cgroup: add css_parent()
[linux-2.6-block.git] / kernel / cpuset.c
... / ...
CommitLineData
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/export.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
45#include <linux/rcupdate.h>
46#include <linux/sched.h>
47#include <linux/seq_file.h>
48#include <linux/security.h>
49#include <linux/slab.h>
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <linux/atomic.h>
59#include <linux/mutex.h>
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
62#include <linux/wait.h>
63
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
69int number_of_cpusets __read_mostly;
70
71/* Forward declare cgroup structures */
72struct cgroup_subsys cpuset_subsys;
73
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
83struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
102 struct fmeter fmeter; /* memory_pressure filter */
103
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
110 /* partition number for rebuild_sched_domains() */
111 int pn;
112
113 /* for custom sched domain */
114 int relax_domain_level;
115};
116
117static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
118{
119 return css ? container_of(css, struct cpuset, css) : NULL;
120}
121
122/* Retrieve the cpuset for a cgroup */
123static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
124{
125 return css_cs(cgroup_css(cgrp, cpuset_subsys_id));
126}
127
128/* Retrieve the cpuset for a task */
129static inline struct cpuset *task_cs(struct task_struct *task)
130{
131 return css_cs(task_css(task, cpuset_subsys_id));
132}
133
134static inline struct cpuset *parent_cs(struct cpuset *cs)
135{
136 return css_cs(css_parent(&cs->css));
137}
138
139#ifdef CONFIG_NUMA
140static inline bool task_has_mempolicy(struct task_struct *task)
141{
142 return task->mempolicy;
143}
144#else
145static inline bool task_has_mempolicy(struct task_struct *task)
146{
147 return false;
148}
149#endif
150
151
152/* bits in struct cpuset flags field */
153typedef enum {
154 CS_ONLINE,
155 CS_CPU_EXCLUSIVE,
156 CS_MEM_EXCLUSIVE,
157 CS_MEM_HARDWALL,
158 CS_MEMORY_MIGRATE,
159 CS_SCHED_LOAD_BALANCE,
160 CS_SPREAD_PAGE,
161 CS_SPREAD_SLAB,
162} cpuset_flagbits_t;
163
164/* convenient tests for these bits */
165static inline bool is_cpuset_online(const struct cpuset *cs)
166{
167 return test_bit(CS_ONLINE, &cs->flags);
168}
169
170static inline int is_cpu_exclusive(const struct cpuset *cs)
171{
172 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
173}
174
175static inline int is_mem_exclusive(const struct cpuset *cs)
176{
177 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
178}
179
180static inline int is_mem_hardwall(const struct cpuset *cs)
181{
182 return test_bit(CS_MEM_HARDWALL, &cs->flags);
183}
184
185static inline int is_sched_load_balance(const struct cpuset *cs)
186{
187 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
188}
189
190static inline int is_memory_migrate(const struct cpuset *cs)
191{
192 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
193}
194
195static inline int is_spread_page(const struct cpuset *cs)
196{
197 return test_bit(CS_SPREAD_PAGE, &cs->flags);
198}
199
200static inline int is_spread_slab(const struct cpuset *cs)
201{
202 return test_bit(CS_SPREAD_SLAB, &cs->flags);
203}
204
205static struct cpuset top_cpuset = {
206 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
207 (1 << CS_MEM_EXCLUSIVE)),
208};
209
210/**
211 * cpuset_for_each_child - traverse online children of a cpuset
212 * @child_cs: loop cursor pointing to the current child
213 * @pos_cgrp: used for iteration
214 * @parent_cs: target cpuset to walk children of
215 *
216 * Walk @child_cs through the online children of @parent_cs. Must be used
217 * with RCU read locked.
218 */
219#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
220 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
221 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
222
223/**
224 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
225 * @des_cs: loop cursor pointing to the current descendant
226 * @pos_cgrp: used for iteration
227 * @root_cs: target cpuset to walk ancestor of
228 *
229 * Walk @des_cs through the online descendants of @root_cs. Must be used
230 * with RCU read locked. The caller may modify @pos_cgrp by calling
231 * cgroup_rightmost_descendant() to skip subtree.
232 */
233#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
234 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
235 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
236
237/*
238 * There are two global mutexes guarding cpuset structures - cpuset_mutex
239 * and callback_mutex. The latter may nest inside the former. We also
240 * require taking task_lock() when dereferencing a task's cpuset pointer.
241 * See "The task_lock() exception", at the end of this comment.
242 *
243 * A task must hold both mutexes to modify cpusets. If a task holds
244 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
245 * is the only task able to also acquire callback_mutex and be able to
246 * modify cpusets. It can perform various checks on the cpuset structure
247 * first, knowing nothing will change. It can also allocate memory while
248 * just holding cpuset_mutex. While it is performing these checks, various
249 * callback routines can briefly acquire callback_mutex to query cpusets.
250 * Once it is ready to make the changes, it takes callback_mutex, blocking
251 * everyone else.
252 *
253 * Calls to the kernel memory allocator can not be made while holding
254 * callback_mutex, as that would risk double tripping on callback_mutex
255 * from one of the callbacks into the cpuset code from within
256 * __alloc_pages().
257 *
258 * If a task is only holding callback_mutex, then it has read-only
259 * access to cpusets.
260 *
261 * Now, the task_struct fields mems_allowed and mempolicy may be changed
262 * by other task, we use alloc_lock in the task_struct fields to protect
263 * them.
264 *
265 * The cpuset_common_file_read() handlers only hold callback_mutex across
266 * small pieces of code, such as when reading out possibly multi-word
267 * cpumasks and nodemasks.
268 *
269 * Accessing a task's cpuset should be done in accordance with the
270 * guidelines for accessing subsystem state in kernel/cgroup.c
271 */
272
273static DEFINE_MUTEX(cpuset_mutex);
274static DEFINE_MUTEX(callback_mutex);
275
276/*
277 * CPU / memory hotplug is handled asynchronously.
278 */
279static void cpuset_hotplug_workfn(struct work_struct *work);
280static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
281
282static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
283
284/*
285 * This is ugly, but preserves the userspace API for existing cpuset
286 * users. If someone tries to mount the "cpuset" filesystem, we
287 * silently switch it to mount "cgroup" instead
288 */
289static struct dentry *cpuset_mount(struct file_system_type *fs_type,
290 int flags, const char *unused_dev_name, void *data)
291{
292 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
293 struct dentry *ret = ERR_PTR(-ENODEV);
294 if (cgroup_fs) {
295 char mountopts[] =
296 "cpuset,noprefix,"
297 "release_agent=/sbin/cpuset_release_agent";
298 ret = cgroup_fs->mount(cgroup_fs, flags,
299 unused_dev_name, mountopts);
300 put_filesystem(cgroup_fs);
301 }
302 return ret;
303}
304
305static struct file_system_type cpuset_fs_type = {
306 .name = "cpuset",
307 .mount = cpuset_mount,
308};
309
310/*
311 * Return in pmask the portion of a cpusets's cpus_allowed that
312 * are online. If none are online, walk up the cpuset hierarchy
313 * until we find one that does have some online cpus. The top
314 * cpuset always has some cpus online.
315 *
316 * One way or another, we guarantee to return some non-empty subset
317 * of cpu_online_mask.
318 *
319 * Call with callback_mutex held.
320 */
321static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
322{
323 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
324 cs = parent_cs(cs);
325 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
326}
327
328/*
329 * Return in *pmask the portion of a cpusets's mems_allowed that
330 * are online, with memory. If none are online with memory, walk
331 * up the cpuset hierarchy until we find one that does have some
332 * online mems. The top cpuset always has some mems online.
333 *
334 * One way or another, we guarantee to return some non-empty subset
335 * of node_states[N_MEMORY].
336 *
337 * Call with callback_mutex held.
338 */
339static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
340{
341 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
342 cs = parent_cs(cs);
343 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
344}
345
346/*
347 * update task's spread flag if cpuset's page/slab spread flag is set
348 *
349 * Called with callback_mutex/cpuset_mutex held
350 */
351static void cpuset_update_task_spread_flag(struct cpuset *cs,
352 struct task_struct *tsk)
353{
354 if (is_spread_page(cs))
355 tsk->flags |= PF_SPREAD_PAGE;
356 else
357 tsk->flags &= ~PF_SPREAD_PAGE;
358 if (is_spread_slab(cs))
359 tsk->flags |= PF_SPREAD_SLAB;
360 else
361 tsk->flags &= ~PF_SPREAD_SLAB;
362}
363
364/*
365 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
366 *
367 * One cpuset is a subset of another if all its allowed CPUs and
368 * Memory Nodes are a subset of the other, and its exclusive flags
369 * are only set if the other's are set. Call holding cpuset_mutex.
370 */
371
372static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
373{
374 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
375 nodes_subset(p->mems_allowed, q->mems_allowed) &&
376 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
377 is_mem_exclusive(p) <= is_mem_exclusive(q);
378}
379
380/**
381 * alloc_trial_cpuset - allocate a trial cpuset
382 * @cs: the cpuset that the trial cpuset duplicates
383 */
384static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
385{
386 struct cpuset *trial;
387
388 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
389 if (!trial)
390 return NULL;
391
392 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
393 kfree(trial);
394 return NULL;
395 }
396 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
397
398 return trial;
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
407 free_cpumask_var(trial->cpus_allowed);
408 kfree(trial);
409}
410
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
418 * cpuset_mutex held.
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
431static int validate_change(struct cpuset *cur, struct cpuset *trial)
432{
433 struct cgroup *cgrp;
434 struct cpuset *c, *par;
435 int ret;
436
437 rcu_read_lock();
438
439 /* Each of our child cpusets must be a subset of us */
440 ret = -EBUSY;
441 cpuset_for_each_child(c, cgrp, cur)
442 if (!is_cpuset_subset(c, trial))
443 goto out;
444
445 /* Remaining checks don't apply to root cpuset */
446 ret = 0;
447 if (cur == &top_cpuset)
448 goto out;
449
450 par = parent_cs(cur);
451
452 /* We must be a subset of our parent cpuset */
453 ret = -EACCES;
454 if (!is_cpuset_subset(trial, par))
455 goto out;
456
457 /*
458 * If either I or some sibling (!= me) is exclusive, we can't
459 * overlap
460 */
461 ret = -EINVAL;
462 cpuset_for_each_child(c, cgrp, par) {
463 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
464 c != cur &&
465 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
466 goto out;
467 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
468 c != cur &&
469 nodes_intersects(trial->mems_allowed, c->mems_allowed))
470 goto out;
471 }
472
473 /*
474 * Cpusets with tasks - existing or newly being attached - can't
475 * have empty cpus_allowed or mems_allowed.
476 */
477 ret = -ENOSPC;
478 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
479 (cpumask_empty(trial->cpus_allowed) &&
480 nodes_empty(trial->mems_allowed)))
481 goto out;
482
483 ret = 0;
484out:
485 rcu_read_unlock();
486 return ret;
487}
488
489#ifdef CONFIG_SMP
490/*
491 * Helper routine for generate_sched_domains().
492 * Do cpusets a, b have overlapping cpus_allowed masks?
493 */
494static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
495{
496 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
497}
498
499static void
500update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
501{
502 if (dattr->relax_domain_level < c->relax_domain_level)
503 dattr->relax_domain_level = c->relax_domain_level;
504 return;
505}
506
507static void update_domain_attr_tree(struct sched_domain_attr *dattr,
508 struct cpuset *root_cs)
509{
510 struct cpuset *cp;
511 struct cgroup *pos_cgrp;
512
513 rcu_read_lock();
514 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
515 /* skip the whole subtree if @cp doesn't have any CPU */
516 if (cpumask_empty(cp->cpus_allowed)) {
517 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
518 continue;
519 }
520
521 if (is_sched_load_balance(cp))
522 update_domain_attr(dattr, cp);
523 }
524 rcu_read_unlock();
525}
526
527/*
528 * generate_sched_domains()
529 *
530 * This function builds a partial partition of the systems CPUs
531 * A 'partial partition' is a set of non-overlapping subsets whose
532 * union is a subset of that set.
533 * The output of this function needs to be passed to kernel/sched/core.c
534 * partition_sched_domains() routine, which will rebuild the scheduler's
535 * load balancing domains (sched domains) as specified by that partial
536 * partition.
537 *
538 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
539 * for a background explanation of this.
540 *
541 * Does not return errors, on the theory that the callers of this
542 * routine would rather not worry about failures to rebuild sched
543 * domains when operating in the severe memory shortage situations
544 * that could cause allocation failures below.
545 *
546 * Must be called with cpuset_mutex held.
547 *
548 * The three key local variables below are:
549 * q - a linked-list queue of cpuset pointers, used to implement a
550 * top-down scan of all cpusets. This scan loads a pointer
551 * to each cpuset marked is_sched_load_balance into the
552 * array 'csa'. For our purposes, rebuilding the schedulers
553 * sched domains, we can ignore !is_sched_load_balance cpusets.
554 * csa - (for CpuSet Array) Array of pointers to all the cpusets
555 * that need to be load balanced, for convenient iterative
556 * access by the subsequent code that finds the best partition,
557 * i.e the set of domains (subsets) of CPUs such that the
558 * cpus_allowed of every cpuset marked is_sched_load_balance
559 * is a subset of one of these domains, while there are as
560 * many such domains as possible, each as small as possible.
561 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
562 * the kernel/sched/core.c routine partition_sched_domains() in a
563 * convenient format, that can be easily compared to the prior
564 * value to determine what partition elements (sched domains)
565 * were changed (added or removed.)
566 *
567 * Finding the best partition (set of domains):
568 * The triple nested loops below over i, j, k scan over the
569 * load balanced cpusets (using the array of cpuset pointers in
570 * csa[]) looking for pairs of cpusets that have overlapping
571 * cpus_allowed, but which don't have the same 'pn' partition
572 * number and gives them in the same partition number. It keeps
573 * looping on the 'restart' label until it can no longer find
574 * any such pairs.
575 *
576 * The union of the cpus_allowed masks from the set of
577 * all cpusets having the same 'pn' value then form the one
578 * element of the partition (one sched domain) to be passed to
579 * partition_sched_domains().
580 */
581static int generate_sched_domains(cpumask_var_t **domains,
582 struct sched_domain_attr **attributes)
583{
584 struct cpuset *cp; /* scans q */
585 struct cpuset **csa; /* array of all cpuset ptrs */
586 int csn; /* how many cpuset ptrs in csa so far */
587 int i, j, k; /* indices for partition finding loops */
588 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
589 struct sched_domain_attr *dattr; /* attributes for custom domains */
590 int ndoms = 0; /* number of sched domains in result */
591 int nslot; /* next empty doms[] struct cpumask slot */
592 struct cgroup *pos_cgrp;
593
594 doms = NULL;
595 dattr = NULL;
596 csa = NULL;
597
598 /* Special case for the 99% of systems with one, full, sched domain */
599 if (is_sched_load_balance(&top_cpuset)) {
600 ndoms = 1;
601 doms = alloc_sched_domains(ndoms);
602 if (!doms)
603 goto done;
604
605 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
606 if (dattr) {
607 *dattr = SD_ATTR_INIT;
608 update_domain_attr_tree(dattr, &top_cpuset);
609 }
610 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
611
612 goto done;
613 }
614
615 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
616 if (!csa)
617 goto done;
618 csn = 0;
619
620 rcu_read_lock();
621 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
622 /*
623 * Continue traversing beyond @cp iff @cp has some CPUs and
624 * isn't load balancing. The former is obvious. The
625 * latter: All child cpusets contain a subset of the
626 * parent's cpus, so just skip them, and then we call
627 * update_domain_attr_tree() to calc relax_domain_level of
628 * the corresponding sched domain.
629 */
630 if (!cpumask_empty(cp->cpus_allowed) &&
631 !is_sched_load_balance(cp))
632 continue;
633
634 if (is_sched_load_balance(cp))
635 csa[csn++] = cp;
636
637 /* skip @cp's subtree */
638 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
639 }
640 rcu_read_unlock();
641
642 for (i = 0; i < csn; i++)
643 csa[i]->pn = i;
644 ndoms = csn;
645
646restart:
647 /* Find the best partition (set of sched domains) */
648 for (i = 0; i < csn; i++) {
649 struct cpuset *a = csa[i];
650 int apn = a->pn;
651
652 for (j = 0; j < csn; j++) {
653 struct cpuset *b = csa[j];
654 int bpn = b->pn;
655
656 if (apn != bpn && cpusets_overlap(a, b)) {
657 for (k = 0; k < csn; k++) {
658 struct cpuset *c = csa[k];
659
660 if (c->pn == bpn)
661 c->pn = apn;
662 }
663 ndoms--; /* one less element */
664 goto restart;
665 }
666 }
667 }
668
669 /*
670 * Now we know how many domains to create.
671 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
672 */
673 doms = alloc_sched_domains(ndoms);
674 if (!doms)
675 goto done;
676
677 /*
678 * The rest of the code, including the scheduler, can deal with
679 * dattr==NULL case. No need to abort if alloc fails.
680 */
681 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
682
683 for (nslot = 0, i = 0; i < csn; i++) {
684 struct cpuset *a = csa[i];
685 struct cpumask *dp;
686 int apn = a->pn;
687
688 if (apn < 0) {
689 /* Skip completed partitions */
690 continue;
691 }
692
693 dp = doms[nslot];
694
695 if (nslot == ndoms) {
696 static int warnings = 10;
697 if (warnings) {
698 printk(KERN_WARNING
699 "rebuild_sched_domains confused:"
700 " nslot %d, ndoms %d, csn %d, i %d,"
701 " apn %d\n",
702 nslot, ndoms, csn, i, apn);
703 warnings--;
704 }
705 continue;
706 }
707
708 cpumask_clear(dp);
709 if (dattr)
710 *(dattr + nslot) = SD_ATTR_INIT;
711 for (j = i; j < csn; j++) {
712 struct cpuset *b = csa[j];
713
714 if (apn == b->pn) {
715 cpumask_or(dp, dp, b->cpus_allowed);
716 if (dattr)
717 update_domain_attr_tree(dattr + nslot, b);
718
719 /* Done with this partition */
720 b->pn = -1;
721 }
722 }
723 nslot++;
724 }
725 BUG_ON(nslot != ndoms);
726
727done:
728 kfree(csa);
729
730 /*
731 * Fallback to the default domain if kmalloc() failed.
732 * See comments in partition_sched_domains().
733 */
734 if (doms == NULL)
735 ndoms = 1;
736
737 *domains = doms;
738 *attributes = dattr;
739 return ndoms;
740}
741
742/*
743 * Rebuild scheduler domains.
744 *
745 * If the flag 'sched_load_balance' of any cpuset with non-empty
746 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
747 * which has that flag enabled, or if any cpuset with a non-empty
748 * 'cpus' is removed, then call this routine to rebuild the
749 * scheduler's dynamic sched domains.
750 *
751 * Call with cpuset_mutex held. Takes get_online_cpus().
752 */
753static void rebuild_sched_domains_locked(void)
754{
755 struct sched_domain_attr *attr;
756 cpumask_var_t *doms;
757 int ndoms;
758
759 lockdep_assert_held(&cpuset_mutex);
760 get_online_cpus();
761
762 /*
763 * We have raced with CPU hotplug. Don't do anything to avoid
764 * passing doms with offlined cpu to partition_sched_domains().
765 * Anyways, hotplug work item will rebuild sched domains.
766 */
767 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
768 goto out;
769
770 /* Generate domain masks and attrs */
771 ndoms = generate_sched_domains(&doms, &attr);
772
773 /* Have scheduler rebuild the domains */
774 partition_sched_domains(ndoms, doms, attr);
775out:
776 put_online_cpus();
777}
778#else /* !CONFIG_SMP */
779static void rebuild_sched_domains_locked(void)
780{
781}
782#endif /* CONFIG_SMP */
783
784void rebuild_sched_domains(void)
785{
786 mutex_lock(&cpuset_mutex);
787 rebuild_sched_domains_locked();
788 mutex_unlock(&cpuset_mutex);
789}
790
791/*
792 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
793 * @cs: the cpuset in interest
794 *
795 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
796 * with non-empty cpus. We use effective cpumask whenever:
797 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
798 * if the cpuset they reside in has no cpus)
799 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
800 *
801 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
802 * exception. See comments there.
803 */
804static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
805{
806 while (cpumask_empty(cs->cpus_allowed))
807 cs = parent_cs(cs);
808 return cs;
809}
810
811/*
812 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
813 * @cs: the cpuset in interest
814 *
815 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
816 * with non-empty memss. We use effective nodemask whenever:
817 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
818 * if the cpuset they reside in has no mems)
819 * - we want to retrieve task_cs(tsk)'s mems_allowed.
820 *
821 * Called with cpuset_mutex held.
822 */
823static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
824{
825 while (nodes_empty(cs->mems_allowed))
826 cs = parent_cs(cs);
827 return cs;
828}
829
830/**
831 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
832 * @tsk: task to test
833 * @scan: struct cgroup_scanner containing the cgroup of the task
834 *
835 * Called by cgroup_scan_tasks() for each task in a cgroup whose
836 * cpus_allowed mask needs to be changed.
837 *
838 * We don't need to re-check for the cgroup/cpuset membership, since we're
839 * holding cpuset_mutex at this point.
840 */
841static void cpuset_change_cpumask(struct task_struct *tsk,
842 struct cgroup_scanner *scan)
843{
844 struct cpuset *cpus_cs;
845
846 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cgrp));
847 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
848}
849
850/**
851 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
853 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
854 *
855 * Called with cpuset_mutex held
856 *
857 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
858 * calling callback functions for each.
859 *
860 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
861 * if @heap != NULL.
862 */
863static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
864{
865 struct cgroup_scanner scan;
866
867 scan.cgrp = cs->css.cgroup;
868 scan.test_task = NULL;
869 scan.process_task = cpuset_change_cpumask;
870 scan.heap = heap;
871 cgroup_scan_tasks(&scan);
872}
873
874/*
875 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
876 * @root_cs: the root cpuset of the hierarchy
877 * @update_root: update root cpuset or not?
878 * @heap: the heap used by cgroup_scan_tasks()
879 *
880 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
881 * which take on cpumask of @root_cs.
882 *
883 * Called with cpuset_mutex held
884 */
885static void update_tasks_cpumask_hier(struct cpuset *root_cs,
886 bool update_root, struct ptr_heap *heap)
887{
888 struct cpuset *cp;
889 struct cgroup *pos_cgrp;
890
891 if (update_root)
892 update_tasks_cpumask(root_cs, heap);
893
894 rcu_read_lock();
895 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
896 /* skip the whole subtree if @cp have some CPU */
897 if (!cpumask_empty(cp->cpus_allowed)) {
898 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
899 continue;
900 }
901 if (!css_tryget(&cp->css))
902 continue;
903 rcu_read_unlock();
904
905 update_tasks_cpumask(cp, heap);
906
907 rcu_read_lock();
908 css_put(&cp->css);
909 }
910 rcu_read_unlock();
911}
912
913/**
914 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
915 * @cs: the cpuset to consider
916 * @buf: buffer of cpu numbers written to this cpuset
917 */
918static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
919 const char *buf)
920{
921 struct ptr_heap heap;
922 int retval;
923 int is_load_balanced;
924
925 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
926 if (cs == &top_cpuset)
927 return -EACCES;
928
929 /*
930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
934 */
935 if (!*buf) {
936 cpumask_clear(trialcs->cpus_allowed);
937 } else {
938 retval = cpulist_parse(buf, trialcs->cpus_allowed);
939 if (retval < 0)
940 return retval;
941
942 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
943 return -EINVAL;
944 }
945
946 /* Nothing to do if the cpus didn't change */
947 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
948 return 0;
949
950 retval = validate_change(cs, trialcs);
951 if (retval < 0)
952 return retval;
953
954 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
955 if (retval)
956 return retval;
957
958 is_load_balanced = is_sched_load_balance(trialcs);
959
960 mutex_lock(&callback_mutex);
961 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
962 mutex_unlock(&callback_mutex);
963
964 update_tasks_cpumask_hier(cs, true, &heap);
965
966 heap_free(&heap);
967
968 if (is_load_balanced)
969 rebuild_sched_domains_locked();
970 return 0;
971}
972
973/*
974 * cpuset_migrate_mm
975 *
976 * Migrate memory region from one set of nodes to another.
977 *
978 * Temporarilly set tasks mems_allowed to target nodes of migration,
979 * so that the migration code can allocate pages on these nodes.
980 *
981 * Call holding cpuset_mutex, so current's cpuset won't change
982 * during this call, as manage_mutex holds off any cpuset_attach()
983 * calls. Therefore we don't need to take task_lock around the
984 * call to guarantee_online_mems(), as we know no one is changing
985 * our task's cpuset.
986 *
987 * While the mm_struct we are migrating is typically from some
988 * other task, the task_struct mems_allowed that we are hacking
989 * is for our current task, which must allocate new pages for that
990 * migrating memory region.
991 */
992
993static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
994 const nodemask_t *to)
995{
996 struct task_struct *tsk = current;
997 struct cpuset *mems_cs;
998
999 tsk->mems_allowed = *to;
1000
1001 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1002
1003 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1004 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
1005}
1006
1007/*
1008 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1009 * @tsk: the task to change
1010 * @newmems: new nodes that the task will be set
1011 *
1012 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1013 * we structure updates as setting all new allowed nodes, then clearing newly
1014 * disallowed ones.
1015 */
1016static void cpuset_change_task_nodemask(struct task_struct *tsk,
1017 nodemask_t *newmems)
1018{
1019 bool need_loop;
1020
1021 /*
1022 * Allow tasks that have access to memory reserves because they have
1023 * been OOM killed to get memory anywhere.
1024 */
1025 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1026 return;
1027 if (current->flags & PF_EXITING) /* Let dying task have memory */
1028 return;
1029
1030 task_lock(tsk);
1031 /*
1032 * Determine if a loop is necessary if another thread is doing
1033 * get_mems_allowed(). If at least one node remains unchanged and
1034 * tsk does not have a mempolicy, then an empty nodemask will not be
1035 * possible when mems_allowed is larger than a word.
1036 */
1037 need_loop = task_has_mempolicy(tsk) ||
1038 !nodes_intersects(*newmems, tsk->mems_allowed);
1039
1040 if (need_loop)
1041 write_seqcount_begin(&tsk->mems_allowed_seq);
1042
1043 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1044 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1045
1046 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1047 tsk->mems_allowed = *newmems;
1048
1049 if (need_loop)
1050 write_seqcount_end(&tsk->mems_allowed_seq);
1051
1052 task_unlock(tsk);
1053}
1054
1055/*
1056 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1057 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1058 * memory_migrate flag is set. Called with cpuset_mutex held.
1059 */
1060static void cpuset_change_nodemask(struct task_struct *p,
1061 struct cgroup_scanner *scan)
1062{
1063 struct cpuset *cs = cgroup_cs(scan->cgrp);
1064 struct mm_struct *mm;
1065 int migrate;
1066 nodemask_t *newmems = scan->data;
1067
1068 cpuset_change_task_nodemask(p, newmems);
1069
1070 mm = get_task_mm(p);
1071 if (!mm)
1072 return;
1073
1074 migrate = is_memory_migrate(cs);
1075
1076 mpol_rebind_mm(mm, &cs->mems_allowed);
1077 if (migrate)
1078 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
1079 mmput(mm);
1080}
1081
1082static void *cpuset_being_rebound;
1083
1084/**
1085 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1086 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1087 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1088 *
1089 * Called with cpuset_mutex held
1090 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1091 * if @heap != NULL.
1092 */
1093static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1094{
1095 static nodemask_t newmems; /* protected by cpuset_mutex */
1096 struct cgroup_scanner scan;
1097 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1098
1099 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1100
1101 guarantee_online_mems(mems_cs, &newmems);
1102
1103 scan.cgrp = cs->css.cgroup;
1104 scan.test_task = NULL;
1105 scan.process_task = cpuset_change_nodemask;
1106 scan.heap = heap;
1107 scan.data = &newmems;
1108
1109 /*
1110 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1111 * take while holding tasklist_lock. Forks can happen - the
1112 * mpol_dup() cpuset_being_rebound check will catch such forks,
1113 * and rebind their vma mempolicies too. Because we still hold
1114 * the global cpuset_mutex, we know that no other rebind effort
1115 * will be contending for the global variable cpuset_being_rebound.
1116 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1117 * is idempotent. Also migrate pages in each mm to new nodes.
1118 */
1119 cgroup_scan_tasks(&scan);
1120
1121 /*
1122 * All the tasks' nodemasks have been updated, update
1123 * cs->old_mems_allowed.
1124 */
1125 cs->old_mems_allowed = newmems;
1126
1127 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1128 cpuset_being_rebound = NULL;
1129}
1130
1131/*
1132 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1133 * @cs: the root cpuset of the hierarchy
1134 * @update_root: update the root cpuset or not?
1135 * @heap: the heap used by cgroup_scan_tasks()
1136 *
1137 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1138 * which take on nodemask of @root_cs.
1139 *
1140 * Called with cpuset_mutex held
1141 */
1142static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1143 bool update_root, struct ptr_heap *heap)
1144{
1145 struct cpuset *cp;
1146 struct cgroup *pos_cgrp;
1147
1148 if (update_root)
1149 update_tasks_nodemask(root_cs, heap);
1150
1151 rcu_read_lock();
1152 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
1153 /* skip the whole subtree if @cp have some CPU */
1154 if (!nodes_empty(cp->mems_allowed)) {
1155 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
1156 continue;
1157 }
1158 if (!css_tryget(&cp->css))
1159 continue;
1160 rcu_read_unlock();
1161
1162 update_tasks_nodemask(cp, heap);
1163
1164 rcu_read_lock();
1165 css_put(&cp->css);
1166 }
1167 rcu_read_unlock();
1168}
1169
1170/*
1171 * Handle user request to change the 'mems' memory placement
1172 * of a cpuset. Needs to validate the request, update the
1173 * cpusets mems_allowed, and for each task in the cpuset,
1174 * update mems_allowed and rebind task's mempolicy and any vma
1175 * mempolicies and if the cpuset is marked 'memory_migrate',
1176 * migrate the tasks pages to the new memory.
1177 *
1178 * Call with cpuset_mutex held. May take callback_mutex during call.
1179 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1180 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1181 * their mempolicies to the cpusets new mems_allowed.
1182 */
1183static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1184 const char *buf)
1185{
1186 int retval;
1187 struct ptr_heap heap;
1188
1189 /*
1190 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1191 * it's read-only
1192 */
1193 if (cs == &top_cpuset) {
1194 retval = -EACCES;
1195 goto done;
1196 }
1197
1198 /*
1199 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1200 * Since nodelist_parse() fails on an empty mask, we special case
1201 * that parsing. The validate_change() call ensures that cpusets
1202 * with tasks have memory.
1203 */
1204 if (!*buf) {
1205 nodes_clear(trialcs->mems_allowed);
1206 } else {
1207 retval = nodelist_parse(buf, trialcs->mems_allowed);
1208 if (retval < 0)
1209 goto done;
1210
1211 if (!nodes_subset(trialcs->mems_allowed,
1212 node_states[N_MEMORY])) {
1213 retval = -EINVAL;
1214 goto done;
1215 }
1216 }
1217
1218 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1219 retval = 0; /* Too easy - nothing to do */
1220 goto done;
1221 }
1222 retval = validate_change(cs, trialcs);
1223 if (retval < 0)
1224 goto done;
1225
1226 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1227 if (retval < 0)
1228 goto done;
1229
1230 mutex_lock(&callback_mutex);
1231 cs->mems_allowed = trialcs->mems_allowed;
1232 mutex_unlock(&callback_mutex);
1233
1234 update_tasks_nodemask_hier(cs, true, &heap);
1235
1236 heap_free(&heap);
1237done:
1238 return retval;
1239}
1240
1241int current_cpuset_is_being_rebound(void)
1242{
1243 return task_cs(current) == cpuset_being_rebound;
1244}
1245
1246static int update_relax_domain_level(struct cpuset *cs, s64 val)
1247{
1248#ifdef CONFIG_SMP
1249 if (val < -1 || val >= sched_domain_level_max)
1250 return -EINVAL;
1251#endif
1252
1253 if (val != cs->relax_domain_level) {
1254 cs->relax_domain_level = val;
1255 if (!cpumask_empty(cs->cpus_allowed) &&
1256 is_sched_load_balance(cs))
1257 rebuild_sched_domains_locked();
1258 }
1259
1260 return 0;
1261}
1262
1263/*
1264 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1265 * @tsk: task to be updated
1266 * @scan: struct cgroup_scanner containing the cgroup of the task
1267 *
1268 * Called by cgroup_scan_tasks() for each task in a cgroup.
1269 *
1270 * We don't need to re-check for the cgroup/cpuset membership, since we're
1271 * holding cpuset_mutex at this point.
1272 */
1273static void cpuset_change_flag(struct task_struct *tsk,
1274 struct cgroup_scanner *scan)
1275{
1276 cpuset_update_task_spread_flag(cgroup_cs(scan->cgrp), tsk);
1277}
1278
1279/*
1280 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1281 * @cs: the cpuset in which each task's spread flags needs to be changed
1282 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1283 *
1284 * Called with cpuset_mutex held
1285 *
1286 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1287 * calling callback functions for each.
1288 *
1289 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1290 * if @heap != NULL.
1291 */
1292static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1293{
1294 struct cgroup_scanner scan;
1295
1296 scan.cgrp = cs->css.cgroup;
1297 scan.test_task = NULL;
1298 scan.process_task = cpuset_change_flag;
1299 scan.heap = heap;
1300 cgroup_scan_tasks(&scan);
1301}
1302
1303/*
1304 * update_flag - read a 0 or a 1 in a file and update associated flag
1305 * bit: the bit to update (see cpuset_flagbits_t)
1306 * cs: the cpuset to update
1307 * turning_on: whether the flag is being set or cleared
1308 *
1309 * Call with cpuset_mutex held.
1310 */
1311
1312static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1313 int turning_on)
1314{
1315 struct cpuset *trialcs;
1316 int balance_flag_changed;
1317 int spread_flag_changed;
1318 struct ptr_heap heap;
1319 int err;
1320
1321 trialcs = alloc_trial_cpuset(cs);
1322 if (!trialcs)
1323 return -ENOMEM;
1324
1325 if (turning_on)
1326 set_bit(bit, &trialcs->flags);
1327 else
1328 clear_bit(bit, &trialcs->flags);
1329
1330 err = validate_change(cs, trialcs);
1331 if (err < 0)
1332 goto out;
1333
1334 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1335 if (err < 0)
1336 goto out;
1337
1338 balance_flag_changed = (is_sched_load_balance(cs) !=
1339 is_sched_load_balance(trialcs));
1340
1341 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1342 || (is_spread_page(cs) != is_spread_page(trialcs)));
1343
1344 mutex_lock(&callback_mutex);
1345 cs->flags = trialcs->flags;
1346 mutex_unlock(&callback_mutex);
1347
1348 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1349 rebuild_sched_domains_locked();
1350
1351 if (spread_flag_changed)
1352 update_tasks_flags(cs, &heap);
1353 heap_free(&heap);
1354out:
1355 free_trial_cpuset(trialcs);
1356 return err;
1357}
1358
1359/*
1360 * Frequency meter - How fast is some event occurring?
1361 *
1362 * These routines manage a digitally filtered, constant time based,
1363 * event frequency meter. There are four routines:
1364 * fmeter_init() - initialize a frequency meter.
1365 * fmeter_markevent() - called each time the event happens.
1366 * fmeter_getrate() - returns the recent rate of such events.
1367 * fmeter_update() - internal routine used to update fmeter.
1368 *
1369 * A common data structure is passed to each of these routines,
1370 * which is used to keep track of the state required to manage the
1371 * frequency meter and its digital filter.
1372 *
1373 * The filter works on the number of events marked per unit time.
1374 * The filter is single-pole low-pass recursive (IIR). The time unit
1375 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1376 * simulate 3 decimal digits of precision (multiplied by 1000).
1377 *
1378 * With an FM_COEF of 933, and a time base of 1 second, the filter
1379 * has a half-life of 10 seconds, meaning that if the events quit
1380 * happening, then the rate returned from the fmeter_getrate()
1381 * will be cut in half each 10 seconds, until it converges to zero.
1382 *
1383 * It is not worth doing a real infinitely recursive filter. If more
1384 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1385 * just compute FM_MAXTICKS ticks worth, by which point the level
1386 * will be stable.
1387 *
1388 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1389 * arithmetic overflow in the fmeter_update() routine.
1390 *
1391 * Given the simple 32 bit integer arithmetic used, this meter works
1392 * best for reporting rates between one per millisecond (msec) and
1393 * one per 32 (approx) seconds. At constant rates faster than one
1394 * per msec it maxes out at values just under 1,000,000. At constant
1395 * rates between one per msec, and one per second it will stabilize
1396 * to a value N*1000, where N is the rate of events per second.
1397 * At constant rates between one per second and one per 32 seconds,
1398 * it will be choppy, moving up on the seconds that have an event,
1399 * and then decaying until the next event. At rates slower than
1400 * about one in 32 seconds, it decays all the way back to zero between
1401 * each event.
1402 */
1403
1404#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1405#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1406#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1407#define FM_SCALE 1000 /* faux fixed point scale */
1408
1409/* Initialize a frequency meter */
1410static void fmeter_init(struct fmeter *fmp)
1411{
1412 fmp->cnt = 0;
1413 fmp->val = 0;
1414 fmp->time = 0;
1415 spin_lock_init(&fmp->lock);
1416}
1417
1418/* Internal meter update - process cnt events and update value */
1419static void fmeter_update(struct fmeter *fmp)
1420{
1421 time_t now = get_seconds();
1422 time_t ticks = now - fmp->time;
1423
1424 if (ticks == 0)
1425 return;
1426
1427 ticks = min(FM_MAXTICKS, ticks);
1428 while (ticks-- > 0)
1429 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1430 fmp->time = now;
1431
1432 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1433 fmp->cnt = 0;
1434}
1435
1436/* Process any previous ticks, then bump cnt by one (times scale). */
1437static void fmeter_markevent(struct fmeter *fmp)
1438{
1439 spin_lock(&fmp->lock);
1440 fmeter_update(fmp);
1441 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1442 spin_unlock(&fmp->lock);
1443}
1444
1445/* Process any previous ticks, then return current value. */
1446static int fmeter_getrate(struct fmeter *fmp)
1447{
1448 int val;
1449
1450 spin_lock(&fmp->lock);
1451 fmeter_update(fmp);
1452 val = fmp->val;
1453 spin_unlock(&fmp->lock);
1454 return val;
1455}
1456
1457/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1458static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1459{
1460 struct cpuset *cs = cgroup_cs(cgrp);
1461 struct task_struct *task;
1462 int ret;
1463
1464 mutex_lock(&cpuset_mutex);
1465
1466 /*
1467 * We allow to move tasks into an empty cpuset if sane_behavior
1468 * flag is set.
1469 */
1470 ret = -ENOSPC;
1471 if (!cgroup_sane_behavior(cgrp) &&
1472 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1473 goto out_unlock;
1474
1475 cgroup_taskset_for_each(task, cgrp, tset) {
1476 /*
1477 * Kthreads which disallow setaffinity shouldn't be moved
1478 * to a new cpuset; we don't want to change their cpu
1479 * affinity and isolating such threads by their set of
1480 * allowed nodes is unnecessary. Thus, cpusets are not
1481 * applicable for such threads. This prevents checking for
1482 * success of set_cpus_allowed_ptr() on all attached tasks
1483 * before cpus_allowed may be changed.
1484 */
1485 ret = -EINVAL;
1486 if (task->flags & PF_NO_SETAFFINITY)
1487 goto out_unlock;
1488 ret = security_task_setscheduler(task);
1489 if (ret)
1490 goto out_unlock;
1491 }
1492
1493 /*
1494 * Mark attach is in progress. This makes validate_change() fail
1495 * changes which zero cpus/mems_allowed.
1496 */
1497 cs->attach_in_progress++;
1498 ret = 0;
1499out_unlock:
1500 mutex_unlock(&cpuset_mutex);
1501 return ret;
1502}
1503
1504static void cpuset_cancel_attach(struct cgroup *cgrp,
1505 struct cgroup_taskset *tset)
1506{
1507 mutex_lock(&cpuset_mutex);
1508 cgroup_cs(cgrp)->attach_in_progress--;
1509 mutex_unlock(&cpuset_mutex);
1510}
1511
1512/*
1513 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1514 * but we can't allocate it dynamically there. Define it global and
1515 * allocate from cpuset_init().
1516 */
1517static cpumask_var_t cpus_attach;
1518
1519static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1520{
1521 /* static buf protected by cpuset_mutex */
1522 static nodemask_t cpuset_attach_nodemask_to;
1523 struct mm_struct *mm;
1524 struct task_struct *task;
1525 struct task_struct *leader = cgroup_taskset_first(tset);
1526 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1527 struct cpuset *cs = cgroup_cs(cgrp);
1528 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1529 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1530 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
1531
1532 mutex_lock(&cpuset_mutex);
1533
1534 /* prepare for attach */
1535 if (cs == &top_cpuset)
1536 cpumask_copy(cpus_attach, cpu_possible_mask);
1537 else
1538 guarantee_online_cpus(cpus_cs, cpus_attach);
1539
1540 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
1541
1542 cgroup_taskset_for_each(task, cgrp, tset) {
1543 /*
1544 * can_attach beforehand should guarantee that this doesn't
1545 * fail. TODO: have a better way to handle failure here
1546 */
1547 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1548
1549 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1550 cpuset_update_task_spread_flag(cs, task);
1551 }
1552
1553 /*
1554 * Change mm, possibly for multiple threads in a threadgroup. This is
1555 * expensive and may sleep.
1556 */
1557 cpuset_attach_nodemask_to = cs->mems_allowed;
1558 mm = get_task_mm(leader);
1559 if (mm) {
1560 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1561
1562 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1563
1564 /*
1565 * old_mems_allowed is the same with mems_allowed here, except
1566 * if this task is being moved automatically due to hotplug.
1567 * In that case @mems_allowed has been updated and is empty,
1568 * so @old_mems_allowed is the right nodesets that we migrate
1569 * mm from.
1570 */
1571 if (is_memory_migrate(cs)) {
1572 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
1573 &cpuset_attach_nodemask_to);
1574 }
1575 mmput(mm);
1576 }
1577
1578 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1579
1580 cs->attach_in_progress--;
1581 if (!cs->attach_in_progress)
1582 wake_up(&cpuset_attach_wq);
1583
1584 mutex_unlock(&cpuset_mutex);
1585}
1586
1587/* The various types of files and directories in a cpuset file system */
1588
1589typedef enum {
1590 FILE_MEMORY_MIGRATE,
1591 FILE_CPULIST,
1592 FILE_MEMLIST,
1593 FILE_CPU_EXCLUSIVE,
1594 FILE_MEM_EXCLUSIVE,
1595 FILE_MEM_HARDWALL,
1596 FILE_SCHED_LOAD_BALANCE,
1597 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1598 FILE_MEMORY_PRESSURE_ENABLED,
1599 FILE_MEMORY_PRESSURE,
1600 FILE_SPREAD_PAGE,
1601 FILE_SPREAD_SLAB,
1602} cpuset_filetype_t;
1603
1604static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1605{
1606 struct cpuset *cs = cgroup_cs(cgrp);
1607 cpuset_filetype_t type = cft->private;
1608 int retval = -ENODEV;
1609
1610 mutex_lock(&cpuset_mutex);
1611 if (!is_cpuset_online(cs))
1612 goto out_unlock;
1613
1614 switch (type) {
1615 case FILE_CPU_EXCLUSIVE:
1616 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1617 break;
1618 case FILE_MEM_EXCLUSIVE:
1619 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1620 break;
1621 case FILE_MEM_HARDWALL:
1622 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1623 break;
1624 case FILE_SCHED_LOAD_BALANCE:
1625 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1626 break;
1627 case FILE_MEMORY_MIGRATE:
1628 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1629 break;
1630 case FILE_MEMORY_PRESSURE_ENABLED:
1631 cpuset_memory_pressure_enabled = !!val;
1632 break;
1633 case FILE_MEMORY_PRESSURE:
1634 retval = -EACCES;
1635 break;
1636 case FILE_SPREAD_PAGE:
1637 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1638 break;
1639 case FILE_SPREAD_SLAB:
1640 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1641 break;
1642 default:
1643 retval = -EINVAL;
1644 break;
1645 }
1646out_unlock:
1647 mutex_unlock(&cpuset_mutex);
1648 return retval;
1649}
1650
1651static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1652{
1653 struct cpuset *cs = cgroup_cs(cgrp);
1654 cpuset_filetype_t type = cft->private;
1655 int retval = -ENODEV;
1656
1657 mutex_lock(&cpuset_mutex);
1658 if (!is_cpuset_online(cs))
1659 goto out_unlock;
1660
1661 switch (type) {
1662 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1663 retval = update_relax_domain_level(cs, val);
1664 break;
1665 default:
1666 retval = -EINVAL;
1667 break;
1668 }
1669out_unlock:
1670 mutex_unlock(&cpuset_mutex);
1671 return retval;
1672}
1673
1674/*
1675 * Common handling for a write to a "cpus" or "mems" file.
1676 */
1677static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1678 const char *buf)
1679{
1680 struct cpuset *cs = cgroup_cs(cgrp);
1681 struct cpuset *trialcs;
1682 int retval = -ENODEV;
1683
1684 /*
1685 * CPU or memory hotunplug may leave @cs w/o any execution
1686 * resources, in which case the hotplug code asynchronously updates
1687 * configuration and transfers all tasks to the nearest ancestor
1688 * which can execute.
1689 *
1690 * As writes to "cpus" or "mems" may restore @cs's execution
1691 * resources, wait for the previously scheduled operations before
1692 * proceeding, so that we don't end up keep removing tasks added
1693 * after execution capability is restored.
1694 */
1695 flush_work(&cpuset_hotplug_work);
1696
1697 mutex_lock(&cpuset_mutex);
1698 if (!is_cpuset_online(cs))
1699 goto out_unlock;
1700
1701 trialcs = alloc_trial_cpuset(cs);
1702 if (!trialcs) {
1703 retval = -ENOMEM;
1704 goto out_unlock;
1705 }
1706
1707 switch (cft->private) {
1708 case FILE_CPULIST:
1709 retval = update_cpumask(cs, trialcs, buf);
1710 break;
1711 case FILE_MEMLIST:
1712 retval = update_nodemask(cs, trialcs, buf);
1713 break;
1714 default:
1715 retval = -EINVAL;
1716 break;
1717 }
1718
1719 free_trial_cpuset(trialcs);
1720out_unlock:
1721 mutex_unlock(&cpuset_mutex);
1722 return retval;
1723}
1724
1725/*
1726 * These ascii lists should be read in a single call, by using a user
1727 * buffer large enough to hold the entire map. If read in smaller
1728 * chunks, there is no guarantee of atomicity. Since the display format
1729 * used, list of ranges of sequential numbers, is variable length,
1730 * and since these maps can change value dynamically, one could read
1731 * gibberish by doing partial reads while a list was changing.
1732 * A single large read to a buffer that crosses a page boundary is
1733 * ok, because the result being copied to user land is not recomputed
1734 * across a page fault.
1735 */
1736
1737static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1738{
1739 size_t count;
1740
1741 mutex_lock(&callback_mutex);
1742 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1743 mutex_unlock(&callback_mutex);
1744
1745 return count;
1746}
1747
1748static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1749{
1750 size_t count;
1751
1752 mutex_lock(&callback_mutex);
1753 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1754 mutex_unlock(&callback_mutex);
1755
1756 return count;
1757}
1758
1759static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
1760 struct cftype *cft,
1761 struct file *file,
1762 char __user *buf,
1763 size_t nbytes, loff_t *ppos)
1764{
1765 struct cpuset *cs = cgroup_cs(cgrp);
1766 cpuset_filetype_t type = cft->private;
1767 char *page;
1768 ssize_t retval = 0;
1769 char *s;
1770
1771 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1772 return -ENOMEM;
1773
1774 s = page;
1775
1776 switch (type) {
1777 case FILE_CPULIST:
1778 s += cpuset_sprintf_cpulist(s, cs);
1779 break;
1780 case FILE_MEMLIST:
1781 s += cpuset_sprintf_memlist(s, cs);
1782 break;
1783 default:
1784 retval = -EINVAL;
1785 goto out;
1786 }
1787 *s++ = '\n';
1788
1789 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1790out:
1791 free_page((unsigned long)page);
1792 return retval;
1793}
1794
1795static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
1796{
1797 struct cpuset *cs = cgroup_cs(cgrp);
1798 cpuset_filetype_t type = cft->private;
1799 switch (type) {
1800 case FILE_CPU_EXCLUSIVE:
1801 return is_cpu_exclusive(cs);
1802 case FILE_MEM_EXCLUSIVE:
1803 return is_mem_exclusive(cs);
1804 case FILE_MEM_HARDWALL:
1805 return is_mem_hardwall(cs);
1806 case FILE_SCHED_LOAD_BALANCE:
1807 return is_sched_load_balance(cs);
1808 case FILE_MEMORY_MIGRATE:
1809 return is_memory_migrate(cs);
1810 case FILE_MEMORY_PRESSURE_ENABLED:
1811 return cpuset_memory_pressure_enabled;
1812 case FILE_MEMORY_PRESSURE:
1813 return fmeter_getrate(&cs->fmeter);
1814 case FILE_SPREAD_PAGE:
1815 return is_spread_page(cs);
1816 case FILE_SPREAD_SLAB:
1817 return is_spread_slab(cs);
1818 default:
1819 BUG();
1820 }
1821
1822 /* Unreachable but makes gcc happy */
1823 return 0;
1824}
1825
1826static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
1827{
1828 struct cpuset *cs = cgroup_cs(cgrp);
1829 cpuset_filetype_t type = cft->private;
1830 switch (type) {
1831 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1832 return cs->relax_domain_level;
1833 default:
1834 BUG();
1835 }
1836
1837 /* Unrechable but makes gcc happy */
1838 return 0;
1839}
1840
1841
1842/*
1843 * for the common functions, 'private' gives the type of file
1844 */
1845
1846static struct cftype files[] = {
1847 {
1848 .name = "cpus",
1849 .read = cpuset_common_file_read,
1850 .write_string = cpuset_write_resmask,
1851 .max_write_len = (100U + 6 * NR_CPUS),
1852 .private = FILE_CPULIST,
1853 },
1854
1855 {
1856 .name = "mems",
1857 .read = cpuset_common_file_read,
1858 .write_string = cpuset_write_resmask,
1859 .max_write_len = (100U + 6 * MAX_NUMNODES),
1860 .private = FILE_MEMLIST,
1861 },
1862
1863 {
1864 .name = "cpu_exclusive",
1865 .read_u64 = cpuset_read_u64,
1866 .write_u64 = cpuset_write_u64,
1867 .private = FILE_CPU_EXCLUSIVE,
1868 },
1869
1870 {
1871 .name = "mem_exclusive",
1872 .read_u64 = cpuset_read_u64,
1873 .write_u64 = cpuset_write_u64,
1874 .private = FILE_MEM_EXCLUSIVE,
1875 },
1876
1877 {
1878 .name = "mem_hardwall",
1879 .read_u64 = cpuset_read_u64,
1880 .write_u64 = cpuset_write_u64,
1881 .private = FILE_MEM_HARDWALL,
1882 },
1883
1884 {
1885 .name = "sched_load_balance",
1886 .read_u64 = cpuset_read_u64,
1887 .write_u64 = cpuset_write_u64,
1888 .private = FILE_SCHED_LOAD_BALANCE,
1889 },
1890
1891 {
1892 .name = "sched_relax_domain_level",
1893 .read_s64 = cpuset_read_s64,
1894 .write_s64 = cpuset_write_s64,
1895 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1896 },
1897
1898 {
1899 .name = "memory_migrate",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_MEMORY_MIGRATE,
1903 },
1904
1905 {
1906 .name = "memory_pressure",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_MEMORY_PRESSURE,
1910 .mode = S_IRUGO,
1911 },
1912
1913 {
1914 .name = "memory_spread_page",
1915 .read_u64 = cpuset_read_u64,
1916 .write_u64 = cpuset_write_u64,
1917 .private = FILE_SPREAD_PAGE,
1918 },
1919
1920 {
1921 .name = "memory_spread_slab",
1922 .read_u64 = cpuset_read_u64,
1923 .write_u64 = cpuset_write_u64,
1924 .private = FILE_SPREAD_SLAB,
1925 },
1926
1927 {
1928 .name = "memory_pressure_enabled",
1929 .flags = CFTYPE_ONLY_ON_ROOT,
1930 .read_u64 = cpuset_read_u64,
1931 .write_u64 = cpuset_write_u64,
1932 .private = FILE_MEMORY_PRESSURE_ENABLED,
1933 },
1934
1935 { } /* terminate */
1936};
1937
1938/*
1939 * cpuset_css_alloc - allocate a cpuset css
1940 * cgrp: control group that the new cpuset will be part of
1941 */
1942
1943static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
1944{
1945 struct cpuset *cs;
1946
1947 if (!cgrp->parent)
1948 return &top_cpuset.css;
1949
1950 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1951 if (!cs)
1952 return ERR_PTR(-ENOMEM);
1953 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1954 kfree(cs);
1955 return ERR_PTR(-ENOMEM);
1956 }
1957
1958 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1959 cpumask_clear(cs->cpus_allowed);
1960 nodes_clear(cs->mems_allowed);
1961 fmeter_init(&cs->fmeter);
1962 cs->relax_domain_level = -1;
1963
1964 return &cs->css;
1965}
1966
1967static int cpuset_css_online(struct cgroup *cgrp)
1968{
1969 struct cpuset *cs = cgroup_cs(cgrp);
1970 struct cpuset *parent = parent_cs(cs);
1971 struct cpuset *tmp_cs;
1972 struct cgroup *pos_cgrp;
1973
1974 if (!parent)
1975 return 0;
1976
1977 mutex_lock(&cpuset_mutex);
1978
1979 set_bit(CS_ONLINE, &cs->flags);
1980 if (is_spread_page(parent))
1981 set_bit(CS_SPREAD_PAGE, &cs->flags);
1982 if (is_spread_slab(parent))
1983 set_bit(CS_SPREAD_SLAB, &cs->flags);
1984
1985 number_of_cpusets++;
1986
1987 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1988 goto out_unlock;
1989
1990 /*
1991 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1992 * set. This flag handling is implemented in cgroup core for
1993 * histrical reasons - the flag may be specified during mount.
1994 *
1995 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1996 * refuse to clone the configuration - thereby refusing the task to
1997 * be entered, and as a result refusing the sys_unshare() or
1998 * clone() which initiated it. If this becomes a problem for some
1999 * users who wish to allow that scenario, then this could be
2000 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2001 * (and likewise for mems) to the new cgroup.
2002 */
2003 rcu_read_lock();
2004 cpuset_for_each_child(tmp_cs, pos_cgrp, parent) {
2005 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2006 rcu_read_unlock();
2007 goto out_unlock;
2008 }
2009 }
2010 rcu_read_unlock();
2011
2012 mutex_lock(&callback_mutex);
2013 cs->mems_allowed = parent->mems_allowed;
2014 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2015 mutex_unlock(&callback_mutex);
2016out_unlock:
2017 mutex_unlock(&cpuset_mutex);
2018 return 0;
2019}
2020
2021/*
2022 * If the cpuset being removed has its flag 'sched_load_balance'
2023 * enabled, then simulate turning sched_load_balance off, which
2024 * will call rebuild_sched_domains_locked().
2025 */
2026
2027static void cpuset_css_offline(struct cgroup *cgrp)
2028{
2029 struct cpuset *cs = cgroup_cs(cgrp);
2030
2031 mutex_lock(&cpuset_mutex);
2032
2033 if (is_sched_load_balance(cs))
2034 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2035
2036 number_of_cpusets--;
2037 clear_bit(CS_ONLINE, &cs->flags);
2038
2039 mutex_unlock(&cpuset_mutex);
2040}
2041
2042static void cpuset_css_free(struct cgroup *cgrp)
2043{
2044 struct cpuset *cs = cgroup_cs(cgrp);
2045
2046 free_cpumask_var(cs->cpus_allowed);
2047 kfree(cs);
2048}
2049
2050struct cgroup_subsys cpuset_subsys = {
2051 .name = "cpuset",
2052 .css_alloc = cpuset_css_alloc,
2053 .css_online = cpuset_css_online,
2054 .css_offline = cpuset_css_offline,
2055 .css_free = cpuset_css_free,
2056 .can_attach = cpuset_can_attach,
2057 .cancel_attach = cpuset_cancel_attach,
2058 .attach = cpuset_attach,
2059 .subsys_id = cpuset_subsys_id,
2060 .base_cftypes = files,
2061 .early_init = 1,
2062};
2063
2064/**
2065 * cpuset_init - initialize cpusets at system boot
2066 *
2067 * Description: Initialize top_cpuset and the cpuset internal file system,
2068 **/
2069
2070int __init cpuset_init(void)
2071{
2072 int err = 0;
2073
2074 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2075 BUG();
2076
2077 cpumask_setall(top_cpuset.cpus_allowed);
2078 nodes_setall(top_cpuset.mems_allowed);
2079
2080 fmeter_init(&top_cpuset.fmeter);
2081 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2082 top_cpuset.relax_domain_level = -1;
2083
2084 err = register_filesystem(&cpuset_fs_type);
2085 if (err < 0)
2086 return err;
2087
2088 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2089 BUG();
2090
2091 number_of_cpusets = 1;
2092 return 0;
2093}
2094
2095/*
2096 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2097 * or memory nodes, we need to walk over the cpuset hierarchy,
2098 * removing that CPU or node from all cpusets. If this removes the
2099 * last CPU or node from a cpuset, then move the tasks in the empty
2100 * cpuset to its next-highest non-empty parent.
2101 */
2102static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2103{
2104 struct cpuset *parent;
2105
2106 /*
2107 * Find its next-highest non-empty parent, (top cpuset
2108 * has online cpus, so can't be empty).
2109 */
2110 parent = parent_cs(cs);
2111 while (cpumask_empty(parent->cpus_allowed) ||
2112 nodes_empty(parent->mems_allowed))
2113 parent = parent_cs(parent);
2114
2115 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2116 rcu_read_lock();
2117 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2118 cgroup_name(cs->css.cgroup));
2119 rcu_read_unlock();
2120 }
2121}
2122
2123/**
2124 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2125 * @cs: cpuset in interest
2126 *
2127 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2128 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2129 * all its tasks are moved to the nearest ancestor with both resources.
2130 */
2131static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2132{
2133 static cpumask_t off_cpus;
2134 static nodemask_t off_mems;
2135 bool is_empty;
2136 bool sane = cgroup_sane_behavior(cs->css.cgroup);
2137
2138retry:
2139 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2140
2141 mutex_lock(&cpuset_mutex);
2142
2143 /*
2144 * We have raced with task attaching. We wait until attaching
2145 * is finished, so we won't attach a task to an empty cpuset.
2146 */
2147 if (cs->attach_in_progress) {
2148 mutex_unlock(&cpuset_mutex);
2149 goto retry;
2150 }
2151
2152 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2153 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
2154
2155 mutex_lock(&callback_mutex);
2156 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2157 mutex_unlock(&callback_mutex);
2158
2159 /*
2160 * If sane_behavior flag is set, we need to update tasks' cpumask
2161 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2162 * call update_tasks_cpumask() if the cpuset becomes empty, as
2163 * the tasks in it will be migrated to an ancestor.
2164 */
2165 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
2166 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
2167 update_tasks_cpumask(cs, NULL);
2168
2169 mutex_lock(&callback_mutex);
2170 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2171 mutex_unlock(&callback_mutex);
2172
2173 /*
2174 * If sane_behavior flag is set, we need to update tasks' nodemask
2175 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2176 * call update_tasks_nodemask() if the cpuset becomes empty, as
2177 * the tasks in it will be migratd to an ancestor.
2178 */
2179 if ((sane && nodes_empty(cs->mems_allowed)) ||
2180 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
2181 update_tasks_nodemask(cs, NULL);
2182
2183 is_empty = cpumask_empty(cs->cpus_allowed) ||
2184 nodes_empty(cs->mems_allowed);
2185
2186 mutex_unlock(&cpuset_mutex);
2187
2188 /*
2189 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2190 *
2191 * Otherwise move tasks to the nearest ancestor with execution
2192 * resources. This is full cgroup operation which will
2193 * also call back into cpuset. Should be done outside any lock.
2194 */
2195 if (!sane && is_empty)
2196 remove_tasks_in_empty_cpuset(cs);
2197}
2198
2199/**
2200 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2201 *
2202 * This function is called after either CPU or memory configuration has
2203 * changed and updates cpuset accordingly. The top_cpuset is always
2204 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2205 * order to make cpusets transparent (of no affect) on systems that are
2206 * actively using CPU hotplug but making no active use of cpusets.
2207 *
2208 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2209 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2210 * all descendants.
2211 *
2212 * Note that CPU offlining during suspend is ignored. We don't modify
2213 * cpusets across suspend/resume cycles at all.
2214 */
2215static void cpuset_hotplug_workfn(struct work_struct *work)
2216{
2217 static cpumask_t new_cpus;
2218 static nodemask_t new_mems;
2219 bool cpus_updated, mems_updated;
2220
2221 mutex_lock(&cpuset_mutex);
2222
2223 /* fetch the available cpus/mems and find out which changed how */
2224 cpumask_copy(&new_cpus, cpu_active_mask);
2225 new_mems = node_states[N_MEMORY];
2226
2227 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2228 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2229
2230 /* synchronize cpus_allowed to cpu_active_mask */
2231 if (cpus_updated) {
2232 mutex_lock(&callback_mutex);
2233 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2234 mutex_unlock(&callback_mutex);
2235 /* we don't mess with cpumasks of tasks in top_cpuset */
2236 }
2237
2238 /* synchronize mems_allowed to N_MEMORY */
2239 if (mems_updated) {
2240 mutex_lock(&callback_mutex);
2241 top_cpuset.mems_allowed = new_mems;
2242 mutex_unlock(&callback_mutex);
2243 update_tasks_nodemask(&top_cpuset, NULL);
2244 }
2245
2246 mutex_unlock(&cpuset_mutex);
2247
2248 /* if cpus or mems changed, we need to propagate to descendants */
2249 if (cpus_updated || mems_updated) {
2250 struct cpuset *cs;
2251 struct cgroup *pos_cgrp;
2252
2253 rcu_read_lock();
2254 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2255 if (!css_tryget(&cs->css))
2256 continue;
2257 rcu_read_unlock();
2258
2259 cpuset_hotplug_update_tasks(cs);
2260
2261 rcu_read_lock();
2262 css_put(&cs->css);
2263 }
2264 rcu_read_unlock();
2265 }
2266
2267 /* rebuild sched domains if cpus_allowed has changed */
2268 if (cpus_updated)
2269 rebuild_sched_domains();
2270}
2271
2272void cpuset_update_active_cpus(bool cpu_online)
2273{
2274 /*
2275 * We're inside cpu hotplug critical region which usually nests
2276 * inside cgroup synchronization. Bounce actual hotplug processing
2277 * to a work item to avoid reverse locking order.
2278 *
2279 * We still need to do partition_sched_domains() synchronously;
2280 * otherwise, the scheduler will get confused and put tasks to the
2281 * dead CPU. Fall back to the default single domain.
2282 * cpuset_hotplug_workfn() will rebuild it as necessary.
2283 */
2284 partition_sched_domains(1, NULL, NULL);
2285 schedule_work(&cpuset_hotplug_work);
2286}
2287
2288/*
2289 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2290 * Call this routine anytime after node_states[N_MEMORY] changes.
2291 * See cpuset_update_active_cpus() for CPU hotplug handling.
2292 */
2293static int cpuset_track_online_nodes(struct notifier_block *self,
2294 unsigned long action, void *arg)
2295{
2296 schedule_work(&cpuset_hotplug_work);
2297 return NOTIFY_OK;
2298}
2299
2300static struct notifier_block cpuset_track_online_nodes_nb = {
2301 .notifier_call = cpuset_track_online_nodes,
2302 .priority = 10, /* ??! */
2303};
2304
2305/**
2306 * cpuset_init_smp - initialize cpus_allowed
2307 *
2308 * Description: Finish top cpuset after cpu, node maps are initialized
2309 */
2310void __init cpuset_init_smp(void)
2311{
2312 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2313 top_cpuset.mems_allowed = node_states[N_MEMORY];
2314 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2315
2316 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2317}
2318
2319/**
2320 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2321 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2322 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2323 *
2324 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2325 * attached to the specified @tsk. Guaranteed to return some non-empty
2326 * subset of cpu_online_mask, even if this means going outside the
2327 * tasks cpuset.
2328 **/
2329
2330void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2331{
2332 struct cpuset *cpus_cs;
2333
2334 mutex_lock(&callback_mutex);
2335 task_lock(tsk);
2336 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2337 guarantee_online_cpus(cpus_cs, pmask);
2338 task_unlock(tsk);
2339 mutex_unlock(&callback_mutex);
2340}
2341
2342void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2343{
2344 struct cpuset *cpus_cs;
2345
2346 rcu_read_lock();
2347 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2348 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
2349 rcu_read_unlock();
2350
2351 /*
2352 * We own tsk->cpus_allowed, nobody can change it under us.
2353 *
2354 * But we used cs && cs->cpus_allowed lockless and thus can
2355 * race with cgroup_attach_task() or update_cpumask() and get
2356 * the wrong tsk->cpus_allowed. However, both cases imply the
2357 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2358 * which takes task_rq_lock().
2359 *
2360 * If we are called after it dropped the lock we must see all
2361 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2362 * set any mask even if it is not right from task_cs() pov,
2363 * the pending set_cpus_allowed_ptr() will fix things.
2364 *
2365 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2366 * if required.
2367 */
2368}
2369
2370void cpuset_init_current_mems_allowed(void)
2371{
2372 nodes_setall(current->mems_allowed);
2373}
2374
2375/**
2376 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2377 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2378 *
2379 * Description: Returns the nodemask_t mems_allowed of the cpuset
2380 * attached to the specified @tsk. Guaranteed to return some non-empty
2381 * subset of node_states[N_MEMORY], even if this means going outside the
2382 * tasks cpuset.
2383 **/
2384
2385nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2386{
2387 struct cpuset *mems_cs;
2388 nodemask_t mask;
2389
2390 mutex_lock(&callback_mutex);
2391 task_lock(tsk);
2392 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2393 guarantee_online_mems(mems_cs, &mask);
2394 task_unlock(tsk);
2395 mutex_unlock(&callback_mutex);
2396
2397 return mask;
2398}
2399
2400/**
2401 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2402 * @nodemask: the nodemask to be checked
2403 *
2404 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2405 */
2406int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2407{
2408 return nodes_intersects(*nodemask, current->mems_allowed);
2409}
2410
2411/*
2412 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2413 * mem_hardwall ancestor to the specified cpuset. Call holding
2414 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2415 * (an unusual configuration), then returns the root cpuset.
2416 */
2417static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2418{
2419 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2420 cs = parent_cs(cs);
2421 return cs;
2422}
2423
2424/**
2425 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2426 * @node: is this an allowed node?
2427 * @gfp_mask: memory allocation flags
2428 *
2429 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2430 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2431 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2432 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2433 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2434 * flag, yes.
2435 * Otherwise, no.
2436 *
2437 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2438 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2439 * might sleep, and might allow a node from an enclosing cpuset.
2440 *
2441 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2442 * cpusets, and never sleeps.
2443 *
2444 * The __GFP_THISNODE placement logic is really handled elsewhere,
2445 * by forcibly using a zonelist starting at a specified node, and by
2446 * (in get_page_from_freelist()) refusing to consider the zones for
2447 * any node on the zonelist except the first. By the time any such
2448 * calls get to this routine, we should just shut up and say 'yes'.
2449 *
2450 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2451 * and do not allow allocations outside the current tasks cpuset
2452 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2453 * GFP_KERNEL allocations are not so marked, so can escape to the
2454 * nearest enclosing hardwalled ancestor cpuset.
2455 *
2456 * Scanning up parent cpusets requires callback_mutex. The
2457 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2458 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2459 * current tasks mems_allowed came up empty on the first pass over
2460 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2461 * cpuset are short of memory, might require taking the callback_mutex
2462 * mutex.
2463 *
2464 * The first call here from mm/page_alloc:get_page_from_freelist()
2465 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2466 * so no allocation on a node outside the cpuset is allowed (unless
2467 * in interrupt, of course).
2468 *
2469 * The second pass through get_page_from_freelist() doesn't even call
2470 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2471 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2472 * in alloc_flags. That logic and the checks below have the combined
2473 * affect that:
2474 * in_interrupt - any node ok (current task context irrelevant)
2475 * GFP_ATOMIC - any node ok
2476 * TIF_MEMDIE - any node ok
2477 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2478 * GFP_USER - only nodes in current tasks mems allowed ok.
2479 *
2480 * Rule:
2481 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2482 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2483 * the code that might scan up ancestor cpusets and sleep.
2484 */
2485int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2486{
2487 struct cpuset *cs; /* current cpuset ancestors */
2488 int allowed; /* is allocation in zone z allowed? */
2489
2490 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2491 return 1;
2492 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2493 if (node_isset(node, current->mems_allowed))
2494 return 1;
2495 /*
2496 * Allow tasks that have access to memory reserves because they have
2497 * been OOM killed to get memory anywhere.
2498 */
2499 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2500 return 1;
2501 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2502 return 0;
2503
2504 if (current->flags & PF_EXITING) /* Let dying task have memory */
2505 return 1;
2506
2507 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2508 mutex_lock(&callback_mutex);
2509
2510 task_lock(current);
2511 cs = nearest_hardwall_ancestor(task_cs(current));
2512 task_unlock(current);
2513
2514 allowed = node_isset(node, cs->mems_allowed);
2515 mutex_unlock(&callback_mutex);
2516 return allowed;
2517}
2518
2519/*
2520 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2521 * @node: is this an allowed node?
2522 * @gfp_mask: memory allocation flags
2523 *
2524 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2525 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2526 * yes. If the task has been OOM killed and has access to memory reserves as
2527 * specified by the TIF_MEMDIE flag, yes.
2528 * Otherwise, no.
2529 *
2530 * The __GFP_THISNODE placement logic is really handled elsewhere,
2531 * by forcibly using a zonelist starting at a specified node, and by
2532 * (in get_page_from_freelist()) refusing to consider the zones for
2533 * any node on the zonelist except the first. By the time any such
2534 * calls get to this routine, we should just shut up and say 'yes'.
2535 *
2536 * Unlike the cpuset_node_allowed_softwall() variant, above,
2537 * this variant requires that the node be in the current task's
2538 * mems_allowed or that we're in interrupt. It does not scan up the
2539 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2540 * It never sleeps.
2541 */
2542int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2543{
2544 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2545 return 1;
2546 if (node_isset(node, current->mems_allowed))
2547 return 1;
2548 /*
2549 * Allow tasks that have access to memory reserves because they have
2550 * been OOM killed to get memory anywhere.
2551 */
2552 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2553 return 1;
2554 return 0;
2555}
2556
2557/**
2558 * cpuset_mem_spread_node() - On which node to begin search for a file page
2559 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2560 *
2561 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2562 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2563 * and if the memory allocation used cpuset_mem_spread_node()
2564 * to determine on which node to start looking, as it will for
2565 * certain page cache or slab cache pages such as used for file
2566 * system buffers and inode caches, then instead of starting on the
2567 * local node to look for a free page, rather spread the starting
2568 * node around the tasks mems_allowed nodes.
2569 *
2570 * We don't have to worry about the returned node being offline
2571 * because "it can't happen", and even if it did, it would be ok.
2572 *
2573 * The routines calling guarantee_online_mems() are careful to
2574 * only set nodes in task->mems_allowed that are online. So it
2575 * should not be possible for the following code to return an
2576 * offline node. But if it did, that would be ok, as this routine
2577 * is not returning the node where the allocation must be, only
2578 * the node where the search should start. The zonelist passed to
2579 * __alloc_pages() will include all nodes. If the slab allocator
2580 * is passed an offline node, it will fall back to the local node.
2581 * See kmem_cache_alloc_node().
2582 */
2583
2584static int cpuset_spread_node(int *rotor)
2585{
2586 int node;
2587
2588 node = next_node(*rotor, current->mems_allowed);
2589 if (node == MAX_NUMNODES)
2590 node = first_node(current->mems_allowed);
2591 *rotor = node;
2592 return node;
2593}
2594
2595int cpuset_mem_spread_node(void)
2596{
2597 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2598 current->cpuset_mem_spread_rotor =
2599 node_random(&current->mems_allowed);
2600
2601 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2602}
2603
2604int cpuset_slab_spread_node(void)
2605{
2606 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2607 current->cpuset_slab_spread_rotor =
2608 node_random(&current->mems_allowed);
2609
2610 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2611}
2612
2613EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2614
2615/**
2616 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2617 * @tsk1: pointer to task_struct of some task.
2618 * @tsk2: pointer to task_struct of some other task.
2619 *
2620 * Description: Return true if @tsk1's mems_allowed intersects the
2621 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2622 * one of the task's memory usage might impact the memory available
2623 * to the other.
2624 **/
2625
2626int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2627 const struct task_struct *tsk2)
2628{
2629 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2630}
2631
2632#define CPUSET_NODELIST_LEN (256)
2633
2634/**
2635 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2636 * @task: pointer to task_struct of some task.
2637 *
2638 * Description: Prints @task's name, cpuset name, and cached copy of its
2639 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2640 * dereferencing task_cs(task).
2641 */
2642void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2643{
2644 /* Statically allocated to prevent using excess stack. */
2645 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2646 static DEFINE_SPINLOCK(cpuset_buffer_lock);
2647
2648 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
2649
2650 rcu_read_lock();
2651 spin_lock(&cpuset_buffer_lock);
2652
2653 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2654 tsk->mems_allowed);
2655 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2656 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2657
2658 spin_unlock(&cpuset_buffer_lock);
2659 rcu_read_unlock();
2660}
2661
2662/*
2663 * Collection of memory_pressure is suppressed unless
2664 * this flag is enabled by writing "1" to the special
2665 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2666 */
2667
2668int cpuset_memory_pressure_enabled __read_mostly;
2669
2670/**
2671 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2672 *
2673 * Keep a running average of the rate of synchronous (direct)
2674 * page reclaim efforts initiated by tasks in each cpuset.
2675 *
2676 * This represents the rate at which some task in the cpuset
2677 * ran low on memory on all nodes it was allowed to use, and
2678 * had to enter the kernels page reclaim code in an effort to
2679 * create more free memory by tossing clean pages or swapping
2680 * or writing dirty pages.
2681 *
2682 * Display to user space in the per-cpuset read-only file
2683 * "memory_pressure". Value displayed is an integer
2684 * representing the recent rate of entry into the synchronous
2685 * (direct) page reclaim by any task attached to the cpuset.
2686 **/
2687
2688void __cpuset_memory_pressure_bump(void)
2689{
2690 task_lock(current);
2691 fmeter_markevent(&task_cs(current)->fmeter);
2692 task_unlock(current);
2693}
2694
2695#ifdef CONFIG_PROC_PID_CPUSET
2696/*
2697 * proc_cpuset_show()
2698 * - Print tasks cpuset path into seq_file.
2699 * - Used for /proc/<pid>/cpuset.
2700 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2701 * doesn't really matter if tsk->cpuset changes after we read it,
2702 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2703 * anyway.
2704 */
2705int proc_cpuset_show(struct seq_file *m, void *unused_v)
2706{
2707 struct pid *pid;
2708 struct task_struct *tsk;
2709 char *buf;
2710 struct cgroup_subsys_state *css;
2711 int retval;
2712
2713 retval = -ENOMEM;
2714 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2715 if (!buf)
2716 goto out;
2717
2718 retval = -ESRCH;
2719 pid = m->private;
2720 tsk = get_pid_task(pid, PIDTYPE_PID);
2721 if (!tsk)
2722 goto out_free;
2723
2724 rcu_read_lock();
2725 css = task_css(tsk, cpuset_subsys_id);
2726 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2727 rcu_read_unlock();
2728 if (retval < 0)
2729 goto out_put_task;
2730 seq_puts(m, buf);
2731 seq_putc(m, '\n');
2732out_put_task:
2733 put_task_struct(tsk);
2734out_free:
2735 kfree(buf);
2736out:
2737 return retval;
2738}
2739#endif /* CONFIG_PROC_PID_CPUSET */
2740
2741/* Display task mems_allowed in /proc/<pid>/status file. */
2742void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2743{
2744 seq_printf(m, "Mems_allowed:\t");
2745 seq_nodemask(m, &task->mems_allowed);
2746 seq_printf(m, "\n");
2747 seq_printf(m, "Mems_allowed_list:\t");
2748 seq_nodemask_list(m, &task->mems_allowed);
2749 seq_printf(m, "\n");
2750}