
| 4925 | |
| 4926 | static struct task_struct * |
| 4927 | find_lively_task_by_vpid(pid_t vpid) |
| 4928 | { |
| 4929 | struct task_struct *task; |
| 4930 | |
| 4931 | rcu_read_lock(); |
| 4932 | if (!vpid) |
| 4933 | task = current; |
| 4934 | else |
| 4935 | task = find_task_by_vpid(vpid); |
| 4936 | if (task) |
| 4937 | get_task_struct(task); |
| 4938 | rcu_read_unlock(); |
| 4939 | |
| 4940 | if (!task) |
| 4941 | return ERR_PTR(-ESRCH); |
| 4942 | |
| 4943 | return task; |
| 4944 | } |
| 4945 | |
| 4946 | /* |
| 4947 | * Returns a matching context with refcount and pincount. |
| 4948 | */ |
| 4949 | static struct perf_event_context * |
| 4950 | find_get_context(struct task_struct *task, struct perf_event *event) |
| 4951 | { |
| 4952 | struct perf_event_context *ctx, *clone_ctx = NULL; |
| 4953 | struct perf_cpu_context *cpuctx; |
| 4954 | unsigned long flags; |
| 4955 | int err; |
| 4956 | |
| 4957 | if (!task) { |
| 4958 | /* Must be root to operate on a CPU event: */ |
| 4959 | err = perf_allow_cpu(); |
| 4960 | if (err) |
| 4961 | return ERR_PTR(err); |
| 4962 | |
| 4963 | cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); |
| 4964 | ctx = &cpuctx->ctx; |
| 4965 | get_ctx(ctx); |
| 4966 | raw_spin_lock_irqsave(&ctx->lock, flags); |
| 4967 | ++ctx->pin_count; |
| 4968 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 4969 | |
| 4970 | return ctx; |
| 4971 | } |
| 4972 | |
| 4973 | err = -EINVAL; |
| 4974 | retry: |
| 4975 | ctx = perf_lock_task_context(task, &flags); |
| 4976 | if (ctx) { |
| 4977 | clone_ctx = unclone_ctx(ctx); |
| 4978 | ++ctx->pin_count; |
| 4979 | |
| 4980 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 4981 | |
| 4982 | if (clone_ctx) |
| 4983 | put_ctx(clone_ctx); |
| 4984 | } else { |
| 4985 | ctx = alloc_perf_context(task); |
| 4986 | err = -ENOMEM; |
| 4987 | if (!ctx) |
| 4988 | goto errout; |
| 4989 | |
| 4990 | err = 0; |
| 4991 | mutex_lock(&task->perf_event_mutex); |
| 4992 | /* |
| 4993 | * If it has already passed perf_event_exit_task(). |
| 4994 | * we must see PF_EXITING, it takes this mutex too. |
| 4995 | */ |
| 4996 | if (task->flags & PF_EXITING) |
| 4997 | err = -ESRCH; |
| 4998 | else if (task->perf_event_ctxp) |
| 4999 | err = -EAGAIN; |
| 5000 | else { |
| 5001 | get_ctx(ctx); |
| 5002 | ++ctx->pin_count; |
| 5003 | rcu_assign_pointer(task->perf_event_ctxp, ctx); |
| 5004 | } |
| 5005 | mutex_unlock(&task->perf_event_mutex); |
| 5006 | |
| 5007 | if (unlikely(err)) { |
| 5008 | put_ctx(ctx); |
| 5009 | |
| 5010 | if (err == -EAGAIN) |
| 5011 | goto retry; |
| 5012 | goto errout; |
| 5013 | } |
| 5014 | } |
| 5015 | |
| 5016 | return ctx; |
| 5017 | |
| 5018 | errout: |
| 5019 | return ERR_PTR(err); |
| 5020 | } |
| 5021 | |
| 5022 | static struct perf_event_pmu_context * |
| 5023 | find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, |
| 5024 | struct perf_event *event) |
| 5025 | { |
| 5026 | struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc; |
| 5027 | |
| 5028 | if (!ctx->task) { |
| 5029 | /* |
| 5030 | * perf_pmu_migrate_context() / __perf_pmu_install_event() |
| 5031 | * relies on the fact that find_get_pmu_context() cannot fail |
| 5032 | * for CPU contexts. |
| 5033 | */ |
| 5034 | struct perf_cpu_pmu_context *cpc; |
| 5035 | |
| 5036 | cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); |
| 5037 | epc = &cpc->epc; |
| 5038 | raw_spin_lock_irq(&ctx->lock); |
| 5039 | if (!epc->ctx) { |
| 5040 | /* |
| 5041 | * One extra reference for the pmu; see perf_pmu_free(). |
| 5042 | */ |
| 5043 | atomic_set(&epc->refcount, 2); |
| 5044 | epc->embedded = 1; |
| 5045 | list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); |
| 5046 | epc->ctx = ctx; |
| 5047 | } else { |
| 5048 | WARN_ON_ONCE(epc->ctx != ctx); |
| 5049 | atomic_inc(&epc->refcount); |
| 5050 | } |
| 5051 | raw_spin_unlock_irq(&ctx->lock); |
| 5052 | return epc; |
| 5053 | } |
| 5054 | |
| 5055 | new = kzalloc(sizeof(*epc), GFP_KERNEL); |
| 5056 | if (!new) |
| 5057 | return ERR_PTR(-ENOMEM); |
| 5058 | |
| 5059 | __perf_init_event_pmu_context(new, pmu); |
| 5060 | |
| 5061 | /* |
| 5062 | * XXX |
| 5063 | * |
| 5064 | * lockdep_assert_held(&ctx->mutex); |
| 5065 | * |
| 5066 | * can't because perf_event_init_task() doesn't actually hold the |
| 5067 | * child_ctx->mutex. |
| 5068 | */ |
| 5069 | |
| 5070 | raw_spin_lock_irq(&ctx->lock); |
| 5071 | list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { |
| 5072 | if (epc->pmu == pmu) { |
| 5073 | WARN_ON_ONCE(epc->ctx != ctx); |
| 5074 | atomic_inc(&epc->refcount); |
| 5075 | goto found_epc; |
| 5076 | } |
| 5077 | /* Make sure the pmu_ctx_list is sorted by PMU type: */ |
| 5078 | if (!pos && epc->pmu->type > pmu->type) |
| 5079 | pos = epc; |
| 5080 | } |
| 5081 | |
| 5082 | epc = new; |
| 5083 | new = NULL; |
| 5084 | |
| 5085 | if (!pos) |
| 5086 | list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); |
| 5087 | else |
| 5088 | list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev); |
| 5089 | |
| 5090 | epc->ctx = ctx; |
| 5091 | |
| 5092 | found_epc: |
| 5093 | raw_spin_unlock_irq(&ctx->lock); |
| 5094 | kfree(new); |
| 5095 | |
| 5096 | return epc; |
| 5097 | } |
| 5098 | |
| 5099 | static void get_pmu_ctx(struct perf_event_pmu_context *epc) |
| 5100 | { |
| 5101 | WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); |
| 5102 | } |
| 5103 | |
| 5104 | static void free_cpc_rcu(struct rcu_head *head) |
| 5105 | { |
| 5106 | struct perf_cpu_pmu_context *cpc = |
| 5107 | container_of(head, typeof(*cpc), epc.rcu_head); |
| 5108 | |
| 5109 | kfree(cpc); |
| 5110 | } |
| 5111 | |
| 5112 | static void free_epc_rcu(struct rcu_head *head) |
| 5113 | { |
| 5114 | struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); |
| 5115 | |
| 5116 | kfree(epc); |
| 5117 | } |
| 5118 | |
| 5119 | static void put_pmu_ctx(struct perf_event_pmu_context *epc) |
| 5120 | { |
| 5121 | struct perf_event_context *ctx = epc->ctx; |
| 5122 | unsigned long flags; |
| 5123 | |
| 5124 | /* |
| 5125 | * XXX |
| 5126 | * |
| 5127 | * lockdep_assert_held(&ctx->mutex); |
| 5128 | * |
| 5129 | * can't because of the call-site in _free_event()/put_event() |
| 5130 | * which isn't always called under ctx->mutex. |
| 5131 | */ |
| 5132 | if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) |
| 5133 | return; |
| 5134 | |
| 5135 | WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); |
| 5136 | |
| 5137 | list_del_init(&epc->pmu_ctx_entry); |
| 5138 | epc->ctx = NULL; |
| 5139 | |
| 5140 | WARN_ON_ONCE(!list_empty(&epc->pinned_active)); |
| 5141 | WARN_ON_ONCE(!list_empty(&epc->flexible_active)); |
| 5142 | |
| 5143 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 5144 | |
| 5145 | if (epc->embedded) { |
| 5146 | call_rcu(&epc->rcu_head, free_cpc_rcu); |
| 5147 | return; |
| 5148 | } |
| 5149 | |
| 5150 | call_rcu(&epc->rcu_head, free_epc_rcu); |
| 5151 | } |
| 5152 | |
| 5153 | static void perf_event_free_filter(struct perf_event *event); |
| 5154 | |
| 5155 | static void free_event_rcu(struct rcu_head *head) |
| 5156 | { |
| 5157 | struct perf_event *event = container_of(head, typeof(*event), rcu_head); |
| 5158 | |
| 5159 | if (event->ns) |
| 5160 | put_pid_ns(event->ns); |
| 5161 | perf_event_free_filter(event); |
| 5162 | kmem_cache_free(perf_event_cache, event); |
| 5163 | } |
| 5164 | |
| 5165 | static void ring_buffer_attach(struct perf_event *event, |
| 5166 | struct perf_buffer *rb); |
| 5167 | |
| 5168 | static void detach_sb_event(struct perf_event *event) |
| 5169 | { |
| 5170 | struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); |
| 5171 | |
| 5172 | raw_spin_lock(&pel->lock); |
| 5173 | list_del_rcu(&event->sb_list); |
| 5174 | raw_spin_unlock(&pel->lock); |
| 5175 | } |
| 5176 | |
| 5177 | static bool is_sb_event(struct perf_event *event) |
| 5178 | { |
| 5179 | struct perf_event_attr *attr = &event->attr; |
| 5180 | |
| 5181 | if (event->parent) |
| 5182 | return false; |
| 5183 | |
| 5184 | if (event->attach_state & PERF_ATTACH_TASK) |
| 5185 | return false; |
| 5186 | |
| 5187 | if (attr->mmap || attr->mmap_data || attr->mmap2 || |
| 5188 | attr->comm || attr->comm_exec || |
| 5189 | attr->task || attr->ksymbol || |
| 5190 | attr->context_switch || attr->text_poke || |
| 5191 | attr->bpf_event) |
| 5192 | return true; |
| 5193 | |
| 5194 | return false; |
| 5195 | } |
| 5196 | |
| 5197 | static void unaccount_pmu_sb_event(struct perf_event *event) |
| 5198 | { |
| 5199 | if (is_sb_event(event)) |
| 5200 | detach_sb_event(event); |
| 5201 | } |
| 5202 | |
| 5203 | #ifdef CONFIG_NO_HZ_FULL |
| 5204 | static DEFINE_SPINLOCK(nr_freq_lock); |
| 5205 | #endif |
| 5206 | |
| 5207 | static void unaccount_freq_event_nohz(void) |
| 5208 | { |
| 5209 | #ifdef CONFIG_NO_HZ_FULL |
| 5210 | spin_lock(&nr_freq_lock); |
| 5211 | if (atomic_dec_and_test(&nr_freq_events)) |
| 5212 | tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); |
| 5213 | spin_unlock(&nr_freq_lock); |
| 5214 | #endif |
| 5215 | } |
| 5216 | |
| 5217 | static void unaccount_freq_event(void) |
| 5218 | { |
| 5219 | if (tick_nohz_full_enabled()) |
| 5220 | unaccount_freq_event_nohz(); |
| 5221 | else |
| 5222 | atomic_dec(&nr_freq_events); |
| 5223 | } |
| 5224 | |
| 5225 | |
| 5226 | static struct perf_ctx_data * |
| 5227 | alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global) |
| 5228 | { |
| 5229 | struct perf_ctx_data *cd; |
| 5230 | |
| 5231 | cd = kzalloc(sizeof(*cd), GFP_KERNEL); |
| 5232 | if (!cd) |
| 5233 | return NULL; |
| 5234 | |
| 5235 | cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL); |
| 5236 | if (!cd->data) { |
| 5237 | kfree(cd); |
| 5238 | return NULL; |
| 5239 | } |
| 5240 | |
| 5241 | cd->global = global; |
| 5242 | cd->ctx_cache = ctx_cache; |
| 5243 | refcount_set(&cd->refcount, 1); |
| 5244 | |
| 5245 | return cd; |
| 5246 | } |
| 5247 | |
| 5248 | static void free_perf_ctx_data(struct perf_ctx_data *cd) |
| 5249 | { |
| 5250 | kmem_cache_free(cd->ctx_cache, cd->data); |
| 5251 | kfree(cd); |
| 5252 | } |
| 5253 | |
| 5254 | static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head) |
| 5255 | { |
| 5256 | struct perf_ctx_data *cd; |
| 5257 | |
| 5258 | cd = container_of(rcu_head, struct perf_ctx_data, rcu_head); |
| 5259 | free_perf_ctx_data(cd); |
| 5260 | } |
| 5261 | |
| 5262 | static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd) |
| 5263 | { |
| 5264 | call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu); |
| 5265 | } |
| 5266 | |
| 5267 | static int |
| 5268 | attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache, |
| 5269 | bool global) |
| 5270 | { |
| 5271 | struct perf_ctx_data *cd, *old = NULL; |
| 5272 | |
| 5273 | cd = alloc_perf_ctx_data(ctx_cache, global); |
| 5274 | if (!cd) |
| 5275 | return -ENOMEM; |
| 5276 | |
| 5277 | for (;;) { |
| 5278 | if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) { |
| 5279 | if (old) |
| 5280 | perf_free_ctx_data_rcu(old); |
| 5281 | return 0; |
| 5282 | } |
| 5283 | |
| 5284 | if (!old) { |
| 5285 | /* |
| 5286 | * After seeing a dead @old, we raced with |
| 5287 | * removal and lost, try again to install @cd. |
| 5288 | */ |
| 5289 | continue; |
| 5290 | } |
| 5291 | |
| 5292 | if (refcount_inc_not_zero(&old->refcount)) { |
| 5293 | free_perf_ctx_data(cd); /* unused */ |
| 5294 | return 0; |
| 5295 | } |
| 5296 | |
| 5297 | /* |
| 5298 | * @old is a dead object, refcount==0 is stable, try and |
| 5299 | * replace it with @cd. |
| 5300 | */ |
| 5301 | } |
| 5302 | return 0; |
| 5303 | } |
| 5304 | |
| 5305 | static void __detach_global_ctx_data(void); |
| 5306 | DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem); |
| 5307 | static refcount_t global_ctx_data_ref; |
| 5308 | |
| 5309 | static int |
| 5310 | attach_global_ctx_data(struct kmem_cache *ctx_cache) |
| 5311 | { |
| 5312 | struct task_struct *g, *p; |
| 5313 | struct perf_ctx_data *cd; |
| 5314 | int ret; |
| 5315 | |
| 5316 | if (refcount_inc_not_zero(&global_ctx_data_ref)) |
| 5317 | return 0; |
| 5318 | |
| 5319 | guard(percpu_write)(&global_ctx_data_rwsem); |
| 5320 | if (refcount_inc_not_zero(&global_ctx_data_ref)) |
| 5321 | return 0; |
| 5322 | again: |
| 5323 | /* Allocate everything */ |
| 5324 | scoped_guard (rcu) { |
| 5325 | for_each_process_thread(g, p) { |
| 5326 | cd = rcu_dereference(p->perf_ctx_data); |
| 5327 | if (cd && !cd->global) { |
| 5328 | cd->global = 1; |
| 5329 | if (!refcount_inc_not_zero(&cd->refcount)) |
| 5330 | cd = NULL; |
| 5331 | } |
| 5332 | if (!cd) { |
| 5333 | get_task_struct(p); |
| 5334 | goto alloc; |
| 5335 | } |
| 5336 | } |
| 5337 | } |
| 5338 | |
| 5339 | refcount_set(&global_ctx_data_ref, 1); |
| 5340 | |
| 5341 | return 0; |
| 5342 | alloc: |
| 5343 | ret = attach_task_ctx_data(p, ctx_cache, true); |
| 5344 | put_task_struct(p); |
| 5345 | if (ret) { |
| 5346 | __detach_global_ctx_data(); |
| 5347 | return ret; |
| 5348 | } |
| 5349 | goto again; |
| 5350 | } |
| 5351 | |
| 5352 | static int |
| 5353 | attach_perf_ctx_data(struct perf_event *event) |
| 5354 | { |
| 5355 | struct task_struct *task = event->hw.target; |
| 5356 | struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache; |
| 5357 | int ret; |
| 5358 | |
| 5359 | if (!ctx_cache) |
| 5360 | return -ENOMEM; |
| 5361 | |
| 5362 | if (task) |
| 5363 | return attach_task_ctx_data(task, ctx_cache, false); |
| 5364 | |
| 5365 | ret = attach_global_ctx_data(ctx_cache); |
| 5366 | if (ret) |
| 5367 | return ret; |
| 5368 | |
| 5369 | event->attach_state |= PERF_ATTACH_GLOBAL_DATA; |
| 5370 | return 0; |
| 5371 | } |
| 5372 | |
| 5373 | static void |
| 5374 | detach_task_ctx_data(struct task_struct *p) |
| 5375 | { |
| 5376 | struct perf_ctx_data *cd; |
| 5377 | |
| 5378 | scoped_guard (rcu) { |
| 5379 | cd = rcu_dereference(p->perf_ctx_data); |
| 5380 | if (!cd || !refcount_dec_and_test(&cd->refcount)) |
| 5381 | return; |
| 5382 | } |
| 5383 | |
| 5384 | /* |
| 5385 | * The old ctx_data may be lost because of the race. |
| 5386 | * Nothing is required to do for the case. |
| 5387 | * See attach_task_ctx_data(). |
| 5388 | */ |
| 5389 | if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL)) |
| 5390 | perf_free_ctx_data_rcu(cd); |
| 5391 | } |
| 5392 | |
| 5393 | static void __detach_global_ctx_data(void) |
| 5394 | { |
| 5395 | struct task_struct *g, *p; |
| 5396 | struct perf_ctx_data *cd; |
| 5397 | |
| 5398 | again: |
| 5399 | scoped_guard (rcu) { |
| 5400 | for_each_process_thread(g, p) { |
| 5401 | cd = rcu_dereference(p->perf_ctx_data); |
| 5402 | if (!cd || !cd->global) |
| 5403 | continue; |
| 5404 | cd->global = 0; |
| 5405 | get_task_struct(p); |
| 5406 | goto detach; |
| 5407 | } |
| 5408 | } |
| 5409 | return; |
| 5410 | detach: |
| 5411 | detach_task_ctx_data(p); |
| 5412 | put_task_struct(p); |
| 5413 | goto again; |
| 5414 | } |
| 5415 | |
| 5416 | static void detach_global_ctx_data(void) |
| 5417 | { |
| 5418 | if (refcount_dec_not_one(&global_ctx_data_ref)) |
| 5419 | return; |
| 5420 | |
| 5421 | guard(percpu_write)(&global_ctx_data_rwsem); |
| 5422 | if (!refcount_dec_and_test(&global_ctx_data_ref)) |
| 5423 | return; |
| 5424 | |
| 5425 | /* remove everything */ |
| 5426 | __detach_global_ctx_data(); |
| 5427 | } |
| 5428 | |
| 5429 | static void detach_perf_ctx_data(struct perf_event *event) |
| 5430 | { |
| 5431 | struct task_struct *task = event->hw.target; |
| 5432 | |
| 5433 | event->attach_state &= ~PERF_ATTACH_TASK_DATA; |
| 5434 | |
| 5435 | if (task) |
| 5436 | return detach_task_ctx_data(task); |
| 5437 | |
| 5438 | if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) { |
| 5439 | detach_global_ctx_data(); |
| 5440 | event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA; |
| 5441 | } |
| 5442 | } |
| 5443 | |
| 5444 | static void unaccount_event(struct perf_event *event) |
| 5445 | { |
| 5446 | bool dec = false; |
| 5447 | |
| 5448 | if (event->parent) |
| 5449 | return; |
| 5450 | |
| 5451 | if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) |
| 5452 | dec = true; |
| 5453 | if (event->attr.mmap || event->attr.mmap_data) |
| 5454 | atomic_dec(&nr_mmap_events); |
| 5455 | if (event->attr.build_id) |
| 5456 | atomic_dec(&nr_build_id_events); |
| 5457 | if (event->attr.comm) |
| 5458 | atomic_dec(&nr_comm_events); |
| 5459 | if (event->attr.namespaces) |
| 5460 | atomic_dec(&nr_namespaces_events); |
| 5461 | if (event->attr.cgroup) |
| 5462 | atomic_dec(&nr_cgroup_events); |
| 5463 | if (event->attr.task) |
| 5464 | atomic_dec(&nr_task_events); |
| 5465 | if (event->attr.freq) |
| 5466 | unaccount_freq_event(); |
| 5467 | if (event->attr.context_switch) { |
| 5468 | dec = true; |
| 5469 | atomic_dec(&nr_switch_events); |
| 5470 | } |
| 5471 | if (is_cgroup_event(event)) |
| 5472 | dec = true; |
| 5473 | if (has_branch_stack(event)) |
| 5474 | dec = true; |
| 5475 | if (event->attr.ksymbol) |
| 5476 | atomic_dec(&nr_ksymbol_events); |
| 5477 | if (event->attr.bpf_event) |
| 5478 | atomic_dec(&nr_bpf_events); |
| 5479 | if (event->attr.text_poke) |
| 5480 | atomic_dec(&nr_text_poke_events); |
| 5481 | |
| 5482 | if (dec) { |
| 5483 | if (!atomic_add_unless(&perf_sched_count, -1, 1)) |
| 5484 | schedule_delayed_work(&perf_sched_work, HZ); |
| 5485 | } |
| 5486 | |
| 5487 | unaccount_pmu_sb_event(event); |
| 5488 | } |
| 5489 | |
| 5490 | static void perf_sched_delayed(struct work_struct *work) |
| 5491 | { |
| 5492 | mutex_lock(&perf_sched_mutex); |
| 5493 | if (atomic_dec_and_test(&perf_sched_count)) |
| 5494 | static_branch_disable(&perf_sched_events); |
| 5495 | mutex_unlock(&perf_sched_mutex); |
| 5496 | } |
| 5497 | |
| 5498 | /* |
| 5499 | * The following implement mutual exclusion of events on "exclusive" pmus |
| 5500 | * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled |
| 5501 | * at a time, so we disallow creating events that might conflict, namely: |
| 5502 | * |
| 5503 | * 1) cpu-wide events in the presence of per-task events, |
| 5504 | * 2) per-task events in the presence of cpu-wide events, |
| 5505 | * 3) two matching events on the same perf_event_context. |
| 5506 | * |
| 5507 | * The former two cases are handled in the allocation path (perf_event_alloc(), |
| 5508 | * _free_event()), the latter -- before the first perf_install_in_context(). |
| 5509 | */ |
| 5510 | static int exclusive_event_init(struct perf_event *event) |
| 5511 | { |
| 5512 | struct pmu *pmu = event->pmu; |
| 5513 | |
| 5514 | if (!is_exclusive_pmu(pmu)) |
| 5515 | return 0; |
| 5516 | |
| 5517 | /* |
| 5518 | * Prevent co-existence of per-task and cpu-wide events on the |
| 5519 | * same exclusive pmu. |
| 5520 | * |
| 5521 | * Negative pmu::exclusive_cnt means there are cpu-wide |
| 5522 | * events on this "exclusive" pmu, positive means there are |
| 5523 | * per-task events. |
| 5524 | * |
| 5525 | * Since this is called in perf_event_alloc() path, event::ctx |
| 5526 | * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK |
| 5527 | * to mean "per-task event", because unlike other attach states it |
| 5528 | * never gets cleared. |
| 5529 | */ |
| 5530 | if (event->attach_state & PERF_ATTACH_TASK) { |
| 5531 | if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) |
| 5532 | return -EBUSY; |
| 5533 | } else { |
| 5534 | if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) |
| 5535 | return -EBUSY; |
| 5536 | } |
| 5537 | |
| 5538 | event->attach_state |= PERF_ATTACH_EXCLUSIVE; |
| 5539 | |
| 5540 | return 0; |
| 5541 | } |
| 5542 | |
| 5543 | static void exclusive_event_destroy(struct perf_event *event) |
| 5544 | { |
| 5545 | struct pmu *pmu = event->pmu; |
| 5546 | |
| 5547 | /* see comment in exclusive_event_init() */ |
| 5548 | if (event->attach_state & PERF_ATTACH_TASK) |
| 5549 | atomic_dec(&pmu->exclusive_cnt); |
| 5550 | else |
| 5551 | atomic_inc(&pmu->exclusive_cnt); |
| 5552 | |
| 5553 | event->attach_state &= ~PERF_ATTACH_EXCLUSIVE; |
| 5554 | } |
| 5555 | |
| 5556 | static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) |
| 5557 | { |
| 5558 | if ((e1->pmu == e2->pmu) && |
| 5559 | (e1->cpu == e2->cpu || |
| 5560 | e1->cpu == -1 || |
| 5561 | e2->cpu == -1)) |
| 5562 | return true; |
| 5563 | return false; |
| 5564 | } |
| 5565 | |
| 5566 | static bool exclusive_event_installable(struct perf_event *event, |
| 5567 | struct perf_event_context *ctx) |
| 5568 | { |
| 5569 | struct perf_event *iter_event; |
| 5570 | struct pmu *pmu = event->pmu; |
| 5571 | |
| 5572 | lockdep_assert_held(&ctx->mutex); |
| 5573 | |
| 5574 | if (!is_exclusive_pmu(pmu)) |
| 5575 | return true; |
| 5576 | |
| 5577 | list_for_each_entry(iter_event, &ctx->event_list, event_entry) { |
| 5578 | if (exclusive_event_match(iter_event, event)) |
| 5579 | return false; |
| 5580 | } |
| 5581 | |
| 5582 | return true; |
| 5583 | } |
| 5584 | |
| 5585 | static void perf_free_addr_filters(struct perf_event *event); |
| 5586 | |
| 5587 | /* vs perf_event_alloc() error */ |
| 5588 | static void __free_event(struct perf_event *event) |
| 5589 | { |
| 5590 | struct pmu *pmu = event->pmu; |
| 5591 | |
| 5592 | if (event->attach_state & PERF_ATTACH_CALLCHAIN) |
| 5593 | put_callchain_buffers(); |
| 5594 | |
| 5595 | kfree(event->addr_filter_ranges); |
| 5596 | |
| 5597 | if (event->attach_state & PERF_ATTACH_EXCLUSIVE) |
| 5598 | exclusive_event_destroy(event); |
| 5599 | |
| 5600 | if (is_cgroup_event(event)) |
| 5601 | perf_detach_cgroup(event); |
| 5602 | |
| 5603 | if (event->attach_state & PERF_ATTACH_TASK_DATA) |
| 5604 | detach_perf_ctx_data(event); |
| 5605 | |
| 5606 | if (event->destroy) |
| 5607 | event->destroy(event); |
| 5608 | |
| 5609 | /* |
| 5610 | * Must be after ->destroy(), due to uprobe_perf_close() using |
| 5611 | * hw.target. |
| 5612 | */ |
| 5613 | if (event->hw.target) |
| 5614 | put_task_struct(event->hw.target); |
| 5615 | |
| 5616 | if (event->pmu_ctx) { |
| 5617 | /* |
| 5618 | * put_pmu_ctx() needs an event->ctx reference, because of |
| 5619 | * epc->ctx. |
| 5620 | */ |
| 5621 | WARN_ON_ONCE(!pmu); |
| 5622 | WARN_ON_ONCE(!event->ctx); |
| 5623 | WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx); |
| 5624 | put_pmu_ctx(event->pmu_ctx); |
| 5625 | } |
| 5626 | |
| 5627 | /* |
| 5628 | * perf_event_free_task() relies on put_ctx() being 'last', in |
| 5629 | * particular all task references must be cleaned up. |
| 5630 | */ |
| 5631 | if (event->ctx) |
| 5632 | put_ctx(event->ctx); |
| 5633 | |
| 5634 | if (pmu) { |
| 5635 | module_put(pmu->module); |
| 5636 | scoped_guard (spinlock, &pmu->events_lock) { |
| 5637 | list_del(&event->pmu_list); |
| 5638 | wake_up_var(pmu); |
| 5639 | } |
| 5640 | } |
| 5641 | |
| 5642 | call_rcu(&event->rcu_head, free_event_rcu); |
| 5643 | } |
| 5644 | |
| 5645 | DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T)) |
| 5646 | |
| 5647 | /* vs perf_event_alloc() success */ |
| 5648 | static void _free_event(struct perf_event *event) |
| 5649 | { |
| 5650 | irq_work_sync(&event->pending_irq); |
| 5651 | irq_work_sync(&event->pending_disable_irq); |
| 5652 | |
| 5653 | unaccount_event(event); |
| 5654 | |
| 5655 | security_perf_event_free(event); |
| 5656 | |
| 5657 | if (event->rb) { |
| 5658 | /* |
| 5659 | * Can happen when we close an event with re-directed output. |
| 5660 | * |
| 5661 | * Since we have a 0 refcount, perf_mmap_close() will skip |
| 5662 | * over us; possibly making our ring_buffer_put() the last. |
| 5663 | */ |
| 5664 | mutex_lock(&event->mmap_mutex); |
| 5665 | ring_buffer_attach(event, NULL); |
| 5666 | mutex_unlock(&event->mmap_mutex); |
| 5667 | } |
| 5668 | |
| 5669 | perf_event_free_bpf_prog(event); |
| 5670 | perf_free_addr_filters(event); |
| 5671 | |
| 5672 | __free_event(event); |
| 5673 | } |
| 5674 | |
| 5675 | /* |
| 5676 | * Used to free events which have a known refcount of 1, such as in error paths |
| 5677 | * of inherited events. |
| 5678 | */ |
| 5679 | static void free_event(struct perf_event *event) |
| 5680 | { |
| 5681 | if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, |
| 5682 | "unexpected event refcount: %ld; ptr=%p\n", |
| 5683 | atomic_long_read(&event->refcount), event)) { |
| 5684 | /* leak to avoid use-after-free */ |
| 5685 | return; |
| 5686 | } |
| 5687 | |
| 5688 | _free_event(event); |
| 5689 | } |
| 5690 | |
| 5691 | /* |
| 5692 | * Remove user event from the owner task. |
| 5693 | */ |
| 5694 | static void perf_remove_from_owner(struct perf_event *event) |
| 5695 | { |
| 5696 | struct task_struct *owner; |
| 5697 | |
| 5698 | rcu_read_lock(); |
| 5699 | /* |
| 5700 | * Matches the smp_store_release() in perf_event_exit_task(). If we |
| 5701 | * observe !owner it means the list deletion is complete and we can |
| 5702 | * indeed free this event, otherwise we need to serialize on |
| 5703 | * owner->perf_event_mutex. |
| 5704 | */ |
| 5705 | owner = READ_ONCE(event->owner); |
| 5706 | if (owner) { |
| 5707 | /* |
| 5708 | * Since delayed_put_task_struct() also drops the last |
| 5709 | * task reference we can safely take a new reference |
| 5710 | * while holding the rcu_read_lock(). |
| 5711 | */ |
| 5712 | get_task_struct(owner); |
| 5713 | } |
| 5714 | rcu_read_unlock(); |
| 5715 | |
| 5716 | if (owner) { |
| 5717 | /* |
| 5718 | * If we're here through perf_event_exit_task() we're already |
| 5719 | * holding ctx->mutex which would be an inversion wrt. the |
| 5720 | * normal lock order. |
| 5721 | * |
| 5722 | * However we can safely take this lock because its the child |
| 5723 | * ctx->mutex. |
| 5724 | */ |
| 5725 | mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); |
| 5726 | |
| 5727 | /* |
| 5728 | * We have to re-check the event->owner field, if it is cleared |
| 5729 | * we raced with perf_event_exit_task(), acquiring the mutex |
| 5730 | * ensured they're done, and we can proceed with freeing the |
| 5731 | * event. |
| 5732 | */ |
| 5733 | if (event->owner) { |
| 5734 | list_del_init(&event->owner_entry); |
| 5735 | smp_store_release(&event->owner, NULL); |
| 5736 | } |
| 5737 | mutex_unlock(&owner->perf_event_mutex); |
| 5738 | put_task_struct(owner); |
| 5739 | } |
| 5740 | } |
| 5741 | |
| 5742 | static void put_event(struct perf_event *event) |
| 5743 | { |
| 5744 | struct perf_event *parent; |
| 5745 | |
| 5746 | if (!atomic_long_dec_and_test(&event->refcount)) |
| 5747 | return; |
| 5748 | |
| 5749 | parent = event->parent; |
| 5750 | _free_event(event); |
| 5751 | |
| 5752 | /* Matches the refcount bump in inherit_event() */ |
| 5753 | if (parent) |
| 5754 | put_event(parent); |
| 5755 | } |
| 5756 | |
| 5757 | /* |
| 5758 | * Kill an event dead; while event:refcount will preserve the event |
| 5759 | * object, it will not preserve its functionality. Once the last 'user' |
| 5760 | * gives up the object, we'll destroy the thing. |
| 5761 | */ |
| 5762 | int perf_event_release_kernel(struct perf_event *event) |
| 5763 | { |
| 5764 | struct perf_event_context *ctx = event->ctx; |
| 5765 | struct perf_event *child, *tmp; |
| 5766 | |
| 5767 | /* |
| 5768 | * If we got here through err_alloc: free_event(event); we will not |
| 5769 | * have attached to a context yet. |
| 5770 | */ |
| 5771 | if (!ctx) { |
| 5772 | WARN_ON_ONCE(event->attach_state & |
| 5773 | (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); |
| 5774 | goto no_ctx; |
| 5775 | } |
| 5776 | |
| 5777 | if (!is_kernel_event(event)) |
| 5778 | perf_remove_from_owner(event); |
| 5779 | |
| 5780 | ctx = perf_event_ctx_lock(event); |
| 5781 | WARN_ON_ONCE(ctx->parent_ctx); |
| 5782 | |
| 5783 | /* |
| 5784 | * Mark this event as STATE_DEAD, there is no external reference to it |
| 5785 | * anymore. |
| 5786 | * |
| 5787 | * Anybody acquiring event->child_mutex after the below loop _must_ |
| 5788 | * also see this, most importantly inherit_event() which will avoid |
| 5789 | * placing more children on the list. |
| 5790 | * |
| 5791 | * Thus this guarantees that we will in fact observe and kill _ALL_ |
| 5792 | * child events. |
| 5793 | */ |
| 5794 | if (event->state > PERF_EVENT_STATE_REVOKED) { |
| 5795 | perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); |
| 5796 | } else { |
| 5797 | event->state = PERF_EVENT_STATE_DEAD; |
| 5798 | } |
| 5799 | |
| 5800 | perf_event_ctx_unlock(event, ctx); |
| 5801 | |
| 5802 | again: |
| 5803 | mutex_lock(&event->child_mutex); |
| 5804 | list_for_each_entry(child, &event->child_list, child_list) { |
| 5805 | /* |
| 5806 | * Cannot change, child events are not migrated, see the |
| 5807 | * comment with perf_event_ctx_lock_nested(). |
| 5808 | */ |
| 5809 | ctx = READ_ONCE(child->ctx); |
| 5810 | /* |
| 5811 | * Since child_mutex nests inside ctx::mutex, we must jump |
| 5812 | * through hoops. We start by grabbing a reference on the ctx. |
| 5813 | * |
| 5814 | * Since the event cannot get freed while we hold the |
| 5815 | * child_mutex, the context must also exist and have a !0 |
| 5816 | * reference count. |
| 5817 | */ |
| 5818 | get_ctx(ctx); |
| 5819 | |
| 5820 | /* |
| 5821 | * Now that we have a ctx ref, we can drop child_mutex, and |
| 5822 | * acquire ctx::mutex without fear of it going away. Then we |
| 5823 | * can re-acquire child_mutex. |
| 5824 | */ |
| 5825 | mutex_unlock(&event->child_mutex); |
| 5826 | mutex_lock(&ctx->mutex); |
| 5827 | mutex_lock(&event->child_mutex); |
| 5828 | |
| 5829 | /* |
| 5830 | * Now that we hold ctx::mutex and child_mutex, revalidate our |
| 5831 | * state, if child is still the first entry, it didn't get freed |
| 5832 | * and we can continue doing so. |
| 5833 | */ |
| 5834 | tmp = list_first_entry_or_null(&event->child_list, |
| 5835 | struct perf_event, child_list); |
| 5836 | if (tmp == child) { |
| 5837 | perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD); |
| 5838 | } else { |
| 5839 | child = NULL; |
| 5840 | } |
| 5841 | |
| 5842 | mutex_unlock(&event->child_mutex); |
| 5843 | mutex_unlock(&ctx->mutex); |
| 5844 | |
| 5845 | if (child) { |
| 5846 | /* Last reference unless ->pending_task work is pending */ |
| 5847 | put_event(child); |
| 5848 | } |
| 5849 | put_ctx(ctx); |
| 5850 | |
| 5851 | goto again; |
| 5852 | } |
| 5853 | mutex_unlock(&event->child_mutex); |
| 5854 | |
| 5855 | no_ctx: |
| 5856 | /* |
| 5857 | * Last reference unless ->pending_task work is pending on this event |
| 5858 | * or any of its children. |
| 5859 | */ |
| 5860 | put_event(event); |
| 5861 | return 0; |
| 5862 | } |
| 5863 | EXPORT_SYMBOL_GPL(perf_event_release_kernel); |
| 5864 | |
| 5865 | /* |
| 5866 | * Called when the last reference to the file is gone. |
| 5867 | */ |
| 5868 | static int perf_release(struct inode *inode, struct file *file) |
| 5869 | { |
| 5870 | perf_event_release_kernel(file->private_data); |
| 5871 | return 0; |
| 5872 | } |
| 5873 | |
| 5874 | static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) |
| 5875 | { |
| 5876 | struct perf_event *child; |
| 5877 | u64 total = 0; |
| 5878 | |
| 5879 | *enabled = 0; |
| 5880 | *running = 0; |
| 5881 | |
| 5882 | mutex_lock(&event->child_mutex); |
| 5883 | |
| 5884 | (void)perf_event_read(event, false); |
| 5885 | total += perf_event_count(event, false); |
| 5886 | |
| 5887 | *enabled += event->total_time_enabled + |
| 5888 | atomic64_read(&event->child_total_time_enabled); |
| 5889 | *running += event->total_time_running + |
| 5890 | atomic64_read(&event->child_total_time_running); |
| 5891 | |
| 5892 | list_for_each_entry(child, &event->child_list, child_list) { |
| 5893 | (void)perf_event_read(child, false); |
| 5894 | total += perf_event_count(child, false); |
| 5895 | *enabled += child->total_time_enabled; |
| 5896 | *running += child->total_time_running; |
| 5897 | } |
| 5898 | mutex_unlock(&event->child_mutex); |
| 5899 | |
| 5900 | return total; |
| 5901 | } |
| 5902 | |
| 5903 | u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) |
| 5904 | { |
| 5905 | struct perf_event_context *ctx; |
| 5906 | u64 count; |
| 5907 | |
| 5908 | ctx = perf_event_ctx_lock(event); |
| 5909 | count = __perf_event_read_value(event, enabled, running); |
| 5910 | perf_event_ctx_unlock(event, ctx); |
| 5911 | |
| 5912 | return count; |
| 5913 | } |
| 5914 | EXPORT_SYMBOL_GPL(perf_event_read_value); |
| 5915 | |
| 5916 | static int __perf_read_group_add(struct perf_event *leader, |
| 5917 | u64 read_format, u64 *values) |
| 5918 | { |
| 5919 | struct perf_event_context *ctx = leader->ctx; |
| 5920 | struct perf_event *sub, *parent; |
| 5921 | unsigned long flags; |
| 5922 | int n = 1; /* skip @nr */ |
| 5923 | int ret; |
| 5924 | |
| 5925 | ret = perf_event_read(leader, true); |
| 5926 | if (ret) |
| 5927 | return ret; |
| 5928 | |
| 5929 | raw_spin_lock_irqsave(&ctx->lock, flags); |
| 5930 | /* |
| 5931 | * Verify the grouping between the parent and child (inherited) |
| 5932 | * events is still in tact. |
| 5933 | * |
| 5934 | * Specifically: |
| 5935 | * - leader->ctx->lock pins leader->sibling_list |
| 5936 | * - parent->child_mutex pins parent->child_list |
| 5937 | * - parent->ctx->mutex pins parent->sibling_list |
| 5938 | * |
| 5939 | * Because parent->ctx != leader->ctx (and child_list nests inside |
| 5940 | * ctx->mutex), group destruction is not atomic between children, also |
| 5941 | * see perf_event_release_kernel(). Additionally, parent can grow the |
| 5942 | * group. |
| 5943 | * |
| 5944 | * Therefore it is possible to have parent and child groups in a |
| 5945 | * different configuration and summing over such a beast makes no sense |
| 5946 | * what so ever. |
| 5947 | * |
| 5948 | * Reject this. |
| 5949 | */ |
| 5950 | parent = leader->parent; |
| 5951 | if (parent && |
| 5952 | (parent->group_generation != leader->group_generation || |
| 5953 | parent->nr_siblings != leader->nr_siblings)) { |
| 5954 | ret = -ECHILD; |
| 5955 | goto unlock; |
| 5956 | } |
| 5957 | |
| 5958 | /* |
| 5959 | * Since we co-schedule groups, {enabled,running} times of siblings |
| 5960 | * will be identical to those of the leader, so we only publish one |
| 5961 | * set. |
| 5962 | */ |
| 5963 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
| 5964 | values[n++] += leader->total_time_enabled + |
| 5965 | atomic64_read(&leader->child_total_time_enabled); |
| 5966 | } |
| 5967 | |
| 5968 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
| 5969 | values[n++] += leader->total_time_running + |
| 5970 | atomic64_read(&leader->child_total_time_running); |
| 5971 | } |
| 5972 | |
| 5973 | /* |
| 5974 | * Write {count,id} tuples for every sibling. |
| 5975 | */ |
| 5976 | values[n++] += perf_event_count(leader, false); |
| 5977 | if (read_format & PERF_FORMAT_ID) |
| 5978 | values[n++] = primary_event_id(leader); |
| 5979 | if (read_format & PERF_FORMAT_LOST) |
| 5980 | values[n++] = atomic64_read(&leader->lost_samples); |
| 5981 | |
| 5982 | for_each_sibling_event(sub, leader) { |
| 5983 | values[n++] += perf_event_count(sub, false); |
| 5984 | if (read_format & PERF_FORMAT_ID) |
| 5985 | values[n++] = primary_event_id(sub); |
| 5986 | if (read_format & PERF_FORMAT_LOST) |
| 5987 | values[n++] = atomic64_read(&sub->lost_samples); |
| 5988 | } |
| 5989 | |
| 5990 | unlock: |
| 5991 | raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| 5992 | return ret; |
| 5993 | } |
| 5994 | |
| 5995 | static int perf_read_group(struct perf_event *event, |
| 5996 | u64 read_format, char __user *buf) |
| 5997 | { |
| 5998 | struct perf_event *leader = event->group_leader, *child; |
| 5999 | struct perf_event_context *ctx = leader->ctx; |
| 6000 | int ret; |
| 6001 | u64 *values; |
| 6002 | |
| 6003 | lockdep_assert_held(&ctx->mutex); |
| 6004 | |
| 6005 | values = kzalloc(event->read_size, GFP_KERNEL); |
| 6006 | if (!values) |
| 6007 | return -ENOMEM; |
| 6008 | |
| 6009 | values[0] = 1 + leader->nr_siblings; |
| 6010 | |
| 6011 | mutex_lock(&leader->child_mutex); |
| 6012 | |
| 6013 | ret = __perf_read_group_add(leader, read_format, values); |
| 6014 | if (ret) |
| 6015 | goto unlock; |
| 6016 | |
| 6017 | list_for_each_entry(child, &leader->child_list, child_list) { |
| 6018 | ret = __perf_read_group_add(child, read_format, values); |
| 6019 | if (ret) |
| 6020 | goto unlock; |
| 6021 | } |
| 6022 | |
| 6023 | mutex_unlock(&leader->child_mutex); |
| 6024 | |
| 6025 | ret = event->read_size; |
| 6026 | if (copy_to_user(buf, values, event->read_size)) |
| 6027 | ret = -EFAULT; |
| 6028 | goto out; |
| 6029 | |
| 6030 | unlock: |
| 6031 | mutex_unlock(&leader->child_mutex); |
| 6032 | out: |
| 6033 | kfree(values); |
| 6034 | return ret; |
| 6035 | } |
| 6036 | |
| 6037 | static int perf_read_one(struct perf_event *event, |
| 6038 | u64 read_format, char __user *buf) |
| 6039 | { |
| 6040 | u64 enabled, running; |
| 6041 | u64 values[5]; |
| 6042 | int n = 0; |
| 6043 | |
| 6044 | values[n++] = __perf_event_read_value(event, &enabled, &running); |
| 6045 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| 6046 | values[n++] = enabled; |
| 6047 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| 6048 | values[n++] = running; |
| 6049 | if (read_format & PERF_FORMAT_ID) |
| 6050 | values[n++] = primary_event_id(event); |
| 6051 | if (read_format & PERF_FORMAT_LOST) |
| 6052 | values[n++] = atomic64_read(&event->lost_samples); |
| 6053 | |
| 6054 | if (copy_to_user(buf, values, n * sizeof(u64))) |
| 6055 | return -EFAULT; |
| 6056 | |
| 6057 | return n * sizeof(u64); |
| 6058 | } |
| 6059 | |
| 6060 | static bool is_event_hup(struct perf_event *event) |
| 6061 | { |
| 6062 | bool no_children; |
| 6063 | |
| 6064 | if (event->state > PERF_EVENT_STATE_EXIT) |
| 6065 | return false; |
| 6066 | |
| 6067 | mutex_lock(&event->child_mutex); |
| 6068 | no_children = list_empty(&event->child_list); |
| 6069 | mutex_unlock(&event->child_mutex); |
| 6070 | return no_children; |
| 6071 | } |
| 6072 | |
| 6073 | /* |
| 6074 | * Read the performance event - simple non blocking version for now |
| 6075 | */ |
| 6076 | static ssize_t |
| 6077 | __perf_read(struct perf_event *event, char __user *buf, size_t count) |
| 6078 | { |
| 6079 | u64 read_format = event->attr.read_format; |
| 6080 | int ret; |
| 6081 | |
| 6082 | /* |
| 6083 | * Return end-of-file for a read on an event that is in |
| 6084 | * error state (i.e. because it was pinned but it couldn't be |
| 6085 | * scheduled on to the CPU at some point). |
| 6086 | */ |
| 6087 | if (event->state == PERF_EVENT_STATE_ERROR) |
| 6088 | return 0; |
| 6089 | |
| 6090 | if (count < event->read_size) |
| 6091 | return -ENOSPC; |
| 6092 | |
| 6093 | WARN_ON_ONCE(event->ctx->parent_ctx); |
| 6094 | if (read_format & PERF_FORMAT_GROUP) |
| 6095 | ret = perf_read_group(event, read_format, buf); |
| 6096 | else |
| 6097 | ret = perf_read_one(event, read_format, buf); |
| 6098 | |
| 6099 | return ret; |
| 6100 | } |
| 6101 | |
| 6102 | static ssize_t |
| 6103 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
| 6104 | { |
| 6105 | struct perf_event *event = file->private_data; |
| 6106 | struct perf_event_context *ctx; |
| 6107 | int ret; |
| 6108 | |
| 6109 | ret = security_perf_event_read(event); |
| 6110 | if (ret) |
| 6111 | return ret; |
| 6112 | |
| 6113 | ctx = perf_event_ctx_lock(event); |
| 6114 | ret = __perf_read(event, buf, count); |
| 6115 | perf_event_ctx_unlock(event, ctx); |
| 6116 | |
| 6117 | return ret; |
| 6118 | } |
| 6119 | |
| 6120 | static __poll_t perf_poll(struct file *file, poll_table *wait) |
| 6121 | { |
| 6122 | struct perf_event *event = file->private_data; |
| 6123 | struct perf_buffer *rb; |
| 6124 | __poll_t events = EPOLLHUP; |
| 6125 | |
| 6126 | if (event->state <= PERF_EVENT_STATE_REVOKED) |
| 6127 | return EPOLLERR; |
| 6128 | |
| 6129 | poll_wait(file, &event->waitq, wait); |
| 6130 | |
| 6131 | if (event->state <= PERF_EVENT_STATE_REVOKED) |
| 6132 | return EPOLLERR; |
| 6133 | |
| 6134 | if (is_event_hup(event)) |
| 6135 | return events; |
| 6136 | |
| 6137 | if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR && |
| 6138 | event->attr.pinned)) |
| 6139 | return EPOLLERR; |
| 6140 | |
| 6141 | /* |
| 6142 | * Pin the event->rb by taking event->mmap_mutex; otherwise |
| 6143 | * perf_event_set_output() can swizzle our rb and make us miss wakeups. |
| 6144 | */ |
| 6145 | mutex_lock(&event->mmap_mutex); |
| 6146 | rb = event->rb; |
| 6147 | if (rb) |
| 6148 | events = atomic_xchg(&rb->poll, 0); |
| 6149 | mutex_unlock(&event->mmap_mutex); |
| 6150 | return events; |
| 6151 | } |
| 6152 | |
| 6153 | static void _perf_event_reset(struct perf_event *event) |
| 6154 | { |
| 6155 | (void)perf_event_read(event, false); |
| 6156 | local64_set(&event->count, 0); |
| 6157 | perf_event_update_userpage(event); |
| 6158 | } |
| 6159 | |
| 6160 | /* Assume it's not an event with inherit set. */ |
| 6161 | u64 perf_event_pause(struct perf_event *event, bool reset) |
| 6162 | { |
| 6163 | struct perf_event_context *ctx; |
| 6164 | u64 count; |
| 6165 | |
| 6166 | ctx = perf_event_ctx_lock(event); |
| 6167 | WARN_ON_ONCE(event->attr.inherit); |
| 6168 | _perf_event_disable(event); |
| 6169 | count = local64_read(&event->count); |
| 6170 | if (reset) |
| 6171 | local64_set(&event->count, 0); |
| 6172 | perf_event_ctx_unlock(event, ctx); |
| 6173 | |
| 6174 | return count; |
| 6175 | } |
| 6176 | EXPORT_SYMBOL_GPL(perf_event_pause); |
| 6177 | |
| 6178 | /* |
| 6179 | * Holding the top-level event's child_mutex means that any |
| 6180 | * descendant process that has inherited this event will block |
| 6181 | * in perf_event_exit_event() if it goes to exit, thus satisfying the |
| 6182 | * task existence requirements of perf_event_enable/disable. |
| 6183 | */ |
| 6184 | static void perf_event_for_each_child(struct perf_event *event, |
| 6185 | void (*func)(struct perf_event *)) |
| 6186 | { |
| 6187 | struct perf_event *child; |
| 6188 | |
| 6189 | WARN_ON_ONCE(event->ctx->parent_ctx); |
| 6190 | |
| 6191 | mutex_lock(&event->child_mutex); |
| 6192 | func(event); |
| 6193 | list_for_each_entry(child, &event->child_list, child_list) |
| 6194 | func(child); |
| 6195 | mutex_unlock(&event->child_mutex); |
| 6196 | } |
| 6197 | |
| 6198 | static void perf_event_for_each(struct perf_event *event, |
| 6199 | void (*func)(struct perf_event *)) |
| 6200 | { |
| 6201 | struct perf_event_context *ctx = event->ctx; |
| 6202 | struct perf_event *sibling; |
| 6203 | |
| 6204 | lockdep_assert_held(&ctx->mutex); |
| 6205 | |
| 6206 | event = event->group_leader; |
| 6207 | |
| 6208 | perf_event_for_each_child(event, func); |
| 6209 | for_each_sibling_event(sibling, event) |
| 6210 | perf_event_for_each_child(sibling, func); |
| 6211 | } |
| 6212 | |
| 6213 | static void __perf_event_period(struct perf_event *event, |
| 6214 | struct perf_cpu_context *cpuctx, |
| 6215 | struct perf_event_context *ctx, |
| 6216 | void *info) |
| 6217 | { |
| 6218 | u64 value = *((u64 *)info); |
| 6219 | bool active; |
| 6220 | |
| 6221 | if (event->attr.freq) { |
| 6222 | event->attr.sample_freq = value; |
| 6223 | } else { |
| 6224 | event->attr.sample_period = value; |
| 6225 | event->hw.sample_period = value; |
| 6226 | } |
| 6227 | |
| 6228 | active = (event->state == PERF_EVENT_STATE_ACTIVE); |
| 6229 | if (active) { |
| 6230 | perf_pmu_disable(event->pmu); |
| 6231 | event->pmu->stop(event, PERF_EF_UPDATE); |
| 6232 | } |
| 6233 | |
| 6234 | local64_set(&event->hw.period_left, 0); |
| 6235 | |
| 6236 | if (active) { |
| 6237 | event->pmu->start(event, PERF_EF_RELOAD); |
| 6238 | /* |
| 6239 | * Once the period is force-reset, the event starts immediately. |
| 6240 | * But the event/group could be throttled. Unthrottle the |
| 6241 | * event/group now to avoid the next tick trying to unthrottle |
| 6242 | * while we already re-started the event/group. |
| 6243 | */ |
| 6244 | if (event->hw.interrupts == MAX_INTERRUPTS) |
| 6245 | perf_event_unthrottle_group(event, true); |
| 6246 | perf_pmu_enable(event->pmu); |
| 6247 | } |
| 6248 | } |
| 6249 | |
| 6250 | static int perf_event_check_period(struct perf_event *event, u64 value) |
| 6251 | { |
| 6252 | return event->pmu->check_period(event, value); |
| 6253 | } |
| 6254 | |
| 6255 | static int _perf_event_period(struct perf_event *event, u64 value) |
| 6256 | { |
| 6257 | if (!is_sampling_event(event)) |
| 6258 | return -EINVAL; |
| 6259 | |
| 6260 | if (!value) |
| 6261 | return -EINVAL; |
| 6262 | |
| 6263 | if (event->attr.freq) { |
| 6264 | if (value > sysctl_perf_event_sample_rate) |
| 6265 | return -EINVAL; |
| 6266 | } else { |
| 6267 | if (perf_event_check_period(event, value)) |
| 6268 | return -EINVAL; |
| 6269 | if (value & (1ULL << 63)) |
| 6270 | return -EINVAL; |
| 6271 | } |
| 6272 | |
| 6273 | event_function_call(event, __perf_event_period, &value); |
| 6274 | |
| 6275 | return 0; |
| 6276 | } |
| 6277 | |
| 6278 | int perf_event_period(struct perf_event *event, u64 value) |
| 6279 | { |
| 6280 | struct perf_event_context *ctx; |
| 6281 | int ret; |
| 6282 | |
| 6283 | ctx = perf_event_ctx_lock(event); |
| 6284 | ret = _perf_event_period(event, value); |
| 6285 | perf_event_ctx_unlock(event, ctx); |
| 6286 | |
| 6287 | return ret; |
| 6288 | } |
| 6289 | EXPORT_SYMBOL_GPL(perf_event_period); |
| 6290 | |
| 6291 | static const struct file_operations perf_fops; |
| 6292 | |
| 6293 | static inline bool is_perf_file(struct fd f) |
| 6294 | { |
| 6295 | return !fd_empty(f) && fd_file(f)->f_op == &perf_fops; |
| 6296 | } |
| 6297 | |
| 6298 | static int perf_event_set_output(struct perf_event *event, |
| 6299 | struct perf_event *output_event); |
| 6300 | static int perf_event_set_filter(struct perf_event *event, void __user *arg); |
| 6301 | static int perf_copy_attr(struct perf_event_attr __user *uattr, |
| 6302 | struct perf_event_attr *attr); |
| 6303 | static int __perf_event_set_bpf_prog(struct perf_event *event, |
| 6304 | struct bpf_prog *prog, |
| 6305 | u64 bpf_cookie); |
| 6306 | |
| 6307 | static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) |
| 6308 | { |
| 6309 | void (*func)(struct perf_event *); |
| 6310 | u32 flags = arg; |
| 6311 | |
| 6312 | if (event->state <= PERF_EVENT_STATE_REVOKED) |
| 6313 | return -ENODEV; |
| 6314 | |
| 6315 | switch (cmd) { |
| 6316 | case PERF_EVENT_IOC_ENABLE: |
| 6317 | func = _perf_event_enable; |
| 6318 | break; |
| 6319 | case PERF_EVENT_IOC_DISABLE: |
| 6320 | func = _perf_event_disable; |
| 6321 | break; |
| 6322 | case PERF_EVENT_IOC_RESET: |
| 6323 | func = _perf_event_reset; |
| 6324 | break; |
| 6325 | |
| 6326 | case PERF_EVENT_IOC_REFRESH: |
| 6327 | return _perf_event_refresh(event, arg); |
| 6328 | |
| 6329 | case PERF_EVENT_IOC_PERIOD: |
| 6330 | { |
| 6331 | u64 value; |
| 6332 | |
| 6333 | if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) |
| 6334 | return -EFAULT; |
| 6335 | |
| 6336 | return _perf_event_period(event, value); |
| 6337 | } |
| 6338 | case PERF_EVENT_IOC_ID: |
| 6339 | { |
| 6340 | u64 id = primary_event_id(event); |
| 6341 | |
| 6342 | if (copy_to_user((void __user *)arg, &id, sizeof(id))) |
| 6343 | return -EFAULT; |
| 6344 | return 0; |
| 6345 | } |
| 6346 | |
| 6347 | case PERF_EVENT_IOC_SET_OUTPUT: |
| 6348 | { |
| 6349 | CLASS(fd, output)(arg); // arg == -1 => empty |
| 6350 | struct perf_event *output_event = NULL; |
| 6351 | if (arg != -1) { |
| 6352 | if (!is_perf_file(output)) |
| 6353 | return -EBADF; |
| 6354 | output_event = fd_file(output)->private_data; |
| 6355 | } |
| 6356 | return perf_event_set_output(event, output_event); |
| 6357 | } |
| 6358 | |
| 6359 | case PERF_EVENT_IOC_SET_FILTER: |
| 6360 | return perf_event_set_filter(event, (void __user *)arg); |
| 6361 | |
| 6362 | case PERF_EVENT_IOC_SET_BPF: |
| 6363 | { |
| 6364 | struct bpf_prog *prog; |
| 6365 | int err; |
| 6366 | |
| 6367 | prog = bpf_prog_get(arg); |
| 6368 | if (IS_ERR(prog)) |
| 6369 | return PTR_ERR(prog); |
| 6370 | |
| 6371 | err = __perf_event_set_bpf_prog(event, prog, 0); |
| 6372 | if (err) { |
| 6373 | bpf_prog_put(prog); |
| 6374 | return err; |
| 6375 | } |
| 6376 | |
| 6377 | return 0; |
| 6378 | } |
| 6379 | |
| 6380 | case PERF_EVENT_IOC_PAUSE_OUTPUT: { |
| 6381 | struct perf_buffer *rb; |
| 6382 | |
| 6383 | rcu_read_lock(); |
| 6384 | rb = rcu_dereference(event->rb); |
| 6385 | if (!rb || !rb->nr_pages) { |
| 6386 | rcu_read_unlock(); |
| 6387 | return -EINVAL; |
| 6388 | } |
| 6389 | rb_toggle_paused(rb, !!arg); |
| 6390 | rcu_read_unlock(); |
| 6391 | return 0; |
| 6392 | } |
| 6393 | |
| 6394 | case PERF_EVENT_IOC_QUERY_BPF: |
| 6395 | return perf_event_query_prog_array(event, (void __user *)arg); |
| 6396 | |
| 6397 | case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { |
| 6398 | struct perf_event_attr new_attr; |
| 6399 | int err = perf_copy_attr((struct perf_event_attr __user *)arg, |
| 6400 | &new_attr); |
| 6401 | |
| 6402 | if (err) |
| 6403 | return err; |
| 6404 | |
| 6405 | return perf_event_modify_attr(event, &new_attr); |
| 6406 | } |
| 6407 | default: |
| 6408 | return -ENOTTY; |
| 6409 | } |
| 6410 | |
| 6411 | if (flags & PERF_IOC_FLAG_GROUP) |
| 6412 | perf_event_for_each(event, func); |
| 6413 | else |
| 6414 | perf_event_for_each_child(event, func); |
| 6415 | |
| 6416 | return 0; |
| 6417 | } |
| 6418 | |
| 6419 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| 6420 | { |
| 6421 | struct perf_event *event = file->private_data; |
| 6422 | struct perf_event_context *ctx; |
| 6423 | long ret; |
| 6424 | |
| 6425 | /* Treat ioctl like writes as it is likely a mutating operation. */ |
| 6426 | ret = security_perf_event_write(event); |
| 6427 | if (ret) |
| 6428 | return ret; |
| 6429 | |
| 6430 | ctx = perf_event_ctx_lock(event); |
| 6431 | ret = _perf_ioctl(event, cmd, arg); |
| 6432 | perf_event_ctx_unlock(event, ctx); |
| 6433 | |
| 6434 | return ret; |
| 6435 | } |
| 6436 | |
| 6437 | #ifdef CONFIG_COMPAT |
| 6438 | static long perf_compat_ioctl(struct file *file, unsigned int cmd, |
| 6439 | unsigned long arg) |
| 6440 | { |
| 6441 | switch (_IOC_NR(cmd)) { |
| 6442 | case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): |
| 6443 | case _IOC_NR(PERF_EVENT_IOC_ID): |
| 6444 | case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): |
| 6445 | case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): |
| 6446 | /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ |
| 6447 | if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { |
| 6448 | cmd &= ~IOCSIZE_MASK; |
| 6449 | cmd |= sizeof(void *) << IOCSIZE_SHIFT; |
| 6450 | } |
| 6451 | break; |
| 6452 | } |
| 6453 | return perf_ioctl(file, cmd, arg); |
| 6454 | } |
| 6455 | #else |
| 6456 | # define perf_compat_ioctl NULL |
| 6457 | #endif |
| 6458 | |
| 6459 | int perf_event_task_enable(void) |
| 6460 | { |
| 6461 | struct perf_event_context *ctx; |
| 6462 | struct perf_event *event; |
| 6463 | |
| 6464 | mutex_lock(¤t->perf_event_mutex); |
| 6465 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { |
| 6466 | ctx = perf_event_ctx_lock(event); |
| 6467 | perf_event_for_each_child(event, _perf_event_enable); |
| 6468 | perf_event_ctx_unlock(event, ctx); |
| 6469 | } |
| 6470 | mutex_unlock(¤t->perf_event_mutex); |
| 6471 | |
| 6472 | return 0; |
| 6473 | } |
| 6474 | |
| 6475 | int perf_event_task_disable(void) |
| 6476 | { |
| 6477 | struct perf_event_context *ctx; |
| 6478 | struct perf_event *event; |
| 6479 | |
| 6480 | mutex_lock(¤t->perf_event_mutex); |
| 6481 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { |
| 6482 | ctx = perf_event_ctx_lock(event); |
| 6483 | perf_event_for_each_child(event, _perf_event_disable); |
| 6484 | perf_event_ctx_unlock(event, ctx); |
| 6485 | } |
| 6486 | mutex_unlock(¤t->perf_event_mutex); |
| 6487 | |
| 6488 | return 0; |
| 6489 | } |
| 6490 | |
| 6491 | static int perf_event_index(struct perf_event *event) |
| 6492 | { |
| 6493 | if (event->hw.state & PERF_HES_STOPPED) |
| 6494 | return 0; |
| 6495 | |
| 6496 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
| 6497 | return 0; |
| 6498 | |
| 6499 | return event->pmu->event_idx(event); |
| 6500 | } |
| 6501 | |
| 6502 | static void perf_event_init_userpage(struct perf_event *event) |
| 6503 | { |
| 6504 | struct perf_event_mmap_page *userpg; |
| 6505 | struct perf_buffer *rb; |
| 6506 | |
| 6507 | rcu_read_lock(); |
| 6508 | rb = rcu_dereference(event->rb); |
| 6509 | if (!rb) |
| 6510 | goto unlock; |
| 6511 | |
| 6512 | userpg = rb->user_page; |
| 6513 | |
| 6514 | /* Allow new userspace to detect that bit 0 is deprecated */ |
| 6515 | userpg->cap_bit0_is_deprecated = 1; |
| 6516 | userpg->size = offsetof(struct perf_event_mmap_page, __reserved); |
| 6517 | userpg->data_offset = PAGE_SIZE; |
| 6518 | userpg->data_size = perf_data_size(rb); |
| 6519 | |
| 6520 | unlock: |
| 6521 | rcu_read_unlock(); |
| 6522 | } |
| 6523 | |
| 6524 | void __weak arch_perf_update_userpage( |
| 6525 | struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) |
| 6526 | { |
| 6527 | } |
| 6528 | |
| 6529 | /* |
| 6530 | * Callers need to ensure there can be no nesting of this function, otherwise |
| 6531 | * the seqlock logic goes bad. We can not serialize this because the arch |
| 6532 | * code calls this from NMI context. |
| 6533 | */ |
| 6534 | void perf_event_update_userpage(struct perf_event *event) |
| 6535 | { |
| 6536 | struct perf_event_mmap_page *userpg; |
| 6537 | struct perf_buffer *rb; |
| 6538 | u64 enabled, running, now; |
| 6539 | |
| 6540 | rcu_read_lock(); |
| 6541 | rb = rcu_dereference(event->rb); |
| 6542 | if (!rb) |
| 6543 | goto unlock; |
| 6544 | |
| 6545 | /* |
| 6546 | * compute total_time_enabled, total_time_running |
| 6547 | * based on snapshot values taken when the event |
| 6548 | * was last scheduled in. |
| 6549 | * |
| 6550 | * we cannot simply called update_context_time() |
| 6551 | * because of locking issue as we can be called in |
| 6552 | * NMI context |
| 6553 | */ |
| 6554 | calc_timer_values(event, &now, &enabled, &running); |
| 6555 | |
| 6556 | userpg = rb->user_page; |
| 6557 | /* |
| 6558 | * Disable preemption to guarantee consistent time stamps are stored to |
| 6559 | * the user page. |
| 6560 | */ |
| 6561 | preempt_disable(); |
| 6562 | ++userpg->lock; |
| 6563 | barrier(); |
| 6564 | userpg->index = perf_event_index(event); |
| 6565 | userpg->offset = perf_event_count(event, false); |
| 6566 | if (userpg->index) |
| 6567 | userpg->offset -= local64_read(&event->hw.prev_count); |
| 6568 | |
| 6569 | userpg->time_enabled = enabled + |
| 6570 | atomic64_read(&event->child_total_time_enabled); |
| 6571 | |
| 6572 | userpg->time_running = running + |
| 6573 | atomic64_read(&event->child_total_time_running); |
| 6574 | |
| 6575 | arch_perf_update_userpage(event, userpg, now); |
| 6576 | |
| 6577 | barrier(); |
| 6578 | ++userpg->lock; |
| 6579 | preempt_enable(); |
| 6580 | unlock: |
| 6581 | rcu_read_unlock(); |
| 6582 | } |
| 6583 | EXPORT_SYMBOL_GPL(perf_event_update_userpage); |
| 6584 | |
| 6585 | static void ring_buffer_attach(struct perf_event *event, |
| 6586 | struct perf_buffer *rb) |
| 6587 | { |
| 6588 | struct perf_buffer *old_rb = NULL; |
| 6589 | unsigned long flags; |
| 6590 | |
| 6591 | WARN_ON_ONCE(event->parent); |
| 6592 | |
| 6593 | if (event->rb) { |
| 6594 | /* |
| 6595 | * Should be impossible, we set this when removing |
| 6596 | * event->rb_entry and wait/clear when adding event->rb_entry. |
| 6597 | */ |
| 6598 | WARN_ON_ONCE(event->rcu_pending); |
| 6599 | |
| 6600 | old_rb = event->rb; |
| 6601 | spin_lock_irqsave(&old_rb->event_lock, flags); |
| 6602 | list_del_rcu(&event->rb_entry); |
| 6603 | spin_unlock_irqrestore(&old_rb->event_lock, flags); |
| 6604 | |
| 6605 | event->rcu_batches = get_state_synchronize_rcu(); |
| 6606 | event->rcu_pending = 1; |
| 6607 | } |
| 6608 | |
| 6609 | if (rb) { |
| 6610 | if (event->rcu_pending) { |
| 6611 | cond_synchronize_rcu(event->rcu_batches); |
| 6612 | event->rcu_pending = 0; |
| 6613 | } |
| 6614 | |
| 6615 | spin_lock_irqsave(&rb->event_lock, flags); |
| 6616 | list_add_rcu(&event->rb_entry, &rb->event_list); |
| 6617 | spin_unlock_irqrestore(&rb->event_lock, flags); |
| 6618 | } |
| 6619 | |
| 6620 | /* |
| 6621 | * Avoid racing with perf_mmap_close(AUX): stop the event |
| 6622 | * before swizzling the event::rb pointer; if it's getting |
| 6623 | * unmapped, its aux_mmap_count will be 0 and it won't |
| 6624 | * restart. See the comment in __perf_pmu_output_stop(). |
| 6625 | * |
| 6626 | * Data will inevitably be lost when set_output is done in |
| 6627 | * mid-air, but then again, whoever does it like this is |
| 6628 | * not in for the data anyway. |
| 6629 | */ |
| 6630 | if (has_aux(event)) |
| 6631 | perf_event_stop(event, 0); |
| 6632 | |
| 6633 | rcu_assign_pointer(event->rb, rb); |
| 6634 | |
| 6635 | if (old_rb) { |
| 6636 | ring_buffer_put(old_rb); |
| 6637 | /* |
| 6638 | * Since we detached before setting the new rb, so that we |
| 6639 | * could attach the new rb, we could have missed a wakeup. |
| 6640 | * Provide it now. |
| 6641 | */ |
| 6642 | wake_up_all(&event->waitq); |
| 6643 | } |
| 6644 | } |
| 6645 | |
| 6646 | static void ring_buffer_wakeup(struct perf_event *event) |
| 6647 | { |
| 6648 | struct perf_buffer *rb; |
| 6649 | |
| 6650 | if (event->parent) |
| 6651 | event = event->parent; |
| 6652 | |
| 6653 | rcu_read_lock(); |
| 6654 | rb = rcu_dereference(event->rb); |
| 6655 | if (rb) { |
| 6656 | list_for_each_entry_rcu(event, &rb->event_list, rb_entry) |
| 6657 | wake_up_all(&event->waitq); |
| 6658 | } |
| 6659 | rcu_read_unlock(); |
| 6660 | } |
| 6661 | |
| 6662 | struct perf_buffer *ring_buffer_get(struct perf_event *event) |
| 6663 | { |
| 6664 | struct perf_buffer *rb; |
| 6665 | |
| 6666 | if (event->parent) |
| 6667 | event = event->parent; |
| 6668 | |
| 6669 | rcu_read_lock(); |
| 6670 | rb = rcu_dereference(event->rb); |
| 6671 | if (rb) { |
| 6672 | if (!refcount_inc_not_zero(&rb->refcount)) |
| 6673 | rb = NULL; |
| 6674 | } |
| 6675 | rcu_read_unlock(); |
| 6676 | |
| 6677 | return rb; |
| 6678 | } |
| 6679 | |
| 6680 | void ring_buffer_put(struct perf_buffer *rb) |
| 6681 | { |
| 6682 | if (!refcount_dec_and_test(&rb->refcount)) |
| 6683 | return; |
| 6684 | |
| 6685 | WARN_ON_ONCE(!list_empty(&rb->event_list)); |
| 6686 | |
| 6687 | call_rcu(&rb->rcu_head, rb_free_rcu); |
| 6688 | } |
| 6689 | |
| 6690 | typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm); |
| 6691 | |
| 6692 | #define get_mapped(event, func) \ |
| 6693 | ({ struct pmu *pmu; \ |
| 6694 | mapped_f f = NULL; \ |
| 6695 | guard(rcu)(); \ |
| 6696 | pmu = READ_ONCE(event->pmu); \ |
| 6697 | if (pmu) \ |
| 6698 | f = pmu->func; \ |
| 6699 | f; \ |
| 6700 | }) |
| 6701 | |
| 6702 | static void perf_mmap_open(struct vm_area_struct *vma) |
| 6703 | { |
| 6704 | struct perf_event *event = vma->vm_file->private_data; |
| 6705 | mapped_f mapped = get_mapped(event, event_mapped); |
| 6706 | |
| 6707 | atomic_inc(&event->mmap_count); |
| 6708 | atomic_inc(&event->rb->mmap_count); |
| 6709 | |
| 6710 | if (vma->vm_pgoff) |
| 6711 | atomic_inc(&event->rb->aux_mmap_count); |
| 6712 | |
| 6713 | if (mapped) |
| 6714 | mapped(event, vma->vm_mm); |
| 6715 | } |
| 6716 | |
| 6717 | static void perf_pmu_output_stop(struct perf_event *event); |
| 6718 | |
| 6719 | /* |
| 6720 | * A buffer can be mmap()ed multiple times; either directly through the same |
| 6721 | * event, or through other events by use of perf_event_set_output(). |
| 6722 | * |
| 6723 | * In order to undo the VM accounting done by perf_mmap() we need to destroy |
| 6724 | * the buffer here, where we still have a VM context. This means we need |
| 6725 | * to detach all events redirecting to us. |
| 6726 | */ |
| 6727 | static void perf_mmap_close(struct vm_area_struct *vma) |
| 6728 | { |
| 6729 | struct perf_event *event = vma->vm_file->private_data; |
| 6730 | mapped_f unmapped = get_mapped(event, event_unmapped); |
| 6731 | struct perf_buffer *rb = ring_buffer_get(event); |
| 6732 | struct user_struct *mmap_user = rb->mmap_user; |
| 6733 | int mmap_locked = rb->mmap_locked; |
| 6734 | unsigned long size = perf_data_size(rb); |
| 6735 | bool detach_rest = false; |
| 6736 | |
| 6737 | /* FIXIES vs perf_pmu_unregister() */ |
| 6738 | if (unmapped) |
| 6739 | unmapped(event, vma->vm_mm); |
| 6740 | |
| 6741 | /* |
| 6742 | * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex |
| 6743 | * to avoid complications. |
| 6744 | */ |
| 6745 | if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && |
| 6746 | atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { |
| 6747 | /* |
| 6748 | * Stop all AUX events that are writing to this buffer, |
| 6749 | * so that we can free its AUX pages and corresponding PMU |
| 6750 | * data. Note that after rb::aux_mmap_count dropped to zero, |
| 6751 | * they won't start any more (see perf_aux_output_begin()). |
| 6752 | */ |
| 6753 | perf_pmu_output_stop(event); |
| 6754 | |
| 6755 | /* now it's safe to free the pages */ |
| 6756 | atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); |
| 6757 | atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); |
| 6758 | |
| 6759 | /* this has to be the last one */ |
| 6760 | rb_free_aux(rb); |
| 6761 | WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); |
| 6762 | |
| 6763 | mutex_unlock(&rb->aux_mutex); |
| 6764 | } |
| 6765 | |
| 6766 | if (atomic_dec_and_test(&rb->mmap_count)) |
| 6767 | detach_rest = true; |
| 6768 | |
| 6769 | if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) |
| 6770 | goto out_put; |
| 6771 | |
| 6772 | ring_buffer_attach(event, NULL); |
| 6773 | mutex_unlock(&event->mmap_mutex); |
| 6774 | |
| 6775 | /* If there's still other mmap()s of this buffer, we're done. */ |
| 6776 | if (!detach_rest) |
| 6777 | goto out_put; |
| 6778 | |
| 6779 | /* |
| 6780 | * No other mmap()s, detach from all other events that might redirect |
| 6781 | * into the now unreachable buffer. Somewhat complicated by the |
| 6782 | * fact that rb::event_lock otherwise nests inside mmap_mutex. |
| 6783 | */ |
| 6784 | again: |
| 6785 | rcu_read_lock(); |
| 6786 | list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { |
| 6787 | if (!atomic_long_inc_not_zero(&event->refcount)) { |
| 6788 | /* |
| 6789 | * This event is en-route to free_event() which will |
| 6790 | * detach it and remove it from the list. |
| 6791 | */ |
| 6792 | continue; |
| 6793 | } |
| 6794 | rcu_read_unlock(); |
| 6795 | |
| 6796 | mutex_lock(&event->mmap_mutex); |
| 6797 | /* |
| 6798 | * Check we didn't race with perf_event_set_output() which can |
| 6799 | * swizzle the rb from under us while we were waiting to |
| 6800 | * acquire mmap_mutex. |
| 6801 | * |
| 6802 | * If we find a different rb; ignore this event, a next |
| 6803 | * iteration will no longer find it on the list. We have to |
| 6804 | * still restart the iteration to make sure we're not now |
| 6805 | * iterating the wrong list. |
| 6806 | */ |
| 6807 | if (event->rb == rb) |
| 6808 | ring_buffer_attach(event, NULL); |
| 6809 | |
| 6810 | mutex_unlock(&event->mmap_mutex); |
| 6811 | put_event(event); |
| 6812 | |
| 6813 | /* |
| 6814 | * Restart the iteration; either we're on the wrong list or |
| 6815 | * destroyed its integrity by doing a deletion. |
| 6816 | */ |
| 6817 | goto again; |
| 6818 | } |
| 6819 | rcu_read_unlock(); |
| 6820 | |
| 6821 | /* |
| 6822 | * It could be there's still a few 0-ref events on the list; they'll |
| 6823 | * get cleaned up by free_event() -- they'll also still have their |
| 6824 | * ref on the rb and will free it whenever they are done with it. |
| 6825 | * |
| 6826 | * Aside from that, this buffer is 'fully' detached and unmapped, |
| 6827 | * undo the VM accounting. |
| 6828 | */ |
| 6829 | |
| 6830 | atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, |
| 6831 | &mmap_user->locked_vm); |
| 6832 | atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); |
| 6833 | free_uid(mmap_user); |
| 6834 | |
| 6835 | out_put: |
| 6836 | ring_buffer_put(rb); /* could be last */ |
| 6837 | } |
| 6838 | |
| 6839 | static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf) |
| 6840 | { |
| 6841 | /* The first page is the user control page, others are read-only. */ |
| 6842 | return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS; |
| 6843 | } |
| 6844 | |
| 6845 | static const struct vm_operations_struct perf_mmap_vmops = { |
| 6846 | .open = perf_mmap_open, |
| 6847 | .close = perf_mmap_close, /* non mergeable */ |
| 6848 | .pfn_mkwrite = perf_mmap_pfn_mkwrite, |
| 6849 | }; |
| 6850 | |
| 6851 | static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma) |
| 6852 | { |
| 6853 | unsigned long nr_pages = vma_pages(vma); |
| 6854 | int err = 0; |
| 6855 | unsigned long pagenum; |
| 6856 | |
| 6857 | /* |
| 6858 | * We map this as a VM_PFNMAP VMA. |
| 6859 | * |
| 6860 | * This is not ideal as this is designed broadly for mappings of PFNs |
| 6861 | * referencing memory-mapped I/O ranges or non-system RAM i.e. for which |
| 6862 | * !pfn_valid(pfn). |
| 6863 | * |
| 6864 | * We are mapping kernel-allocated memory (memory we manage ourselves) |
| 6865 | * which would more ideally be mapped using vm_insert_page() or a |
| 6866 | * similar mechanism, that is as a VM_MIXEDMAP mapping. |
| 6867 | * |
| 6868 | * However this won't work here, because: |
| 6869 | * |
| 6870 | * 1. It uses vma->vm_page_prot, but this field has not been completely |
| 6871 | * setup at the point of the f_op->mmp() hook, so we are unable to |
| 6872 | * indicate that this should be mapped CoW in order that the |
| 6873 | * mkwrite() hook can be invoked to make the first page R/W and the |
| 6874 | * rest R/O as desired. |
| 6875 | * |
| 6876 | * 2. Anything other than a VM_PFNMAP of valid PFNs will result in |
| 6877 | * vm_normal_page() returning a struct page * pointer, which means |
| 6878 | * vm_ops->page_mkwrite() will be invoked rather than |
| 6879 | * vm_ops->pfn_mkwrite(), and this means we have to set page->mapping |
| 6880 | * to work around retry logic in the fault handler, however this |
| 6881 | * field is no longer allowed to be used within struct page. |
| 6882 | * |
| 6883 | * 3. Having a struct page * made available in the fault logic also |
| 6884 | * means that the page gets put on the rmap and becomes |
| 6885 | * inappropriately accessible and subject to map and ref counting. |
| 6886 | * |
| 6887 | * Ideally we would have a mechanism that could explicitly express our |
| 6888 | * desires, but this is not currently the case, so we instead use |
| 6889 | * VM_PFNMAP. |
| 6890 | * |
| 6891 | * We manage the lifetime of these mappings with internal refcounts (see |
| 6892 | * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of |
| 6893 | * this mapping is maintained correctly. |
| 6894 | */ |
| 6895 | for (pagenum = 0; pagenum < nr_pages; pagenum++) { |
| 6896 | unsigned long va = vma->vm_start + PAGE_SIZE * pagenum; |
| 6897 | struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum); |
| 6898 | |
| 6899 | if (page == NULL) { |
| 6900 | err = -EINVAL; |
| 6901 | break; |
| 6902 | } |
| 6903 | |
| 6904 | /* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */ |
| 6905 | err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE, |
| 6906 | vm_get_page_prot(vma->vm_flags & ~VM_SHARED)); |
| 6907 | if (err) |
| 6908 | break; |
| 6909 | } |
| 6910 | |
| 6911 | #ifdef CONFIG_MMU |
| 6912 | /* Clear any partial mappings on error. */ |
| 6913 | if (err) |
| 6914 | zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL); |
| 6915 | #endif |
| 6916 | |
| 6917 | return err; |
| 6918 | } |
| 6919 | |
| 6920 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
| 6921 | { |
| 6922 | struct perf_event *event = file->private_data; |
| 6923 | unsigned long user_locked, user_lock_limit; |
| 6924 | struct user_struct *user = current_user(); |
| 6925 | struct mutex *aux_mutex = NULL; |
| 6926 | struct perf_buffer *rb = NULL; |
| 6927 | unsigned long locked, lock_limit; |
| 6928 | unsigned long vma_size; |
| 6929 | unsigned long nr_pages; |
| 6930 | long user_extra = 0, extra = 0; |
| 6931 | int ret, flags = 0; |
| 6932 | mapped_f mapped; |
| 6933 | |
| 6934 | /* |
| 6935 | * Don't allow mmap() of inherited per-task counters. This would |
| 6936 | * create a performance issue due to all children writing to the |
| 6937 | * same rb. |
| 6938 | */ |
| 6939 | if (event->cpu == -1 && event->attr.inherit) |
| 6940 | return -EINVAL; |
| 6941 | |
| 6942 | if (!(vma->vm_flags & VM_SHARED)) |
| 6943 | return -EINVAL; |
| 6944 | |
| 6945 | ret = security_perf_event_read(event); |
| 6946 | if (ret) |
| 6947 | return ret; |
| 6948 | |
| 6949 | vma_size = vma->vm_end - vma->vm_start; |
| 6950 | nr_pages = vma_size / PAGE_SIZE; |
| 6951 | |
| 6952 | if (nr_pages > INT_MAX) |
| 6953 | return -ENOMEM; |
| 6954 | |
| 6955 | if (vma_size != PAGE_SIZE * nr_pages) |
| 6956 | return -EINVAL; |
| 6957 | |
| 6958 | user_extra = nr_pages; |
| 6959 | |
| 6960 | mutex_lock(&event->mmap_mutex); |
| 6961 | ret = -EINVAL; |
| 6962 | |
| 6963 | /* |
| 6964 | * This relies on __pmu_detach_event() taking mmap_mutex after marking |
| 6965 | * the event REVOKED. Either we observe the state, or __pmu_detach_event() |
| 6966 | * will detach the rb created here. |
| 6967 | */ |
| 6968 | if (event->state <= PERF_EVENT_STATE_REVOKED) { |
| 6969 | ret = -ENODEV; |
| 6970 | goto unlock; |
| 6971 | } |
| 6972 | |
| 6973 | if (vma->vm_pgoff == 0) { |
| 6974 | nr_pages -= 1; |
| 6975 | |
| 6976 | /* |
| 6977 | * If we have rb pages ensure they're a power-of-two number, so we |
| 6978 | * can do bitmasks instead of modulo. |
| 6979 | */ |
| 6980 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) |
| 6981 | goto unlock; |
| 6982 | |
| 6983 | WARN_ON_ONCE(event->ctx->parent_ctx); |
| 6984 | |
| 6985 | if (event->rb) { |
| 6986 | if (data_page_nr(event->rb) != nr_pages) |
| 6987 | goto unlock; |
| 6988 | |
| 6989 | if (atomic_inc_not_zero(&event->rb->mmap_count)) { |
| 6990 | /* |
| 6991 | * Success -- managed to mmap() the same buffer |
| 6992 | * multiple times. |
| 6993 | */ |
| 6994 | ret = 0; |
| 6995 | /* We need the rb to map pages. */ |
| 6996 | rb = event->rb; |
| 6997 | goto unlock; |
| 6998 | } |
| 6999 | |
| 7000 | /* |
| 7001 | * Raced against perf_mmap_close()'s |
| 7002 | * atomic_dec_and_mutex_lock() remove the |
| 7003 | * event and continue as if !event->rb |
| 7004 | */ |
| 7005 | ring_buffer_attach(event, NULL); |
| 7006 | } |
| 7007 | |
| 7008 | } else { |
| 7009 | /* |
| 7010 | * AUX area mapping: if rb->aux_nr_pages != 0, it's already |
| 7011 | * mapped, all subsequent mappings should have the same size |
| 7012 | * and offset. Must be above the normal perf buffer. |
| 7013 | */ |
| 7014 | u64 aux_offset, aux_size; |
| 7015 | |
| 7016 | rb = event->rb; |
| 7017 | if (!rb) |
| 7018 | goto aux_unlock; |
| 7019 | |
| 7020 | aux_mutex = &rb->aux_mutex; |
| 7021 | mutex_lock(aux_mutex); |
| 7022 | |
| 7023 | aux_offset = READ_ONCE(rb->user_page->aux_offset); |
| 7024 | aux_size = READ_ONCE(rb->user_page->aux_size); |
| 7025 | |
| 7026 | if (aux_offset < perf_data_size(rb) + PAGE_SIZE) |
| 7027 | goto aux_unlock; |
| 7028 | |
| 7029 | if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) |
| 7030 | goto aux_unlock; |
| 7031 | |
| 7032 | /* already mapped with a different offset */ |
| 7033 | if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) |
| 7034 | goto aux_unlock; |
| 7035 | |
| 7036 | if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) |
| 7037 | goto aux_unlock; |
| 7038 | |
| 7039 | /* already mapped with a different size */ |
| 7040 | if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) |
| 7041 | goto aux_unlock; |
| 7042 | |
| 7043 | if (!is_power_of_2(nr_pages)) |
| 7044 | goto aux_unlock; |
| 7045 | |
| 7046 | if (!atomic_inc_not_zero(&rb->mmap_count)) |
| 7047 | goto aux_unlock; |
| 7048 | |
| 7049 | if (rb_has_aux(rb)) { |
| 7050 | atomic_inc(&rb->aux_mmap_count); |
| 7051 | ret = 0; |
| 7052 | goto unlock; |
| 7053 | } |
| 7054 | |
| 7055 | atomic_set(&rb->aux_mmap_count, 1); |
| 7056 | } |
| 7057 | |
| 7058 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); |
| 7059 | |
| 7060 | /* |
| 7061 | * Increase the limit linearly with more CPUs: |
| 7062 | */ |
| 7063 | user_lock_limit *= num_online_cpus(); |
| 7064 | |
| 7065 | user_locked = atomic_long_read(&user->locked_vm); |
| 7066 | |
| 7067 | /* |
| 7068 | * sysctl_perf_event_mlock may have changed, so that |
| 7069 | * user->locked_vm > user_lock_limit |
| 7070 | */ |
| 7071 | if (user_locked > user_lock_limit) |
| 7072 | user_locked = user_lock_limit; |
| 7073 | user_locked += user_extra; |
| 7074 | |
| 7075 | if (user_locked > user_lock_limit) { |
| 7076 | /* |
| 7077 | * charge locked_vm until it hits user_lock_limit; |
| 7078 | * charge the rest from pinned_vm |
| 7079 | */ |
| 7080 | extra = user_locked - user_lock_limit; |
| 7081 | user_extra -= extra; |
| 7082 | } |
| 7083 | |
| 7084 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
| 7085 | lock_limit >>= PAGE_SHIFT; |
| 7086 | locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; |
| 7087 | |
| 7088 | if ((locked > lock_limit) && perf_is_paranoid() && |
| 7089 | !capable(CAP_IPC_LOCK)) { |
| 7090 | ret = -EPERM; |
| 7091 | goto unlock; |
| 7092 | } |
| 7093 | |
| 7094 | WARN_ON(!rb && event->rb); |
| 7095 | |
| 7096 | if (vma->vm_flags & VM_WRITE) |
| 7097 | flags |= RING_BUFFER_WRITABLE; |
| 7098 | |
| 7099 | if (!rb) { |
| 7100 | rb = rb_alloc(nr_pages, |
| 7101 | event->attr.watermark ? event->attr.wakeup_watermark : 0, |
| 7102 | event->cpu, flags); |
| 7103 | |
| 7104 | if (!rb) { |
| 7105 | ret = -ENOMEM; |
| 7106 | goto unlock; |
| 7107 | } |
| 7108 | |
| 7109 | atomic_set(&rb->mmap_count, 1); |
| 7110 | rb->mmap_user = get_current_user(); |
| 7111 | rb->mmap_locked = extra; |
| 7112 | |
| 7113 | ring_buffer_attach(event, rb); |
| 7114 | |
| 7115 | perf_event_update_time(event); |
| 7116 | perf_event_init_userpage(event); |
| 7117 | perf_event_update_userpage(event); |
| 7118 | } else { |
| 7119 | ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, |
| 7120 | event->attr.aux_watermark, flags); |
| 7121 | if (!ret) |
| 7122 | rb->aux_mmap_locked = extra; |
| 7123 | } |
| 7124 | |
| 7125 | ret = 0; |
| 7126 | |
| 7127 | unlock: |
| 7128 | if (!ret) { |
| 7129 | atomic_long_add(user_extra, &user->locked_vm); |
| 7130 | atomic64_add(extra, &vma->vm_mm->pinned_vm); |
| 7131 | |
| 7132 | atomic_inc(&event->mmap_count); |
| 7133 | } else if (rb) { |
| 7134 | atomic_dec(&rb->mmap_count); |
| 7135 | } |
| 7136 | aux_unlock: |
| 7137 | if (aux_mutex) |
| 7138 | mutex_unlock(aux_mutex); |
| 7139 | mutex_unlock(&event->mmap_mutex); |
| 7140 | |
| 7141 | /* |
| 7142 | * Since pinned accounting is per vm we cannot allow fork() to copy our |
| 7143 | * vma. |
| 7144 | */ |
| 7145 | vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); |
| 7146 | vma->vm_ops = &perf_mmap_vmops; |
| 7147 | |
| 7148 | if (!ret) |
| 7149 | ret = map_range(rb, vma); |
| 7150 | |
| 7151 | mapped = get_mapped(event, event_mapped); |
| 7152 | if (mapped) |
| 7153 | mapped(event, vma->vm_mm); |
| 7154 | |
| 7155 | return ret; |
| 7156 | } |
| 7157 | |
| 7158 | static int perf_fasync(int fd, struct file *filp, int on) |
| 7159 | { |
| 7160 | struct inode *inode = file_inode(filp); |
| 7161 | struct perf_event *event = filp->private_data; |
| 7162 | int retval; |
| 7163 | |
| 7164 | if (event->state <= PERF_EVENT_STATE_REVOKED) |
| 7165 | return -ENODEV; |
| 7166 | |
| 7167 | inode_lock(inode); |
| 7168 | retval = fasync_helper(fd, filp, on, &event->fasync); |
| 7169 | inode_unlock(inode); |
| 7170 | |
| 7171 | if (retval < 0) |
| 7172 | return retval; |
| 7173 | |
| 7174 | return 0; |
| 7175 | } |
| 7176 | |
| 7177 | static const struct file_operations perf_fops = { |
| 7178 | .release = perf_release, |
| 7179 | .read = perf_read, |
| 7180 | .poll = perf_poll, |
| 7181 | .unlocked_ioctl = perf_ioctl, |
| 7182 | .compat_ioctl = perf_compat_ioctl, |
| 7183 | .mmap = perf_mmap, |
| 7184 | .fasync = perf_fasync, |
| 7185 | }; |
| 7186 | |
| 7187 | /* |
| 7188 | * Perf event wakeup |
| 7189 | * |
| 7190 | * If there's data, ensure we set the poll() state and publish everything |
| 7191 | * to user-space before waking everybody up. |
| 7192 | */ |
| 7193 | |
| 7194 | void perf_event_wakeup(struct perf_event *event) |
| 7195 | { |
| 7196 | ring_buffer_wakeup(event); |
| 7197 | |
| 7198 | if (event->pending_kill) { |
| 7199 | kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); |
| 7200 | event->pending_kill = 0; |
| 7201 | } |
| 7202 | } |
| 7203 | |
| 7204 | static void perf_sigtrap(struct perf_event *event) |
| 7205 | { |
| 7206 | /* |
| 7207 | * We'd expect this to only occur if the irq_work is delayed and either |
| 7208 | * ctx->task or current has changed in the meantime. This can be the |
| 7209 | * case on architectures that do not implement arch_irq_work_raise(). |
| 7210 | */ |
| 7211 | if (WARN_ON_ONCE(event->ctx->task != current)) |
| 7212 | return; |
| 7213 | |
| 7214 | /* |
| 7215 | * Both perf_pending_task() and perf_pending_irq() can race with the |
| 7216 | * task exiting. |
| 7217 | */ |
| 7218 | if (current->flags & PF_EXITING) |
| 7219 | return; |
| 7220 | |
| 7221 | send_sig_perf((void __user *)event->pending_addr, |
| 7222 | event->orig_type, event->attr.sig_data); |
| 7223 | } |
| 7224 | |
| 7225 | /* |
| 7226 | * Deliver the pending work in-event-context or follow the context. |
| 7227 | */ |
| 7228 | static void __perf_pending_disable(struct perf_event *event) |
| 7229 | { |
| 7230 | int cpu = READ_ONCE(event->oncpu); |
| 7231 | |
| 7232 | /* |
| 7233 | * If the event isn't running; we done. event_sched_out() will have |
| 7234 | * taken care of things. |
| 7235 | */ |
| 7236 | if (cpu < 0) |
| 7237 | return; |
| 7238 | |
| 7239 | /* |
| 7240 | * Yay, we hit home and are in the context of the event. |
| 7241 | */ |
| 7242 | if (cpu == smp_processor_id()) { |
| 7243 | if (event->pending_disable) { |
| 7244 | event->pending_disable = 0; |
| 7245 | perf_event_disable_local(event); |
| 7246 | } |
| 7247 | return; |
| 7248 | } |
| 7249 | |
| 7250 | /* |
| 7251 | * CPU-A CPU-B |
| 7252 | * |
| 7253 | * perf_event_disable_inatomic() |
| 7254 | * @pending_disable = 1; |
| 7255 | * irq_work_queue(); |
| 7256 | * |
| 7257 | * sched-out |
| 7258 | * @pending_disable = 0; |
| 7259 | * |
| 7260 | * sched-in |
| 7261 | * perf_event_disable_inatomic() |
| 7262 | * @pending_disable = 1; |
| 7263 | * irq_work_queue(); // FAILS |
| 7264 | * |
| 7265 | * irq_work_run() |
| 7266 | * perf_pending_disable() |
| 7267 | * |
| 7268 | * But the event runs on CPU-B and wants disabling there. |
| 7269 | */ |
| 7270 | irq_work_queue_on(&event->pending_disable_irq, cpu); |
| 7271 | } |
| 7272 | |
| 7273 | static void perf_pending_disable(struct irq_work *entry) |
| 7274 | { |
| 7275 | struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq); |
| 7276 | int rctx; |
| 7277 | |
| 7278 | /* |
| 7279 | * If we 'fail' here, that's OK, it means recursion is already disabled |
| 7280 | * and we won't recurse 'further'. |
| 7281 | */ |
| 7282 | rctx = perf_swevent_get_recursion_context(); |
| 7283 | __perf_pending_disable(event); |
| 7284 | if (rctx >= 0) |
| 7285 | perf_swevent_put_recursion_context(rctx); |
| 7286 | } |
| 7287 | |
| 7288 | static void perf_pending_irq(struct irq_work *entry) |
| 7289 | { |
| 7290 | struct perf_event *event = container_of(entry, struct perf_event, pending_irq); |
| 7291 | int rctx; |
| 7292 | |
| 7293 | /* |
| 7294 | * If we 'fail' here, that's OK, it means recursion is already disabled |
| 7295 | * and we won't recurse 'further'. |
| 7296 | */ |
| 7297 | rctx = perf_swevent_get_recursion_context(); |
| 7298 | |
| 7299 | /* |
| 7300 | * The wakeup isn't bound to the context of the event -- it can happen |
| 7301 | * irrespective of where the event is. |
| 7302 | */ |
| 7303 | if (event->pending_wakeup) { |
| 7304 | event->pending_wakeup = 0; |
| 7305 | perf_event_wakeup(event); |
| 7306 | } |
| 7307 | |
| 7308 | if (rctx >= 0) |
| 7309 | perf_swevent_put_recursion_context(rctx); |
| 7310 | } |
| 7311 | |
| 7312 | static void perf_pending_task(struct callback_head *head) |
| 7313 | { |
| 7314 | struct perf_event *event = container_of(head, struct perf_event, pending_task); |
| 7315 | int rctx; |
| 7316 | |
| 7317 | /* |
| 7318 | * If we 'fail' here, that's OK, it means recursion is already disabled |
| 7319 | * and we won't recurse 'further'. |
| 7320 | */ |
| 7321 | rctx = perf_swevent_get_recursion_context(); |
| 7322 | |
| 7323 | if (event->pending_work) { |
| 7324 | event->pending_work = 0; |
| 7325 | perf_sigtrap(event); |
| 7326 | local_dec(&event->ctx->nr_no_switch_fast); |
| 7327 | } |
| 7328 | put_event(event); |
| 7329 | |
| 7330 | if (rctx >= 0) |
| 7331 | perf_swevent_put_recursion_context(rctx); |
| 7332 | } |
| 7333 | |
| 7334 | #ifdef CONFIG_GUEST_PERF_EVENTS |
| 7335 | struct perf_guest_info_callbacks __rcu *perf_guest_cbs; |
| 7336 | |
| 7337 | DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); |
| 7338 | DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); |
| 7339 | DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); |
| 7340 | |
| 7341 | void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| 7342 | { |
| 7343 | if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) |
| 7344 | return; |
| 7345 | |
| 7346 | rcu_assign_pointer(perf_guest_cbs, cbs); |
| 7347 | static_call_update(__perf_guest_state, cbs->state); |
| 7348 | static_call_update(__perf_guest_get_ip, cbs->get_ip); |
| 7349 | |
| 7350 | /* Implementing ->handle_intel_pt_intr is optional. */ |
| 7351 | if (cbs->handle_intel_pt_intr) |
| 7352 | static_call_update(__perf_guest_handle_intel_pt_intr, |
| 7353 | cbs->handle_intel_pt_intr); |
| 7354 | } |
| 7355 | EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); |
| 7356 | |
| 7357 | void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| 7358 | { |
| 7359 | if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) |
| 7360 | return; |
| 7361 | |
| 7362 | rcu_assign_pointer(perf_guest_cbs, NULL); |
| 7363 | static_call_update(__perf_guest_state, (void *)&__static_call_return0); |
| 7364 | static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); |
| 7365 | static_call_update(__perf_guest_handle_intel_pt_intr, |
| 7366 | (void *)&__static_call_return0); |
| 7367 | synchronize_rcu(); |
| 7368 | } |
| 7369 | EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); |
| 7370 | #endif |
| 7371 | |
| 7372 | static bool should_sample_guest(struct perf_event *event) |
| 7373 | { |
| 7374 | return !event->attr.exclude_guest && perf_guest_state(); |
| 7375 | } |
| 7376 | |
| 7377 | unsigned long perf_misc_flags(struct perf_event *event, |
| 7378 | struct pt_regs *regs) |
| 7379 | { |
| 7380 | if (should_sample_guest(event)) |
| 7381 | return perf_arch_guest_misc_flags(regs); |
| 7382 | |
| 7383 | return perf_arch_misc_flags(regs); |
| 7384 | } |
| 7385 | |
| 7386 | unsigned long perf_instruction_pointer(struct perf_event *event, |
| 7387 | struct pt_regs *regs) |
| 7388 | { |
| 7389 | if (should_sample_guest(event)) |
| 7390 | return perf_guest_get_ip(); |
| 7391 | |
| 7392 | return perf_arch_instruction_pointer(regs); |
| 7393 | } |
| 7394 | |
| 7395 | static void |
| 7396 | perf_output_sample_regs(struct perf_output_handle *handle, |
| 7397 | struct pt_regs *regs, u64 mask) |
| 7398 | { |
| 7399 | int bit; |
| 7400 | DECLARE_BITMAP(_mask, 64); |
| 7401 | |
| 7402 | bitmap_from_u64(_mask, mask); |
| 7403 | for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { |
| 7404 | u64 val; |
| 7405 | |
| 7406 | val = perf_reg_value(regs, bit); |
| 7407 | perf_output_put(handle, val); |
| 7408 | } |
| 7409 | } |
| 7410 | |
| 7411 | static void perf_sample_regs_user(struct perf_regs *regs_user, |
| 7412 | struct pt_regs *regs) |
| 7413 | { |
| 7414 | if (user_mode(regs)) { |
| 7415 | regs_user->abi = perf_reg_abi(current); |
| 7416 | regs_user->regs = regs; |
| 7417 | } else if (!(current->flags & PF_KTHREAD)) { |
| 7418 | perf_get_regs_user(regs_user, regs); |
| 7419 | } else { |
| 7420 | regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; |
| 7421 | regs_user->regs = NULL; |
| 7422 | } |
| 7423 | } |
| 7424 | |
| 7425 | static void perf_sample_regs_intr(struct perf_regs *regs_intr, |
| 7426 | struct pt_regs *regs) |
| 7427 | { |
| 7428 | regs_intr->regs = regs; |
| 7429 | regs_intr->abi = perf_reg_abi(current); |
| 7430 | } |
| 7431 | |
| 7432 | |
| 7433 | /* |
| 7434 | * Get remaining task size from user stack pointer. |
| 7435 | * |
| 7436 | * It'd be better to take stack vma map and limit this more |
| 7437 | * precisely, but there's no way to get it safely under interrupt, |
| 7438 | * so using TASK_SIZE as limit. |
| 7439 | */ |
| 7440 | static u64 perf_ustack_task_size(struct pt_regs *regs) |
| 7441 | { |
| 7442 | unsigned long addr = perf_user_stack_pointer(regs); |
| 7443 | |
| 7444 | if (!addr || addr >= TASK_SIZE) |
| 7445 | return 0; |
| 7446 | |
| 7447 | return TASK_SIZE - addr; |
| 7448 | } |
| 7449 | |
| 7450 | static u16 |
| 7451 | perf_sample_ustack_size(u16 stack_size, u16 header_size, |
| 7452 | struct pt_regs *regs) |
| 7453 | { |
| 7454 | u64 task_size; |
| 7455 | |
| 7456 | /* No regs, no stack pointer, no dump. */ |
| 7457 | if (!regs) |
| 7458 | return 0; |
| 7459 | |
| 7460 | /* No mm, no stack, no dump. */ |
| 7461 | if (!current->mm) |
| 7462 | return 0; |
| 7463 | |
| 7464 | /* |
| 7465 | * Check if we fit in with the requested stack size into the: |
| 7466 | * - TASK_SIZE |
| 7467 | * If we don't, we limit the size to the TASK_SIZE. |
| 7468 | * |
| 7469 | * - remaining sample size |
| 7470 | * If we don't, we customize the stack size to |
| 7471 | * fit in to the remaining sample size. |
| 7472 | */ |
| 7473 | |
| 7474 | task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); |
| 7475 | stack_size = min(stack_size, (u16) task_size); |
| 7476 | |
| 7477 | /* Current header size plus static size and dynamic size. */ |
| 7478 | header_size += 2 * sizeof(u64); |
| 7479 | |
| 7480 | /* Do we fit in with the current stack dump size? */ |
| 7481 | if ((u16) (header_size + stack_size) < header_size) { |
| 7482 | /* |
| 7483 | * If we overflow the maximum size for the sample, |
| 7484 | * we customize the stack dump size to fit in. |
| 7485 | */ |
| 7486 | stack_size = USHRT_MAX - header_size - sizeof(u64); |
| 7487 | stack_size = round_up(stack_size, sizeof(u64)); |
| 7488 | } |
| 7489 | |
| 7490 | return stack_size; |
| 7491 | } |
| 7492 | |
| 7493 | static void |
| 7494 | perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, |
| 7495 | struct pt_regs *regs) |
| 7496 | { |
| 7497 | /* Case of a kernel thread, nothing to dump */ |
| 7498 | if (!regs) { |
| 7499 | u64 size = 0; |
| 7500 | perf_output_put(handle, size); |
| 7501 | } else { |
| 7502 | unsigned long sp; |
| 7503 | unsigned int rem; |
| 7504 | u64 dyn_size; |
| 7505 | |
| 7506 | /* |
| 7507 | * We dump: |
| 7508 | * static size |
| 7509 | * - the size requested by user or the best one we can fit |
| 7510 | * in to the sample max size |
| 7511 | * data |
| 7512 | * - user stack dump data |
| 7513 | * dynamic size |
| 7514 | * - the actual dumped size |
| 7515 | */ |
| 7516 | |
| 7517 | /* Static size. */ |
| 7518 | perf_output_put(handle, dump_size); |
| 7519 | |
| 7520 | /* Data. */ |
| 7521 | sp = perf_user_stack_pointer(regs); |
| 7522 | rem = __output_copy_user(handle, (void *) sp, dump_size); |
| 7523 | dyn_size = dump_size - rem; |
| 7524 | |
| 7525 | perf_output_skip(handle, rem); |
| 7526 | |
| 7527 | /* Dynamic size. */ |
| 7528 | perf_output_put(handle, dyn_size); |
| 7529 | } |
| 7530 | } |
| 7531 | |
| 7532 | static unsigned long perf_prepare_sample_aux(struct perf_event *event, |
| 7533 | struct perf_sample_data *data, |
| 7534 | size_t size) |
| 7535 | { |
| 7536 | struct perf_event *sampler = event->aux_event; |
| 7537 | struct perf_buffer *rb; |
| 7538 | |
| 7539 | data->aux_size = 0; |
| 7540 | |
| 7541 | if (!sampler) |
| 7542 | goto out; |
| 7543 | |
| 7544 | if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) |
| 7545 | goto out; |
| 7546 | |
| 7547 | if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) |
| 7548 | goto out; |
| 7549 | |
| 7550 | rb = ring_buffer_get(sampler); |
| 7551 | if (!rb) |
| 7552 | goto out; |
| 7553 | |
| 7554 | /* |
| 7555 | * If this is an NMI hit inside sampling code, don't take |
| 7556 | * the sample. See also perf_aux_sample_output(). |
| 7557 | */ |
| 7558 | if (READ_ONCE(rb->aux_in_sampling)) { |
| 7559 | data->aux_size = 0; |
| 7560 | } else { |
| 7561 | size = min_t(size_t, size, perf_aux_size(rb)); |
| 7562 | data->aux_size = ALIGN(size, sizeof(u64)); |
| 7563 | } |
| 7564 | ring_buffer_put(rb); |
| 7565 | |
| 7566 | out: |
| 7567 | return data->aux_size; |
| 7568 | } |
| 7569 | |
| 7570 | static long perf_pmu_snapshot_aux(struct perf_buffer *rb, |
| 7571 | struct perf_event *event, |
| 7572 | struct perf_output_handle *handle, |
| 7573 | unsigned long size) |
| 7574 | { |
| 7575 | unsigned long flags; |
| 7576 | long ret; |
| 7577 | |
| 7578 | /* |
| 7579 | * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler |
| 7580 | * paths. If we start calling them in NMI context, they may race with |
| 7581 | * the IRQ ones, that is, for example, re-starting an event that's just |
| 7582 | * been stopped, which is why we're using a separate callback that |
| 7583 | * doesn't change the event state. |
| 7584 | * |
| 7585 | * IRQs need to be disabled to prevent IPIs from racing with us. |
| 7586 | */ |
| 7587 | local_irq_save(flags); |
| 7588 | /* |
| 7589 | * Guard against NMI hits inside the critical section; |
| 7590 | * see also perf_prepare_sample_aux(). |
| 7591 | */ |
| 7592 | WRITE_ONCE(rb->aux_in_sampling, 1); |
| 7593 | barrier(); |
| 7594 | |
| 7595 | ret = event->pmu->snapshot_aux(event, handle, size); |
| 7596 | |
| 7597 | barrier(); |
| 7598 | WRITE_ONCE(rb->aux_in_sampling, 0); |
| 7599 | local_irq_restore(flags); |
| 7600 | |
| 7601 | return ret; |
| 7602 | } |
| 7603 | |
| 7604 | static void perf_aux_sample_output(struct perf_event *event, |
| 7605 | struct perf_output_handle *handle, |
| 7606 | struct perf_sample_data *data) |
| 7607 | { |
| 7608 | struct perf_event *sampler = event->aux_event; |
| 7609 | struct perf_buffer *rb; |
| 7610 | unsigned long pad; |
| 7611 | long size; |
| 7612 | |
| 7613 | if (WARN_ON_ONCE(!sampler || !data->aux_size)) |
| 7614 | return; |
| 7615 | |
| 7616 | rb = ring_buffer_get(sampler); |
| 7617 | if (!rb) |
| 7618 | return; |
| 7619 | |
| 7620 | size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); |
| 7621 | |
| 7622 | /* |
| 7623 | * An error here means that perf_output_copy() failed (returned a |
| 7624 | * non-zero surplus that it didn't copy), which in its current |
| 7625 | * enlightened implementation is not possible. If that changes, we'd |
| 7626 | * like to know. |
| 7627 | */ |
| 7628 | if (WARN_ON_ONCE(size < 0)) |
| 7629 | goto out_put; |
| 7630 | |
| 7631 | /* |
| 7632 | * The pad comes from ALIGN()ing data->aux_size up to u64 in |
| 7633 | * perf_prepare_sample_aux(), so should not be more than that. |
| 7634 | */ |
| 7635 | pad = data->aux_size - size; |
| 7636 | if (WARN_ON_ONCE(pad >= sizeof(u64))) |
| 7637 | pad = 8; |
| 7638 | |
| 7639 | if (pad) { |
| 7640 | u64 zero = 0; |
| 7641 | perf_output_copy(handle, &zero, pad); |
| 7642 | } |
| 7643 | |
| 7644 | out_put: |
| 7645 | ring_buffer_put(rb); |
| 7646 | } |
| 7647 | |
| 7648 | /* |
| 7649 | * A set of common sample data types saved even for non-sample records |
| 7650 | * when event->attr.sample_id_all is set. |
| 7651 | */ |
| 7652 | #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ |
| 7653 | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ |
| 7654 | PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) |
| 7655 | |
| 7656 | static void __perf_event_header__init_id(struct perf_sample_data *data, |
| 7657 | struct perf_event *event, |
| 7658 | u64 sample_type) |
| 7659 | { |
| 7660 | data->type = event->attr.sample_type; |
| 7661 | data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; |
| 7662 | |
| 7663 | if (sample_type & PERF_SAMPLE_TID) { |
| 7664 | /* namespace issues */ |
| 7665 | data->tid_entry.pid = perf_event_pid(event, current); |
| 7666 | data->tid_entry.tid = perf_event_tid(event, current); |
| 7667 | } |
| 7668 | |
| 7669 | if (sample_type & PERF_SAMPLE_TIME) |
| 7670 | data->time = perf_event_clock(event); |
| 7671 | |
| 7672 | if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) |
| 7673 | data->id = primary_event_id(event); |
| 7674 | |
| 7675 | if (sample_type & PERF_SAMPLE_STREAM_ID) |
| 7676 | data->stream_id = event->id; |
| 7677 | |
| 7678 | if (sample_type & PERF_SAMPLE_CPU) { |
| 7679 | data->cpu_entry.cpu = raw_smp_processor_id(); |
| 7680 | data->cpu_entry.reserved = 0; |
| 7681 | } |
| 7682 | } |
| 7683 | |
| 7684 | void perf_event_header__init_id(struct perf_event_header *header, |
| 7685 | struct perf_sample_data *data, |
| 7686 | struct perf_event *event) |
| 7687 | { |
| 7688 | if (event->attr.sample_id_all) { |
| 7689 | header->size += event->id_header_size; |
| 7690 | __perf_event_header__init_id(data, event, event->attr.sample_type); |
| 7691 | } |
| 7692 | } |
| 7693 | |
| 7694 | static void __perf_event__output_id_sample(struct perf_output_handle *handle, |
| 7695 | struct perf_sample_data *data) |
| 7696 | { |
| 7697 | u64 sample_type = data->type; |
| 7698 | |
| 7699 | if (sample_type & PERF_SAMPLE_TID) |
| 7700 | perf_output_put(handle, data->tid_entry); |
| 7701 | |
| 7702 | if (sample_type & PERF_SAMPLE_TIME) |
| 7703 | perf_output_put(handle, data->time); |
| 7704 | |
| 7705 | if (sample_type & PERF_SAMPLE_ID) |
| 7706 | perf_output_put(handle, data->id); |
| 7707 | |
| 7708 | if (sample_type & PERF_SAMPLE_STREAM_ID) |
| 7709 | perf_output_put(handle, data->stream_id); |
| 7710 | |
| 7711 | if (sample_type & PERF_SAMPLE_CPU) |
| 7712 | perf_output_put(handle, data->cpu_entry); |
| 7713 | |
| 7714 | if (sample_type & PERF_SAMPLE_IDENTIFIER) |
| 7715 | perf_output_put(handle, data->id); |
| 7716 | } |
| 7717 | |
| 7718 | void perf_event__output_id_sample(struct perf_event *event, |
| 7719 | struct perf_output_handle *handle, |
| 7720 | struct perf_sample_data *sample) |
| 7721 | { |
| 7722 | if (event->attr.sample_id_all) |
| 7723 | __perf_event__output_id_sample(handle, sample); |
| 7724 | } |
| 7725 | |
| 7726 | static void perf_output_read_one(struct perf_output_handle *handle, |
| 7727 | struct perf_event *event, |
| 7728 | u64 enabled, u64 running) |
| 7729 | { |
| 7730 | u64 read_format = event->attr.read_format; |
| 7731 | u64 values[5]; |
| 7732 | int n = 0; |
| 7733 | |
| 7734 | values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr)); |
| 7735 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
| 7736 | values[n++] = enabled + |
| 7737 | atomic64_read(&event->child_total_time_enabled); |
| 7738 | } |
| 7739 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
| 7740 | values[n++] = running + |
| 7741 | atomic64_read(&event->child_total_time_running); |
| 7742 | } |
| 7743 | if (read_format & PERF_FORMAT_ID) |
| 7744 | values[n++] = primary_event_id(event); |
| 7745 | if (read_format & PERF_FORMAT_LOST) |
| 7746 | values[n++] = atomic64_read(&event->lost_samples); |
| 7747 | |
| 7748 | __output_copy(handle, values, n * sizeof(u64)); |
| 7749 | } |
| 7750 | |
| 7751 | static void perf_output_read_group(struct perf_output_handle *handle, |
| 7752 | struct perf_event *event, |
| 7753 | u64 enabled, u64 running) |
| 7754 | { |
| 7755 | struct perf_event *leader = event->group_leader, *sub; |
| 7756 | u64 read_format = event->attr.read_format; |
| 7757 | unsigned long flags; |
| 7758 | u64 values[6]; |
| 7759 | int n = 0; |
| 7760 | bool self = has_inherit_and_sample_read(&event->attr); |
| 7761 | |
| 7762 | /* |
| 7763 | * Disabling interrupts avoids all counter scheduling |
| 7764 | * (context switches, timer based rotation and IPIs). |
| 7765 | */ |
| 7766 | local_irq_save(flags); |
| 7767 | |
| 7768 | values[n++] = 1 + leader->nr_siblings; |
| 7769 | |
| 7770 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| 7771 | values[n++] = enabled; |
| 7772 | |
| 7773 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| 7774 | values[n++] = running; |
| 7775 | |
| 7776 | if ((leader != event) && !handle->skip_read) |
| 7777 | perf_pmu_read(leader); |
| 7778 | |
| 7779 | values[n++] = perf_event_count(leader, self); |
| 7780 | if (read_format & PERF_FORMAT_ID) |
| 7781 | values[n++] = primary_event_id(leader); |
| 7782 | if (read_format & PERF_FORMAT_LOST) |
| 7783 | values[n++] = atomic64_read(&leader->lost_samples); |
| 7784 | |
| 7785 | __output_copy(handle, values, n * sizeof(u64)); |
| 7786 | |
| 7787 | for_each_sibling_event(sub, leader) { |
| 7788 | n = 0; |
| 7789 | |
| 7790 | if ((sub != event) && !handle->skip_read) |
| 7791 | perf_pmu_read(sub); |
| 7792 | |
| 7793 | values[n++] = perf_event_count(sub, self); |
| 7794 | if (read_format & PERF_FORMAT_ID) |
| 7795 | values[n++] = primary_event_id(sub); |
| 7796 | if (read_format & PERF_FORMAT_LOST) |
| 7797 | values[n++] = atomic64_read(&sub->lost_samples); |
| 7798 | |
| 7799 | __output_copy(handle, values, n * sizeof(u64)); |
| 7800 | } |
| 7801 | |
| 7802 | local_irq_restore(flags); |
| 7803 | } |
| 7804 | |
| 7805 | #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ |
| 7806 | PERF_FORMAT_TOTAL_TIME_RUNNING) |
| 7807 | |
| 7808 | /* |
| 7809 | * XXX PERF_SAMPLE_READ vs inherited events seems difficult. |
| 7810 | * |
| 7811 | * The problem is that its both hard and excessively expensive to iterate the |
| 7812 | * child list, not to mention that its impossible to IPI the children running |
| 7813 | * on another CPU, from interrupt/NMI context. |
| 7814 | * |
| 7815 | * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread |
| 7816 | * counts rather than attempting to accumulate some value across all children on |
| 7817 | * all cores. |
| 7818 | */ |
| 7819 | static void perf_output_read(struct perf_output_handle *handle, |
| 7820 | struct perf_event *event) |
| 7821 | { |
| 7822 | u64 enabled = 0, running = 0, now; |
| 7823 | u64 read_format = event->attr.read_format; |
| 7824 | |
| 7825 | /* |
| 7826 | * compute total_time_enabled, total_time_running |
| 7827 | * based on snapshot values taken when the event |
| 7828 | * was last scheduled in. |
| 7829 | * |
| 7830 | * we cannot simply called update_context_time() |
| 7831 | * because of locking issue as we are called in |
| 7832 | * NMI context |
| 7833 | */ |
| 7834 | if (read_format & PERF_FORMAT_TOTAL_TIMES) |
| 7835 | calc_timer_values(event, &now, &enabled, &running); |
| 7836 | |
| 7837 | if (event->attr.read_format & PERF_FORMAT_GROUP) |
| 7838 | perf_output_read_group(handle, event, enabled, running); |
| 7839 | else |
| 7840 | perf_output_read_one(handle, event, enabled, running); |
| 7841 | } |
| 7842 | |
| 7843 | void perf_output_sample(struct perf_output_handle *handle, |
| 7844 | struct perf_event_header *header, |
| 7845 | struct perf_sample_data *data, |
| 7846 | struct perf_event *event) |
| 7847 | { |
| 7848 | u64 sample_type = data->type; |
| 7849 | |
| 7850 | if (data->sample_flags & PERF_SAMPLE_READ) |
| 7851 | handle->skip_read = 1; |
| 7852 | |
| 7853 | perf_output_put(handle, *header); |
| 7854 | |
| 7855 | if (sample_type & PERF_SAMPLE_IDENTIFIER) |
| 7856 | perf_output_put(handle, data->id); |
| 7857 | |
| 7858 | if (sample_type & PERF_SAMPLE_IP) |
| 7859 | perf_output_put(handle, data->ip); |
| 7860 | |
| 7861 | if (sample_type & PERF_SAMPLE_TID) |
| 7862 | perf_output_put(handle, data->tid_entry); |
| 7863 | |
| 7864 | if (sample_type & PERF_SAMPLE_TIME) |
| 7865 | perf_output_put(handle, data->time); |
| 7866 | |
| 7867 | if (sample_type & PERF_SAMPLE_ADDR) |
| 7868 | perf_output_put(handle, data->addr); |
| 7869 | |
| 7870 | if (sample_type & PERF_SAMPLE_ID) |
| 7871 | perf_output_put(handle, data->id); |
| 7872 | |
| 7873 | if (sample_type & PERF_SAMPLE_STREAM_ID) |
| 7874 | perf_output_put(handle, data->stream_id); |
| 7875 | |
| 7876 | if (sample_type & PERF_SAMPLE_CPU) |
| 7877 | perf_output_put(handle, data->cpu_entry); |
| 7878 | |
| 7879 | if (sample_type & PERF_SAMPLE_PERIOD) |
| 7880 | perf_output_put(handle, data->period); |
| 7881 | |
| 7882 | if (sample_type & PERF_SAMPLE_READ) |
| 7883 | perf_output_read(handle, event); |
| 7884 | |
| 7885 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| 7886 | int size = 1; |
| 7887 | |
| 7888 | size += data->callchain->nr; |
| 7889 | size *= sizeof(u64); |
| 7890 | __output_copy(handle, data->callchain, size); |
| 7891 | } |
| 7892 | |
| 7893 | if (sample_type & PERF_SAMPLE_RAW) { |
| 7894 | struct perf_raw_record *raw = data->raw; |
| 7895 | |
| 7896 | if (raw) { |
| 7897 | struct perf_raw_frag *frag = &raw->frag; |
| 7898 | |
| 7899 | perf_output_put(handle, raw->size); |
| 7900 | do { |
| 7901 | if (frag->copy) { |
| 7902 | __output_custom(handle, frag->copy, |
| 7903 | frag->data, frag->size); |
| 7904 | } else { |
| 7905 | __output_copy(handle, frag->data, |
| 7906 | frag->size); |
| 7907 | } |
| 7908 | if (perf_raw_frag_last(frag)) |
| 7909 | break; |
| 7910 | frag = frag->next; |
| 7911 | } while (1); |
| 7912 | if (frag->pad) |
| 7913 | __output_skip(handle, NULL, frag->pad); |
| 7914 | } else { |
| 7915 | struct { |
| 7916 | u32 size; |
| 7917 | u32 data; |
| 7918 | } raw = { |
| 7919 | .size = sizeof(u32), |
| 7920 | .data = 0, |
| 7921 | }; |
| 7922 | perf_output_put(handle, raw); |
| 7923 | } |
| 7924 | } |
| 7925 | |
| 7926 | if (sample_type & PERF_SAMPLE_BRANCH_STACK) { |
| 7927 | if (data->br_stack) { |
| 7928 | size_t size; |
| 7929 | |
| 7930 | size = data->br_stack->nr |
| 7931 | * sizeof(struct perf_branch_entry); |
| 7932 | |
| 7933 | perf_output_put(handle, data->br_stack->nr); |
| 7934 | if (branch_sample_hw_index(event)) |
| 7935 | perf_output_put(handle, data->br_stack->hw_idx); |
| 7936 | perf_output_copy(handle, data->br_stack->entries, size); |
| 7937 | /* |
| 7938 | * Add the extension space which is appended |
| 7939 | * right after the struct perf_branch_stack. |
| 7940 | */ |
| 7941 | if (data->br_stack_cntr) { |
| 7942 | size = data->br_stack->nr * sizeof(u64); |
| 7943 | perf_output_copy(handle, data->br_stack_cntr, size); |
| 7944 | } |
| 7945 | } else { |
| 7946 | /* |
| 7947 | * we always store at least the value of nr |
| 7948 | */ |
| 7949 | u64 nr = 0; |
| 7950 | perf_output_put(handle, nr); |
| 7951 | } |
| 7952 | } |
| 7953 | |
| 7954 | if (sample_type & PERF_SAMPLE_REGS_USER) { |
| 7955 | u64 abi = data->regs_user.abi; |
| 7956 | |
| 7957 | /* |
| 7958 | * If there are no regs to dump, notice it through |
| 7959 | * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). |
| 7960 | */ |
| 7961 | perf_output_put(handle, abi); |
| 7962 | |
| 7963 | if (abi) { |
| 7964 | u64 mask = event->attr.sample_regs_user; |
| 7965 | perf_output_sample_regs(handle, |
| 7966 | data->regs_user.regs, |
| 7967 | mask); |
| 7968 | } |
| 7969 | } |
| 7970 | |
| 7971 | if (sample_type & PERF_SAMPLE_STACK_USER) { |
| 7972 | perf_output_sample_ustack(handle, |
| 7973 | data->stack_user_size, |
| 7974 | data->regs_user.regs); |
| 7975 | } |
| 7976 | |
| 7977 | if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) |
| 7978 | perf_output_put(handle, data->weight.full); |
| 7979 | |
| 7980 | if (sample_type & PERF_SAMPLE_DATA_SRC) |
| 7981 | perf_output_put(handle, data->data_src.val); |
| 7982 | |
| 7983 | if (sample_type & PERF_SAMPLE_TRANSACTION) |
| 7984 | perf_output_put(handle, data->txn); |
| 7985 | |
| 7986 | if (sample_type & PERF_SAMPLE_REGS_INTR) { |
| 7987 | u64 abi = data->regs_intr.abi; |
| 7988 | /* |
| 7989 | * If there are no regs to dump, notice it through |
| 7990 | * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). |
| 7991 | */ |
| 7992 | perf_output_put(handle, abi); |
| 7993 | |
| 7994 | if (abi) { |
| 7995 | u64 mask = event->attr.sample_regs_intr; |
| 7996 | |
| 7997 | perf_output_sample_regs(handle, |
| 7998 | data->regs_intr.regs, |
| 7999 | mask); |
| 8000 | } |
| 8001 | } |
| 8002 | |
| 8003 | if (sample_type & PERF_SAMPLE_PHYS_ADDR) |
| 8004 | perf_output_put(handle, data->phys_addr); |
| 8005 | |
| 8006 | if (sample_type & PERF_SAMPLE_CGROUP) |
| 8007 | perf_output_put(handle, data->cgroup); |
| 8008 | |
| 8009 | if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) |
| 8010 | perf_output_put(handle, data->data_page_size); |
| 8011 | |
| 8012 | if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) |
| 8013 | perf_output_put(handle, data->code_page_size); |
| 8014 | |
| 8015 | if (sample_type & PERF_SAMPLE_AUX) { |
| 8016 | perf_output_put(handle, data->aux_size); |
| 8017 | |
| 8018 | if (data->aux_size) |
| 8019 | perf_aux_sample_output(event, handle, data); |
| 8020 | } |
| 8021 | |
| 8022 | if (!event->attr.watermark) { |
| 8023 | int wakeup_events = event->attr.wakeup_events; |
| 8024 | |
| 8025 | if (wakeup_events) { |
| 8026 | struct perf_buffer *rb = handle->rb; |
| 8027 | int events = local_inc_return(&rb->events); |
| 8028 | |
| 8029 | if (events >= wakeup_events) { |
| 8030 | local_sub(wakeup_events, &rb->events); |
| 8031 | local_inc(&rb->wakeup); |
| 8032 | } |
| 8033 | } |
| 8034 | } |
| 8035 | } |
| 8036 | |
| 8037 | static u64 perf_virt_to_phys(u64 virt) |
| 8038 | { |
| 8039 | u64 phys_addr = 0; |
| 8040 | |
| 8041 | if (!virt) |
| 8042 | return 0; |
| 8043 | |
| 8044 | if (virt >= TASK_SIZE) { |
| 8045 | /* If it's vmalloc()d memory, leave phys_addr as 0 */ |
| 8046 | if (virt_addr_valid((void *)(uintptr_t)virt) && |
| 8047 | !(virt >= VMALLOC_START && virt < VMALLOC_END)) |
| 8048 | phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); |
| 8049 | } else { |
| 8050 | /* |
| 8051 | * Walking the pages tables for user address. |
| 8052 | * Interrupts are disabled, so it prevents any tear down |
| 8053 | * of the page tables. |
| 8054 | * Try IRQ-safe get_user_page_fast_only first. |
| 8055 | * If failed, leave phys_addr as 0. |
| 8056 | */ |
| 8057 | if (current->mm != NULL) { |
| 8058 | struct page *p; |
| 8059 | |
| 8060 | pagefault_disable(); |
| 8061 | if (get_user_page_fast_only(virt, 0, &p)) { |
| 8062 | phys_addr = page_to_phys(p) + virt % PAGE_SIZE; |
| 8063 | put_page(p); |
| 8064 | } |
| 8065 | pagefault_enable(); |
| 8066 | } |
| 8067 | } |
| 8068 | |
| 8069 | return phys_addr; |
| 8070 | } |
| 8071 | |
| 8072 | /* |
| 8073 | * Return the pagetable size of a given virtual address. |
| 8074 | */ |
| 8075 | static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) |
| 8076 | { |
| 8077 | u64 size = 0; |
| 8078 | |
| 8079 | #ifdef CONFIG_HAVE_GUP_FAST |
| 8080 | pgd_t *pgdp, pgd; |
| 8081 | p4d_t *p4dp, p4d; |
| 8082 | pud_t *pudp, pud; |
| 8083 | pmd_t *pmdp, pmd; |
| 8084 | pte_t *ptep, pte; |
| 8085 | |
| 8086 | pgdp = pgd_offset(mm, addr); |
| 8087 | pgd = READ_ONCE(*pgdp); |
| 8088 | if (pgd_none(pgd)) |
| 8089 | return 0; |
| 8090 | |
| 8091 | if (pgd_leaf(pgd)) |
| 8092 | return pgd_leaf_size(pgd); |
| 8093 | |
| 8094 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
| 8095 | p4d = READ_ONCE(*p4dp); |
| 8096 | if (!p4d_present(p4d)) |
| 8097 | return 0; |
| 8098 | |
| 8099 | if (p4d_leaf(p4d)) |
| 8100 | return p4d_leaf_size(p4d); |
| 8101 | |
| 8102 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
| 8103 | pud = READ_ONCE(*pudp); |
| 8104 | if (!pud_present(pud)) |
| 8105 | return 0; |
| 8106 | |
| 8107 | if (pud_leaf(pud)) |
| 8108 | return pud_leaf_size(pud); |
| 8109 | |
| 8110 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
| 8111 | again: |
| 8112 | pmd = pmdp_get_lockless(pmdp); |
| 8113 | if (!pmd_present(pmd)) |
| 8114 | return 0; |
| 8115 | |
| 8116 | if (pmd_leaf(pmd)) |
| 8117 | return pmd_leaf_size(pmd); |
| 8118 | |
| 8119 | ptep = pte_offset_map(&pmd, addr); |
| 8120 | if (!ptep) |
| 8121 | goto again; |
| 8122 | |
| 8123 | pte = ptep_get_lockless(ptep); |
| 8124 | if (pte_present(pte)) |
| 8125 | size = __pte_leaf_size(pmd, pte); |
| 8126 | pte_unmap(ptep); |
| 8127 | #endif /* CONFIG_HAVE_GUP_FAST */ |
| 8128 | |
| 8129 | return size; |
| 8130 | } |
| 8131 | |
| 8132 | static u64 perf_get_page_size(unsigned long addr) |
| 8133 | { |
| 8134 | struct mm_struct *mm; |
| 8135 | unsigned long flags; |
| 8136 | u64 size; |
| 8137 | |
| 8138 | if (!addr) |
| 8139 | return 0; |
| 8140 | |
| 8141 | /* |
| 8142 | * Software page-table walkers must disable IRQs, |
| 8143 | * which prevents any tear down of the page tables. |
| 8144 | */ |
| 8145 | local_irq_save(flags); |
| 8146 | |
| 8147 | mm = current->mm; |
| 8148 | if (!mm) { |
| 8149 | /* |
| 8150 | * For kernel threads and the like, use init_mm so that |
| 8151 | * we can find kernel memory. |
| 8152 | */ |
| 8153 | mm = &init_mm; |
| 8154 | } |
| 8155 | |
| 8156 | size = perf_get_pgtable_size(mm, addr); |
| 8157 | |
| 8158 | local_irq_restore(flags); |
| 8159 | |
| 8160 | return size; |
| 8161 | } |
| 8162 | |
| 8163 | static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; |
| 8164 | |
| 8165 | struct perf_callchain_entry * |
| 8166 | perf_callchain(struct perf_event *event, struct pt_regs *regs) |
| 8167 | { |
| 8168 | bool kernel = !event->attr.exclude_callchain_kernel; |
| 8169 | bool user = !event->attr.exclude_callchain_user; |
| 8170 | /* Disallow cross-task user callchains. */ |
| 8171 | bool crosstask = event->ctx->task && event->ctx->task != current; |
| 8172 | const u32 max_stack = event->attr.sample_max_stack; |
| 8173 | struct perf_callchain_entry *callchain; |
| 8174 | |
| 8175 | if (!current->mm) |
| 8176 | user = false; |
| 8177 | |
| 8178 | if (!kernel && !user) |
| 8179 | return &__empty_callchain; |
| 8180 | |
| 8181 | callchain = get_perf_callchain(regs, 0, kernel, user, |
| 8182 | max_stack, crosstask, true); |
| 8183 | return callchain ?: &__empty_callchain; |
| 8184 | } |
| 8185 | |
| 8186 | static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) |
| 8187 | { |
| 8188 | return d * !!(flags & s); |
| 8189 | } |
| 8190 | |
| 8191 | void perf_prepare_sample(struct perf_sample_data *data, |
| 8192 | struct perf_event *event, |
| 8193 | struct pt_regs *regs) |
| 8194 | { |
| 8195 | u64 sample_type = event->attr.sample_type; |
| 8196 | u64 filtered_sample_type; |
| 8197 | |
| 8198 | /* |
| 8199 | * Add the sample flags that are dependent to others. And clear the |
| 8200 | * sample flags that have already been done by the PMU driver. |
| 8201 | */ |
| 8202 | filtered_sample_type = sample_type; |
| 8203 | filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, |
| 8204 | PERF_SAMPLE_IP); |
| 8205 | filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | |
| 8206 | PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); |
| 8207 | filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, |
| 8208 | PERF_SAMPLE_REGS_USER); |
| 8209 | filtered_sample_type &= ~data->sample_flags; |
| 8210 | |
| 8211 | if (filtered_sample_type == 0) { |
| 8212 | /* Make sure it has the correct data->type for output */ |
| 8213 | data->type = event->attr.sample_type; |
| 8214 | return; |
| 8215 | } |
| 8216 | |
| 8217 | __perf_event_header__init_id(data, event, filtered_sample_type); |
| 8218 | |
| 8219 | if (filtered_sample_type & PERF_SAMPLE_IP) { |
| 8220 | data->ip = perf_instruction_pointer(event, regs); |
| 8221 | data->sample_flags |= PERF_SAMPLE_IP; |
| 8222 | } |
| 8223 | |
| 8224 | if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) |
| 8225 | perf_sample_save_callchain(data, event, regs); |
| 8226 | |
| 8227 | if (filtered_sample_type & PERF_SAMPLE_RAW) { |
| 8228 | data->raw = NULL; |
| 8229 | data->dyn_size += sizeof(u64); |
| 8230 | data->sample_flags |= PERF_SAMPLE_RAW; |
| 8231 | } |
| 8232 | |
| 8233 | if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { |
| 8234 | data->br_stack = NULL; |
| 8235 | data->dyn_size += sizeof(u64); |
| 8236 | data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; |
| 8237 | } |
| 8238 | |
| 8239 | if (filtered_sample_type & PERF_SAMPLE_REGS_USER) |
| 8240 | perf_sample_regs_user(&data->regs_user, regs); |
| 8241 | |
| 8242 | /* |
| 8243 | * It cannot use the filtered_sample_type here as REGS_USER can be set |
| 8244 | * by STACK_USER (using __cond_set() above) and we don't want to update |
| 8245 | * the dyn_size if it's not requested by users. |
| 8246 | */ |
| 8247 | if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { |
| 8248 | /* regs dump ABI info */ |
| 8249 | int size = sizeof(u64); |
| 8250 | |
| 8251 | if (data->regs_user.regs) { |
| 8252 | u64 mask = event->attr.sample_regs_user; |
| 8253 | size += hweight64(mask) * sizeof(u64); |
| 8254 | } |
| 8255 | |
| 8256 | data->dyn_size += size; |
| 8257 | data->sample_flags |= PERF_SAMPLE_REGS_USER; |
| 8258 | } |
| 8259 | |
| 8260 | if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { |
| 8261 | /* |
| 8262 | * Either we need PERF_SAMPLE_STACK_USER bit to be always |
| 8263 | * processed as the last one or have additional check added |
| 8264 | * in case new sample type is added, because we could eat |
| 8265 | * up the rest of the sample size. |
| 8266 | */ |
| 8267 | u16 stack_size = event->attr.sample_stack_user; |
| 8268 | u16 header_size = perf_sample_data_size(data, event); |
| 8269 | u16 size = sizeof(u64); |
| 8270 | |
| 8271 | stack_size = perf_sample_ustack_size(stack_size, header_size, |
| 8272 | data->regs_user.regs); |
| 8273 | |
| 8274 | /* |
| 8275 | * If there is something to dump, add space for the dump |
| 8276 | * itself and for the field that tells the dynamic size, |
| 8277 | * which is how many have been actually dumped. |
| 8278 | */ |
| 8279 | if (stack_size) |
| 8280 | size += sizeof(u64) + stack_size; |
| 8281 | |
| 8282 | data->stack_user_size = stack_size; |
| 8283 | data->dyn_size += size; |
| 8284 | data->sample_flags |= PERF_SAMPLE_STACK_USER; |
| 8285 | } |
| 8286 | |
| 8287 | if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { |
| 8288 | data->weight.full = 0; |
| 8289 | data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; |
| 8290 | } |
| 8291 | |
| 8292 | if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { |
| 8293 | data->data_src.val = PERF_MEM_NA; |
| 8294 | data->sample_flags |= PERF_SAMPLE_DATA_SRC; |
| 8295 | } |
| 8296 | |
| 8297 | if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { |
| 8298 | data->txn = 0; |
| 8299 | data->sample_flags |= PERF_SAMPLE_TRANSACTION; |
| 8300 | } |
| 8301 | |
| 8302 | if (filtered_sample_type & PERF_SAMPLE_ADDR) { |
| 8303 | data->addr = 0; |
| 8304 | data->sample_flags |= PERF_SAMPLE_ADDR; |
| 8305 | } |
| 8306 | |
| 8307 | if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { |
| 8308 | /* regs dump ABI info */ |
| 8309 | int size = sizeof(u64); |
| 8310 | |
| 8311 | perf_sample_regs_intr(&data->regs_intr, regs); |
| 8312 | |
| 8313 | if (data->regs_intr.regs) { |
| 8314 | u64 mask = event->attr.sample_regs_intr; |
| 8315 | |
| 8316 | size += hweight64(mask) * sizeof(u64); |
| 8317 | } |
| 8318 | |
| 8319 | data->dyn_size += size; |
| 8320 | data->sample_flags |= PERF_SAMPLE_REGS_INTR; |
| 8321 | } |
| 8322 | |
| 8323 | if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { |
| 8324 | data->phys_addr = perf_virt_to_phys(data->addr); |
| 8325 | data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; |
| 8326 | } |
| 8327 | |
| 8328 | #ifdef CONFIG_CGROUP_PERF |
| 8329 | if (filtered_sample_type & PERF_SAMPLE_CGROUP) { |
| 8330 | struct cgroup *cgrp; |
| 8331 | |
| 8332 | /* protected by RCU */ |
| 8333 | cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; |
| 8334 | data->cgroup = cgroup_id(cgrp); |
| 8335 | data->sample_flags |= PERF_SAMPLE_CGROUP; |
| 8336 | } |
| 8337 | #endif |
| 8338 | |
| 8339 | /* |
| 8340 | * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't |
| 8341 | * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, |
| 8342 | * but the value will not dump to the userspace. |
| 8343 | */ |
| 8344 | if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { |
| 8345 | data->data_page_size = perf_get_page_size(data->addr); |
| 8346 | data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; |
| 8347 | } |
| 8348 | |
| 8349 | if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { |
| 8350 | data->code_page_size = perf_get_page_size(data->ip); |
| 8351 | data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; |
| 8352 | } |
| 8353 | |
| 8354 | if (filtered_sample_type & PERF_SAMPLE_AUX) { |
| 8355 | u64 size; |
| 8356 | u16 header_size = perf_sample_data_size(data, event); |
| 8357 | |
| 8358 | header_size += sizeof(u64); /* size */ |
| 8359 | |
| 8360 | /* |
| 8361 | * Given the 16bit nature of header::size, an AUX sample can |
| 8362 | * easily overflow it, what with all the preceding sample bits. |
| 8363 | * Make sure this doesn't happen by using up to U16_MAX bytes |
| 8364 | * per sample in total (rounded down to 8 byte boundary). |
| 8365 | */ |
| 8366 | size = min_t(size_t, U16_MAX - header_size, |
| 8367 | event->attr.aux_sample_size); |
| 8368 | size = rounddown(size, 8); |
| 8369 | size = perf_prepare_sample_aux(event, data, size); |
| 8370 | |
| 8371 | WARN_ON_ONCE(size + header_size > U16_MAX); |
| 8372 | data->dyn_size += size + sizeof(u64); /* size above */ |
| 8373 | data->sample_flags |= PERF_SAMPLE_AUX; |
| 8374 | } |
| 8375 | } |
| 8376 | |
| 8377 | void perf_prepare_header(struct perf_event_header *header, |
| 8378 | struct perf_sample_data *data, |
| 8379 | struct perf_event *event, |
| 8380 | struct pt_regs *regs) |
| 8381 | { |
| 8382 | header->type = PERF_RECORD_SAMPLE; |
| 8383 | header->size = perf_sample_data_size(data, event); |
| 8384 | header->misc = perf_misc_flags(event, regs); |
| 8385 | |
| 8386 | /* |
| 8387 | * If you're adding more sample types here, you likely need to do |
| 8388 | * something about the overflowing header::size, like repurpose the |
| 8389 | * lowest 3 bits of size, which should be always zero at the moment. |
| 8390 | * This raises a more important question, do we really need 512k sized |
| 8391 | * samples and why, so good argumentation is in order for whatever you |
| 8392 | * do here next. |
| 8393 | */ |
| 8394 | WARN_ON_ONCE(header->size & 7); |
| 8395 | } |
| 8396 | |
| 8397 | static void __perf_event_aux_pause(struct perf_event *event, bool pause) |
| 8398 | { |
| 8399 | if (pause) { |
| 8400 | if (!event->hw.aux_paused) { |
| 8401 | event->hw.aux_paused = 1; |
| 8402 | event->pmu->stop(event, PERF_EF_PAUSE); |
| 8403 | } |
| 8404 | } else { |
| 8405 | if (event->hw.aux_paused) { |
| 8406 | event->hw.aux_paused = 0; |
| 8407 | event->pmu->start(event, PERF_EF_RESUME); |
| 8408 | } |
| 8409 | } |
| 8410 | } |
| 8411 | |
| 8412 | static void perf_event_aux_pause(struct perf_event *event, bool pause) |
| 8413 | { |
| 8414 | struct perf_buffer *rb; |
| 8415 | |
| 8416 | if (WARN_ON_ONCE(!event)) |
| 8417 | return; |
| 8418 | |
| 8419 | rb = ring_buffer_get(event); |
| 8420 | if (!rb) |
| 8421 | return; |
| 8422 | |
| 8423 | scoped_guard (irqsave) { |
| 8424 | /* |
| 8425 | * Guard against self-recursion here. Another event could trip |
| 8426 | * this same from NMI context. |
| 8427 | */ |
| 8428 | if (READ_ONCE(rb->aux_in_pause_resume)) |
| 8429 | break; |
| 8430 | |
| 8431 | WRITE_ONCE(rb->aux_in_pause_resume, 1); |
| 8432 | barrier(); |
| 8433 | __perf_event_aux_pause(event, pause); |
| 8434 | barrier(); |
| 8435 | WRITE_ONCE(rb->aux_in_pause_resume, 0); |
| 8436 | } |
| 8437 | ring_buffer_put(rb); |
| 8438 | } |
| 8439 | |
| 8440 | static __always_inline int |
| 8441 | __perf_event_output(struct perf_event *event, |
| 8442 | struct perf_sample_data *data, |
| 8443 | struct pt_regs *regs, |
| 8444 | int (*output_begin)(struct perf_output_handle *, |
| 8445 | struct perf_sample_data *, |
| 8446 | struct perf_event *, |
| 8447 | unsigned int)) |
| 8448 | { |
| 8449 | struct perf_output_handle handle; |
| 8450 | struct perf_event_header header; |
| 8451 | int err; |
| 8452 | |
| 8453 | /* protect the callchain buffers */ |
| 8454 | rcu_read_lock(); |
| 8455 | |
| 8456 | perf_prepare_sample(data, event, regs); |
| 8457 | perf_prepare_header(&header, data, event, regs); |
| 8458 | |
| 8459 | err = output_begin(&handle, data, event, header.size); |
| 8460 | if (err) |
| 8461 | goto exit; |
| 8462 | |
| 8463 | perf_output_sample(&handle, &header, data, event); |
| 8464 | |
| 8465 | perf_output_end(&handle); |
| 8466 | |
| 8467 | exit: |
| 8468 | rcu_read_unlock(); |
| 8469 | return err; |
| 8470 | } |
| 8471 | |
| 8472 | void |
| 8473 | perf_event_output_forward(struct perf_event *event, |
| 8474 | struct perf_sample_data *data, |
| 8475 | struct pt_regs *regs) |
| 8476 | { |
| 8477 | __perf_event_output(event, data, regs, perf_output_begin_forward); |
| 8478 | } |
| 8479 | |
| 8480 | void |
| 8481 | perf_event_output_backward(struct perf_event *event, |
| 8482 | struct perf_sample_data *data, |
| 8483 | struct pt_regs *regs) |
| 8484 | { |
| 8485 | __perf_event_output(event, data, regs, perf_output_begin_backward); |
| 8486 | } |
| 8487 | |
| 8488 | int |
| 8489 | perf_event_output(struct perf_event *event, |
| 8490 | struct perf_sample_data *data, |
| 8491 | struct pt_regs *regs) |
| 8492 | { |
| 8493 | return __perf_event_output(event, data, regs, perf_output_begin); |
| 8494 | } |
| 8495 | |
| 8496 | /* |
| 8497 | * read event_id |
| 8498 | */ |
| 8499 | |
| 8500 | struct perf_read_event { |
| 8501 | struct perf_event_header header; |
| 8502 | |
| 8503 | u32 pid; |
| 8504 | u32 tid; |
| 8505 | }; |
| 8506 | |
| 8507 | static void |
| 8508 | perf_event_read_event(struct perf_event *event, |
| 8509 | struct task_struct *task) |
| 8510 | { |
| 8511 | struct perf_output_handle handle; |
| 8512 | struct perf_sample_data sample; |
| 8513 | struct perf_read_event read_event = { |
| 8514 | .header = { |
| 8515 | .type = PERF_RECORD_READ, |
| 8516 | .misc = 0, |
| 8517 | .size = sizeof(read_event) + event->read_size, |
| 8518 | }, |
| 8519 | .pid = perf_event_pid(event, task), |
| 8520 | .tid = perf_event_tid(event, task), |
| 8521 | }; |
| 8522 | int ret; |
| 8523 | |
| 8524 | perf_event_header__init_id(&read_event.header, &sample, event); |
| 8525 | ret = perf_output_begin(&handle, &sample, event, read_event.header.size); |
| 8526 | if (ret) |
| 8527 | return; |
| 8528 | |
| 8529 | perf_output_put(&handle, read_event); |
| 8530 | perf_output_read(&handle, event); |
| 8531 | perf_event__output_id_sample(event, &handle, &sample); |
| 8532 | |
| 8533 | perf_output_end(&handle); |
| 8534 | } |
| 8535 | |
| 8536 | typedef void (perf_iterate_f)(struct perf_event *event, void *data); |
| 8537 | |
| 8538 | static void |
| 8539 | perf_iterate_ctx(struct perf_event_context *ctx, |
| 8540 | perf_iterate_f output, |
| 8541 | void *data, bool all) |
| 8542 | { |
| 8543 | struct perf_event *event; |
| 8544 | |
| 8545 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| 8546 | if (!all) { |
| 8547 | if (event->state < PERF_EVENT_STATE_INACTIVE) |
| 8548 | continue; |
| 8549 | if (!event_filter_match(event)) |
| 8550 | continue; |
| 8551 | } |
| 8552 | |
| 8553 | output(event, data); |
| 8554 | } |
| 8555 | } |
| 8556 | |
| 8557 | static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) |
| 8558 | { |
| 8559 | struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); |
| 8560 | struct perf_event *event; |
| 8561 | |
| 8562 | list_for_each_entry_rcu(event, &pel->list, sb_list) { |
| 8563 | /* |
| 8564 | * Skip events that are not fully formed yet; ensure that |
| 8565 | * if we observe event->ctx, both event and ctx will be |
| 8566 | * complete enough. See perf_install_in_context(). |
| 8567 | */ |
| 8568 | if (!smp_load_acquire(&event->ctx)) |
| 8569 | continue; |
| 8570 | |
| 8571 | if (event->state < PERF_EVENT_STATE_INACTIVE) |
| 8572 | continue; |
| 8573 | if (!event_filter_match(event)) |
| 8574 | continue; |
| 8575 | output(event, data); |
| 8576 | } |
| 8577 | } |
| 8578 | |
| 8579 | /* |
| 8580 | * Iterate all events that need to receive side-band events. |
| 8581 | * |
| 8582 | * For new callers; ensure that account_pmu_sb_event() includes |
| 8583 | * your event, otherwise it might not get delivered. |
| 8584 | */ |
| 8585 | static void |
| 8586 | perf_iterate_sb(perf_iterate_f output, void *data, |
| 8587 | struct perf_event_context *task_ctx) |
| 8588 | { |
| 8589 | struct perf_event_context *ctx; |
| 8590 | |
| 8591 | rcu_read_lock(); |
| 8592 | preempt_disable(); |
| 8593 | |
| 8594 | /* |
| 8595 | * If we have task_ctx != NULL we only notify the task context itself. |
| 8596 | * The task_ctx is set only for EXIT events before releasing task |
| 8597 | * context. |
| 8598 | */ |
| 8599 | if (task_ctx) { |
| 8600 | perf_iterate_ctx(task_ctx, output, data, false); |
| 8601 | goto done; |
| 8602 | } |
| 8603 | |
| 8604 | perf_iterate_sb_cpu(output, data); |
| 8605 | |
| 8606 | ctx = rcu_dereference(current->perf_event_ctxp); |
| 8607 | if (ctx) |
| 8608 | perf_iterate_ctx(ctx, output, data, false); |
| 8609 | done: |
| 8610 | preempt_enable(); |
| 8611 | rcu_read_unlock(); |
| 8612 | } |
| 8613 | |
| 8614 | /* |
| 8615 | * Clear all file-based filters at exec, they'll have to be |
| 8616 | * re-instated when/if these objects are mmapped again. |
| 8617 | */ |
| 8618 | static void perf_event_addr_filters_exec(struct perf_event *event, void *data) |
| 8619 | { |
| 8620 | struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); |
| 8621 | struct perf_addr_filter *filter; |
| 8622 | unsigned int restart = 0, count = 0; |
| 8623 | unsigned long flags; |
| 8624 | |
| 8625 | if (!has_addr_filter(event)) |
| 8626 | return; |
| 8627 | |
| 8628 | raw_spin_lock_irqsave(&ifh->lock, flags); |
| 8629 | list_for_each_entry(filter, &ifh->list, entry) { |
| 8630 | if (filter->path.dentry) { |
| 8631 | event->addr_filter_ranges[count].start = 0; |
| 8632 | event->addr_filter_ranges[count].size = 0; |
| 8633 | restart++; |
| 8634 | } |
| 8635 | |
| 8636 | count++; |
| 8637 | } |
| 8638 | |
| 8639 | if (restart) |
| 8640 | event->addr_filters_gen++; |
| 8641 | raw_spin_unlock_irqrestore(&ifh->lock, flags); |
| 8642 | |
| 8643 | if (restart) |
| 8644 | perf_event_stop(event, 1); |
| 8645 | } |
| 8646 | |
| 8647 | void perf_event_exec(void) |
| 8648 | { |
| 8649 | struct perf_event_context *ctx; |
| 8650 | |
| 8651 | ctx = perf_pin_task_context(current); |
| 8652 | if (!ctx) |
| 8653 | return; |
| 8654 | |
| 8655 | perf_event_enable_on_exec(ctx); |
| 8656 | perf_event_remove_on_exec(ctx); |
| 8657 | scoped_guard(rcu) |
| 8658 | perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); |
| 8659 | |
| 8660 | perf_unpin_context(ctx); |
| 8661 | put_ctx(ctx); |
| 8662 | } |
| 8663 | |
| 8664 | struct remote_output { |
| 8665 | struct perf_buffer *rb; |
| 8666 | int err; |
| 8667 | }; |
| 8668 | |
| 8669 | static void __perf_event_output_stop(struct perf_event *event, void *data) |
| 8670 | { |
| 8671 | struct perf_event *parent = event->parent; |
| 8672 | struct remote_output *ro = data; |
| 8673 | struct perf_buffer *rb = ro->rb; |
| 8674 | struct stop_event_data sd = { |
| 8675 | .event = event, |
| 8676 | }; |
| 8677 | |
| 8678 | if (!has_aux(event)) |
| 8679 | return; |
| 8680 | |
| 8681 | if (!parent) |
| 8682 | parent = event; |
| 8683 | |
| 8684 | /* |
| 8685 | * In case of inheritance, it will be the parent that links to the |
| 8686 | * ring-buffer, but it will be the child that's actually using it. |
| 8687 | * |
| 8688 | * We are using event::rb to determine if the event should be stopped, |
| 8689 | * however this may race with ring_buffer_attach() (through set_output), |
| 8690 | * which will make us skip the event that actually needs to be stopped. |
| 8691 | * So ring_buffer_attach() has to stop an aux event before re-assigning |
| 8692 | * its rb pointer. |
| 8693 | */ |
| 8694 | if (rcu_dereference(parent->rb) == rb) |
| 8695 | ro->err = __perf_event_stop(&sd); |
| 8696 | } |
| 8697 | |
| 8698 | static int __perf_pmu_output_stop(void *info) |
| 8699 | { |
| 8700 | struct perf_event *event = info; |
| 8701 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 8702 | struct remote_output ro = { |
| 8703 | .rb = event->rb, |
| 8704 | }; |
| 8705 | |
| 8706 | rcu_read_lock(); |
| 8707 | perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); |
| 8708 | if (cpuctx->task_ctx) |
| 8709 | perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, |
| 8710 | &ro, false); |
| 8711 | rcu_read_unlock(); |
| 8712 | |
| 8713 | return ro.err; |
| 8714 | } |
| 8715 | |
| 8716 | static void perf_pmu_output_stop(struct perf_event *event) |
| 8717 | { |
| 8718 | struct perf_event *iter; |
| 8719 | int err, cpu; |
| 8720 | |
| 8721 | restart: |
| 8722 | rcu_read_lock(); |
| 8723 | list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { |
| 8724 | /* |
| 8725 | * For per-CPU events, we need to make sure that neither they |
| 8726 | * nor their children are running; for cpu==-1 events it's |
| 8727 | * sufficient to stop the event itself if it's active, since |
| 8728 | * it can't have children. |
| 8729 | */ |
| 8730 | cpu = iter->cpu; |
| 8731 | if (cpu == -1) |
| 8732 | cpu = READ_ONCE(iter->oncpu); |
| 8733 | |
| 8734 | if (cpu == -1) |
| 8735 | continue; |
| 8736 | |
| 8737 | err = cpu_function_call(cpu, __perf_pmu_output_stop, event); |
| 8738 | if (err == -EAGAIN) { |
| 8739 | rcu_read_unlock(); |
| 8740 | goto restart; |
| 8741 | } |
| 8742 | } |
| 8743 | rcu_read_unlock(); |
| 8744 | } |
| 8745 | |
| 8746 | /* |
| 8747 | * task tracking -- fork/exit |
| 8748 | * |
| 8749 | * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task |
| 8750 | */ |
| 8751 | |
| 8752 | struct perf_task_event { |
| 8753 | struct task_struct *task; |
| 8754 | struct perf_event_context *task_ctx; |
| 8755 | |
| 8756 | struct { |
| 8757 | struct perf_event_header header; |
| 8758 | |
| 8759 | u32 pid; |
| 8760 | u32 ppid; |
| 8761 | u32 tid; |
| 8762 | u32 ptid; |
| 8763 | u64 time; |
| 8764 | } event_id; |
| 8765 | }; |
| 8766 | |
| 8767 | static int perf_event_task_match(struct perf_event *event) |
| 8768 | { |
| 8769 | return event->attr.comm || event->attr.mmap || |
| 8770 | event->attr.mmap2 || event->attr.mmap_data || |
| 8771 | event->attr.task; |
| 8772 | } |
| 8773 | |
| 8774 | static void perf_event_task_output(struct perf_event *event, |
| 8775 | void *data) |
| 8776 | { |
| 8777 | struct perf_task_event *task_event = data; |
| 8778 | struct perf_output_handle handle; |
| 8779 | struct perf_sample_data sample; |
| 8780 | struct task_struct *task = task_event->task; |
| 8781 | int ret, size = task_event->event_id.header.size; |
| 8782 | |
| 8783 | if (!perf_event_task_match(event)) |
| 8784 | return; |
| 8785 | |
| 8786 | perf_event_header__init_id(&task_event->event_id.header, &sample, event); |
| 8787 | |
| 8788 | ret = perf_output_begin(&handle, &sample, event, |
| 8789 | task_event->event_id.header.size); |
| 8790 | if (ret) |
| 8791 | goto out; |
| 8792 | |
| 8793 | task_event->event_id.pid = perf_event_pid(event, task); |
| 8794 | task_event->event_id.tid = perf_event_tid(event, task); |
| 8795 | |
| 8796 | if (task_event->event_id.header.type == PERF_RECORD_EXIT) { |
| 8797 | task_event->event_id.ppid = perf_event_pid(event, |
| 8798 | task->real_parent); |
| 8799 | task_event->event_id.ptid = perf_event_pid(event, |
| 8800 | task->real_parent); |
| 8801 | } else { /* PERF_RECORD_FORK */ |
| 8802 | task_event->event_id.ppid = perf_event_pid(event, current); |
| 8803 | task_event->event_id.ptid = perf_event_tid(event, current); |
| 8804 | } |
| 8805 | |
| 8806 | task_event->event_id.time = perf_event_clock(event); |
| 8807 | |
| 8808 | perf_output_put(&handle, task_event->event_id); |
| 8809 | |
| 8810 | perf_event__output_id_sample(event, &handle, &sample); |
| 8811 | |
| 8812 | perf_output_end(&handle); |
| 8813 | out: |
| 8814 | task_event->event_id.header.size = size; |
| 8815 | } |
| 8816 | |
| 8817 | static void perf_event_task(struct task_struct *task, |
| 8818 | struct perf_event_context *task_ctx, |
| 8819 | int new) |
| 8820 | { |
| 8821 | struct perf_task_event task_event; |
| 8822 | |
| 8823 | if (!atomic_read(&nr_comm_events) && |
| 8824 | !atomic_read(&nr_mmap_events) && |
| 8825 | !atomic_read(&nr_task_events)) |
| 8826 | return; |
| 8827 | |
| 8828 | task_event = (struct perf_task_event){ |
| 8829 | .task = task, |
| 8830 | .task_ctx = task_ctx, |
| 8831 | .event_id = { |
| 8832 | .header = { |
| 8833 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, |
| 8834 | .misc = 0, |
| 8835 | .size = sizeof(task_event.event_id), |
| 8836 | }, |
| 8837 | /* .pid */ |
| 8838 | /* .ppid */ |
| 8839 | /* .tid */ |
| 8840 | /* .ptid */ |
| 8841 | /* .time */ |
| 8842 | }, |
| 8843 | }; |
| 8844 | |
| 8845 | perf_iterate_sb(perf_event_task_output, |
| 8846 | &task_event, |
| 8847 | task_ctx); |
| 8848 | } |
| 8849 | |
| 8850 | /* |
| 8851 | * Allocate data for a new task when profiling system-wide |
| 8852 | * events which require PMU specific data |
| 8853 | */ |
| 8854 | static void |
| 8855 | perf_event_alloc_task_data(struct task_struct *child, |
| 8856 | struct task_struct *parent) |
| 8857 | { |
| 8858 | struct kmem_cache *ctx_cache = NULL; |
| 8859 | struct perf_ctx_data *cd; |
| 8860 | |
| 8861 | if (!refcount_read(&global_ctx_data_ref)) |
| 8862 | return; |
| 8863 | |
| 8864 | scoped_guard (rcu) { |
| 8865 | cd = rcu_dereference(parent->perf_ctx_data); |
| 8866 | if (cd) |
| 8867 | ctx_cache = cd->ctx_cache; |
| 8868 | } |
| 8869 | |
| 8870 | if (!ctx_cache) |
| 8871 | return; |
| 8872 | |
| 8873 | guard(percpu_read)(&global_ctx_data_rwsem); |
| 8874 | scoped_guard (rcu) { |
| 8875 | cd = rcu_dereference(child->perf_ctx_data); |
| 8876 | if (!cd) { |
| 8877 | /* |
| 8878 | * A system-wide event may be unaccount, |
| 8879 | * when attaching the perf_ctx_data. |
| 8880 | */ |
| 8881 | if (!refcount_read(&global_ctx_data_ref)) |
| 8882 | return; |
| 8883 | goto attach; |
| 8884 | } |
| 8885 | |
| 8886 | if (!cd->global) { |
| 8887 | cd->global = 1; |
| 8888 | refcount_inc(&cd->refcount); |
| 8889 | } |
| 8890 | } |
| 8891 | |
| 8892 | return; |
| 8893 | attach: |
| 8894 | attach_task_ctx_data(child, ctx_cache, true); |
| 8895 | } |
| 8896 | |
| 8897 | void perf_event_fork(struct task_struct *task) |
| 8898 | { |
| 8899 | perf_event_task(task, NULL, 1); |
| 8900 | perf_event_namespaces(task); |
| 8901 | perf_event_alloc_task_data(task, current); |
| 8902 | } |
| 8903 | |
| 8904 | /* |
| 8905 | * comm tracking |
| 8906 | */ |
| 8907 | |
| 8908 | struct perf_comm_event { |
| 8909 | struct task_struct *task; |
| 8910 | char *comm; |
| 8911 | int comm_size; |
| 8912 | |
| 8913 | struct { |
| 8914 | struct perf_event_header header; |
| 8915 | |
| 8916 | u32 pid; |
| 8917 | u32 tid; |
| 8918 | } event_id; |
| 8919 | }; |
| 8920 | |
| 8921 | static int perf_event_comm_match(struct perf_event *event) |
| 8922 | { |
| 8923 | return event->attr.comm; |
| 8924 | } |
| 8925 | |
| 8926 | static void perf_event_comm_output(struct perf_event *event, |
| 8927 | void *data) |
| 8928 | { |
| 8929 | struct perf_comm_event *comm_event = data; |
| 8930 | struct perf_output_handle handle; |
| 8931 | struct perf_sample_data sample; |
| 8932 | int size = comm_event->event_id.header.size; |
| 8933 | int ret; |
| 8934 | |
| 8935 | if (!perf_event_comm_match(event)) |
| 8936 | return; |
| 8937 | |
| 8938 | perf_event_header__init_id(&comm_event->event_id.header, &sample, event); |
| 8939 | ret = perf_output_begin(&handle, &sample, event, |
| 8940 | comm_event->event_id.header.size); |
| 8941 | |
| 8942 | if (ret) |
| 8943 | goto out; |
| 8944 | |
| 8945 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); |
| 8946 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); |
| 8947 | |
| 8948 | perf_output_put(&handle, comm_event->event_id); |
| 8949 | __output_copy(&handle, comm_event->comm, |
| 8950 | comm_event->comm_size); |
| 8951 | |
| 8952 | perf_event__output_id_sample(event, &handle, &sample); |
| 8953 | |
| 8954 | perf_output_end(&handle); |
| 8955 | out: |
| 8956 | comm_event->event_id.header.size = size; |
| 8957 | } |
| 8958 | |
| 8959 | static void perf_event_comm_event(struct perf_comm_event *comm_event) |
| 8960 | { |
| 8961 | char comm[TASK_COMM_LEN]; |
| 8962 | unsigned int size; |
| 8963 | |
| 8964 | memset(comm, 0, sizeof(comm)); |
| 8965 | strscpy(comm, comm_event->task->comm); |
| 8966 | size = ALIGN(strlen(comm)+1, sizeof(u64)); |
| 8967 | |
| 8968 | comm_event->comm = comm; |
| 8969 | comm_event->comm_size = size; |
| 8970 | |
| 8971 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; |
| 8972 | |
| 8973 | perf_iterate_sb(perf_event_comm_output, |
| 8974 | comm_event, |
| 8975 | NULL); |
| 8976 | } |
| 8977 | |
| 8978 | void perf_event_comm(struct task_struct *task, bool exec) |
| 8979 | { |
| 8980 | struct perf_comm_event comm_event; |
| 8981 | |
| 8982 | if (!atomic_read(&nr_comm_events)) |
| 8983 | return; |
| 8984 | |
| 8985 | comm_event = (struct perf_comm_event){ |
| 8986 | .task = task, |
| 8987 | /* .comm */ |
| 8988 | /* .comm_size */ |
| 8989 | .event_id = { |
| 8990 | .header = { |
| 8991 | .type = PERF_RECORD_COMM, |
| 8992 | .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, |
| 8993 | /* .size */ |
| 8994 | }, |
| 8995 | /* .pid */ |
| 8996 | /* .tid */ |
| 8997 | }, |
| 8998 | }; |
| 8999 | |
| 9000 | perf_event_comm_event(&comm_event); |
| 9001 | } |
| 9002 | |
| 9003 | /* |
| 9004 | * namespaces tracking |
| 9005 | */ |
| 9006 | |
| 9007 | struct perf_namespaces_event { |
| 9008 | struct task_struct *task; |
| 9009 | |
| 9010 | struct { |
| 9011 | struct perf_event_header header; |
| 9012 | |
| 9013 | u32 pid; |
| 9014 | u32 tid; |
| 9015 | u64 nr_namespaces; |
| 9016 | struct perf_ns_link_info link_info[NR_NAMESPACES]; |
| 9017 | } event_id; |
| 9018 | }; |
| 9019 | |
| 9020 | static int perf_event_namespaces_match(struct perf_event *event) |
| 9021 | { |
| 9022 | return event->attr.namespaces; |
| 9023 | } |
| 9024 | |
| 9025 | static void perf_event_namespaces_output(struct perf_event *event, |
| 9026 | void *data) |
| 9027 | { |
| 9028 | struct perf_namespaces_event *namespaces_event = data; |
| 9029 | struct perf_output_handle handle; |
| 9030 | struct perf_sample_data sample; |
| 9031 | u16 header_size = namespaces_event->event_id.header.size; |
| 9032 | int ret; |
| 9033 | |
| 9034 | if (!perf_event_namespaces_match(event)) |
| 9035 | return; |
| 9036 | |
| 9037 | perf_event_header__init_id(&namespaces_event->event_id.header, |
| 9038 | &sample, event); |
| 9039 | ret = perf_output_begin(&handle, &sample, event, |
| 9040 | namespaces_event->event_id.header.size); |
| 9041 | if (ret) |
| 9042 | goto out; |
| 9043 | |
| 9044 | namespaces_event->event_id.pid = perf_event_pid(event, |
| 9045 | namespaces_event->task); |
| 9046 | namespaces_event->event_id.tid = perf_event_tid(event, |
| 9047 | namespaces_event->task); |
| 9048 | |
| 9049 | perf_output_put(&handle, namespaces_event->event_id); |
| 9050 | |
| 9051 | perf_event__output_id_sample(event, &handle, &sample); |
| 9052 | |
| 9053 | perf_output_end(&handle); |
| 9054 | out: |
| 9055 | namespaces_event->event_id.header.size = header_size; |
| 9056 | } |
| 9057 | |
| 9058 | static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, |
| 9059 | struct task_struct *task, |
| 9060 | const struct proc_ns_operations *ns_ops) |
| 9061 | { |
| 9062 | struct path ns_path; |
| 9063 | struct inode *ns_inode; |
| 9064 | int error; |
| 9065 | |
| 9066 | error = ns_get_path(&ns_path, task, ns_ops); |
| 9067 | if (!error) { |
| 9068 | ns_inode = ns_path.dentry->d_inode; |
| 9069 | ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); |
| 9070 | ns_link_info->ino = ns_inode->i_ino; |
| 9071 | path_put(&ns_path); |
| 9072 | } |
| 9073 | } |
| 9074 | |
| 9075 | void perf_event_namespaces(struct task_struct *task) |
| 9076 | { |
| 9077 | struct perf_namespaces_event namespaces_event; |
| 9078 | struct perf_ns_link_info *ns_link_info; |
| 9079 | |
| 9080 | if (!atomic_read(&nr_namespaces_events)) |
| 9081 | return; |
| 9082 | |
| 9083 | namespaces_event = (struct perf_namespaces_event){ |
| 9084 | .task = task, |
| 9085 | .event_id = { |
| 9086 | .header = { |
| 9087 | .type = PERF_RECORD_NAMESPACES, |
| 9088 | .misc = 0, |
| 9089 | .size = sizeof(namespaces_event.event_id), |
| 9090 | }, |
| 9091 | /* .pid */ |
| 9092 | /* .tid */ |
| 9093 | .nr_namespaces = NR_NAMESPACES, |
| 9094 | /* .link_info[NR_NAMESPACES] */ |
| 9095 | }, |
| 9096 | }; |
| 9097 | |
| 9098 | ns_link_info = namespaces_event.event_id.link_info; |
| 9099 | |
| 9100 | perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], |
| 9101 | task, &mntns_operations); |
| 9102 | |
| 9103 | #ifdef CONFIG_USER_NS |
| 9104 | perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], |
| 9105 | task, &userns_operations); |
| 9106 | #endif |
| 9107 | #ifdef CONFIG_NET_NS |
| 9108 | perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], |
| 9109 | task, &netns_operations); |
| 9110 | #endif |
| 9111 | #ifdef CONFIG_UTS_NS |
| 9112 | perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], |
| 9113 | task, &utsns_operations); |
| 9114 | #endif |
| 9115 | #ifdef CONFIG_IPC_NS |
| 9116 | perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], |
| 9117 | task, &ipcns_operations); |
| 9118 | #endif |
| 9119 | #ifdef CONFIG_PID_NS |
| 9120 | perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], |
| 9121 | task, &pidns_operations); |
| 9122 | #endif |
| 9123 | #ifdef CONFIG_CGROUPS |
| 9124 | perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], |
| 9125 | task, &cgroupns_operations); |
| 9126 | #endif |
| 9127 | |
| 9128 | perf_iterate_sb(perf_event_namespaces_output, |
| 9129 | &namespaces_event, |
| 9130 | NULL); |
| 9131 | } |
| 9132 | |
| 9133 | /* |
| 9134 | * cgroup tracking |
| 9135 | */ |
| 9136 | #ifdef CONFIG_CGROUP_PERF |
| 9137 | |
| 9138 | struct perf_cgroup_event { |
| 9139 | char *path; |
| 9140 | int path_size; |
| 9141 | struct { |
| 9142 | struct perf_event_header header; |
| 9143 | u64 id; |
| 9144 | char path[]; |
| 9145 | } event_id; |
| 9146 | }; |
| 9147 | |
| 9148 | static int perf_event_cgroup_match(struct perf_event *event) |
| 9149 | { |
| 9150 | return event->attr.cgroup; |
| 9151 | } |
| 9152 | |
| 9153 | static void perf_event_cgroup_output(struct perf_event *event, void *data) |
| 9154 | { |
| 9155 | struct perf_cgroup_event *cgroup_event = data; |
| 9156 | struct perf_output_handle handle; |
| 9157 | struct perf_sample_data sample; |
| 9158 | u16 header_size = cgroup_event->event_id.header.size; |
| 9159 | int ret; |
| 9160 | |
| 9161 | if (!perf_event_cgroup_match(event)) |
| 9162 | return; |
| 9163 | |
| 9164 | perf_event_header__init_id(&cgroup_event->event_id.header, |
| 9165 | &sample, event); |
| 9166 | ret = perf_output_begin(&handle, &sample, event, |
| 9167 | cgroup_event->event_id.header.size); |
| 9168 | if (ret) |
| 9169 | goto out; |
| 9170 | |
| 9171 | perf_output_put(&handle, cgroup_event->event_id); |
| 9172 | __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); |
| 9173 | |
| 9174 | perf_event__output_id_sample(event, &handle, &sample); |
| 9175 | |
| 9176 | perf_output_end(&handle); |
| 9177 | out: |
| 9178 | cgroup_event->event_id.header.size = header_size; |
| 9179 | } |
| 9180 | |
| 9181 | static void perf_event_cgroup(struct cgroup *cgrp) |
| 9182 | { |
| 9183 | struct perf_cgroup_event cgroup_event; |
| 9184 | char path_enomem[16] = "//enomem"; |
| 9185 | char *pathname; |
| 9186 | size_t size; |
| 9187 | |
| 9188 | if (!atomic_read(&nr_cgroup_events)) |
| 9189 | return; |
| 9190 | |
| 9191 | cgroup_event = (struct perf_cgroup_event){ |
| 9192 | .event_id = { |
| 9193 | .header = { |
| 9194 | .type = PERF_RECORD_CGROUP, |
| 9195 | .misc = 0, |
| 9196 | .size = sizeof(cgroup_event.event_id), |
| 9197 | }, |
| 9198 | .id = cgroup_id(cgrp), |
| 9199 | }, |
| 9200 | }; |
| 9201 | |
| 9202 | pathname = kmalloc(PATH_MAX, GFP_KERNEL); |
| 9203 | if (pathname == NULL) { |
| 9204 | cgroup_event.path = path_enomem; |
| 9205 | } else { |
| 9206 | /* just to be sure to have enough space for alignment */ |
| 9207 | cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); |
| 9208 | cgroup_event.path = pathname; |
| 9209 | } |
| 9210 | |
| 9211 | /* |
| 9212 | * Since our buffer works in 8 byte units we need to align our string |
| 9213 | * size to a multiple of 8. However, we must guarantee the tail end is |
| 9214 | * zero'd out to avoid leaking random bits to userspace. |
| 9215 | */ |
| 9216 | size = strlen(cgroup_event.path) + 1; |
| 9217 | while (!IS_ALIGNED(size, sizeof(u64))) |
| 9218 | cgroup_event.path[size++] = '\0'; |
| 9219 | |
| 9220 | cgroup_event.event_id.header.size += size; |
| 9221 | cgroup_event.path_size = size; |
| 9222 | |
| 9223 | perf_iterate_sb(perf_event_cgroup_output, |
| 9224 | &cgroup_event, |
| 9225 | NULL); |
| 9226 | |
| 9227 | kfree(pathname); |
| 9228 | } |
| 9229 | |
| 9230 | #endif |
| 9231 | |
| 9232 | /* |
| 9233 | * mmap tracking |
| 9234 | */ |
| 9235 | |
| 9236 | struct perf_mmap_event { |
| 9237 | struct vm_area_struct *vma; |
| 9238 | |
| 9239 | const char *file_name; |
| 9240 | int file_size; |
| 9241 | int maj, min; |
| 9242 | u64 ino; |
| 9243 | u64 ino_generation; |
| 9244 | u32 prot, flags; |
| 9245 | u8 build_id[BUILD_ID_SIZE_MAX]; |
| 9246 | u32 build_id_size; |
| 9247 | |
| 9248 | struct { |
| 9249 | struct perf_event_header header; |
| 9250 | |
| 9251 | u32 pid; |
| 9252 | u32 tid; |
| 9253 | u64 start; |
| 9254 | u64 len; |
| 9255 | u64 pgoff; |
| 9256 | } event_id; |
| 9257 | }; |
| 9258 | |
| 9259 | static int perf_event_mmap_match(struct perf_event *event, |
| 9260 | void *data) |
| 9261 | { |
| 9262 | struct perf_mmap_event *mmap_event = data; |
| 9263 | struct vm_area_struct *vma = mmap_event->vma; |
| 9264 | int executable = vma->vm_flags & VM_EXEC; |
| 9265 | |
| 9266 | return (!executable && event->attr.mmap_data) || |
| 9267 | (executable && (event->attr.mmap || event->attr.mmap2)); |
| 9268 | } |
| 9269 | |
| 9270 | static void perf_event_mmap_output(struct perf_event *event, |
| 9271 | void *data) |
| 9272 | { |
| 9273 | struct perf_mmap_event *mmap_event = data; |
| 9274 | struct perf_output_handle handle; |
| 9275 | struct perf_sample_data sample; |
| 9276 | int size = mmap_event->event_id.header.size; |
| 9277 | u32 type = mmap_event->event_id.header.type; |
| 9278 | bool use_build_id; |
| 9279 | int ret; |
| 9280 | |
| 9281 | if (!perf_event_mmap_match(event, data)) |
| 9282 | return; |
| 9283 | |
| 9284 | if (event->attr.mmap2) { |
| 9285 | mmap_event->event_id.header.type = PERF_RECORD_MMAP2; |
| 9286 | mmap_event->event_id.header.size += sizeof(mmap_event->maj); |
| 9287 | mmap_event->event_id.header.size += sizeof(mmap_event->min); |
| 9288 | mmap_event->event_id.header.size += sizeof(mmap_event->ino); |
| 9289 | mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); |
| 9290 | mmap_event->event_id.header.size += sizeof(mmap_event->prot); |
| 9291 | mmap_event->event_id.header.size += sizeof(mmap_event->flags); |
| 9292 | } |
| 9293 | |
| 9294 | perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); |
| 9295 | ret = perf_output_begin(&handle, &sample, event, |
| 9296 | mmap_event->event_id.header.size); |
| 9297 | if (ret) |
| 9298 | goto out; |
| 9299 | |
| 9300 | mmap_event->event_id.pid = perf_event_pid(event, current); |
| 9301 | mmap_event->event_id.tid = perf_event_tid(event, current); |
| 9302 | |
| 9303 | use_build_id = event->attr.build_id && mmap_event->build_id_size; |
| 9304 | |
| 9305 | if (event->attr.mmap2 && use_build_id) |
| 9306 | mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; |
| 9307 | |
| 9308 | perf_output_put(&handle, mmap_event->event_id); |
| 9309 | |
| 9310 | if (event->attr.mmap2) { |
| 9311 | if (use_build_id) { |
| 9312 | u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; |
| 9313 | |
| 9314 | __output_copy(&handle, size, 4); |
| 9315 | __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); |
| 9316 | } else { |
| 9317 | perf_output_put(&handle, mmap_event->maj); |
| 9318 | perf_output_put(&handle, mmap_event->min); |
| 9319 | perf_output_put(&handle, mmap_event->ino); |
| 9320 | perf_output_put(&handle, mmap_event->ino_generation); |
| 9321 | } |
| 9322 | perf_output_put(&handle, mmap_event->prot); |
| 9323 | perf_output_put(&handle, mmap_event->flags); |
| 9324 | } |
| 9325 | |
| 9326 | __output_copy(&handle, mmap_event->file_name, |
| 9327 | mmap_event->file_size); |
| 9328 | |
| 9329 | perf_event__output_id_sample(event, &handle, &sample); |
| 9330 | |
| 9331 | perf_output_end(&handle); |
| 9332 | out: |
| 9333 | mmap_event->event_id.header.size = size; |
| 9334 | mmap_event->event_id.header.type = type; |
| 9335 | } |
| 9336 | |
| 9337 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) |
| 9338 | { |
| 9339 | struct vm_area_struct *vma = mmap_event->vma; |
| 9340 | struct file *file = vma->vm_file; |
| 9341 | int maj = 0, min = 0; |
| 9342 | u64 ino = 0, gen = 0; |
| 9343 | u32 prot = 0, flags = 0; |
| 9344 | unsigned int size; |
| 9345 | char tmp[16]; |
| 9346 | char *buf = NULL; |
| 9347 | char *name = NULL; |
| 9348 | |
| 9349 | if (vma->vm_flags & VM_READ) |
| 9350 | prot |= PROT_READ; |
| 9351 | if (vma->vm_flags & VM_WRITE) |
| 9352 | prot |= PROT_WRITE; |
| 9353 | if (vma->vm_flags & VM_EXEC) |
| 9354 | prot |= PROT_EXEC; |
| 9355 | |
| 9356 | if (vma->vm_flags & VM_MAYSHARE) |
| 9357 | flags = MAP_SHARED; |
| 9358 | else |
| 9359 | flags = MAP_PRIVATE; |
| 9360 | |
| 9361 | if (vma->vm_flags & VM_LOCKED) |
| 9362 | flags |= MAP_LOCKED; |
| 9363 | if (is_vm_hugetlb_page(vma)) |
| 9364 | flags |= MAP_HUGETLB; |
| 9365 | |
| 9366 | if (file) { |
| 9367 | struct inode *inode; |
| 9368 | dev_t dev; |
| 9369 | |
| 9370 | buf = kmalloc(PATH_MAX, GFP_KERNEL); |
| 9371 | if (!buf) { |
| 9372 | name = "//enomem"; |
| 9373 | goto cpy_name; |
| 9374 | } |
| 9375 | /* |
| 9376 | * d_path() works from the end of the rb backwards, so we |
| 9377 | * need to add enough zero bytes after the string to handle |
| 9378 | * the 64bit alignment we do later. |
| 9379 | */ |
| 9380 | name = file_path(file, buf, PATH_MAX - sizeof(u64)); |
| 9381 | if (IS_ERR(name)) { |
| 9382 | name = "//toolong"; |
| 9383 | goto cpy_name; |
| 9384 | } |
| 9385 | inode = file_inode(vma->vm_file); |
| 9386 | dev = inode->i_sb->s_dev; |
| 9387 | ino = inode->i_ino; |
| 9388 | gen = inode->i_generation; |
| 9389 | maj = MAJOR(dev); |
| 9390 | min = MINOR(dev); |
| 9391 | |
| 9392 | goto got_name; |
| 9393 | } else { |
| 9394 | if (vma->vm_ops && vma->vm_ops->name) |
| 9395 | name = (char *) vma->vm_ops->name(vma); |
| 9396 | if (!name) |
| 9397 | name = (char *)arch_vma_name(vma); |
| 9398 | if (!name) { |
| 9399 | if (vma_is_initial_heap(vma)) |
| 9400 | name = "[heap]"; |
| 9401 | else if (vma_is_initial_stack(vma)) |
| 9402 | name = "[stack]"; |
| 9403 | else |
| 9404 | name = "//anon"; |
| 9405 | } |
| 9406 | } |
| 9407 | |
| 9408 | cpy_name: |
| 9409 | strscpy(tmp, name); |
| 9410 | name = tmp; |
| 9411 | got_name: |
| 9412 | /* |
| 9413 | * Since our buffer works in 8 byte units we need to align our string |
| 9414 | * size to a multiple of 8. However, we must guarantee the tail end is |
| 9415 | * zero'd out to avoid leaking random bits to userspace. |
| 9416 | */ |
| 9417 | size = strlen(name)+1; |
| 9418 | while (!IS_ALIGNED(size, sizeof(u64))) |
| 9419 | name[size++] = '\0'; |
| 9420 | |
| 9421 | mmap_event->file_name = name; |
| 9422 | mmap_event->file_size = size; |
| 9423 | mmap_event->maj = maj; |
| 9424 | mmap_event->min = min; |
| 9425 | mmap_event->ino = ino; |
| 9426 | mmap_event->ino_generation = gen; |
| 9427 | mmap_event->prot = prot; |
| 9428 | mmap_event->flags = flags; |
| 9429 | |
| 9430 | if (!(vma->vm_flags & VM_EXEC)) |
| 9431 | mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; |
| 9432 | |
| 9433 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; |
| 9434 | |
| 9435 | if (atomic_read(&nr_build_id_events)) |
| 9436 | build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size); |
| 9437 | |
| 9438 | perf_iterate_sb(perf_event_mmap_output, |
| 9439 | mmap_event, |
| 9440 | NULL); |
| 9441 | |
| 9442 | kfree(buf); |
| 9443 | } |
| 9444 | |
| 9445 | /* |
| 9446 | * Check whether inode and address range match filter criteria. |
| 9447 | */ |
| 9448 | static bool perf_addr_filter_match(struct perf_addr_filter *filter, |
| 9449 | struct file *file, unsigned long offset, |
| 9450 | unsigned long size) |
| 9451 | { |
| 9452 | /* d_inode(NULL) won't be equal to any mapped user-space file */ |
| 9453 | if (!filter->path.dentry) |
| 9454 | return false; |
| 9455 | |
| 9456 | if (d_inode(filter->path.dentry) != file_inode(file)) |
| 9457 | return false; |
| 9458 | |
| 9459 | if (filter->offset > offset + size) |
| 9460 | return false; |
| 9461 | |
| 9462 | if (filter->offset + filter->size < offset) |
| 9463 | return false; |
| 9464 | |
| 9465 | return true; |
| 9466 | } |
| 9467 | |
| 9468 | static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, |
| 9469 | struct vm_area_struct *vma, |
| 9470 | struct perf_addr_filter_range *fr) |
| 9471 | { |
| 9472 | unsigned long vma_size = vma->vm_end - vma->vm_start; |
| 9473 | unsigned long off = vma->vm_pgoff << PAGE_SHIFT; |
| 9474 | struct file *file = vma->vm_file; |
| 9475 | |
| 9476 | if (!perf_addr_filter_match(filter, file, off, vma_size)) |
| 9477 | return false; |
| 9478 | |
| 9479 | if (filter->offset < off) { |
| 9480 | fr->start = vma->vm_start; |
| 9481 | fr->size = min(vma_size, filter->size - (off - filter->offset)); |
| 9482 | } else { |
| 9483 | fr->start = vma->vm_start + filter->offset - off; |
| 9484 | fr->size = min(vma->vm_end - fr->start, filter->size); |
| 9485 | } |
| 9486 | |
| 9487 | return true; |
| 9488 | } |
| 9489 | |
| 9490 | static void __perf_addr_filters_adjust(struct perf_event *event, void *data) |
| 9491 | { |
| 9492 | struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); |
| 9493 | struct vm_area_struct *vma = data; |
| 9494 | struct perf_addr_filter *filter; |
| 9495 | unsigned int restart = 0, count = 0; |
| 9496 | unsigned long flags; |
| 9497 | |
| 9498 | if (!has_addr_filter(event)) |
| 9499 | return; |
| 9500 | |
| 9501 | if (!vma->vm_file) |
| 9502 | return; |
| 9503 | |
| 9504 | raw_spin_lock_irqsave(&ifh->lock, flags); |
| 9505 | list_for_each_entry(filter, &ifh->list, entry) { |
| 9506 | if (perf_addr_filter_vma_adjust(filter, vma, |
| 9507 | &event->addr_filter_ranges[count])) |
| 9508 | restart++; |
| 9509 | |
| 9510 | count++; |
| 9511 | } |
| 9512 | |
| 9513 | if (restart) |
| 9514 | event->addr_filters_gen++; |
| 9515 | raw_spin_unlock_irqrestore(&ifh->lock, flags); |
| 9516 | |
| 9517 | if (restart) |
| 9518 | perf_event_stop(event, 1); |
| 9519 | } |
| 9520 | |
| 9521 | /* |
| 9522 | * Adjust all task's events' filters to the new vma |
| 9523 | */ |
| 9524 | static void perf_addr_filters_adjust(struct vm_area_struct *vma) |
| 9525 | { |
| 9526 | struct perf_event_context *ctx; |
| 9527 | |
| 9528 | /* |
| 9529 | * Data tracing isn't supported yet and as such there is no need |
| 9530 | * to keep track of anything that isn't related to executable code: |
| 9531 | */ |
| 9532 | if (!(vma->vm_flags & VM_EXEC)) |
| 9533 | return; |
| 9534 | |
| 9535 | rcu_read_lock(); |
| 9536 | ctx = rcu_dereference(current->perf_event_ctxp); |
| 9537 | if (ctx) |
| 9538 | perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); |
| 9539 | rcu_read_unlock(); |
| 9540 | } |
| 9541 | |
| 9542 | void perf_event_mmap(struct vm_area_struct *vma) |
| 9543 | { |
| 9544 | struct perf_mmap_event mmap_event; |
| 9545 | |
| 9546 | if (!atomic_read(&nr_mmap_events)) |
| 9547 | return; |
| 9548 | |
| 9549 | mmap_event = (struct perf_mmap_event){ |
| 9550 | .vma = vma, |
| 9551 | /* .file_name */ |
| 9552 | /* .file_size */ |
| 9553 | .event_id = { |
| 9554 | .header = { |
| 9555 | .type = PERF_RECORD_MMAP, |
| 9556 | .misc = PERF_RECORD_MISC_USER, |
| 9557 | /* .size */ |
| 9558 | }, |
| 9559 | /* .pid */ |
| 9560 | /* .tid */ |
| 9561 | .start = vma->vm_start, |
| 9562 | .len = vma->vm_end - vma->vm_start, |
| 9563 | .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, |
| 9564 | }, |
| 9565 | /* .maj (attr_mmap2 only) */ |
| 9566 | /* .min (attr_mmap2 only) */ |
| 9567 | /* .ino (attr_mmap2 only) */ |
| 9568 | /* .ino_generation (attr_mmap2 only) */ |
| 9569 | /* .prot (attr_mmap2 only) */ |
| 9570 | /* .flags (attr_mmap2 only) */ |
| 9571 | }; |
| 9572 | |
| 9573 | perf_addr_filters_adjust(vma); |
| 9574 | perf_event_mmap_event(&mmap_event); |
| 9575 | } |
| 9576 | |
| 9577 | void perf_event_aux_event(struct perf_event *event, unsigned long head, |
| 9578 | unsigned long size, u64 flags) |
| 9579 | { |
| 9580 | struct perf_output_handle handle; |
| 9581 | struct perf_sample_data sample; |
| 9582 | struct perf_aux_event { |
| 9583 | struct perf_event_header header; |
| 9584 | u64 offset; |
| 9585 | u64 size; |
| 9586 | u64 flags; |
| 9587 | } rec = { |
| 9588 | .header = { |
| 9589 | .type = PERF_RECORD_AUX, |
| 9590 | .misc = 0, |
| 9591 | .size = sizeof(rec), |
| 9592 | }, |
| 9593 | .offset = head, |
| 9594 | .size = size, |
| 9595 | .flags = flags, |
| 9596 | }; |
| 9597 | int ret; |
| 9598 | |
| 9599 | perf_event_header__init_id(&rec.header, &sample, event); |
| 9600 | ret = perf_output_begin(&handle, &sample, event, rec.header.size); |
| 9601 | |
| 9602 | if (ret) |
| 9603 | return; |
| 9604 | |
| 9605 | perf_output_put(&handle, rec); |
| 9606 | perf_event__output_id_sample(event, &handle, &sample); |
| 9607 | |
| 9608 | perf_output_end(&handle); |
| 9609 | } |
| 9610 | |
| 9611 | /* |
| 9612 | * Lost/dropped samples logging |
| 9613 | */ |
| 9614 | void perf_log_lost_samples(struct perf_event *event, u64 lost) |
| 9615 | { |
| 9616 | struct perf_output_handle handle; |
| 9617 | struct perf_sample_data sample; |
| 9618 | int ret; |
| 9619 | |
| 9620 | struct { |
| 9621 | struct perf_event_header header; |
| 9622 | u64 lost; |
| 9623 | } lost_samples_event = { |
| 9624 | .header = { |
| 9625 | .type = PERF_RECORD_LOST_SAMPLES, |
| 9626 | .misc = 0, |
| 9627 | .size = sizeof(lost_samples_event), |
| 9628 | }, |
| 9629 | .lost = lost, |
| 9630 | }; |
| 9631 | |
| 9632 | perf_event_header__init_id(&lost_samples_event.header, &sample, event); |
| 9633 | |
| 9634 | ret = perf_output_begin(&handle, &sample, event, |
| 9635 | lost_samples_event.header.size); |
| 9636 | if (ret) |
| 9637 | return; |
| 9638 | |
| 9639 | perf_output_put(&handle, lost_samples_event); |
| 9640 | perf_event__output_id_sample(event, &handle, &sample); |
| 9641 | perf_output_end(&handle); |
| 9642 | } |
| 9643 | |
| 9644 | /* |
| 9645 | * context_switch tracking |
| 9646 | */ |
| 9647 | |
| 9648 | struct perf_switch_event { |
| 9649 | struct task_struct *task; |
| 9650 | struct task_struct *next_prev; |
| 9651 | |
| 9652 | struct { |
| 9653 | struct perf_event_header header; |
| 9654 | u32 next_prev_pid; |
| 9655 | u32 next_prev_tid; |
| 9656 | } event_id; |
| 9657 | }; |
| 9658 | |
| 9659 | static int perf_event_switch_match(struct perf_event *event) |
| 9660 | { |
| 9661 | return event->attr.context_switch; |
| 9662 | } |
| 9663 | |
| 9664 | static void perf_event_switch_output(struct perf_event *event, void *data) |
| 9665 | { |
| 9666 | struct perf_switch_event *se = data; |
| 9667 | struct perf_output_handle handle; |
| 9668 | struct perf_sample_data sample; |
| 9669 | int ret; |
| 9670 | |
| 9671 | if (!perf_event_switch_match(event)) |
| 9672 | return; |
| 9673 | |
| 9674 | /* Only CPU-wide events are allowed to see next/prev pid/tid */ |
| 9675 | if (event->ctx->task) { |
| 9676 | se->event_id.header.type = PERF_RECORD_SWITCH; |
| 9677 | se->event_id.header.size = sizeof(se->event_id.header); |
| 9678 | } else { |
| 9679 | se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; |
| 9680 | se->event_id.header.size = sizeof(se->event_id); |
| 9681 | se->event_id.next_prev_pid = |
| 9682 | perf_event_pid(event, se->next_prev); |
| 9683 | se->event_id.next_prev_tid = |
| 9684 | perf_event_tid(event, se->next_prev); |
| 9685 | } |
| 9686 | |
| 9687 | perf_event_header__init_id(&se->event_id.header, &sample, event); |
| 9688 | |
| 9689 | ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); |
| 9690 | if (ret) |
| 9691 | return; |
| 9692 | |
| 9693 | if (event->ctx->task) |
| 9694 | perf_output_put(&handle, se->event_id.header); |
| 9695 | else |
| 9696 | perf_output_put(&handle, se->event_id); |
| 9697 | |
| 9698 | perf_event__output_id_sample(event, &handle, &sample); |
| 9699 | |
| 9700 | perf_output_end(&handle); |
| 9701 | } |
| 9702 | |
| 9703 | static void perf_event_switch(struct task_struct *task, |
| 9704 | struct task_struct *next_prev, bool sched_in) |
| 9705 | { |
| 9706 | struct perf_switch_event switch_event; |
| 9707 | |
| 9708 | /* N.B. caller checks nr_switch_events != 0 */ |
| 9709 | |
| 9710 | switch_event = (struct perf_switch_event){ |
| 9711 | .task = task, |
| 9712 | .next_prev = next_prev, |
| 9713 | .event_id = { |
| 9714 | .header = { |
| 9715 | /* .type */ |
| 9716 | .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, |
| 9717 | /* .size */ |
| 9718 | }, |
| 9719 | /* .next_prev_pid */ |
| 9720 | /* .next_prev_tid */ |
| 9721 | }, |
| 9722 | }; |
| 9723 | |
| 9724 | if (!sched_in && task_is_runnable(task)) { |
| 9725 | switch_event.event_id.header.misc |= |
| 9726 | PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; |
| 9727 | } |
| 9728 | |
| 9729 | perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); |
| 9730 | } |
| 9731 | |
| 9732 | /* |
| 9733 | * IRQ throttle logging |
| 9734 | */ |
| 9735 | |
| 9736 | static void perf_log_throttle(struct perf_event *event, int enable) |
| 9737 | { |
| 9738 | struct perf_output_handle handle; |
| 9739 | struct perf_sample_data sample; |
| 9740 | int ret; |
| 9741 | |
| 9742 | struct { |
| 9743 | struct perf_event_header header; |
| 9744 | u64 time; |
| 9745 | u64 id; |
| 9746 | u64 stream_id; |
| 9747 | } throttle_event = { |
| 9748 | .header = { |
| 9749 | .type = PERF_RECORD_THROTTLE, |
| 9750 | .misc = 0, |
| 9751 | .size = sizeof(throttle_event), |
| 9752 | }, |
| 9753 | .time = perf_event_clock(event), |
| 9754 | .id = primary_event_id(event), |
| 9755 | .stream_id = event->id, |
| 9756 | }; |
| 9757 | |
| 9758 | if (enable) |
| 9759 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; |
| 9760 | |
| 9761 | perf_event_header__init_id(&throttle_event.header, &sample, event); |
| 9762 | |
| 9763 | ret = perf_output_begin(&handle, &sample, event, |
| 9764 | throttle_event.header.size); |
| 9765 | if (ret) |
| 9766 | return; |
| 9767 | |
| 9768 | perf_output_put(&handle, throttle_event); |
| 9769 | perf_event__output_id_sample(event, &handle, &sample); |
| 9770 | perf_output_end(&handle); |
| 9771 | } |
| 9772 | |
| 9773 | /* |
| 9774 | * ksymbol register/unregister tracking |
| 9775 | */ |
| 9776 | |
| 9777 | struct perf_ksymbol_event { |
| 9778 | const char *name; |
| 9779 | int name_len; |
| 9780 | struct { |
| 9781 | struct perf_event_header header; |
| 9782 | u64 addr; |
| 9783 | u32 len; |
| 9784 | u16 ksym_type; |
| 9785 | u16 flags; |
| 9786 | } event_id; |
| 9787 | }; |
| 9788 | |
| 9789 | static int perf_event_ksymbol_match(struct perf_event *event) |
| 9790 | { |
| 9791 | return event->attr.ksymbol; |
| 9792 | } |
| 9793 | |
| 9794 | static void perf_event_ksymbol_output(struct perf_event *event, void *data) |
| 9795 | { |
| 9796 | struct perf_ksymbol_event *ksymbol_event = data; |
| 9797 | struct perf_output_handle handle; |
| 9798 | struct perf_sample_data sample; |
| 9799 | int ret; |
| 9800 | |
| 9801 | if (!perf_event_ksymbol_match(event)) |
| 9802 | return; |
| 9803 | |
| 9804 | perf_event_header__init_id(&ksymbol_event->event_id.header, |
| 9805 | &sample, event); |
| 9806 | ret = perf_output_begin(&handle, &sample, event, |
| 9807 | ksymbol_event->event_id.header.size); |
| 9808 | if (ret) |
| 9809 | return; |
| 9810 | |
| 9811 | perf_output_put(&handle, ksymbol_event->event_id); |
| 9812 | __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); |
| 9813 | perf_event__output_id_sample(event, &handle, &sample); |
| 9814 | |
| 9815 | perf_output_end(&handle); |
| 9816 | } |
| 9817 | |
| 9818 | void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, |
| 9819 | const char *sym) |
| 9820 | { |
| 9821 | struct perf_ksymbol_event ksymbol_event; |
| 9822 | char name[KSYM_NAME_LEN]; |
| 9823 | u16 flags = 0; |
| 9824 | int name_len; |
| 9825 | |
| 9826 | if (!atomic_read(&nr_ksymbol_events)) |
| 9827 | return; |
| 9828 | |
| 9829 | if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || |
| 9830 | ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) |
| 9831 | goto err; |
| 9832 | |
| 9833 | strscpy(name, sym); |
| 9834 | name_len = strlen(name) + 1; |
| 9835 | while (!IS_ALIGNED(name_len, sizeof(u64))) |
| 9836 | name[name_len++] = '\0'; |
| 9837 | BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); |
| 9838 | |
| 9839 | if (unregister) |
| 9840 | flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; |
| 9841 | |
| 9842 | ksymbol_event = (struct perf_ksymbol_event){ |
| 9843 | .name = name, |
| 9844 | .name_len = name_len, |
| 9845 | .event_id = { |
| 9846 | .header = { |
| 9847 | .type = PERF_RECORD_KSYMBOL, |
| 9848 | .size = sizeof(ksymbol_event.event_id) + |
| 9849 | name_len, |
| 9850 | }, |
| 9851 | .addr = addr, |
| 9852 | .len = len, |
| 9853 | .ksym_type = ksym_type, |
| 9854 | .flags = flags, |
| 9855 | }, |
| 9856 | }; |
| 9857 | |
| 9858 | perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); |
| 9859 | return; |
| 9860 | err: |
| 9861 | WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); |
| 9862 | } |
| 9863 | |
| 9864 | /* |
| 9865 | * bpf program load/unload tracking |
| 9866 | */ |
| 9867 | |
| 9868 | struct perf_bpf_event { |
| 9869 | struct bpf_prog *prog; |
| 9870 | struct { |
| 9871 | struct perf_event_header header; |
| 9872 | u16 type; |
| 9873 | u16 flags; |
| 9874 | u32 id; |
| 9875 | u8 tag[BPF_TAG_SIZE]; |
| 9876 | } event_id; |
| 9877 | }; |
| 9878 | |
| 9879 | static int perf_event_bpf_match(struct perf_event *event) |
| 9880 | { |
| 9881 | return event->attr.bpf_event; |
| 9882 | } |
| 9883 | |
| 9884 | static void perf_event_bpf_output(struct perf_event *event, void *data) |
| 9885 | { |
| 9886 | struct perf_bpf_event *bpf_event = data; |
| 9887 | struct perf_output_handle handle; |
| 9888 | struct perf_sample_data sample; |
| 9889 | int ret; |
| 9890 | |
| 9891 | if (!perf_event_bpf_match(event)) |
| 9892 | return; |
| 9893 | |
| 9894 | perf_event_header__init_id(&bpf_event->event_id.header, |
| 9895 | &sample, event); |
| 9896 | ret = perf_output_begin(&handle, &sample, event, |
| 9897 | bpf_event->event_id.header.size); |
| 9898 | if (ret) |
| 9899 | return; |
| 9900 | |
| 9901 | perf_output_put(&handle, bpf_event->event_id); |
| 9902 | perf_event__output_id_sample(event, &handle, &sample); |
| 9903 | |
| 9904 | perf_output_end(&handle); |
| 9905 | } |
| 9906 | |
| 9907 | static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, |
| 9908 | enum perf_bpf_event_type type) |
| 9909 | { |
| 9910 | bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; |
| 9911 | int i; |
| 9912 | |
| 9913 | perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, |
| 9914 | (u64)(unsigned long)prog->bpf_func, |
| 9915 | prog->jited_len, unregister, |
| 9916 | prog->aux->ksym.name); |
| 9917 | |
| 9918 | for (i = 1; i < prog->aux->func_cnt; i++) { |
| 9919 | struct bpf_prog *subprog = prog->aux->func[i]; |
| 9920 | |
| 9921 | perf_event_ksymbol( |
| 9922 | PERF_RECORD_KSYMBOL_TYPE_BPF, |
| 9923 | (u64)(unsigned long)subprog->bpf_func, |
| 9924 | subprog->jited_len, unregister, |
| 9925 | subprog->aux->ksym.name); |
| 9926 | } |
| 9927 | } |
| 9928 | |
| 9929 | void perf_event_bpf_event(struct bpf_prog *prog, |
| 9930 | enum perf_bpf_event_type type, |
| 9931 | u16 flags) |
| 9932 | { |
| 9933 | struct perf_bpf_event bpf_event; |
| 9934 | |
| 9935 | switch (type) { |
| 9936 | case PERF_BPF_EVENT_PROG_LOAD: |
| 9937 | case PERF_BPF_EVENT_PROG_UNLOAD: |
| 9938 | if (atomic_read(&nr_ksymbol_events)) |
| 9939 | perf_event_bpf_emit_ksymbols(prog, type); |
| 9940 | break; |
| 9941 | default: |
| 9942 | return; |
| 9943 | } |
| 9944 | |
| 9945 | if (!atomic_read(&nr_bpf_events)) |
| 9946 | return; |
| 9947 | |
| 9948 | bpf_event = (struct perf_bpf_event){ |
| 9949 | .prog = prog, |
| 9950 | .event_id = { |
| 9951 | .header = { |
| 9952 | .type = PERF_RECORD_BPF_EVENT, |
| 9953 | .size = sizeof(bpf_event.event_id), |
| 9954 | }, |
| 9955 | .type = type, |
| 9956 | .flags = flags, |
| 9957 | .id = prog->aux->id, |
| 9958 | }, |
| 9959 | }; |
| 9960 | |
| 9961 | BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); |
| 9962 | |
| 9963 | memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); |
| 9964 | perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); |
| 9965 | } |
| 9966 | |
| 9967 | struct perf_text_poke_event { |
| 9968 | const void *old_bytes; |
| 9969 | const void *new_bytes; |
| 9970 | size_t pad; |
| 9971 | u16 old_len; |
| 9972 | u16 new_len; |
| 9973 | |
| 9974 | struct { |
| 9975 | struct perf_event_header header; |
| 9976 | |
| 9977 | u64 addr; |
| 9978 | } event_id; |
| 9979 | }; |
| 9980 | |
| 9981 | static int perf_event_text_poke_match(struct perf_event *event) |
| 9982 | { |
| 9983 | return event->attr.text_poke; |
| 9984 | } |
| 9985 | |
| 9986 | static void perf_event_text_poke_output(struct perf_event *event, void *data) |
| 9987 | { |
| 9988 | struct perf_text_poke_event *text_poke_event = data; |
| 9989 | struct perf_output_handle handle; |
| 9990 | struct perf_sample_data sample; |
| 9991 | u64 padding = 0; |
| 9992 | int ret; |
| 9993 | |
| 9994 | if (!perf_event_text_poke_match(event)) |
| 9995 | return; |
| 9996 | |
| 9997 | perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); |
| 9998 | |
| 9999 | ret = perf_output_begin(&handle, &sample, event, |
| 10000 | text_poke_event->event_id.header.size); |
| 10001 | if (ret) |
| 10002 | return; |
| 10003 | |
| 10004 | perf_output_put(&handle, text_poke_event->event_id); |
| 10005 | perf_output_put(&handle, text_poke_event->old_len); |
| 10006 | perf_output_put(&handle, text_poke_event->new_len); |
| 10007 | |
| 10008 | __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); |
| 10009 | __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); |
| 10010 | |
| 10011 | if (text_poke_event->pad) |
| 10012 | __output_copy(&handle, &padding, text_poke_event->pad); |
| 10013 | |
| 10014 | perf_event__output_id_sample(event, &handle, &sample); |
| 10015 | |
| 10016 | perf_output_end(&handle); |
| 10017 | } |
| 10018 | |
| 10019 | void perf_event_text_poke(const void *addr, const void *old_bytes, |
| 10020 | size_t old_len, const void *new_bytes, size_t new_len) |
| 10021 | { |
| 10022 | struct perf_text_poke_event text_poke_event; |
| 10023 | size_t tot, pad; |
| 10024 | |
| 10025 | if (!atomic_read(&nr_text_poke_events)) |
| 10026 | return; |
| 10027 | |
| 10028 | tot = sizeof(text_poke_event.old_len) + old_len; |
| 10029 | tot += sizeof(text_poke_event.new_len) + new_len; |
| 10030 | pad = ALIGN(tot, sizeof(u64)) - tot; |
| 10031 | |
| 10032 | text_poke_event = (struct perf_text_poke_event){ |
| 10033 | .old_bytes = old_bytes, |
| 10034 | .new_bytes = new_bytes, |
| 10035 | .pad = pad, |
| 10036 | .old_len = old_len, |
| 10037 | .new_len = new_len, |
| 10038 | .event_id = { |
| 10039 | .header = { |
| 10040 | .type = PERF_RECORD_TEXT_POKE, |
| 10041 | .misc = PERF_RECORD_MISC_KERNEL, |
| 10042 | .size = sizeof(text_poke_event.event_id) + tot + pad, |
| 10043 | }, |
| 10044 | .addr = (unsigned long)addr, |
| 10045 | }, |
| 10046 | }; |
| 10047 | |
| 10048 | perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); |
| 10049 | } |
| 10050 | |
| 10051 | void perf_event_itrace_started(struct perf_event *event) |
| 10052 | { |
| 10053 | WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE); |
| 10054 | } |
| 10055 | |
| 10056 | static void perf_log_itrace_start(struct perf_event *event) |
| 10057 | { |
| 10058 | struct perf_output_handle handle; |
| 10059 | struct perf_sample_data sample; |
| 10060 | struct perf_aux_event { |
| 10061 | struct perf_event_header header; |
| 10062 | u32 pid; |
| 10063 | u32 tid; |
| 10064 | } rec; |
| 10065 | int ret; |
| 10066 | |
| 10067 | if (event->parent) |
| 10068 | event = event->parent; |
| 10069 | |
| 10070 | if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || |
| 10071 | event->attach_state & PERF_ATTACH_ITRACE) |
| 10072 | return; |
| 10073 | |
| 10074 | rec.header.type = PERF_RECORD_ITRACE_START; |
| 10075 | rec.header.misc = 0; |
| 10076 | rec.header.size = sizeof(rec); |
| 10077 | rec.pid = perf_event_pid(event, current); |
| 10078 | rec.tid = perf_event_tid(event, current); |
| 10079 | |
| 10080 | perf_event_header__init_id(&rec.header, &sample, event); |
| 10081 | ret = perf_output_begin(&handle, &sample, event, rec.header.size); |
| 10082 | |
| 10083 | if (ret) |
| 10084 | return; |
| 10085 | |
| 10086 | perf_output_put(&handle, rec); |
| 10087 | perf_event__output_id_sample(event, &handle, &sample); |
| 10088 | |
| 10089 | perf_output_end(&handle); |
| 10090 | } |
| 10091 | |
| 10092 | void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) |
| 10093 | { |
| 10094 | struct perf_output_handle handle; |
| 10095 | struct perf_sample_data sample; |
| 10096 | struct perf_aux_event { |
| 10097 | struct perf_event_header header; |
| 10098 | u64 hw_id; |
| 10099 | } rec; |
| 10100 | int ret; |
| 10101 | |
| 10102 | if (event->parent) |
| 10103 | event = event->parent; |
| 10104 | |
| 10105 | rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; |
| 10106 | rec.header.misc = 0; |
| 10107 | rec.header.size = sizeof(rec); |
| 10108 | rec.hw_id = hw_id; |
| 10109 | |
| 10110 | perf_event_header__init_id(&rec.header, &sample, event); |
| 10111 | ret = perf_output_begin(&handle, &sample, event, rec.header.size); |
| 10112 | |
| 10113 | if (ret) |
| 10114 | return; |
| 10115 | |
| 10116 | perf_output_put(&handle, rec); |
| 10117 | perf_event__output_id_sample(event, &handle, &sample); |
| 10118 | |
| 10119 | perf_output_end(&handle); |
| 10120 | } |
| 10121 | EXPORT_SYMBOL_GPL(perf_report_aux_output_id); |
| 10122 | |
| 10123 | static int |
| 10124 | __perf_event_account_interrupt(struct perf_event *event, int throttle) |
| 10125 | { |
| 10126 | struct hw_perf_event *hwc = &event->hw; |
| 10127 | int ret = 0; |
| 10128 | u64 seq; |
| 10129 | |
| 10130 | seq = __this_cpu_read(perf_throttled_seq); |
| 10131 | if (seq != hwc->interrupts_seq) { |
| 10132 | hwc->interrupts_seq = seq; |
| 10133 | hwc->interrupts = 1; |
| 10134 | } else { |
| 10135 | hwc->interrupts++; |
| 10136 | } |
| 10137 | |
| 10138 | if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) { |
| 10139 | __this_cpu_inc(perf_throttled_count); |
| 10140 | tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); |
| 10141 | perf_event_throttle_group(event); |
| 10142 | ret = 1; |
| 10143 | } |
| 10144 | |
| 10145 | if (event->attr.freq) { |
| 10146 | u64 now = perf_clock(); |
| 10147 | s64 delta = now - hwc->freq_time_stamp; |
| 10148 | |
| 10149 | hwc->freq_time_stamp = now; |
| 10150 | |
| 10151 | if (delta > 0 && delta < 2*TICK_NSEC) |
| 10152 | perf_adjust_period(event, delta, hwc->last_period, true); |
| 10153 | } |
| 10154 | |
| 10155 | return ret; |
| 10156 | } |
| 10157 | |
| 10158 | int perf_event_account_interrupt(struct perf_event *event) |
| 10159 | { |
| 10160 | return __perf_event_account_interrupt(event, 1); |
| 10161 | } |
| 10162 | |
| 10163 | static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) |
| 10164 | { |
| 10165 | /* |
| 10166 | * Due to interrupt latency (AKA "skid"), we may enter the |
| 10167 | * kernel before taking an overflow, even if the PMU is only |
| 10168 | * counting user events. |
| 10169 | */ |
| 10170 | if (event->attr.exclude_kernel && !user_mode(regs)) |
| 10171 | return false; |
| 10172 | |
| 10173 | return true; |
| 10174 | } |
| 10175 | |
| 10176 | #ifdef CONFIG_BPF_SYSCALL |
| 10177 | static int bpf_overflow_handler(struct perf_event *event, |
| 10178 | struct perf_sample_data *data, |
| 10179 | struct pt_regs *regs) |
| 10180 | { |
| 10181 | struct bpf_perf_event_data_kern ctx = { |
| 10182 | .data = data, |
| 10183 | .event = event, |
| 10184 | }; |
| 10185 | struct bpf_prog *prog; |
| 10186 | int ret = 0; |
| 10187 | |
| 10188 | ctx.regs = perf_arch_bpf_user_pt_regs(regs); |
| 10189 | if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) |
| 10190 | goto out; |
| 10191 | rcu_read_lock(); |
| 10192 | prog = READ_ONCE(event->prog); |
| 10193 | if (prog) { |
| 10194 | perf_prepare_sample(data, event, regs); |
| 10195 | ret = bpf_prog_run(prog, &ctx); |
| 10196 | } |
| 10197 | rcu_read_unlock(); |
| 10198 | out: |
| 10199 | __this_cpu_dec(bpf_prog_active); |
| 10200 | |
| 10201 | return ret; |
| 10202 | } |
| 10203 | |
| 10204 | static inline int perf_event_set_bpf_handler(struct perf_event *event, |
| 10205 | struct bpf_prog *prog, |
| 10206 | u64 bpf_cookie) |
| 10207 | { |
| 10208 | if (event->overflow_handler_context) |
| 10209 | /* hw breakpoint or kernel counter */ |
| 10210 | return -EINVAL; |
| 10211 | |
| 10212 | if (event->prog) |
| 10213 | return -EEXIST; |
| 10214 | |
| 10215 | if (prog->type != BPF_PROG_TYPE_PERF_EVENT) |
| 10216 | return -EINVAL; |
| 10217 | |
| 10218 | if (event->attr.precise_ip && |
| 10219 | prog->call_get_stack && |
| 10220 | (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || |
| 10221 | event->attr.exclude_callchain_kernel || |
| 10222 | event->attr.exclude_callchain_user)) { |
| 10223 | /* |
| 10224 | * On perf_event with precise_ip, calling bpf_get_stack() |
| 10225 | * may trigger unwinder warnings and occasional crashes. |
| 10226 | * bpf_get_[stack|stackid] works around this issue by using |
| 10227 | * callchain attached to perf_sample_data. If the |
| 10228 | * perf_event does not full (kernel and user) callchain |
| 10229 | * attached to perf_sample_data, do not allow attaching BPF |
| 10230 | * program that calls bpf_get_[stack|stackid]. |
| 10231 | */ |
| 10232 | return -EPROTO; |
| 10233 | } |
| 10234 | |
| 10235 | event->prog = prog; |
| 10236 | event->bpf_cookie = bpf_cookie; |
| 10237 | return 0; |
| 10238 | } |
| 10239 | |
| 10240 | static inline void perf_event_free_bpf_handler(struct perf_event *event) |
| 10241 | { |
| 10242 | struct bpf_prog *prog = event->prog; |
| 10243 | |
| 10244 | if (!prog) |
| 10245 | return; |
| 10246 | |
| 10247 | event->prog = NULL; |
| 10248 | bpf_prog_put(prog); |
| 10249 | } |
| 10250 | #else |
| 10251 | static inline int bpf_overflow_handler(struct perf_event *event, |
| 10252 | struct perf_sample_data *data, |
| 10253 | struct pt_regs *regs) |
| 10254 | { |
| 10255 | return 1; |
| 10256 | } |
| 10257 | |
| 10258 | static inline int perf_event_set_bpf_handler(struct perf_event *event, |
| 10259 | struct bpf_prog *prog, |
| 10260 | u64 bpf_cookie) |
| 10261 | { |
| 10262 | return -EOPNOTSUPP; |
| 10263 | } |
| 10264 | |
| 10265 | static inline void perf_event_free_bpf_handler(struct perf_event *event) |
| 10266 | { |
| 10267 | } |
| 10268 | #endif |
| 10269 | |
| 10270 | /* |
| 10271 | * Generic event overflow handling, sampling. |
| 10272 | */ |
| 10273 | |
| 10274 | static int __perf_event_overflow(struct perf_event *event, |
| 10275 | int throttle, struct perf_sample_data *data, |
| 10276 | struct pt_regs *regs) |
| 10277 | { |
| 10278 | int events = atomic_read(&event->event_limit); |
| 10279 | int ret = 0; |
| 10280 | |
| 10281 | /* |
| 10282 | * Non-sampling counters might still use the PMI to fold short |
| 10283 | * hardware counters, ignore those. |
| 10284 | */ |
| 10285 | if (unlikely(!is_sampling_event(event))) |
| 10286 | return 0; |
| 10287 | |
| 10288 | ret = __perf_event_account_interrupt(event, throttle); |
| 10289 | |
| 10290 | if (event->attr.aux_pause) |
| 10291 | perf_event_aux_pause(event->aux_event, true); |
| 10292 | |
| 10293 | if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT && |
| 10294 | !bpf_overflow_handler(event, data, regs)) |
| 10295 | goto out; |
| 10296 | |
| 10297 | /* |
| 10298 | * XXX event_limit might not quite work as expected on inherited |
| 10299 | * events |
| 10300 | */ |
| 10301 | |
| 10302 | event->pending_kill = POLL_IN; |
| 10303 | if (events && atomic_dec_and_test(&event->event_limit)) { |
| 10304 | ret = 1; |
| 10305 | event->pending_kill = POLL_HUP; |
| 10306 | perf_event_disable_inatomic(event); |
| 10307 | } |
| 10308 | |
| 10309 | if (event->attr.sigtrap) { |
| 10310 | /* |
| 10311 | * The desired behaviour of sigtrap vs invalid samples is a bit |
| 10312 | * tricky; on the one hand, one should not loose the SIGTRAP if |
| 10313 | * it is the first event, on the other hand, we should also not |
| 10314 | * trigger the WARN or override the data address. |
| 10315 | */ |
| 10316 | bool valid_sample = sample_is_allowed(event, regs); |
| 10317 | unsigned int pending_id = 1; |
| 10318 | enum task_work_notify_mode notify_mode; |
| 10319 | |
| 10320 | if (regs) |
| 10321 | pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; |
| 10322 | |
| 10323 | notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME; |
| 10324 | |
| 10325 | if (!event->pending_work && |
| 10326 | !task_work_add(current, &event->pending_task, notify_mode)) { |
| 10327 | event->pending_work = pending_id; |
| 10328 | local_inc(&event->ctx->nr_no_switch_fast); |
| 10329 | WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); |
| 10330 | |
| 10331 | event->pending_addr = 0; |
| 10332 | if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) |
| 10333 | event->pending_addr = data->addr; |
| 10334 | |
| 10335 | } else if (event->attr.exclude_kernel && valid_sample) { |
| 10336 | /* |
| 10337 | * Should not be able to return to user space without |
| 10338 | * consuming pending_work; with exceptions: |
| 10339 | * |
| 10340 | * 1. Where !exclude_kernel, events can overflow again |
| 10341 | * in the kernel without returning to user space. |
| 10342 | * |
| 10343 | * 2. Events that can overflow again before the IRQ- |
| 10344 | * work without user space progress (e.g. hrtimer). |
| 10345 | * To approximate progress (with false negatives), |
| 10346 | * check 32-bit hash of the current IP. |
| 10347 | */ |
| 10348 | WARN_ON_ONCE(event->pending_work != pending_id); |
| 10349 | } |
| 10350 | } |
| 10351 | |
| 10352 | READ_ONCE(event->overflow_handler)(event, data, regs); |
| 10353 | |
| 10354 | if (*perf_event_fasync(event) && event->pending_kill) { |
| 10355 | event->pending_wakeup = 1; |
| 10356 | irq_work_queue(&event->pending_irq); |
| 10357 | } |
| 10358 | out: |
| 10359 | if (event->attr.aux_resume) |
| 10360 | perf_event_aux_pause(event->aux_event, false); |
| 10361 | |
| 10362 | return ret; |
| 10363 | } |
| 10364 | |
| 10365 | int perf_event_overflow(struct perf_event *event, |
| 10366 | struct perf_sample_data *data, |
| 10367 | struct pt_regs *regs) |
| 10368 | { |
| 10369 | return __perf_event_overflow(event, 1, data, regs); |
| 10370 | } |
| 10371 | |
| 10372 | /* |
| 10373 | * Generic software event infrastructure |
| 10374 | */ |
| 10375 | |
| 10376 | struct swevent_htable { |
| 10377 | struct swevent_hlist *swevent_hlist; |
| 10378 | struct mutex hlist_mutex; |
| 10379 | int hlist_refcount; |
| 10380 | }; |
| 10381 | static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); |
| 10382 | |
| 10383 | /* |
| 10384 | * We directly increment event->count and keep a second value in |
| 10385 | * event->hw.period_left to count intervals. This period event |
| 10386 | * is kept in the range [-sample_period, 0] so that we can use the |
| 10387 | * sign as trigger. |
| 10388 | */ |
| 10389 | |
| 10390 | u64 perf_swevent_set_period(struct perf_event *event) |
| 10391 | { |
| 10392 | struct hw_perf_event *hwc = &event->hw; |
| 10393 | u64 period = hwc->last_period; |
| 10394 | u64 nr, offset; |
| 10395 | s64 old, val; |
| 10396 | |
| 10397 | hwc->last_period = hwc->sample_period; |
| 10398 | |
| 10399 | old = local64_read(&hwc->period_left); |
| 10400 | do { |
| 10401 | val = old; |
| 10402 | if (val < 0) |
| 10403 | return 0; |
| 10404 | |
| 10405 | nr = div64_u64(period + val, period); |
| 10406 | offset = nr * period; |
| 10407 | val -= offset; |
| 10408 | } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); |
| 10409 | |
| 10410 | return nr; |
| 10411 | } |
| 10412 | |
| 10413 | static void perf_swevent_overflow(struct perf_event *event, u64 overflow, |
| 10414 | struct perf_sample_data *data, |
| 10415 | struct pt_regs *regs) |
| 10416 | { |
| 10417 | struct hw_perf_event *hwc = &event->hw; |
| 10418 | int throttle = 0; |
| 10419 | |
| 10420 | if (!overflow) |
| 10421 | overflow = perf_swevent_set_period(event); |
| 10422 | |
| 10423 | if (hwc->interrupts == MAX_INTERRUPTS) |
| 10424 | return; |
| 10425 | |
| 10426 | for (; overflow; overflow--) { |
| 10427 | if (__perf_event_overflow(event, throttle, |
| 10428 | data, regs)) { |
| 10429 | /* |
| 10430 | * We inhibit the overflow from happening when |
| 10431 | * hwc->interrupts == MAX_INTERRUPTS. |
| 10432 | */ |
| 10433 | break; |
| 10434 | } |
| 10435 | throttle = 1; |
| 10436 | } |
| 10437 | } |
| 10438 | |
| 10439 | static void perf_swevent_event(struct perf_event *event, u64 nr, |
| 10440 | struct perf_sample_data *data, |
| 10441 | struct pt_regs *regs) |
| 10442 | { |
| 10443 | struct hw_perf_event *hwc = &event->hw; |
| 10444 | |
| 10445 | local64_add(nr, &event->count); |
| 10446 | |
| 10447 | if (!regs) |
| 10448 | return; |
| 10449 | |
| 10450 | if (!is_sampling_event(event)) |
| 10451 | return; |
| 10452 | |
| 10453 | if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { |
| 10454 | data->period = nr; |
| 10455 | return perf_swevent_overflow(event, 1, data, regs); |
| 10456 | } else |
| 10457 | data->period = event->hw.last_period; |
| 10458 | |
| 10459 | if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) |
| 10460 | return perf_swevent_overflow(event, 1, data, regs); |
| 10461 | |
| 10462 | if (local64_add_negative(nr, &hwc->period_left)) |
| 10463 | return; |
| 10464 | |
| 10465 | perf_swevent_overflow(event, 0, data, regs); |
| 10466 | } |
| 10467 | |
| 10468 | int perf_exclude_event(struct perf_event *event, struct pt_regs *regs) |
| 10469 | { |
| 10470 | if (event->hw.state & PERF_HES_STOPPED) |
| 10471 | return 1; |
| 10472 | |
| 10473 | if (regs) { |
| 10474 | if (event->attr.exclude_user && user_mode(regs)) |
| 10475 | return 1; |
| 10476 | |
| 10477 | if (event->attr.exclude_kernel && !user_mode(regs)) |
| 10478 | return 1; |
| 10479 | } |
| 10480 | |
| 10481 | return 0; |
| 10482 | } |
| 10483 | |
| 10484 | static int perf_swevent_match(struct perf_event *event, |
| 10485 | enum perf_type_id type, |
| 10486 | u32 event_id, |
| 10487 | struct perf_sample_data *data, |
| 10488 | struct pt_regs *regs) |
| 10489 | { |
| 10490 | if (event->attr.type != type) |
| 10491 | return 0; |
| 10492 | |
| 10493 | if (event->attr.config != event_id) |
| 10494 | return 0; |
| 10495 | |
| 10496 | if (perf_exclude_event(event, regs)) |
| 10497 | return 0; |
| 10498 | |
| 10499 | return 1; |
| 10500 | } |
| 10501 | |
| 10502 | static inline u64 swevent_hash(u64 type, u32 event_id) |
| 10503 | { |
| 10504 | u64 val = event_id | (type << 32); |
| 10505 | |
| 10506 | return hash_64(val, SWEVENT_HLIST_BITS); |
| 10507 | } |
| 10508 | |
| 10509 | static inline struct hlist_head * |
| 10510 | __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) |
| 10511 | { |
| 10512 | u64 hash = swevent_hash(type, event_id); |
| 10513 | |
| 10514 | return &hlist->heads[hash]; |
| 10515 | } |
| 10516 | |
| 10517 | /* For the read side: events when they trigger */ |
| 10518 | static inline struct hlist_head * |
| 10519 | find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) |
| 10520 | { |
| 10521 | struct swevent_hlist *hlist; |
| 10522 | |
| 10523 | hlist = rcu_dereference(swhash->swevent_hlist); |
| 10524 | if (!hlist) |
| 10525 | return NULL; |
| 10526 | |
| 10527 | return __find_swevent_head(hlist, type, event_id); |
| 10528 | } |
| 10529 | |
| 10530 | /* For the event head insertion and removal in the hlist */ |
| 10531 | static inline struct hlist_head * |
| 10532 | find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) |
| 10533 | { |
| 10534 | struct swevent_hlist *hlist; |
| 10535 | u32 event_id = event->attr.config; |
| 10536 | u64 type = event->attr.type; |
| 10537 | |
| 10538 | /* |
| 10539 | * Event scheduling is always serialized against hlist allocation |
| 10540 | * and release. Which makes the protected version suitable here. |
| 10541 | * The context lock guarantees that. |
| 10542 | */ |
| 10543 | hlist = rcu_dereference_protected(swhash->swevent_hlist, |
| 10544 | lockdep_is_held(&event->ctx->lock)); |
| 10545 | if (!hlist) |
| 10546 | return NULL; |
| 10547 | |
| 10548 | return __find_swevent_head(hlist, type, event_id); |
| 10549 | } |
| 10550 | |
| 10551 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, |
| 10552 | u64 nr, |
| 10553 | struct perf_sample_data *data, |
| 10554 | struct pt_regs *regs) |
| 10555 | { |
| 10556 | struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); |
| 10557 | struct perf_event *event; |
| 10558 | struct hlist_head *head; |
| 10559 | |
| 10560 | rcu_read_lock(); |
| 10561 | head = find_swevent_head_rcu(swhash, type, event_id); |
| 10562 | if (!head) |
| 10563 | goto end; |
| 10564 | |
| 10565 | hlist_for_each_entry_rcu(event, head, hlist_entry) { |
| 10566 | if (perf_swevent_match(event, type, event_id, data, regs)) |
| 10567 | perf_swevent_event(event, nr, data, regs); |
| 10568 | } |
| 10569 | end: |
| 10570 | rcu_read_unlock(); |
| 10571 | } |
| 10572 | |
| 10573 | DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); |
| 10574 | |
| 10575 | int perf_swevent_get_recursion_context(void) |
| 10576 | { |
| 10577 | return get_recursion_context(current->perf_recursion); |
| 10578 | } |
| 10579 | EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); |
| 10580 | |
| 10581 | void perf_swevent_put_recursion_context(int rctx) |
| 10582 | { |
| 10583 | put_recursion_context(current->perf_recursion, rctx); |
| 10584 | } |
| 10585 | |
| 10586 | void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) |
| 10587 | { |
| 10588 | struct perf_sample_data data; |
| 10589 | |
| 10590 | if (WARN_ON_ONCE(!regs)) |
| 10591 | return; |
| 10592 | |
| 10593 | perf_sample_data_init(&data, addr, 0); |
| 10594 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); |
| 10595 | } |
| 10596 | |
| 10597 | void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) |
| 10598 | { |
| 10599 | int rctx; |
| 10600 | |
| 10601 | preempt_disable_notrace(); |
| 10602 | rctx = perf_swevent_get_recursion_context(); |
| 10603 | if (unlikely(rctx < 0)) |
| 10604 | goto fail; |
| 10605 | |
| 10606 | ___perf_sw_event(event_id, nr, regs, addr); |
| 10607 | |
| 10608 | perf_swevent_put_recursion_context(rctx); |
| 10609 | fail: |
| 10610 | preempt_enable_notrace(); |
| 10611 | } |
| 10612 | |
| 10613 | static void perf_swevent_read(struct perf_event *event) |
| 10614 | { |
| 10615 | } |
| 10616 | |
| 10617 | static int perf_swevent_add(struct perf_event *event, int flags) |
| 10618 | { |
| 10619 | struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); |
| 10620 | struct hw_perf_event *hwc = &event->hw; |
| 10621 | struct hlist_head *head; |
| 10622 | |
| 10623 | if (is_sampling_event(event)) { |
| 10624 | hwc->last_period = hwc->sample_period; |
| 10625 | perf_swevent_set_period(event); |
| 10626 | } |
| 10627 | |
| 10628 | hwc->state = !(flags & PERF_EF_START); |
| 10629 | |
| 10630 | head = find_swevent_head(swhash, event); |
| 10631 | if (WARN_ON_ONCE(!head)) |
| 10632 | return -EINVAL; |
| 10633 | |
| 10634 | hlist_add_head_rcu(&event->hlist_entry, head); |
| 10635 | perf_event_update_userpage(event); |
| 10636 | |
| 10637 | return 0; |
| 10638 | } |
| 10639 | |
| 10640 | static void perf_swevent_del(struct perf_event *event, int flags) |
| 10641 | { |
| 10642 | hlist_del_rcu(&event->hlist_entry); |
| 10643 | } |
| 10644 | |
| 10645 | static void perf_swevent_start(struct perf_event *event, int flags) |
| 10646 | { |
| 10647 | event->hw.state = 0; |
| 10648 | } |
| 10649 | |
| 10650 | static void perf_swevent_stop(struct perf_event *event, int flags) |
| 10651 | { |
| 10652 | event->hw.state = PERF_HES_STOPPED; |
| 10653 | } |
| 10654 | |
| 10655 | /* Deref the hlist from the update side */ |
| 10656 | static inline struct swevent_hlist * |
| 10657 | swevent_hlist_deref(struct swevent_htable *swhash) |
| 10658 | { |
| 10659 | return rcu_dereference_protected(swhash->swevent_hlist, |
| 10660 | lockdep_is_held(&swhash->hlist_mutex)); |
| 10661 | } |
| 10662 | |
| 10663 | static void swevent_hlist_release(struct swevent_htable *swhash) |
| 10664 | { |
| 10665 | struct swevent_hlist *hlist = swevent_hlist_deref(swhash); |
| 10666 | |
| 10667 | if (!hlist) |
| 10668 | return; |
| 10669 | |
| 10670 | RCU_INIT_POINTER(swhash->swevent_hlist, NULL); |
| 10671 | kfree_rcu(hlist, rcu_head); |
| 10672 | } |
| 10673 | |
| 10674 | static void swevent_hlist_put_cpu(int cpu) |
| 10675 | { |
| 10676 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| 10677 | |
| 10678 | mutex_lock(&swhash->hlist_mutex); |
| 10679 | |
| 10680 | if (!--swhash->hlist_refcount) |
| 10681 | swevent_hlist_release(swhash); |
| 10682 | |
| 10683 | mutex_unlock(&swhash->hlist_mutex); |
| 10684 | } |
| 10685 | |
| 10686 | static void swevent_hlist_put(void) |
| 10687 | { |
| 10688 | int cpu; |
| 10689 | |
| 10690 | for_each_possible_cpu(cpu) |
| 10691 | swevent_hlist_put_cpu(cpu); |
| 10692 | } |
| 10693 | |
| 10694 | static int swevent_hlist_get_cpu(int cpu) |
| 10695 | { |
| 10696 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| 10697 | int err = 0; |
| 10698 | |
| 10699 | mutex_lock(&swhash->hlist_mutex); |
| 10700 | if (!swevent_hlist_deref(swhash) && |
| 10701 | cpumask_test_cpu(cpu, perf_online_mask)) { |
| 10702 | struct swevent_hlist *hlist; |
| 10703 | |
| 10704 | hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); |
| 10705 | if (!hlist) { |
| 10706 | err = -ENOMEM; |
| 10707 | goto exit; |
| 10708 | } |
| 10709 | rcu_assign_pointer(swhash->swevent_hlist, hlist); |
| 10710 | } |
| 10711 | swhash->hlist_refcount++; |
| 10712 | exit: |
| 10713 | mutex_unlock(&swhash->hlist_mutex); |
| 10714 | |
| 10715 | return err; |
| 10716 | } |
| 10717 | |
| 10718 | static int swevent_hlist_get(void) |
| 10719 | { |
| 10720 | int err, cpu, failed_cpu; |
| 10721 | |
| 10722 | mutex_lock(&pmus_lock); |
| 10723 | for_each_possible_cpu(cpu) { |
| 10724 | err = swevent_hlist_get_cpu(cpu); |
| 10725 | if (err) { |
| 10726 | failed_cpu = cpu; |
| 10727 | goto fail; |
| 10728 | } |
| 10729 | } |
| 10730 | mutex_unlock(&pmus_lock); |
| 10731 | return 0; |
| 10732 | fail: |
| 10733 | for_each_possible_cpu(cpu) { |
| 10734 | if (cpu == failed_cpu) |
| 10735 | break; |
| 10736 | swevent_hlist_put_cpu(cpu); |
| 10737 | } |
| 10738 | mutex_unlock(&pmus_lock); |
| 10739 | return err; |
| 10740 | } |
| 10741 | |
| 10742 | struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
| 10743 | |
| 10744 | static void sw_perf_event_destroy(struct perf_event *event) |
| 10745 | { |
| 10746 | u64 event_id = event->attr.config; |
| 10747 | |
| 10748 | WARN_ON(event->parent); |
| 10749 | |
| 10750 | static_key_slow_dec(&perf_swevent_enabled[event_id]); |
| 10751 | swevent_hlist_put(); |
| 10752 | } |
| 10753 | |
| 10754 | static struct pmu perf_cpu_clock; /* fwd declaration */ |
| 10755 | static struct pmu perf_task_clock; |
| 10756 | |
| 10757 | static int perf_swevent_init(struct perf_event *event) |
| 10758 | { |
| 10759 | u64 event_id = event->attr.config; |
| 10760 | |
| 10761 | if (event->attr.type != PERF_TYPE_SOFTWARE) |
| 10762 | return -ENOENT; |
| 10763 | |
| 10764 | /* |
| 10765 | * no branch sampling for software events |
| 10766 | */ |
| 10767 | if (has_branch_stack(event)) |
| 10768 | return -EOPNOTSUPP; |
| 10769 | |
| 10770 | switch (event_id) { |
| 10771 | case PERF_COUNT_SW_CPU_CLOCK: |
| 10772 | event->attr.type = perf_cpu_clock.type; |
| 10773 | return -ENOENT; |
| 10774 | case PERF_COUNT_SW_TASK_CLOCK: |
| 10775 | event->attr.type = perf_task_clock.type; |
| 10776 | return -ENOENT; |
| 10777 | |
| 10778 | default: |
| 10779 | break; |
| 10780 | } |
| 10781 | |
| 10782 | if (event_id >= PERF_COUNT_SW_MAX) |
| 10783 | return -ENOENT; |
| 10784 | |
| 10785 | if (!event->parent) { |
| 10786 | int err; |
| 10787 | |
| 10788 | err = swevent_hlist_get(); |
| 10789 | if (err) |
| 10790 | return err; |
| 10791 | |
| 10792 | static_key_slow_inc(&perf_swevent_enabled[event_id]); |
| 10793 | event->destroy = sw_perf_event_destroy; |
| 10794 | } |
| 10795 | |
| 10796 | return 0; |
| 10797 | } |
| 10798 | |
| 10799 | static struct pmu perf_swevent = { |
| 10800 | .task_ctx_nr = perf_sw_context, |
| 10801 | |
| 10802 | .capabilities = PERF_PMU_CAP_NO_NMI, |
| 10803 | |
| 10804 | .event_init = perf_swevent_init, |
| 10805 | .add = perf_swevent_add, |
| 10806 | .del = perf_swevent_del, |
| 10807 | .start = perf_swevent_start, |
| 10808 | .stop = perf_swevent_stop, |
| 10809 | .read = perf_swevent_read, |
| 10810 | }; |
| 10811 | |
| 10812 | #ifdef CONFIG_EVENT_TRACING |
| 10813 | |
| 10814 | static void tp_perf_event_destroy(struct perf_event *event) |
| 10815 | { |
| 10816 | perf_trace_destroy(event); |
| 10817 | } |
| 10818 | |
| 10819 | static int perf_tp_event_init(struct perf_event *event) |
| 10820 | { |
| 10821 | int err; |
| 10822 | |
| 10823 | if (event->attr.type != PERF_TYPE_TRACEPOINT) |
| 10824 | return -ENOENT; |
| 10825 | |
| 10826 | /* |
| 10827 | * no branch sampling for tracepoint events |
| 10828 | */ |
| 10829 | if (has_branch_stack(event)) |
| 10830 | return -EOPNOTSUPP; |
| 10831 | |
| 10832 | err = perf_trace_init(event); |
| 10833 | if (err) |
| 10834 | return err; |
| 10835 | |
| 10836 | event->destroy = tp_perf_event_destroy; |
| 10837 | |
| 10838 | return 0; |
| 10839 | } |
| 10840 | |
| 10841 | static struct pmu perf_tracepoint = { |
| 10842 | .task_ctx_nr = perf_sw_context, |
| 10843 | |
| 10844 | .event_init = perf_tp_event_init, |
| 10845 | .add = perf_trace_add, |
| 10846 | .del = perf_trace_del, |
| 10847 | .start = perf_swevent_start, |
| 10848 | .stop = perf_swevent_stop, |
| 10849 | .read = perf_swevent_read, |
| 10850 | }; |
| 10851 | |
| 10852 | static int perf_tp_filter_match(struct perf_event *event, |
| 10853 | struct perf_raw_record *raw) |
| 10854 | { |
| 10855 | void *record = raw->frag.data; |
| 10856 | |
| 10857 | /* only top level events have filters set */ |
| 10858 | if (event->parent) |
| 10859 | event = event->parent; |
| 10860 | |
| 10861 | if (likely(!event->filter) || filter_match_preds(event->filter, record)) |
| 10862 | return 1; |
| 10863 | return 0; |
| 10864 | } |
| 10865 | |
| 10866 | static int perf_tp_event_match(struct perf_event *event, |
| 10867 | struct perf_raw_record *raw, |
| 10868 | struct pt_regs *regs) |
| 10869 | { |
| 10870 | if (event->hw.state & PERF_HES_STOPPED) |
| 10871 | return 0; |
| 10872 | /* |
| 10873 | * If exclude_kernel, only trace user-space tracepoints (uprobes) |
| 10874 | */ |
| 10875 | if (event->attr.exclude_kernel && !user_mode(regs)) |
| 10876 | return 0; |
| 10877 | |
| 10878 | if (!perf_tp_filter_match(event, raw)) |
| 10879 | return 0; |
| 10880 | |
| 10881 | return 1; |
| 10882 | } |
| 10883 | |
| 10884 | void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, |
| 10885 | struct trace_event_call *call, u64 count, |
| 10886 | struct pt_regs *regs, struct hlist_head *head, |
| 10887 | struct task_struct *task) |
| 10888 | { |
| 10889 | if (bpf_prog_array_valid(call)) { |
| 10890 | *(struct pt_regs **)raw_data = regs; |
| 10891 | if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { |
| 10892 | perf_swevent_put_recursion_context(rctx); |
| 10893 | return; |
| 10894 | } |
| 10895 | } |
| 10896 | perf_tp_event(call->event.type, count, raw_data, size, regs, head, |
| 10897 | rctx, task); |
| 10898 | } |
| 10899 | EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); |
| 10900 | |
| 10901 | static void __perf_tp_event_target_task(u64 count, void *record, |
| 10902 | struct pt_regs *regs, |
| 10903 | struct perf_sample_data *data, |
| 10904 | struct perf_raw_record *raw, |
| 10905 | struct perf_event *event) |
| 10906 | { |
| 10907 | struct trace_entry *entry = record; |
| 10908 | |
| 10909 | if (event->attr.config != entry->type) |
| 10910 | return; |
| 10911 | /* Cannot deliver synchronous signal to other task. */ |
| 10912 | if (event->attr.sigtrap) |
| 10913 | return; |
| 10914 | if (perf_tp_event_match(event, raw, regs)) { |
| 10915 | perf_sample_data_init(data, 0, 0); |
| 10916 | perf_sample_save_raw_data(data, event, raw); |
| 10917 | perf_swevent_event(event, count, data, regs); |
| 10918 | } |
| 10919 | } |
| 10920 | |
| 10921 | static void perf_tp_event_target_task(u64 count, void *record, |
| 10922 | struct pt_regs *regs, |
| 10923 | struct perf_sample_data *data, |
| 10924 | struct perf_raw_record *raw, |
| 10925 | struct perf_event_context *ctx) |
| 10926 | { |
| 10927 | unsigned int cpu = smp_processor_id(); |
| 10928 | struct pmu *pmu = &perf_tracepoint; |
| 10929 | struct perf_event *event, *sibling; |
| 10930 | |
| 10931 | perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { |
| 10932 | __perf_tp_event_target_task(count, record, regs, data, raw, event); |
| 10933 | for_each_sibling_event(sibling, event) |
| 10934 | __perf_tp_event_target_task(count, record, regs, data, raw, sibling); |
| 10935 | } |
| 10936 | |
| 10937 | perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { |
| 10938 | __perf_tp_event_target_task(count, record, regs, data, raw, event); |
| 10939 | for_each_sibling_event(sibling, event) |
| 10940 | __perf_tp_event_target_task(count, record, regs, data, raw, sibling); |
| 10941 | } |
| 10942 | } |
| 10943 | |
| 10944 | void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, |
| 10945 | struct pt_regs *regs, struct hlist_head *head, int rctx, |
| 10946 | struct task_struct *task) |
| 10947 | { |
| 10948 | struct perf_sample_data data; |
| 10949 | struct perf_event *event; |
| 10950 | |
| 10951 | struct perf_raw_record raw = { |
| 10952 | .frag = { |
| 10953 | .size = entry_size, |
| 10954 | .data = record, |
| 10955 | }, |
| 10956 | }; |
| 10957 | |
| 10958 | perf_trace_buf_update(record, event_type); |
| 10959 | |
| 10960 | hlist_for_each_entry_rcu(event, head, hlist_entry) { |
| 10961 | if (perf_tp_event_match(event, &raw, regs)) { |
| 10962 | /* |
| 10963 | * Here use the same on-stack perf_sample_data, |
| 10964 | * some members in data are event-specific and |
| 10965 | * need to be re-computed for different sweveents. |
| 10966 | * Re-initialize data->sample_flags safely to avoid |
| 10967 | * the problem that next event skips preparing data |
| 10968 | * because data->sample_flags is set. |
| 10969 | */ |
| 10970 | perf_sample_data_init(&data, 0, 0); |
| 10971 | perf_sample_save_raw_data(&data, event, &raw); |
| 10972 | perf_swevent_event(event, count, &data, regs); |
| 10973 | } |
| 10974 | } |
| 10975 | |
| 10976 | /* |
| 10977 | * If we got specified a target task, also iterate its context and |
| 10978 | * deliver this event there too. |
| 10979 | */ |
| 10980 | if (task && task != current) { |
| 10981 | struct perf_event_context *ctx; |
| 10982 | |
| 10983 | rcu_read_lock(); |
| 10984 | ctx = rcu_dereference(task->perf_event_ctxp); |
| 10985 | if (!ctx) |
| 10986 | goto unlock; |
| 10987 | |
| 10988 | raw_spin_lock(&ctx->lock); |
| 10989 | perf_tp_event_target_task(count, record, regs, &data, &raw, ctx); |
| 10990 | raw_spin_unlock(&ctx->lock); |
| 10991 | unlock: |
| 10992 | rcu_read_unlock(); |
| 10993 | } |
| 10994 | |
| 10995 | perf_swevent_put_recursion_context(rctx); |
| 10996 | } |
| 10997 | EXPORT_SYMBOL_GPL(perf_tp_event); |
| 10998 | |
| 10999 | #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) |
| 11000 | /* |
| 11001 | * Flags in config, used by dynamic PMU kprobe and uprobe |
| 11002 | * The flags should match following PMU_FORMAT_ATTR(). |
| 11003 | * |
| 11004 | * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe |
| 11005 | * if not set, create kprobe/uprobe |
| 11006 | * |
| 11007 | * The following values specify a reference counter (or semaphore in the |
| 11008 | * terminology of tools like dtrace, systemtap, etc.) Userspace Statically |
| 11009 | * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. |
| 11010 | * |
| 11011 | * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset |
| 11012 | * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left |
| 11013 | */ |
| 11014 | enum perf_probe_config { |
| 11015 | PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ |
| 11016 | PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, |
| 11017 | PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, |
| 11018 | }; |
| 11019 | |
| 11020 | PMU_FORMAT_ATTR(retprobe, "config:0"); |
| 11021 | #endif |
| 11022 | |
| 11023 | #ifdef CONFIG_KPROBE_EVENTS |
| 11024 | static struct attribute *kprobe_attrs[] = { |
| 11025 | &format_attr_retprobe.attr, |
| 11026 | NULL, |
| 11027 | }; |
| 11028 | |
| 11029 | static struct attribute_group kprobe_format_group = { |
| 11030 | .name = "format", |
| 11031 | .attrs = kprobe_attrs, |
| 11032 | }; |
| 11033 | |
| 11034 | static const struct attribute_group *kprobe_attr_groups[] = { |
| 11035 | &kprobe_format_group, |
| 11036 | NULL, |
| 11037 | }; |
| 11038 | |
| 11039 | static int perf_kprobe_event_init(struct perf_event *event); |
| 11040 | static struct pmu perf_kprobe = { |
| 11041 | .task_ctx_nr = perf_sw_context, |
| 11042 | .event_init = perf_kprobe_event_init, |
| 11043 | .add = perf_trace_add, |
| 11044 | .del = perf_trace_del, |
| 11045 | .start = perf_swevent_start, |
| 11046 | .stop = perf_swevent_stop, |
| 11047 | .read = perf_swevent_read, |
| 11048 | .attr_groups = kprobe_attr_groups, |
| 11049 | }; |
| 11050 | |
| 11051 | static int perf_kprobe_event_init(struct perf_event *event) |
| 11052 | { |
| 11053 | int err; |
| 11054 | bool is_retprobe; |
| 11055 | |
| 11056 | if (event->attr.type != perf_kprobe.type) |
| 11057 | return -ENOENT; |
| 11058 | |
| 11059 | if (!perfmon_capable()) |
| 11060 | return -EACCES; |
| 11061 | |
| 11062 | /* |
| 11063 | * no branch sampling for probe events |
| 11064 | */ |
| 11065 | if (has_branch_stack(event)) |
| 11066 | return -EOPNOTSUPP; |
| 11067 | |
| 11068 | is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; |
| 11069 | err = perf_kprobe_init(event, is_retprobe); |
| 11070 | if (err) |
| 11071 | return err; |
| 11072 | |
| 11073 | event->destroy = perf_kprobe_destroy; |
| 11074 | |
| 11075 | return 0; |
| 11076 | } |
| 11077 | #endif /* CONFIG_KPROBE_EVENTS */ |
| 11078 | |
| 11079 | #ifdef CONFIG_UPROBE_EVENTS |
| 11080 | PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); |
| 11081 | |
| 11082 | static struct attribute *uprobe_attrs[] = { |
| 11083 | &format_attr_retprobe.attr, |
| 11084 | &format_attr_ref_ctr_offset.attr, |
| 11085 | NULL, |
| 11086 | }; |
| 11087 | |
| 11088 | static struct attribute_group uprobe_format_group = { |
| 11089 | .name = "format", |
| 11090 | .attrs = uprobe_attrs, |
| 11091 | }; |
| 11092 | |
| 11093 | static const struct attribute_group *uprobe_attr_groups[] = { |
| 11094 | &uprobe_format_group, |
| 11095 | NULL, |
| 11096 | }; |
| 11097 | |
| 11098 | static int perf_uprobe_event_init(struct perf_event *event); |
| 11099 | static struct pmu perf_uprobe = { |
| 11100 | .task_ctx_nr = perf_sw_context, |
| 11101 | .event_init = perf_uprobe_event_init, |
| 11102 | .add = perf_trace_add, |
| 11103 | .del = perf_trace_del, |
| 11104 | .start = perf_swevent_start, |
| 11105 | .stop = perf_swevent_stop, |
| 11106 | .read = perf_swevent_read, |
| 11107 | .attr_groups = uprobe_attr_groups, |
| 11108 | }; |
| 11109 | |
| 11110 | static int perf_uprobe_event_init(struct perf_event *event) |
| 11111 | { |
| 11112 | int err; |
| 11113 | unsigned long ref_ctr_offset; |
| 11114 | bool is_retprobe; |
| 11115 | |
| 11116 | if (event->attr.type != perf_uprobe.type) |
| 11117 | return -ENOENT; |
| 11118 | |
| 11119 | if (!capable(CAP_SYS_ADMIN)) |
| 11120 | return -EACCES; |
| 11121 | |
| 11122 | /* |
| 11123 | * no branch sampling for probe events |
| 11124 | */ |
| 11125 | if (has_branch_stack(event)) |
| 11126 | return -EOPNOTSUPP; |
| 11127 | |
| 11128 | is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; |
| 11129 | ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; |
| 11130 | err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); |
| 11131 | if (err) |
| 11132 | return err; |
| 11133 | |
| 11134 | event->destroy = perf_uprobe_destroy; |
| 11135 | |
| 11136 | return 0; |
| 11137 | } |
| 11138 | #endif /* CONFIG_UPROBE_EVENTS */ |
| 11139 | |
| 11140 | static inline void perf_tp_register(void) |
| 11141 | { |
| 11142 | perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); |
| 11143 | #ifdef CONFIG_KPROBE_EVENTS |
| 11144 | perf_pmu_register(&perf_kprobe, "kprobe", -1); |
| 11145 | #endif |
| 11146 | #ifdef CONFIG_UPROBE_EVENTS |
| 11147 | perf_pmu_register(&perf_uprobe, "uprobe", -1); |
| 11148 | #endif |
| 11149 | } |
| 11150 | |
| 11151 | static void perf_event_free_filter(struct perf_event *event) |
| 11152 | { |
| 11153 | ftrace_profile_free_filter(event); |
| 11154 | } |
| 11155 | |
| 11156 | /* |
| 11157 | * returns true if the event is a tracepoint, or a kprobe/upprobe created |
| 11158 | * with perf_event_open() |
| 11159 | */ |
| 11160 | static inline bool perf_event_is_tracing(struct perf_event *event) |
| 11161 | { |
| 11162 | if (event->pmu == &perf_tracepoint) |
| 11163 | return true; |
| 11164 | #ifdef CONFIG_KPROBE_EVENTS |
| 11165 | if (event->pmu == &perf_kprobe) |
| 11166 | return true; |
| 11167 | #endif |
| 11168 | #ifdef CONFIG_UPROBE_EVENTS |
| 11169 | if (event->pmu == &perf_uprobe) |
| 11170 | return true; |
| 11171 | #endif |
| 11172 | return false; |
| 11173 | } |
| 11174 | |
| 11175 | static int __perf_event_set_bpf_prog(struct perf_event *event, |
| 11176 | struct bpf_prog *prog, |
| 11177 | u64 bpf_cookie) |
| 11178 | { |
| 11179 | bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; |
| 11180 | |
| 11181 | if (event->state <= PERF_EVENT_STATE_REVOKED) |
| 11182 | return -ENODEV; |
| 11183 | |
| 11184 | if (!perf_event_is_tracing(event)) |
| 11185 | return perf_event_set_bpf_handler(event, prog, bpf_cookie); |
| 11186 | |
| 11187 | is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; |
| 11188 | is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; |
| 11189 | is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; |
| 11190 | is_syscall_tp = is_syscall_trace_event(event->tp_event); |
| 11191 | if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) |
| 11192 | /* bpf programs can only be attached to u/kprobe or tracepoint */ |
| 11193 | return -EINVAL; |
| 11194 | |
| 11195 | if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || |
| 11196 | (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || |
| 11197 | (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) |
| 11198 | return -EINVAL; |
| 11199 | |
| 11200 | if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe) |
| 11201 | /* only uprobe programs are allowed to be sleepable */ |
| 11202 | return -EINVAL; |
| 11203 | |
| 11204 | /* Kprobe override only works for kprobes, not uprobes. */ |
| 11205 | if (prog->kprobe_override && !is_kprobe) |
| 11206 | return -EINVAL; |
| 11207 | |
| 11208 | if (is_tracepoint || is_syscall_tp) { |
| 11209 | int off = trace_event_get_offsets(event->tp_event); |
| 11210 | |
| 11211 | if (prog->aux->max_ctx_offset > off) |
| 11212 | return -EACCES; |
| 11213 | } |
| 11214 | |
| 11215 | return perf_event_attach_bpf_prog(event, prog, bpf_cookie); |
| 11216 | } |
| 11217 | |
| 11218 | int perf_event_set_bpf_prog(struct perf_event *event, |
| 11219 | struct bpf_prog *prog, |
| 11220 | u64 bpf_cookie) |
| 11221 | { |
| 11222 | struct perf_event_context *ctx; |
| 11223 | int ret; |
| 11224 | |
| 11225 | ctx = perf_event_ctx_lock(event); |
| 11226 | ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie); |
| 11227 | perf_event_ctx_unlock(event, ctx); |
| 11228 | |
| 11229 | return ret; |
| 11230 | } |
| 11231 | |
| 11232 | void perf_event_free_bpf_prog(struct perf_event *event) |
| 11233 | { |
| 11234 | if (!event->prog) |
| 11235 | return; |
| 11236 | |
| 11237 | if (!perf_event_is_tracing(event)) { |
| 11238 | perf_event_free_bpf_handler(event); |
| 11239 | return; |
| 11240 | } |
| 11241 | perf_event_detach_bpf_prog(event); |
| 11242 | } |
| 11243 | |
| 11244 | #else |
| 11245 | |
| 11246 | static inline void perf_tp_register(void) |
| 11247 | { |
| 11248 | } |
| 11249 | |
| 11250 | static void perf_event_free_filter(struct perf_event *event) |
| 11251 | { |
| 11252 | } |
| 11253 | |
| 11254 | static int __perf_event_set_bpf_prog(struct perf_event *event, |
| 11255 | struct bpf_prog *prog, |
| 11256 | u64 bpf_cookie) |
| 11257 | { |
| 11258 | return -ENOENT; |
| 11259 | } |
| 11260 | |
| 11261 | int perf_event_set_bpf_prog(struct perf_event *event, |
| 11262 | struct bpf_prog *prog, |
| 11263 | u64 bpf_cookie) |
| 11264 | { |
| 11265 | return -ENOENT; |
| 11266 | } |
| 11267 | |
| 11268 | void perf_event_free_bpf_prog(struct perf_event *event) |
| 11269 | { |
| 11270 | } |
| 11271 | #endif /* CONFIG_EVENT_TRACING */ |
| 11272 | |
| 11273 | #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| 11274 | void perf_bp_event(struct perf_event *bp, void *data) |
| 11275 | { |
| 11276 | struct perf_sample_data sample; |
| 11277 | struct pt_regs *regs = data; |
| 11278 | |
| 11279 | perf_sample_data_init(&sample, bp->attr.bp_addr, 0); |
| 11280 | |
| 11281 | if (!bp->hw.state && !perf_exclude_event(bp, regs)) |
| 11282 | perf_swevent_event(bp, 1, &sample, regs); |
| 11283 | } |
| 11284 | #endif |
| 11285 | |
| 11286 | /* |
| 11287 | * Allocate a new address filter |
| 11288 | */ |
| 11289 | static struct perf_addr_filter * |
| 11290 | perf_addr_filter_new(struct perf_event *event, struct list_head *filters) |
| 11291 | { |
| 11292 | int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); |
| 11293 | struct perf_addr_filter *filter; |
| 11294 | |
| 11295 | filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); |
| 11296 | if (!filter) |
| 11297 | return NULL; |
| 11298 | |
| 11299 | INIT_LIST_HEAD(&filter->entry); |
| 11300 | list_add_tail(&filter->entry, filters); |
| 11301 | |
| 11302 | return filter; |
| 11303 | } |
| 11304 | |
| 11305 | static void free_filters_list(struct list_head *filters) |
| 11306 | { |
| 11307 | struct perf_addr_filter *filter, *iter; |
| 11308 | |
| 11309 | list_for_each_entry_safe(filter, iter, filters, entry) { |
| 11310 | path_put(&filter->path); |
| 11311 | list_del(&filter->entry); |
| 11312 | kfree(filter); |
| 11313 | } |
| 11314 | } |
| 11315 | |
| 11316 | /* |
| 11317 | * Free existing address filters and optionally install new ones |
| 11318 | */ |
| 11319 | static void perf_addr_filters_splice(struct perf_event *event, |
| 11320 | struct list_head *head) |
| 11321 | { |
| 11322 | unsigned long flags; |
| 11323 | LIST_HEAD(list); |
| 11324 | |
| 11325 | if (!has_addr_filter(event)) |
| 11326 | return; |
| 11327 | |
| 11328 | /* don't bother with children, they don't have their own filters */ |
| 11329 | if (event->parent) |
| 11330 | return; |
| 11331 | |
| 11332 | raw_spin_lock_irqsave(&event->addr_filters.lock, flags); |
| 11333 | |
| 11334 | list_splice_init(&event->addr_filters.list, &list); |
| 11335 | if (head) |
| 11336 | list_splice(head, &event->addr_filters.list); |
| 11337 | |
| 11338 | raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); |
| 11339 | |
| 11340 | free_filters_list(&list); |
| 11341 | } |
| 11342 | |
| 11343 | static void perf_free_addr_filters(struct perf_event *event) |
| 11344 | { |
| 11345 | /* |
| 11346 | * Used during free paths, there is no concurrency. |
| 11347 | */ |
| 11348 | if (list_empty(&event->addr_filters.list)) |
| 11349 | return; |
| 11350 | |
| 11351 | perf_addr_filters_splice(event, NULL); |
| 11352 | } |
| 11353 | |
| 11354 | /* |
| 11355 | * Scan through mm's vmas and see if one of them matches the |
| 11356 | * @filter; if so, adjust filter's address range. |
| 11357 | * Called with mm::mmap_lock down for reading. |
| 11358 | */ |
| 11359 | static void perf_addr_filter_apply(struct perf_addr_filter *filter, |
| 11360 | struct mm_struct *mm, |
| 11361 | struct perf_addr_filter_range *fr) |
| 11362 | { |
| 11363 | struct vm_area_struct *vma; |
| 11364 | VMA_ITERATOR(vmi, mm, 0); |
| 11365 | |
| 11366 | for_each_vma(vmi, vma) { |
| 11367 | if (!vma->vm_file) |
| 11368 | continue; |
| 11369 | |
| 11370 | if (perf_addr_filter_vma_adjust(filter, vma, fr)) |
| 11371 | return; |
| 11372 | } |
| 11373 | } |
| 11374 | |
| 11375 | /* |
| 11376 | * Update event's address range filters based on the |
| 11377 | * task's existing mappings, if any. |
| 11378 | */ |
| 11379 | static void perf_event_addr_filters_apply(struct perf_event *event) |
| 11380 | { |
| 11381 | struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); |
| 11382 | struct task_struct *task = READ_ONCE(event->ctx->task); |
| 11383 | struct perf_addr_filter *filter; |
| 11384 | struct mm_struct *mm = NULL; |
| 11385 | unsigned int count = 0; |
| 11386 | unsigned long flags; |
| 11387 | |
| 11388 | /* |
| 11389 | * We may observe TASK_TOMBSTONE, which means that the event tear-down |
| 11390 | * will stop on the parent's child_mutex that our caller is also holding |
| 11391 | */ |
| 11392 | if (task == TASK_TOMBSTONE) |
| 11393 | return; |
| 11394 | |
| 11395 | if (ifh->nr_file_filters) { |
| 11396 | mm = get_task_mm(task); |
| 11397 | if (!mm) |
| 11398 | goto restart; |
| 11399 | |
| 11400 | mmap_read_lock(mm); |
| 11401 | } |
| 11402 | |
| 11403 | raw_spin_lock_irqsave(&ifh->lock, flags); |
| 11404 | list_for_each_entry(filter, &ifh->list, entry) { |
| 11405 | if (filter->path.dentry) { |
| 11406 | /* |
| 11407 | * Adjust base offset if the filter is associated to a |
| 11408 | * binary that needs to be mapped: |
| 11409 | */ |
| 11410 | event->addr_filter_ranges[count].start = 0; |
| 11411 | event->addr_filter_ranges[count].size = 0; |
| 11412 | |
| 11413 | perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); |
| 11414 | } else { |
| 11415 | event->addr_filter_ranges[count].start = filter->offset; |
| 11416 | event->addr_filter_ranges[count].size = filter->size; |
| 11417 | } |
| 11418 | |
| 11419 | count++; |
| 11420 | } |
| 11421 | |
| 11422 | event->addr_filters_gen++; |
| 11423 | raw_spin_unlock_irqrestore(&ifh->lock, flags); |
| 11424 | |
| 11425 | if (ifh->nr_file_filters) { |
| 11426 | mmap_read_unlock(mm); |
| 11427 | |
| 11428 | mmput(mm); |
| 11429 | } |
| 11430 | |
| 11431 | restart: |
| 11432 | perf_event_stop(event, 1); |
| 11433 | } |
| 11434 | |
| 11435 | /* |
| 11436 | * Address range filtering: limiting the data to certain |
| 11437 | * instruction address ranges. Filters are ioctl()ed to us from |
| 11438 | * userspace as ascii strings. |
| 11439 | * |
| 11440 | * Filter string format: |
| 11441 | * |
| 11442 | * ACTION RANGE_SPEC |
| 11443 | * where ACTION is one of the |
| 11444 | * * "filter": limit the trace to this region |
| 11445 | * * "start": start tracing from this address |
| 11446 | * * "stop": stop tracing at this address/region; |
| 11447 | * RANGE_SPEC is |
| 11448 | * * for kernel addresses: <start address>[/<size>] |
| 11449 | * * for object files: <start address>[/<size>]@</path/to/object/file> |
| 11450 | * |
| 11451 | * if <size> is not specified or is zero, the range is treated as a single |
| 11452 | * address; not valid for ACTION=="filter". |
| 11453 | */ |
| 11454 | enum { |
| 11455 | IF_ACT_NONE = -1, |
| 11456 | IF_ACT_FILTER, |
| 11457 | IF_ACT_START, |
| 11458 | IF_ACT_STOP, |
| 11459 | IF_SRC_FILE, |
| 11460 | IF_SRC_KERNEL, |
| 11461 | IF_SRC_FILEADDR, |
| 11462 | IF_SRC_KERNELADDR, |
| 11463 | }; |
| 11464 | |
| 11465 | enum { |
| 11466 | IF_STATE_ACTION = 0, |
| 11467 | IF_STATE_SOURCE, |
| 11468 | IF_STATE_END, |
| 11469 | }; |
| 11470 | |
| 11471 | static const match_table_t if_tokens = { |
| 11472 | { IF_ACT_FILTER, "filter" }, |
| 11473 | { IF_ACT_START, "start" }, |
| 11474 | { IF_ACT_STOP, "stop" }, |
| 11475 | { IF_SRC_FILE, "%u/%u@%s" }, |
| 11476 | { IF_SRC_KERNEL, "%u/%u" }, |
| 11477 | { IF_SRC_FILEADDR, "%u@%s" }, |
| 11478 | { IF_SRC_KERNELADDR, "%u" }, |
| 11479 | { IF_ACT_NONE, NULL }, |
| 11480 | }; |
| 11481 | |
| 11482 | /* |
| 11483 | * Address filter string parser |
| 11484 | */ |
| 11485 | static int |
| 11486 | perf_event_parse_addr_filter(struct perf_event *event, char *fstr, |
| 11487 | struct list_head *filters) |
| 11488 | { |
| 11489 | struct perf_addr_filter *filter = NULL; |
| 11490 | char *start, *orig, *filename = NULL; |
| 11491 | substring_t args[MAX_OPT_ARGS]; |
| 11492 | int state = IF_STATE_ACTION, token; |
| 11493 | unsigned int kernel = 0; |
| 11494 | int ret = -EINVAL; |
| 11495 | |
| 11496 | orig = fstr = kstrdup(fstr, GFP_KERNEL); |
| 11497 | if (!fstr) |
| 11498 | return -ENOMEM; |
| 11499 | |
| 11500 | while ((start = strsep(&fstr, " ,\n")) != NULL) { |
| 11501 | static const enum perf_addr_filter_action_t actions[] = { |
| 11502 | [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, |
| 11503 | [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, |
| 11504 | [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, |
| 11505 | }; |
| 11506 | ret = -EINVAL; |
| 11507 | |
| 11508 | if (!*start) |
| 11509 | continue; |
| 11510 | |
| 11511 | /* filter definition begins */ |
| 11512 | if (state == IF_STATE_ACTION) { |
| 11513 | filter = perf_addr_filter_new(event, filters); |
| 11514 | if (!filter) |
| 11515 | goto fail; |
| 11516 | } |
| 11517 | |
| 11518 | token = match_token(start, if_tokens, args); |
| 11519 | switch (token) { |
| 11520 | case IF_ACT_FILTER: |
| 11521 | case IF_ACT_START: |
| 11522 | case IF_ACT_STOP: |
| 11523 | if (state != IF_STATE_ACTION) |
| 11524 | goto fail; |
| 11525 | |
| 11526 | filter->action = actions[token]; |
| 11527 | state = IF_STATE_SOURCE; |
| 11528 | break; |
| 11529 | |
| 11530 | case IF_SRC_KERNELADDR: |
| 11531 | case IF_SRC_KERNEL: |
| 11532 | kernel = 1; |
| 11533 | fallthrough; |
| 11534 | |
| 11535 | case IF_SRC_FILEADDR: |
| 11536 | case IF_SRC_FILE: |
| 11537 | if (state != IF_STATE_SOURCE) |
| 11538 | goto fail; |
| 11539 | |
| 11540 | *args[0].to = 0; |
| 11541 | ret = kstrtoul(args[0].from, 0, &filter->offset); |
| 11542 | if (ret) |
| 11543 | goto fail; |
| 11544 | |
| 11545 | if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { |
| 11546 | *args[1].to = 0; |
| 11547 | ret = kstrtoul(args[1].from, 0, &filter->size); |
| 11548 | if (ret) |
| 11549 | goto fail; |
| 11550 | } |
| 11551 | |
| 11552 | if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { |
| 11553 | int fpos = token == IF_SRC_FILE ? 2 : 1; |
| 11554 | |
| 11555 | kfree(filename); |
| 11556 | filename = match_strdup(&args[fpos]); |
| 11557 | if (!filename) { |
| 11558 | ret = -ENOMEM; |
| 11559 | goto fail; |
| 11560 | } |
| 11561 | } |
| 11562 | |
| 11563 | state = IF_STATE_END; |
| 11564 | break; |
| 11565 | |
| 11566 | default: |
| 11567 | goto fail; |
| 11568 | } |
| 11569 | |
| 11570 | /* |
| 11571 | * Filter definition is fully parsed, validate and install it. |
| 11572 | * Make sure that it doesn't contradict itself or the event's |
| 11573 | * attribute. |
| 11574 | */ |
| 11575 | if (state == IF_STATE_END) { |
| 11576 | ret = -EINVAL; |
| 11577 | |
| 11578 | /* |
| 11579 | * ACTION "filter" must have a non-zero length region |
| 11580 | * specified. |
| 11581 | */ |
| 11582 | if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && |
| 11583 | !filter->size) |
| 11584 | goto fail; |
| 11585 | |
| 11586 | if (!kernel) { |
| 11587 | if (!filename) |
| 11588 | goto fail; |
| 11589 | |
| 11590 | /* |
| 11591 | * For now, we only support file-based filters |
| 11592 | * in per-task events; doing so for CPU-wide |
| 11593 | * events requires additional context switching |
| 11594 | * trickery, since same object code will be |
| 11595 | * mapped at different virtual addresses in |
| 11596 | * different processes. |
| 11597 | */ |
| 11598 | ret = -EOPNOTSUPP; |
| 11599 | if (!event->ctx->task) |
| 11600 | goto fail; |
| 11601 | |
| 11602 | /* look up the path and grab its inode */ |
| 11603 | ret = kern_path(filename, LOOKUP_FOLLOW, |
| 11604 | &filter->path); |
| 11605 | if (ret) |
| 11606 | goto fail; |
| 11607 | |
| 11608 | ret = -EINVAL; |
| 11609 | if (!filter->path.dentry || |
| 11610 | !S_ISREG(d_inode(filter->path.dentry) |
| 11611 | ->i_mode)) |
| 11612 | goto fail; |
| 11613 | |
| 11614 | event->addr_filters.nr_file_filters++; |
| 11615 | } |
| 11616 | |
| 11617 | /* ready to consume more filters */ |
| 11618 | kfree(filename); |
| 11619 | filename = NULL; |
| 11620 | state = IF_STATE_ACTION; |
| 11621 | filter = NULL; |
| 11622 | kernel = 0; |
| 11623 | } |
| 11624 | } |
| 11625 | |
| 11626 | if (state != IF_STATE_ACTION) |
| 11627 | goto fail; |
| 11628 | |
| 11629 | kfree(filename); |
| 11630 | kfree(orig); |
| 11631 | |
| 11632 | return 0; |
| 11633 | |
| 11634 | fail: |
| 11635 | kfree(filename); |
| 11636 | free_filters_list(filters); |
| 11637 | kfree(orig); |
| 11638 | |
| 11639 | return ret; |
| 11640 | } |
| 11641 | |
| 11642 | static int |
| 11643 | perf_event_set_addr_filter(struct perf_event *event, char *filter_str) |
| 11644 | { |
| 11645 | LIST_HEAD(filters); |
| 11646 | int ret; |
| 11647 | |
| 11648 | /* |
| 11649 | * Since this is called in perf_ioctl() path, we're already holding |
| 11650 | * ctx::mutex. |
| 11651 | */ |
| 11652 | lockdep_assert_held(&event->ctx->mutex); |
| 11653 | |
| 11654 | if (WARN_ON_ONCE(event->parent)) |
| 11655 | return -EINVAL; |
| 11656 | |
| 11657 | ret = perf_event_parse_addr_filter(event, filter_str, &filters); |
| 11658 | if (ret) |
| 11659 | goto fail_clear_files; |
| 11660 | |
| 11661 | ret = event->pmu->addr_filters_validate(&filters); |
| 11662 | if (ret) |
| 11663 | goto fail_free_filters; |
| 11664 | |
| 11665 | /* remove existing filters, if any */ |
| 11666 | perf_addr_filters_splice(event, &filters); |
| 11667 | |
| 11668 | /* install new filters */ |
| 11669 | perf_event_for_each_child(event, perf_event_addr_filters_apply); |
| 11670 | |
| 11671 | return ret; |
| 11672 | |
| 11673 | fail_free_filters: |
| 11674 | free_filters_list(&filters); |
| 11675 | |
| 11676 | fail_clear_files: |
| 11677 | event->addr_filters.nr_file_filters = 0; |
| 11678 | |
| 11679 | return ret; |
| 11680 | } |
| 11681 | |
| 11682 | static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
| 11683 | { |
| 11684 | int ret = -EINVAL; |
| 11685 | char *filter_str; |
| 11686 | |
| 11687 | filter_str = strndup_user(arg, PAGE_SIZE); |
| 11688 | if (IS_ERR(filter_str)) |
| 11689 | return PTR_ERR(filter_str); |
| 11690 | |
| 11691 | #ifdef CONFIG_EVENT_TRACING |
| 11692 | if (perf_event_is_tracing(event)) { |
| 11693 | struct perf_event_context *ctx = event->ctx; |
| 11694 | |
| 11695 | /* |
| 11696 | * Beware, here be dragons!! |
| 11697 | * |
| 11698 | * the tracepoint muck will deadlock against ctx->mutex, but |
| 11699 | * the tracepoint stuff does not actually need it. So |
| 11700 | * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we |
| 11701 | * already have a reference on ctx. |
| 11702 | * |
| 11703 | * This can result in event getting moved to a different ctx, |
| 11704 | * but that does not affect the tracepoint state. |
| 11705 | */ |
| 11706 | mutex_unlock(&ctx->mutex); |
| 11707 | ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); |
| 11708 | mutex_lock(&ctx->mutex); |
| 11709 | } else |
| 11710 | #endif |
| 11711 | if (has_addr_filter(event)) |
| 11712 | ret = perf_event_set_addr_filter(event, filter_str); |
| 11713 | |
| 11714 | kfree(filter_str); |
| 11715 | return ret; |
| 11716 | } |
| 11717 | |
| 11718 | /* |
| 11719 | * hrtimer based swevent callback |
| 11720 | */ |
| 11721 | |
| 11722 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) |
| 11723 | { |
| 11724 | enum hrtimer_restart ret = HRTIMER_RESTART; |
| 11725 | struct perf_sample_data data; |
| 11726 | struct pt_regs *regs; |
| 11727 | struct perf_event *event; |
| 11728 | u64 period; |
| 11729 | |
| 11730 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); |
| 11731 | |
| 11732 | if (event->state != PERF_EVENT_STATE_ACTIVE) |
| 11733 | return HRTIMER_NORESTART; |
| 11734 | |
| 11735 | event->pmu->read(event); |
| 11736 | |
| 11737 | perf_sample_data_init(&data, 0, event->hw.last_period); |
| 11738 | regs = get_irq_regs(); |
| 11739 | |
| 11740 | if (regs && !perf_exclude_event(event, regs)) { |
| 11741 | if (!(event->attr.exclude_idle && is_idle_task(current))) |
| 11742 | if (__perf_event_overflow(event, 1, &data, regs)) |
| 11743 | ret = HRTIMER_NORESTART; |
| 11744 | } |
| 11745 | |
| 11746 | period = max_t(u64, 10000, event->hw.sample_period); |
| 11747 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
| 11748 | |
| 11749 | return ret; |
| 11750 | } |
| 11751 | |
| 11752 | static void perf_swevent_start_hrtimer(struct perf_event *event) |
| 11753 | { |
| 11754 | struct hw_perf_event *hwc = &event->hw; |
| 11755 | s64 period; |
| 11756 | |
| 11757 | if (!is_sampling_event(event)) |
| 11758 | return; |
| 11759 | |
| 11760 | period = local64_read(&hwc->period_left); |
| 11761 | if (period) { |
| 11762 | if (period < 0) |
| 11763 | period = 10000; |
| 11764 | |
| 11765 | local64_set(&hwc->period_left, 0); |
| 11766 | } else { |
| 11767 | period = max_t(u64, 10000, hwc->sample_period); |
| 11768 | } |
| 11769 | hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), |
| 11770 | HRTIMER_MODE_REL_PINNED_HARD); |
| 11771 | } |
| 11772 | |
| 11773 | static void perf_swevent_cancel_hrtimer(struct perf_event *event) |
| 11774 | { |
| 11775 | struct hw_perf_event *hwc = &event->hw; |
| 11776 | |
| 11777 | /* |
| 11778 | * The throttle can be triggered in the hrtimer handler. |
| 11779 | * The HRTIMER_NORESTART should be used to stop the timer, |
| 11780 | * rather than hrtimer_cancel(). See perf_swevent_hrtimer() |
| 11781 | */ |
| 11782 | if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) { |
| 11783 | ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); |
| 11784 | local64_set(&hwc->period_left, ktime_to_ns(remaining)); |
| 11785 | |
| 11786 | hrtimer_cancel(&hwc->hrtimer); |
| 11787 | } |
| 11788 | } |
| 11789 | |
| 11790 | static void perf_swevent_init_hrtimer(struct perf_event *event) |
| 11791 | { |
| 11792 | struct hw_perf_event *hwc = &event->hw; |
| 11793 | |
| 11794 | if (!is_sampling_event(event)) |
| 11795 | return; |
| 11796 | |
| 11797 | hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); |
| 11798 | |
| 11799 | /* |
| 11800 | * Since hrtimers have a fixed rate, we can do a static freq->period |
| 11801 | * mapping and avoid the whole period adjust feedback stuff. |
| 11802 | */ |
| 11803 | if (event->attr.freq) { |
| 11804 | long freq = event->attr.sample_freq; |
| 11805 | |
| 11806 | event->attr.sample_period = NSEC_PER_SEC / freq; |
| 11807 | hwc->sample_period = event->attr.sample_period; |
| 11808 | local64_set(&hwc->period_left, hwc->sample_period); |
| 11809 | hwc->last_period = hwc->sample_period; |
| 11810 | event->attr.freq = 0; |
| 11811 | } |
| 11812 | } |
| 11813 | |
| 11814 | /* |
| 11815 | * Software event: cpu wall time clock |
| 11816 | */ |
| 11817 | |
| 11818 | static void cpu_clock_event_update(struct perf_event *event) |
| 11819 | { |
| 11820 | s64 prev; |
| 11821 | u64 now; |
| 11822 | |
| 11823 | now = local_clock(); |
| 11824 | prev = local64_xchg(&event->hw.prev_count, now); |
| 11825 | local64_add(now - prev, &event->count); |
| 11826 | } |
| 11827 | |
| 11828 | static void cpu_clock_event_start(struct perf_event *event, int flags) |
| 11829 | { |
| 11830 | local64_set(&event->hw.prev_count, local_clock()); |
| 11831 | perf_swevent_start_hrtimer(event); |
| 11832 | } |
| 11833 | |
| 11834 | static void cpu_clock_event_stop(struct perf_event *event, int flags) |
| 11835 | { |
| 11836 | perf_swevent_cancel_hrtimer(event); |
| 11837 | if (flags & PERF_EF_UPDATE) |
| 11838 | cpu_clock_event_update(event); |
| 11839 | } |
| 11840 | |
| 11841 | static int cpu_clock_event_add(struct perf_event *event, int flags) |
| 11842 | { |
| 11843 | if (flags & PERF_EF_START) |
| 11844 | cpu_clock_event_start(event, flags); |
| 11845 | perf_event_update_userpage(event); |
| 11846 | |
| 11847 | return 0; |
| 11848 | } |
| 11849 | |
| 11850 | static void cpu_clock_event_del(struct perf_event *event, int flags) |
| 11851 | { |
| 11852 | cpu_clock_event_stop(event, flags); |
| 11853 | } |
| 11854 | |
| 11855 | static void cpu_clock_event_read(struct perf_event *event) |
| 11856 | { |
| 11857 | cpu_clock_event_update(event); |
| 11858 | } |
| 11859 | |
| 11860 | static int cpu_clock_event_init(struct perf_event *event) |
| 11861 | { |
| 11862 | if (event->attr.type != perf_cpu_clock.type) |
| 11863 | return -ENOENT; |
| 11864 | |
| 11865 | if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) |
| 11866 | return -ENOENT; |
| 11867 | |
| 11868 | /* |
| 11869 | * no branch sampling for software events |
| 11870 | */ |
| 11871 | if (has_branch_stack(event)) |
| 11872 | return -EOPNOTSUPP; |
| 11873 | |
| 11874 | perf_swevent_init_hrtimer(event); |
| 11875 | |
| 11876 | return 0; |
| 11877 | } |
| 11878 | |
| 11879 | static struct pmu perf_cpu_clock = { |
| 11880 | .task_ctx_nr = perf_sw_context, |
| 11881 | |
| 11882 | .capabilities = PERF_PMU_CAP_NO_NMI, |
| 11883 | .dev = PMU_NULL_DEV, |
| 11884 | |
| 11885 | .event_init = cpu_clock_event_init, |
| 11886 | .add = cpu_clock_event_add, |
| 11887 | .del = cpu_clock_event_del, |
| 11888 | .start = cpu_clock_event_start, |
| 11889 | .stop = cpu_clock_event_stop, |
| 11890 | .read = cpu_clock_event_read, |
| 11891 | }; |
| 11892 | |
| 11893 | /* |
| 11894 | * Software event: task time clock |
| 11895 | */ |
| 11896 | |
| 11897 | static void task_clock_event_update(struct perf_event *event, u64 now) |
| 11898 | { |
| 11899 | u64 prev; |
| 11900 | s64 delta; |
| 11901 | |
| 11902 | prev = local64_xchg(&event->hw.prev_count, now); |
| 11903 | delta = now - prev; |
| 11904 | local64_add(delta, &event->count); |
| 11905 | } |
| 11906 | |
| 11907 | static void task_clock_event_start(struct perf_event *event, int flags) |
| 11908 | { |
| 11909 | local64_set(&event->hw.prev_count, event->ctx->time); |
| 11910 | perf_swevent_start_hrtimer(event); |
| 11911 | } |
| 11912 | |
| 11913 | static void task_clock_event_stop(struct perf_event *event, int flags) |
| 11914 | { |
| 11915 | perf_swevent_cancel_hrtimer(event); |
| 11916 | if (flags & PERF_EF_UPDATE) |
| 11917 | task_clock_event_update(event, event->ctx->time); |
| 11918 | } |
| 11919 | |
| 11920 | static int task_clock_event_add(struct perf_event *event, int flags) |
| 11921 | { |
| 11922 | if (flags & PERF_EF_START) |
| 11923 | task_clock_event_start(event, flags); |
| 11924 | perf_event_update_userpage(event); |
| 11925 | |
| 11926 | return 0; |
| 11927 | } |
| 11928 | |
| 11929 | static void task_clock_event_del(struct perf_event *event, int flags) |
| 11930 | { |
| 11931 | task_clock_event_stop(event, PERF_EF_UPDATE); |
| 11932 | } |
| 11933 | |
| 11934 | static void task_clock_event_read(struct perf_event *event) |
| 11935 | { |
| 11936 | u64 now = perf_clock(); |
| 11937 | u64 delta = now - event->ctx->timestamp; |
| 11938 | u64 time = event->ctx->time + delta; |
| 11939 | |
| 11940 | task_clock_event_update(event, time); |
| 11941 | } |
| 11942 | |
| 11943 | static int task_clock_event_init(struct perf_event *event) |
| 11944 | { |
| 11945 | if (event->attr.type != perf_task_clock.type) |
| 11946 | return -ENOENT; |
| 11947 | |
| 11948 | if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) |
| 11949 | return -ENOENT; |
| 11950 | |
| 11951 | /* |
| 11952 | * no branch sampling for software events |
| 11953 | */ |
| 11954 | if (has_branch_stack(event)) |
| 11955 | return -EOPNOTSUPP; |
| 11956 | |
| 11957 | perf_swevent_init_hrtimer(event); |
| 11958 | |
| 11959 | return 0; |
| 11960 | } |
| 11961 | |
| 11962 | static struct pmu perf_task_clock = { |
| 11963 | .task_ctx_nr = perf_sw_context, |
| 11964 | |
| 11965 | .capabilities = PERF_PMU_CAP_NO_NMI, |
| 11966 | .dev = PMU_NULL_DEV, |
| 11967 | |
| 11968 | .event_init = task_clock_event_init, |
| 11969 | .add = task_clock_event_add, |
| 11970 | .del = task_clock_event_del, |
| 11971 | .start = task_clock_event_start, |
| 11972 | .stop = task_clock_event_stop, |
| 11973 | .read = task_clock_event_read, |
| 11974 | }; |
| 11975 | |
| 11976 | static void perf_pmu_nop_void(struct pmu *pmu) |
| 11977 | { |
| 11978 | } |
| 11979 | |
| 11980 | static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) |
| 11981 | { |
| 11982 | } |
| 11983 | |
| 11984 | static int perf_pmu_nop_int(struct pmu *pmu) |
| 11985 | { |
| 11986 | return 0; |
| 11987 | } |
| 11988 | |
| 11989 | static int perf_event_nop_int(struct perf_event *event, u64 value) |
| 11990 | { |
| 11991 | return 0; |
| 11992 | } |
| 11993 | |
| 11994 | static DEFINE_PER_CPU(unsigned int, nop_txn_flags); |
| 11995 | |
| 11996 | static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) |
| 11997 | { |
| 11998 | __this_cpu_write(nop_txn_flags, flags); |
| 11999 | |
| 12000 | if (flags & ~PERF_PMU_TXN_ADD) |
| 12001 | return; |
| 12002 | |
| 12003 | perf_pmu_disable(pmu); |
| 12004 | } |
| 12005 | |
| 12006 | static int perf_pmu_commit_txn(struct pmu *pmu) |
| 12007 | { |
| 12008 | unsigned int flags = __this_cpu_read(nop_txn_flags); |
| 12009 | |
| 12010 | __this_cpu_write(nop_txn_flags, 0); |
| 12011 | |
| 12012 | if (flags & ~PERF_PMU_TXN_ADD) |
| 12013 | return 0; |
| 12014 | |
| 12015 | perf_pmu_enable(pmu); |
| 12016 | return 0; |
| 12017 | } |
| 12018 | |
| 12019 | static void perf_pmu_cancel_txn(struct pmu *pmu) |
| 12020 | { |
| 12021 | unsigned int flags = __this_cpu_read(nop_txn_flags); |
| 12022 | |
| 12023 | __this_cpu_write(nop_txn_flags, 0); |
| 12024 | |
| 12025 | if (flags & ~PERF_PMU_TXN_ADD) |
| 12026 | return; |
| 12027 | |
| 12028 | perf_pmu_enable(pmu); |
| 12029 | } |
| 12030 | |
| 12031 | static int perf_event_idx_default(struct perf_event *event) |
| 12032 | { |
| 12033 | return 0; |
| 12034 | } |
| 12035 | |
| 12036 | /* |
| 12037 | * Let userspace know that this PMU supports address range filtering: |
| 12038 | */ |
| 12039 | static ssize_t nr_addr_filters_show(struct device *dev, |
| 12040 | struct device_attribute *attr, |
| 12041 | char *page) |
| 12042 | { |
| 12043 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12044 | |
| 12045 | return sysfs_emit(page, "%d\n", pmu->nr_addr_filters); |
| 12046 | } |
| 12047 | DEVICE_ATTR_RO(nr_addr_filters); |
| 12048 | |
| 12049 | static struct idr pmu_idr; |
| 12050 | |
| 12051 | static ssize_t |
| 12052 | type_show(struct device *dev, struct device_attribute *attr, char *page) |
| 12053 | { |
| 12054 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12055 | |
| 12056 | return sysfs_emit(page, "%d\n", pmu->type); |
| 12057 | } |
| 12058 | static DEVICE_ATTR_RO(type); |
| 12059 | |
| 12060 | static ssize_t |
| 12061 | perf_event_mux_interval_ms_show(struct device *dev, |
| 12062 | struct device_attribute *attr, |
| 12063 | char *page) |
| 12064 | { |
| 12065 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12066 | |
| 12067 | return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms); |
| 12068 | } |
| 12069 | |
| 12070 | static DEFINE_MUTEX(mux_interval_mutex); |
| 12071 | |
| 12072 | static ssize_t |
| 12073 | perf_event_mux_interval_ms_store(struct device *dev, |
| 12074 | struct device_attribute *attr, |
| 12075 | const char *buf, size_t count) |
| 12076 | { |
| 12077 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12078 | int timer, cpu, ret; |
| 12079 | |
| 12080 | ret = kstrtoint(buf, 0, &timer); |
| 12081 | if (ret) |
| 12082 | return ret; |
| 12083 | |
| 12084 | if (timer < 1) |
| 12085 | return -EINVAL; |
| 12086 | |
| 12087 | /* same value, noting to do */ |
| 12088 | if (timer == pmu->hrtimer_interval_ms) |
| 12089 | return count; |
| 12090 | |
| 12091 | mutex_lock(&mux_interval_mutex); |
| 12092 | pmu->hrtimer_interval_ms = timer; |
| 12093 | |
| 12094 | /* update all cpuctx for this PMU */ |
| 12095 | cpus_read_lock(); |
| 12096 | for_each_online_cpu(cpu) { |
| 12097 | struct perf_cpu_pmu_context *cpc; |
| 12098 | cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); |
| 12099 | cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); |
| 12100 | |
| 12101 | cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); |
| 12102 | } |
| 12103 | cpus_read_unlock(); |
| 12104 | mutex_unlock(&mux_interval_mutex); |
| 12105 | |
| 12106 | return count; |
| 12107 | } |
| 12108 | static DEVICE_ATTR_RW(perf_event_mux_interval_ms); |
| 12109 | |
| 12110 | static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu) |
| 12111 | { |
| 12112 | switch (scope) { |
| 12113 | case PERF_PMU_SCOPE_CORE: |
| 12114 | return topology_sibling_cpumask(cpu); |
| 12115 | case PERF_PMU_SCOPE_DIE: |
| 12116 | return topology_die_cpumask(cpu); |
| 12117 | case PERF_PMU_SCOPE_CLUSTER: |
| 12118 | return topology_cluster_cpumask(cpu); |
| 12119 | case PERF_PMU_SCOPE_PKG: |
| 12120 | return topology_core_cpumask(cpu); |
| 12121 | case PERF_PMU_SCOPE_SYS_WIDE: |
| 12122 | return cpu_online_mask; |
| 12123 | } |
| 12124 | |
| 12125 | return NULL; |
| 12126 | } |
| 12127 | |
| 12128 | static inline struct cpumask *perf_scope_cpumask(unsigned int scope) |
| 12129 | { |
| 12130 | switch (scope) { |
| 12131 | case PERF_PMU_SCOPE_CORE: |
| 12132 | return perf_online_core_mask; |
| 12133 | case PERF_PMU_SCOPE_DIE: |
| 12134 | return perf_online_die_mask; |
| 12135 | case PERF_PMU_SCOPE_CLUSTER: |
| 12136 | return perf_online_cluster_mask; |
| 12137 | case PERF_PMU_SCOPE_PKG: |
| 12138 | return perf_online_pkg_mask; |
| 12139 | case PERF_PMU_SCOPE_SYS_WIDE: |
| 12140 | return perf_online_sys_mask; |
| 12141 | } |
| 12142 | |
| 12143 | return NULL; |
| 12144 | } |
| 12145 | |
| 12146 | static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr, |
| 12147 | char *buf) |
| 12148 | { |
| 12149 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12150 | struct cpumask *mask = perf_scope_cpumask(pmu->scope); |
| 12151 | |
| 12152 | if (mask) |
| 12153 | return cpumap_print_to_pagebuf(true, buf, mask); |
| 12154 | return 0; |
| 12155 | } |
| 12156 | |
| 12157 | static DEVICE_ATTR_RO(cpumask); |
| 12158 | |
| 12159 | static struct attribute *pmu_dev_attrs[] = { |
| 12160 | &dev_attr_type.attr, |
| 12161 | &dev_attr_perf_event_mux_interval_ms.attr, |
| 12162 | &dev_attr_nr_addr_filters.attr, |
| 12163 | &dev_attr_cpumask.attr, |
| 12164 | NULL, |
| 12165 | }; |
| 12166 | |
| 12167 | static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) |
| 12168 | { |
| 12169 | struct device *dev = kobj_to_dev(kobj); |
| 12170 | struct pmu *pmu = dev_get_drvdata(dev); |
| 12171 | |
| 12172 | if (n == 2 && !pmu->nr_addr_filters) |
| 12173 | return 0; |
| 12174 | |
| 12175 | /* cpumask */ |
| 12176 | if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE) |
| 12177 | return 0; |
| 12178 | |
| 12179 | return a->mode; |
| 12180 | } |
| 12181 | |
| 12182 | static struct attribute_group pmu_dev_attr_group = { |
| 12183 | .is_visible = pmu_dev_is_visible, |
| 12184 | .attrs = pmu_dev_attrs, |
| 12185 | }; |
| 12186 | |
| 12187 | static const struct attribute_group *pmu_dev_groups[] = { |
| 12188 | &pmu_dev_attr_group, |
| 12189 | NULL, |
| 12190 | }; |
| 12191 | |
| 12192 | static int pmu_bus_running; |
| 12193 | static struct bus_type pmu_bus = { |
| 12194 | .name = "event_source", |
| 12195 | .dev_groups = pmu_dev_groups, |
| 12196 | }; |
| 12197 | |
| 12198 | static void pmu_dev_release(struct device *dev) |
| 12199 | { |
| 12200 | kfree(dev); |
| 12201 | } |
| 12202 | |
| 12203 | static int pmu_dev_alloc(struct pmu *pmu) |
| 12204 | { |
| 12205 | int ret = -ENOMEM; |
| 12206 | |
| 12207 | pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); |
| 12208 | if (!pmu->dev) |
| 12209 | goto out; |
| 12210 | |
| 12211 | pmu->dev->groups = pmu->attr_groups; |
| 12212 | device_initialize(pmu->dev); |
| 12213 | |
| 12214 | dev_set_drvdata(pmu->dev, pmu); |
| 12215 | pmu->dev->bus = &pmu_bus; |
| 12216 | pmu->dev->parent = pmu->parent; |
| 12217 | pmu->dev->release = pmu_dev_release; |
| 12218 | |
| 12219 | ret = dev_set_name(pmu->dev, "%s", pmu->name); |
| 12220 | if (ret) |
| 12221 | goto free_dev; |
| 12222 | |
| 12223 | ret = device_add(pmu->dev); |
| 12224 | if (ret) |
| 12225 | goto free_dev; |
| 12226 | |
| 12227 | if (pmu->attr_update) { |
| 12228 | ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); |
| 12229 | if (ret) |
| 12230 | goto del_dev; |
| 12231 | } |
| 12232 | |
| 12233 | out: |
| 12234 | return ret; |
| 12235 | |
| 12236 | del_dev: |
| 12237 | device_del(pmu->dev); |
| 12238 | |
| 12239 | free_dev: |
| 12240 | put_device(pmu->dev); |
| 12241 | pmu->dev = NULL; |
| 12242 | goto out; |
| 12243 | } |
| 12244 | |
| 12245 | static struct lock_class_key cpuctx_mutex; |
| 12246 | static struct lock_class_key cpuctx_lock; |
| 12247 | |
| 12248 | static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new) |
| 12249 | { |
| 12250 | void *tmp, *val = idr_find(idr, id); |
| 12251 | |
| 12252 | if (val != old) |
| 12253 | return false; |
| 12254 | |
| 12255 | tmp = idr_replace(idr, new, id); |
| 12256 | if (IS_ERR(tmp)) |
| 12257 | return false; |
| 12258 | |
| 12259 | WARN_ON_ONCE(tmp != val); |
| 12260 | return true; |
| 12261 | } |
| 12262 | |
| 12263 | static void perf_pmu_free(struct pmu *pmu) |
| 12264 | { |
| 12265 | if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { |
| 12266 | if (pmu->nr_addr_filters) |
| 12267 | device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); |
| 12268 | device_del(pmu->dev); |
| 12269 | put_device(pmu->dev); |
| 12270 | } |
| 12271 | |
| 12272 | if (pmu->cpu_pmu_context) { |
| 12273 | int cpu; |
| 12274 | |
| 12275 | for_each_possible_cpu(cpu) { |
| 12276 | struct perf_cpu_pmu_context *cpc; |
| 12277 | |
| 12278 | cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu); |
| 12279 | if (!cpc) |
| 12280 | continue; |
| 12281 | if (cpc->epc.embedded) { |
| 12282 | /* refcount managed */ |
| 12283 | put_pmu_ctx(&cpc->epc); |
| 12284 | continue; |
| 12285 | } |
| 12286 | kfree(cpc); |
| 12287 | } |
| 12288 | free_percpu(pmu->cpu_pmu_context); |
| 12289 | } |
| 12290 | } |
| 12291 | |
| 12292 | DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T)) |
| 12293 | |
| 12294 | int perf_pmu_register(struct pmu *_pmu, const char *name, int type) |
| 12295 | { |
| 12296 | int cpu, max = PERF_TYPE_MAX; |
| 12297 | |
| 12298 | struct pmu *pmu __free(pmu_unregister) = _pmu; |
| 12299 | guard(mutex)(&pmus_lock); |
| 12300 | |
| 12301 | if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) |
| 12302 | return -EINVAL; |
| 12303 | |
| 12304 | if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, |
| 12305 | "Can not register a pmu with an invalid scope.\n")) |
| 12306 | return -EINVAL; |
| 12307 | |
| 12308 | pmu->name = name; |
| 12309 | |
| 12310 | if (type >= 0) |
| 12311 | max = type; |
| 12312 | |
| 12313 | CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL); |
| 12314 | if (pmu_type.id < 0) |
| 12315 | return pmu_type.id; |
| 12316 | |
| 12317 | WARN_ON(type >= 0 && pmu_type.id != type); |
| 12318 | |
| 12319 | pmu->type = pmu_type.id; |
| 12320 | atomic_set(&pmu->exclusive_cnt, 0); |
| 12321 | |
| 12322 | if (pmu_bus_running && !pmu->dev) { |
| 12323 | int ret = pmu_dev_alloc(pmu); |
| 12324 | if (ret) |
| 12325 | return ret; |
| 12326 | } |
| 12327 | |
| 12328 | pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *); |
| 12329 | if (!pmu->cpu_pmu_context) |
| 12330 | return -ENOMEM; |
| 12331 | |
| 12332 | for_each_possible_cpu(cpu) { |
| 12333 | struct perf_cpu_pmu_context *cpc = |
| 12334 | kmalloc_node(sizeof(struct perf_cpu_pmu_context), |
| 12335 | GFP_KERNEL | __GFP_ZERO, |
| 12336 | cpu_to_node(cpu)); |
| 12337 | |
| 12338 | if (!cpc) |
| 12339 | return -ENOMEM; |
| 12340 | |
| 12341 | *per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc; |
| 12342 | __perf_init_event_pmu_context(&cpc->epc, pmu); |
| 12343 | __perf_mux_hrtimer_init(cpc, cpu); |
| 12344 | } |
| 12345 | |
| 12346 | if (!pmu->start_txn) { |
| 12347 | if (pmu->pmu_enable) { |
| 12348 | /* |
| 12349 | * If we have pmu_enable/pmu_disable calls, install |
| 12350 | * transaction stubs that use that to try and batch |
| 12351 | * hardware accesses. |
| 12352 | */ |
| 12353 | pmu->start_txn = perf_pmu_start_txn; |
| 12354 | pmu->commit_txn = perf_pmu_commit_txn; |
| 12355 | pmu->cancel_txn = perf_pmu_cancel_txn; |
| 12356 | } else { |
| 12357 | pmu->start_txn = perf_pmu_nop_txn; |
| 12358 | pmu->commit_txn = perf_pmu_nop_int; |
| 12359 | pmu->cancel_txn = perf_pmu_nop_void; |
| 12360 | } |
| 12361 | } |
| 12362 | |
| 12363 | if (!pmu->pmu_enable) { |
| 12364 | pmu->pmu_enable = perf_pmu_nop_void; |
| 12365 | pmu->pmu_disable = perf_pmu_nop_void; |
| 12366 | } |
| 12367 | |
| 12368 | if (!pmu->check_period) |
| 12369 | pmu->check_period = perf_event_nop_int; |
| 12370 | |
| 12371 | if (!pmu->event_idx) |
| 12372 | pmu->event_idx = perf_event_idx_default; |
| 12373 | |
| 12374 | INIT_LIST_HEAD(&pmu->events); |
| 12375 | spin_lock_init(&pmu->events_lock); |
| 12376 | |
| 12377 | /* |
| 12378 | * Now that the PMU is complete, make it visible to perf_try_init_event(). |
| 12379 | */ |
| 12380 | if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu)) |
| 12381 | return -EINVAL; |
| 12382 | list_add_rcu(&pmu->entry, &pmus); |
| 12383 | |
| 12384 | take_idr_id(pmu_type); |
| 12385 | _pmu = no_free_ptr(pmu); // let it rip |
| 12386 | return 0; |
| 12387 | } |
| 12388 | EXPORT_SYMBOL_GPL(perf_pmu_register); |
| 12389 | |
| 12390 | static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event, |
| 12391 | struct perf_event_context *ctx) |
| 12392 | { |
| 12393 | /* |
| 12394 | * De-schedule the event and mark it REVOKED. |
| 12395 | */ |
| 12396 | perf_event_exit_event(event, ctx, true); |
| 12397 | |
| 12398 | /* |
| 12399 | * All _free_event() bits that rely on event->pmu: |
| 12400 | * |
| 12401 | * Notably, perf_mmap() relies on the ordering here. |
| 12402 | */ |
| 12403 | scoped_guard (mutex, &event->mmap_mutex) { |
| 12404 | WARN_ON_ONCE(pmu->event_unmapped); |
| 12405 | /* |
| 12406 | * Mostly an empty lock sequence, such that perf_mmap(), which |
| 12407 | * relies on mmap_mutex, is sure to observe the state change. |
| 12408 | */ |
| 12409 | } |
| 12410 | |
| 12411 | perf_event_free_bpf_prog(event); |
| 12412 | perf_free_addr_filters(event); |
| 12413 | |
| 12414 | if (event->destroy) { |
| 12415 | event->destroy(event); |
| 12416 | event->destroy = NULL; |
| 12417 | } |
| 12418 | |
| 12419 | if (event->pmu_ctx) { |
| 12420 | put_pmu_ctx(event->pmu_ctx); |
| 12421 | event->pmu_ctx = NULL; |
| 12422 | } |
| 12423 | |
| 12424 | exclusive_event_destroy(event); |
| 12425 | module_put(pmu->module); |
| 12426 | |
| 12427 | event->pmu = NULL; /* force fault instead of UAF */ |
| 12428 | } |
| 12429 | |
| 12430 | static void pmu_detach_event(struct pmu *pmu, struct perf_event *event) |
| 12431 | { |
| 12432 | struct perf_event_context *ctx; |
| 12433 | |
| 12434 | ctx = perf_event_ctx_lock(event); |
| 12435 | __pmu_detach_event(pmu, event, ctx); |
| 12436 | perf_event_ctx_unlock(event, ctx); |
| 12437 | |
| 12438 | scoped_guard (spinlock, &pmu->events_lock) |
| 12439 | list_del(&event->pmu_list); |
| 12440 | } |
| 12441 | |
| 12442 | static struct perf_event *pmu_get_event(struct pmu *pmu) |
| 12443 | { |
| 12444 | struct perf_event *event; |
| 12445 | |
| 12446 | guard(spinlock)(&pmu->events_lock); |
| 12447 | list_for_each_entry(event, &pmu->events, pmu_list) { |
| 12448 | if (atomic_long_inc_not_zero(&event->refcount)) |
| 12449 | return event; |
| 12450 | } |
| 12451 | |
| 12452 | return NULL; |
| 12453 | } |
| 12454 | |
| 12455 | static bool pmu_empty(struct pmu *pmu) |
| 12456 | { |
| 12457 | guard(spinlock)(&pmu->events_lock); |
| 12458 | return list_empty(&pmu->events); |
| 12459 | } |
| 12460 | |
| 12461 | static void pmu_detach_events(struct pmu *pmu) |
| 12462 | { |
| 12463 | struct perf_event *event; |
| 12464 | |
| 12465 | for (;;) { |
| 12466 | event = pmu_get_event(pmu); |
| 12467 | if (!event) |
| 12468 | break; |
| 12469 | |
| 12470 | pmu_detach_event(pmu, event); |
| 12471 | put_event(event); |
| 12472 | } |
| 12473 | |
| 12474 | /* |
| 12475 | * wait for pending _free_event()s |
| 12476 | */ |
| 12477 | wait_var_event(pmu, pmu_empty(pmu)); |
| 12478 | } |
| 12479 | |
| 12480 | int perf_pmu_unregister(struct pmu *pmu) |
| 12481 | { |
| 12482 | scoped_guard (mutex, &pmus_lock) { |
| 12483 | if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL)) |
| 12484 | return -EINVAL; |
| 12485 | |
| 12486 | list_del_rcu(&pmu->entry); |
| 12487 | } |
| 12488 | |
| 12489 | /* |
| 12490 | * We dereference the pmu list under both SRCU and regular RCU, so |
| 12491 | * synchronize against both of those. |
| 12492 | * |
| 12493 | * Notably, the entirety of event creation, from perf_init_event() |
| 12494 | * (which will now fail, because of the above) until |
| 12495 | * perf_install_in_context() should be under SRCU such that |
| 12496 | * this synchronizes against event creation. This avoids trying to |
| 12497 | * detach events that are not fully formed. |
| 12498 | */ |
| 12499 | synchronize_srcu(&pmus_srcu); |
| 12500 | synchronize_rcu(); |
| 12501 | |
| 12502 | if (pmu->event_unmapped && !pmu_empty(pmu)) { |
| 12503 | /* |
| 12504 | * Can't force remove events when pmu::event_unmapped() |
| 12505 | * is used in perf_mmap_close(). |
| 12506 | */ |
| 12507 | guard(mutex)(&pmus_lock); |
| 12508 | idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu); |
| 12509 | list_add_rcu(&pmu->entry, &pmus); |
| 12510 | return -EBUSY; |
| 12511 | } |
| 12512 | |
| 12513 | scoped_guard (mutex, &pmus_lock) |
| 12514 | idr_remove(&pmu_idr, pmu->type); |
| 12515 | |
| 12516 | /* |
| 12517 | * PMU is removed from the pmus list, so no new events will |
| 12518 | * be created, now take care of the existing ones. |
| 12519 | */ |
| 12520 | pmu_detach_events(pmu); |
| 12521 | |
| 12522 | /* |
| 12523 | * PMU is unused, make it go away. |
| 12524 | */ |
| 12525 | perf_pmu_free(pmu); |
| 12526 | return 0; |
| 12527 | } |
| 12528 | EXPORT_SYMBOL_GPL(perf_pmu_unregister); |
| 12529 | |
| 12530 | static inline bool has_extended_regs(struct perf_event *event) |
| 12531 | { |
| 12532 | return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || |
| 12533 | (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); |
| 12534 | } |
| 12535 | |
| 12536 | static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) |
| 12537 | { |
| 12538 | struct perf_event_context *ctx = NULL; |
| 12539 | int ret; |
| 12540 | |
| 12541 | if (!try_module_get(pmu->module)) |
| 12542 | return -ENODEV; |
| 12543 | |
| 12544 | /* |
| 12545 | * A number of pmu->event_init() methods iterate the sibling_list to, |
| 12546 | * for example, validate if the group fits on the PMU. Therefore, |
| 12547 | * if this is a sibling event, acquire the ctx->mutex to protect |
| 12548 | * the sibling_list. |
| 12549 | */ |
| 12550 | if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { |
| 12551 | /* |
| 12552 | * This ctx->mutex can nest when we're called through |
| 12553 | * inheritance. See the perf_event_ctx_lock_nested() comment. |
| 12554 | */ |
| 12555 | ctx = perf_event_ctx_lock_nested(event->group_leader, |
| 12556 | SINGLE_DEPTH_NESTING); |
| 12557 | BUG_ON(!ctx); |
| 12558 | } |
| 12559 | |
| 12560 | event->pmu = pmu; |
| 12561 | ret = pmu->event_init(event); |
| 12562 | |
| 12563 | if (ctx) |
| 12564 | perf_event_ctx_unlock(event->group_leader, ctx); |
| 12565 | |
| 12566 | if (ret) |
| 12567 | goto err_pmu; |
| 12568 | |
| 12569 | if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && |
| 12570 | has_extended_regs(event)) { |
| 12571 | ret = -EOPNOTSUPP; |
| 12572 | goto err_destroy; |
| 12573 | } |
| 12574 | |
| 12575 | if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && |
| 12576 | event_has_any_exclude_flag(event)) { |
| 12577 | ret = -EINVAL; |
| 12578 | goto err_destroy; |
| 12579 | } |
| 12580 | |
| 12581 | if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) { |
| 12582 | const struct cpumask *cpumask; |
| 12583 | struct cpumask *pmu_cpumask; |
| 12584 | int cpu; |
| 12585 | |
| 12586 | cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu); |
| 12587 | pmu_cpumask = perf_scope_cpumask(pmu->scope); |
| 12588 | |
| 12589 | ret = -ENODEV; |
| 12590 | if (!pmu_cpumask || !cpumask) |
| 12591 | goto err_destroy; |
| 12592 | |
| 12593 | cpu = cpumask_any_and(pmu_cpumask, cpumask); |
| 12594 | if (cpu >= nr_cpu_ids) |
| 12595 | goto err_destroy; |
| 12596 | |
| 12597 | event->event_caps |= PERF_EV_CAP_READ_SCOPE; |
| 12598 | } |
| 12599 | |
| 12600 | return 0; |
| 12601 | |
| 12602 | err_destroy: |
| 12603 | if (event->destroy) { |
| 12604 | event->destroy(event); |
| 12605 | event->destroy = NULL; |
| 12606 | } |
| 12607 | |
| 12608 | err_pmu: |
| 12609 | event->pmu = NULL; |
| 12610 | module_put(pmu->module); |
| 12611 | return ret; |
| 12612 | } |
| 12613 | |
| 12614 | static struct pmu *perf_init_event(struct perf_event *event) |
| 12615 | { |
| 12616 | bool extended_type = false; |
| 12617 | struct pmu *pmu; |
| 12618 | int type, ret; |
| 12619 | |
| 12620 | guard(srcu)(&pmus_srcu); /* pmu idr/list access */ |
| 12621 | |
| 12622 | /* |
| 12623 | * Save original type before calling pmu->event_init() since certain |
| 12624 | * pmus overwrites event->attr.type to forward event to another pmu. |
| 12625 | */ |
| 12626 | event->orig_type = event->attr.type; |
| 12627 | |
| 12628 | /* Try parent's PMU first: */ |
| 12629 | if (event->parent && event->parent->pmu) { |
| 12630 | pmu = event->parent->pmu; |
| 12631 | ret = perf_try_init_event(pmu, event); |
| 12632 | if (!ret) |
| 12633 | return pmu; |
| 12634 | } |
| 12635 | |
| 12636 | /* |
| 12637 | * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE |
| 12638 | * are often aliases for PERF_TYPE_RAW. |
| 12639 | */ |
| 12640 | type = event->attr.type; |
| 12641 | if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { |
| 12642 | type = event->attr.config >> PERF_PMU_TYPE_SHIFT; |
| 12643 | if (!type) { |
| 12644 | type = PERF_TYPE_RAW; |
| 12645 | } else { |
| 12646 | extended_type = true; |
| 12647 | event->attr.config &= PERF_HW_EVENT_MASK; |
| 12648 | } |
| 12649 | } |
| 12650 | |
| 12651 | again: |
| 12652 | scoped_guard (rcu) |
| 12653 | pmu = idr_find(&pmu_idr, type); |
| 12654 | if (pmu) { |
| 12655 | if (event->attr.type != type && type != PERF_TYPE_RAW && |
| 12656 | !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) |
| 12657 | return ERR_PTR(-ENOENT); |
| 12658 | |
| 12659 | ret = perf_try_init_event(pmu, event); |
| 12660 | if (ret == -ENOENT && event->attr.type != type && !extended_type) { |
| 12661 | type = event->attr.type; |
| 12662 | goto again; |
| 12663 | } |
| 12664 | |
| 12665 | if (ret) |
| 12666 | return ERR_PTR(ret); |
| 12667 | |
| 12668 | return pmu; |
| 12669 | } |
| 12670 | |
| 12671 | list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { |
| 12672 | ret = perf_try_init_event(pmu, event); |
| 12673 | if (!ret) |
| 12674 | return pmu; |
| 12675 | |
| 12676 | if (ret != -ENOENT) |
| 12677 | return ERR_PTR(ret); |
| 12678 | } |
| 12679 | |
| 12680 | return ERR_PTR(-ENOENT); |
| 12681 | } |
| 12682 | |
| 12683 | static void attach_sb_event(struct perf_event *event) |
| 12684 | { |
| 12685 | struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); |
| 12686 | |
| 12687 | raw_spin_lock(&pel->lock); |
| 12688 | list_add_rcu(&event->sb_list, &pel->list); |
| 12689 | raw_spin_unlock(&pel->lock); |
| 12690 | } |
| 12691 | |
| 12692 | /* |
| 12693 | * We keep a list of all !task (and therefore per-cpu) events |
| 12694 | * that need to receive side-band records. |
| 12695 | * |
| 12696 | * This avoids having to scan all the various PMU per-cpu contexts |
| 12697 | * looking for them. |
| 12698 | */ |
| 12699 | static void account_pmu_sb_event(struct perf_event *event) |
| 12700 | { |
| 12701 | if (is_sb_event(event)) |
| 12702 | attach_sb_event(event); |
| 12703 | } |
| 12704 | |
| 12705 | /* Freq events need the tick to stay alive (see perf_event_task_tick). */ |
| 12706 | static void account_freq_event_nohz(void) |
| 12707 | { |
| 12708 | #ifdef CONFIG_NO_HZ_FULL |
| 12709 | /* Lock so we don't race with concurrent unaccount */ |
| 12710 | spin_lock(&nr_freq_lock); |
| 12711 | if (atomic_inc_return(&nr_freq_events) == 1) |
| 12712 | tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); |
| 12713 | spin_unlock(&nr_freq_lock); |
| 12714 | #endif |
| 12715 | } |
| 12716 | |
| 12717 | static void account_freq_event(void) |
| 12718 | { |
| 12719 | if (tick_nohz_full_enabled()) |
| 12720 | account_freq_event_nohz(); |
| 12721 | else |
| 12722 | atomic_inc(&nr_freq_events); |
| 12723 | } |
| 12724 | |
| 12725 | |
| 12726 | static void account_event(struct perf_event *event) |
| 12727 | { |
| 12728 | bool inc = false; |
| 12729 | |
| 12730 | if (event->parent) |
| 12731 | return; |
| 12732 | |
| 12733 | if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) |
| 12734 | inc = true; |
| 12735 | if (event->attr.mmap || event->attr.mmap_data) |
| 12736 | atomic_inc(&nr_mmap_events); |
| 12737 | if (event->attr.build_id) |
| 12738 | atomic_inc(&nr_build_id_events); |
| 12739 | if (event->attr.comm) |
| 12740 | atomic_inc(&nr_comm_events); |
| 12741 | if (event->attr.namespaces) |
| 12742 | atomic_inc(&nr_namespaces_events); |
| 12743 | if (event->attr.cgroup) |
| 12744 | atomic_inc(&nr_cgroup_events); |
| 12745 | if (event->attr.task) |
| 12746 | atomic_inc(&nr_task_events); |
| 12747 | if (event->attr.freq) |
| 12748 | account_freq_event(); |
| 12749 | if (event->attr.context_switch) { |
| 12750 | atomic_inc(&nr_switch_events); |
| 12751 | inc = true; |
| 12752 | } |
| 12753 | if (has_branch_stack(event)) |
| 12754 | inc = true; |
| 12755 | if (is_cgroup_event(event)) |
| 12756 | inc = true; |
| 12757 | if (event->attr.ksymbol) |
| 12758 | atomic_inc(&nr_ksymbol_events); |
| 12759 | if (event->attr.bpf_event) |
| 12760 | atomic_inc(&nr_bpf_events); |
| 12761 | if (event->attr.text_poke) |
| 12762 | atomic_inc(&nr_text_poke_events); |
| 12763 | |
| 12764 | if (inc) { |
| 12765 | /* |
| 12766 | * We need the mutex here because static_branch_enable() |
| 12767 | * must complete *before* the perf_sched_count increment |
| 12768 | * becomes visible. |
| 12769 | */ |
| 12770 | if (atomic_inc_not_zero(&perf_sched_count)) |
| 12771 | goto enabled; |
| 12772 | |
| 12773 | mutex_lock(&perf_sched_mutex); |
| 12774 | if (!atomic_read(&perf_sched_count)) { |
| 12775 | static_branch_enable(&perf_sched_events); |
| 12776 | /* |
| 12777 | * Guarantee that all CPUs observe they key change and |
| 12778 | * call the perf scheduling hooks before proceeding to |
| 12779 | * install events that need them. |
| 12780 | */ |
| 12781 | synchronize_rcu(); |
| 12782 | } |
| 12783 | /* |
| 12784 | * Now that we have waited for the sync_sched(), allow further |
| 12785 | * increments to by-pass the mutex. |
| 12786 | */ |
| 12787 | atomic_inc(&perf_sched_count); |
| 12788 | mutex_unlock(&perf_sched_mutex); |
| 12789 | } |
| 12790 | enabled: |
| 12791 | |
| 12792 | account_pmu_sb_event(event); |
| 12793 | } |
| 12794 | |
| 12795 | /* |
| 12796 | * Allocate and initialize an event structure |
| 12797 | */ |
| 12798 | static struct perf_event * |
| 12799 | perf_event_alloc(struct perf_event_attr *attr, int cpu, |
| 12800 | struct task_struct *task, |
| 12801 | struct perf_event *group_leader, |
| 12802 | struct perf_event *parent_event, |
| 12803 | perf_overflow_handler_t overflow_handler, |
| 12804 | void *context, int cgroup_fd) |
| 12805 | { |
| 12806 | struct pmu *pmu; |
| 12807 | struct hw_perf_event *hwc; |
| 12808 | long err = -EINVAL; |
| 12809 | int node; |
| 12810 | |
| 12811 | if ((unsigned)cpu >= nr_cpu_ids) { |
| 12812 | if (!task || cpu != -1) |
| 12813 | return ERR_PTR(-EINVAL); |
| 12814 | } |
| 12815 | if (attr->sigtrap && !task) { |
| 12816 | /* Requires a task: avoid signalling random tasks. */ |
| 12817 | return ERR_PTR(-EINVAL); |
| 12818 | } |
| 12819 | |
| 12820 | node = (cpu >= 0) ? cpu_to_node(cpu) : -1; |
| 12821 | struct perf_event *event __free(__free_event) = |
| 12822 | kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node); |
| 12823 | if (!event) |
| 12824 | return ERR_PTR(-ENOMEM); |
| 12825 | |
| 12826 | /* |
| 12827 | * Single events are their own group leaders, with an |
| 12828 | * empty sibling list: |
| 12829 | */ |
| 12830 | if (!group_leader) |
| 12831 | group_leader = event; |
| 12832 | |
| 12833 | mutex_init(&event->child_mutex); |
| 12834 | INIT_LIST_HEAD(&event->child_list); |
| 12835 | |
| 12836 | INIT_LIST_HEAD(&event->event_entry); |
| 12837 | INIT_LIST_HEAD(&event->sibling_list); |
| 12838 | INIT_LIST_HEAD(&event->active_list); |
| 12839 | init_event_group(event); |
| 12840 | INIT_LIST_HEAD(&event->rb_entry); |
| 12841 | INIT_LIST_HEAD(&event->active_entry); |
| 12842 | INIT_LIST_HEAD(&event->addr_filters.list); |
| 12843 | INIT_HLIST_NODE(&event->hlist_entry); |
| 12844 | INIT_LIST_HEAD(&event->pmu_list); |
| 12845 | |
| 12846 | |
| 12847 | init_waitqueue_head(&event->waitq); |
| 12848 | init_irq_work(&event->pending_irq, perf_pending_irq); |
| 12849 | event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable); |
| 12850 | init_task_work(&event->pending_task, perf_pending_task); |
| 12851 | |
| 12852 | mutex_init(&event->mmap_mutex); |
| 12853 | raw_spin_lock_init(&event->addr_filters.lock); |
| 12854 | |
| 12855 | atomic_long_set(&event->refcount, 1); |
| 12856 | event->cpu = cpu; |
| 12857 | event->attr = *attr; |
| 12858 | event->group_leader = group_leader; |
| 12859 | event->pmu = NULL; |
| 12860 | event->oncpu = -1; |
| 12861 | |
| 12862 | event->parent = parent_event; |
| 12863 | |
| 12864 | event->ns = get_pid_ns(task_active_pid_ns(current)); |
| 12865 | event->id = atomic64_inc_return(&perf_event_id); |
| 12866 | |
| 12867 | event->state = PERF_EVENT_STATE_INACTIVE; |
| 12868 | |
| 12869 | if (parent_event) |
| 12870 | event->event_caps = parent_event->event_caps; |
| 12871 | |
| 12872 | if (task) { |
| 12873 | event->attach_state = PERF_ATTACH_TASK; |
| 12874 | /* |
| 12875 | * XXX pmu::event_init needs to know what task to account to |
| 12876 | * and we cannot use the ctx information because we need the |
| 12877 | * pmu before we get a ctx. |
| 12878 | */ |
| 12879 | event->hw.target = get_task_struct(task); |
| 12880 | } |
| 12881 | |
| 12882 | event->clock = &local_clock; |
| 12883 | if (parent_event) |
| 12884 | event->clock = parent_event->clock; |
| 12885 | |
| 12886 | if (!overflow_handler && parent_event) { |
| 12887 | overflow_handler = parent_event->overflow_handler; |
| 12888 | context = parent_event->overflow_handler_context; |
| 12889 | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) |
| 12890 | if (parent_event->prog) { |
| 12891 | struct bpf_prog *prog = parent_event->prog; |
| 12892 | |
| 12893 | bpf_prog_inc(prog); |
| 12894 | event->prog = prog; |
| 12895 | } |
| 12896 | #endif |
| 12897 | } |
| 12898 | |
| 12899 | if (overflow_handler) { |
| 12900 | event->overflow_handler = overflow_handler; |
| 12901 | event->overflow_handler_context = context; |
| 12902 | } else if (is_write_backward(event)){ |
| 12903 | event->overflow_handler = perf_event_output_backward; |
| 12904 | event->overflow_handler_context = NULL; |
| 12905 | } else { |
| 12906 | event->overflow_handler = perf_event_output_forward; |
| 12907 | event->overflow_handler_context = NULL; |
| 12908 | } |
| 12909 | |
| 12910 | perf_event__state_init(event); |
| 12911 | |
| 12912 | pmu = NULL; |
| 12913 | |
| 12914 | hwc = &event->hw; |
| 12915 | hwc->sample_period = attr->sample_period; |
| 12916 | if (is_event_in_freq_mode(event)) |
| 12917 | hwc->sample_period = 1; |
| 12918 | hwc->last_period = hwc->sample_period; |
| 12919 | |
| 12920 | local64_set(&hwc->period_left, hwc->sample_period); |
| 12921 | |
| 12922 | /* |
| 12923 | * We do not support PERF_SAMPLE_READ on inherited events unless |
| 12924 | * PERF_SAMPLE_TID is also selected, which allows inherited events to |
| 12925 | * collect per-thread samples. |
| 12926 | * See perf_output_read(). |
| 12927 | */ |
| 12928 | if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID)) |
| 12929 | return ERR_PTR(-EINVAL); |
| 12930 | |
| 12931 | if (!has_branch_stack(event)) |
| 12932 | event->attr.branch_sample_type = 0; |
| 12933 | |
| 12934 | pmu = perf_init_event(event); |
| 12935 | if (IS_ERR(pmu)) |
| 12936 | return (void*)pmu; |
| 12937 | |
| 12938 | /* |
| 12939 | * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config(). |
| 12940 | * The attach should be right after the perf_init_event(). |
| 12941 | * Otherwise, the __free_event() would mistakenly detach the non-exist |
| 12942 | * perf_ctx_data because of the other errors between them. |
| 12943 | */ |
| 12944 | if (event->attach_state & PERF_ATTACH_TASK_DATA) { |
| 12945 | err = attach_perf_ctx_data(event); |
| 12946 | if (err) |
| 12947 | return ERR_PTR(err); |
| 12948 | } |
| 12949 | |
| 12950 | /* |
| 12951 | * Disallow uncore-task events. Similarly, disallow uncore-cgroup |
| 12952 | * events (they don't make sense as the cgroup will be different |
| 12953 | * on other CPUs in the uncore mask). |
| 12954 | */ |
| 12955 | if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) |
| 12956 | return ERR_PTR(-EINVAL); |
| 12957 | |
| 12958 | if (event->attr.aux_output && |
| 12959 | (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) || |
| 12960 | event->attr.aux_pause || event->attr.aux_resume)) |
| 12961 | return ERR_PTR(-EOPNOTSUPP); |
| 12962 | |
| 12963 | if (event->attr.aux_pause && event->attr.aux_resume) |
| 12964 | return ERR_PTR(-EINVAL); |
| 12965 | |
| 12966 | if (event->attr.aux_start_paused) { |
| 12967 | if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) |
| 12968 | return ERR_PTR(-EOPNOTSUPP); |
| 12969 | event->hw.aux_paused = 1; |
| 12970 | } |
| 12971 | |
| 12972 | if (cgroup_fd != -1) { |
| 12973 | err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); |
| 12974 | if (err) |
| 12975 | return ERR_PTR(err); |
| 12976 | } |
| 12977 | |
| 12978 | err = exclusive_event_init(event); |
| 12979 | if (err) |
| 12980 | return ERR_PTR(err); |
| 12981 | |
| 12982 | if (has_addr_filter(event)) { |
| 12983 | event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, |
| 12984 | sizeof(struct perf_addr_filter_range), |
| 12985 | GFP_KERNEL); |
| 12986 | if (!event->addr_filter_ranges) |
| 12987 | return ERR_PTR(-ENOMEM); |
| 12988 | |
| 12989 | /* |
| 12990 | * Clone the parent's vma offsets: they are valid until exec() |
| 12991 | * even if the mm is not shared with the parent. |
| 12992 | */ |
| 12993 | if (event->parent) { |
| 12994 | struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); |
| 12995 | |
| 12996 | raw_spin_lock_irq(&ifh->lock); |
| 12997 | memcpy(event->addr_filter_ranges, |
| 12998 | event->parent->addr_filter_ranges, |
| 12999 | pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); |
| 13000 | raw_spin_unlock_irq(&ifh->lock); |
| 13001 | } |
| 13002 | |
| 13003 | /* force hw sync on the address filters */ |
| 13004 | event->addr_filters_gen = 1; |
| 13005 | } |
| 13006 | |
| 13007 | if (!event->parent) { |
| 13008 | if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { |
| 13009 | err = get_callchain_buffers(attr->sample_max_stack); |
| 13010 | if (err) |
| 13011 | return ERR_PTR(err); |
| 13012 | event->attach_state |= PERF_ATTACH_CALLCHAIN; |
| 13013 | } |
| 13014 | } |
| 13015 | |
| 13016 | err = security_perf_event_alloc(event); |
| 13017 | if (err) |
| 13018 | return ERR_PTR(err); |
| 13019 | |
| 13020 | /* symmetric to unaccount_event() in _free_event() */ |
| 13021 | account_event(event); |
| 13022 | |
| 13023 | /* |
| 13024 | * Event creation should be under SRCU, see perf_pmu_unregister(). |
| 13025 | */ |
| 13026 | lockdep_assert_held(&pmus_srcu); |
| 13027 | scoped_guard (spinlock, &pmu->events_lock) |
| 13028 | list_add(&event->pmu_list, &pmu->events); |
| 13029 | |
| 13030 | return_ptr(event); |
| 13031 | } |
| 13032 | |
| 13033 | static int perf_copy_attr(struct perf_event_attr __user *uattr, |
| 13034 | struct perf_event_attr *attr) |
| 13035 | { |
| 13036 | u32 size; |
| 13037 | int ret; |
| 13038 | |
| 13039 | /* Zero the full structure, so that a short copy will be nice. */ |
| 13040 | memset(attr, 0, sizeof(*attr)); |
| 13041 | |
| 13042 | ret = get_user(size, &uattr->size); |
| 13043 | if (ret) |
| 13044 | return ret; |
| 13045 | |
| 13046 | /* ABI compatibility quirk: */ |
| 13047 | if (!size) |
| 13048 | size = PERF_ATTR_SIZE_VER0; |
| 13049 | if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) |
| 13050 | goto err_size; |
| 13051 | |
| 13052 | ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); |
| 13053 | if (ret) { |
| 13054 | if (ret == -E2BIG) |
| 13055 | goto err_size; |
| 13056 | return ret; |
| 13057 | } |
| 13058 | |
| 13059 | attr->size = size; |
| 13060 | |
| 13061 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) |
| 13062 | return -EINVAL; |
| 13063 | |
| 13064 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) |
| 13065 | return -EINVAL; |
| 13066 | |
| 13067 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) |
| 13068 | return -EINVAL; |
| 13069 | |
| 13070 | if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { |
| 13071 | u64 mask = attr->branch_sample_type; |
| 13072 | |
| 13073 | /* only using defined bits */ |
| 13074 | if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) |
| 13075 | return -EINVAL; |
| 13076 | |
| 13077 | /* at least one branch bit must be set */ |
| 13078 | if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) |
| 13079 | return -EINVAL; |
| 13080 | |
| 13081 | /* propagate priv level, when not set for branch */ |
| 13082 | if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { |
| 13083 | |
| 13084 | /* exclude_kernel checked on syscall entry */ |
| 13085 | if (!attr->exclude_kernel) |
| 13086 | mask |= PERF_SAMPLE_BRANCH_KERNEL; |
| 13087 | |
| 13088 | if (!attr->exclude_user) |
| 13089 | mask |= PERF_SAMPLE_BRANCH_USER; |
| 13090 | |
| 13091 | if (!attr->exclude_hv) |
| 13092 | mask |= PERF_SAMPLE_BRANCH_HV; |
| 13093 | /* |
| 13094 | * adjust user setting (for HW filter setup) |
| 13095 | */ |
| 13096 | attr->branch_sample_type = mask; |
| 13097 | } |
| 13098 | /* privileged levels capture (kernel, hv): check permissions */ |
| 13099 | if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { |
| 13100 | ret = perf_allow_kernel(); |
| 13101 | if (ret) |
| 13102 | return ret; |
| 13103 | } |
| 13104 | } |
| 13105 | |
| 13106 | if (attr->sample_type & PERF_SAMPLE_REGS_USER) { |
| 13107 | ret = perf_reg_validate(attr->sample_regs_user); |
| 13108 | if (ret) |
| 13109 | return ret; |
| 13110 | } |
| 13111 | |
| 13112 | if (attr->sample_type & PERF_SAMPLE_STACK_USER) { |
| 13113 | if (!arch_perf_have_user_stack_dump()) |
| 13114 | return -ENOSYS; |
| 13115 | |
| 13116 | /* |
| 13117 | * We have __u32 type for the size, but so far |
| 13118 | * we can only use __u16 as maximum due to the |
| 13119 | * __u16 sample size limit. |
| 13120 | */ |
| 13121 | if (attr->sample_stack_user >= USHRT_MAX) |
| 13122 | return -EINVAL; |
| 13123 | else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) |
| 13124 | return -EINVAL; |
| 13125 | } |
| 13126 | |
| 13127 | if (!attr->sample_max_stack) |
| 13128 | attr->sample_max_stack = sysctl_perf_event_max_stack; |
| 13129 | |
| 13130 | if (attr->sample_type & PERF_SAMPLE_REGS_INTR) |
| 13131 | ret = perf_reg_validate(attr->sample_regs_intr); |
| 13132 | |
| 13133 | #ifndef CONFIG_CGROUP_PERF |
| 13134 | if (attr->sample_type & PERF_SAMPLE_CGROUP) |
| 13135 | return -EINVAL; |
| 13136 | #endif |
| 13137 | if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && |
| 13138 | (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) |
| 13139 | return -EINVAL; |
| 13140 | |
| 13141 | if (!attr->inherit && attr->inherit_thread) |
| 13142 | return -EINVAL; |
| 13143 | |
| 13144 | if (attr->remove_on_exec && attr->enable_on_exec) |
| 13145 | return -EINVAL; |
| 13146 | |
| 13147 | if (attr->sigtrap && !attr->remove_on_exec) |
| 13148 | return -EINVAL; |
| 13149 | |
| 13150 | out: |
| 13151 | return ret; |
| 13152 | |
| 13153 | err_size: |
| 13154 | put_user(sizeof(*attr), &uattr->size); |
| 13155 | ret = -E2BIG; |
| 13156 | goto out; |
| 13157 | } |
| 13158 | |
| 13159 | static void mutex_lock_double(struct mutex *a, struct mutex *b) |
| 13160 | { |
| 13161 | if (b < a) |
| 13162 | swap(a, b); |
| 13163 | |
| 13164 | mutex_lock(a); |
| 13165 | mutex_lock_nested(b, SINGLE_DEPTH_NESTING); |
| 13166 | } |
| 13167 | |
| 13168 | static int |
| 13169 | perf_event_set_output(struct perf_event *event, struct perf_event *output_event) |
| 13170 | { |
| 13171 | struct perf_buffer *rb = NULL; |
| 13172 | int ret = -EINVAL; |
| 13173 | |
| 13174 | if (!output_event) { |
| 13175 | mutex_lock(&event->mmap_mutex); |
| 13176 | goto set; |
| 13177 | } |
| 13178 | |
| 13179 | /* don't allow circular references */ |
| 13180 | if (event == output_event) |
| 13181 | goto out; |
| 13182 | |
| 13183 | /* |
| 13184 | * Don't allow cross-cpu buffers |
| 13185 | */ |
| 13186 | if (output_event->cpu != event->cpu) |
| 13187 | goto out; |
| 13188 | |
| 13189 | /* |
| 13190 | * If its not a per-cpu rb, it must be the same task. |
| 13191 | */ |
| 13192 | if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) |
| 13193 | goto out; |
| 13194 | |
| 13195 | /* |
| 13196 | * Mixing clocks in the same buffer is trouble you don't need. |
| 13197 | */ |
| 13198 | if (output_event->clock != event->clock) |
| 13199 | goto out; |
| 13200 | |
| 13201 | /* |
| 13202 | * Either writing ring buffer from beginning or from end. |
| 13203 | * Mixing is not allowed. |
| 13204 | */ |
| 13205 | if (is_write_backward(output_event) != is_write_backward(event)) |
| 13206 | goto out; |
| 13207 | |
| 13208 | /* |
| 13209 | * If both events generate aux data, they must be on the same PMU |
| 13210 | */ |
| 13211 | if (has_aux(event) && has_aux(output_event) && |
| 13212 | event->pmu != output_event->pmu) |
| 13213 | goto out; |
| 13214 | |
| 13215 | /* |
| 13216 | * Hold both mmap_mutex to serialize against perf_mmap_close(). Since |
| 13217 | * output_event is already on rb->event_list, and the list iteration |
| 13218 | * restarts after every removal, it is guaranteed this new event is |
| 13219 | * observed *OR* if output_event is already removed, it's guaranteed we |
| 13220 | * observe !rb->mmap_count. |
| 13221 | */ |
| 13222 | mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); |
| 13223 | set: |
| 13224 | /* Can't redirect output if we've got an active mmap() */ |
| 13225 | if (atomic_read(&event->mmap_count)) |
| 13226 | goto unlock; |
| 13227 | |
| 13228 | if (output_event) { |
| 13229 | if (output_event->state <= PERF_EVENT_STATE_REVOKED) |
| 13230 | goto unlock; |
| 13231 | |
| 13232 | /* get the rb we want to redirect to */ |
| 13233 | rb = ring_buffer_get(output_event); |
| 13234 | if (!rb) |
| 13235 | goto unlock; |
| 13236 | |
| 13237 | /* did we race against perf_mmap_close() */ |
| 13238 | if (!atomic_read(&rb->mmap_count)) { |
| 13239 | ring_buffer_put(rb); |
| 13240 | goto unlock; |
| 13241 | } |
| 13242 | } |
| 13243 | |
| 13244 | ring_buffer_attach(event, rb); |
| 13245 | |
| 13246 | ret = 0; |
| 13247 | unlock: |
| 13248 | mutex_unlock(&event->mmap_mutex); |
| 13249 | if (output_event) |
| 13250 | mutex_unlock(&output_event->mmap_mutex); |
| 13251 | |
| 13252 | out: |
| 13253 | return ret; |
| 13254 | } |
| 13255 | |
| 13256 | static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) |
| 13257 | { |
| 13258 | bool nmi_safe = false; |
| 13259 | |
| 13260 | switch (clk_id) { |
| 13261 | case CLOCK_MONOTONIC: |
| 13262 | event->clock = &ktime_get_mono_fast_ns; |
| 13263 | nmi_safe = true; |
| 13264 | break; |
| 13265 | |
| 13266 | case CLOCK_MONOTONIC_RAW: |
| 13267 | event->clock = &ktime_get_raw_fast_ns; |
| 13268 | nmi_safe = true; |
| 13269 | break; |
| 13270 | |
| 13271 | case CLOCK_REALTIME: |
| 13272 | event->clock = &ktime_get_real_ns; |
| 13273 | break; |
| 13274 | |
| 13275 | case CLOCK_BOOTTIME: |
| 13276 | event->clock = &ktime_get_boottime_ns; |
| 13277 | break; |
| 13278 | |
| 13279 | case CLOCK_TAI: |
| 13280 | event->clock = &ktime_get_clocktai_ns; |
| 13281 | break; |
| 13282 | |
| 13283 | default: |
| 13284 | return -EINVAL; |
| 13285 | } |
| 13286 | |
| 13287 | if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) |
| 13288 | return -EINVAL; |
| 13289 | |
| 13290 | return 0; |
| 13291 | } |
| 13292 | |
| 13293 | static bool |
| 13294 | perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) |
| 13295 | { |
| 13296 | unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; |
| 13297 | bool is_capable = perfmon_capable(); |
| 13298 | |
| 13299 | if (attr->sigtrap) { |
| 13300 | /* |
| 13301 | * perf_event_attr::sigtrap sends signals to the other task. |
| 13302 | * Require the current task to also have CAP_KILL. |
| 13303 | */ |
| 13304 | rcu_read_lock(); |
| 13305 | is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); |
| 13306 | rcu_read_unlock(); |
| 13307 | |
| 13308 | /* |
| 13309 | * If the required capabilities aren't available, checks for |
| 13310 | * ptrace permissions: upgrade to ATTACH, since sending signals |
| 13311 | * can effectively change the target task. |
| 13312 | */ |
| 13313 | ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; |
| 13314 | } |
| 13315 | |
| 13316 | /* |
| 13317 | * Preserve ptrace permission check for backwards compatibility. The |
| 13318 | * ptrace check also includes checks that the current task and other |
| 13319 | * task have matching uids, and is therefore not done here explicitly. |
| 13320 | */ |
| 13321 | return is_capable || ptrace_may_access(task, ptrace_mode); |
| 13322 | } |
| 13323 | |
| 13324 | /** |
| 13325 | * sys_perf_event_open - open a performance event, associate it to a task/cpu |
| 13326 | * |
| 13327 | * @attr_uptr: event_id type attributes for monitoring/sampling |
| 13328 | * @pid: target pid |
| 13329 | * @cpu: target cpu |
| 13330 | * @group_fd: group leader event fd |
| 13331 | * @flags: perf event open flags |
| 13332 | */ |
| 13333 | SYSCALL_DEFINE5(perf_event_open, |
| 13334 | struct perf_event_attr __user *, attr_uptr, |
| 13335 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
| 13336 | { |
| 13337 | struct perf_event *group_leader = NULL, *output_event = NULL; |
| 13338 | struct perf_event_pmu_context *pmu_ctx; |
| 13339 | struct perf_event *event, *sibling; |
| 13340 | struct perf_event_attr attr; |
| 13341 | struct perf_event_context *ctx; |
| 13342 | struct file *event_file = NULL; |
| 13343 | struct task_struct *task = NULL; |
| 13344 | struct pmu *pmu; |
| 13345 | int event_fd; |
| 13346 | int move_group = 0; |
| 13347 | int err; |
| 13348 | int f_flags = O_RDWR; |
| 13349 | int cgroup_fd = -1; |
| 13350 | |
| 13351 | /* for future expandability... */ |
| 13352 | if (flags & ~PERF_FLAG_ALL) |
| 13353 | return -EINVAL; |
| 13354 | |
| 13355 | err = perf_copy_attr(attr_uptr, &attr); |
| 13356 | if (err) |
| 13357 | return err; |
| 13358 | |
| 13359 | /* Do we allow access to perf_event_open(2) ? */ |
| 13360 | err = security_perf_event_open(PERF_SECURITY_OPEN); |
| 13361 | if (err) |
| 13362 | return err; |
| 13363 | |
| 13364 | if (!attr.exclude_kernel) { |
| 13365 | err = perf_allow_kernel(); |
| 13366 | if (err) |
| 13367 | return err; |
| 13368 | } |
| 13369 | |
| 13370 | if (attr.namespaces) { |
| 13371 | if (!perfmon_capable()) |
| 13372 | return -EACCES; |
| 13373 | } |
| 13374 | |
| 13375 | if (attr.freq) { |
| 13376 | if (attr.sample_freq > sysctl_perf_event_sample_rate) |
| 13377 | return -EINVAL; |
| 13378 | } else { |
| 13379 | if (attr.sample_period & (1ULL << 63)) |
| 13380 | return -EINVAL; |
| 13381 | } |
| 13382 | |
| 13383 | /* Only privileged users can get physical addresses */ |
| 13384 | if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { |
| 13385 | err = perf_allow_kernel(); |
| 13386 | if (err) |
| 13387 | return err; |
| 13388 | } |
| 13389 | |
| 13390 | /* REGS_INTR can leak data, lockdown must prevent this */ |
| 13391 | if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { |
| 13392 | err = security_locked_down(LOCKDOWN_PERF); |
| 13393 | if (err) |
| 13394 | return err; |
| 13395 | } |
| 13396 | |
| 13397 | /* |
| 13398 | * In cgroup mode, the pid argument is used to pass the fd |
| 13399 | * opened to the cgroup directory in cgroupfs. The cpu argument |
| 13400 | * designates the cpu on which to monitor threads from that |
| 13401 | * cgroup. |
| 13402 | */ |
| 13403 | if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) |
| 13404 | return -EINVAL; |
| 13405 | |
| 13406 | if (flags & PERF_FLAG_FD_CLOEXEC) |
| 13407 | f_flags |= O_CLOEXEC; |
| 13408 | |
| 13409 | event_fd = get_unused_fd_flags(f_flags); |
| 13410 | if (event_fd < 0) |
| 13411 | return event_fd; |
| 13412 | |
| 13413 | /* |
| 13414 | * Event creation should be under SRCU, see perf_pmu_unregister(). |
| 13415 | */ |
| 13416 | guard(srcu)(&pmus_srcu); |
| 13417 | |
| 13418 | CLASS(fd, group)(group_fd); // group_fd == -1 => empty |
| 13419 | if (group_fd != -1) { |
| 13420 | if (!is_perf_file(group)) { |
| 13421 | err = -EBADF; |
| 13422 | goto err_fd; |
| 13423 | } |
| 13424 | group_leader = fd_file(group)->private_data; |
| 13425 | if (group_leader->state <= PERF_EVENT_STATE_REVOKED) { |
| 13426 | err = -ENODEV; |
| 13427 | goto err_fd; |
| 13428 | } |
| 13429 | if (flags & PERF_FLAG_FD_OUTPUT) |
| 13430 | output_event = group_leader; |
| 13431 | if (flags & PERF_FLAG_FD_NO_GROUP) |
| 13432 | group_leader = NULL; |
| 13433 | } |
| 13434 | |
| 13435 | if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { |
| 13436 | task = find_lively_task_by_vpid(pid); |
| 13437 | if (IS_ERR(task)) { |
| 13438 | err = PTR_ERR(task); |
| 13439 | goto err_fd; |
| 13440 | } |
| 13441 | } |
| 13442 | |
| 13443 | if (task && group_leader && |
| 13444 | group_leader->attr.inherit != attr.inherit) { |
| 13445 | err = -EINVAL; |
| 13446 | goto err_task; |
| 13447 | } |
| 13448 | |
| 13449 | if (flags & PERF_FLAG_PID_CGROUP) |
| 13450 | cgroup_fd = pid; |
| 13451 | |
| 13452 | event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, |
| 13453 | NULL, NULL, cgroup_fd); |
| 13454 | if (IS_ERR(event)) { |
| 13455 | err = PTR_ERR(event); |
| 13456 | goto err_task; |
| 13457 | } |
| 13458 | |
| 13459 | if (is_sampling_event(event)) { |
| 13460 | if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { |
| 13461 | err = -EOPNOTSUPP; |
| 13462 | goto err_alloc; |
| 13463 | } |
| 13464 | } |
| 13465 | |
| 13466 | /* |
| 13467 | * Special case software events and allow them to be part of |
| 13468 | * any hardware group. |
| 13469 | */ |
| 13470 | pmu = event->pmu; |
| 13471 | |
| 13472 | if (attr.use_clockid) { |
| 13473 | err = perf_event_set_clock(event, attr.clockid); |
| 13474 | if (err) |
| 13475 | goto err_alloc; |
| 13476 | } |
| 13477 | |
| 13478 | if (pmu->task_ctx_nr == perf_sw_context) |
| 13479 | event->event_caps |= PERF_EV_CAP_SOFTWARE; |
| 13480 | |
| 13481 | if (task) { |
| 13482 | err = down_read_interruptible(&task->signal->exec_update_lock); |
| 13483 | if (err) |
| 13484 | goto err_alloc; |
| 13485 | |
| 13486 | /* |
| 13487 | * We must hold exec_update_lock across this and any potential |
| 13488 | * perf_install_in_context() call for this new event to |
| 13489 | * serialize against exec() altering our credentials (and the |
| 13490 | * perf_event_exit_task() that could imply). |
| 13491 | */ |
| 13492 | err = -EACCES; |
| 13493 | if (!perf_check_permission(&attr, task)) |
| 13494 | goto err_cred; |
| 13495 | } |
| 13496 | |
| 13497 | /* |
| 13498 | * Get the target context (task or percpu): |
| 13499 | */ |
| 13500 | ctx = find_get_context(task, event); |
| 13501 | if (IS_ERR(ctx)) { |
| 13502 | err = PTR_ERR(ctx); |
| 13503 | goto err_cred; |
| 13504 | } |
| 13505 | |
| 13506 | mutex_lock(&ctx->mutex); |
| 13507 | |
| 13508 | if (ctx->task == TASK_TOMBSTONE) { |
| 13509 | err = -ESRCH; |
| 13510 | goto err_locked; |
| 13511 | } |
| 13512 | |
| 13513 | if (!task) { |
| 13514 | /* |
| 13515 | * Check if the @cpu we're creating an event for is online. |
| 13516 | * |
| 13517 | * We use the perf_cpu_context::ctx::mutex to serialize against |
| 13518 | * the hotplug notifiers. See perf_event_{init,exit}_cpu(). |
| 13519 | */ |
| 13520 | struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); |
| 13521 | |
| 13522 | if (!cpuctx->online) { |
| 13523 | err = -ENODEV; |
| 13524 | goto err_locked; |
| 13525 | } |
| 13526 | } |
| 13527 | |
| 13528 | if (group_leader) { |
| 13529 | err = -EINVAL; |
| 13530 | |
| 13531 | /* |
| 13532 | * Do not allow a recursive hierarchy (this new sibling |
| 13533 | * becoming part of another group-sibling): |
| 13534 | */ |
| 13535 | if (group_leader->group_leader != group_leader) |
| 13536 | goto err_locked; |
| 13537 | |
| 13538 | /* All events in a group should have the same clock */ |
| 13539 | if (group_leader->clock != event->clock) |
| 13540 | goto err_locked; |
| 13541 | |
| 13542 | /* |
| 13543 | * Make sure we're both events for the same CPU; |
| 13544 | * grouping events for different CPUs is broken; since |
| 13545 | * you can never concurrently schedule them anyhow. |
| 13546 | */ |
| 13547 | if (group_leader->cpu != event->cpu) |
| 13548 | goto err_locked; |
| 13549 | |
| 13550 | /* |
| 13551 | * Make sure we're both on the same context; either task or cpu. |
| 13552 | */ |
| 13553 | if (group_leader->ctx != ctx) |
| 13554 | goto err_locked; |
| 13555 | |
| 13556 | /* |
| 13557 | * Only a group leader can be exclusive or pinned |
| 13558 | */ |
| 13559 | if (attr.exclusive || attr.pinned) |
| 13560 | goto err_locked; |
| 13561 | |
| 13562 | if (is_software_event(event) && |
| 13563 | !in_software_context(group_leader)) { |
| 13564 | /* |
| 13565 | * If the event is a sw event, but the group_leader |
| 13566 | * is on hw context. |
| 13567 | * |
| 13568 | * Allow the addition of software events to hw |
| 13569 | * groups, this is safe because software events |
| 13570 | * never fail to schedule. |
| 13571 | * |
| 13572 | * Note the comment that goes with struct |
| 13573 | * perf_event_pmu_context. |
| 13574 | */ |
| 13575 | pmu = group_leader->pmu_ctx->pmu; |
| 13576 | } else if (!is_software_event(event)) { |
| 13577 | if (is_software_event(group_leader) && |
| 13578 | (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { |
| 13579 | /* |
| 13580 | * In case the group is a pure software group, and we |
| 13581 | * try to add a hardware event, move the whole group to |
| 13582 | * the hardware context. |
| 13583 | */ |
| 13584 | move_group = 1; |
| 13585 | } |
| 13586 | |
| 13587 | /* Don't allow group of multiple hw events from different pmus */ |
| 13588 | if (!in_software_context(group_leader) && |
| 13589 | group_leader->pmu_ctx->pmu != pmu) |
| 13590 | goto err_locked; |
| 13591 | } |
| 13592 | } |
| 13593 | |
| 13594 | /* |
| 13595 | * Now that we're certain of the pmu; find the pmu_ctx. |
| 13596 | */ |
| 13597 | pmu_ctx = find_get_pmu_context(pmu, ctx, event); |
| 13598 | if (IS_ERR(pmu_ctx)) { |
| 13599 | err = PTR_ERR(pmu_ctx); |
| 13600 | goto err_locked; |
| 13601 | } |
| 13602 | event->pmu_ctx = pmu_ctx; |
| 13603 | |
| 13604 | if (output_event) { |
| 13605 | err = perf_event_set_output(event, output_event); |
| 13606 | if (err) |
| 13607 | goto err_context; |
| 13608 | } |
| 13609 | |
| 13610 | if (!perf_event_validate_size(event)) { |
| 13611 | err = -E2BIG; |
| 13612 | goto err_context; |
| 13613 | } |
| 13614 | |
| 13615 | if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { |
| 13616 | err = -EINVAL; |
| 13617 | goto err_context; |
| 13618 | } |
| 13619 | |
| 13620 | /* |
| 13621 | * Must be under the same ctx::mutex as perf_install_in_context(), |
| 13622 | * because we need to serialize with concurrent event creation. |
| 13623 | */ |
| 13624 | if (!exclusive_event_installable(event, ctx)) { |
| 13625 | err = -EBUSY; |
| 13626 | goto err_context; |
| 13627 | } |
| 13628 | |
| 13629 | WARN_ON_ONCE(ctx->parent_ctx); |
| 13630 | |
| 13631 | event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); |
| 13632 | if (IS_ERR(event_file)) { |
| 13633 | err = PTR_ERR(event_file); |
| 13634 | event_file = NULL; |
| 13635 | goto err_context; |
| 13636 | } |
| 13637 | |
| 13638 | /* |
| 13639 | * This is the point on no return; we cannot fail hereafter. This is |
| 13640 | * where we start modifying current state. |
| 13641 | */ |
| 13642 | |
| 13643 | if (move_group) { |
| 13644 | perf_remove_from_context(group_leader, 0); |
| 13645 | put_pmu_ctx(group_leader->pmu_ctx); |
| 13646 | |
| 13647 | for_each_sibling_event(sibling, group_leader) { |
| 13648 | perf_remove_from_context(sibling, 0); |
| 13649 | put_pmu_ctx(sibling->pmu_ctx); |
| 13650 | } |
| 13651 | |
| 13652 | /* |
| 13653 | * Install the group siblings before the group leader. |
| 13654 | * |
| 13655 | * Because a group leader will try and install the entire group |
| 13656 | * (through the sibling list, which is still in-tact), we can |
| 13657 | * end up with siblings installed in the wrong context. |
| 13658 | * |
| 13659 | * By installing siblings first we NO-OP because they're not |
| 13660 | * reachable through the group lists. |
| 13661 | */ |
| 13662 | for_each_sibling_event(sibling, group_leader) { |
| 13663 | sibling->pmu_ctx = pmu_ctx; |
| 13664 | get_pmu_ctx(pmu_ctx); |
| 13665 | perf_event__state_init(sibling); |
| 13666 | perf_install_in_context(ctx, sibling, sibling->cpu); |
| 13667 | } |
| 13668 | |
| 13669 | /* |
| 13670 | * Removing from the context ends up with disabled |
| 13671 | * event. What we want here is event in the initial |
| 13672 | * startup state, ready to be add into new context. |
| 13673 | */ |
| 13674 | group_leader->pmu_ctx = pmu_ctx; |
| 13675 | get_pmu_ctx(pmu_ctx); |
| 13676 | perf_event__state_init(group_leader); |
| 13677 | perf_install_in_context(ctx, group_leader, group_leader->cpu); |
| 13678 | } |
| 13679 | |
| 13680 | /* |
| 13681 | * Precalculate sample_data sizes; do while holding ctx::mutex such |
| 13682 | * that we're serialized against further additions and before |
| 13683 | * perf_install_in_context() which is the point the event is active and |
| 13684 | * can use these values. |
| 13685 | */ |
| 13686 | perf_event__header_size(event); |
| 13687 | perf_event__id_header_size(event); |
| 13688 | |
| 13689 | event->owner = current; |
| 13690 | |
| 13691 | perf_install_in_context(ctx, event, event->cpu); |
| 13692 | perf_unpin_context(ctx); |
| 13693 | |
| 13694 | mutex_unlock(&ctx->mutex); |
| 13695 | |
| 13696 | if (task) { |
| 13697 | up_read(&task->signal->exec_update_lock); |
| 13698 | put_task_struct(task); |
| 13699 | } |
| 13700 | |
| 13701 | mutex_lock(¤t->perf_event_mutex); |
| 13702 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
| 13703 | mutex_unlock(¤t->perf_event_mutex); |
| 13704 | |
| 13705 | /* |
| 13706 | * File reference in group guarantees that group_leader has been |
| 13707 | * kept alive until we place the new event on the sibling_list. |
| 13708 | * This ensures destruction of the group leader will find |
| 13709 | * the pointer to itself in perf_group_detach(). |
| 13710 | */ |
| 13711 | fd_install(event_fd, event_file); |
| 13712 | return event_fd; |
| 13713 | |
| 13714 | err_context: |
| 13715 | put_pmu_ctx(event->pmu_ctx); |
| 13716 | event->pmu_ctx = NULL; /* _free_event() */ |
| 13717 | err_locked: |
| 13718 | mutex_unlock(&ctx->mutex); |
| 13719 | perf_unpin_context(ctx); |
| 13720 | put_ctx(ctx); |
| 13721 | err_cred: |
| 13722 | if (task) |
| 13723 | up_read(&task->signal->exec_update_lock); |
| 13724 | err_alloc: |
| 13725 | put_event(event); |
| 13726 | err_task: |
| 13727 | if (task) |
| 13728 | put_task_struct(task); |
| 13729 | err_fd: |
| 13730 | put_unused_fd(event_fd); |
| 13731 | return err; |
| 13732 | } |
| 13733 | |
| 13734 | /** |
| 13735 | * perf_event_create_kernel_counter |
| 13736 | * |
| 13737 | * @attr: attributes of the counter to create |
| 13738 | * @cpu: cpu in which the counter is bound |
| 13739 | * @task: task to profile (NULL for percpu) |
| 13740 | * @overflow_handler: callback to trigger when we hit the event |
| 13741 | * @context: context data could be used in overflow_handler callback |
| 13742 | */ |
| 13743 | struct perf_event * |
| 13744 | perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, |
| 13745 | struct task_struct *task, |
| 13746 | perf_overflow_handler_t overflow_handler, |
| 13747 | void *context) |
| 13748 | { |
| 13749 | struct perf_event_pmu_context *pmu_ctx; |
| 13750 | struct perf_event_context *ctx; |
| 13751 | struct perf_event *event; |
| 13752 | struct pmu *pmu; |
| 13753 | int err; |
| 13754 | |
| 13755 | /* |
| 13756 | * Grouping is not supported for kernel events, neither is 'AUX', |
| 13757 | * make sure the caller's intentions are adjusted. |
| 13758 | */ |
| 13759 | if (attr->aux_output || attr->aux_action) |
| 13760 | return ERR_PTR(-EINVAL); |
| 13761 | |
| 13762 | /* |
| 13763 | * Event creation should be under SRCU, see perf_pmu_unregister(). |
| 13764 | */ |
| 13765 | guard(srcu)(&pmus_srcu); |
| 13766 | |
| 13767 | event = perf_event_alloc(attr, cpu, task, NULL, NULL, |
| 13768 | overflow_handler, context, -1); |
| 13769 | if (IS_ERR(event)) { |
| 13770 | err = PTR_ERR(event); |
| 13771 | goto err; |
| 13772 | } |
| 13773 | |
| 13774 | /* Mark owner so we could distinguish it from user events. */ |
| 13775 | event->owner = TASK_TOMBSTONE; |
| 13776 | pmu = event->pmu; |
| 13777 | |
| 13778 | if (pmu->task_ctx_nr == perf_sw_context) |
| 13779 | event->event_caps |= PERF_EV_CAP_SOFTWARE; |
| 13780 | |
| 13781 | /* |
| 13782 | * Get the target context (task or percpu): |
| 13783 | */ |
| 13784 | ctx = find_get_context(task, event); |
| 13785 | if (IS_ERR(ctx)) { |
| 13786 | err = PTR_ERR(ctx); |
| 13787 | goto err_alloc; |
| 13788 | } |
| 13789 | |
| 13790 | WARN_ON_ONCE(ctx->parent_ctx); |
| 13791 | mutex_lock(&ctx->mutex); |
| 13792 | if (ctx->task == TASK_TOMBSTONE) { |
| 13793 | err = -ESRCH; |
| 13794 | goto err_unlock; |
| 13795 | } |
| 13796 | |
| 13797 | pmu_ctx = find_get_pmu_context(pmu, ctx, event); |
| 13798 | if (IS_ERR(pmu_ctx)) { |
| 13799 | err = PTR_ERR(pmu_ctx); |
| 13800 | goto err_unlock; |
| 13801 | } |
| 13802 | event->pmu_ctx = pmu_ctx; |
| 13803 | |
| 13804 | if (!task) { |
| 13805 | /* |
| 13806 | * Check if the @cpu we're creating an event for is online. |
| 13807 | * |
| 13808 | * We use the perf_cpu_context::ctx::mutex to serialize against |
| 13809 | * the hotplug notifiers. See perf_event_{init,exit}_cpu(). |
| 13810 | */ |
| 13811 | struct perf_cpu_context *cpuctx = |
| 13812 | container_of(ctx, struct perf_cpu_context, ctx); |
| 13813 | if (!cpuctx->online) { |
| 13814 | err = -ENODEV; |
| 13815 | goto err_pmu_ctx; |
| 13816 | } |
| 13817 | } |
| 13818 | |
| 13819 | if (!exclusive_event_installable(event, ctx)) { |
| 13820 | err = -EBUSY; |
| 13821 | goto err_pmu_ctx; |
| 13822 | } |
| 13823 | |
| 13824 | perf_install_in_context(ctx, event, event->cpu); |
| 13825 | perf_unpin_context(ctx); |
| 13826 | mutex_unlock(&ctx->mutex); |
| 13827 | |
| 13828 | return event; |
| 13829 | |
| 13830 | err_pmu_ctx: |
| 13831 | put_pmu_ctx(pmu_ctx); |
| 13832 | event->pmu_ctx = NULL; /* _free_event() */ |
| 13833 | err_unlock: |
| 13834 | mutex_unlock(&ctx->mutex); |
| 13835 | perf_unpin_context(ctx); |
| 13836 | put_ctx(ctx); |
| 13837 | err_alloc: |
| 13838 | put_event(event); |
| 13839 | err: |
| 13840 | return ERR_PTR(err); |
| 13841 | } |
| 13842 | EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); |
| 13843 | |
| 13844 | static void __perf_pmu_remove(struct perf_event_context *ctx, |
| 13845 | int cpu, struct pmu *pmu, |
| 13846 | struct perf_event_groups *groups, |
| 13847 | struct list_head *events) |
| 13848 | { |
| 13849 | struct perf_event *event, *sibling; |
| 13850 | |
| 13851 | perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { |
| 13852 | perf_remove_from_context(event, 0); |
| 13853 | put_pmu_ctx(event->pmu_ctx); |
| 13854 | list_add(&event->migrate_entry, events); |
| 13855 | |
| 13856 | for_each_sibling_event(sibling, event) { |
| 13857 | perf_remove_from_context(sibling, 0); |
| 13858 | put_pmu_ctx(sibling->pmu_ctx); |
| 13859 | list_add(&sibling->migrate_entry, events); |
| 13860 | } |
| 13861 | } |
| 13862 | } |
| 13863 | |
| 13864 | static void __perf_pmu_install_event(struct pmu *pmu, |
| 13865 | struct perf_event_context *ctx, |
| 13866 | int cpu, struct perf_event *event) |
| 13867 | { |
| 13868 | struct perf_event_pmu_context *epc; |
| 13869 | struct perf_event_context *old_ctx = event->ctx; |
| 13870 | |
| 13871 | get_ctx(ctx); /* normally find_get_context() */ |
| 13872 | |
| 13873 | event->cpu = cpu; |
| 13874 | epc = find_get_pmu_context(pmu, ctx, event); |
| 13875 | event->pmu_ctx = epc; |
| 13876 | |
| 13877 | if (event->state >= PERF_EVENT_STATE_OFF) |
| 13878 | event->state = PERF_EVENT_STATE_INACTIVE; |
| 13879 | perf_install_in_context(ctx, event, cpu); |
| 13880 | |
| 13881 | /* |
| 13882 | * Now that event->ctx is updated and visible, put the old ctx. |
| 13883 | */ |
| 13884 | put_ctx(old_ctx); |
| 13885 | } |
| 13886 | |
| 13887 | static void __perf_pmu_install(struct perf_event_context *ctx, |
| 13888 | int cpu, struct pmu *pmu, struct list_head *events) |
| 13889 | { |
| 13890 | struct perf_event *event, *tmp; |
| 13891 | |
| 13892 | /* |
| 13893 | * Re-instate events in 2 passes. |
| 13894 | * |
| 13895 | * Skip over group leaders and only install siblings on this first |
| 13896 | * pass, siblings will not get enabled without a leader, however a |
| 13897 | * leader will enable its siblings, even if those are still on the old |
| 13898 | * context. |
| 13899 | */ |
| 13900 | list_for_each_entry_safe(event, tmp, events, migrate_entry) { |
| 13901 | if (event->group_leader == event) |
| 13902 | continue; |
| 13903 | |
| 13904 | list_del(&event->migrate_entry); |
| 13905 | __perf_pmu_install_event(pmu, ctx, cpu, event); |
| 13906 | } |
| 13907 | |
| 13908 | /* |
| 13909 | * Once all the siblings are setup properly, install the group leaders |
| 13910 | * to make it go. |
| 13911 | */ |
| 13912 | list_for_each_entry_safe(event, tmp, events, migrate_entry) { |
| 13913 | list_del(&event->migrate_entry); |
| 13914 | __perf_pmu_install_event(pmu, ctx, cpu, event); |
| 13915 | } |
| 13916 | } |
| 13917 | |
| 13918 | void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) |
| 13919 | { |
| 13920 | struct perf_event_context *src_ctx, *dst_ctx; |
| 13921 | LIST_HEAD(events); |
| 13922 | |
| 13923 | /* |
| 13924 | * Since per-cpu context is persistent, no need to grab an extra |
| 13925 | * reference. |
| 13926 | */ |
| 13927 | src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; |
| 13928 | dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; |
| 13929 | |
| 13930 | /* |
| 13931 | * See perf_event_ctx_lock() for comments on the details |
| 13932 | * of swizzling perf_event::ctx. |
| 13933 | */ |
| 13934 | mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); |
| 13935 | |
| 13936 | __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); |
| 13937 | __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); |
| 13938 | |
| 13939 | if (!list_empty(&events)) { |
| 13940 | /* |
| 13941 | * Wait for the events to quiesce before re-instating them. |
| 13942 | */ |
| 13943 | synchronize_rcu(); |
| 13944 | |
| 13945 | __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); |
| 13946 | } |
| 13947 | |
| 13948 | mutex_unlock(&dst_ctx->mutex); |
| 13949 | mutex_unlock(&src_ctx->mutex); |
| 13950 | } |
| 13951 | EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); |
| 13952 | |
| 13953 | static void sync_child_event(struct perf_event *child_event) |
| 13954 | { |
| 13955 | struct perf_event *parent_event = child_event->parent; |
| 13956 | u64 child_val; |
| 13957 | |
| 13958 | if (child_event->attr.inherit_stat) { |
| 13959 | struct task_struct *task = child_event->ctx->task; |
| 13960 | |
| 13961 | if (task && task != TASK_TOMBSTONE) |
| 13962 | perf_event_read_event(child_event, task); |
| 13963 | } |
| 13964 | |
| 13965 | child_val = perf_event_count(child_event, false); |
| 13966 | |
| 13967 | /* |
| 13968 | * Add back the child's count to the parent's count: |
| 13969 | */ |
| 13970 | atomic64_add(child_val, &parent_event->child_count); |
| 13971 | atomic64_add(child_event->total_time_enabled, |
| 13972 | &parent_event->child_total_time_enabled); |
| 13973 | atomic64_add(child_event->total_time_running, |
| 13974 | &parent_event->child_total_time_running); |
| 13975 | } |
| 13976 | |
| 13977 | static void |
| 13978 | perf_event_exit_event(struct perf_event *event, |
| 13979 | struct perf_event_context *ctx, bool revoke) |
| 13980 | { |
| 13981 | struct perf_event *parent_event = event->parent; |
| 13982 | unsigned long detach_flags = DETACH_EXIT; |
| 13983 | unsigned int attach_state; |
| 13984 | |
| 13985 | if (parent_event) { |
| 13986 | /* |
| 13987 | * Do not destroy the 'original' grouping; because of the |
| 13988 | * context switch optimization the original events could've |
| 13989 | * ended up in a random child task. |
| 13990 | * |
| 13991 | * If we were to destroy the original group, all group related |
| 13992 | * operations would cease to function properly after this |
| 13993 | * random child dies. |
| 13994 | * |
| 13995 | * Do destroy all inherited groups, we don't care about those |
| 13996 | * and being thorough is better. |
| 13997 | */ |
| 13998 | detach_flags |= DETACH_GROUP | DETACH_CHILD; |
| 13999 | mutex_lock(&parent_event->child_mutex); |
| 14000 | /* PERF_ATTACH_ITRACE might be set concurrently */ |
| 14001 | attach_state = READ_ONCE(event->attach_state); |
| 14002 | } |
| 14003 | |
| 14004 | if (revoke) |
| 14005 | detach_flags |= DETACH_GROUP | DETACH_REVOKE; |
| 14006 | |
| 14007 | perf_remove_from_context(event, detach_flags); |
| 14008 | /* |
| 14009 | * Child events can be freed. |
| 14010 | */ |
| 14011 | if (parent_event) { |
| 14012 | mutex_unlock(&parent_event->child_mutex); |
| 14013 | |
| 14014 | /* |
| 14015 | * Match the refcount initialization. Make sure it doesn't happen |
| 14016 | * twice if pmu_detach_event() calls it on an already exited task. |
| 14017 | */ |
| 14018 | if (attach_state & PERF_ATTACH_CHILD) { |
| 14019 | /* |
| 14020 | * Kick perf_poll() for is_event_hup(); |
| 14021 | */ |
| 14022 | perf_event_wakeup(parent_event); |
| 14023 | /* |
| 14024 | * pmu_detach_event() will have an extra refcount. |
| 14025 | * perf_pending_task() might have one too. |
| 14026 | */ |
| 14027 | put_event(event); |
| 14028 | } |
| 14029 | |
| 14030 | return; |
| 14031 | } |
| 14032 | |
| 14033 | /* |
| 14034 | * Parent events are governed by their filedesc, retain them. |
| 14035 | */ |
| 14036 | perf_event_wakeup(event); |
| 14037 | } |
| 14038 | |
| 14039 | static void perf_event_exit_task_context(struct task_struct *task, bool exit) |
| 14040 | { |
| 14041 | struct perf_event_context *ctx, *clone_ctx = NULL; |
| 14042 | struct perf_event *child_event, *next; |
| 14043 | |
| 14044 | ctx = perf_pin_task_context(task); |
| 14045 | if (!ctx) |
| 14046 | return; |
| 14047 | |
| 14048 | /* |
| 14049 | * In order to reduce the amount of tricky in ctx tear-down, we hold |
| 14050 | * ctx::mutex over the entire thing. This serializes against almost |
| 14051 | * everything that wants to access the ctx. |
| 14052 | * |
| 14053 | * The exception is sys_perf_event_open() / |
| 14054 | * perf_event_create_kernel_count() which does find_get_context() |
| 14055 | * without ctx::mutex (it cannot because of the move_group double mutex |
| 14056 | * lock thing). See the comments in perf_install_in_context(). |
| 14057 | */ |
| 14058 | mutex_lock(&ctx->mutex); |
| 14059 | |
| 14060 | /* |
| 14061 | * In a single ctx::lock section, de-schedule the events and detach the |
| 14062 | * context from the task such that we cannot ever get it scheduled back |
| 14063 | * in. |
| 14064 | */ |
| 14065 | raw_spin_lock_irq(&ctx->lock); |
| 14066 | if (exit) |
| 14067 | task_ctx_sched_out(ctx, NULL, EVENT_ALL); |
| 14068 | |
| 14069 | /* |
| 14070 | * Now that the context is inactive, destroy the task <-> ctx relation |
| 14071 | * and mark the context dead. |
| 14072 | */ |
| 14073 | RCU_INIT_POINTER(task->perf_event_ctxp, NULL); |
| 14074 | put_ctx(ctx); /* cannot be last */ |
| 14075 | WRITE_ONCE(ctx->task, TASK_TOMBSTONE); |
| 14076 | put_task_struct(task); /* cannot be last */ |
| 14077 | |
| 14078 | clone_ctx = unclone_ctx(ctx); |
| 14079 | raw_spin_unlock_irq(&ctx->lock); |
| 14080 | |
| 14081 | if (clone_ctx) |
| 14082 | put_ctx(clone_ctx); |
| 14083 | |
| 14084 | /* |
| 14085 | * Report the task dead after unscheduling the events so that we |
| 14086 | * won't get any samples after PERF_RECORD_EXIT. We can however still |
| 14087 | * get a few PERF_RECORD_READ events. |
| 14088 | */ |
| 14089 | if (exit) |
| 14090 | perf_event_task(task, ctx, 0); |
| 14091 | |
| 14092 | list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry) |
| 14093 | perf_event_exit_event(child_event, ctx, false); |
| 14094 | |
| 14095 | mutex_unlock(&ctx->mutex); |
| 14096 | |
| 14097 | if (!exit) { |
| 14098 | /* |
| 14099 | * perf_event_release_kernel() could still have a reference on |
| 14100 | * this context. In that case we must wait for these events to |
| 14101 | * have been freed (in particular all their references to this |
| 14102 | * task must've been dropped). |
| 14103 | * |
| 14104 | * Without this copy_process() will unconditionally free this |
| 14105 | * task (irrespective of its reference count) and |
| 14106 | * _free_event()'s put_task_struct(event->hw.target) will be a |
| 14107 | * use-after-free. |
| 14108 | * |
| 14109 | * Wait for all events to drop their context reference. |
| 14110 | */ |
| 14111 | wait_var_event(&ctx->refcount, |
| 14112 | refcount_read(&ctx->refcount) == 1); |
| 14113 | } |
| 14114 | put_ctx(ctx); |
| 14115 | } |
| 14116 | |
| 14117 | /* |
| 14118 | * When a task exits, feed back event values to parent events. |
| 14119 | * |
| 14120 | * Can be called with exec_update_lock held when called from |
| 14121 | * setup_new_exec(). |
| 14122 | */ |
| 14123 | void perf_event_exit_task(struct task_struct *task) |
| 14124 | { |
| 14125 | struct perf_event *event, *tmp; |
| 14126 | |
| 14127 | WARN_ON_ONCE(task != current); |
| 14128 | |
| 14129 | mutex_lock(&task->perf_event_mutex); |
| 14130 | list_for_each_entry_safe(event, tmp, &task->perf_event_list, |
| 14131 | owner_entry) { |
| 14132 | list_del_init(&event->owner_entry); |
| 14133 | |
| 14134 | /* |
| 14135 | * Ensure the list deletion is visible before we clear |
| 14136 | * the owner, closes a race against perf_release() where |
| 14137 | * we need to serialize on the owner->perf_event_mutex. |
| 14138 | */ |
| 14139 | smp_store_release(&event->owner, NULL); |
| 14140 | } |
| 14141 | mutex_unlock(&task->perf_event_mutex); |
| 14142 | |
| 14143 | perf_event_exit_task_context(task, true); |
| 14144 | |
| 14145 | /* |
| 14146 | * The perf_event_exit_task_context calls perf_event_task |
| 14147 | * with task's task_ctx, which generates EXIT events for |
| 14148 | * task contexts and sets task->perf_event_ctxp[] to NULL. |
| 14149 | * At this point we need to send EXIT events to cpu contexts. |
| 14150 | */ |
| 14151 | perf_event_task(task, NULL, 0); |
| 14152 | |
| 14153 | /* |
| 14154 | * Detach the perf_ctx_data for the system-wide event. |
| 14155 | */ |
| 14156 | guard(percpu_read)(&global_ctx_data_rwsem); |
| 14157 | detach_task_ctx_data(task); |
| 14158 | } |
| 14159 | |
| 14160 | /* |
| 14161 | * Free a context as created by inheritance by perf_event_init_task() below, |
| 14162 | * used by fork() in case of fail. |
| 14163 | * |
| 14164 | * Even though the task has never lived, the context and events have been |
| 14165 | * exposed through the child_list, so we must take care tearing it all down. |
| 14166 | */ |
| 14167 | void perf_event_free_task(struct task_struct *task) |
| 14168 | { |
| 14169 | perf_event_exit_task_context(task, false); |
| 14170 | } |
| 14171 | |
| 14172 | void perf_event_delayed_put(struct task_struct *task) |
| 14173 | { |
| 14174 | WARN_ON_ONCE(task->perf_event_ctxp); |
| 14175 | } |
| 14176 | |
| 14177 | struct file *perf_event_get(unsigned int fd) |
| 14178 | { |
| 14179 | struct file *file = fget(fd); |
| 14180 | if (!file) |
| 14181 | return ERR_PTR(-EBADF); |
| 14182 | |
| 14183 | if (file->f_op != &perf_fops) { |
| 14184 | fput(file); |
| 14185 | return ERR_PTR(-EBADF); |
| 14186 | } |
| 14187 | |
| 14188 | return file; |
| 14189 | } |
| 14190 | |
| 14191 | const struct perf_event *perf_get_event(struct file *file) |
| 14192 | { |
| 14193 | if (file->f_op != &perf_fops) |
| 14194 | return ERR_PTR(-EINVAL); |
| 14195 | |
| 14196 | return file->private_data; |
| 14197 | } |
| 14198 | |
| 14199 | const struct perf_event_attr *perf_event_attrs(struct perf_event *event) |
| 14200 | { |
| 14201 | if (!event) |
| 14202 | return ERR_PTR(-EINVAL); |
| 14203 | |
| 14204 | return &event->attr; |
| 14205 | } |
| 14206 | |
| 14207 | int perf_allow_kernel(void) |
| 14208 | { |
| 14209 | if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) |
| 14210 | return -EACCES; |
| 14211 | |
| 14212 | return security_perf_event_open(PERF_SECURITY_KERNEL); |
| 14213 | } |
| 14214 | EXPORT_SYMBOL_GPL(perf_allow_kernel); |
| 14215 | |
| 14216 | /* |
| 14217 | * Inherit an event from parent task to child task. |
| 14218 | * |
| 14219 | * Returns: |
| 14220 | * - valid pointer on success |
| 14221 | * - NULL for orphaned events |
| 14222 | * - IS_ERR() on error |
| 14223 | */ |
| 14224 | static struct perf_event * |
| 14225 | inherit_event(struct perf_event *parent_event, |
| 14226 | struct task_struct *parent, |
| 14227 | struct perf_event_context *parent_ctx, |
| 14228 | struct task_struct *child, |
| 14229 | struct perf_event *group_leader, |
| 14230 | struct perf_event_context *child_ctx) |
| 14231 | { |
| 14232 | enum perf_event_state parent_state = parent_event->state; |
| 14233 | struct perf_event_pmu_context *pmu_ctx; |
| 14234 | struct perf_event *child_event; |
| 14235 | unsigned long flags; |
| 14236 | |
| 14237 | /* |
| 14238 | * Instead of creating recursive hierarchies of events, |
| 14239 | * we link inherited events back to the original parent, |
| 14240 | * which has a filp for sure, which we use as the reference |
| 14241 | * count: |
| 14242 | */ |
| 14243 | if (parent_event->parent) |
| 14244 | parent_event = parent_event->parent; |
| 14245 | |
| 14246 | if (parent_event->state <= PERF_EVENT_STATE_REVOKED) |
| 14247 | return NULL; |
| 14248 | |
| 14249 | /* |
| 14250 | * Event creation should be under SRCU, see perf_pmu_unregister(). |
| 14251 | */ |
| 14252 | guard(srcu)(&pmus_srcu); |
| 14253 | |
| 14254 | child_event = perf_event_alloc(&parent_event->attr, |
| 14255 | parent_event->cpu, |
| 14256 | child, |
| 14257 | group_leader, parent_event, |
| 14258 | NULL, NULL, -1); |
| 14259 | if (IS_ERR(child_event)) |
| 14260 | return child_event; |
| 14261 | |
| 14262 | get_ctx(child_ctx); |
| 14263 | child_event->ctx = child_ctx; |
| 14264 | |
| 14265 | pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); |
| 14266 | if (IS_ERR(pmu_ctx)) { |
| 14267 | free_event(child_event); |
| 14268 | return ERR_CAST(pmu_ctx); |
| 14269 | } |
| 14270 | child_event->pmu_ctx = pmu_ctx; |
| 14271 | |
| 14272 | /* |
| 14273 | * is_orphaned_event() and list_add_tail(&parent_event->child_list) |
| 14274 | * must be under the same lock in order to serialize against |
| 14275 | * perf_event_release_kernel(), such that either we must observe |
| 14276 | * is_orphaned_event() or they will observe us on the child_list. |
| 14277 | */ |
| 14278 | mutex_lock(&parent_event->child_mutex); |
| 14279 | if (is_orphaned_event(parent_event) || |
| 14280 | !atomic_long_inc_not_zero(&parent_event->refcount)) { |
| 14281 | mutex_unlock(&parent_event->child_mutex); |
| 14282 | free_event(child_event); |
| 14283 | return NULL; |
| 14284 | } |
| 14285 | |
| 14286 | /* |
| 14287 | * Make the child state follow the state of the parent event, |
| 14288 | * not its attr.disabled bit. We hold the parent's mutex, |
| 14289 | * so we won't race with perf_event_{en, dis}able_family. |
| 14290 | */ |
| 14291 | if (parent_state >= PERF_EVENT_STATE_INACTIVE) |
| 14292 | child_event->state = PERF_EVENT_STATE_INACTIVE; |
| 14293 | else |
| 14294 | child_event->state = PERF_EVENT_STATE_OFF; |
| 14295 | |
| 14296 | if (parent_event->attr.freq) { |
| 14297 | u64 sample_period = parent_event->hw.sample_period; |
| 14298 | struct hw_perf_event *hwc = &child_event->hw; |
| 14299 | |
| 14300 | hwc->sample_period = sample_period; |
| 14301 | hwc->last_period = sample_period; |
| 14302 | |
| 14303 | local64_set(&hwc->period_left, sample_period); |
| 14304 | } |
| 14305 | |
| 14306 | child_event->overflow_handler = parent_event->overflow_handler; |
| 14307 | child_event->overflow_handler_context |
| 14308 | = parent_event->overflow_handler_context; |
| 14309 | |
| 14310 | /* |
| 14311 | * Precalculate sample_data sizes |
| 14312 | */ |
| 14313 | perf_event__header_size(child_event); |
| 14314 | perf_event__id_header_size(child_event); |
| 14315 | |
| 14316 | /* |
| 14317 | * Link it up in the child's context: |
| 14318 | */ |
| 14319 | raw_spin_lock_irqsave(&child_ctx->lock, flags); |
| 14320 | add_event_to_ctx(child_event, child_ctx); |
| 14321 | child_event->attach_state |= PERF_ATTACH_CHILD; |
| 14322 | raw_spin_unlock_irqrestore(&child_ctx->lock, flags); |
| 14323 | |
| 14324 | /* |
| 14325 | * Link this into the parent event's child list |
| 14326 | */ |
| 14327 | list_add_tail(&child_event->child_list, &parent_event->child_list); |
| 14328 | mutex_unlock(&parent_event->child_mutex); |
| 14329 | |
| 14330 | return child_event; |
| 14331 | } |
| 14332 | |
| 14333 | /* |
| 14334 | * Inherits an event group. |
| 14335 | * |
| 14336 | * This will quietly suppress orphaned events; !inherit_event() is not an error. |
| 14337 | * This matches with perf_event_release_kernel() removing all child events. |
| 14338 | * |
| 14339 | * Returns: |
| 14340 | * - 0 on success |
| 14341 | * - <0 on error |
| 14342 | */ |
| 14343 | static int inherit_group(struct perf_event *parent_event, |
| 14344 | struct task_struct *parent, |
| 14345 | struct perf_event_context *parent_ctx, |
| 14346 | struct task_struct *child, |
| 14347 | struct perf_event_context *child_ctx) |
| 14348 | { |
| 14349 | struct perf_event *leader; |
| 14350 | struct perf_event *sub; |
| 14351 | struct perf_event *child_ctr; |
| 14352 | |
| 14353 | leader = inherit_event(parent_event, parent, parent_ctx, |
| 14354 | child, NULL, child_ctx); |
| 14355 | if (IS_ERR(leader)) |
| 14356 | return PTR_ERR(leader); |
| 14357 | /* |
| 14358 | * @leader can be NULL here because of is_orphaned_event(). In this |
| 14359 | * case inherit_event() will create individual events, similar to what |
| 14360 | * perf_group_detach() would do anyway. |
| 14361 | */ |
| 14362 | for_each_sibling_event(sub, parent_event) { |
| 14363 | child_ctr = inherit_event(sub, parent, parent_ctx, |
| 14364 | child, leader, child_ctx); |
| 14365 | if (IS_ERR(child_ctr)) |
| 14366 | return PTR_ERR(child_ctr); |
| 14367 | |
| 14368 | if (sub->aux_event == parent_event && child_ctr && |
| 14369 | !perf_get_aux_event(child_ctr, leader)) |
| 14370 | return -EINVAL; |
| 14371 | } |
| 14372 | if (leader) |
| 14373 | leader->group_generation = parent_event->group_generation; |
| 14374 | return 0; |
| 14375 | } |
| 14376 | |
| 14377 | /* |
| 14378 | * Creates the child task context and tries to inherit the event-group. |
| 14379 | * |
| 14380 | * Clears @inherited_all on !attr.inherited or error. Note that we'll leave |
| 14381 | * inherited_all set when we 'fail' to inherit an orphaned event; this is |
| 14382 | * consistent with perf_event_release_kernel() removing all child events. |
| 14383 | * |
| 14384 | * Returns: |
| 14385 | * - 0 on success |
| 14386 | * - <0 on error |
| 14387 | */ |
| 14388 | static int |
| 14389 | inherit_task_group(struct perf_event *event, struct task_struct *parent, |
| 14390 | struct perf_event_context *parent_ctx, |
| 14391 | struct task_struct *child, |
| 14392 | u64 clone_flags, int *inherited_all) |
| 14393 | { |
| 14394 | struct perf_event_context *child_ctx; |
| 14395 | int ret; |
| 14396 | |
| 14397 | if (!event->attr.inherit || |
| 14398 | (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || |
| 14399 | /* Do not inherit if sigtrap and signal handlers were cleared. */ |
| 14400 | (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { |
| 14401 | *inherited_all = 0; |
| 14402 | return 0; |
| 14403 | } |
| 14404 | |
| 14405 | child_ctx = child->perf_event_ctxp; |
| 14406 | if (!child_ctx) { |
| 14407 | /* |
| 14408 | * This is executed from the parent task context, so |
| 14409 | * inherit events that have been marked for cloning. |
| 14410 | * First allocate and initialize a context for the |
| 14411 | * child. |
| 14412 | */ |
| 14413 | child_ctx = alloc_perf_context(child); |
| 14414 | if (!child_ctx) |
| 14415 | return -ENOMEM; |
| 14416 | |
| 14417 | child->perf_event_ctxp = child_ctx; |
| 14418 | } |
| 14419 | |
| 14420 | ret = inherit_group(event, parent, parent_ctx, child, child_ctx); |
| 14421 | if (ret) |
| 14422 | *inherited_all = 0; |
| 14423 | |
| 14424 | return ret; |
| 14425 | } |
| 14426 | |
| 14427 | /* |
| 14428 | * Initialize the perf_event context in task_struct |
| 14429 | */ |
| 14430 | static int perf_event_init_context(struct task_struct *child, u64 clone_flags) |
| 14431 | { |
| 14432 | struct perf_event_context *child_ctx, *parent_ctx; |
| 14433 | struct perf_event_context *cloned_ctx; |
| 14434 | struct perf_event *event; |
| 14435 | struct task_struct *parent = current; |
| 14436 | int inherited_all = 1; |
| 14437 | unsigned long flags; |
| 14438 | int ret = 0; |
| 14439 | |
| 14440 | if (likely(!parent->perf_event_ctxp)) |
| 14441 | return 0; |
| 14442 | |
| 14443 | /* |
| 14444 | * If the parent's context is a clone, pin it so it won't get |
| 14445 | * swapped under us. |
| 14446 | */ |
| 14447 | parent_ctx = perf_pin_task_context(parent); |
| 14448 | if (!parent_ctx) |
| 14449 | return 0; |
| 14450 | |
| 14451 | /* |
| 14452 | * No need to check if parent_ctx != NULL here; since we saw |
| 14453 | * it non-NULL earlier, the only reason for it to become NULL |
| 14454 | * is if we exit, and since we're currently in the middle of |
| 14455 | * a fork we can't be exiting at the same time. |
| 14456 | */ |
| 14457 | |
| 14458 | /* |
| 14459 | * Lock the parent list. No need to lock the child - not PID |
| 14460 | * hashed yet and not running, so nobody can access it. |
| 14461 | */ |
| 14462 | mutex_lock(&parent_ctx->mutex); |
| 14463 | |
| 14464 | /* |
| 14465 | * We dont have to disable NMIs - we are only looking at |
| 14466 | * the list, not manipulating it: |
| 14467 | */ |
| 14468 | perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { |
| 14469 | ret = inherit_task_group(event, parent, parent_ctx, |
| 14470 | child, clone_flags, &inherited_all); |
| 14471 | if (ret) |
| 14472 | goto out_unlock; |
| 14473 | } |
| 14474 | |
| 14475 | /* |
| 14476 | * We can't hold ctx->lock when iterating the ->flexible_group list due |
| 14477 | * to allocations, but we need to prevent rotation because |
| 14478 | * rotate_ctx() will change the list from interrupt context. |
| 14479 | */ |
| 14480 | raw_spin_lock_irqsave(&parent_ctx->lock, flags); |
| 14481 | parent_ctx->rotate_disable = 1; |
| 14482 | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); |
| 14483 | |
| 14484 | perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { |
| 14485 | ret = inherit_task_group(event, parent, parent_ctx, |
| 14486 | child, clone_flags, &inherited_all); |
| 14487 | if (ret) |
| 14488 | goto out_unlock; |
| 14489 | } |
| 14490 | |
| 14491 | raw_spin_lock_irqsave(&parent_ctx->lock, flags); |
| 14492 | parent_ctx->rotate_disable = 0; |
| 14493 | |
| 14494 | child_ctx = child->perf_event_ctxp; |
| 14495 | |
| 14496 | if (child_ctx && inherited_all) { |
| 14497 | /* |
| 14498 | * Mark the child context as a clone of the parent |
| 14499 | * context, or of whatever the parent is a clone of. |
| 14500 | * |
| 14501 | * Note that if the parent is a clone, the holding of |
| 14502 | * parent_ctx->lock avoids it from being uncloned. |
| 14503 | */ |
| 14504 | cloned_ctx = parent_ctx->parent_ctx; |
| 14505 | if (cloned_ctx) { |
| 14506 | child_ctx->parent_ctx = cloned_ctx; |
| 14507 | child_ctx->parent_gen = parent_ctx->parent_gen; |
| 14508 | } else { |
| 14509 | child_ctx->parent_ctx = parent_ctx; |
| 14510 | child_ctx->parent_gen = parent_ctx->generation; |
| 14511 | } |
| 14512 | get_ctx(child_ctx->parent_ctx); |
| 14513 | } |
| 14514 | |
| 14515 | raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); |
| 14516 | out_unlock: |
| 14517 | mutex_unlock(&parent_ctx->mutex); |
| 14518 | |
| 14519 | perf_unpin_context(parent_ctx); |
| 14520 | put_ctx(parent_ctx); |
| 14521 | |
| 14522 | return ret; |
| 14523 | } |
| 14524 | |
| 14525 | /* |
| 14526 | * Initialize the perf_event context in task_struct |
| 14527 | */ |
| 14528 | int perf_event_init_task(struct task_struct *child, u64 clone_flags) |
| 14529 | { |
| 14530 | int ret; |
| 14531 | |
| 14532 | memset(child->perf_recursion, 0, sizeof(child->perf_recursion)); |
| 14533 | child->perf_event_ctxp = NULL; |
| 14534 | mutex_init(&child->perf_event_mutex); |
| 14535 | INIT_LIST_HEAD(&child->perf_event_list); |
| 14536 | child->perf_ctx_data = NULL; |
| 14537 | |
| 14538 | ret = perf_event_init_context(child, clone_flags); |
| 14539 | if (ret) { |
| 14540 | perf_event_free_task(child); |
| 14541 | return ret; |
| 14542 | } |
| 14543 | |
| 14544 | return 0; |
| 14545 | } |
| 14546 | |
| 14547 | static void __init perf_event_init_all_cpus(void) |
| 14548 | { |
| 14549 | struct swevent_htable *swhash; |
| 14550 | struct perf_cpu_context *cpuctx; |
| 14551 | int cpu; |
| 14552 | |
| 14553 | zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); |
| 14554 | zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL); |
| 14555 | zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL); |
| 14556 | zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL); |
| 14557 | zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL); |
| 14558 | zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL); |
| 14559 | |
| 14560 | |
| 14561 | for_each_possible_cpu(cpu) { |
| 14562 | swhash = &per_cpu(swevent_htable, cpu); |
| 14563 | mutex_init(&swhash->hlist_mutex); |
| 14564 | |
| 14565 | INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); |
| 14566 | raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); |
| 14567 | |
| 14568 | INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); |
| 14569 | |
| 14570 | cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); |
| 14571 | __perf_event_init_context(&cpuctx->ctx); |
| 14572 | lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); |
| 14573 | lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); |
| 14574 | cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); |
| 14575 | cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); |
| 14576 | cpuctx->heap = cpuctx->heap_default; |
| 14577 | } |
| 14578 | } |
| 14579 | |
| 14580 | static void perf_swevent_init_cpu(unsigned int cpu) |
| 14581 | { |
| 14582 | struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); |
| 14583 | |
| 14584 | mutex_lock(&swhash->hlist_mutex); |
| 14585 | if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { |
| 14586 | struct swevent_hlist *hlist; |
| 14587 | |
| 14588 | hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); |
| 14589 | WARN_ON(!hlist); |
| 14590 | rcu_assign_pointer(swhash->swevent_hlist, hlist); |
| 14591 | } |
| 14592 | mutex_unlock(&swhash->hlist_mutex); |
| 14593 | } |
| 14594 | |
| 14595 | #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE |
| 14596 | static void __perf_event_exit_context(void *__info) |
| 14597 | { |
| 14598 | struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); |
| 14599 | struct perf_event_context *ctx = __info; |
| 14600 | struct perf_event *event; |
| 14601 | |
| 14602 | raw_spin_lock(&ctx->lock); |
| 14603 | ctx_sched_out(ctx, NULL, EVENT_TIME); |
| 14604 | list_for_each_entry(event, &ctx->event_list, event_entry) |
| 14605 | __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); |
| 14606 | raw_spin_unlock(&ctx->lock); |
| 14607 | } |
| 14608 | |
| 14609 | static void perf_event_clear_cpumask(unsigned int cpu) |
| 14610 | { |
| 14611 | int target[PERF_PMU_MAX_SCOPE]; |
| 14612 | unsigned int scope; |
| 14613 | struct pmu *pmu; |
| 14614 | |
| 14615 | cpumask_clear_cpu(cpu, perf_online_mask); |
| 14616 | |
| 14617 | for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { |
| 14618 | const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); |
| 14619 | struct cpumask *pmu_cpumask = perf_scope_cpumask(scope); |
| 14620 | |
| 14621 | target[scope] = -1; |
| 14622 | if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) |
| 14623 | continue; |
| 14624 | |
| 14625 | if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask)) |
| 14626 | continue; |
| 14627 | target[scope] = cpumask_any_but(cpumask, cpu); |
| 14628 | if (target[scope] < nr_cpu_ids) |
| 14629 | cpumask_set_cpu(target[scope], pmu_cpumask); |
| 14630 | } |
| 14631 | |
| 14632 | /* migrate */ |
| 14633 | list_for_each_entry(pmu, &pmus, entry) { |
| 14634 | if (pmu->scope == PERF_PMU_SCOPE_NONE || |
| 14635 | WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE)) |
| 14636 | continue; |
| 14637 | |
| 14638 | if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids) |
| 14639 | perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]); |
| 14640 | } |
| 14641 | } |
| 14642 | |
| 14643 | static void perf_event_exit_cpu_context(int cpu) |
| 14644 | { |
| 14645 | struct perf_cpu_context *cpuctx; |
| 14646 | struct perf_event_context *ctx; |
| 14647 | |
| 14648 | // XXX simplify cpuctx->online |
| 14649 | mutex_lock(&pmus_lock); |
| 14650 | /* |
| 14651 | * Clear the cpumasks, and migrate to other CPUs if possible. |
| 14652 | * Must be invoked before the __perf_event_exit_context. |
| 14653 | */ |
| 14654 | perf_event_clear_cpumask(cpu); |
| 14655 | cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); |
| 14656 | ctx = &cpuctx->ctx; |
| 14657 | |
| 14658 | mutex_lock(&ctx->mutex); |
| 14659 | smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); |
| 14660 | cpuctx->online = 0; |
| 14661 | mutex_unlock(&ctx->mutex); |
| 14662 | mutex_unlock(&pmus_lock); |
| 14663 | } |
| 14664 | #else |
| 14665 | |
| 14666 | static void perf_event_exit_cpu_context(int cpu) { } |
| 14667 | |
| 14668 | #endif |
| 14669 | |
| 14670 | static void perf_event_setup_cpumask(unsigned int cpu) |
| 14671 | { |
| 14672 | struct cpumask *pmu_cpumask; |
| 14673 | unsigned int scope; |
| 14674 | |
| 14675 | /* |
| 14676 | * Early boot stage, the cpumask hasn't been set yet. |
| 14677 | * The perf_online_<domain>_masks includes the first CPU of each domain. |
| 14678 | * Always unconditionally set the boot CPU for the perf_online_<domain>_masks. |
| 14679 | */ |
| 14680 | if (cpumask_empty(perf_online_mask)) { |
| 14681 | for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { |
| 14682 | pmu_cpumask = perf_scope_cpumask(scope); |
| 14683 | if (WARN_ON_ONCE(!pmu_cpumask)) |
| 14684 | continue; |
| 14685 | cpumask_set_cpu(cpu, pmu_cpumask); |
| 14686 | } |
| 14687 | goto end; |
| 14688 | } |
| 14689 | |
| 14690 | for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) { |
| 14691 | const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu); |
| 14692 | |
| 14693 | pmu_cpumask = perf_scope_cpumask(scope); |
| 14694 | |
| 14695 | if (WARN_ON_ONCE(!pmu_cpumask || !cpumask)) |
| 14696 | continue; |
| 14697 | |
| 14698 | if (!cpumask_empty(cpumask) && |
| 14699 | cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids) |
| 14700 | cpumask_set_cpu(cpu, pmu_cpumask); |
| 14701 | } |
| 14702 | end: |
| 14703 | cpumask_set_cpu(cpu, perf_online_mask); |
| 14704 | } |
| 14705 | |
| 14706 | int perf_event_init_cpu(unsigned int cpu) |
| 14707 | { |
| 14708 | struct perf_cpu_context *cpuctx; |
| 14709 | struct perf_event_context *ctx; |
| 14710 | |
| 14711 | perf_swevent_init_cpu(cpu); |
| 14712 | |
| 14713 | mutex_lock(&pmus_lock); |
| 14714 | perf_event_setup_cpumask(cpu); |
| 14715 | cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); |
| 14716 | ctx = &cpuctx->ctx; |
| 14717 | |
| 14718 | mutex_lock(&ctx->mutex); |
| 14719 | cpuctx->online = 1; |
| 14720 | mutex_unlock(&ctx->mutex); |
| 14721 | mutex_unlock(&pmus_lock); |
| 14722 | |
| 14723 | return 0; |
| 14724 | } |
| 14725 | |
| 14726 | int perf_event_exit_cpu(unsigned int cpu) |
| 14727 | { |
| 14728 | perf_event_exit_cpu_context(cpu); |
| 14729 | return 0; |
| 14730 | } |
| 14731 | |
| 14732 | static int |
| 14733 | perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) |
| 14734 | { |
| 14735 | int cpu; |
| 14736 | |
| 14737 | for_each_online_cpu(cpu) |
| 14738 | perf_event_exit_cpu(cpu); |
| 14739 | |
| 14740 | return NOTIFY_OK; |
| 14741 | } |
| 14742 | |
| 14743 | /* |
| 14744 | * Run the perf reboot notifier at the very last possible moment so that |
| 14745 | * the generic watchdog code runs as long as possible. |
| 14746 | */ |
| 14747 | static struct notifier_block perf_reboot_notifier = { |
| 14748 | .notifier_call = perf_reboot, |
| 14749 | .priority = INT_MIN, |
| 14750 | }; |
| 14751 | |
| 14752 | void __init perf_event_init(void) |
| 14753 | { |
| 14754 | int ret; |
| 14755 | |
| 14756 | idr_init(&pmu_idr); |
| 14757 | |
| 14758 | perf_event_init_all_cpus(); |
| 14759 | init_srcu_struct(&pmus_srcu); |
| 14760 | perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); |
| 14761 | perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); |
| 14762 | perf_pmu_register(&perf_task_clock, "task_clock", -1); |
| 14763 | perf_tp_register(); |
| 14764 | perf_event_init_cpu(smp_processor_id()); |
| 14765 | register_reboot_notifier(&perf_reboot_notifier); |
| 14766 | |
| 14767 | ret = init_hw_breakpoint(); |
| 14768 | WARN(ret, "hw_breakpoint initialization failed with: %d", ret); |
| 14769 | |
| 14770 | perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); |
| 14771 | |
| 14772 | /* |
| 14773 | * Build time assertion that we keep the data_head at the intended |
| 14774 | * location. IOW, validation we got the __reserved[] size right. |
| 14775 | */ |
| 14776 | BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) |
| 14777 | != 1024); |
| 14778 | } |
| 14779 | |
| 14780 | ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, |
| 14781 | char *page) |
| 14782 | { |
| 14783 | struct perf_pmu_events_attr *pmu_attr = |
| 14784 | container_of(attr, struct perf_pmu_events_attr, attr); |
| 14785 | |
| 14786 | if (pmu_attr->event_str) |
| 14787 | return sprintf(page, "%s\n", pmu_attr->event_str); |
| 14788 | |
| 14789 | return 0; |
| 14790 | } |
| 14791 | EXPORT_SYMBOL_GPL(perf_event_sysfs_show); |
| 14792 | |
| 14793 | static int __init perf_event_sysfs_init(void) |
| 14794 | { |
| 14795 | struct pmu *pmu; |
| 14796 | int ret; |
| 14797 | |
| 14798 | mutex_lock(&pmus_lock); |
| 14799 | |
| 14800 | ret = bus_register(&pmu_bus); |
| 14801 | if (ret) |
| 14802 | goto unlock; |
| 14803 | |
| 14804 | list_for_each_entry(pmu, &pmus, entry) { |
| 14805 | if (pmu->dev) |
| 14806 | continue; |
| 14807 | |
| 14808 | ret = pmu_dev_alloc(pmu); |
| 14809 | WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); |
| 14810 | } |
| 14811 | pmu_bus_running = 1; |
| 14812 | ret = 0; |
| 14813 | |
| 14814 | unlock: |
| 14815 | mutex_unlock(&pmus_lock); |
| 14816 | |
| 14817 | return ret; |
| 14818 | } |
| 14819 | device_initcall(perf_event_sysfs_init); |
| 14820 | |
| 14821 | #ifdef CONFIG_CGROUP_PERF |
| 14822 | static struct cgroup_subsys_state * |
| 14823 | perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
| 14824 | { |
| 14825 | struct perf_cgroup *jc; |
| 14826 | |
| 14827 | jc = kzalloc(sizeof(*jc), GFP_KERNEL); |
| 14828 | if (!jc) |
| 14829 | return ERR_PTR(-ENOMEM); |
| 14830 | |
| 14831 | jc->info = alloc_percpu(struct perf_cgroup_info); |
| 14832 | if (!jc->info) { |
| 14833 | kfree(jc); |
| 14834 | return ERR_PTR(-ENOMEM); |
| 14835 | } |
| 14836 | |
| 14837 | return &jc->css; |
| 14838 | } |
| 14839 | |
| 14840 | static void perf_cgroup_css_free(struct cgroup_subsys_state *css) |
| 14841 | { |
| 14842 | struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); |
| 14843 | |
| 14844 | free_percpu(jc->info); |
| 14845 | kfree(jc); |
| 14846 | } |
| 14847 | |
| 14848 | static int perf_cgroup_css_online(struct cgroup_subsys_state *css) |
| 14849 | { |
| 14850 | perf_event_cgroup(css->cgroup); |
| 14851 | return 0; |
| 14852 | } |
| 14853 | |
| 14854 | static int __perf_cgroup_move(void *info) |
| 14855 | { |
| 14856 | struct task_struct *task = info; |
| 14857 | |
| 14858 | preempt_disable(); |
| 14859 | perf_cgroup_switch(task); |
| 14860 | preempt_enable(); |
| 14861 | |
| 14862 | return 0; |
| 14863 | } |
| 14864 | |
| 14865 | static void perf_cgroup_attach(struct cgroup_taskset *tset) |
| 14866 | { |
| 14867 | struct task_struct *task; |
| 14868 | struct cgroup_subsys_state *css; |
| 14869 | |
| 14870 | cgroup_taskset_for_each(task, css, tset) |
| 14871 | task_function_call(task, __perf_cgroup_move, task); |
| 14872 | } |
| 14873 | |
| 14874 | struct cgroup_subsys perf_event_cgrp_subsys = { |
| 14875 | .css_alloc = perf_cgroup_css_alloc, |
| 14876 | .css_free = perf_cgroup_css_free, |
| 14877 | .css_online = perf_cgroup_css_online, |
| 14878 | .attach = perf_cgroup_attach, |
| 14879 | /* |
| 14880 | * Implicitly enable on dfl hierarchy so that perf events can |
| 14881 | * always be filtered by cgroup2 path as long as perf_event |
| 14882 | * controller is not mounted on a legacy hierarchy. |
| 14883 | */ |
| 14884 | .implicit_on_dfl = true, |
| 14885 | .threaded = true, |
| 14886 | }; |
| 14887 | #endif /* CONFIG_CGROUP_PERF */ |
| 14888 | |
| 14889 | DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); |