| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * arch-independent dma-mapping routines |
| 4 | * |
| 5 | * Copyright (c) 2006 SUSE Linux Products GmbH |
| 6 | * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| 7 | */ |
| 8 | #include <linux/memblock.h> /* for max_pfn */ |
| 9 | #include <linux/acpi.h> |
| 10 | #include <linux/dma-map-ops.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/iommu-dma.h> |
| 14 | #include <linux/kmsan.h> |
| 15 | #include <linux/of_device.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/vmalloc.h> |
| 18 | #include "debug.h" |
| 19 | #include "direct.h" |
| 20 | |
| 21 | #define CREATE_TRACE_POINTS |
| 22 | #include <trace/events/dma.h> |
| 23 | |
| 24 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
| 25 | defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
| 26 | defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) |
| 27 | bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT); |
| 28 | #endif |
| 29 | |
| 30 | /* |
| 31 | * Managed DMA API |
| 32 | */ |
| 33 | struct dma_devres { |
| 34 | size_t size; |
| 35 | void *vaddr; |
| 36 | dma_addr_t dma_handle; |
| 37 | unsigned long attrs; |
| 38 | }; |
| 39 | |
| 40 | static void dmam_release(struct device *dev, void *res) |
| 41 | { |
| 42 | struct dma_devres *this = res; |
| 43 | |
| 44 | dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| 45 | this->attrs); |
| 46 | } |
| 47 | |
| 48 | static int dmam_match(struct device *dev, void *res, void *match_data) |
| 49 | { |
| 50 | struct dma_devres *this = res, *match = match_data; |
| 51 | |
| 52 | if (this->vaddr == match->vaddr) { |
| 53 | WARN_ON(this->size != match->size || |
| 54 | this->dma_handle != match->dma_handle); |
| 55 | return 1; |
| 56 | } |
| 57 | return 0; |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * dmam_free_coherent - Managed dma_free_coherent() |
| 62 | * @dev: Device to free coherent memory for |
| 63 | * @size: Size of allocation |
| 64 | * @vaddr: Virtual address of the memory to free |
| 65 | * @dma_handle: DMA handle of the memory to free |
| 66 | * |
| 67 | * Managed dma_free_coherent(). |
| 68 | */ |
| 69 | void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| 70 | dma_addr_t dma_handle) |
| 71 | { |
| 72 | struct dma_devres match_data = { size, vaddr, dma_handle }; |
| 73 | |
| 74 | WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| 75 | dma_free_coherent(dev, size, vaddr, dma_handle); |
| 76 | } |
| 77 | EXPORT_SYMBOL(dmam_free_coherent); |
| 78 | |
| 79 | /** |
| 80 | * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| 81 | * @dev: Device to allocate non_coherent memory for |
| 82 | * @size: Size of allocation |
| 83 | * @dma_handle: Out argument for allocated DMA handle |
| 84 | * @gfp: Allocation flags |
| 85 | * @attrs: Flags in the DMA_ATTR_* namespace. |
| 86 | * |
| 87 | * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| 88 | * automatically released on driver detach. |
| 89 | * |
| 90 | * RETURNS: |
| 91 | * Pointer to allocated memory on success, NULL on failure. |
| 92 | */ |
| 93 | void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 94 | gfp_t gfp, unsigned long attrs) |
| 95 | { |
| 96 | struct dma_devres *dr; |
| 97 | void *vaddr; |
| 98 | |
| 99 | dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| 100 | if (!dr) |
| 101 | return NULL; |
| 102 | |
| 103 | vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| 104 | if (!vaddr) { |
| 105 | devres_free(dr); |
| 106 | return NULL; |
| 107 | } |
| 108 | |
| 109 | dr->vaddr = vaddr; |
| 110 | dr->dma_handle = *dma_handle; |
| 111 | dr->size = size; |
| 112 | dr->attrs = attrs; |
| 113 | |
| 114 | devres_add(dev, dr); |
| 115 | |
| 116 | return vaddr; |
| 117 | } |
| 118 | EXPORT_SYMBOL(dmam_alloc_attrs); |
| 119 | |
| 120 | static bool dma_go_direct(struct device *dev, dma_addr_t mask, |
| 121 | const struct dma_map_ops *ops) |
| 122 | { |
| 123 | if (use_dma_iommu(dev)) |
| 124 | return false; |
| 125 | |
| 126 | if (likely(!ops)) |
| 127 | return true; |
| 128 | |
| 129 | #ifdef CONFIG_DMA_OPS_BYPASS |
| 130 | if (dev->dma_ops_bypass) |
| 131 | return min_not_zero(mask, dev->bus_dma_limit) >= |
| 132 | dma_direct_get_required_mask(dev); |
| 133 | #endif |
| 134 | return false; |
| 135 | } |
| 136 | |
| 137 | |
| 138 | /* |
| 139 | * Check if the devices uses a direct mapping for streaming DMA operations. |
| 140 | * This allows IOMMU drivers to set a bypass mode if the DMA mask is large |
| 141 | * enough. |
| 142 | */ |
| 143 | static inline bool dma_alloc_direct(struct device *dev, |
| 144 | const struct dma_map_ops *ops) |
| 145 | { |
| 146 | return dma_go_direct(dev, dev->coherent_dma_mask, ops); |
| 147 | } |
| 148 | |
| 149 | static inline bool dma_map_direct(struct device *dev, |
| 150 | const struct dma_map_ops *ops) |
| 151 | { |
| 152 | return dma_go_direct(dev, *dev->dma_mask, ops); |
| 153 | } |
| 154 | |
| 155 | dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, |
| 156 | size_t offset, size_t size, enum dma_data_direction dir, |
| 157 | unsigned long attrs) |
| 158 | { |
| 159 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 160 | dma_addr_t addr; |
| 161 | |
| 162 | BUG_ON(!valid_dma_direction(dir)); |
| 163 | |
| 164 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 165 | return DMA_MAPPING_ERROR; |
| 166 | |
| 167 | if (dma_map_direct(dev, ops) || |
| 168 | arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) |
| 169 | addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); |
| 170 | else if (use_dma_iommu(dev)) |
| 171 | addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs); |
| 172 | else |
| 173 | addr = ops->map_page(dev, page, offset, size, dir, attrs); |
| 174 | kmsan_handle_dma(page, offset, size, dir); |
| 175 | trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir, |
| 176 | attrs); |
| 177 | debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); |
| 178 | |
| 179 | return addr; |
| 180 | } |
| 181 | EXPORT_SYMBOL(dma_map_page_attrs); |
| 182 | |
| 183 | void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, |
| 184 | enum dma_data_direction dir, unsigned long attrs) |
| 185 | { |
| 186 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 187 | |
| 188 | BUG_ON(!valid_dma_direction(dir)); |
| 189 | if (dma_map_direct(dev, ops) || |
| 190 | arch_dma_unmap_page_direct(dev, addr + size)) |
| 191 | dma_direct_unmap_page(dev, addr, size, dir, attrs); |
| 192 | else if (use_dma_iommu(dev)) |
| 193 | iommu_dma_unmap_page(dev, addr, size, dir, attrs); |
| 194 | else |
| 195 | ops->unmap_page(dev, addr, size, dir, attrs); |
| 196 | trace_dma_unmap_page(dev, addr, size, dir, attrs); |
| 197 | debug_dma_unmap_page(dev, addr, size, dir); |
| 198 | } |
| 199 | EXPORT_SYMBOL(dma_unmap_page_attrs); |
| 200 | |
| 201 | static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, |
| 202 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 203 | { |
| 204 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 205 | int ents; |
| 206 | |
| 207 | BUG_ON(!valid_dma_direction(dir)); |
| 208 | |
| 209 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 210 | return 0; |
| 211 | |
| 212 | if (dma_map_direct(dev, ops) || |
| 213 | arch_dma_map_sg_direct(dev, sg, nents)) |
| 214 | ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); |
| 215 | else if (use_dma_iommu(dev)) |
| 216 | ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs); |
| 217 | else |
| 218 | ents = ops->map_sg(dev, sg, nents, dir, attrs); |
| 219 | |
| 220 | if (ents > 0) { |
| 221 | kmsan_handle_dma_sg(sg, nents, dir); |
| 222 | trace_dma_map_sg(dev, sg, nents, ents, dir, attrs); |
| 223 | debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); |
| 224 | } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && |
| 225 | ents != -EIO && ents != -EREMOTEIO)) { |
| 226 | trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs); |
| 227 | return -EIO; |
| 228 | } |
| 229 | |
| 230 | return ents; |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * dma_map_sg_attrs - Map the given buffer for DMA |
| 235 | * @dev: The device for which to perform the DMA operation |
| 236 | * @sg: The sg_table object describing the buffer |
| 237 | * @nents: Number of entries to map |
| 238 | * @dir: DMA direction |
| 239 | * @attrs: Optional DMA attributes for the map operation |
| 240 | * |
| 241 | * Maps a buffer described by a scatterlist passed in the sg argument with |
| 242 | * nents segments for the @dir DMA operation by the @dev device. |
| 243 | * |
| 244 | * Returns the number of mapped entries (which can be less than nents) |
| 245 | * on success. Zero is returned for any error. |
| 246 | * |
| 247 | * dma_unmap_sg_attrs() should be used to unmap the buffer with the |
| 248 | * original sg and original nents (not the value returned by this funciton). |
| 249 | */ |
| 250 | unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, |
| 251 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 252 | { |
| 253 | int ret; |
| 254 | |
| 255 | ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); |
| 256 | if (ret < 0) |
| 257 | return 0; |
| 258 | return ret; |
| 259 | } |
| 260 | EXPORT_SYMBOL(dma_map_sg_attrs); |
| 261 | |
| 262 | /** |
| 263 | * dma_map_sgtable - Map the given buffer for DMA |
| 264 | * @dev: The device for which to perform the DMA operation |
| 265 | * @sgt: The sg_table object describing the buffer |
| 266 | * @dir: DMA direction |
| 267 | * @attrs: Optional DMA attributes for the map operation |
| 268 | * |
| 269 | * Maps a buffer described by a scatterlist stored in the given sg_table |
| 270 | * object for the @dir DMA operation by the @dev device. After success, the |
| 271 | * ownership for the buffer is transferred to the DMA domain. One has to |
| 272 | * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the |
| 273 | * ownership of the buffer back to the CPU domain before touching the |
| 274 | * buffer by the CPU. |
| 275 | * |
| 276 | * Returns 0 on success or a negative error code on error. The following |
| 277 | * error codes are supported with the given meaning: |
| 278 | * |
| 279 | * -EINVAL An invalid argument, unaligned access or other error |
| 280 | * in usage. Will not succeed if retried. |
| 281 | * -ENOMEM Insufficient resources (like memory or IOVA space) to |
| 282 | * complete the mapping. Should succeed if retried later. |
| 283 | * -EIO Legacy error code with an unknown meaning. eg. this is |
| 284 | * returned if a lower level call returned |
| 285 | * DMA_MAPPING_ERROR. |
| 286 | * -EREMOTEIO The DMA device cannot access P2PDMA memory specified |
| 287 | * in the sg_table. This will not succeed if retried. |
| 288 | */ |
| 289 | int dma_map_sgtable(struct device *dev, struct sg_table *sgt, |
| 290 | enum dma_data_direction dir, unsigned long attrs) |
| 291 | { |
| 292 | int nents; |
| 293 | |
| 294 | nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); |
| 295 | if (nents < 0) |
| 296 | return nents; |
| 297 | sgt->nents = nents; |
| 298 | return 0; |
| 299 | } |
| 300 | EXPORT_SYMBOL_GPL(dma_map_sgtable); |
| 301 | |
| 302 | void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, |
| 303 | int nents, enum dma_data_direction dir, |
| 304 | unsigned long attrs) |
| 305 | { |
| 306 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 307 | |
| 308 | BUG_ON(!valid_dma_direction(dir)); |
| 309 | trace_dma_unmap_sg(dev, sg, nents, dir, attrs); |
| 310 | debug_dma_unmap_sg(dev, sg, nents, dir); |
| 311 | if (dma_map_direct(dev, ops) || |
| 312 | arch_dma_unmap_sg_direct(dev, sg, nents)) |
| 313 | dma_direct_unmap_sg(dev, sg, nents, dir, attrs); |
| 314 | else if (use_dma_iommu(dev)) |
| 315 | iommu_dma_unmap_sg(dev, sg, nents, dir, attrs); |
| 316 | else if (ops->unmap_sg) |
| 317 | ops->unmap_sg(dev, sg, nents, dir, attrs); |
| 318 | } |
| 319 | EXPORT_SYMBOL(dma_unmap_sg_attrs); |
| 320 | |
| 321 | dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, |
| 322 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 323 | { |
| 324 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 325 | dma_addr_t addr = DMA_MAPPING_ERROR; |
| 326 | |
| 327 | BUG_ON(!valid_dma_direction(dir)); |
| 328 | |
| 329 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 330 | return DMA_MAPPING_ERROR; |
| 331 | |
| 332 | if (dma_map_direct(dev, ops)) |
| 333 | addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); |
| 334 | else if (use_dma_iommu(dev)) |
| 335 | addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs); |
| 336 | else if (ops->map_resource) |
| 337 | addr = ops->map_resource(dev, phys_addr, size, dir, attrs); |
| 338 | |
| 339 | trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs); |
| 340 | debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); |
| 341 | return addr; |
| 342 | } |
| 343 | EXPORT_SYMBOL(dma_map_resource); |
| 344 | |
| 345 | void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, |
| 346 | enum dma_data_direction dir, unsigned long attrs) |
| 347 | { |
| 348 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 349 | |
| 350 | BUG_ON(!valid_dma_direction(dir)); |
| 351 | if (dma_map_direct(dev, ops)) |
| 352 | ; /* nothing to do: uncached and no swiotlb */ |
| 353 | else if (use_dma_iommu(dev)) |
| 354 | iommu_dma_unmap_resource(dev, addr, size, dir, attrs); |
| 355 | else if (ops->unmap_resource) |
| 356 | ops->unmap_resource(dev, addr, size, dir, attrs); |
| 357 | trace_dma_unmap_resource(dev, addr, size, dir, attrs); |
| 358 | debug_dma_unmap_resource(dev, addr, size, dir); |
| 359 | } |
| 360 | EXPORT_SYMBOL(dma_unmap_resource); |
| 361 | |
| 362 | #ifdef CONFIG_DMA_NEED_SYNC |
| 363 | void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, |
| 364 | enum dma_data_direction dir) |
| 365 | { |
| 366 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 367 | |
| 368 | BUG_ON(!valid_dma_direction(dir)); |
| 369 | if (dma_map_direct(dev, ops)) |
| 370 | dma_direct_sync_single_for_cpu(dev, addr, size, dir); |
| 371 | else if (use_dma_iommu(dev)) |
| 372 | iommu_dma_sync_single_for_cpu(dev, addr, size, dir); |
| 373 | else if (ops->sync_single_for_cpu) |
| 374 | ops->sync_single_for_cpu(dev, addr, size, dir); |
| 375 | trace_dma_sync_single_for_cpu(dev, addr, size, dir); |
| 376 | debug_dma_sync_single_for_cpu(dev, addr, size, dir); |
| 377 | } |
| 378 | EXPORT_SYMBOL(__dma_sync_single_for_cpu); |
| 379 | |
| 380 | void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| 381 | size_t size, enum dma_data_direction dir) |
| 382 | { |
| 383 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 384 | |
| 385 | BUG_ON(!valid_dma_direction(dir)); |
| 386 | if (dma_map_direct(dev, ops)) |
| 387 | dma_direct_sync_single_for_device(dev, addr, size, dir); |
| 388 | else if (use_dma_iommu(dev)) |
| 389 | iommu_dma_sync_single_for_device(dev, addr, size, dir); |
| 390 | else if (ops->sync_single_for_device) |
| 391 | ops->sync_single_for_device(dev, addr, size, dir); |
| 392 | trace_dma_sync_single_for_device(dev, addr, size, dir); |
| 393 | debug_dma_sync_single_for_device(dev, addr, size, dir); |
| 394 | } |
| 395 | EXPORT_SYMBOL(__dma_sync_single_for_device); |
| 396 | |
| 397 | void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| 398 | int nelems, enum dma_data_direction dir) |
| 399 | { |
| 400 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 401 | |
| 402 | BUG_ON(!valid_dma_direction(dir)); |
| 403 | if (dma_map_direct(dev, ops)) |
| 404 | dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 405 | else if (use_dma_iommu(dev)) |
| 406 | iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 407 | else if (ops->sync_sg_for_cpu) |
| 408 | ops->sync_sg_for_cpu(dev, sg, nelems, dir); |
| 409 | trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 410 | debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 411 | } |
| 412 | EXPORT_SYMBOL(__dma_sync_sg_for_cpu); |
| 413 | |
| 414 | void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| 415 | int nelems, enum dma_data_direction dir) |
| 416 | { |
| 417 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 418 | |
| 419 | BUG_ON(!valid_dma_direction(dir)); |
| 420 | if (dma_map_direct(dev, ops)) |
| 421 | dma_direct_sync_sg_for_device(dev, sg, nelems, dir); |
| 422 | else if (use_dma_iommu(dev)) |
| 423 | iommu_dma_sync_sg_for_device(dev, sg, nelems, dir); |
| 424 | else if (ops->sync_sg_for_device) |
| 425 | ops->sync_sg_for_device(dev, sg, nelems, dir); |
| 426 | trace_dma_sync_sg_for_device(dev, sg, nelems, dir); |
| 427 | debug_dma_sync_sg_for_device(dev, sg, nelems, dir); |
| 428 | } |
| 429 | EXPORT_SYMBOL(__dma_sync_sg_for_device); |
| 430 | |
| 431 | bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr) |
| 432 | { |
| 433 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 434 | |
| 435 | if (dma_map_direct(dev, ops)) |
| 436 | /* |
| 437 | * dma_skip_sync could've been reset on first SWIOTLB buffer |
| 438 | * mapping, but @dma_addr is not necessary an SWIOTLB buffer. |
| 439 | * In this case, fall back to more granular check. |
| 440 | */ |
| 441 | return dma_direct_need_sync(dev, dma_addr); |
| 442 | return true; |
| 443 | } |
| 444 | EXPORT_SYMBOL_GPL(__dma_need_sync); |
| 445 | |
| 446 | /** |
| 447 | * dma_need_unmap - does this device need dma_unmap_* operations |
| 448 | * @dev: device to check |
| 449 | * |
| 450 | * If this function returns %false, drivers can skip calling dma_unmap_* after |
| 451 | * finishing an I/O. This function must be called after all mappings that might |
| 452 | * need to be unmapped have been performed. |
| 453 | */ |
| 454 | bool dma_need_unmap(struct device *dev) |
| 455 | { |
| 456 | if (!dma_map_direct(dev, get_dma_ops(dev))) |
| 457 | return true; |
| 458 | if (!dev->dma_skip_sync) |
| 459 | return true; |
| 460 | return IS_ENABLED(CONFIG_DMA_API_DEBUG); |
| 461 | } |
| 462 | EXPORT_SYMBOL_GPL(dma_need_unmap); |
| 463 | |
| 464 | static void dma_setup_need_sync(struct device *dev) |
| 465 | { |
| 466 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 467 | |
| 468 | if (dma_map_direct(dev, ops) || use_dma_iommu(dev)) |
| 469 | /* |
| 470 | * dma_skip_sync will be reset to %false on first SWIOTLB buffer |
| 471 | * mapping, if any. During the device initialization, it's |
| 472 | * enough to check only for the DMA coherence. |
| 473 | */ |
| 474 | dev->dma_skip_sync = dev_is_dma_coherent(dev); |
| 475 | else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu && |
| 476 | !ops->sync_sg_for_device && !ops->sync_sg_for_cpu) |
| 477 | /* |
| 478 | * Synchronization is not possible when none of DMA sync ops |
| 479 | * is set. |
| 480 | */ |
| 481 | dev->dma_skip_sync = true; |
| 482 | else |
| 483 | dev->dma_skip_sync = false; |
| 484 | } |
| 485 | #else /* !CONFIG_DMA_NEED_SYNC */ |
| 486 | static inline void dma_setup_need_sync(struct device *dev) { } |
| 487 | #endif /* !CONFIG_DMA_NEED_SYNC */ |
| 488 | |
| 489 | /* |
| 490 | * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems |
| 491 | * that the intention is to allow exporting memory allocated via the |
| 492 | * coherent DMA APIs through the dma_buf API, which only accepts a |
| 493 | * scattertable. This presents a couple of problems: |
| 494 | * 1. Not all memory allocated via the coherent DMA APIs is backed by |
| 495 | * a struct page |
| 496 | * 2. Passing coherent DMA memory into the streaming APIs is not allowed |
| 497 | * as we will try to flush the memory through a different alias to that |
| 498 | * actually being used (and the flushes are redundant.) |
| 499 | */ |
| 500 | int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, |
| 501 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 502 | unsigned long attrs) |
| 503 | { |
| 504 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 505 | |
| 506 | if (dma_alloc_direct(dev, ops)) |
| 507 | return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, |
| 508 | size, attrs); |
| 509 | if (use_dma_iommu(dev)) |
| 510 | return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr, |
| 511 | size, attrs); |
| 512 | if (!ops->get_sgtable) |
| 513 | return -ENXIO; |
| 514 | return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); |
| 515 | } |
| 516 | EXPORT_SYMBOL(dma_get_sgtable_attrs); |
| 517 | |
| 518 | #ifdef CONFIG_MMU |
| 519 | /* |
| 520 | * Return the page attributes used for mapping dma_alloc_* memory, either in |
| 521 | * kernel space if remapping is needed, or to userspace through dma_mmap_*. |
| 522 | */ |
| 523 | pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) |
| 524 | { |
| 525 | if (dev_is_dma_coherent(dev)) |
| 526 | return prot; |
| 527 | #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE |
| 528 | if (attrs & DMA_ATTR_WRITE_COMBINE) |
| 529 | return pgprot_writecombine(prot); |
| 530 | #endif |
| 531 | return pgprot_dmacoherent(prot); |
| 532 | } |
| 533 | #endif /* CONFIG_MMU */ |
| 534 | |
| 535 | /** |
| 536 | * dma_can_mmap - check if a given device supports dma_mmap_* |
| 537 | * @dev: device to check |
| 538 | * |
| 539 | * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to |
| 540 | * map DMA allocations to userspace. |
| 541 | */ |
| 542 | bool dma_can_mmap(struct device *dev) |
| 543 | { |
| 544 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 545 | |
| 546 | if (dma_alloc_direct(dev, ops)) |
| 547 | return dma_direct_can_mmap(dev); |
| 548 | if (use_dma_iommu(dev)) |
| 549 | return true; |
| 550 | return ops->mmap != NULL; |
| 551 | } |
| 552 | EXPORT_SYMBOL_GPL(dma_can_mmap); |
| 553 | |
| 554 | /** |
| 555 | * dma_mmap_attrs - map a coherent DMA allocation into user space |
| 556 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| 557 | * @vma: vm_area_struct describing requested user mapping |
| 558 | * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs |
| 559 | * @dma_addr: device-view address returned from dma_alloc_attrs |
| 560 | * @size: size of memory originally requested in dma_alloc_attrs |
| 561 | * @attrs: attributes of mapping properties requested in dma_alloc_attrs |
| 562 | * |
| 563 | * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user |
| 564 | * space. The coherent DMA buffer must not be freed by the driver until the |
| 565 | * user space mapping has been released. |
| 566 | */ |
| 567 | int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| 568 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 569 | unsigned long attrs) |
| 570 | { |
| 571 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 572 | |
| 573 | if (dma_alloc_direct(dev, ops)) |
| 574 | return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, |
| 575 | attrs); |
| 576 | if (use_dma_iommu(dev)) |
| 577 | return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size, |
| 578 | attrs); |
| 579 | if (!ops->mmap) |
| 580 | return -ENXIO; |
| 581 | return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| 582 | } |
| 583 | EXPORT_SYMBOL(dma_mmap_attrs); |
| 584 | |
| 585 | u64 dma_get_required_mask(struct device *dev) |
| 586 | { |
| 587 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 588 | |
| 589 | if (dma_alloc_direct(dev, ops)) |
| 590 | return dma_direct_get_required_mask(dev); |
| 591 | |
| 592 | if (use_dma_iommu(dev)) |
| 593 | return DMA_BIT_MASK(32); |
| 594 | |
| 595 | if (ops->get_required_mask) |
| 596 | return ops->get_required_mask(dev); |
| 597 | |
| 598 | /* |
| 599 | * We require every DMA ops implementation to at least support a 32-bit |
| 600 | * DMA mask (and use bounce buffering if that isn't supported in |
| 601 | * hardware). As the direct mapping code has its own routine to |
| 602 | * actually report an optimal mask we default to 32-bit here as that |
| 603 | * is the right thing for most IOMMUs, and at least not actively |
| 604 | * harmful in general. |
| 605 | */ |
| 606 | return DMA_BIT_MASK(32); |
| 607 | } |
| 608 | EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| 609 | |
| 610 | void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 611 | gfp_t flag, unsigned long attrs) |
| 612 | { |
| 613 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 614 | void *cpu_addr; |
| 615 | |
| 616 | WARN_ON_ONCE(!dev->coherent_dma_mask); |
| 617 | |
| 618 | /* |
| 619 | * DMA allocations can never be turned back into a page pointer, so |
| 620 | * requesting compound pages doesn't make sense (and can't even be |
| 621 | * supported at all by various backends). |
| 622 | */ |
| 623 | if (WARN_ON_ONCE(flag & __GFP_COMP)) |
| 624 | return NULL; |
| 625 | |
| 626 | if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) { |
| 627 | trace_dma_alloc(dev, cpu_addr, *dma_handle, size, |
| 628 | DMA_BIDIRECTIONAL, flag, attrs); |
| 629 | return cpu_addr; |
| 630 | } |
| 631 | |
| 632 | /* let the implementation decide on the zone to allocate from: */ |
| 633 | flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| 634 | |
| 635 | if (dma_alloc_direct(dev, ops)) { |
| 636 | cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); |
| 637 | } else if (use_dma_iommu(dev)) { |
| 638 | cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs); |
| 639 | } else if (ops->alloc) { |
| 640 | cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); |
| 641 | } else { |
| 642 | trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag, |
| 643 | attrs); |
| 644 | return NULL; |
| 645 | } |
| 646 | |
| 647 | trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL, |
| 648 | flag, attrs); |
| 649 | debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); |
| 650 | return cpu_addr; |
| 651 | } |
| 652 | EXPORT_SYMBOL(dma_alloc_attrs); |
| 653 | |
| 654 | void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| 655 | dma_addr_t dma_handle, unsigned long attrs) |
| 656 | { |
| 657 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 658 | |
| 659 | if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) |
| 660 | return; |
| 661 | /* |
| 662 | * On non-coherent platforms which implement DMA-coherent buffers via |
| 663 | * non-cacheable remaps, ops->free() may call vunmap(). Thus getting |
| 664 | * this far in IRQ context is a) at risk of a BUG_ON() or trying to |
| 665 | * sleep on some machines, and b) an indication that the driver is |
| 666 | * probably misusing the coherent API anyway. |
| 667 | */ |
| 668 | WARN_ON(irqs_disabled()); |
| 669 | |
| 670 | trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL, |
| 671 | attrs); |
| 672 | if (!cpu_addr) |
| 673 | return; |
| 674 | |
| 675 | debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); |
| 676 | if (dma_alloc_direct(dev, ops)) |
| 677 | dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); |
| 678 | else if (use_dma_iommu(dev)) |
| 679 | iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs); |
| 680 | else if (ops->free) |
| 681 | ops->free(dev, size, cpu_addr, dma_handle, attrs); |
| 682 | } |
| 683 | EXPORT_SYMBOL(dma_free_attrs); |
| 684 | |
| 685 | static struct page *__dma_alloc_pages(struct device *dev, size_t size, |
| 686 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| 687 | { |
| 688 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 689 | |
| 690 | if (WARN_ON_ONCE(!dev->coherent_dma_mask)) |
| 691 | return NULL; |
| 692 | if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) |
| 693 | return NULL; |
| 694 | if (WARN_ON_ONCE(gfp & __GFP_COMP)) |
| 695 | return NULL; |
| 696 | |
| 697 | size = PAGE_ALIGN(size); |
| 698 | if (dma_alloc_direct(dev, ops)) |
| 699 | return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); |
| 700 | if (use_dma_iommu(dev)) |
| 701 | return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp); |
| 702 | if (!ops->alloc_pages_op) |
| 703 | return NULL; |
| 704 | return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp); |
| 705 | } |
| 706 | |
| 707 | struct page *dma_alloc_pages(struct device *dev, size_t size, |
| 708 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| 709 | { |
| 710 | struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); |
| 711 | |
| 712 | if (page) { |
| 713 | trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle, |
| 714 | size, dir, gfp, 0); |
| 715 | debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); |
| 716 | } else { |
| 717 | trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0); |
| 718 | } |
| 719 | return page; |
| 720 | } |
| 721 | EXPORT_SYMBOL_GPL(dma_alloc_pages); |
| 722 | |
| 723 | static void __dma_free_pages(struct device *dev, size_t size, struct page *page, |
| 724 | dma_addr_t dma_handle, enum dma_data_direction dir) |
| 725 | { |
| 726 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 727 | |
| 728 | size = PAGE_ALIGN(size); |
| 729 | if (dma_alloc_direct(dev, ops)) |
| 730 | dma_direct_free_pages(dev, size, page, dma_handle, dir); |
| 731 | else if (use_dma_iommu(dev)) |
| 732 | dma_common_free_pages(dev, size, page, dma_handle, dir); |
| 733 | else if (ops->free_pages) |
| 734 | ops->free_pages(dev, size, page, dma_handle, dir); |
| 735 | } |
| 736 | |
| 737 | void dma_free_pages(struct device *dev, size_t size, struct page *page, |
| 738 | dma_addr_t dma_handle, enum dma_data_direction dir) |
| 739 | { |
| 740 | trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0); |
| 741 | debug_dma_unmap_page(dev, dma_handle, size, dir); |
| 742 | __dma_free_pages(dev, size, page, dma_handle, dir); |
| 743 | } |
| 744 | EXPORT_SYMBOL_GPL(dma_free_pages); |
| 745 | |
| 746 | int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, |
| 747 | size_t size, struct page *page) |
| 748 | { |
| 749 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 750 | |
| 751 | if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) |
| 752 | return -ENXIO; |
| 753 | return remap_pfn_range(vma, vma->vm_start, |
| 754 | page_to_pfn(page) + vma->vm_pgoff, |
| 755 | vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); |
| 756 | } |
| 757 | EXPORT_SYMBOL_GPL(dma_mmap_pages); |
| 758 | |
| 759 | static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, |
| 760 | enum dma_data_direction dir, gfp_t gfp) |
| 761 | { |
| 762 | struct sg_table *sgt; |
| 763 | struct page *page; |
| 764 | |
| 765 | sgt = kmalloc(sizeof(*sgt), gfp); |
| 766 | if (!sgt) |
| 767 | return NULL; |
| 768 | if (sg_alloc_table(sgt, 1, gfp)) |
| 769 | goto out_free_sgt; |
| 770 | page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); |
| 771 | if (!page) |
| 772 | goto out_free_table; |
| 773 | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| 774 | sg_dma_len(sgt->sgl) = sgt->sgl->length; |
| 775 | return sgt; |
| 776 | out_free_table: |
| 777 | sg_free_table(sgt); |
| 778 | out_free_sgt: |
| 779 | kfree(sgt); |
| 780 | return NULL; |
| 781 | } |
| 782 | |
| 783 | struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, |
| 784 | enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) |
| 785 | { |
| 786 | struct sg_table *sgt; |
| 787 | |
| 788 | if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) |
| 789 | return NULL; |
| 790 | if (WARN_ON_ONCE(gfp & __GFP_COMP)) |
| 791 | return NULL; |
| 792 | |
| 793 | if (use_dma_iommu(dev)) |
| 794 | sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs); |
| 795 | else |
| 796 | sgt = alloc_single_sgt(dev, size, dir, gfp); |
| 797 | |
| 798 | if (sgt) { |
| 799 | sgt->nents = 1; |
| 800 | trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs); |
| 801 | debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); |
| 802 | } else { |
| 803 | trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs); |
| 804 | } |
| 805 | return sgt; |
| 806 | } |
| 807 | EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); |
| 808 | |
| 809 | static void free_single_sgt(struct device *dev, size_t size, |
| 810 | struct sg_table *sgt, enum dma_data_direction dir) |
| 811 | { |
| 812 | __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, |
| 813 | dir); |
| 814 | sg_free_table(sgt); |
| 815 | kfree(sgt); |
| 816 | } |
| 817 | |
| 818 | void dma_free_noncontiguous(struct device *dev, size_t size, |
| 819 | struct sg_table *sgt, enum dma_data_direction dir) |
| 820 | { |
| 821 | trace_dma_free_sgt(dev, sgt, size, dir); |
| 822 | debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); |
| 823 | |
| 824 | if (use_dma_iommu(dev)) |
| 825 | iommu_dma_free_noncontiguous(dev, size, sgt, dir); |
| 826 | else |
| 827 | free_single_sgt(dev, size, sgt, dir); |
| 828 | } |
| 829 | EXPORT_SYMBOL_GPL(dma_free_noncontiguous); |
| 830 | |
| 831 | void *dma_vmap_noncontiguous(struct device *dev, size_t size, |
| 832 | struct sg_table *sgt) |
| 833 | { |
| 834 | |
| 835 | if (use_dma_iommu(dev)) |
| 836 | return iommu_dma_vmap_noncontiguous(dev, size, sgt); |
| 837 | |
| 838 | return page_address(sg_page(sgt->sgl)); |
| 839 | } |
| 840 | EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); |
| 841 | |
| 842 | void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) |
| 843 | { |
| 844 | if (use_dma_iommu(dev)) |
| 845 | iommu_dma_vunmap_noncontiguous(dev, vaddr); |
| 846 | } |
| 847 | EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); |
| 848 | |
| 849 | int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, |
| 850 | size_t size, struct sg_table *sgt) |
| 851 | { |
| 852 | if (use_dma_iommu(dev)) |
| 853 | return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt); |
| 854 | return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); |
| 855 | } |
| 856 | EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); |
| 857 | |
| 858 | static int dma_supported(struct device *dev, u64 mask) |
| 859 | { |
| 860 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 861 | |
| 862 | if (use_dma_iommu(dev)) { |
| 863 | if (WARN_ON(ops)) |
| 864 | return false; |
| 865 | return true; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * ->dma_supported sets and clears the bypass flag, so ignore it here |
| 870 | * and always call into the method if there is one. |
| 871 | */ |
| 872 | if (ops) { |
| 873 | if (!ops->dma_supported) |
| 874 | return true; |
| 875 | return ops->dma_supported(dev, mask); |
| 876 | } |
| 877 | |
| 878 | return dma_direct_supported(dev, mask); |
| 879 | } |
| 880 | |
| 881 | bool dma_pci_p2pdma_supported(struct device *dev) |
| 882 | { |
| 883 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 884 | |
| 885 | /* |
| 886 | * Note: dma_ops_bypass is not checked here because P2PDMA should |
| 887 | * not be used with dma mapping ops that do not have support even |
| 888 | * if the specific device is bypassing them. |
| 889 | */ |
| 890 | |
| 891 | /* if ops is not set, dma direct and default IOMMU support P2PDMA */ |
| 892 | return !ops; |
| 893 | } |
| 894 | EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); |
| 895 | |
| 896 | int dma_set_mask(struct device *dev, u64 mask) |
| 897 | { |
| 898 | /* |
| 899 | * Truncate the mask to the actually supported dma_addr_t width to |
| 900 | * avoid generating unsupportable addresses. |
| 901 | */ |
| 902 | mask = (dma_addr_t)mask; |
| 903 | |
| 904 | if (!dev->dma_mask || !dma_supported(dev, mask)) |
| 905 | return -EIO; |
| 906 | |
| 907 | arch_dma_set_mask(dev, mask); |
| 908 | *dev->dma_mask = mask; |
| 909 | dma_setup_need_sync(dev); |
| 910 | |
| 911 | return 0; |
| 912 | } |
| 913 | EXPORT_SYMBOL(dma_set_mask); |
| 914 | |
| 915 | int dma_set_coherent_mask(struct device *dev, u64 mask) |
| 916 | { |
| 917 | /* |
| 918 | * Truncate the mask to the actually supported dma_addr_t width to |
| 919 | * avoid generating unsupportable addresses. |
| 920 | */ |
| 921 | mask = (dma_addr_t)mask; |
| 922 | |
| 923 | if (!dma_supported(dev, mask)) |
| 924 | return -EIO; |
| 925 | |
| 926 | dev->coherent_dma_mask = mask; |
| 927 | return 0; |
| 928 | } |
| 929 | EXPORT_SYMBOL(dma_set_coherent_mask); |
| 930 | |
| 931 | static bool __dma_addressing_limited(struct device *dev) |
| 932 | { |
| 933 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 934 | |
| 935 | if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < |
| 936 | dma_get_required_mask(dev)) |
| 937 | return true; |
| 938 | |
| 939 | if (unlikely(ops) || use_dma_iommu(dev)) |
| 940 | return false; |
| 941 | return !dma_direct_all_ram_mapped(dev); |
| 942 | } |
| 943 | |
| 944 | /** |
| 945 | * dma_addressing_limited - return if the device is addressing limited |
| 946 | * @dev: device to check |
| 947 | * |
| 948 | * Return %true if the devices DMA mask is too small to address all memory in |
| 949 | * the system, else %false. Lack of addressing bits is the prime reason for |
| 950 | * bounce buffering, but might not be the only one. |
| 951 | */ |
| 952 | bool dma_addressing_limited(struct device *dev) |
| 953 | { |
| 954 | if (!__dma_addressing_limited(dev)) |
| 955 | return false; |
| 956 | |
| 957 | dev_dbg(dev, "device is DMA addressing limited\n"); |
| 958 | return true; |
| 959 | } |
| 960 | EXPORT_SYMBOL_GPL(dma_addressing_limited); |
| 961 | |
| 962 | size_t dma_max_mapping_size(struct device *dev) |
| 963 | { |
| 964 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 965 | size_t size = SIZE_MAX; |
| 966 | |
| 967 | if (dma_map_direct(dev, ops)) |
| 968 | size = dma_direct_max_mapping_size(dev); |
| 969 | else if (use_dma_iommu(dev)) |
| 970 | size = iommu_dma_max_mapping_size(dev); |
| 971 | else if (ops && ops->max_mapping_size) |
| 972 | size = ops->max_mapping_size(dev); |
| 973 | |
| 974 | return size; |
| 975 | } |
| 976 | EXPORT_SYMBOL_GPL(dma_max_mapping_size); |
| 977 | |
| 978 | size_t dma_opt_mapping_size(struct device *dev) |
| 979 | { |
| 980 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 981 | size_t size = SIZE_MAX; |
| 982 | |
| 983 | if (use_dma_iommu(dev)) |
| 984 | size = iommu_dma_opt_mapping_size(); |
| 985 | else if (ops && ops->opt_mapping_size) |
| 986 | size = ops->opt_mapping_size(); |
| 987 | |
| 988 | return min(dma_max_mapping_size(dev), size); |
| 989 | } |
| 990 | EXPORT_SYMBOL_GPL(dma_opt_mapping_size); |
| 991 | |
| 992 | unsigned long dma_get_merge_boundary(struct device *dev) |
| 993 | { |
| 994 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 995 | |
| 996 | if (use_dma_iommu(dev)) |
| 997 | return iommu_dma_get_merge_boundary(dev); |
| 998 | |
| 999 | if (!ops || !ops->get_merge_boundary) |
| 1000 | return 0; /* can't merge */ |
| 1001 | |
| 1002 | return ops->get_merge_boundary(dev); |
| 1003 | } |
| 1004 | EXPORT_SYMBOL_GPL(dma_get_merge_boundary); |