| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2018-2020 Christoph Hellwig. |
| 4 | * |
| 5 | * DMA operations that map physical memory directly without using an IOMMU. |
| 6 | */ |
| 7 | #include <linux/memblock.h> /* for max_pfn */ |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/dma-map-ops.h> |
| 11 | #include <linux/scatterlist.h> |
| 12 | #include <linux/pfn.h> |
| 13 | #include <linux/vmalloc.h> |
| 14 | #include <linux/set_memory.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/pci-p2pdma.h> |
| 17 | #include "direct.h" |
| 18 | |
| 19 | /* |
| 20 | * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use |
| 21 | * it for entirely different regions. In that case the arch code needs to |
| 22 | * override the variable below for dma-direct to work properly. |
| 23 | */ |
| 24 | u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24); |
| 25 | |
| 26 | static inline dma_addr_t phys_to_dma_direct(struct device *dev, |
| 27 | phys_addr_t phys) |
| 28 | { |
| 29 | if (force_dma_unencrypted(dev)) |
| 30 | return phys_to_dma_unencrypted(dev, phys); |
| 31 | return phys_to_dma(dev, phys); |
| 32 | } |
| 33 | |
| 34 | static inline struct page *dma_direct_to_page(struct device *dev, |
| 35 | dma_addr_t dma_addr) |
| 36 | { |
| 37 | return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); |
| 38 | } |
| 39 | |
| 40 | u64 dma_direct_get_required_mask(struct device *dev) |
| 41 | { |
| 42 | phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; |
| 43 | u64 max_dma = phys_to_dma_direct(dev, phys); |
| 44 | |
| 45 | return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; |
| 46 | } |
| 47 | |
| 48 | static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) |
| 49 | { |
| 50 | u64 dma_limit = min_not_zero( |
| 51 | dev->coherent_dma_mask, |
| 52 | dev->bus_dma_limit); |
| 53 | |
| 54 | /* |
| 55 | * Optimistically try the zone that the physical address mask falls |
| 56 | * into first. If that returns memory that isn't actually addressable |
| 57 | * we will fallback to the next lower zone and try again. |
| 58 | * |
| 59 | * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding |
| 60 | * zones. |
| 61 | */ |
| 62 | *phys_limit = dma_to_phys(dev, dma_limit); |
| 63 | if (*phys_limit <= zone_dma_limit) |
| 64 | return GFP_DMA; |
| 65 | if (*phys_limit <= DMA_BIT_MASK(32)) |
| 66 | return GFP_DMA32; |
| 67 | return 0; |
| 68 | } |
| 69 | |
| 70 | bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
| 71 | { |
| 72 | dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); |
| 73 | |
| 74 | if (dma_addr == DMA_MAPPING_ERROR) |
| 75 | return false; |
| 76 | return dma_addr + size - 1 <= |
| 77 | min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); |
| 78 | } |
| 79 | |
| 80 | static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) |
| 81 | { |
| 82 | if (!force_dma_unencrypted(dev)) |
| 83 | return 0; |
| 84 | return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); |
| 85 | } |
| 86 | |
| 87 | static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) |
| 88 | { |
| 89 | int ret; |
| 90 | |
| 91 | if (!force_dma_unencrypted(dev)) |
| 92 | return 0; |
| 93 | ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); |
| 94 | if (ret) |
| 95 | pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); |
| 96 | return ret; |
| 97 | } |
| 98 | |
| 99 | static void __dma_direct_free_pages(struct device *dev, struct page *page, |
| 100 | size_t size) |
| 101 | { |
| 102 | if (swiotlb_free(dev, page, size)) |
| 103 | return; |
| 104 | dma_free_contiguous(dev, page, size); |
| 105 | } |
| 106 | |
| 107 | static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) |
| 108 | { |
| 109 | struct page *page = swiotlb_alloc(dev, size); |
| 110 | |
| 111 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| 112 | swiotlb_free(dev, page, size); |
| 113 | return NULL; |
| 114 | } |
| 115 | |
| 116 | return page; |
| 117 | } |
| 118 | |
| 119 | static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, |
| 120 | gfp_t gfp, bool allow_highmem) |
| 121 | { |
| 122 | int node = dev_to_node(dev); |
| 123 | struct page *page = NULL; |
| 124 | u64 phys_limit; |
| 125 | |
| 126 | WARN_ON_ONCE(!PAGE_ALIGNED(size)); |
| 127 | |
| 128 | if (is_swiotlb_for_alloc(dev)) |
| 129 | return dma_direct_alloc_swiotlb(dev, size); |
| 130 | |
| 131 | gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); |
| 132 | page = dma_alloc_contiguous(dev, size, gfp); |
| 133 | if (page) { |
| 134 | if (!dma_coherent_ok(dev, page_to_phys(page), size) || |
| 135 | (!allow_highmem && PageHighMem(page))) { |
| 136 | dma_free_contiguous(dev, page, size); |
| 137 | page = NULL; |
| 138 | } |
| 139 | } |
| 140 | again: |
| 141 | if (!page) |
| 142 | page = alloc_pages_node(node, gfp, get_order(size)); |
| 143 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| 144 | __free_pages(page, get_order(size)); |
| 145 | page = NULL; |
| 146 | |
| 147 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
| 148 | phys_limit < DMA_BIT_MASK(64) && |
| 149 | !(gfp & (GFP_DMA32 | GFP_DMA))) { |
| 150 | gfp |= GFP_DMA32; |
| 151 | goto again; |
| 152 | } |
| 153 | |
| 154 | if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { |
| 155 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
| 156 | goto again; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | return page; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Check if a potentially blocking operations needs to dip into the atomic |
| 165 | * pools for the given device/gfp. |
| 166 | */ |
| 167 | static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) |
| 168 | { |
| 169 | return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); |
| 170 | } |
| 171 | |
| 172 | static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, |
| 173 | dma_addr_t *dma_handle, gfp_t gfp) |
| 174 | { |
| 175 | struct page *page; |
| 176 | u64 phys_limit; |
| 177 | void *ret; |
| 178 | |
| 179 | if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) |
| 180 | return NULL; |
| 181 | |
| 182 | gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); |
| 183 | page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); |
| 184 | if (!page) |
| 185 | return NULL; |
| 186 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| 187 | return ret; |
| 188 | } |
| 189 | |
| 190 | static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, |
| 191 | dma_addr_t *dma_handle, gfp_t gfp) |
| 192 | { |
| 193 | struct page *page; |
| 194 | |
| 195 | page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); |
| 196 | if (!page) |
| 197 | return NULL; |
| 198 | |
| 199 | /* remove any dirty cache lines on the kernel alias */ |
| 200 | if (!PageHighMem(page)) |
| 201 | arch_dma_prep_coherent(page, size); |
| 202 | |
| 203 | /* return the page pointer as the opaque cookie */ |
| 204 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| 205 | return page; |
| 206 | } |
| 207 | |
| 208 | void *dma_direct_alloc(struct device *dev, size_t size, |
| 209 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 210 | { |
| 211 | bool remap = false, set_uncached = false; |
| 212 | struct page *page; |
| 213 | void *ret; |
| 214 | |
| 215 | size = PAGE_ALIGN(size); |
| 216 | if (attrs & DMA_ATTR_NO_WARN) |
| 217 | gfp |= __GFP_NOWARN; |
| 218 | |
| 219 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| 220 | !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) |
| 221 | return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); |
| 222 | |
| 223 | if (!dev_is_dma_coherent(dev)) { |
| 224 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && |
| 225 | !is_swiotlb_for_alloc(dev)) |
| 226 | return arch_dma_alloc(dev, size, dma_handle, gfp, |
| 227 | attrs); |
| 228 | |
| 229 | /* |
| 230 | * If there is a global pool, always allocate from it for |
| 231 | * non-coherent devices. |
| 232 | */ |
| 233 | if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) |
| 234 | return dma_alloc_from_global_coherent(dev, size, |
| 235 | dma_handle); |
| 236 | |
| 237 | /* |
| 238 | * Otherwise we require the architecture to either be able to |
| 239 | * mark arbitrary parts of the kernel direct mapping uncached, |
| 240 | * or remapped it uncached. |
| 241 | */ |
| 242 | set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED); |
| 243 | remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); |
| 244 | if (!set_uncached && !remap) { |
| 245 | pr_warn_once("coherent DMA allocations not supported on this platform.\n"); |
| 246 | return NULL; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * Remapping or decrypting memory may block, allocate the memory from |
| 252 | * the atomic pools instead if we aren't allowed block. |
| 253 | */ |
| 254 | if ((remap || force_dma_unencrypted(dev)) && |
| 255 | dma_direct_use_pool(dev, gfp)) |
| 256 | return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
| 257 | |
| 258 | /* we always manually zero the memory once we are done */ |
| 259 | page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); |
| 260 | if (!page) |
| 261 | return NULL; |
| 262 | |
| 263 | /* |
| 264 | * dma_alloc_contiguous can return highmem pages depending on a |
| 265 | * combination the cma= arguments and per-arch setup. These need to be |
| 266 | * remapped to return a kernel virtual address. |
| 267 | */ |
| 268 | if (PageHighMem(page)) { |
| 269 | remap = true; |
| 270 | set_uncached = false; |
| 271 | } |
| 272 | |
| 273 | if (remap) { |
| 274 | pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
| 275 | |
| 276 | if (force_dma_unencrypted(dev)) |
| 277 | prot = pgprot_decrypted(prot); |
| 278 | |
| 279 | /* remove any dirty cache lines on the kernel alias */ |
| 280 | arch_dma_prep_coherent(page, size); |
| 281 | |
| 282 | /* create a coherent mapping */ |
| 283 | ret = dma_common_contiguous_remap(page, size, prot, |
| 284 | __builtin_return_address(0)); |
| 285 | if (!ret) |
| 286 | goto out_free_pages; |
| 287 | } else { |
| 288 | ret = page_address(page); |
| 289 | if (dma_set_decrypted(dev, ret, size)) |
| 290 | goto out_leak_pages; |
| 291 | } |
| 292 | |
| 293 | memset(ret, 0, size); |
| 294 | |
| 295 | if (set_uncached) { |
| 296 | arch_dma_prep_coherent(page, size); |
| 297 | ret = arch_dma_set_uncached(ret, size); |
| 298 | if (IS_ERR(ret)) |
| 299 | goto out_encrypt_pages; |
| 300 | } |
| 301 | |
| 302 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| 303 | return ret; |
| 304 | |
| 305 | out_encrypt_pages: |
| 306 | if (dma_set_encrypted(dev, page_address(page), size)) |
| 307 | return NULL; |
| 308 | out_free_pages: |
| 309 | __dma_direct_free_pages(dev, page, size); |
| 310 | return NULL; |
| 311 | out_leak_pages: |
| 312 | return NULL; |
| 313 | } |
| 314 | |
| 315 | void dma_direct_free(struct device *dev, size_t size, |
| 316 | void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
| 317 | { |
| 318 | unsigned int page_order = get_order(size); |
| 319 | |
| 320 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| 321 | !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { |
| 322 | /* cpu_addr is a struct page cookie, not a kernel address */ |
| 323 | dma_free_contiguous(dev, cpu_addr, size); |
| 324 | return; |
| 325 | } |
| 326 | |
| 327 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && |
| 328 | !dev_is_dma_coherent(dev) && |
| 329 | !is_swiotlb_for_alloc(dev)) { |
| 330 | arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); |
| 331 | return; |
| 332 | } |
| 333 | |
| 334 | if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && |
| 335 | !dev_is_dma_coherent(dev)) { |
| 336 | if (!dma_release_from_global_coherent(page_order, cpu_addr)) |
| 337 | WARN_ON_ONCE(1); |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
| 342 | if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
| 343 | dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) |
| 344 | return; |
| 345 | |
| 346 | if (is_vmalloc_addr(cpu_addr)) { |
| 347 | vunmap(cpu_addr); |
| 348 | } else { |
| 349 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) |
| 350 | arch_dma_clear_uncached(cpu_addr, size); |
| 351 | if (dma_set_encrypted(dev, cpu_addr, size)) |
| 352 | return; |
| 353 | } |
| 354 | |
| 355 | __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); |
| 356 | } |
| 357 | |
| 358 | struct page *dma_direct_alloc_pages(struct device *dev, size_t size, |
| 359 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| 360 | { |
| 361 | struct page *page; |
| 362 | void *ret; |
| 363 | |
| 364 | if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) |
| 365 | return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
| 366 | |
| 367 | page = __dma_direct_alloc_pages(dev, size, gfp, false); |
| 368 | if (!page) |
| 369 | return NULL; |
| 370 | |
| 371 | ret = page_address(page); |
| 372 | if (dma_set_decrypted(dev, ret, size)) |
| 373 | goto out_leak_pages; |
| 374 | memset(ret, 0, size); |
| 375 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
| 376 | return page; |
| 377 | out_leak_pages: |
| 378 | return NULL; |
| 379 | } |
| 380 | |
| 381 | void dma_direct_free_pages(struct device *dev, size_t size, |
| 382 | struct page *page, dma_addr_t dma_addr, |
| 383 | enum dma_data_direction dir) |
| 384 | { |
| 385 | void *vaddr = page_address(page); |
| 386 | |
| 387 | /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
| 388 | if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
| 389 | dma_free_from_pool(dev, vaddr, size)) |
| 390 | return; |
| 391 | |
| 392 | if (dma_set_encrypted(dev, vaddr, size)) |
| 393 | return; |
| 394 | __dma_direct_free_pages(dev, page, size); |
| 395 | } |
| 396 | |
| 397 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
| 398 | defined(CONFIG_SWIOTLB) |
| 399 | void dma_direct_sync_sg_for_device(struct device *dev, |
| 400 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| 401 | { |
| 402 | struct scatterlist *sg; |
| 403 | int i; |
| 404 | |
| 405 | for_each_sg(sgl, sg, nents, i) { |
| 406 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| 407 | |
| 408 | swiotlb_sync_single_for_device(dev, paddr, sg->length, dir); |
| 409 | |
| 410 | if (!dev_is_dma_coherent(dev)) |
| 411 | arch_sync_dma_for_device(paddr, sg->length, |
| 412 | dir); |
| 413 | } |
| 414 | } |
| 415 | #endif |
| 416 | |
| 417 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
| 418 | defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ |
| 419 | defined(CONFIG_SWIOTLB) |
| 420 | void dma_direct_sync_sg_for_cpu(struct device *dev, |
| 421 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| 422 | { |
| 423 | struct scatterlist *sg; |
| 424 | int i; |
| 425 | |
| 426 | for_each_sg(sgl, sg, nents, i) { |
| 427 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| 428 | |
| 429 | if (!dev_is_dma_coherent(dev)) |
| 430 | arch_sync_dma_for_cpu(paddr, sg->length, dir); |
| 431 | |
| 432 | swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir); |
| 433 | |
| 434 | if (dir == DMA_FROM_DEVICE) |
| 435 | arch_dma_mark_clean(paddr, sg->length); |
| 436 | } |
| 437 | |
| 438 | if (!dev_is_dma_coherent(dev)) |
| 439 | arch_sync_dma_for_cpu_all(); |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Unmaps segments, except for ones marked as pci_p2pdma which do not |
| 444 | * require any further action as they contain a bus address. |
| 445 | */ |
| 446 | void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| 447 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 448 | { |
| 449 | struct scatterlist *sg; |
| 450 | int i; |
| 451 | |
| 452 | for_each_sg(sgl, sg, nents, i) { |
| 453 | if (sg_dma_is_bus_address(sg)) |
| 454 | sg_dma_unmark_bus_address(sg); |
| 455 | else |
| 456 | dma_direct_unmap_page(dev, sg->dma_address, |
| 457 | sg_dma_len(sg), dir, attrs); |
| 458 | } |
| 459 | } |
| 460 | #endif |
| 461 | |
| 462 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
| 463 | enum dma_data_direction dir, unsigned long attrs) |
| 464 | { |
| 465 | struct pci_p2pdma_map_state p2pdma_state = {}; |
| 466 | struct scatterlist *sg; |
| 467 | int i, ret; |
| 468 | |
| 469 | for_each_sg(sgl, sg, nents, i) { |
| 470 | switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) { |
| 471 | case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: |
| 472 | /* |
| 473 | * Any P2P mapping that traverses the PCI host bridge |
| 474 | * must be mapped with CPU physical address and not PCI |
| 475 | * bus addresses. |
| 476 | */ |
| 477 | break; |
| 478 | case PCI_P2PDMA_MAP_NONE: |
| 479 | sg->dma_address = dma_direct_map_page(dev, sg_page(sg), |
| 480 | sg->offset, sg->length, dir, attrs); |
| 481 | if (sg->dma_address == DMA_MAPPING_ERROR) { |
| 482 | ret = -EIO; |
| 483 | goto out_unmap; |
| 484 | } |
| 485 | break; |
| 486 | case PCI_P2PDMA_MAP_BUS_ADDR: |
| 487 | sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state, |
| 488 | sg_phys(sg)); |
| 489 | sg_dma_mark_bus_address(sg); |
| 490 | continue; |
| 491 | default: |
| 492 | ret = -EREMOTEIO; |
| 493 | goto out_unmap; |
| 494 | } |
| 495 | sg_dma_len(sg) = sg->length; |
| 496 | } |
| 497 | |
| 498 | return nents; |
| 499 | |
| 500 | out_unmap: |
| 501 | dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| 502 | return ret; |
| 503 | } |
| 504 | |
| 505 | dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, |
| 506 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 507 | { |
| 508 | dma_addr_t dma_addr = paddr; |
| 509 | |
| 510 | if (unlikely(!dma_capable(dev, dma_addr, size, false))) { |
| 511 | dev_err_once(dev, |
| 512 | "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
| 513 | &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
| 514 | WARN_ON_ONCE(1); |
| 515 | return DMA_MAPPING_ERROR; |
| 516 | } |
| 517 | |
| 518 | return dma_addr; |
| 519 | } |
| 520 | |
| 521 | int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 522 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 523 | unsigned long attrs) |
| 524 | { |
| 525 | struct page *page = dma_direct_to_page(dev, dma_addr); |
| 526 | int ret; |
| 527 | |
| 528 | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| 529 | if (!ret) |
| 530 | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| 531 | return ret; |
| 532 | } |
| 533 | |
| 534 | bool dma_direct_can_mmap(struct device *dev) |
| 535 | { |
| 536 | return dev_is_dma_coherent(dev) || |
| 537 | IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); |
| 538 | } |
| 539 | |
| 540 | int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, |
| 541 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 542 | unsigned long attrs) |
| 543 | { |
| 544 | unsigned long user_count = vma_pages(vma); |
| 545 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 546 | unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); |
| 547 | int ret = -ENXIO; |
| 548 | |
| 549 | vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
| 550 | if (force_dma_unencrypted(dev)) |
| 551 | vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); |
| 552 | |
| 553 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 554 | return ret; |
| 555 | if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) |
| 556 | return ret; |
| 557 | |
| 558 | if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) |
| 559 | return -ENXIO; |
| 560 | return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
| 561 | user_count << PAGE_SHIFT, vma->vm_page_prot); |
| 562 | } |
| 563 | |
| 564 | int dma_direct_supported(struct device *dev, u64 mask) |
| 565 | { |
| 566 | u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; |
| 567 | |
| 568 | /* |
| 569 | * Because 32-bit DMA masks are so common we expect every architecture |
| 570 | * to be able to satisfy them - either by not supporting more physical |
| 571 | * memory, or by providing a ZONE_DMA32. If neither is the case, the |
| 572 | * architecture needs to use an IOMMU instead of the direct mapping. |
| 573 | */ |
| 574 | if (mask >= DMA_BIT_MASK(32)) |
| 575 | return 1; |
| 576 | |
| 577 | /* |
| 578 | * This check needs to be against the actual bit mask value, so use |
| 579 | * phys_to_dma_unencrypted() here so that the SME encryption mask isn't |
| 580 | * part of the check. |
| 581 | */ |
| 582 | if (IS_ENABLED(CONFIG_ZONE_DMA)) |
| 583 | min_mask = min_t(u64, min_mask, zone_dma_limit); |
| 584 | return mask >= phys_to_dma_unencrypted(dev, min_mask); |
| 585 | } |
| 586 | |
| 587 | static const struct bus_dma_region *dma_find_range(struct device *dev, |
| 588 | unsigned long start_pfn) |
| 589 | { |
| 590 | const struct bus_dma_region *m; |
| 591 | |
| 592 | for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) { |
| 593 | unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start); |
| 594 | |
| 595 | if (start_pfn >= cpu_start_pfn && |
| 596 | start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) |
| 597 | return m; |
| 598 | } |
| 599 | |
| 600 | return NULL; |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * To check whether all ram resource ranges are covered by dma range map |
| 605 | * Returns 0 when further check is needed |
| 606 | * Returns 1 if there is some RAM range can't be covered by dma_range_map |
| 607 | */ |
| 608 | static int check_ram_in_range_map(unsigned long start_pfn, |
| 609 | unsigned long nr_pages, void *data) |
| 610 | { |
| 611 | unsigned long end_pfn = start_pfn + nr_pages; |
| 612 | struct device *dev = data; |
| 613 | |
| 614 | while (start_pfn < end_pfn) { |
| 615 | const struct bus_dma_region *bdr; |
| 616 | |
| 617 | bdr = dma_find_range(dev, start_pfn); |
| 618 | if (!bdr) |
| 619 | return 1; |
| 620 | |
| 621 | start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size); |
| 622 | } |
| 623 | |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | bool dma_direct_all_ram_mapped(struct device *dev) |
| 628 | { |
| 629 | if (!dev->dma_range_map) |
| 630 | return true; |
| 631 | return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev, |
| 632 | check_ram_in_range_map); |
| 633 | } |
| 634 | |
| 635 | size_t dma_direct_max_mapping_size(struct device *dev) |
| 636 | { |
| 637 | /* If SWIOTLB is active, use its maximum mapping size */ |
| 638 | if (is_swiotlb_active(dev) && |
| 639 | (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) |
| 640 | return swiotlb_max_mapping_size(dev); |
| 641 | return SIZE_MAX; |
| 642 | } |
| 643 | |
| 644 | bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) |
| 645 | { |
| 646 | return !dev_is_dma_coherent(dev) || |
| 647 | swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr)); |
| 648 | } |
| 649 | |
| 650 | /** |
| 651 | * dma_direct_set_offset - Assign scalar offset for a single DMA range. |
| 652 | * @dev: device pointer; needed to "own" the alloced memory. |
| 653 | * @cpu_start: beginning of memory region covered by this offset. |
| 654 | * @dma_start: beginning of DMA/PCI region covered by this offset. |
| 655 | * @size: size of the region. |
| 656 | * |
| 657 | * This is for the simple case of a uniform offset which cannot |
| 658 | * be discovered by "dma-ranges". |
| 659 | * |
| 660 | * It returns -ENOMEM if out of memory, -EINVAL if a map |
| 661 | * already exists, 0 otherwise. |
| 662 | * |
| 663 | * Note: any call to this from a driver is a bug. The mapping needs |
| 664 | * to be described by the device tree or other firmware interfaces. |
| 665 | */ |
| 666 | int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, |
| 667 | dma_addr_t dma_start, u64 size) |
| 668 | { |
| 669 | struct bus_dma_region *map; |
| 670 | u64 offset = (u64)cpu_start - (u64)dma_start; |
| 671 | |
| 672 | if (dev->dma_range_map) { |
| 673 | dev_err(dev, "attempt to add DMA range to existing map\n"); |
| 674 | return -EINVAL; |
| 675 | } |
| 676 | |
| 677 | if (!offset) |
| 678 | return 0; |
| 679 | |
| 680 | map = kcalloc(2, sizeof(*map), GFP_KERNEL); |
| 681 | if (!map) |
| 682 | return -ENOMEM; |
| 683 | map[0].cpu_start = cpu_start; |
| 684 | map[0].dma_start = dma_start; |
| 685 | map[0].size = size; |
| 686 | dev->dma_range_map = map; |
| 687 | return 0; |
| 688 | } |