cpu/hotplug: Provide cpuhp_setup/remove_state[_nocalls]_cpuslocked()
[linux-2.6-block.git] / kernel / cpu.c
... / ...
CommitLineData
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/proc_fs.h>
7#include <linux/smp.h>
8#include <linux/init.h>
9#include <linux/notifier.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/hotplug.h>
12#include <linux/sched/task.h>
13#include <linux/unistd.h>
14#include <linux/cpu.h>
15#include <linux/oom.h>
16#include <linux/rcupdate.h>
17#include <linux/export.h>
18#include <linux/bug.h>
19#include <linux/kthread.h>
20#include <linux/stop_machine.h>
21#include <linux/mutex.h>
22#include <linux/gfp.h>
23#include <linux/suspend.h>
24#include <linux/lockdep.h>
25#include <linux/tick.h>
26#include <linux/irq.h>
27#include <linux/smpboot.h>
28#include <linux/relay.h>
29#include <linux/slab.h>
30
31#include <trace/events/power.h>
32#define CREATE_TRACE_POINTS
33#include <trace/events/cpuhp.h>
34
35#include "smpboot.h"
36
37/**
38 * cpuhp_cpu_state - Per cpu hotplug state storage
39 * @state: The current cpu state
40 * @target: The target state
41 * @thread: Pointer to the hotplug thread
42 * @should_run: Thread should execute
43 * @rollback: Perform a rollback
44 * @single: Single callback invocation
45 * @bringup: Single callback bringup or teardown selector
46 * @cb_state: The state for a single callback (install/uninstall)
47 * @result: Result of the operation
48 * @done: Signal completion to the issuer of the task
49 */
50struct cpuhp_cpu_state {
51 enum cpuhp_state state;
52 enum cpuhp_state target;
53#ifdef CONFIG_SMP
54 struct task_struct *thread;
55 bool should_run;
56 bool rollback;
57 bool single;
58 bool bringup;
59 struct hlist_node *node;
60 enum cpuhp_state cb_state;
61 int result;
62 struct completion done;
63#endif
64};
65
66static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
67
68/**
69 * cpuhp_step - Hotplug state machine step
70 * @name: Name of the step
71 * @startup: Startup function of the step
72 * @teardown: Teardown function of the step
73 * @skip_onerr: Do not invoke the functions on error rollback
74 * Will go away once the notifiers are gone
75 * @cant_stop: Bringup/teardown can't be stopped at this step
76 */
77struct cpuhp_step {
78 const char *name;
79 union {
80 int (*single)(unsigned int cpu);
81 int (*multi)(unsigned int cpu,
82 struct hlist_node *node);
83 } startup;
84 union {
85 int (*single)(unsigned int cpu);
86 int (*multi)(unsigned int cpu,
87 struct hlist_node *node);
88 } teardown;
89 struct hlist_head list;
90 bool skip_onerr;
91 bool cant_stop;
92 bool multi_instance;
93};
94
95static DEFINE_MUTEX(cpuhp_state_mutex);
96static struct cpuhp_step cpuhp_bp_states[];
97static struct cpuhp_step cpuhp_ap_states[];
98
99static bool cpuhp_is_ap_state(enum cpuhp_state state)
100{
101 /*
102 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
103 * purposes as that state is handled explicitly in cpu_down.
104 */
105 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
106}
107
108static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
109{
110 struct cpuhp_step *sp;
111
112 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
113 return sp + state;
114}
115
116/**
117 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
118 * @cpu: The cpu for which the callback should be invoked
119 * @step: The step in the state machine
120 * @bringup: True if the bringup callback should be invoked
121 *
122 * Called from cpu hotplug and from the state register machinery.
123 */
124static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
125 bool bringup, struct hlist_node *node)
126{
127 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
128 struct cpuhp_step *step = cpuhp_get_step(state);
129 int (*cbm)(unsigned int cpu, struct hlist_node *node);
130 int (*cb)(unsigned int cpu);
131 int ret, cnt;
132
133 if (!step->multi_instance) {
134 cb = bringup ? step->startup.single : step->teardown.single;
135 if (!cb)
136 return 0;
137 trace_cpuhp_enter(cpu, st->target, state, cb);
138 ret = cb(cpu);
139 trace_cpuhp_exit(cpu, st->state, state, ret);
140 return ret;
141 }
142 cbm = bringup ? step->startup.multi : step->teardown.multi;
143 if (!cbm)
144 return 0;
145
146 /* Single invocation for instance add/remove */
147 if (node) {
148 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
149 ret = cbm(cpu, node);
150 trace_cpuhp_exit(cpu, st->state, state, ret);
151 return ret;
152 }
153
154 /* State transition. Invoke on all instances */
155 cnt = 0;
156 hlist_for_each(node, &step->list) {
157 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
158 ret = cbm(cpu, node);
159 trace_cpuhp_exit(cpu, st->state, state, ret);
160 if (ret)
161 goto err;
162 cnt++;
163 }
164 return 0;
165err:
166 /* Rollback the instances if one failed */
167 cbm = !bringup ? step->startup.multi : step->teardown.multi;
168 if (!cbm)
169 return ret;
170
171 hlist_for_each(node, &step->list) {
172 if (!cnt--)
173 break;
174 cbm(cpu, node);
175 }
176 return ret;
177}
178
179#ifdef CONFIG_SMP
180/* Serializes the updates to cpu_online_mask, cpu_present_mask */
181static DEFINE_MUTEX(cpu_add_remove_lock);
182bool cpuhp_tasks_frozen;
183EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
184
185/*
186 * The following two APIs (cpu_maps_update_begin/done) must be used when
187 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
188 */
189void cpu_maps_update_begin(void)
190{
191 mutex_lock(&cpu_add_remove_lock);
192}
193
194void cpu_maps_update_done(void)
195{
196 mutex_unlock(&cpu_add_remove_lock);
197}
198
199/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
200 * Should always be manipulated under cpu_add_remove_lock
201 */
202static int cpu_hotplug_disabled;
203
204#ifdef CONFIG_HOTPLUG_CPU
205
206static struct {
207 struct task_struct *active_writer;
208 /* wait queue to wake up the active_writer */
209 wait_queue_head_t wq;
210 /* verifies that no writer will get active while readers are active */
211 struct mutex lock;
212 /*
213 * Also blocks the new readers during
214 * an ongoing cpu hotplug operation.
215 */
216 atomic_t refcount;
217
218#ifdef CONFIG_DEBUG_LOCK_ALLOC
219 struct lockdep_map dep_map;
220#endif
221} cpu_hotplug = {
222 .active_writer = NULL,
223 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
224 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
225#ifdef CONFIG_DEBUG_LOCK_ALLOC
226 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
227#endif
228};
229
230/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
231#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
232#define cpuhp_lock_acquire_tryread() \
233 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
234#define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
235#define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
236
237
238void cpus_read_lock(void)
239{
240 might_sleep();
241 if (cpu_hotplug.active_writer == current)
242 return;
243 cpuhp_lock_acquire_read();
244 mutex_lock(&cpu_hotplug.lock);
245 atomic_inc(&cpu_hotplug.refcount);
246 mutex_unlock(&cpu_hotplug.lock);
247}
248EXPORT_SYMBOL_GPL(cpus_read_lock);
249
250void cpus_read_unlock(void)
251{
252 int refcount;
253
254 if (cpu_hotplug.active_writer == current)
255 return;
256
257 refcount = atomic_dec_return(&cpu_hotplug.refcount);
258 if (WARN_ON(refcount < 0)) /* try to fix things up */
259 atomic_inc(&cpu_hotplug.refcount);
260
261 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
262 wake_up(&cpu_hotplug.wq);
263
264 cpuhp_lock_release();
265
266}
267EXPORT_SYMBOL_GPL(cpus_read_unlock);
268
269/*
270 * This ensures that the hotplug operation can begin only when the
271 * refcount goes to zero.
272 *
273 * Note that during a cpu-hotplug operation, the new readers, if any,
274 * will be blocked by the cpu_hotplug.lock
275 *
276 * Since cpu_hotplug_begin() is always called after invoking
277 * cpu_maps_update_begin(), we can be sure that only one writer is active.
278 *
279 * Note that theoretically, there is a possibility of a livelock:
280 * - Refcount goes to zero, last reader wakes up the sleeping
281 * writer.
282 * - Last reader unlocks the cpu_hotplug.lock.
283 * - A new reader arrives at this moment, bumps up the refcount.
284 * - The writer acquires the cpu_hotplug.lock finds the refcount
285 * non zero and goes to sleep again.
286 *
287 * However, this is very difficult to achieve in practice since
288 * get_online_cpus() not an api which is called all that often.
289 *
290 */
291void cpus_write_lock(void)
292{
293 DEFINE_WAIT(wait);
294
295 cpu_hotplug.active_writer = current;
296 cpuhp_lock_acquire();
297
298 for (;;) {
299 mutex_lock(&cpu_hotplug.lock);
300 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
301 if (likely(!atomic_read(&cpu_hotplug.refcount)))
302 break;
303 mutex_unlock(&cpu_hotplug.lock);
304 schedule();
305 }
306 finish_wait(&cpu_hotplug.wq, &wait);
307}
308
309void cpus_write_unlock(void)
310{
311 cpu_hotplug.active_writer = NULL;
312 mutex_unlock(&cpu_hotplug.lock);
313 cpuhp_lock_release();
314}
315
316/*
317 * Wait for currently running CPU hotplug operations to complete (if any) and
318 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
319 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
320 * hotplug path before performing hotplug operations. So acquiring that lock
321 * guarantees mutual exclusion from any currently running hotplug operations.
322 */
323void cpu_hotplug_disable(void)
324{
325 cpu_maps_update_begin();
326 cpu_hotplug_disabled++;
327 cpu_maps_update_done();
328}
329EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
330
331static void __cpu_hotplug_enable(void)
332{
333 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
334 return;
335 cpu_hotplug_disabled--;
336}
337
338void cpu_hotplug_enable(void)
339{
340 cpu_maps_update_begin();
341 __cpu_hotplug_enable();
342 cpu_maps_update_done();
343}
344EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
345#endif /* CONFIG_HOTPLUG_CPU */
346
347/* Notifier wrappers for transitioning to state machine */
348
349static int bringup_wait_for_ap(unsigned int cpu)
350{
351 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
352
353 wait_for_completion(&st->done);
354 return st->result;
355}
356
357static int bringup_cpu(unsigned int cpu)
358{
359 struct task_struct *idle = idle_thread_get(cpu);
360 int ret;
361
362 /*
363 * Some architectures have to walk the irq descriptors to
364 * setup the vector space for the cpu which comes online.
365 * Prevent irq alloc/free across the bringup.
366 */
367 irq_lock_sparse();
368
369 /* Arch-specific enabling code. */
370 ret = __cpu_up(cpu, idle);
371 irq_unlock_sparse();
372 if (ret)
373 return ret;
374 ret = bringup_wait_for_ap(cpu);
375 BUG_ON(!cpu_online(cpu));
376 return ret;
377}
378
379/*
380 * Hotplug state machine related functions
381 */
382static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
383{
384 for (st->state++; st->state < st->target; st->state++) {
385 struct cpuhp_step *step = cpuhp_get_step(st->state);
386
387 if (!step->skip_onerr)
388 cpuhp_invoke_callback(cpu, st->state, true, NULL);
389 }
390}
391
392static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
393 enum cpuhp_state target)
394{
395 enum cpuhp_state prev_state = st->state;
396 int ret = 0;
397
398 for (; st->state > target; st->state--) {
399 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
400 if (ret) {
401 st->target = prev_state;
402 undo_cpu_down(cpu, st);
403 break;
404 }
405 }
406 return ret;
407}
408
409static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
410{
411 for (st->state--; st->state > st->target; st->state--) {
412 struct cpuhp_step *step = cpuhp_get_step(st->state);
413
414 if (!step->skip_onerr)
415 cpuhp_invoke_callback(cpu, st->state, false, NULL);
416 }
417}
418
419static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
420 enum cpuhp_state target)
421{
422 enum cpuhp_state prev_state = st->state;
423 int ret = 0;
424
425 while (st->state < target) {
426 st->state++;
427 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
428 if (ret) {
429 st->target = prev_state;
430 undo_cpu_up(cpu, st);
431 break;
432 }
433 }
434 return ret;
435}
436
437/*
438 * The cpu hotplug threads manage the bringup and teardown of the cpus
439 */
440static void cpuhp_create(unsigned int cpu)
441{
442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
443
444 init_completion(&st->done);
445}
446
447static int cpuhp_should_run(unsigned int cpu)
448{
449 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450
451 return st->should_run;
452}
453
454/* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
455static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
456{
457 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
458
459 return cpuhp_down_callbacks(cpu, st, target);
460}
461
462/* Execute the online startup callbacks. Used to be CPU_ONLINE */
463static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
464{
465 return cpuhp_up_callbacks(cpu, st, st->target);
466}
467
468/*
469 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
470 * callbacks when a state gets [un]installed at runtime.
471 */
472static void cpuhp_thread_fun(unsigned int cpu)
473{
474 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
475 int ret = 0;
476
477 /*
478 * Paired with the mb() in cpuhp_kick_ap_work and
479 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
480 */
481 smp_mb();
482 if (!st->should_run)
483 return;
484
485 st->should_run = false;
486
487 /* Single callback invocation for [un]install ? */
488 if (st->single) {
489 if (st->cb_state < CPUHP_AP_ONLINE) {
490 local_irq_disable();
491 ret = cpuhp_invoke_callback(cpu, st->cb_state,
492 st->bringup, st->node);
493 local_irq_enable();
494 } else {
495 ret = cpuhp_invoke_callback(cpu, st->cb_state,
496 st->bringup, st->node);
497 }
498 } else if (st->rollback) {
499 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500
501 undo_cpu_down(cpu, st);
502 st->rollback = false;
503 } else {
504 /* Cannot happen .... */
505 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
506
507 /* Regular hotplug work */
508 if (st->state < st->target)
509 ret = cpuhp_ap_online(cpu, st);
510 else if (st->state > st->target)
511 ret = cpuhp_ap_offline(cpu, st);
512 }
513 st->result = ret;
514 complete(&st->done);
515}
516
517/* Invoke a single callback on a remote cpu */
518static int
519cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
520 struct hlist_node *node)
521{
522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523
524 if (!cpu_online(cpu))
525 return 0;
526
527 /*
528 * If we are up and running, use the hotplug thread. For early calls
529 * we invoke the thread function directly.
530 */
531 if (!st->thread)
532 return cpuhp_invoke_callback(cpu, state, bringup, node);
533
534 st->cb_state = state;
535 st->single = true;
536 st->bringup = bringup;
537 st->node = node;
538
539 /*
540 * Make sure the above stores are visible before should_run becomes
541 * true. Paired with the mb() above in cpuhp_thread_fun()
542 */
543 smp_mb();
544 st->should_run = true;
545 wake_up_process(st->thread);
546 wait_for_completion(&st->done);
547 return st->result;
548}
549
550/* Regular hotplug invocation of the AP hotplug thread */
551static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
552{
553 st->result = 0;
554 st->single = false;
555 /*
556 * Make sure the above stores are visible before should_run becomes
557 * true. Paired with the mb() above in cpuhp_thread_fun()
558 */
559 smp_mb();
560 st->should_run = true;
561 wake_up_process(st->thread);
562}
563
564static int cpuhp_kick_ap_work(unsigned int cpu)
565{
566 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
567 enum cpuhp_state state = st->state;
568
569 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
570 __cpuhp_kick_ap_work(st);
571 wait_for_completion(&st->done);
572 trace_cpuhp_exit(cpu, st->state, state, st->result);
573 return st->result;
574}
575
576static struct smp_hotplug_thread cpuhp_threads = {
577 .store = &cpuhp_state.thread,
578 .create = &cpuhp_create,
579 .thread_should_run = cpuhp_should_run,
580 .thread_fn = cpuhp_thread_fun,
581 .thread_comm = "cpuhp/%u",
582 .selfparking = true,
583};
584
585void __init cpuhp_threads_init(void)
586{
587 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
588 kthread_unpark(this_cpu_read(cpuhp_state.thread));
589}
590
591#ifdef CONFIG_HOTPLUG_CPU
592/**
593 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594 * @cpu: a CPU id
595 *
596 * This function walks all processes, finds a valid mm struct for each one and
597 * then clears a corresponding bit in mm's cpumask. While this all sounds
598 * trivial, there are various non-obvious corner cases, which this function
599 * tries to solve in a safe manner.
600 *
601 * Also note that the function uses a somewhat relaxed locking scheme, so it may
602 * be called only for an already offlined CPU.
603 */
604void clear_tasks_mm_cpumask(int cpu)
605{
606 struct task_struct *p;
607
608 /*
609 * This function is called after the cpu is taken down and marked
610 * offline, so its not like new tasks will ever get this cpu set in
611 * their mm mask. -- Peter Zijlstra
612 * Thus, we may use rcu_read_lock() here, instead of grabbing
613 * full-fledged tasklist_lock.
614 */
615 WARN_ON(cpu_online(cpu));
616 rcu_read_lock();
617 for_each_process(p) {
618 struct task_struct *t;
619
620 /*
621 * Main thread might exit, but other threads may still have
622 * a valid mm. Find one.
623 */
624 t = find_lock_task_mm(p);
625 if (!t)
626 continue;
627 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
628 task_unlock(t);
629 }
630 rcu_read_unlock();
631}
632
633static inline void check_for_tasks(int dead_cpu)
634{
635 struct task_struct *g, *p;
636
637 read_lock(&tasklist_lock);
638 for_each_process_thread(g, p) {
639 if (!p->on_rq)
640 continue;
641 /*
642 * We do the check with unlocked task_rq(p)->lock.
643 * Order the reading to do not warn about a task,
644 * which was running on this cpu in the past, and
645 * it's just been woken on another cpu.
646 */
647 rmb();
648 if (task_cpu(p) != dead_cpu)
649 continue;
650
651 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
652 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
653 }
654 read_unlock(&tasklist_lock);
655}
656
657/* Take this CPU down. */
658static int take_cpu_down(void *_param)
659{
660 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
661 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
662 int err, cpu = smp_processor_id();
663
664 /* Ensure this CPU doesn't handle any more interrupts. */
665 err = __cpu_disable();
666 if (err < 0)
667 return err;
668
669 /*
670 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
671 * do this step again.
672 */
673 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
674 st->state--;
675 /* Invoke the former CPU_DYING callbacks */
676 for (; st->state > target; st->state--)
677 cpuhp_invoke_callback(cpu, st->state, false, NULL);
678
679 /* Give up timekeeping duties */
680 tick_handover_do_timer();
681 /* Park the stopper thread */
682 stop_machine_park(cpu);
683 return 0;
684}
685
686static int takedown_cpu(unsigned int cpu)
687{
688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 int err;
690
691 /* Park the smpboot threads */
692 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
693 smpboot_park_threads(cpu);
694
695 /*
696 * Prevent irq alloc/free while the dying cpu reorganizes the
697 * interrupt affinities.
698 */
699 irq_lock_sparse();
700
701 /*
702 * So now all preempt/rcu users must observe !cpu_active().
703 */
704 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
705 if (err) {
706 /* CPU refused to die */
707 irq_unlock_sparse();
708 /* Unpark the hotplug thread so we can rollback there */
709 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
710 return err;
711 }
712 BUG_ON(cpu_online(cpu));
713
714 /*
715 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
716 * runnable tasks from the cpu, there's only the idle task left now
717 * that the migration thread is done doing the stop_machine thing.
718 *
719 * Wait for the stop thread to go away.
720 */
721 wait_for_completion(&st->done);
722 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
723
724 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
725 irq_unlock_sparse();
726
727 hotplug_cpu__broadcast_tick_pull(cpu);
728 /* This actually kills the CPU. */
729 __cpu_die(cpu);
730
731 tick_cleanup_dead_cpu(cpu);
732 return 0;
733}
734
735static void cpuhp_complete_idle_dead(void *arg)
736{
737 struct cpuhp_cpu_state *st = arg;
738
739 complete(&st->done);
740}
741
742void cpuhp_report_idle_dead(void)
743{
744 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
745
746 BUG_ON(st->state != CPUHP_AP_OFFLINE);
747 rcu_report_dead(smp_processor_id());
748 st->state = CPUHP_AP_IDLE_DEAD;
749 /*
750 * We cannot call complete after rcu_report_dead() so we delegate it
751 * to an online cpu.
752 */
753 smp_call_function_single(cpumask_first(cpu_online_mask),
754 cpuhp_complete_idle_dead, st, 0);
755}
756
757#else
758#define takedown_cpu NULL
759#endif
760
761#ifdef CONFIG_HOTPLUG_CPU
762
763/* Requires cpu_add_remove_lock to be held */
764static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
765 enum cpuhp_state target)
766{
767 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
768 int prev_state, ret = 0;
769
770 if (num_online_cpus() == 1)
771 return -EBUSY;
772
773 if (!cpu_present(cpu))
774 return -EINVAL;
775
776 cpus_write_lock();
777
778 cpuhp_tasks_frozen = tasks_frozen;
779
780 prev_state = st->state;
781 st->target = target;
782 /*
783 * If the current CPU state is in the range of the AP hotplug thread,
784 * then we need to kick the thread.
785 */
786 if (st->state > CPUHP_TEARDOWN_CPU) {
787 ret = cpuhp_kick_ap_work(cpu);
788 /*
789 * The AP side has done the error rollback already. Just
790 * return the error code..
791 */
792 if (ret)
793 goto out;
794
795 /*
796 * We might have stopped still in the range of the AP hotplug
797 * thread. Nothing to do anymore.
798 */
799 if (st->state > CPUHP_TEARDOWN_CPU)
800 goto out;
801 }
802 /*
803 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
804 * to do the further cleanups.
805 */
806 ret = cpuhp_down_callbacks(cpu, st, target);
807 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
808 st->target = prev_state;
809 st->rollback = true;
810 cpuhp_kick_ap_work(cpu);
811 }
812
813out:
814 cpus_write_unlock();
815 return ret;
816}
817
818static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819{
820 int err;
821
822 cpu_maps_update_begin();
823
824 if (cpu_hotplug_disabled) {
825 err = -EBUSY;
826 goto out;
827 }
828
829 err = _cpu_down(cpu, 0, target);
830
831out:
832 cpu_maps_update_done();
833 return err;
834}
835int cpu_down(unsigned int cpu)
836{
837 return do_cpu_down(cpu, CPUHP_OFFLINE);
838}
839EXPORT_SYMBOL(cpu_down);
840#endif /*CONFIG_HOTPLUG_CPU*/
841
842/**
843 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844 * @cpu: cpu that just started
845 *
846 * It must be called by the arch code on the new cpu, before the new cpu
847 * enables interrupts and before the "boot" cpu returns from __cpu_up().
848 */
849void notify_cpu_starting(unsigned int cpu)
850{
851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853
854 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
855 while (st->state < target) {
856 st->state++;
857 cpuhp_invoke_callback(cpu, st->state, true, NULL);
858 }
859}
860
861/*
862 * Called from the idle task. We need to set active here, so we can kick off
863 * the stopper thread and unpark the smpboot threads. If the target state is
864 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865 * cpu further.
866 */
867void cpuhp_online_idle(enum cpuhp_state state)
868{
869 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870 unsigned int cpu = smp_processor_id();
871
872 /* Happens for the boot cpu */
873 if (state != CPUHP_AP_ONLINE_IDLE)
874 return;
875
876 st->state = CPUHP_AP_ONLINE_IDLE;
877
878 /* Unpark the stopper thread and the hotplug thread of this cpu */
879 stop_machine_unpark(cpu);
880 kthread_unpark(st->thread);
881
882 /* Should we go further up ? */
883 if (st->target > CPUHP_AP_ONLINE_IDLE)
884 __cpuhp_kick_ap_work(st);
885 else
886 complete(&st->done);
887}
888
889/* Requires cpu_add_remove_lock to be held */
890static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891{
892 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893 struct task_struct *idle;
894 int ret = 0;
895
896 cpus_write_lock();
897
898 if (!cpu_present(cpu)) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 /*
904 * The caller of do_cpu_up might have raced with another
905 * caller. Ignore it for now.
906 */
907 if (st->state >= target)
908 goto out;
909
910 if (st->state == CPUHP_OFFLINE) {
911 /* Let it fail before we try to bring the cpu up */
912 idle = idle_thread_get(cpu);
913 if (IS_ERR(idle)) {
914 ret = PTR_ERR(idle);
915 goto out;
916 }
917 }
918
919 cpuhp_tasks_frozen = tasks_frozen;
920
921 st->target = target;
922 /*
923 * If the current CPU state is in the range of the AP hotplug thread,
924 * then we need to kick the thread once more.
925 */
926 if (st->state > CPUHP_BRINGUP_CPU) {
927 ret = cpuhp_kick_ap_work(cpu);
928 /*
929 * The AP side has done the error rollback already. Just
930 * return the error code..
931 */
932 if (ret)
933 goto out;
934 }
935
936 /*
937 * Try to reach the target state. We max out on the BP at
938 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939 * responsible for bringing it up to the target state.
940 */
941 target = min((int)target, CPUHP_BRINGUP_CPU);
942 ret = cpuhp_up_callbacks(cpu, st, target);
943out:
944 cpus_write_unlock();
945 return ret;
946}
947
948static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949{
950 int err = 0;
951
952 if (!cpu_possible(cpu)) {
953 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954 cpu);
955#if defined(CONFIG_IA64)
956 pr_err("please check additional_cpus= boot parameter\n");
957#endif
958 return -EINVAL;
959 }
960
961 err = try_online_node(cpu_to_node(cpu));
962 if (err)
963 return err;
964
965 cpu_maps_update_begin();
966
967 if (cpu_hotplug_disabled) {
968 err = -EBUSY;
969 goto out;
970 }
971
972 err = _cpu_up(cpu, 0, target);
973out:
974 cpu_maps_update_done();
975 return err;
976}
977
978int cpu_up(unsigned int cpu)
979{
980 return do_cpu_up(cpu, CPUHP_ONLINE);
981}
982EXPORT_SYMBOL_GPL(cpu_up);
983
984#ifdef CONFIG_PM_SLEEP_SMP
985static cpumask_var_t frozen_cpus;
986
987int freeze_secondary_cpus(int primary)
988{
989 int cpu, error = 0;
990
991 cpu_maps_update_begin();
992 if (!cpu_online(primary))
993 primary = cpumask_first(cpu_online_mask);
994 /*
995 * We take down all of the non-boot CPUs in one shot to avoid races
996 * with the userspace trying to use the CPU hotplug at the same time
997 */
998 cpumask_clear(frozen_cpus);
999
1000 pr_info("Disabling non-boot CPUs ...\n");
1001 for_each_online_cpu(cpu) {
1002 if (cpu == primary)
1003 continue;
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007 if (!error)
1008 cpumask_set_cpu(cpu, frozen_cpus);
1009 else {
1010 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011 break;
1012 }
1013 }
1014
1015 if (!error)
1016 BUG_ON(num_online_cpus() > 1);
1017 else
1018 pr_err("Non-boot CPUs are not disabled\n");
1019
1020 /*
1021 * Make sure the CPUs won't be enabled by someone else. We need to do
1022 * this even in case of failure as all disable_nonboot_cpus() users are
1023 * supposed to do enable_nonboot_cpus() on the failure path.
1024 */
1025 cpu_hotplug_disabled++;
1026
1027 cpu_maps_update_done();
1028 return error;
1029}
1030
1031void __weak arch_enable_nonboot_cpus_begin(void)
1032{
1033}
1034
1035void __weak arch_enable_nonboot_cpus_end(void)
1036{
1037}
1038
1039void enable_nonboot_cpus(void)
1040{
1041 int cpu, error;
1042
1043 /* Allow everyone to use the CPU hotplug again */
1044 cpu_maps_update_begin();
1045 __cpu_hotplug_enable();
1046 if (cpumask_empty(frozen_cpus))
1047 goto out;
1048
1049 pr_info("Enabling non-boot CPUs ...\n");
1050
1051 arch_enable_nonboot_cpus_begin();
1052
1053 for_each_cpu(cpu, frozen_cpus) {
1054 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057 if (!error) {
1058 pr_info("CPU%d is up\n", cpu);
1059 continue;
1060 }
1061 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062 }
1063
1064 arch_enable_nonboot_cpus_end();
1065
1066 cpumask_clear(frozen_cpus);
1067out:
1068 cpu_maps_update_done();
1069}
1070
1071static int __init alloc_frozen_cpus(void)
1072{
1073 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074 return -ENOMEM;
1075 return 0;
1076}
1077core_initcall(alloc_frozen_cpus);
1078
1079/*
1080 * When callbacks for CPU hotplug notifications are being executed, we must
1081 * ensure that the state of the system with respect to the tasks being frozen
1082 * or not, as reported by the notification, remains unchanged *throughout the
1083 * duration* of the execution of the callbacks.
1084 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085 *
1086 * This synchronization is implemented by mutually excluding regular CPU
1087 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088 * Hibernate notifications.
1089 */
1090static int
1091cpu_hotplug_pm_callback(struct notifier_block *nb,
1092 unsigned long action, void *ptr)
1093{
1094 switch (action) {
1095
1096 case PM_SUSPEND_PREPARE:
1097 case PM_HIBERNATION_PREPARE:
1098 cpu_hotplug_disable();
1099 break;
1100
1101 case PM_POST_SUSPEND:
1102 case PM_POST_HIBERNATION:
1103 cpu_hotplug_enable();
1104 break;
1105
1106 default:
1107 return NOTIFY_DONE;
1108 }
1109
1110 return NOTIFY_OK;
1111}
1112
1113
1114static int __init cpu_hotplug_pm_sync_init(void)
1115{
1116 /*
1117 * cpu_hotplug_pm_callback has higher priority than x86
1118 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119 * to disable cpu hotplug to avoid cpu hotplug race.
1120 */
1121 pm_notifier(cpu_hotplug_pm_callback, 0);
1122 return 0;
1123}
1124core_initcall(cpu_hotplug_pm_sync_init);
1125
1126#endif /* CONFIG_PM_SLEEP_SMP */
1127
1128int __boot_cpu_id;
1129
1130#endif /* CONFIG_SMP */
1131
1132/* Boot processor state steps */
1133static struct cpuhp_step cpuhp_bp_states[] = {
1134 [CPUHP_OFFLINE] = {
1135 .name = "offline",
1136 .startup.single = NULL,
1137 .teardown.single = NULL,
1138 },
1139#ifdef CONFIG_SMP
1140 [CPUHP_CREATE_THREADS]= {
1141 .name = "threads:prepare",
1142 .startup.single = smpboot_create_threads,
1143 .teardown.single = NULL,
1144 .cant_stop = true,
1145 },
1146 [CPUHP_PERF_PREPARE] = {
1147 .name = "perf:prepare",
1148 .startup.single = perf_event_init_cpu,
1149 .teardown.single = perf_event_exit_cpu,
1150 },
1151 [CPUHP_WORKQUEUE_PREP] = {
1152 .name = "workqueue:prepare",
1153 .startup.single = workqueue_prepare_cpu,
1154 .teardown.single = NULL,
1155 },
1156 [CPUHP_HRTIMERS_PREPARE] = {
1157 .name = "hrtimers:prepare",
1158 .startup.single = hrtimers_prepare_cpu,
1159 .teardown.single = hrtimers_dead_cpu,
1160 },
1161 [CPUHP_SMPCFD_PREPARE] = {
1162 .name = "smpcfd:prepare",
1163 .startup.single = smpcfd_prepare_cpu,
1164 .teardown.single = smpcfd_dead_cpu,
1165 },
1166 [CPUHP_RELAY_PREPARE] = {
1167 .name = "relay:prepare",
1168 .startup.single = relay_prepare_cpu,
1169 .teardown.single = NULL,
1170 },
1171 [CPUHP_SLAB_PREPARE] = {
1172 .name = "slab:prepare",
1173 .startup.single = slab_prepare_cpu,
1174 .teardown.single = slab_dead_cpu,
1175 },
1176 [CPUHP_RCUTREE_PREP] = {
1177 .name = "RCU/tree:prepare",
1178 .startup.single = rcutree_prepare_cpu,
1179 .teardown.single = rcutree_dead_cpu,
1180 },
1181 /*
1182 * On the tear-down path, timers_dead_cpu() must be invoked
1183 * before blk_mq_queue_reinit_notify() from notify_dead(),
1184 * otherwise a RCU stall occurs.
1185 */
1186 [CPUHP_TIMERS_DEAD] = {
1187 .name = "timers:dead",
1188 .startup.single = NULL,
1189 .teardown.single = timers_dead_cpu,
1190 },
1191 /* Kicks the plugged cpu into life */
1192 [CPUHP_BRINGUP_CPU] = {
1193 .name = "cpu:bringup",
1194 .startup.single = bringup_cpu,
1195 .teardown.single = NULL,
1196 .cant_stop = true,
1197 },
1198 [CPUHP_AP_SMPCFD_DYING] = {
1199 .name = "smpcfd:dying",
1200 .startup.single = NULL,
1201 .teardown.single = smpcfd_dying_cpu,
1202 },
1203 /*
1204 * Handled on controll processor until the plugged processor manages
1205 * this itself.
1206 */
1207 [CPUHP_TEARDOWN_CPU] = {
1208 .name = "cpu:teardown",
1209 .startup.single = NULL,
1210 .teardown.single = takedown_cpu,
1211 .cant_stop = true,
1212 },
1213#else
1214 [CPUHP_BRINGUP_CPU] = { },
1215#endif
1216};
1217
1218/* Application processor state steps */
1219static struct cpuhp_step cpuhp_ap_states[] = {
1220#ifdef CONFIG_SMP
1221 /* Final state before CPU kills itself */
1222 [CPUHP_AP_IDLE_DEAD] = {
1223 .name = "idle:dead",
1224 },
1225 /*
1226 * Last state before CPU enters the idle loop to die. Transient state
1227 * for synchronization.
1228 */
1229 [CPUHP_AP_OFFLINE] = {
1230 .name = "ap:offline",
1231 .cant_stop = true,
1232 },
1233 /* First state is scheduler control. Interrupts are disabled */
1234 [CPUHP_AP_SCHED_STARTING] = {
1235 .name = "sched:starting",
1236 .startup.single = sched_cpu_starting,
1237 .teardown.single = sched_cpu_dying,
1238 },
1239 [CPUHP_AP_RCUTREE_DYING] = {
1240 .name = "RCU/tree:dying",
1241 .startup.single = NULL,
1242 .teardown.single = rcutree_dying_cpu,
1243 },
1244 /* Entry state on starting. Interrupts enabled from here on. Transient
1245 * state for synchronsization */
1246 [CPUHP_AP_ONLINE] = {
1247 .name = "ap:online",
1248 },
1249 /* Handle smpboot threads park/unpark */
1250 [CPUHP_AP_SMPBOOT_THREADS] = {
1251 .name = "smpboot/threads:online",
1252 .startup.single = smpboot_unpark_threads,
1253 .teardown.single = NULL,
1254 },
1255 [CPUHP_AP_PERF_ONLINE] = {
1256 .name = "perf:online",
1257 .startup.single = perf_event_init_cpu,
1258 .teardown.single = perf_event_exit_cpu,
1259 },
1260 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1261 .name = "workqueue:online",
1262 .startup.single = workqueue_online_cpu,
1263 .teardown.single = workqueue_offline_cpu,
1264 },
1265 [CPUHP_AP_RCUTREE_ONLINE] = {
1266 .name = "RCU/tree:online",
1267 .startup.single = rcutree_online_cpu,
1268 .teardown.single = rcutree_offline_cpu,
1269 },
1270#endif
1271 /*
1272 * The dynamically registered state space is here
1273 */
1274
1275#ifdef CONFIG_SMP
1276 /* Last state is scheduler control setting the cpu active */
1277 [CPUHP_AP_ACTIVE] = {
1278 .name = "sched:active",
1279 .startup.single = sched_cpu_activate,
1280 .teardown.single = sched_cpu_deactivate,
1281 },
1282#endif
1283
1284 /* CPU is fully up and running. */
1285 [CPUHP_ONLINE] = {
1286 .name = "online",
1287 .startup.single = NULL,
1288 .teardown.single = NULL,
1289 },
1290};
1291
1292/* Sanity check for callbacks */
1293static int cpuhp_cb_check(enum cpuhp_state state)
1294{
1295 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1296 return -EINVAL;
1297 return 0;
1298}
1299
1300/*
1301 * Returns a free for dynamic slot assignment of the Online state. The states
1302 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1303 * by having no name assigned.
1304 */
1305static int cpuhp_reserve_state(enum cpuhp_state state)
1306{
1307 enum cpuhp_state i, end;
1308 struct cpuhp_step *step;
1309
1310 switch (state) {
1311 case CPUHP_AP_ONLINE_DYN:
1312 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1313 end = CPUHP_AP_ONLINE_DYN_END;
1314 break;
1315 case CPUHP_BP_PREPARE_DYN:
1316 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1317 end = CPUHP_BP_PREPARE_DYN_END;
1318 break;
1319 default:
1320 return -EINVAL;
1321 }
1322
1323 for (i = state; i <= end; i++, step++) {
1324 if (!step->name)
1325 return i;
1326 }
1327 WARN(1, "No more dynamic states available for CPU hotplug\n");
1328 return -ENOSPC;
1329}
1330
1331static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1332 int (*startup)(unsigned int cpu),
1333 int (*teardown)(unsigned int cpu),
1334 bool multi_instance)
1335{
1336 /* (Un)Install the callbacks for further cpu hotplug operations */
1337 struct cpuhp_step *sp;
1338 int ret = 0;
1339
1340 if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1341 ret = cpuhp_reserve_state(state);
1342 if (ret < 0)
1343 return ret;
1344 state = ret;
1345 }
1346 sp = cpuhp_get_step(state);
1347 if (name && sp->name)
1348 return -EBUSY;
1349
1350 sp->startup.single = startup;
1351 sp->teardown.single = teardown;
1352 sp->name = name;
1353 sp->multi_instance = multi_instance;
1354 INIT_HLIST_HEAD(&sp->list);
1355 return ret;
1356}
1357
1358static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1359{
1360 return cpuhp_get_step(state)->teardown.single;
1361}
1362
1363/*
1364 * Call the startup/teardown function for a step either on the AP or
1365 * on the current CPU.
1366 */
1367static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1368 struct hlist_node *node)
1369{
1370 struct cpuhp_step *sp = cpuhp_get_step(state);
1371 int ret;
1372
1373 if ((bringup && !sp->startup.single) ||
1374 (!bringup && !sp->teardown.single))
1375 return 0;
1376 /*
1377 * The non AP bound callbacks can fail on bringup. On teardown
1378 * e.g. module removal we crash for now.
1379 */
1380#ifdef CONFIG_SMP
1381 if (cpuhp_is_ap_state(state))
1382 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1383 else
1384 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1385#else
1386 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1387#endif
1388 BUG_ON(ret && !bringup);
1389 return ret;
1390}
1391
1392/*
1393 * Called from __cpuhp_setup_state on a recoverable failure.
1394 *
1395 * Note: The teardown callbacks for rollback are not allowed to fail!
1396 */
1397static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1398 struct hlist_node *node)
1399{
1400 int cpu;
1401
1402 /* Roll back the already executed steps on the other cpus */
1403 for_each_present_cpu(cpu) {
1404 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1405 int cpustate = st->state;
1406
1407 if (cpu >= failedcpu)
1408 break;
1409
1410 /* Did we invoke the startup call on that cpu ? */
1411 if (cpustate >= state)
1412 cpuhp_issue_call(cpu, state, false, node);
1413 }
1414}
1415
1416int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1417 bool invoke)
1418{
1419 struct cpuhp_step *sp;
1420 int cpu;
1421 int ret;
1422
1423 sp = cpuhp_get_step(state);
1424 if (sp->multi_instance == false)
1425 return -EINVAL;
1426
1427 cpus_read_lock();
1428 mutex_lock(&cpuhp_state_mutex);
1429
1430 if (!invoke || !sp->startup.multi)
1431 goto add_node;
1432
1433 /*
1434 * Try to call the startup callback for each present cpu
1435 * depending on the hotplug state of the cpu.
1436 */
1437 for_each_present_cpu(cpu) {
1438 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 int cpustate = st->state;
1440
1441 if (cpustate < state)
1442 continue;
1443
1444 ret = cpuhp_issue_call(cpu, state, true, node);
1445 if (ret) {
1446 if (sp->teardown.multi)
1447 cpuhp_rollback_install(cpu, state, node);
1448 goto unlock;
1449 }
1450 }
1451add_node:
1452 ret = 0;
1453 hlist_add_head(node, &sp->list);
1454unlock:
1455 mutex_unlock(&cpuhp_state_mutex);
1456 cpus_read_unlock();
1457 return ret;
1458}
1459EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1460
1461/**
1462 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1463 * @state: The state to setup
1464 * @invoke: If true, the startup function is invoked for cpus where
1465 * cpu state >= @state
1466 * @startup: startup callback function
1467 * @teardown: teardown callback function
1468 * @multi_instance: State is set up for multiple instances which get
1469 * added afterwards.
1470 *
1471 * The caller needs to hold cpus read locked while calling this function.
1472 * Returns:
1473 * On success:
1474 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1475 * 0 for all other states
1476 * On failure: proper (negative) error code
1477 */
1478int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1479 const char *name, bool invoke,
1480 int (*startup)(unsigned int cpu),
1481 int (*teardown)(unsigned int cpu),
1482 bool multi_instance)
1483{
1484 int cpu, ret = 0;
1485 bool dynstate;
1486
1487 lockdep_assert_cpus_held();
1488
1489 if (cpuhp_cb_check(state) || !name)
1490 return -EINVAL;
1491
1492 mutex_lock(&cpuhp_state_mutex);
1493
1494 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1495 multi_instance);
1496
1497 dynstate = state == CPUHP_AP_ONLINE_DYN;
1498 if (ret > 0 && dynstate) {
1499 state = ret;
1500 ret = 0;
1501 }
1502
1503 if (ret || !invoke || !startup)
1504 goto out;
1505
1506 /*
1507 * Try to call the startup callback for each present cpu
1508 * depending on the hotplug state of the cpu.
1509 */
1510 for_each_present_cpu(cpu) {
1511 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1512 int cpustate = st->state;
1513
1514 if (cpustate < state)
1515 continue;
1516
1517 ret = cpuhp_issue_call(cpu, state, true, NULL);
1518 if (ret) {
1519 if (teardown)
1520 cpuhp_rollback_install(cpu, state, NULL);
1521 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1522 goto out;
1523 }
1524 }
1525out:
1526 mutex_unlock(&cpuhp_state_mutex);
1527 /*
1528 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1529 * dynamically allocated state in case of success.
1530 */
1531 if (!ret && dynstate)
1532 return state;
1533 return ret;
1534}
1535EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1536
1537int __cpuhp_setup_state(enum cpuhp_state state,
1538 const char *name, bool invoke,
1539 int (*startup)(unsigned int cpu),
1540 int (*teardown)(unsigned int cpu),
1541 bool multi_instance)
1542{
1543 int ret;
1544
1545 cpus_read_lock();
1546 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1547 teardown, multi_instance);
1548 cpus_read_unlock();
1549 return ret;
1550}
1551EXPORT_SYMBOL(__cpuhp_setup_state);
1552
1553int __cpuhp_state_remove_instance(enum cpuhp_state state,
1554 struct hlist_node *node, bool invoke)
1555{
1556 struct cpuhp_step *sp = cpuhp_get_step(state);
1557 int cpu;
1558
1559 BUG_ON(cpuhp_cb_check(state));
1560
1561 if (!sp->multi_instance)
1562 return -EINVAL;
1563
1564 cpus_read_lock();
1565 mutex_lock(&cpuhp_state_mutex);
1566
1567 if (!invoke || !cpuhp_get_teardown_cb(state))
1568 goto remove;
1569 /*
1570 * Call the teardown callback for each present cpu depending
1571 * on the hotplug state of the cpu. This function is not
1572 * allowed to fail currently!
1573 */
1574 for_each_present_cpu(cpu) {
1575 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1576 int cpustate = st->state;
1577
1578 if (cpustate >= state)
1579 cpuhp_issue_call(cpu, state, false, node);
1580 }
1581
1582remove:
1583 hlist_del(node);
1584 mutex_unlock(&cpuhp_state_mutex);
1585 cpus_read_unlock();
1586
1587 return 0;
1588}
1589EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1590
1591/**
1592 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1593 * @state: The state to remove
1594 * @invoke: If true, the teardown function is invoked for cpus where
1595 * cpu state >= @state
1596 *
1597 * The caller needs to hold cpus read locked while calling this function.
1598 * The teardown callback is currently not allowed to fail. Think
1599 * about module removal!
1600 */
1601void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1602{
1603 struct cpuhp_step *sp = cpuhp_get_step(state);
1604 int cpu;
1605
1606 BUG_ON(cpuhp_cb_check(state));
1607
1608 lockdep_assert_cpus_held();
1609
1610 mutex_lock(&cpuhp_state_mutex);
1611 if (sp->multi_instance) {
1612 WARN(!hlist_empty(&sp->list),
1613 "Error: Removing state %d which has instances left.\n",
1614 state);
1615 goto remove;
1616 }
1617
1618 if (!invoke || !cpuhp_get_teardown_cb(state))
1619 goto remove;
1620
1621 /*
1622 * Call the teardown callback for each present cpu depending
1623 * on the hotplug state of the cpu. This function is not
1624 * allowed to fail currently!
1625 */
1626 for_each_present_cpu(cpu) {
1627 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1628 int cpustate = st->state;
1629
1630 if (cpustate >= state)
1631 cpuhp_issue_call(cpu, state, false, NULL);
1632 }
1633remove:
1634 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635 mutex_unlock(&cpuhp_state_mutex);
1636}
1637EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1638
1639void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1640{
1641 cpus_read_lock();
1642 __cpuhp_remove_state_cpuslocked(state, invoke);
1643 cpus_read_unlock();
1644}
1645EXPORT_SYMBOL(__cpuhp_remove_state);
1646
1647#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1648static ssize_t show_cpuhp_state(struct device *dev,
1649 struct device_attribute *attr, char *buf)
1650{
1651 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1652
1653 return sprintf(buf, "%d\n", st->state);
1654}
1655static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1656
1657static ssize_t write_cpuhp_target(struct device *dev,
1658 struct device_attribute *attr,
1659 const char *buf, size_t count)
1660{
1661 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1662 struct cpuhp_step *sp;
1663 int target, ret;
1664
1665 ret = kstrtoint(buf, 10, &target);
1666 if (ret)
1667 return ret;
1668
1669#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1670 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1671 return -EINVAL;
1672#else
1673 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1674 return -EINVAL;
1675#endif
1676
1677 ret = lock_device_hotplug_sysfs();
1678 if (ret)
1679 return ret;
1680
1681 mutex_lock(&cpuhp_state_mutex);
1682 sp = cpuhp_get_step(target);
1683 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1684 mutex_unlock(&cpuhp_state_mutex);
1685 if (ret)
1686 return ret;
1687
1688 if (st->state < target)
1689 ret = do_cpu_up(dev->id, target);
1690 else
1691 ret = do_cpu_down(dev->id, target);
1692
1693 unlock_device_hotplug();
1694 return ret ? ret : count;
1695}
1696
1697static ssize_t show_cpuhp_target(struct device *dev,
1698 struct device_attribute *attr, char *buf)
1699{
1700 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1701
1702 return sprintf(buf, "%d\n", st->target);
1703}
1704static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1705
1706static struct attribute *cpuhp_cpu_attrs[] = {
1707 &dev_attr_state.attr,
1708 &dev_attr_target.attr,
1709 NULL
1710};
1711
1712static struct attribute_group cpuhp_cpu_attr_group = {
1713 .attrs = cpuhp_cpu_attrs,
1714 .name = "hotplug",
1715 NULL
1716};
1717
1718static ssize_t show_cpuhp_states(struct device *dev,
1719 struct device_attribute *attr, char *buf)
1720{
1721 ssize_t cur, res = 0;
1722 int i;
1723
1724 mutex_lock(&cpuhp_state_mutex);
1725 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1726 struct cpuhp_step *sp = cpuhp_get_step(i);
1727
1728 if (sp->name) {
1729 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1730 buf += cur;
1731 res += cur;
1732 }
1733 }
1734 mutex_unlock(&cpuhp_state_mutex);
1735 return res;
1736}
1737static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1738
1739static struct attribute *cpuhp_cpu_root_attrs[] = {
1740 &dev_attr_states.attr,
1741 NULL
1742};
1743
1744static struct attribute_group cpuhp_cpu_root_attr_group = {
1745 .attrs = cpuhp_cpu_root_attrs,
1746 .name = "hotplug",
1747 NULL
1748};
1749
1750static int __init cpuhp_sysfs_init(void)
1751{
1752 int cpu, ret;
1753
1754 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1755 &cpuhp_cpu_root_attr_group);
1756 if (ret)
1757 return ret;
1758
1759 for_each_possible_cpu(cpu) {
1760 struct device *dev = get_cpu_device(cpu);
1761
1762 if (!dev)
1763 continue;
1764 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1765 if (ret)
1766 return ret;
1767 }
1768 return 0;
1769}
1770device_initcall(cpuhp_sysfs_init);
1771#endif
1772
1773/*
1774 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1775 * represents all NR_CPUS bits binary values of 1<<nr.
1776 *
1777 * It is used by cpumask_of() to get a constant address to a CPU
1778 * mask value that has a single bit set only.
1779 */
1780
1781/* cpu_bit_bitmap[0] is empty - so we can back into it */
1782#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1783#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1784#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1785#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1786
1787const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1788
1789 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1790 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1791#if BITS_PER_LONG > 32
1792 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1793 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1794#endif
1795};
1796EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1797
1798const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1799EXPORT_SYMBOL(cpu_all_bits);
1800
1801#ifdef CONFIG_INIT_ALL_POSSIBLE
1802struct cpumask __cpu_possible_mask __read_mostly
1803 = {CPU_BITS_ALL};
1804#else
1805struct cpumask __cpu_possible_mask __read_mostly;
1806#endif
1807EXPORT_SYMBOL(__cpu_possible_mask);
1808
1809struct cpumask __cpu_online_mask __read_mostly;
1810EXPORT_SYMBOL(__cpu_online_mask);
1811
1812struct cpumask __cpu_present_mask __read_mostly;
1813EXPORT_SYMBOL(__cpu_present_mask);
1814
1815struct cpumask __cpu_active_mask __read_mostly;
1816EXPORT_SYMBOL(__cpu_active_mask);
1817
1818void init_cpu_present(const struct cpumask *src)
1819{
1820 cpumask_copy(&__cpu_present_mask, src);
1821}
1822
1823void init_cpu_possible(const struct cpumask *src)
1824{
1825 cpumask_copy(&__cpu_possible_mask, src);
1826}
1827
1828void init_cpu_online(const struct cpumask *src)
1829{
1830 cpumask_copy(&__cpu_online_mask, src);
1831}
1832
1833/*
1834 * Activate the first processor.
1835 */
1836void __init boot_cpu_init(void)
1837{
1838 int cpu = smp_processor_id();
1839
1840 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1841 set_cpu_online(cpu, true);
1842 set_cpu_active(cpu, true);
1843 set_cpu_present(cpu, true);
1844 set_cpu_possible(cpu, true);
1845
1846#ifdef CONFIG_SMP
1847 __boot_cpu_id = cpu;
1848#endif
1849}
1850
1851/*
1852 * Must be called _AFTER_ setting up the per_cpu areas
1853 */
1854void __init boot_cpu_state_init(void)
1855{
1856 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1857}