cgroup: delay the clearing of cgrp->kn->priv
[linux-2.6-block.git] / kernel / cgroup.c
... / ...
CommitLineData
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/cgroup.h>
32#include <linux/cred.h>
33#include <linux/ctype.h>
34#include <linux/errno.h>
35#include <linux/init_task.h>
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/magic.h>
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/rwsem.h>
49#include <linux/string.h>
50#include <linux/sort.h>
51#include <linux/kmod.h>
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
54#include <linux/hashtable.h>
55#include <linux/pid_namespace.h>
56#include <linux/idr.h>
57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58#include <linux/kthread.h>
59#include <linux/delay.h>
60
61#include <linux/atomic.h>
62
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
89#else
90static DEFINE_MUTEX(cgroup_mutex);
91static DECLARE_RWSEM(css_set_rwsem);
92#endif
93
94/*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
105
106#define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125/* generate an array of cgroup subsystem pointers */
126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127static struct cgroup_subsys *cgroup_subsys[] = {
128#include <linux/cgroup_subsys.h>
129};
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
135#include <linux/cgroup_subsys.h>
136};
137#undef SUBSYS
138
139/*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144struct cgroup_root cgrp_dfl_root;
145
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
151
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
158/* some controllers are not supported in the default hierarchy */
159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
160
161/* The list of hierarchy roots */
162
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
165
166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167static DEFINE_IDR(cgroup_hierarchy_idr);
168
169/*
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
175 */
176static u64 css_serial_nr_next = 1;
177
178/* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
182 */
183static int need_forkexit_callback __read_mostly;
184
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
187
188static void cgroup_put(struct cgroup *cgrp);
189static int rebind_subsystems(struct cgroup_root *dst_root,
190 unsigned int ss_mask);
191static int cgroup_destroy_locked(struct cgroup *cgrp);
192static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
193 bool visible);
194static void css_release(struct percpu_ref *ref);
195static void kill_css(struct cgroup_subsys_state *css);
196static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
197 bool is_add);
198static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
199
200/* IDR wrappers which synchronize using cgroup_idr_lock */
201static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
202 gfp_t gfp_mask)
203{
204 int ret;
205
206 idr_preload(gfp_mask);
207 spin_lock_bh(&cgroup_idr_lock);
208 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
209 spin_unlock_bh(&cgroup_idr_lock);
210 idr_preload_end();
211 return ret;
212}
213
214static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
215{
216 void *ret;
217
218 spin_lock_bh(&cgroup_idr_lock);
219 ret = idr_replace(idr, ptr, id);
220 spin_unlock_bh(&cgroup_idr_lock);
221 return ret;
222}
223
224static void cgroup_idr_remove(struct idr *idr, int id)
225{
226 spin_lock_bh(&cgroup_idr_lock);
227 idr_remove(idr, id);
228 spin_unlock_bh(&cgroup_idr_lock);
229}
230
231static struct cgroup *cgroup_parent(struct cgroup *cgrp)
232{
233 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
234
235 if (parent_css)
236 return container_of(parent_css, struct cgroup, self);
237 return NULL;
238}
239
240/**
241 * cgroup_css - obtain a cgroup's css for the specified subsystem
242 * @cgrp: the cgroup of interest
243 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
244 *
245 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
246 * function must be called either under cgroup_mutex or rcu_read_lock() and
247 * the caller is responsible for pinning the returned css if it wants to
248 * keep accessing it outside the said locks. This function may return
249 * %NULL if @cgrp doesn't have @subsys_id enabled.
250 */
251static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
252 struct cgroup_subsys *ss)
253{
254 if (ss)
255 return rcu_dereference_check(cgrp->subsys[ss->id],
256 lockdep_is_held(&cgroup_mutex));
257 else
258 return &cgrp->self;
259}
260
261/**
262 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
263 * @cgrp: the cgroup of interest
264 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
265 *
266 * Similar to cgroup_css() but returns the effctive css, which is defined
267 * as the matching css of the nearest ancestor including self which has @ss
268 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
269 * function is guaranteed to return non-NULL css.
270 */
271static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
272 struct cgroup_subsys *ss)
273{
274 lockdep_assert_held(&cgroup_mutex);
275
276 if (!ss)
277 return &cgrp->self;
278
279 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
280 return NULL;
281
282 while (cgroup_parent(cgrp) &&
283 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
284 cgrp = cgroup_parent(cgrp);
285
286 return cgroup_css(cgrp, ss);
287}
288
289/* convenient tests for these bits */
290static inline bool cgroup_is_dead(const struct cgroup *cgrp)
291{
292 return !(cgrp->self.flags & CSS_ONLINE);
293}
294
295struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
296{
297 struct cgroup *cgrp = of->kn->parent->priv;
298 struct cftype *cft = of_cft(of);
299
300 /*
301 * This is open and unprotected implementation of cgroup_css().
302 * seq_css() is only called from a kernfs file operation which has
303 * an active reference on the file. Because all the subsystem
304 * files are drained before a css is disassociated with a cgroup,
305 * the matching css from the cgroup's subsys table is guaranteed to
306 * be and stay valid until the enclosing operation is complete.
307 */
308 if (cft->ss)
309 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
310 else
311 return &cgrp->self;
312}
313EXPORT_SYMBOL_GPL(of_css);
314
315/**
316 * cgroup_is_descendant - test ancestry
317 * @cgrp: the cgroup to be tested
318 * @ancestor: possible ancestor of @cgrp
319 *
320 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
321 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
322 * and @ancestor are accessible.
323 */
324bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
325{
326 while (cgrp) {
327 if (cgrp == ancestor)
328 return true;
329 cgrp = cgroup_parent(cgrp);
330 }
331 return false;
332}
333
334static int cgroup_is_releasable(const struct cgroup *cgrp)
335{
336 const int bits =
337 (1 << CGRP_RELEASABLE) |
338 (1 << CGRP_NOTIFY_ON_RELEASE);
339 return (cgrp->flags & bits) == bits;
340}
341
342static int notify_on_release(const struct cgroup *cgrp)
343{
344 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
345}
346
347/**
348 * for_each_css - iterate all css's of a cgroup
349 * @css: the iteration cursor
350 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
351 * @cgrp: the target cgroup to iterate css's of
352 *
353 * Should be called under cgroup_[tree_]mutex.
354 */
355#define for_each_css(css, ssid, cgrp) \
356 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
357 if (!((css) = rcu_dereference_check( \
358 (cgrp)->subsys[(ssid)], \
359 lockdep_is_held(&cgroup_mutex)))) { } \
360 else
361
362/**
363 * for_each_e_css - iterate all effective css's of a cgroup
364 * @css: the iteration cursor
365 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
366 * @cgrp: the target cgroup to iterate css's of
367 *
368 * Should be called under cgroup_[tree_]mutex.
369 */
370#define for_each_e_css(css, ssid, cgrp) \
371 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
372 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
373 ; \
374 else
375
376/**
377 * for_each_subsys - iterate all enabled cgroup subsystems
378 * @ss: the iteration cursor
379 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
380 */
381#define for_each_subsys(ss, ssid) \
382 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
383 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
384
385/* iterate across the hierarchies */
386#define for_each_root(root) \
387 list_for_each_entry((root), &cgroup_roots, root_list)
388
389/* iterate over child cgrps, lock should be held throughout iteration */
390#define cgroup_for_each_live_child(child, cgrp) \
391 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
392 if (({ lockdep_assert_held(&cgroup_mutex); \
393 cgroup_is_dead(child); })) \
394 ; \
395 else
396
397/* the list of cgroups eligible for automatic release. Protected by
398 * release_list_lock */
399static LIST_HEAD(release_list);
400static DEFINE_RAW_SPINLOCK(release_list_lock);
401static void cgroup_release_agent(struct work_struct *work);
402static DECLARE_WORK(release_agent_work, cgroup_release_agent);
403static void check_for_release(struct cgroup *cgrp);
404
405/*
406 * A cgroup can be associated with multiple css_sets as different tasks may
407 * belong to different cgroups on different hierarchies. In the other
408 * direction, a css_set is naturally associated with multiple cgroups.
409 * This M:N relationship is represented by the following link structure
410 * which exists for each association and allows traversing the associations
411 * from both sides.
412 */
413struct cgrp_cset_link {
414 /* the cgroup and css_set this link associates */
415 struct cgroup *cgrp;
416 struct css_set *cset;
417
418 /* list of cgrp_cset_links anchored at cgrp->cset_links */
419 struct list_head cset_link;
420
421 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
422 struct list_head cgrp_link;
423};
424
425/*
426 * The default css_set - used by init and its children prior to any
427 * hierarchies being mounted. It contains a pointer to the root state
428 * for each subsystem. Also used to anchor the list of css_sets. Not
429 * reference-counted, to improve performance when child cgroups
430 * haven't been created.
431 */
432struct css_set init_css_set = {
433 .refcount = ATOMIC_INIT(1),
434 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
435 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
436 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
437 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
438 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
439};
440
441static int css_set_count = 1; /* 1 for init_css_set */
442
443/**
444 * cgroup_update_populated - updated populated count of a cgroup
445 * @cgrp: the target cgroup
446 * @populated: inc or dec populated count
447 *
448 * @cgrp is either getting the first task (css_set) or losing the last.
449 * Update @cgrp->populated_cnt accordingly. The count is propagated
450 * towards root so that a given cgroup's populated_cnt is zero iff the
451 * cgroup and all its descendants are empty.
452 *
453 * @cgrp's interface file "cgroup.populated" is zero if
454 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
455 * changes from or to zero, userland is notified that the content of the
456 * interface file has changed. This can be used to detect when @cgrp and
457 * its descendants become populated or empty.
458 */
459static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
460{
461 lockdep_assert_held(&css_set_rwsem);
462
463 do {
464 bool trigger;
465
466 if (populated)
467 trigger = !cgrp->populated_cnt++;
468 else
469 trigger = !--cgrp->populated_cnt;
470
471 if (!trigger)
472 break;
473
474 if (cgrp->populated_kn)
475 kernfs_notify(cgrp->populated_kn);
476 cgrp = cgroup_parent(cgrp);
477 } while (cgrp);
478}
479
480/*
481 * hash table for cgroup groups. This improves the performance to find
482 * an existing css_set. This hash doesn't (currently) take into
483 * account cgroups in empty hierarchies.
484 */
485#define CSS_SET_HASH_BITS 7
486static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
487
488static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
489{
490 unsigned long key = 0UL;
491 struct cgroup_subsys *ss;
492 int i;
493
494 for_each_subsys(ss, i)
495 key += (unsigned long)css[i];
496 key = (key >> 16) ^ key;
497
498 return key;
499}
500
501static void put_css_set_locked(struct css_set *cset, bool taskexit)
502{
503 struct cgrp_cset_link *link, *tmp_link;
504 struct cgroup_subsys *ss;
505 int ssid;
506
507 lockdep_assert_held(&css_set_rwsem);
508
509 if (!atomic_dec_and_test(&cset->refcount))
510 return;
511
512 /* This css_set is dead. unlink it and release cgroup refcounts */
513 for_each_subsys(ss, ssid)
514 list_del(&cset->e_cset_node[ssid]);
515 hash_del(&cset->hlist);
516 css_set_count--;
517
518 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
519 struct cgroup *cgrp = link->cgrp;
520
521 list_del(&link->cset_link);
522 list_del(&link->cgrp_link);
523
524 /* @cgrp can't go away while we're holding css_set_rwsem */
525 if (list_empty(&cgrp->cset_links)) {
526 cgroup_update_populated(cgrp, false);
527 if (notify_on_release(cgrp)) {
528 if (taskexit)
529 set_bit(CGRP_RELEASABLE, &cgrp->flags);
530 check_for_release(cgrp);
531 }
532 }
533
534 kfree(link);
535 }
536
537 kfree_rcu(cset, rcu_head);
538}
539
540static void put_css_set(struct css_set *cset, bool taskexit)
541{
542 /*
543 * Ensure that the refcount doesn't hit zero while any readers
544 * can see it. Similar to atomic_dec_and_lock(), but for an
545 * rwlock
546 */
547 if (atomic_add_unless(&cset->refcount, -1, 1))
548 return;
549
550 down_write(&css_set_rwsem);
551 put_css_set_locked(cset, taskexit);
552 up_write(&css_set_rwsem);
553}
554
555/*
556 * refcounted get/put for css_set objects
557 */
558static inline void get_css_set(struct css_set *cset)
559{
560 atomic_inc(&cset->refcount);
561}
562
563/**
564 * compare_css_sets - helper function for find_existing_css_set().
565 * @cset: candidate css_set being tested
566 * @old_cset: existing css_set for a task
567 * @new_cgrp: cgroup that's being entered by the task
568 * @template: desired set of css pointers in css_set (pre-calculated)
569 *
570 * Returns true if "cset" matches "old_cset" except for the hierarchy
571 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
572 */
573static bool compare_css_sets(struct css_set *cset,
574 struct css_set *old_cset,
575 struct cgroup *new_cgrp,
576 struct cgroup_subsys_state *template[])
577{
578 struct list_head *l1, *l2;
579
580 /*
581 * On the default hierarchy, there can be csets which are
582 * associated with the same set of cgroups but different csses.
583 * Let's first ensure that csses match.
584 */
585 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
586 return false;
587
588 /*
589 * Compare cgroup pointers in order to distinguish between
590 * different cgroups in hierarchies. As different cgroups may
591 * share the same effective css, this comparison is always
592 * necessary.
593 */
594 l1 = &cset->cgrp_links;
595 l2 = &old_cset->cgrp_links;
596 while (1) {
597 struct cgrp_cset_link *link1, *link2;
598 struct cgroup *cgrp1, *cgrp2;
599
600 l1 = l1->next;
601 l2 = l2->next;
602 /* See if we reached the end - both lists are equal length. */
603 if (l1 == &cset->cgrp_links) {
604 BUG_ON(l2 != &old_cset->cgrp_links);
605 break;
606 } else {
607 BUG_ON(l2 == &old_cset->cgrp_links);
608 }
609 /* Locate the cgroups associated with these links. */
610 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
611 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
612 cgrp1 = link1->cgrp;
613 cgrp2 = link2->cgrp;
614 /* Hierarchies should be linked in the same order. */
615 BUG_ON(cgrp1->root != cgrp2->root);
616
617 /*
618 * If this hierarchy is the hierarchy of the cgroup
619 * that's changing, then we need to check that this
620 * css_set points to the new cgroup; if it's any other
621 * hierarchy, then this css_set should point to the
622 * same cgroup as the old css_set.
623 */
624 if (cgrp1->root == new_cgrp->root) {
625 if (cgrp1 != new_cgrp)
626 return false;
627 } else {
628 if (cgrp1 != cgrp2)
629 return false;
630 }
631 }
632 return true;
633}
634
635/**
636 * find_existing_css_set - init css array and find the matching css_set
637 * @old_cset: the css_set that we're using before the cgroup transition
638 * @cgrp: the cgroup that we're moving into
639 * @template: out param for the new set of csses, should be clear on entry
640 */
641static struct css_set *find_existing_css_set(struct css_set *old_cset,
642 struct cgroup *cgrp,
643 struct cgroup_subsys_state *template[])
644{
645 struct cgroup_root *root = cgrp->root;
646 struct cgroup_subsys *ss;
647 struct css_set *cset;
648 unsigned long key;
649 int i;
650
651 /*
652 * Build the set of subsystem state objects that we want to see in the
653 * new css_set. while subsystems can change globally, the entries here
654 * won't change, so no need for locking.
655 */
656 for_each_subsys(ss, i) {
657 if (root->subsys_mask & (1UL << i)) {
658 /*
659 * @ss is in this hierarchy, so we want the
660 * effective css from @cgrp.
661 */
662 template[i] = cgroup_e_css(cgrp, ss);
663 } else {
664 /*
665 * @ss is not in this hierarchy, so we don't want
666 * to change the css.
667 */
668 template[i] = old_cset->subsys[i];
669 }
670 }
671
672 key = css_set_hash(template);
673 hash_for_each_possible(css_set_table, cset, hlist, key) {
674 if (!compare_css_sets(cset, old_cset, cgrp, template))
675 continue;
676
677 /* This css_set matches what we need */
678 return cset;
679 }
680
681 /* No existing cgroup group matched */
682 return NULL;
683}
684
685static void free_cgrp_cset_links(struct list_head *links_to_free)
686{
687 struct cgrp_cset_link *link, *tmp_link;
688
689 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
690 list_del(&link->cset_link);
691 kfree(link);
692 }
693}
694
695/**
696 * allocate_cgrp_cset_links - allocate cgrp_cset_links
697 * @count: the number of links to allocate
698 * @tmp_links: list_head the allocated links are put on
699 *
700 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
701 * through ->cset_link. Returns 0 on success or -errno.
702 */
703static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
704{
705 struct cgrp_cset_link *link;
706 int i;
707
708 INIT_LIST_HEAD(tmp_links);
709
710 for (i = 0; i < count; i++) {
711 link = kzalloc(sizeof(*link), GFP_KERNEL);
712 if (!link) {
713 free_cgrp_cset_links(tmp_links);
714 return -ENOMEM;
715 }
716 list_add(&link->cset_link, tmp_links);
717 }
718 return 0;
719}
720
721/**
722 * link_css_set - a helper function to link a css_set to a cgroup
723 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
724 * @cset: the css_set to be linked
725 * @cgrp: the destination cgroup
726 */
727static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
728 struct cgroup *cgrp)
729{
730 struct cgrp_cset_link *link;
731
732 BUG_ON(list_empty(tmp_links));
733
734 if (cgroup_on_dfl(cgrp))
735 cset->dfl_cgrp = cgrp;
736
737 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
738 link->cset = cset;
739 link->cgrp = cgrp;
740
741 if (list_empty(&cgrp->cset_links))
742 cgroup_update_populated(cgrp, true);
743 list_move(&link->cset_link, &cgrp->cset_links);
744
745 /*
746 * Always add links to the tail of the list so that the list
747 * is sorted by order of hierarchy creation
748 */
749 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
750}
751
752/**
753 * find_css_set - return a new css_set with one cgroup updated
754 * @old_cset: the baseline css_set
755 * @cgrp: the cgroup to be updated
756 *
757 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
758 * substituted into the appropriate hierarchy.
759 */
760static struct css_set *find_css_set(struct css_set *old_cset,
761 struct cgroup *cgrp)
762{
763 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
764 struct css_set *cset;
765 struct list_head tmp_links;
766 struct cgrp_cset_link *link;
767 struct cgroup_subsys *ss;
768 unsigned long key;
769 int ssid;
770
771 lockdep_assert_held(&cgroup_mutex);
772
773 /* First see if we already have a cgroup group that matches
774 * the desired set */
775 down_read(&css_set_rwsem);
776 cset = find_existing_css_set(old_cset, cgrp, template);
777 if (cset)
778 get_css_set(cset);
779 up_read(&css_set_rwsem);
780
781 if (cset)
782 return cset;
783
784 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
785 if (!cset)
786 return NULL;
787
788 /* Allocate all the cgrp_cset_link objects that we'll need */
789 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
790 kfree(cset);
791 return NULL;
792 }
793
794 atomic_set(&cset->refcount, 1);
795 INIT_LIST_HEAD(&cset->cgrp_links);
796 INIT_LIST_HEAD(&cset->tasks);
797 INIT_LIST_HEAD(&cset->mg_tasks);
798 INIT_LIST_HEAD(&cset->mg_preload_node);
799 INIT_LIST_HEAD(&cset->mg_node);
800 INIT_HLIST_NODE(&cset->hlist);
801
802 /* Copy the set of subsystem state objects generated in
803 * find_existing_css_set() */
804 memcpy(cset->subsys, template, sizeof(cset->subsys));
805
806 down_write(&css_set_rwsem);
807 /* Add reference counts and links from the new css_set. */
808 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
809 struct cgroup *c = link->cgrp;
810
811 if (c->root == cgrp->root)
812 c = cgrp;
813 link_css_set(&tmp_links, cset, c);
814 }
815
816 BUG_ON(!list_empty(&tmp_links));
817
818 css_set_count++;
819
820 /* Add @cset to the hash table */
821 key = css_set_hash(cset->subsys);
822 hash_add(css_set_table, &cset->hlist, key);
823
824 for_each_subsys(ss, ssid)
825 list_add_tail(&cset->e_cset_node[ssid],
826 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
827
828 up_write(&css_set_rwsem);
829
830 return cset;
831}
832
833static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
834{
835 struct cgroup *root_cgrp = kf_root->kn->priv;
836
837 return root_cgrp->root;
838}
839
840static int cgroup_init_root_id(struct cgroup_root *root)
841{
842 int id;
843
844 lockdep_assert_held(&cgroup_mutex);
845
846 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
847 if (id < 0)
848 return id;
849
850 root->hierarchy_id = id;
851 return 0;
852}
853
854static void cgroup_exit_root_id(struct cgroup_root *root)
855{
856 lockdep_assert_held(&cgroup_mutex);
857
858 if (root->hierarchy_id) {
859 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
860 root->hierarchy_id = 0;
861 }
862}
863
864static void cgroup_free_root(struct cgroup_root *root)
865{
866 if (root) {
867 /* hierarhcy ID shoulid already have been released */
868 WARN_ON_ONCE(root->hierarchy_id);
869
870 idr_destroy(&root->cgroup_idr);
871 kfree(root);
872 }
873}
874
875static void cgroup_destroy_root(struct cgroup_root *root)
876{
877 struct cgroup *cgrp = &root->cgrp;
878 struct cgrp_cset_link *link, *tmp_link;
879
880 mutex_lock(&cgroup_mutex);
881
882 BUG_ON(atomic_read(&root->nr_cgrps));
883 BUG_ON(!list_empty(&cgrp->self.children));
884
885 /* Rebind all subsystems back to the default hierarchy */
886 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
887
888 /*
889 * Release all the links from cset_links to this hierarchy's
890 * root cgroup
891 */
892 down_write(&css_set_rwsem);
893
894 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
895 list_del(&link->cset_link);
896 list_del(&link->cgrp_link);
897 kfree(link);
898 }
899 up_write(&css_set_rwsem);
900
901 if (!list_empty(&root->root_list)) {
902 list_del(&root->root_list);
903 cgroup_root_count--;
904 }
905
906 cgroup_exit_root_id(root);
907
908 mutex_unlock(&cgroup_mutex);
909
910 kernfs_destroy_root(root->kf_root);
911 cgroup_free_root(root);
912}
913
914/* look up cgroup associated with given css_set on the specified hierarchy */
915static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
916 struct cgroup_root *root)
917{
918 struct cgroup *res = NULL;
919
920 lockdep_assert_held(&cgroup_mutex);
921 lockdep_assert_held(&css_set_rwsem);
922
923 if (cset == &init_css_set) {
924 res = &root->cgrp;
925 } else {
926 struct cgrp_cset_link *link;
927
928 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
929 struct cgroup *c = link->cgrp;
930
931 if (c->root == root) {
932 res = c;
933 break;
934 }
935 }
936 }
937
938 BUG_ON(!res);
939 return res;
940}
941
942/*
943 * Return the cgroup for "task" from the given hierarchy. Must be
944 * called with cgroup_mutex and css_set_rwsem held.
945 */
946static struct cgroup *task_cgroup_from_root(struct task_struct *task,
947 struct cgroup_root *root)
948{
949 /*
950 * No need to lock the task - since we hold cgroup_mutex the
951 * task can't change groups, so the only thing that can happen
952 * is that it exits and its css is set back to init_css_set.
953 */
954 return cset_cgroup_from_root(task_css_set(task), root);
955}
956
957/*
958 * A task must hold cgroup_mutex to modify cgroups.
959 *
960 * Any task can increment and decrement the count field without lock.
961 * So in general, code holding cgroup_mutex can't rely on the count
962 * field not changing. However, if the count goes to zero, then only
963 * cgroup_attach_task() can increment it again. Because a count of zero
964 * means that no tasks are currently attached, therefore there is no
965 * way a task attached to that cgroup can fork (the other way to
966 * increment the count). So code holding cgroup_mutex can safely
967 * assume that if the count is zero, it will stay zero. Similarly, if
968 * a task holds cgroup_mutex on a cgroup with zero count, it
969 * knows that the cgroup won't be removed, as cgroup_rmdir()
970 * needs that mutex.
971 *
972 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
973 * (usually) take cgroup_mutex. These are the two most performance
974 * critical pieces of code here. The exception occurs on cgroup_exit(),
975 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
976 * is taken, and if the cgroup count is zero, a usermode call made
977 * to the release agent with the name of the cgroup (path relative to
978 * the root of cgroup file system) as the argument.
979 *
980 * A cgroup can only be deleted if both its 'count' of using tasks
981 * is zero, and its list of 'children' cgroups is empty. Since all
982 * tasks in the system use _some_ cgroup, and since there is always at
983 * least one task in the system (init, pid == 1), therefore, root cgroup
984 * always has either children cgroups and/or using tasks. So we don't
985 * need a special hack to ensure that root cgroup cannot be deleted.
986 *
987 * P.S. One more locking exception. RCU is used to guard the
988 * update of a tasks cgroup pointer by cgroup_attach_task()
989 */
990
991static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
992static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
993static const struct file_operations proc_cgroupstats_operations;
994
995static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
996 char *buf)
997{
998 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
999 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1000 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1001 cft->ss->name, cft->name);
1002 else
1003 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1004 return buf;
1005}
1006
1007/**
1008 * cgroup_file_mode - deduce file mode of a control file
1009 * @cft: the control file in question
1010 *
1011 * returns cft->mode if ->mode is not 0
1012 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1013 * returns S_IRUGO if it has only a read handler
1014 * returns S_IWUSR if it has only a write hander
1015 */
1016static umode_t cgroup_file_mode(const struct cftype *cft)
1017{
1018 umode_t mode = 0;
1019
1020 if (cft->mode)
1021 return cft->mode;
1022
1023 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1024 mode |= S_IRUGO;
1025
1026 if (cft->write_u64 || cft->write_s64 || cft->write)
1027 mode |= S_IWUSR;
1028
1029 return mode;
1030}
1031
1032static void cgroup_get(struct cgroup *cgrp)
1033{
1034 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1035 css_get(&cgrp->self);
1036}
1037
1038static void cgroup_put(struct cgroup *cgrp)
1039{
1040 css_put(&cgrp->self);
1041}
1042
1043/**
1044 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1045 * @cgrp: the target cgroup
1046 *
1047 * On the default hierarchy, a subsystem may request other subsystems to be
1048 * enabled together through its ->depends_on mask. In such cases, more
1049 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1050 *
1051 * This function determines which subsystems need to be enabled given the
1052 * current @cgrp->subtree_control and records it in
1053 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1054 * @cgrp->subtree_control and follows the usual hierarchy rules.
1055 */
1056static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1057{
1058 struct cgroup *parent = cgroup_parent(cgrp);
1059 unsigned int cur_ss_mask = cgrp->subtree_control;
1060 struct cgroup_subsys *ss;
1061 int ssid;
1062
1063 lockdep_assert_held(&cgroup_mutex);
1064
1065 if (!cgroup_on_dfl(cgrp)) {
1066 cgrp->child_subsys_mask = cur_ss_mask;
1067 return;
1068 }
1069
1070 while (true) {
1071 unsigned int new_ss_mask = cur_ss_mask;
1072
1073 for_each_subsys(ss, ssid)
1074 if (cur_ss_mask & (1 << ssid))
1075 new_ss_mask |= ss->depends_on;
1076
1077 /*
1078 * Mask out subsystems which aren't available. This can
1079 * happen only if some depended-upon subsystems were bound
1080 * to non-default hierarchies.
1081 */
1082 if (parent)
1083 new_ss_mask &= parent->child_subsys_mask;
1084 else
1085 new_ss_mask &= cgrp->root->subsys_mask;
1086
1087 if (new_ss_mask == cur_ss_mask)
1088 break;
1089 cur_ss_mask = new_ss_mask;
1090 }
1091
1092 cgrp->child_subsys_mask = cur_ss_mask;
1093}
1094
1095/**
1096 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1097 * @kn: the kernfs_node being serviced
1098 *
1099 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1100 * the method finishes if locking succeeded. Note that once this function
1101 * returns the cgroup returned by cgroup_kn_lock_live() may become
1102 * inaccessible any time. If the caller intends to continue to access the
1103 * cgroup, it should pin it before invoking this function.
1104 */
1105static void cgroup_kn_unlock(struct kernfs_node *kn)
1106{
1107 struct cgroup *cgrp;
1108
1109 if (kernfs_type(kn) == KERNFS_DIR)
1110 cgrp = kn->priv;
1111 else
1112 cgrp = kn->parent->priv;
1113
1114 mutex_unlock(&cgroup_mutex);
1115
1116 kernfs_unbreak_active_protection(kn);
1117 cgroup_put(cgrp);
1118}
1119
1120/**
1121 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1122 * @kn: the kernfs_node being serviced
1123 *
1124 * This helper is to be used by a cgroup kernfs method currently servicing
1125 * @kn. It breaks the active protection, performs cgroup locking and
1126 * verifies that the associated cgroup is alive. Returns the cgroup if
1127 * alive; otherwise, %NULL. A successful return should be undone by a
1128 * matching cgroup_kn_unlock() invocation.
1129 *
1130 * Any cgroup kernfs method implementation which requires locking the
1131 * associated cgroup should use this helper. It avoids nesting cgroup
1132 * locking under kernfs active protection and allows all kernfs operations
1133 * including self-removal.
1134 */
1135static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1136{
1137 struct cgroup *cgrp;
1138
1139 if (kernfs_type(kn) == KERNFS_DIR)
1140 cgrp = kn->priv;
1141 else
1142 cgrp = kn->parent->priv;
1143
1144 /*
1145 * We're gonna grab cgroup_mutex which nests outside kernfs
1146 * active_ref. cgroup liveliness check alone provides enough
1147 * protection against removal. Ensure @cgrp stays accessible and
1148 * break the active_ref protection.
1149 */
1150 cgroup_get(cgrp);
1151 kernfs_break_active_protection(kn);
1152
1153 mutex_lock(&cgroup_mutex);
1154
1155 if (!cgroup_is_dead(cgrp))
1156 return cgrp;
1157
1158 cgroup_kn_unlock(kn);
1159 return NULL;
1160}
1161
1162static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1163{
1164 char name[CGROUP_FILE_NAME_MAX];
1165
1166 lockdep_assert_held(&cgroup_mutex);
1167 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1168}
1169
1170/**
1171 * cgroup_clear_dir - remove subsys files in a cgroup directory
1172 * @cgrp: target cgroup
1173 * @subsys_mask: mask of the subsystem ids whose files should be removed
1174 */
1175static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1176{
1177 struct cgroup_subsys *ss;
1178 int i;
1179
1180 for_each_subsys(ss, i) {
1181 struct cftype *cfts;
1182
1183 if (!(subsys_mask & (1 << i)))
1184 continue;
1185 list_for_each_entry(cfts, &ss->cfts, node)
1186 cgroup_addrm_files(cgrp, cfts, false);
1187 }
1188}
1189
1190static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1191{
1192 struct cgroup_subsys *ss;
1193 unsigned int tmp_ss_mask;
1194 int ssid, i, ret;
1195
1196 lockdep_assert_held(&cgroup_mutex);
1197
1198 for_each_subsys(ss, ssid) {
1199 if (!(ss_mask & (1 << ssid)))
1200 continue;
1201
1202 /* if @ss has non-root csses attached to it, can't move */
1203 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1204 return -EBUSY;
1205
1206 /* can't move between two non-dummy roots either */
1207 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1208 return -EBUSY;
1209 }
1210
1211 /* skip creating root files on dfl_root for inhibited subsystems */
1212 tmp_ss_mask = ss_mask;
1213 if (dst_root == &cgrp_dfl_root)
1214 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1215
1216 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1217 if (ret) {
1218 if (dst_root != &cgrp_dfl_root)
1219 return ret;
1220
1221 /*
1222 * Rebinding back to the default root is not allowed to
1223 * fail. Using both default and non-default roots should
1224 * be rare. Moving subsystems back and forth even more so.
1225 * Just warn about it and continue.
1226 */
1227 if (cgrp_dfl_root_visible) {
1228 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1229 ret, ss_mask);
1230 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1231 }
1232 }
1233
1234 /*
1235 * Nothing can fail from this point on. Remove files for the
1236 * removed subsystems and rebind each subsystem.
1237 */
1238 for_each_subsys(ss, ssid)
1239 if (ss_mask & (1 << ssid))
1240 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1241
1242 for_each_subsys(ss, ssid) {
1243 struct cgroup_root *src_root;
1244 struct cgroup_subsys_state *css;
1245 struct css_set *cset;
1246
1247 if (!(ss_mask & (1 << ssid)))
1248 continue;
1249
1250 src_root = ss->root;
1251 css = cgroup_css(&src_root->cgrp, ss);
1252
1253 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1254
1255 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1256 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1257 ss->root = dst_root;
1258 css->cgroup = &dst_root->cgrp;
1259
1260 down_write(&css_set_rwsem);
1261 hash_for_each(css_set_table, i, cset, hlist)
1262 list_move_tail(&cset->e_cset_node[ss->id],
1263 &dst_root->cgrp.e_csets[ss->id]);
1264 up_write(&css_set_rwsem);
1265
1266 src_root->subsys_mask &= ~(1 << ssid);
1267 src_root->cgrp.subtree_control &= ~(1 << ssid);
1268 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1269
1270 /* default hierarchy doesn't enable controllers by default */
1271 dst_root->subsys_mask |= 1 << ssid;
1272 if (dst_root != &cgrp_dfl_root) {
1273 dst_root->cgrp.subtree_control |= 1 << ssid;
1274 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1275 }
1276
1277 if (ss->bind)
1278 ss->bind(css);
1279 }
1280
1281 kernfs_activate(dst_root->cgrp.kn);
1282 return 0;
1283}
1284
1285static int cgroup_show_options(struct seq_file *seq,
1286 struct kernfs_root *kf_root)
1287{
1288 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1289 struct cgroup_subsys *ss;
1290 int ssid;
1291
1292 for_each_subsys(ss, ssid)
1293 if (root->subsys_mask & (1 << ssid))
1294 seq_printf(seq, ",%s", ss->name);
1295 if (root->flags & CGRP_ROOT_NOPREFIX)
1296 seq_puts(seq, ",noprefix");
1297 if (root->flags & CGRP_ROOT_XATTR)
1298 seq_puts(seq, ",xattr");
1299
1300 spin_lock(&release_agent_path_lock);
1301 if (strlen(root->release_agent_path))
1302 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1303 spin_unlock(&release_agent_path_lock);
1304
1305 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1306 seq_puts(seq, ",clone_children");
1307 if (strlen(root->name))
1308 seq_printf(seq, ",name=%s", root->name);
1309 return 0;
1310}
1311
1312struct cgroup_sb_opts {
1313 unsigned int subsys_mask;
1314 unsigned int flags;
1315 char *release_agent;
1316 bool cpuset_clone_children;
1317 char *name;
1318 /* User explicitly requested empty subsystem */
1319 bool none;
1320};
1321
1322static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1323{
1324 char *token, *o = data;
1325 bool all_ss = false, one_ss = false;
1326 unsigned int mask = -1U;
1327 struct cgroup_subsys *ss;
1328 int nr_opts = 0;
1329 int i;
1330
1331#ifdef CONFIG_CPUSETS
1332 mask = ~(1U << cpuset_cgrp_id);
1333#endif
1334
1335 memset(opts, 0, sizeof(*opts));
1336
1337 while ((token = strsep(&o, ",")) != NULL) {
1338 nr_opts++;
1339
1340 if (!*token)
1341 return -EINVAL;
1342 if (!strcmp(token, "none")) {
1343 /* Explicitly have no subsystems */
1344 opts->none = true;
1345 continue;
1346 }
1347 if (!strcmp(token, "all")) {
1348 /* Mutually exclusive option 'all' + subsystem name */
1349 if (one_ss)
1350 return -EINVAL;
1351 all_ss = true;
1352 continue;
1353 }
1354 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1355 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1356 continue;
1357 }
1358 if (!strcmp(token, "noprefix")) {
1359 opts->flags |= CGRP_ROOT_NOPREFIX;
1360 continue;
1361 }
1362 if (!strcmp(token, "clone_children")) {
1363 opts->cpuset_clone_children = true;
1364 continue;
1365 }
1366 if (!strcmp(token, "xattr")) {
1367 opts->flags |= CGRP_ROOT_XATTR;
1368 continue;
1369 }
1370 if (!strncmp(token, "release_agent=", 14)) {
1371 /* Specifying two release agents is forbidden */
1372 if (opts->release_agent)
1373 return -EINVAL;
1374 opts->release_agent =
1375 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1376 if (!opts->release_agent)
1377 return -ENOMEM;
1378 continue;
1379 }
1380 if (!strncmp(token, "name=", 5)) {
1381 const char *name = token + 5;
1382 /* Can't specify an empty name */
1383 if (!strlen(name))
1384 return -EINVAL;
1385 /* Must match [\w.-]+ */
1386 for (i = 0; i < strlen(name); i++) {
1387 char c = name[i];
1388 if (isalnum(c))
1389 continue;
1390 if ((c == '.') || (c == '-') || (c == '_'))
1391 continue;
1392 return -EINVAL;
1393 }
1394 /* Specifying two names is forbidden */
1395 if (opts->name)
1396 return -EINVAL;
1397 opts->name = kstrndup(name,
1398 MAX_CGROUP_ROOT_NAMELEN - 1,
1399 GFP_KERNEL);
1400 if (!opts->name)
1401 return -ENOMEM;
1402
1403 continue;
1404 }
1405
1406 for_each_subsys(ss, i) {
1407 if (strcmp(token, ss->name))
1408 continue;
1409 if (ss->disabled)
1410 continue;
1411
1412 /* Mutually exclusive option 'all' + subsystem name */
1413 if (all_ss)
1414 return -EINVAL;
1415 opts->subsys_mask |= (1 << i);
1416 one_ss = true;
1417
1418 break;
1419 }
1420 if (i == CGROUP_SUBSYS_COUNT)
1421 return -ENOENT;
1422 }
1423
1424 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1425 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1426 if (nr_opts != 1) {
1427 pr_err("sane_behavior: no other mount options allowed\n");
1428 return -EINVAL;
1429 }
1430 return 0;
1431 }
1432
1433 /*
1434 * If the 'all' option was specified select all the subsystems,
1435 * otherwise if 'none', 'name=' and a subsystem name options were
1436 * not specified, let's default to 'all'
1437 */
1438 if (all_ss || (!one_ss && !opts->none && !opts->name))
1439 for_each_subsys(ss, i)
1440 if (!ss->disabled)
1441 opts->subsys_mask |= (1 << i);
1442
1443 /*
1444 * We either have to specify by name or by subsystems. (So all
1445 * empty hierarchies must have a name).
1446 */
1447 if (!opts->subsys_mask && !opts->name)
1448 return -EINVAL;
1449
1450 /*
1451 * Option noprefix was introduced just for backward compatibility
1452 * with the old cpuset, so we allow noprefix only if mounting just
1453 * the cpuset subsystem.
1454 */
1455 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1456 return -EINVAL;
1457
1458 /* Can't specify "none" and some subsystems */
1459 if (opts->subsys_mask && opts->none)
1460 return -EINVAL;
1461
1462 return 0;
1463}
1464
1465static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1466{
1467 int ret = 0;
1468 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1469 struct cgroup_sb_opts opts;
1470 unsigned int added_mask, removed_mask;
1471
1472 if (root == &cgrp_dfl_root) {
1473 pr_err("remount is not allowed\n");
1474 return -EINVAL;
1475 }
1476
1477 mutex_lock(&cgroup_mutex);
1478
1479 /* See what subsystems are wanted */
1480 ret = parse_cgroupfs_options(data, &opts);
1481 if (ret)
1482 goto out_unlock;
1483
1484 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1485 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1486 task_tgid_nr(current), current->comm);
1487
1488 added_mask = opts.subsys_mask & ~root->subsys_mask;
1489 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1490
1491 /* Don't allow flags or name to change at remount */
1492 if ((opts.flags ^ root->flags) ||
1493 (opts.name && strcmp(opts.name, root->name))) {
1494 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1495 opts.flags, opts.name ?: "", root->flags, root->name);
1496 ret = -EINVAL;
1497 goto out_unlock;
1498 }
1499
1500 /* remounting is not allowed for populated hierarchies */
1501 if (!list_empty(&root->cgrp.self.children)) {
1502 ret = -EBUSY;
1503 goto out_unlock;
1504 }
1505
1506 ret = rebind_subsystems(root, added_mask);
1507 if (ret)
1508 goto out_unlock;
1509
1510 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1511
1512 if (opts.release_agent) {
1513 spin_lock(&release_agent_path_lock);
1514 strcpy(root->release_agent_path, opts.release_agent);
1515 spin_unlock(&release_agent_path_lock);
1516 }
1517 out_unlock:
1518 kfree(opts.release_agent);
1519 kfree(opts.name);
1520 mutex_unlock(&cgroup_mutex);
1521 return ret;
1522}
1523
1524/*
1525 * To reduce the fork() overhead for systems that are not actually using
1526 * their cgroups capability, we don't maintain the lists running through
1527 * each css_set to its tasks until we see the list actually used - in other
1528 * words after the first mount.
1529 */
1530static bool use_task_css_set_links __read_mostly;
1531
1532static void cgroup_enable_task_cg_lists(void)
1533{
1534 struct task_struct *p, *g;
1535
1536 down_write(&css_set_rwsem);
1537
1538 if (use_task_css_set_links)
1539 goto out_unlock;
1540
1541 use_task_css_set_links = true;
1542
1543 /*
1544 * We need tasklist_lock because RCU is not safe against
1545 * while_each_thread(). Besides, a forking task that has passed
1546 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1547 * is not guaranteed to have its child immediately visible in the
1548 * tasklist if we walk through it with RCU.
1549 */
1550 read_lock(&tasklist_lock);
1551 do_each_thread(g, p) {
1552 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1553 task_css_set(p) != &init_css_set);
1554
1555 /*
1556 * We should check if the process is exiting, otherwise
1557 * it will race with cgroup_exit() in that the list
1558 * entry won't be deleted though the process has exited.
1559 * Do it while holding siglock so that we don't end up
1560 * racing against cgroup_exit().
1561 */
1562 spin_lock_irq(&p->sighand->siglock);
1563 if (!(p->flags & PF_EXITING)) {
1564 struct css_set *cset = task_css_set(p);
1565
1566 list_add(&p->cg_list, &cset->tasks);
1567 get_css_set(cset);
1568 }
1569 spin_unlock_irq(&p->sighand->siglock);
1570 } while_each_thread(g, p);
1571 read_unlock(&tasklist_lock);
1572out_unlock:
1573 up_write(&css_set_rwsem);
1574}
1575
1576static void init_cgroup_housekeeping(struct cgroup *cgrp)
1577{
1578 struct cgroup_subsys *ss;
1579 int ssid;
1580
1581 INIT_LIST_HEAD(&cgrp->self.sibling);
1582 INIT_LIST_HEAD(&cgrp->self.children);
1583 INIT_LIST_HEAD(&cgrp->cset_links);
1584 INIT_LIST_HEAD(&cgrp->release_list);
1585 INIT_LIST_HEAD(&cgrp->pidlists);
1586 mutex_init(&cgrp->pidlist_mutex);
1587 cgrp->self.cgroup = cgrp;
1588 cgrp->self.flags |= CSS_ONLINE;
1589
1590 for_each_subsys(ss, ssid)
1591 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1592
1593 init_waitqueue_head(&cgrp->offline_waitq);
1594}
1595
1596static void init_cgroup_root(struct cgroup_root *root,
1597 struct cgroup_sb_opts *opts)
1598{
1599 struct cgroup *cgrp = &root->cgrp;
1600
1601 INIT_LIST_HEAD(&root->root_list);
1602 atomic_set(&root->nr_cgrps, 1);
1603 cgrp->root = root;
1604 init_cgroup_housekeeping(cgrp);
1605 idr_init(&root->cgroup_idr);
1606
1607 root->flags = opts->flags;
1608 if (opts->release_agent)
1609 strcpy(root->release_agent_path, opts->release_agent);
1610 if (opts->name)
1611 strcpy(root->name, opts->name);
1612 if (opts->cpuset_clone_children)
1613 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1614}
1615
1616static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1617{
1618 LIST_HEAD(tmp_links);
1619 struct cgroup *root_cgrp = &root->cgrp;
1620 struct cftype *base_files;
1621 struct css_set *cset;
1622 int i, ret;
1623
1624 lockdep_assert_held(&cgroup_mutex);
1625
1626 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1627 if (ret < 0)
1628 goto out;
1629 root_cgrp->id = ret;
1630
1631 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1632 if (ret)
1633 goto out;
1634
1635 /*
1636 * We're accessing css_set_count without locking css_set_rwsem here,
1637 * but that's OK - it can only be increased by someone holding
1638 * cgroup_lock, and that's us. The worst that can happen is that we
1639 * have some link structures left over
1640 */
1641 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1642 if (ret)
1643 goto cancel_ref;
1644
1645 ret = cgroup_init_root_id(root);
1646 if (ret)
1647 goto cancel_ref;
1648
1649 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1650 KERNFS_ROOT_CREATE_DEACTIVATED,
1651 root_cgrp);
1652 if (IS_ERR(root->kf_root)) {
1653 ret = PTR_ERR(root->kf_root);
1654 goto exit_root_id;
1655 }
1656 root_cgrp->kn = root->kf_root->kn;
1657
1658 if (root == &cgrp_dfl_root)
1659 base_files = cgroup_dfl_base_files;
1660 else
1661 base_files = cgroup_legacy_base_files;
1662
1663 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1664 if (ret)
1665 goto destroy_root;
1666
1667 ret = rebind_subsystems(root, ss_mask);
1668 if (ret)
1669 goto destroy_root;
1670
1671 /*
1672 * There must be no failure case after here, since rebinding takes
1673 * care of subsystems' refcounts, which are explicitly dropped in
1674 * the failure exit path.
1675 */
1676 list_add(&root->root_list, &cgroup_roots);
1677 cgroup_root_count++;
1678
1679 /*
1680 * Link the root cgroup in this hierarchy into all the css_set
1681 * objects.
1682 */
1683 down_write(&css_set_rwsem);
1684 hash_for_each(css_set_table, i, cset, hlist)
1685 link_css_set(&tmp_links, cset, root_cgrp);
1686 up_write(&css_set_rwsem);
1687
1688 BUG_ON(!list_empty(&root_cgrp->self.children));
1689 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1690
1691 kernfs_activate(root_cgrp->kn);
1692 ret = 0;
1693 goto out;
1694
1695destroy_root:
1696 kernfs_destroy_root(root->kf_root);
1697 root->kf_root = NULL;
1698exit_root_id:
1699 cgroup_exit_root_id(root);
1700cancel_ref:
1701 percpu_ref_exit(&root_cgrp->self.refcnt);
1702out:
1703 free_cgrp_cset_links(&tmp_links);
1704 return ret;
1705}
1706
1707static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1708 int flags, const char *unused_dev_name,
1709 void *data)
1710{
1711 struct super_block *pinned_sb = NULL;
1712 struct cgroup_subsys *ss;
1713 struct cgroup_root *root;
1714 struct cgroup_sb_opts opts;
1715 struct dentry *dentry;
1716 int ret;
1717 int i;
1718 bool new_sb;
1719
1720 /*
1721 * The first time anyone tries to mount a cgroup, enable the list
1722 * linking each css_set to its tasks and fix up all existing tasks.
1723 */
1724 if (!use_task_css_set_links)
1725 cgroup_enable_task_cg_lists();
1726
1727 mutex_lock(&cgroup_mutex);
1728
1729 /* First find the desired set of subsystems */
1730 ret = parse_cgroupfs_options(data, &opts);
1731 if (ret)
1732 goto out_unlock;
1733
1734 /* look for a matching existing root */
1735 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1736 cgrp_dfl_root_visible = true;
1737 root = &cgrp_dfl_root;
1738 cgroup_get(&root->cgrp);
1739 ret = 0;
1740 goto out_unlock;
1741 }
1742
1743 /*
1744 * Destruction of cgroup root is asynchronous, so subsystems may
1745 * still be dying after the previous unmount. Let's drain the
1746 * dying subsystems. We just need to ensure that the ones
1747 * unmounted previously finish dying and don't care about new ones
1748 * starting. Testing ref liveliness is good enough.
1749 */
1750 for_each_subsys(ss, i) {
1751 if (!(opts.subsys_mask & (1 << i)) ||
1752 ss->root == &cgrp_dfl_root)
1753 continue;
1754
1755 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1756 mutex_unlock(&cgroup_mutex);
1757 msleep(10);
1758 ret = restart_syscall();
1759 goto out_free;
1760 }
1761 cgroup_put(&ss->root->cgrp);
1762 }
1763
1764 for_each_root(root) {
1765 bool name_match = false;
1766
1767 if (root == &cgrp_dfl_root)
1768 continue;
1769
1770 /*
1771 * If we asked for a name then it must match. Also, if
1772 * name matches but sybsys_mask doesn't, we should fail.
1773 * Remember whether name matched.
1774 */
1775 if (opts.name) {
1776 if (strcmp(opts.name, root->name))
1777 continue;
1778 name_match = true;
1779 }
1780
1781 /*
1782 * If we asked for subsystems (or explicitly for no
1783 * subsystems) then they must match.
1784 */
1785 if ((opts.subsys_mask || opts.none) &&
1786 (opts.subsys_mask != root->subsys_mask)) {
1787 if (!name_match)
1788 continue;
1789 ret = -EBUSY;
1790 goto out_unlock;
1791 }
1792
1793 if (root->flags ^ opts.flags)
1794 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1795
1796 /*
1797 * We want to reuse @root whose lifetime is governed by its
1798 * ->cgrp. Let's check whether @root is alive and keep it
1799 * that way. As cgroup_kill_sb() can happen anytime, we
1800 * want to block it by pinning the sb so that @root doesn't
1801 * get killed before mount is complete.
1802 *
1803 * With the sb pinned, tryget_live can reliably indicate
1804 * whether @root can be reused. If it's being killed,
1805 * drain it. We can use wait_queue for the wait but this
1806 * path is super cold. Let's just sleep a bit and retry.
1807 */
1808 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1809 if (IS_ERR(pinned_sb) ||
1810 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1811 mutex_unlock(&cgroup_mutex);
1812 if (!IS_ERR_OR_NULL(pinned_sb))
1813 deactivate_super(pinned_sb);
1814 msleep(10);
1815 ret = restart_syscall();
1816 goto out_free;
1817 }
1818
1819 ret = 0;
1820 goto out_unlock;
1821 }
1822
1823 /*
1824 * No such thing, create a new one. name= matching without subsys
1825 * specification is allowed for already existing hierarchies but we
1826 * can't create new one without subsys specification.
1827 */
1828 if (!opts.subsys_mask && !opts.none) {
1829 ret = -EINVAL;
1830 goto out_unlock;
1831 }
1832
1833 root = kzalloc(sizeof(*root), GFP_KERNEL);
1834 if (!root) {
1835 ret = -ENOMEM;
1836 goto out_unlock;
1837 }
1838
1839 init_cgroup_root(root, &opts);
1840
1841 ret = cgroup_setup_root(root, opts.subsys_mask);
1842 if (ret)
1843 cgroup_free_root(root);
1844
1845out_unlock:
1846 mutex_unlock(&cgroup_mutex);
1847out_free:
1848 kfree(opts.release_agent);
1849 kfree(opts.name);
1850
1851 if (ret)
1852 return ERR_PTR(ret);
1853
1854 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1855 CGROUP_SUPER_MAGIC, &new_sb);
1856 if (IS_ERR(dentry) || !new_sb)
1857 cgroup_put(&root->cgrp);
1858
1859 /*
1860 * If @pinned_sb, we're reusing an existing root and holding an
1861 * extra ref on its sb. Mount is complete. Put the extra ref.
1862 */
1863 if (pinned_sb) {
1864 WARN_ON(new_sb);
1865 deactivate_super(pinned_sb);
1866 }
1867
1868 return dentry;
1869}
1870
1871static void cgroup_kill_sb(struct super_block *sb)
1872{
1873 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1874 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1875
1876 /*
1877 * If @root doesn't have any mounts or children, start killing it.
1878 * This prevents new mounts by disabling percpu_ref_tryget_live().
1879 * cgroup_mount() may wait for @root's release.
1880 *
1881 * And don't kill the default root.
1882 */
1883 if (css_has_online_children(&root->cgrp.self) ||
1884 root == &cgrp_dfl_root)
1885 cgroup_put(&root->cgrp);
1886 else
1887 percpu_ref_kill(&root->cgrp.self.refcnt);
1888
1889 kernfs_kill_sb(sb);
1890}
1891
1892static struct file_system_type cgroup_fs_type = {
1893 .name = "cgroup",
1894 .mount = cgroup_mount,
1895 .kill_sb = cgroup_kill_sb,
1896};
1897
1898static struct kobject *cgroup_kobj;
1899
1900/**
1901 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1902 * @task: target task
1903 * @buf: the buffer to write the path into
1904 * @buflen: the length of the buffer
1905 *
1906 * Determine @task's cgroup on the first (the one with the lowest non-zero
1907 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1908 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1909 * cgroup controller callbacks.
1910 *
1911 * Return value is the same as kernfs_path().
1912 */
1913char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1914{
1915 struct cgroup_root *root;
1916 struct cgroup *cgrp;
1917 int hierarchy_id = 1;
1918 char *path = NULL;
1919
1920 mutex_lock(&cgroup_mutex);
1921 down_read(&css_set_rwsem);
1922
1923 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1924
1925 if (root) {
1926 cgrp = task_cgroup_from_root(task, root);
1927 path = cgroup_path(cgrp, buf, buflen);
1928 } else {
1929 /* if no hierarchy exists, everyone is in "/" */
1930 if (strlcpy(buf, "/", buflen) < buflen)
1931 path = buf;
1932 }
1933
1934 up_read(&css_set_rwsem);
1935 mutex_unlock(&cgroup_mutex);
1936 return path;
1937}
1938EXPORT_SYMBOL_GPL(task_cgroup_path);
1939
1940/* used to track tasks and other necessary states during migration */
1941struct cgroup_taskset {
1942 /* the src and dst cset list running through cset->mg_node */
1943 struct list_head src_csets;
1944 struct list_head dst_csets;
1945
1946 /*
1947 * Fields for cgroup_taskset_*() iteration.
1948 *
1949 * Before migration is committed, the target migration tasks are on
1950 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1951 * the csets on ->dst_csets. ->csets point to either ->src_csets
1952 * or ->dst_csets depending on whether migration is committed.
1953 *
1954 * ->cur_csets and ->cur_task point to the current task position
1955 * during iteration.
1956 */
1957 struct list_head *csets;
1958 struct css_set *cur_cset;
1959 struct task_struct *cur_task;
1960};
1961
1962/**
1963 * cgroup_taskset_first - reset taskset and return the first task
1964 * @tset: taskset of interest
1965 *
1966 * @tset iteration is initialized and the first task is returned.
1967 */
1968struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1969{
1970 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1971 tset->cur_task = NULL;
1972
1973 return cgroup_taskset_next(tset);
1974}
1975
1976/**
1977 * cgroup_taskset_next - iterate to the next task in taskset
1978 * @tset: taskset of interest
1979 *
1980 * Return the next task in @tset. Iteration must have been initialized
1981 * with cgroup_taskset_first().
1982 */
1983struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1984{
1985 struct css_set *cset = tset->cur_cset;
1986 struct task_struct *task = tset->cur_task;
1987
1988 while (&cset->mg_node != tset->csets) {
1989 if (!task)
1990 task = list_first_entry(&cset->mg_tasks,
1991 struct task_struct, cg_list);
1992 else
1993 task = list_next_entry(task, cg_list);
1994
1995 if (&task->cg_list != &cset->mg_tasks) {
1996 tset->cur_cset = cset;
1997 tset->cur_task = task;
1998 return task;
1999 }
2000
2001 cset = list_next_entry(cset, mg_node);
2002 task = NULL;
2003 }
2004
2005 return NULL;
2006}
2007
2008/**
2009 * cgroup_task_migrate - move a task from one cgroup to another.
2010 * @old_cgrp: the cgroup @tsk is being migrated from
2011 * @tsk: the task being migrated
2012 * @new_cset: the new css_set @tsk is being attached to
2013 *
2014 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2015 */
2016static void cgroup_task_migrate(struct cgroup *old_cgrp,
2017 struct task_struct *tsk,
2018 struct css_set *new_cset)
2019{
2020 struct css_set *old_cset;
2021
2022 lockdep_assert_held(&cgroup_mutex);
2023 lockdep_assert_held(&css_set_rwsem);
2024
2025 /*
2026 * We are synchronized through threadgroup_lock() against PF_EXITING
2027 * setting such that we can't race against cgroup_exit() changing the
2028 * css_set to init_css_set and dropping the old one.
2029 */
2030 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2031 old_cset = task_css_set(tsk);
2032
2033 get_css_set(new_cset);
2034 rcu_assign_pointer(tsk->cgroups, new_cset);
2035
2036 /*
2037 * Use move_tail so that cgroup_taskset_first() still returns the
2038 * leader after migration. This works because cgroup_migrate()
2039 * ensures that the dst_cset of the leader is the first on the
2040 * tset's dst_csets list.
2041 */
2042 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2043
2044 /*
2045 * We just gained a reference on old_cset by taking it from the
2046 * task. As trading it for new_cset is protected by cgroup_mutex,
2047 * we're safe to drop it here; it will be freed under RCU.
2048 */
2049 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
2050 put_css_set_locked(old_cset, false);
2051}
2052
2053/**
2054 * cgroup_migrate_finish - cleanup after attach
2055 * @preloaded_csets: list of preloaded css_sets
2056 *
2057 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2058 * those functions for details.
2059 */
2060static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2061{
2062 struct css_set *cset, *tmp_cset;
2063
2064 lockdep_assert_held(&cgroup_mutex);
2065
2066 down_write(&css_set_rwsem);
2067 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2068 cset->mg_src_cgrp = NULL;
2069 cset->mg_dst_cset = NULL;
2070 list_del_init(&cset->mg_preload_node);
2071 put_css_set_locked(cset, false);
2072 }
2073 up_write(&css_set_rwsem);
2074}
2075
2076/**
2077 * cgroup_migrate_add_src - add a migration source css_set
2078 * @src_cset: the source css_set to add
2079 * @dst_cgrp: the destination cgroup
2080 * @preloaded_csets: list of preloaded css_sets
2081 *
2082 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2083 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2084 * up by cgroup_migrate_finish().
2085 *
2086 * This function may be called without holding threadgroup_lock even if the
2087 * target is a process. Threads may be created and destroyed but as long
2088 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2089 * the preloaded css_sets are guaranteed to cover all migrations.
2090 */
2091static void cgroup_migrate_add_src(struct css_set *src_cset,
2092 struct cgroup *dst_cgrp,
2093 struct list_head *preloaded_csets)
2094{
2095 struct cgroup *src_cgrp;
2096
2097 lockdep_assert_held(&cgroup_mutex);
2098 lockdep_assert_held(&css_set_rwsem);
2099
2100 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2101
2102 if (!list_empty(&src_cset->mg_preload_node))
2103 return;
2104
2105 WARN_ON(src_cset->mg_src_cgrp);
2106 WARN_ON(!list_empty(&src_cset->mg_tasks));
2107 WARN_ON(!list_empty(&src_cset->mg_node));
2108
2109 src_cset->mg_src_cgrp = src_cgrp;
2110 get_css_set(src_cset);
2111 list_add(&src_cset->mg_preload_node, preloaded_csets);
2112}
2113
2114/**
2115 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2116 * @dst_cgrp: the destination cgroup (may be %NULL)
2117 * @preloaded_csets: list of preloaded source css_sets
2118 *
2119 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2120 * have been preloaded to @preloaded_csets. This function looks up and
2121 * pins all destination css_sets, links each to its source, and append them
2122 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2123 * source css_set is assumed to be its cgroup on the default hierarchy.
2124 *
2125 * This function must be called after cgroup_migrate_add_src() has been
2126 * called on each migration source css_set. After migration is performed
2127 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2128 * @preloaded_csets.
2129 */
2130static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2131 struct list_head *preloaded_csets)
2132{
2133 LIST_HEAD(csets);
2134 struct css_set *src_cset, *tmp_cset;
2135
2136 lockdep_assert_held(&cgroup_mutex);
2137
2138 /*
2139 * Except for the root, child_subsys_mask must be zero for a cgroup
2140 * with tasks so that child cgroups don't compete against tasks.
2141 */
2142 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2143 dst_cgrp->child_subsys_mask)
2144 return -EBUSY;
2145
2146 /* look up the dst cset for each src cset and link it to src */
2147 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2148 struct css_set *dst_cset;
2149
2150 dst_cset = find_css_set(src_cset,
2151 dst_cgrp ?: src_cset->dfl_cgrp);
2152 if (!dst_cset)
2153 goto err;
2154
2155 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2156
2157 /*
2158 * If src cset equals dst, it's noop. Drop the src.
2159 * cgroup_migrate() will skip the cset too. Note that we
2160 * can't handle src == dst as some nodes are used by both.
2161 */
2162 if (src_cset == dst_cset) {
2163 src_cset->mg_src_cgrp = NULL;
2164 list_del_init(&src_cset->mg_preload_node);
2165 put_css_set(src_cset, false);
2166 put_css_set(dst_cset, false);
2167 continue;
2168 }
2169
2170 src_cset->mg_dst_cset = dst_cset;
2171
2172 if (list_empty(&dst_cset->mg_preload_node))
2173 list_add(&dst_cset->mg_preload_node, &csets);
2174 else
2175 put_css_set(dst_cset, false);
2176 }
2177
2178 list_splice_tail(&csets, preloaded_csets);
2179 return 0;
2180err:
2181 cgroup_migrate_finish(&csets);
2182 return -ENOMEM;
2183}
2184
2185/**
2186 * cgroup_migrate - migrate a process or task to a cgroup
2187 * @cgrp: the destination cgroup
2188 * @leader: the leader of the process or the task to migrate
2189 * @threadgroup: whether @leader points to the whole process or a single task
2190 *
2191 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2192 * process, the caller must be holding threadgroup_lock of @leader. The
2193 * caller is also responsible for invoking cgroup_migrate_add_src() and
2194 * cgroup_migrate_prepare_dst() on the targets before invoking this
2195 * function and following up with cgroup_migrate_finish().
2196 *
2197 * As long as a controller's ->can_attach() doesn't fail, this function is
2198 * guaranteed to succeed. This means that, excluding ->can_attach()
2199 * failure, when migrating multiple targets, the success or failure can be
2200 * decided for all targets by invoking group_migrate_prepare_dst() before
2201 * actually starting migrating.
2202 */
2203static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2204 bool threadgroup)
2205{
2206 struct cgroup_taskset tset = {
2207 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2208 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2209 .csets = &tset.src_csets,
2210 };
2211 struct cgroup_subsys_state *css, *failed_css = NULL;
2212 struct css_set *cset, *tmp_cset;
2213 struct task_struct *task, *tmp_task;
2214 int i, ret;
2215
2216 /*
2217 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2218 * already PF_EXITING could be freed from underneath us unless we
2219 * take an rcu_read_lock.
2220 */
2221 down_write(&css_set_rwsem);
2222 rcu_read_lock();
2223 task = leader;
2224 do {
2225 /* @task either already exited or can't exit until the end */
2226 if (task->flags & PF_EXITING)
2227 goto next;
2228
2229 /* leave @task alone if post_fork() hasn't linked it yet */
2230 if (list_empty(&task->cg_list))
2231 goto next;
2232
2233 cset = task_css_set(task);
2234 if (!cset->mg_src_cgrp)
2235 goto next;
2236
2237 /*
2238 * cgroup_taskset_first() must always return the leader.
2239 * Take care to avoid disturbing the ordering.
2240 */
2241 list_move_tail(&task->cg_list, &cset->mg_tasks);
2242 if (list_empty(&cset->mg_node))
2243 list_add_tail(&cset->mg_node, &tset.src_csets);
2244 if (list_empty(&cset->mg_dst_cset->mg_node))
2245 list_move_tail(&cset->mg_dst_cset->mg_node,
2246 &tset.dst_csets);
2247 next:
2248 if (!threadgroup)
2249 break;
2250 } while_each_thread(leader, task);
2251 rcu_read_unlock();
2252 up_write(&css_set_rwsem);
2253
2254 /* methods shouldn't be called if no task is actually migrating */
2255 if (list_empty(&tset.src_csets))
2256 return 0;
2257
2258 /* check that we can legitimately attach to the cgroup */
2259 for_each_e_css(css, i, cgrp) {
2260 if (css->ss->can_attach) {
2261 ret = css->ss->can_attach(css, &tset);
2262 if (ret) {
2263 failed_css = css;
2264 goto out_cancel_attach;
2265 }
2266 }
2267 }
2268
2269 /*
2270 * Now that we're guaranteed success, proceed to move all tasks to
2271 * the new cgroup. There are no failure cases after here, so this
2272 * is the commit point.
2273 */
2274 down_write(&css_set_rwsem);
2275 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2276 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2277 cgroup_task_migrate(cset->mg_src_cgrp, task,
2278 cset->mg_dst_cset);
2279 }
2280 up_write(&css_set_rwsem);
2281
2282 /*
2283 * Migration is committed, all target tasks are now on dst_csets.
2284 * Nothing is sensitive to fork() after this point. Notify
2285 * controllers that migration is complete.
2286 */
2287 tset.csets = &tset.dst_csets;
2288
2289 for_each_e_css(css, i, cgrp)
2290 if (css->ss->attach)
2291 css->ss->attach(css, &tset);
2292
2293 ret = 0;
2294 goto out_release_tset;
2295
2296out_cancel_attach:
2297 for_each_e_css(css, i, cgrp) {
2298 if (css == failed_css)
2299 break;
2300 if (css->ss->cancel_attach)
2301 css->ss->cancel_attach(css, &tset);
2302 }
2303out_release_tset:
2304 down_write(&css_set_rwsem);
2305 list_splice_init(&tset.dst_csets, &tset.src_csets);
2306 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2307 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2308 list_del_init(&cset->mg_node);
2309 }
2310 up_write(&css_set_rwsem);
2311 return ret;
2312}
2313
2314/**
2315 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2316 * @dst_cgrp: the cgroup to attach to
2317 * @leader: the task or the leader of the threadgroup to be attached
2318 * @threadgroup: attach the whole threadgroup?
2319 *
2320 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2321 */
2322static int cgroup_attach_task(struct cgroup *dst_cgrp,
2323 struct task_struct *leader, bool threadgroup)
2324{
2325 LIST_HEAD(preloaded_csets);
2326 struct task_struct *task;
2327 int ret;
2328
2329 /* look up all src csets */
2330 down_read(&css_set_rwsem);
2331 rcu_read_lock();
2332 task = leader;
2333 do {
2334 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2335 &preloaded_csets);
2336 if (!threadgroup)
2337 break;
2338 } while_each_thread(leader, task);
2339 rcu_read_unlock();
2340 up_read(&css_set_rwsem);
2341
2342 /* prepare dst csets and commit */
2343 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2344 if (!ret)
2345 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2346
2347 cgroup_migrate_finish(&preloaded_csets);
2348 return ret;
2349}
2350
2351/*
2352 * Find the task_struct of the task to attach by vpid and pass it along to the
2353 * function to attach either it or all tasks in its threadgroup. Will lock
2354 * cgroup_mutex and threadgroup.
2355 */
2356static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2357 size_t nbytes, loff_t off, bool threadgroup)
2358{
2359 struct task_struct *tsk;
2360 const struct cred *cred = current_cred(), *tcred;
2361 struct cgroup *cgrp;
2362 pid_t pid;
2363 int ret;
2364
2365 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2366 return -EINVAL;
2367
2368 cgrp = cgroup_kn_lock_live(of->kn);
2369 if (!cgrp)
2370 return -ENODEV;
2371
2372retry_find_task:
2373 rcu_read_lock();
2374 if (pid) {
2375 tsk = find_task_by_vpid(pid);
2376 if (!tsk) {
2377 rcu_read_unlock();
2378 ret = -ESRCH;
2379 goto out_unlock_cgroup;
2380 }
2381 /*
2382 * even if we're attaching all tasks in the thread group, we
2383 * only need to check permissions on one of them.
2384 */
2385 tcred = __task_cred(tsk);
2386 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2387 !uid_eq(cred->euid, tcred->uid) &&
2388 !uid_eq(cred->euid, tcred->suid)) {
2389 rcu_read_unlock();
2390 ret = -EACCES;
2391 goto out_unlock_cgroup;
2392 }
2393 } else
2394 tsk = current;
2395
2396 if (threadgroup)
2397 tsk = tsk->group_leader;
2398
2399 /*
2400 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2401 * trapped in a cpuset, or RT worker may be born in a cgroup
2402 * with no rt_runtime allocated. Just say no.
2403 */
2404 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2405 ret = -EINVAL;
2406 rcu_read_unlock();
2407 goto out_unlock_cgroup;
2408 }
2409
2410 get_task_struct(tsk);
2411 rcu_read_unlock();
2412
2413 threadgroup_lock(tsk);
2414 if (threadgroup) {
2415 if (!thread_group_leader(tsk)) {
2416 /*
2417 * a race with de_thread from another thread's exec()
2418 * may strip us of our leadership, if this happens,
2419 * there is no choice but to throw this task away and
2420 * try again; this is
2421 * "double-double-toil-and-trouble-check locking".
2422 */
2423 threadgroup_unlock(tsk);
2424 put_task_struct(tsk);
2425 goto retry_find_task;
2426 }
2427 }
2428
2429 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2430
2431 threadgroup_unlock(tsk);
2432
2433 put_task_struct(tsk);
2434out_unlock_cgroup:
2435 cgroup_kn_unlock(of->kn);
2436 return ret ?: nbytes;
2437}
2438
2439/**
2440 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2441 * @from: attach to all cgroups of a given task
2442 * @tsk: the task to be attached
2443 */
2444int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2445{
2446 struct cgroup_root *root;
2447 int retval = 0;
2448
2449 mutex_lock(&cgroup_mutex);
2450 for_each_root(root) {
2451 struct cgroup *from_cgrp;
2452
2453 if (root == &cgrp_dfl_root)
2454 continue;
2455
2456 down_read(&css_set_rwsem);
2457 from_cgrp = task_cgroup_from_root(from, root);
2458 up_read(&css_set_rwsem);
2459
2460 retval = cgroup_attach_task(from_cgrp, tsk, false);
2461 if (retval)
2462 break;
2463 }
2464 mutex_unlock(&cgroup_mutex);
2465
2466 return retval;
2467}
2468EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2469
2470static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2471 char *buf, size_t nbytes, loff_t off)
2472{
2473 return __cgroup_procs_write(of, buf, nbytes, off, false);
2474}
2475
2476static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2477 char *buf, size_t nbytes, loff_t off)
2478{
2479 return __cgroup_procs_write(of, buf, nbytes, off, true);
2480}
2481
2482static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2483 char *buf, size_t nbytes, loff_t off)
2484{
2485 struct cgroup *cgrp;
2486
2487 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2488
2489 cgrp = cgroup_kn_lock_live(of->kn);
2490 if (!cgrp)
2491 return -ENODEV;
2492 spin_lock(&release_agent_path_lock);
2493 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2494 sizeof(cgrp->root->release_agent_path));
2495 spin_unlock(&release_agent_path_lock);
2496 cgroup_kn_unlock(of->kn);
2497 return nbytes;
2498}
2499
2500static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2501{
2502 struct cgroup *cgrp = seq_css(seq)->cgroup;
2503
2504 spin_lock(&release_agent_path_lock);
2505 seq_puts(seq, cgrp->root->release_agent_path);
2506 spin_unlock(&release_agent_path_lock);
2507 seq_putc(seq, '\n');
2508 return 0;
2509}
2510
2511static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2512{
2513 seq_puts(seq, "0\n");
2514 return 0;
2515}
2516
2517static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2518{
2519 struct cgroup_subsys *ss;
2520 bool printed = false;
2521 int ssid;
2522
2523 for_each_subsys(ss, ssid) {
2524 if (ss_mask & (1 << ssid)) {
2525 if (printed)
2526 seq_putc(seq, ' ');
2527 seq_printf(seq, "%s", ss->name);
2528 printed = true;
2529 }
2530 }
2531 if (printed)
2532 seq_putc(seq, '\n');
2533}
2534
2535/* show controllers which are currently attached to the default hierarchy */
2536static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2537{
2538 struct cgroup *cgrp = seq_css(seq)->cgroup;
2539
2540 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2541 ~cgrp_dfl_root_inhibit_ss_mask);
2542 return 0;
2543}
2544
2545/* show controllers which are enabled from the parent */
2546static int cgroup_controllers_show(struct seq_file *seq, void *v)
2547{
2548 struct cgroup *cgrp = seq_css(seq)->cgroup;
2549
2550 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2551 return 0;
2552}
2553
2554/* show controllers which are enabled for a given cgroup's children */
2555static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2556{
2557 struct cgroup *cgrp = seq_css(seq)->cgroup;
2558
2559 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2560 return 0;
2561}
2562
2563/**
2564 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2565 * @cgrp: root of the subtree to update csses for
2566 *
2567 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2568 * css associations need to be updated accordingly. This function looks up
2569 * all css_sets which are attached to the subtree, creates the matching
2570 * updated css_sets and migrates the tasks to the new ones.
2571 */
2572static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2573{
2574 LIST_HEAD(preloaded_csets);
2575 struct cgroup_subsys_state *css;
2576 struct css_set *src_cset;
2577 int ret;
2578
2579 lockdep_assert_held(&cgroup_mutex);
2580
2581 /* look up all csses currently attached to @cgrp's subtree */
2582 down_read(&css_set_rwsem);
2583 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2584 struct cgrp_cset_link *link;
2585
2586 /* self is not affected by child_subsys_mask change */
2587 if (css->cgroup == cgrp)
2588 continue;
2589
2590 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2591 cgroup_migrate_add_src(link->cset, cgrp,
2592 &preloaded_csets);
2593 }
2594 up_read(&css_set_rwsem);
2595
2596 /* NULL dst indicates self on default hierarchy */
2597 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2598 if (ret)
2599 goto out_finish;
2600
2601 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2602 struct task_struct *last_task = NULL, *task;
2603
2604 /* src_csets precede dst_csets, break on the first dst_cset */
2605 if (!src_cset->mg_src_cgrp)
2606 break;
2607
2608 /*
2609 * All tasks in src_cset need to be migrated to the
2610 * matching dst_cset. Empty it process by process. We
2611 * walk tasks but migrate processes. The leader might even
2612 * belong to a different cset but such src_cset would also
2613 * be among the target src_csets because the default
2614 * hierarchy enforces per-process membership.
2615 */
2616 while (true) {
2617 down_read(&css_set_rwsem);
2618 task = list_first_entry_or_null(&src_cset->tasks,
2619 struct task_struct, cg_list);
2620 if (task) {
2621 task = task->group_leader;
2622 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2623 get_task_struct(task);
2624 }
2625 up_read(&css_set_rwsem);
2626
2627 if (!task)
2628 break;
2629
2630 /* guard against possible infinite loop */
2631 if (WARN(last_task == task,
2632 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2633 goto out_finish;
2634 last_task = task;
2635
2636 threadgroup_lock(task);
2637 /* raced against de_thread() from another thread? */
2638 if (!thread_group_leader(task)) {
2639 threadgroup_unlock(task);
2640 put_task_struct(task);
2641 continue;
2642 }
2643
2644 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2645
2646 threadgroup_unlock(task);
2647 put_task_struct(task);
2648
2649 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2650 goto out_finish;
2651 }
2652 }
2653
2654out_finish:
2655 cgroup_migrate_finish(&preloaded_csets);
2656 return ret;
2657}
2658
2659/* change the enabled child controllers for a cgroup in the default hierarchy */
2660static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2661 char *buf, size_t nbytes,
2662 loff_t off)
2663{
2664 unsigned int enable = 0, disable = 0;
2665 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
2666 struct cgroup *cgrp, *child;
2667 struct cgroup_subsys *ss;
2668 char *tok;
2669 int ssid, ret;
2670
2671 /*
2672 * Parse input - space separated list of subsystem names prefixed
2673 * with either + or -.
2674 */
2675 buf = strstrip(buf);
2676 while ((tok = strsep(&buf, " "))) {
2677 if (tok[0] == '\0')
2678 continue;
2679 for_each_subsys(ss, ssid) {
2680 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2681 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2682 continue;
2683
2684 if (*tok == '+') {
2685 enable |= 1 << ssid;
2686 disable &= ~(1 << ssid);
2687 } else if (*tok == '-') {
2688 disable |= 1 << ssid;
2689 enable &= ~(1 << ssid);
2690 } else {
2691 return -EINVAL;
2692 }
2693 break;
2694 }
2695 if (ssid == CGROUP_SUBSYS_COUNT)
2696 return -EINVAL;
2697 }
2698
2699 cgrp = cgroup_kn_lock_live(of->kn);
2700 if (!cgrp)
2701 return -ENODEV;
2702
2703 for_each_subsys(ss, ssid) {
2704 if (enable & (1 << ssid)) {
2705 if (cgrp->subtree_control & (1 << ssid)) {
2706 enable &= ~(1 << ssid);
2707 continue;
2708 }
2709
2710 /* unavailable or not enabled on the parent? */
2711 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2712 (cgroup_parent(cgrp) &&
2713 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2714 ret = -ENOENT;
2715 goto out_unlock;
2716 }
2717
2718 /*
2719 * @ss is already enabled through dependency and
2720 * we'll just make it visible. Skip draining.
2721 */
2722 if (cgrp->child_subsys_mask & (1 << ssid))
2723 continue;
2724
2725 /*
2726 * Because css offlining is asynchronous, userland
2727 * might try to re-enable the same controller while
2728 * the previous instance is still around. In such
2729 * cases, wait till it's gone using offline_waitq.
2730 */
2731 cgroup_for_each_live_child(child, cgrp) {
2732 DEFINE_WAIT(wait);
2733
2734 if (!cgroup_css(child, ss))
2735 continue;
2736
2737 cgroup_get(child);
2738 prepare_to_wait(&child->offline_waitq, &wait,
2739 TASK_UNINTERRUPTIBLE);
2740 cgroup_kn_unlock(of->kn);
2741 schedule();
2742 finish_wait(&child->offline_waitq, &wait);
2743 cgroup_put(child);
2744
2745 return restart_syscall();
2746 }
2747 } else if (disable & (1 << ssid)) {
2748 if (!(cgrp->subtree_control & (1 << ssid))) {
2749 disable &= ~(1 << ssid);
2750 continue;
2751 }
2752
2753 /* a child has it enabled? */
2754 cgroup_for_each_live_child(child, cgrp) {
2755 if (child->subtree_control & (1 << ssid)) {
2756 ret = -EBUSY;
2757 goto out_unlock;
2758 }
2759 }
2760 }
2761 }
2762
2763 if (!enable && !disable) {
2764 ret = 0;
2765 goto out_unlock;
2766 }
2767
2768 /*
2769 * Except for the root, subtree_control must be zero for a cgroup
2770 * with tasks so that child cgroups don't compete against tasks.
2771 */
2772 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2773 ret = -EBUSY;
2774 goto out_unlock;
2775 }
2776
2777 /*
2778 * Update subsys masks and calculate what needs to be done. More
2779 * subsystems than specified may need to be enabled or disabled
2780 * depending on subsystem dependencies.
2781 */
2782 cgrp->subtree_control |= enable;
2783 cgrp->subtree_control &= ~disable;
2784
2785 old_ctrl = cgrp->child_subsys_mask;
2786 cgroup_refresh_child_subsys_mask(cgrp);
2787 new_ctrl = cgrp->child_subsys_mask;
2788
2789 css_enable = ~old_ctrl & new_ctrl;
2790 css_disable = old_ctrl & ~new_ctrl;
2791 enable |= css_enable;
2792 disable |= css_disable;
2793
2794 /*
2795 * Create new csses or make the existing ones visible. A css is
2796 * created invisible if it's being implicitly enabled through
2797 * dependency. An invisible css is made visible when the userland
2798 * explicitly enables it.
2799 */
2800 for_each_subsys(ss, ssid) {
2801 if (!(enable & (1 << ssid)))
2802 continue;
2803
2804 cgroup_for_each_live_child(child, cgrp) {
2805 if (css_enable & (1 << ssid))
2806 ret = create_css(child, ss,
2807 cgrp->subtree_control & (1 << ssid));
2808 else
2809 ret = cgroup_populate_dir(child, 1 << ssid);
2810 if (ret)
2811 goto err_undo_css;
2812 }
2813 }
2814
2815 /*
2816 * At this point, cgroup_e_css() results reflect the new csses
2817 * making the following cgroup_update_dfl_csses() properly update
2818 * css associations of all tasks in the subtree.
2819 */
2820 ret = cgroup_update_dfl_csses(cgrp);
2821 if (ret)
2822 goto err_undo_css;
2823
2824 /*
2825 * All tasks are migrated out of disabled csses. Kill or hide
2826 * them. A css is hidden when the userland requests it to be
2827 * disabled while other subsystems are still depending on it. The
2828 * css must not actively control resources and be in the vanilla
2829 * state if it's made visible again later. Controllers which may
2830 * be depended upon should provide ->css_reset() for this purpose.
2831 */
2832 for_each_subsys(ss, ssid) {
2833 if (!(disable & (1 << ssid)))
2834 continue;
2835
2836 cgroup_for_each_live_child(child, cgrp) {
2837 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2838
2839 if (css_disable & (1 << ssid)) {
2840 kill_css(css);
2841 } else {
2842 cgroup_clear_dir(child, 1 << ssid);
2843 if (ss->css_reset)
2844 ss->css_reset(css);
2845 }
2846 }
2847 }
2848
2849 kernfs_activate(cgrp->kn);
2850 ret = 0;
2851out_unlock:
2852 cgroup_kn_unlock(of->kn);
2853 return ret ?: nbytes;
2854
2855err_undo_css:
2856 cgrp->subtree_control &= ~enable;
2857 cgrp->subtree_control |= disable;
2858 cgroup_refresh_child_subsys_mask(cgrp);
2859
2860 for_each_subsys(ss, ssid) {
2861 if (!(enable & (1 << ssid)))
2862 continue;
2863
2864 cgroup_for_each_live_child(child, cgrp) {
2865 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2866
2867 if (!css)
2868 continue;
2869
2870 if (css_enable & (1 << ssid))
2871 kill_css(css);
2872 else
2873 cgroup_clear_dir(child, 1 << ssid);
2874 }
2875 }
2876 goto out_unlock;
2877}
2878
2879static int cgroup_populated_show(struct seq_file *seq, void *v)
2880{
2881 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2882 return 0;
2883}
2884
2885static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2886 size_t nbytes, loff_t off)
2887{
2888 struct cgroup *cgrp = of->kn->parent->priv;
2889 struct cftype *cft = of->kn->priv;
2890 struct cgroup_subsys_state *css;
2891 int ret;
2892
2893 if (cft->write)
2894 return cft->write(of, buf, nbytes, off);
2895
2896 /*
2897 * kernfs guarantees that a file isn't deleted with operations in
2898 * flight, which means that the matching css is and stays alive and
2899 * doesn't need to be pinned. The RCU locking is not necessary
2900 * either. It's just for the convenience of using cgroup_css().
2901 */
2902 rcu_read_lock();
2903 css = cgroup_css(cgrp, cft->ss);
2904 rcu_read_unlock();
2905
2906 if (cft->write_u64) {
2907 unsigned long long v;
2908 ret = kstrtoull(buf, 0, &v);
2909 if (!ret)
2910 ret = cft->write_u64(css, cft, v);
2911 } else if (cft->write_s64) {
2912 long long v;
2913 ret = kstrtoll(buf, 0, &v);
2914 if (!ret)
2915 ret = cft->write_s64(css, cft, v);
2916 } else {
2917 ret = -EINVAL;
2918 }
2919
2920 return ret ?: nbytes;
2921}
2922
2923static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2924{
2925 return seq_cft(seq)->seq_start(seq, ppos);
2926}
2927
2928static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2929{
2930 return seq_cft(seq)->seq_next(seq, v, ppos);
2931}
2932
2933static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2934{
2935 seq_cft(seq)->seq_stop(seq, v);
2936}
2937
2938static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2939{
2940 struct cftype *cft = seq_cft(m);
2941 struct cgroup_subsys_state *css = seq_css(m);
2942
2943 if (cft->seq_show)
2944 return cft->seq_show(m, arg);
2945
2946 if (cft->read_u64)
2947 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2948 else if (cft->read_s64)
2949 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2950 else
2951 return -EINVAL;
2952 return 0;
2953}
2954
2955static struct kernfs_ops cgroup_kf_single_ops = {
2956 .atomic_write_len = PAGE_SIZE,
2957 .write = cgroup_file_write,
2958 .seq_show = cgroup_seqfile_show,
2959};
2960
2961static struct kernfs_ops cgroup_kf_ops = {
2962 .atomic_write_len = PAGE_SIZE,
2963 .write = cgroup_file_write,
2964 .seq_start = cgroup_seqfile_start,
2965 .seq_next = cgroup_seqfile_next,
2966 .seq_stop = cgroup_seqfile_stop,
2967 .seq_show = cgroup_seqfile_show,
2968};
2969
2970/*
2971 * cgroup_rename - Only allow simple rename of directories in place.
2972 */
2973static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2974 const char *new_name_str)
2975{
2976 struct cgroup *cgrp = kn->priv;
2977 int ret;
2978
2979 if (kernfs_type(kn) != KERNFS_DIR)
2980 return -ENOTDIR;
2981 if (kn->parent != new_parent)
2982 return -EIO;
2983
2984 /*
2985 * This isn't a proper migration and its usefulness is very
2986 * limited. Disallow on the default hierarchy.
2987 */
2988 if (cgroup_on_dfl(cgrp))
2989 return -EPERM;
2990
2991 /*
2992 * We're gonna grab cgroup_mutex which nests outside kernfs
2993 * active_ref. kernfs_rename() doesn't require active_ref
2994 * protection. Break them before grabbing cgroup_mutex.
2995 */
2996 kernfs_break_active_protection(new_parent);
2997 kernfs_break_active_protection(kn);
2998
2999 mutex_lock(&cgroup_mutex);
3000
3001 ret = kernfs_rename(kn, new_parent, new_name_str);
3002
3003 mutex_unlock(&cgroup_mutex);
3004
3005 kernfs_unbreak_active_protection(kn);
3006 kernfs_unbreak_active_protection(new_parent);
3007 return ret;
3008}
3009
3010/* set uid and gid of cgroup dirs and files to that of the creator */
3011static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3012{
3013 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3014 .ia_uid = current_fsuid(),
3015 .ia_gid = current_fsgid(), };
3016
3017 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3018 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3019 return 0;
3020
3021 return kernfs_setattr(kn, &iattr);
3022}
3023
3024static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3025{
3026 char name[CGROUP_FILE_NAME_MAX];
3027 struct kernfs_node *kn;
3028 struct lock_class_key *key = NULL;
3029 int ret;
3030
3031#ifdef CONFIG_DEBUG_LOCK_ALLOC
3032 key = &cft->lockdep_key;
3033#endif
3034 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3035 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3036 NULL, false, key);
3037 if (IS_ERR(kn))
3038 return PTR_ERR(kn);
3039
3040 ret = cgroup_kn_set_ugid(kn);
3041 if (ret) {
3042 kernfs_remove(kn);
3043 return ret;
3044 }
3045
3046 if (cft->seq_show == cgroup_populated_show)
3047 cgrp->populated_kn = kn;
3048 return 0;
3049}
3050
3051/**
3052 * cgroup_addrm_files - add or remove files to a cgroup directory
3053 * @cgrp: the target cgroup
3054 * @cfts: array of cftypes to be added
3055 * @is_add: whether to add or remove
3056 *
3057 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3058 * For removals, this function never fails. If addition fails, this
3059 * function doesn't remove files already added. The caller is responsible
3060 * for cleaning up.
3061 */
3062static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3063 bool is_add)
3064{
3065 struct cftype *cft;
3066 int ret;
3067
3068 lockdep_assert_held(&cgroup_mutex);
3069
3070 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3071 /* does cft->flags tell us to skip this file on @cgrp? */
3072 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3073 continue;
3074 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3075 continue;
3076 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3077 continue;
3078 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3079 continue;
3080
3081 if (is_add) {
3082 ret = cgroup_add_file(cgrp, cft);
3083 if (ret) {
3084 pr_warn("%s: failed to add %s, err=%d\n",
3085 __func__, cft->name, ret);
3086 return ret;
3087 }
3088 } else {
3089 cgroup_rm_file(cgrp, cft);
3090 }
3091 }
3092 return 0;
3093}
3094
3095static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3096{
3097 LIST_HEAD(pending);
3098 struct cgroup_subsys *ss = cfts[0].ss;
3099 struct cgroup *root = &ss->root->cgrp;
3100 struct cgroup_subsys_state *css;
3101 int ret = 0;
3102
3103 lockdep_assert_held(&cgroup_mutex);
3104
3105 /* add/rm files for all cgroups created before */
3106 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3107 struct cgroup *cgrp = css->cgroup;
3108
3109 if (cgroup_is_dead(cgrp))
3110 continue;
3111
3112 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3113 if (ret)
3114 break;
3115 }
3116
3117 if (is_add && !ret)
3118 kernfs_activate(root->kn);
3119 return ret;
3120}
3121
3122static void cgroup_exit_cftypes(struct cftype *cfts)
3123{
3124 struct cftype *cft;
3125
3126 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3127 /* free copy for custom atomic_write_len, see init_cftypes() */
3128 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3129 kfree(cft->kf_ops);
3130 cft->kf_ops = NULL;
3131 cft->ss = NULL;
3132
3133 /* revert flags set by cgroup core while adding @cfts */
3134 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3135 }
3136}
3137
3138static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3139{
3140 struct cftype *cft;
3141
3142 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3143 struct kernfs_ops *kf_ops;
3144
3145 WARN_ON(cft->ss || cft->kf_ops);
3146
3147 if (cft->seq_start)
3148 kf_ops = &cgroup_kf_ops;
3149 else
3150 kf_ops = &cgroup_kf_single_ops;
3151
3152 /*
3153 * Ugh... if @cft wants a custom max_write_len, we need to
3154 * make a copy of kf_ops to set its atomic_write_len.
3155 */
3156 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3157 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3158 if (!kf_ops) {
3159 cgroup_exit_cftypes(cfts);
3160 return -ENOMEM;
3161 }
3162 kf_ops->atomic_write_len = cft->max_write_len;
3163 }
3164
3165 cft->kf_ops = kf_ops;
3166 cft->ss = ss;
3167 }
3168
3169 return 0;
3170}
3171
3172static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3173{
3174 lockdep_assert_held(&cgroup_mutex);
3175
3176 if (!cfts || !cfts[0].ss)
3177 return -ENOENT;
3178
3179 list_del(&cfts->node);
3180 cgroup_apply_cftypes(cfts, false);
3181 cgroup_exit_cftypes(cfts);
3182 return 0;
3183}
3184
3185/**
3186 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3187 * @cfts: zero-length name terminated array of cftypes
3188 *
3189 * Unregister @cfts. Files described by @cfts are removed from all
3190 * existing cgroups and all future cgroups won't have them either. This
3191 * function can be called anytime whether @cfts' subsys is attached or not.
3192 *
3193 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3194 * registered.
3195 */
3196int cgroup_rm_cftypes(struct cftype *cfts)
3197{
3198 int ret;
3199
3200 mutex_lock(&cgroup_mutex);
3201 ret = cgroup_rm_cftypes_locked(cfts);
3202 mutex_unlock(&cgroup_mutex);
3203 return ret;
3204}
3205
3206/**
3207 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3208 * @ss: target cgroup subsystem
3209 * @cfts: zero-length name terminated array of cftypes
3210 *
3211 * Register @cfts to @ss. Files described by @cfts are created for all
3212 * existing cgroups to which @ss is attached and all future cgroups will
3213 * have them too. This function can be called anytime whether @ss is
3214 * attached or not.
3215 *
3216 * Returns 0 on successful registration, -errno on failure. Note that this
3217 * function currently returns 0 as long as @cfts registration is successful
3218 * even if some file creation attempts on existing cgroups fail.
3219 */
3220static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3221{
3222 int ret;
3223
3224 if (ss->disabled)
3225 return 0;
3226
3227 if (!cfts || cfts[0].name[0] == '\0')
3228 return 0;
3229
3230 ret = cgroup_init_cftypes(ss, cfts);
3231 if (ret)
3232 return ret;
3233
3234 mutex_lock(&cgroup_mutex);
3235
3236 list_add_tail(&cfts->node, &ss->cfts);
3237 ret = cgroup_apply_cftypes(cfts, true);
3238 if (ret)
3239 cgroup_rm_cftypes_locked(cfts);
3240
3241 mutex_unlock(&cgroup_mutex);
3242 return ret;
3243}
3244
3245/**
3246 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3247 * @ss: target cgroup subsystem
3248 * @cfts: zero-length name terminated array of cftypes
3249 *
3250 * Similar to cgroup_add_cftypes() but the added files are only used for
3251 * the default hierarchy.
3252 */
3253int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3254{
3255 struct cftype *cft;
3256
3257 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3258 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3259 return cgroup_add_cftypes(ss, cfts);
3260}
3261
3262/**
3263 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3264 * @ss: target cgroup subsystem
3265 * @cfts: zero-length name terminated array of cftypes
3266 *
3267 * Similar to cgroup_add_cftypes() but the added files are only used for
3268 * the legacy hierarchies.
3269 */
3270int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3271{
3272 struct cftype *cft;
3273
3274 /*
3275 * If legacy_flies_on_dfl, we want to show the legacy files on the
3276 * dfl hierarchy but iff the target subsystem hasn't been updated
3277 * for the dfl hierarchy yet.
3278 */
3279 if (!cgroup_legacy_files_on_dfl ||
3280 ss->dfl_cftypes != ss->legacy_cftypes) {
3281 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3282 cft->flags |= __CFTYPE_NOT_ON_DFL;
3283 }
3284
3285 return cgroup_add_cftypes(ss, cfts);
3286}
3287
3288/**
3289 * cgroup_task_count - count the number of tasks in a cgroup.
3290 * @cgrp: the cgroup in question
3291 *
3292 * Return the number of tasks in the cgroup.
3293 */
3294static int cgroup_task_count(const struct cgroup *cgrp)
3295{
3296 int count = 0;
3297 struct cgrp_cset_link *link;
3298
3299 down_read(&css_set_rwsem);
3300 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3301 count += atomic_read(&link->cset->refcount);
3302 up_read(&css_set_rwsem);
3303 return count;
3304}
3305
3306/**
3307 * css_next_child - find the next child of a given css
3308 * @pos: the current position (%NULL to initiate traversal)
3309 * @parent: css whose children to walk
3310 *
3311 * This function returns the next child of @parent and should be called
3312 * under either cgroup_mutex or RCU read lock. The only requirement is
3313 * that @parent and @pos are accessible. The next sibling is guaranteed to
3314 * be returned regardless of their states.
3315 *
3316 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3317 * css which finished ->css_online() is guaranteed to be visible in the
3318 * future iterations and will stay visible until the last reference is put.
3319 * A css which hasn't finished ->css_online() or already finished
3320 * ->css_offline() may show up during traversal. It's each subsystem's
3321 * responsibility to synchronize against on/offlining.
3322 */
3323struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3324 struct cgroup_subsys_state *parent)
3325{
3326 struct cgroup_subsys_state *next;
3327
3328 cgroup_assert_mutex_or_rcu_locked();
3329
3330 /*
3331 * @pos could already have been unlinked from the sibling list.
3332 * Once a cgroup is removed, its ->sibling.next is no longer
3333 * updated when its next sibling changes. CSS_RELEASED is set when
3334 * @pos is taken off list, at which time its next pointer is valid,
3335 * and, as releases are serialized, the one pointed to by the next
3336 * pointer is guaranteed to not have started release yet. This
3337 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3338 * critical section, the one pointed to by its next pointer is
3339 * guaranteed to not have finished its RCU grace period even if we
3340 * have dropped rcu_read_lock() inbetween iterations.
3341 *
3342 * If @pos has CSS_RELEASED set, its next pointer can't be
3343 * dereferenced; however, as each css is given a monotonically
3344 * increasing unique serial number and always appended to the
3345 * sibling list, the next one can be found by walking the parent's
3346 * children until the first css with higher serial number than
3347 * @pos's. While this path can be slower, it happens iff iteration
3348 * races against release and the race window is very small.
3349 */
3350 if (!pos) {
3351 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3352 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3353 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3354 } else {
3355 list_for_each_entry_rcu(next, &parent->children, sibling)
3356 if (next->serial_nr > pos->serial_nr)
3357 break;
3358 }
3359
3360 /*
3361 * @next, if not pointing to the head, can be dereferenced and is
3362 * the next sibling.
3363 */
3364 if (&next->sibling != &parent->children)
3365 return next;
3366 return NULL;
3367}
3368
3369/**
3370 * css_next_descendant_pre - find the next descendant for pre-order walk
3371 * @pos: the current position (%NULL to initiate traversal)
3372 * @root: css whose descendants to walk
3373 *
3374 * To be used by css_for_each_descendant_pre(). Find the next descendant
3375 * to visit for pre-order traversal of @root's descendants. @root is
3376 * included in the iteration and the first node to be visited.
3377 *
3378 * While this function requires cgroup_mutex or RCU read locking, it
3379 * doesn't require the whole traversal to be contained in a single critical
3380 * section. This function will return the correct next descendant as long
3381 * as both @pos and @root are accessible and @pos is a descendant of @root.
3382 *
3383 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3384 * css which finished ->css_online() is guaranteed to be visible in the
3385 * future iterations and will stay visible until the last reference is put.
3386 * A css which hasn't finished ->css_online() or already finished
3387 * ->css_offline() may show up during traversal. It's each subsystem's
3388 * responsibility to synchronize against on/offlining.
3389 */
3390struct cgroup_subsys_state *
3391css_next_descendant_pre(struct cgroup_subsys_state *pos,
3392 struct cgroup_subsys_state *root)
3393{
3394 struct cgroup_subsys_state *next;
3395
3396 cgroup_assert_mutex_or_rcu_locked();
3397
3398 /* if first iteration, visit @root */
3399 if (!pos)
3400 return root;
3401
3402 /* visit the first child if exists */
3403 next = css_next_child(NULL, pos);
3404 if (next)
3405 return next;
3406
3407 /* no child, visit my or the closest ancestor's next sibling */
3408 while (pos != root) {
3409 next = css_next_child(pos, pos->parent);
3410 if (next)
3411 return next;
3412 pos = pos->parent;
3413 }
3414
3415 return NULL;
3416}
3417
3418/**
3419 * css_rightmost_descendant - return the rightmost descendant of a css
3420 * @pos: css of interest
3421 *
3422 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3423 * is returned. This can be used during pre-order traversal to skip
3424 * subtree of @pos.
3425 *
3426 * While this function requires cgroup_mutex or RCU read locking, it
3427 * doesn't require the whole traversal to be contained in a single critical
3428 * section. This function will return the correct rightmost descendant as
3429 * long as @pos is accessible.
3430 */
3431struct cgroup_subsys_state *
3432css_rightmost_descendant(struct cgroup_subsys_state *pos)
3433{
3434 struct cgroup_subsys_state *last, *tmp;
3435
3436 cgroup_assert_mutex_or_rcu_locked();
3437
3438 do {
3439 last = pos;
3440 /* ->prev isn't RCU safe, walk ->next till the end */
3441 pos = NULL;
3442 css_for_each_child(tmp, last)
3443 pos = tmp;
3444 } while (pos);
3445
3446 return last;
3447}
3448
3449static struct cgroup_subsys_state *
3450css_leftmost_descendant(struct cgroup_subsys_state *pos)
3451{
3452 struct cgroup_subsys_state *last;
3453
3454 do {
3455 last = pos;
3456 pos = css_next_child(NULL, pos);
3457 } while (pos);
3458
3459 return last;
3460}
3461
3462/**
3463 * css_next_descendant_post - find the next descendant for post-order walk
3464 * @pos: the current position (%NULL to initiate traversal)
3465 * @root: css whose descendants to walk
3466 *
3467 * To be used by css_for_each_descendant_post(). Find the next descendant
3468 * to visit for post-order traversal of @root's descendants. @root is
3469 * included in the iteration and the last node to be visited.
3470 *
3471 * While this function requires cgroup_mutex or RCU read locking, it
3472 * doesn't require the whole traversal to be contained in a single critical
3473 * section. This function will return the correct next descendant as long
3474 * as both @pos and @cgroup are accessible and @pos is a descendant of
3475 * @cgroup.
3476 *
3477 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3478 * css which finished ->css_online() is guaranteed to be visible in the
3479 * future iterations and will stay visible until the last reference is put.
3480 * A css which hasn't finished ->css_online() or already finished
3481 * ->css_offline() may show up during traversal. It's each subsystem's
3482 * responsibility to synchronize against on/offlining.
3483 */
3484struct cgroup_subsys_state *
3485css_next_descendant_post(struct cgroup_subsys_state *pos,
3486 struct cgroup_subsys_state *root)
3487{
3488 struct cgroup_subsys_state *next;
3489
3490 cgroup_assert_mutex_or_rcu_locked();
3491
3492 /* if first iteration, visit leftmost descendant which may be @root */
3493 if (!pos)
3494 return css_leftmost_descendant(root);
3495
3496 /* if we visited @root, we're done */
3497 if (pos == root)
3498 return NULL;
3499
3500 /* if there's an unvisited sibling, visit its leftmost descendant */
3501 next = css_next_child(pos, pos->parent);
3502 if (next)
3503 return css_leftmost_descendant(next);
3504
3505 /* no sibling left, visit parent */
3506 return pos->parent;
3507}
3508
3509/**
3510 * css_has_online_children - does a css have online children
3511 * @css: the target css
3512 *
3513 * Returns %true if @css has any online children; otherwise, %false. This
3514 * function can be called from any context but the caller is responsible
3515 * for synchronizing against on/offlining as necessary.
3516 */
3517bool css_has_online_children(struct cgroup_subsys_state *css)
3518{
3519 struct cgroup_subsys_state *child;
3520 bool ret = false;
3521
3522 rcu_read_lock();
3523 css_for_each_child(child, css) {
3524 if (child->flags & CSS_ONLINE) {
3525 ret = true;
3526 break;
3527 }
3528 }
3529 rcu_read_unlock();
3530 return ret;
3531}
3532
3533/**
3534 * css_advance_task_iter - advance a task itererator to the next css_set
3535 * @it: the iterator to advance
3536 *
3537 * Advance @it to the next css_set to walk.
3538 */
3539static void css_advance_task_iter(struct css_task_iter *it)
3540{
3541 struct list_head *l = it->cset_pos;
3542 struct cgrp_cset_link *link;
3543 struct css_set *cset;
3544
3545 /* Advance to the next non-empty css_set */
3546 do {
3547 l = l->next;
3548 if (l == it->cset_head) {
3549 it->cset_pos = NULL;
3550 return;
3551 }
3552
3553 if (it->ss) {
3554 cset = container_of(l, struct css_set,
3555 e_cset_node[it->ss->id]);
3556 } else {
3557 link = list_entry(l, struct cgrp_cset_link, cset_link);
3558 cset = link->cset;
3559 }
3560 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3561
3562 it->cset_pos = l;
3563
3564 if (!list_empty(&cset->tasks))
3565 it->task_pos = cset->tasks.next;
3566 else
3567 it->task_pos = cset->mg_tasks.next;
3568
3569 it->tasks_head = &cset->tasks;
3570 it->mg_tasks_head = &cset->mg_tasks;
3571}
3572
3573/**
3574 * css_task_iter_start - initiate task iteration
3575 * @css: the css to walk tasks of
3576 * @it: the task iterator to use
3577 *
3578 * Initiate iteration through the tasks of @css. The caller can call
3579 * css_task_iter_next() to walk through the tasks until the function
3580 * returns NULL. On completion of iteration, css_task_iter_end() must be
3581 * called.
3582 *
3583 * Note that this function acquires a lock which is released when the
3584 * iteration finishes. The caller can't sleep while iteration is in
3585 * progress.
3586 */
3587void css_task_iter_start(struct cgroup_subsys_state *css,
3588 struct css_task_iter *it)
3589 __acquires(css_set_rwsem)
3590{
3591 /* no one should try to iterate before mounting cgroups */
3592 WARN_ON_ONCE(!use_task_css_set_links);
3593
3594 down_read(&css_set_rwsem);
3595
3596 it->ss = css->ss;
3597
3598 if (it->ss)
3599 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3600 else
3601 it->cset_pos = &css->cgroup->cset_links;
3602
3603 it->cset_head = it->cset_pos;
3604
3605 css_advance_task_iter(it);
3606}
3607
3608/**
3609 * css_task_iter_next - return the next task for the iterator
3610 * @it: the task iterator being iterated
3611 *
3612 * The "next" function for task iteration. @it should have been
3613 * initialized via css_task_iter_start(). Returns NULL when the iteration
3614 * reaches the end.
3615 */
3616struct task_struct *css_task_iter_next(struct css_task_iter *it)
3617{
3618 struct task_struct *res;
3619 struct list_head *l = it->task_pos;
3620
3621 /* If the iterator cg is NULL, we have no tasks */
3622 if (!it->cset_pos)
3623 return NULL;
3624 res = list_entry(l, struct task_struct, cg_list);
3625
3626 /*
3627 * Advance iterator to find next entry. cset->tasks is consumed
3628 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3629 * next cset.
3630 */
3631 l = l->next;
3632
3633 if (l == it->tasks_head)
3634 l = it->mg_tasks_head->next;
3635
3636 if (l == it->mg_tasks_head)
3637 css_advance_task_iter(it);
3638 else
3639 it->task_pos = l;
3640
3641 return res;
3642}
3643
3644/**
3645 * css_task_iter_end - finish task iteration
3646 * @it: the task iterator to finish
3647 *
3648 * Finish task iteration started by css_task_iter_start().
3649 */
3650void css_task_iter_end(struct css_task_iter *it)
3651 __releases(css_set_rwsem)
3652{
3653 up_read(&css_set_rwsem);
3654}
3655
3656/**
3657 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3658 * @to: cgroup to which the tasks will be moved
3659 * @from: cgroup in which the tasks currently reside
3660 *
3661 * Locking rules between cgroup_post_fork() and the migration path
3662 * guarantee that, if a task is forking while being migrated, the new child
3663 * is guaranteed to be either visible in the source cgroup after the
3664 * parent's migration is complete or put into the target cgroup. No task
3665 * can slip out of migration through forking.
3666 */
3667int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3668{
3669 LIST_HEAD(preloaded_csets);
3670 struct cgrp_cset_link *link;
3671 struct css_task_iter it;
3672 struct task_struct *task;
3673 int ret;
3674
3675 mutex_lock(&cgroup_mutex);
3676
3677 /* all tasks in @from are being moved, all csets are source */
3678 down_read(&css_set_rwsem);
3679 list_for_each_entry(link, &from->cset_links, cset_link)
3680 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3681 up_read(&css_set_rwsem);
3682
3683 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3684 if (ret)
3685 goto out_err;
3686
3687 /*
3688 * Migrate tasks one-by-one until @form is empty. This fails iff
3689 * ->can_attach() fails.
3690 */
3691 do {
3692 css_task_iter_start(&from->self, &it);
3693 task = css_task_iter_next(&it);
3694 if (task)
3695 get_task_struct(task);
3696 css_task_iter_end(&it);
3697
3698 if (task) {
3699 ret = cgroup_migrate(to, task, false);
3700 put_task_struct(task);
3701 }
3702 } while (task && !ret);
3703out_err:
3704 cgroup_migrate_finish(&preloaded_csets);
3705 mutex_unlock(&cgroup_mutex);
3706 return ret;
3707}
3708
3709/*
3710 * Stuff for reading the 'tasks'/'procs' files.
3711 *
3712 * Reading this file can return large amounts of data if a cgroup has
3713 * *lots* of attached tasks. So it may need several calls to read(),
3714 * but we cannot guarantee that the information we produce is correct
3715 * unless we produce it entirely atomically.
3716 *
3717 */
3718
3719/* which pidlist file are we talking about? */
3720enum cgroup_filetype {
3721 CGROUP_FILE_PROCS,
3722 CGROUP_FILE_TASKS,
3723};
3724
3725/*
3726 * A pidlist is a list of pids that virtually represents the contents of one
3727 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3728 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3729 * to the cgroup.
3730 */
3731struct cgroup_pidlist {
3732 /*
3733 * used to find which pidlist is wanted. doesn't change as long as
3734 * this particular list stays in the list.
3735 */
3736 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3737 /* array of xids */
3738 pid_t *list;
3739 /* how many elements the above list has */
3740 int length;
3741 /* each of these stored in a list by its cgroup */
3742 struct list_head links;
3743 /* pointer to the cgroup we belong to, for list removal purposes */
3744 struct cgroup *owner;
3745 /* for delayed destruction */
3746 struct delayed_work destroy_dwork;
3747};
3748
3749/*
3750 * The following two functions "fix" the issue where there are more pids
3751 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3752 * TODO: replace with a kernel-wide solution to this problem
3753 */
3754#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3755static void *pidlist_allocate(int count)
3756{
3757 if (PIDLIST_TOO_LARGE(count))
3758 return vmalloc(count * sizeof(pid_t));
3759 else
3760 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3761}
3762
3763static void pidlist_free(void *p)
3764{
3765 if (is_vmalloc_addr(p))
3766 vfree(p);
3767 else
3768 kfree(p);
3769}
3770
3771/*
3772 * Used to destroy all pidlists lingering waiting for destroy timer. None
3773 * should be left afterwards.
3774 */
3775static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3776{
3777 struct cgroup_pidlist *l, *tmp_l;
3778
3779 mutex_lock(&cgrp->pidlist_mutex);
3780 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3781 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3782 mutex_unlock(&cgrp->pidlist_mutex);
3783
3784 flush_workqueue(cgroup_pidlist_destroy_wq);
3785 BUG_ON(!list_empty(&cgrp->pidlists));
3786}
3787
3788static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3789{
3790 struct delayed_work *dwork = to_delayed_work(work);
3791 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3792 destroy_dwork);
3793 struct cgroup_pidlist *tofree = NULL;
3794
3795 mutex_lock(&l->owner->pidlist_mutex);
3796
3797 /*
3798 * Destroy iff we didn't get queued again. The state won't change
3799 * as destroy_dwork can only be queued while locked.
3800 */
3801 if (!delayed_work_pending(dwork)) {
3802 list_del(&l->links);
3803 pidlist_free(l->list);
3804 put_pid_ns(l->key.ns);
3805 tofree = l;
3806 }
3807
3808 mutex_unlock(&l->owner->pidlist_mutex);
3809 kfree(tofree);
3810}
3811
3812/*
3813 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3814 * Returns the number of unique elements.
3815 */
3816static int pidlist_uniq(pid_t *list, int length)
3817{
3818 int src, dest = 1;
3819
3820 /*
3821 * we presume the 0th element is unique, so i starts at 1. trivial
3822 * edge cases first; no work needs to be done for either
3823 */
3824 if (length == 0 || length == 1)
3825 return length;
3826 /* src and dest walk down the list; dest counts unique elements */
3827 for (src = 1; src < length; src++) {
3828 /* find next unique element */
3829 while (list[src] == list[src-1]) {
3830 src++;
3831 if (src == length)
3832 goto after;
3833 }
3834 /* dest always points to where the next unique element goes */
3835 list[dest] = list[src];
3836 dest++;
3837 }
3838after:
3839 return dest;
3840}
3841
3842/*
3843 * The two pid files - task and cgroup.procs - guaranteed that the result
3844 * is sorted, which forced this whole pidlist fiasco. As pid order is
3845 * different per namespace, each namespace needs differently sorted list,
3846 * making it impossible to use, for example, single rbtree of member tasks
3847 * sorted by task pointer. As pidlists can be fairly large, allocating one
3848 * per open file is dangerous, so cgroup had to implement shared pool of
3849 * pidlists keyed by cgroup and namespace.
3850 *
3851 * All this extra complexity was caused by the original implementation
3852 * committing to an entirely unnecessary property. In the long term, we
3853 * want to do away with it. Explicitly scramble sort order if on the
3854 * default hierarchy so that no such expectation exists in the new
3855 * interface.
3856 *
3857 * Scrambling is done by swapping every two consecutive bits, which is
3858 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3859 */
3860static pid_t pid_fry(pid_t pid)
3861{
3862 unsigned a = pid & 0x55555555;
3863 unsigned b = pid & 0xAAAAAAAA;
3864
3865 return (a << 1) | (b >> 1);
3866}
3867
3868static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3869{
3870 if (cgroup_on_dfl(cgrp))
3871 return pid_fry(pid);
3872 else
3873 return pid;
3874}
3875
3876static int cmppid(const void *a, const void *b)
3877{
3878 return *(pid_t *)a - *(pid_t *)b;
3879}
3880
3881static int fried_cmppid(const void *a, const void *b)
3882{
3883 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3884}
3885
3886static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3887 enum cgroup_filetype type)
3888{
3889 struct cgroup_pidlist *l;
3890 /* don't need task_nsproxy() if we're looking at ourself */
3891 struct pid_namespace *ns = task_active_pid_ns(current);
3892
3893 lockdep_assert_held(&cgrp->pidlist_mutex);
3894
3895 list_for_each_entry(l, &cgrp->pidlists, links)
3896 if (l->key.type == type && l->key.ns == ns)
3897 return l;
3898 return NULL;
3899}
3900
3901/*
3902 * find the appropriate pidlist for our purpose (given procs vs tasks)
3903 * returns with the lock on that pidlist already held, and takes care
3904 * of the use count, or returns NULL with no locks held if we're out of
3905 * memory.
3906 */
3907static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3908 enum cgroup_filetype type)
3909{
3910 struct cgroup_pidlist *l;
3911
3912 lockdep_assert_held(&cgrp->pidlist_mutex);
3913
3914 l = cgroup_pidlist_find(cgrp, type);
3915 if (l)
3916 return l;
3917
3918 /* entry not found; create a new one */
3919 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3920 if (!l)
3921 return l;
3922
3923 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3924 l->key.type = type;
3925 /* don't need task_nsproxy() if we're looking at ourself */
3926 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3927 l->owner = cgrp;
3928 list_add(&l->links, &cgrp->pidlists);
3929 return l;
3930}
3931
3932/*
3933 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3934 */
3935static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3936 struct cgroup_pidlist **lp)
3937{
3938 pid_t *array;
3939 int length;
3940 int pid, n = 0; /* used for populating the array */
3941 struct css_task_iter it;
3942 struct task_struct *tsk;
3943 struct cgroup_pidlist *l;
3944
3945 lockdep_assert_held(&cgrp->pidlist_mutex);
3946
3947 /*
3948 * If cgroup gets more users after we read count, we won't have
3949 * enough space - tough. This race is indistinguishable to the
3950 * caller from the case that the additional cgroup users didn't
3951 * show up until sometime later on.
3952 */
3953 length = cgroup_task_count(cgrp);
3954 array = pidlist_allocate(length);
3955 if (!array)
3956 return -ENOMEM;
3957 /* now, populate the array */
3958 css_task_iter_start(&cgrp->self, &it);
3959 while ((tsk = css_task_iter_next(&it))) {
3960 if (unlikely(n == length))
3961 break;
3962 /* get tgid or pid for procs or tasks file respectively */
3963 if (type == CGROUP_FILE_PROCS)
3964 pid = task_tgid_vnr(tsk);
3965 else
3966 pid = task_pid_vnr(tsk);
3967 if (pid > 0) /* make sure to only use valid results */
3968 array[n++] = pid;
3969 }
3970 css_task_iter_end(&it);
3971 length = n;
3972 /* now sort & (if procs) strip out duplicates */
3973 if (cgroup_on_dfl(cgrp))
3974 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3975 else
3976 sort(array, length, sizeof(pid_t), cmppid, NULL);
3977 if (type == CGROUP_FILE_PROCS)
3978 length = pidlist_uniq(array, length);
3979
3980 l = cgroup_pidlist_find_create(cgrp, type);
3981 if (!l) {
3982 mutex_unlock(&cgrp->pidlist_mutex);
3983 pidlist_free(array);
3984 return -ENOMEM;
3985 }
3986
3987 /* store array, freeing old if necessary */
3988 pidlist_free(l->list);
3989 l->list = array;
3990 l->length = length;
3991 *lp = l;
3992 return 0;
3993}
3994
3995/**
3996 * cgroupstats_build - build and fill cgroupstats
3997 * @stats: cgroupstats to fill information into
3998 * @dentry: A dentry entry belonging to the cgroup for which stats have
3999 * been requested.
4000 *
4001 * Build and fill cgroupstats so that taskstats can export it to user
4002 * space.
4003 */
4004int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4005{
4006 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4007 struct cgroup *cgrp;
4008 struct css_task_iter it;
4009 struct task_struct *tsk;
4010
4011 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4012 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4013 kernfs_type(kn) != KERNFS_DIR)
4014 return -EINVAL;
4015
4016 mutex_lock(&cgroup_mutex);
4017
4018 /*
4019 * We aren't being called from kernfs and there's no guarantee on
4020 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4021 * @kn->priv is RCU safe. Let's do the RCU dancing.
4022 */
4023 rcu_read_lock();
4024 cgrp = rcu_dereference(kn->priv);
4025 if (!cgrp || cgroup_is_dead(cgrp)) {
4026 rcu_read_unlock();
4027 mutex_unlock(&cgroup_mutex);
4028 return -ENOENT;
4029 }
4030 rcu_read_unlock();
4031
4032 css_task_iter_start(&cgrp->self, &it);
4033 while ((tsk = css_task_iter_next(&it))) {
4034 switch (tsk->state) {
4035 case TASK_RUNNING:
4036 stats->nr_running++;
4037 break;
4038 case TASK_INTERRUPTIBLE:
4039 stats->nr_sleeping++;
4040 break;
4041 case TASK_UNINTERRUPTIBLE:
4042 stats->nr_uninterruptible++;
4043 break;
4044 case TASK_STOPPED:
4045 stats->nr_stopped++;
4046 break;
4047 default:
4048 if (delayacct_is_task_waiting_on_io(tsk))
4049 stats->nr_io_wait++;
4050 break;
4051 }
4052 }
4053 css_task_iter_end(&it);
4054
4055 mutex_unlock(&cgroup_mutex);
4056 return 0;
4057}
4058
4059
4060/*
4061 * seq_file methods for the tasks/procs files. The seq_file position is the
4062 * next pid to display; the seq_file iterator is a pointer to the pid
4063 * in the cgroup->l->list array.
4064 */
4065
4066static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4067{
4068 /*
4069 * Initially we receive a position value that corresponds to
4070 * one more than the last pid shown (or 0 on the first call or
4071 * after a seek to the start). Use a binary-search to find the
4072 * next pid to display, if any
4073 */
4074 struct kernfs_open_file *of = s->private;
4075 struct cgroup *cgrp = seq_css(s)->cgroup;
4076 struct cgroup_pidlist *l;
4077 enum cgroup_filetype type = seq_cft(s)->private;
4078 int index = 0, pid = *pos;
4079 int *iter, ret;
4080
4081 mutex_lock(&cgrp->pidlist_mutex);
4082
4083 /*
4084 * !NULL @of->priv indicates that this isn't the first start()
4085 * after open. If the matching pidlist is around, we can use that.
4086 * Look for it. Note that @of->priv can't be used directly. It
4087 * could already have been destroyed.
4088 */
4089 if (of->priv)
4090 of->priv = cgroup_pidlist_find(cgrp, type);
4091
4092 /*
4093 * Either this is the first start() after open or the matching
4094 * pidlist has been destroyed inbetween. Create a new one.
4095 */
4096 if (!of->priv) {
4097 ret = pidlist_array_load(cgrp, type,
4098 (struct cgroup_pidlist **)&of->priv);
4099 if (ret)
4100 return ERR_PTR(ret);
4101 }
4102 l = of->priv;
4103
4104 if (pid) {
4105 int end = l->length;
4106
4107 while (index < end) {
4108 int mid = (index + end) / 2;
4109 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4110 index = mid;
4111 break;
4112 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4113 index = mid + 1;
4114 else
4115 end = mid;
4116 }
4117 }
4118 /* If we're off the end of the array, we're done */
4119 if (index >= l->length)
4120 return NULL;
4121 /* Update the abstract position to be the actual pid that we found */
4122 iter = l->list + index;
4123 *pos = cgroup_pid_fry(cgrp, *iter);
4124 return iter;
4125}
4126
4127static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4128{
4129 struct kernfs_open_file *of = s->private;
4130 struct cgroup_pidlist *l = of->priv;
4131
4132 if (l)
4133 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4134 CGROUP_PIDLIST_DESTROY_DELAY);
4135 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4136}
4137
4138static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4139{
4140 struct kernfs_open_file *of = s->private;
4141 struct cgroup_pidlist *l = of->priv;
4142 pid_t *p = v;
4143 pid_t *end = l->list + l->length;
4144 /*
4145 * Advance to the next pid in the array. If this goes off the
4146 * end, we're done
4147 */
4148 p++;
4149 if (p >= end) {
4150 return NULL;
4151 } else {
4152 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4153 return p;
4154 }
4155}
4156
4157static int cgroup_pidlist_show(struct seq_file *s, void *v)
4158{
4159 return seq_printf(s, "%d\n", *(int *)v);
4160}
4161
4162static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4163 struct cftype *cft)
4164{
4165 return notify_on_release(css->cgroup);
4166}
4167
4168static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4169 struct cftype *cft, u64 val)
4170{
4171 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4172 if (val)
4173 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4174 else
4175 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4176 return 0;
4177}
4178
4179static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4180 struct cftype *cft)
4181{
4182 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4183}
4184
4185static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4186 struct cftype *cft, u64 val)
4187{
4188 if (val)
4189 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4190 else
4191 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4192 return 0;
4193}
4194
4195/* cgroup core interface files for the default hierarchy */
4196static struct cftype cgroup_dfl_base_files[] = {
4197 {
4198 .name = "cgroup.procs",
4199 .seq_start = cgroup_pidlist_start,
4200 .seq_next = cgroup_pidlist_next,
4201 .seq_stop = cgroup_pidlist_stop,
4202 .seq_show = cgroup_pidlist_show,
4203 .private = CGROUP_FILE_PROCS,
4204 .write = cgroup_procs_write,
4205 .mode = S_IRUGO | S_IWUSR,
4206 },
4207 {
4208 .name = "cgroup.controllers",
4209 .flags = CFTYPE_ONLY_ON_ROOT,
4210 .seq_show = cgroup_root_controllers_show,
4211 },
4212 {
4213 .name = "cgroup.controllers",
4214 .flags = CFTYPE_NOT_ON_ROOT,
4215 .seq_show = cgroup_controllers_show,
4216 },
4217 {
4218 .name = "cgroup.subtree_control",
4219 .seq_show = cgroup_subtree_control_show,
4220 .write = cgroup_subtree_control_write,
4221 },
4222 {
4223 .name = "cgroup.populated",
4224 .flags = CFTYPE_NOT_ON_ROOT,
4225 .seq_show = cgroup_populated_show,
4226 },
4227 { } /* terminate */
4228};
4229
4230/* cgroup core interface files for the legacy hierarchies */
4231static struct cftype cgroup_legacy_base_files[] = {
4232 {
4233 .name = "cgroup.procs",
4234 .seq_start = cgroup_pidlist_start,
4235 .seq_next = cgroup_pidlist_next,
4236 .seq_stop = cgroup_pidlist_stop,
4237 .seq_show = cgroup_pidlist_show,
4238 .private = CGROUP_FILE_PROCS,
4239 .write = cgroup_procs_write,
4240 .mode = S_IRUGO | S_IWUSR,
4241 },
4242 {
4243 .name = "cgroup.clone_children",
4244 .read_u64 = cgroup_clone_children_read,
4245 .write_u64 = cgroup_clone_children_write,
4246 },
4247 {
4248 .name = "cgroup.sane_behavior",
4249 .flags = CFTYPE_ONLY_ON_ROOT,
4250 .seq_show = cgroup_sane_behavior_show,
4251 },
4252 {
4253 .name = "tasks",
4254 .seq_start = cgroup_pidlist_start,
4255 .seq_next = cgroup_pidlist_next,
4256 .seq_stop = cgroup_pidlist_stop,
4257 .seq_show = cgroup_pidlist_show,
4258 .private = CGROUP_FILE_TASKS,
4259 .write = cgroup_tasks_write,
4260 .mode = S_IRUGO | S_IWUSR,
4261 },
4262 {
4263 .name = "notify_on_release",
4264 .read_u64 = cgroup_read_notify_on_release,
4265 .write_u64 = cgroup_write_notify_on_release,
4266 },
4267 {
4268 .name = "release_agent",
4269 .flags = CFTYPE_ONLY_ON_ROOT,
4270 .seq_show = cgroup_release_agent_show,
4271 .write = cgroup_release_agent_write,
4272 .max_write_len = PATH_MAX - 1,
4273 },
4274 { } /* terminate */
4275};
4276
4277/**
4278 * cgroup_populate_dir - create subsys files in a cgroup directory
4279 * @cgrp: target cgroup
4280 * @subsys_mask: mask of the subsystem ids whose files should be added
4281 *
4282 * On failure, no file is added.
4283 */
4284static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4285{
4286 struct cgroup_subsys *ss;
4287 int i, ret = 0;
4288
4289 /* process cftsets of each subsystem */
4290 for_each_subsys(ss, i) {
4291 struct cftype *cfts;
4292
4293 if (!(subsys_mask & (1 << i)))
4294 continue;
4295
4296 list_for_each_entry(cfts, &ss->cfts, node) {
4297 ret = cgroup_addrm_files(cgrp, cfts, true);
4298 if (ret < 0)
4299 goto err;
4300 }
4301 }
4302 return 0;
4303err:
4304 cgroup_clear_dir(cgrp, subsys_mask);
4305 return ret;
4306}
4307
4308/*
4309 * css destruction is four-stage process.
4310 *
4311 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4312 * Implemented in kill_css().
4313 *
4314 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4315 * and thus css_tryget_online() is guaranteed to fail, the css can be
4316 * offlined by invoking offline_css(). After offlining, the base ref is
4317 * put. Implemented in css_killed_work_fn().
4318 *
4319 * 3. When the percpu_ref reaches zero, the only possible remaining
4320 * accessors are inside RCU read sections. css_release() schedules the
4321 * RCU callback.
4322 *
4323 * 4. After the grace period, the css can be freed. Implemented in
4324 * css_free_work_fn().
4325 *
4326 * It is actually hairier because both step 2 and 4 require process context
4327 * and thus involve punting to css->destroy_work adding two additional
4328 * steps to the already complex sequence.
4329 */
4330static void css_free_work_fn(struct work_struct *work)
4331{
4332 struct cgroup_subsys_state *css =
4333 container_of(work, struct cgroup_subsys_state, destroy_work);
4334 struct cgroup *cgrp = css->cgroup;
4335
4336 percpu_ref_exit(&css->refcnt);
4337
4338 if (css->ss) {
4339 /* css free path */
4340 if (css->parent)
4341 css_put(css->parent);
4342
4343 css->ss->css_free(css);
4344 cgroup_put(cgrp);
4345 } else {
4346 /* cgroup free path */
4347 atomic_dec(&cgrp->root->nr_cgrps);
4348 cgroup_pidlist_destroy_all(cgrp);
4349
4350 if (cgroup_parent(cgrp)) {
4351 /*
4352 * We get a ref to the parent, and put the ref when
4353 * this cgroup is being freed, so it's guaranteed
4354 * that the parent won't be destroyed before its
4355 * children.
4356 */
4357 cgroup_put(cgroup_parent(cgrp));
4358 kernfs_put(cgrp->kn);
4359 kfree(cgrp);
4360 } else {
4361 /*
4362 * This is root cgroup's refcnt reaching zero,
4363 * which indicates that the root should be
4364 * released.
4365 */
4366 cgroup_destroy_root(cgrp->root);
4367 }
4368 }
4369}
4370
4371static void css_free_rcu_fn(struct rcu_head *rcu_head)
4372{
4373 struct cgroup_subsys_state *css =
4374 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4375
4376 INIT_WORK(&css->destroy_work, css_free_work_fn);
4377 queue_work(cgroup_destroy_wq, &css->destroy_work);
4378}
4379
4380static void css_release_work_fn(struct work_struct *work)
4381{
4382 struct cgroup_subsys_state *css =
4383 container_of(work, struct cgroup_subsys_state, destroy_work);
4384 struct cgroup_subsys *ss = css->ss;
4385 struct cgroup *cgrp = css->cgroup;
4386
4387 mutex_lock(&cgroup_mutex);
4388
4389 css->flags |= CSS_RELEASED;
4390 list_del_rcu(&css->sibling);
4391
4392 if (ss) {
4393 /* css release path */
4394 cgroup_idr_remove(&ss->css_idr, css->id);
4395 } else {
4396 /* cgroup release path */
4397 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4398 cgrp->id = -1;
4399
4400 /*
4401 * There are two control paths which try to determine
4402 * cgroup from dentry without going through kernfs -
4403 * cgroupstats_build() and css_tryget_online_from_dir().
4404 * Those are supported by RCU protecting clearing of
4405 * cgrp->kn->priv backpointer.
4406 */
4407 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4408 }
4409
4410 mutex_unlock(&cgroup_mutex);
4411
4412 call_rcu(&css->rcu_head, css_free_rcu_fn);
4413}
4414
4415static void css_release(struct percpu_ref *ref)
4416{
4417 struct cgroup_subsys_state *css =
4418 container_of(ref, struct cgroup_subsys_state, refcnt);
4419
4420 INIT_WORK(&css->destroy_work, css_release_work_fn);
4421 queue_work(cgroup_destroy_wq, &css->destroy_work);
4422}
4423
4424static void init_and_link_css(struct cgroup_subsys_state *css,
4425 struct cgroup_subsys *ss, struct cgroup *cgrp)
4426{
4427 lockdep_assert_held(&cgroup_mutex);
4428
4429 cgroup_get(cgrp);
4430
4431 memset(css, 0, sizeof(*css));
4432 css->cgroup = cgrp;
4433 css->ss = ss;
4434 INIT_LIST_HEAD(&css->sibling);
4435 INIT_LIST_HEAD(&css->children);
4436 css->serial_nr = css_serial_nr_next++;
4437
4438 if (cgroup_parent(cgrp)) {
4439 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4440 css_get(css->parent);
4441 }
4442
4443 BUG_ON(cgroup_css(cgrp, ss));
4444}
4445
4446/* invoke ->css_online() on a new CSS and mark it online if successful */
4447static int online_css(struct cgroup_subsys_state *css)
4448{
4449 struct cgroup_subsys *ss = css->ss;
4450 int ret = 0;
4451
4452 lockdep_assert_held(&cgroup_mutex);
4453
4454 if (ss->css_online)
4455 ret = ss->css_online(css);
4456 if (!ret) {
4457 css->flags |= CSS_ONLINE;
4458 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4459 }
4460 return ret;
4461}
4462
4463/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4464static void offline_css(struct cgroup_subsys_state *css)
4465{
4466 struct cgroup_subsys *ss = css->ss;
4467
4468 lockdep_assert_held(&cgroup_mutex);
4469
4470 if (!(css->flags & CSS_ONLINE))
4471 return;
4472
4473 if (ss->css_offline)
4474 ss->css_offline(css);
4475
4476 css->flags &= ~CSS_ONLINE;
4477 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4478
4479 wake_up_all(&css->cgroup->offline_waitq);
4480}
4481
4482/**
4483 * create_css - create a cgroup_subsys_state
4484 * @cgrp: the cgroup new css will be associated with
4485 * @ss: the subsys of new css
4486 * @visible: whether to create control knobs for the new css or not
4487 *
4488 * Create a new css associated with @cgrp - @ss pair. On success, the new
4489 * css is online and installed in @cgrp with all interface files created if
4490 * @visible. Returns 0 on success, -errno on failure.
4491 */
4492static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4493 bool visible)
4494{
4495 struct cgroup *parent = cgroup_parent(cgrp);
4496 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4497 struct cgroup_subsys_state *css;
4498 int err;
4499
4500 lockdep_assert_held(&cgroup_mutex);
4501
4502 css = ss->css_alloc(parent_css);
4503 if (IS_ERR(css))
4504 return PTR_ERR(css);
4505
4506 init_and_link_css(css, ss, cgrp);
4507
4508 err = percpu_ref_init(&css->refcnt, css_release);
4509 if (err)
4510 goto err_free_css;
4511
4512 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4513 if (err < 0)
4514 goto err_free_percpu_ref;
4515 css->id = err;
4516
4517 if (visible) {
4518 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4519 if (err)
4520 goto err_free_id;
4521 }
4522
4523 /* @css is ready to be brought online now, make it visible */
4524 list_add_tail_rcu(&css->sibling, &parent_css->children);
4525 cgroup_idr_replace(&ss->css_idr, css, css->id);
4526
4527 err = online_css(css);
4528 if (err)
4529 goto err_list_del;
4530
4531 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4532 cgroup_parent(parent)) {
4533 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4534 current->comm, current->pid, ss->name);
4535 if (!strcmp(ss->name, "memory"))
4536 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4537 ss->warned_broken_hierarchy = true;
4538 }
4539
4540 return 0;
4541
4542err_list_del:
4543 list_del_rcu(&css->sibling);
4544 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4545err_free_id:
4546 cgroup_idr_remove(&ss->css_idr, css->id);
4547err_free_percpu_ref:
4548 percpu_ref_exit(&css->refcnt);
4549err_free_css:
4550 call_rcu(&css->rcu_head, css_free_rcu_fn);
4551 return err;
4552}
4553
4554static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4555 umode_t mode)
4556{
4557 struct cgroup *parent, *cgrp;
4558 struct cgroup_root *root;
4559 struct cgroup_subsys *ss;
4560 struct kernfs_node *kn;
4561 struct cftype *base_files;
4562 int ssid, ret;
4563
4564 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4565 */
4566 if (strchr(name, '\n'))
4567 return -EINVAL;
4568
4569 parent = cgroup_kn_lock_live(parent_kn);
4570 if (!parent)
4571 return -ENODEV;
4572 root = parent->root;
4573
4574 /* allocate the cgroup and its ID, 0 is reserved for the root */
4575 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4576 if (!cgrp) {
4577 ret = -ENOMEM;
4578 goto out_unlock;
4579 }
4580
4581 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4582 if (ret)
4583 goto out_free_cgrp;
4584
4585 /*
4586 * Temporarily set the pointer to NULL, so idr_find() won't return
4587 * a half-baked cgroup.
4588 */
4589 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4590 if (cgrp->id < 0) {
4591 ret = -ENOMEM;
4592 goto out_cancel_ref;
4593 }
4594
4595 init_cgroup_housekeeping(cgrp);
4596
4597 cgrp->self.parent = &parent->self;
4598 cgrp->root = root;
4599
4600 if (notify_on_release(parent))
4601 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4602
4603 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4604 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4605
4606 /* create the directory */
4607 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4608 if (IS_ERR(kn)) {
4609 ret = PTR_ERR(kn);
4610 goto out_free_id;
4611 }
4612 cgrp->kn = kn;
4613
4614 /*
4615 * This extra ref will be put in cgroup_free_fn() and guarantees
4616 * that @cgrp->kn is always accessible.
4617 */
4618 kernfs_get(kn);
4619
4620 cgrp->self.serial_nr = css_serial_nr_next++;
4621
4622 /* allocation complete, commit to creation */
4623 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4624 atomic_inc(&root->nr_cgrps);
4625 cgroup_get(parent);
4626
4627 /*
4628 * @cgrp is now fully operational. If something fails after this
4629 * point, it'll be released via the normal destruction path.
4630 */
4631 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4632
4633 ret = cgroup_kn_set_ugid(kn);
4634 if (ret)
4635 goto out_destroy;
4636
4637 if (cgroup_on_dfl(cgrp))
4638 base_files = cgroup_dfl_base_files;
4639 else
4640 base_files = cgroup_legacy_base_files;
4641
4642 ret = cgroup_addrm_files(cgrp, base_files, true);
4643 if (ret)
4644 goto out_destroy;
4645
4646 /* let's create and online css's */
4647 for_each_subsys(ss, ssid) {
4648 if (parent->child_subsys_mask & (1 << ssid)) {
4649 ret = create_css(cgrp, ss,
4650 parent->subtree_control & (1 << ssid));
4651 if (ret)
4652 goto out_destroy;
4653 }
4654 }
4655
4656 /*
4657 * On the default hierarchy, a child doesn't automatically inherit
4658 * subtree_control from the parent. Each is configured manually.
4659 */
4660 if (!cgroup_on_dfl(cgrp)) {
4661 cgrp->subtree_control = parent->subtree_control;
4662 cgroup_refresh_child_subsys_mask(cgrp);
4663 }
4664
4665 kernfs_activate(kn);
4666
4667 ret = 0;
4668 goto out_unlock;
4669
4670out_free_id:
4671 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4672out_cancel_ref:
4673 percpu_ref_exit(&cgrp->self.refcnt);
4674out_free_cgrp:
4675 kfree(cgrp);
4676out_unlock:
4677 cgroup_kn_unlock(parent_kn);
4678 return ret;
4679
4680out_destroy:
4681 cgroup_destroy_locked(cgrp);
4682 goto out_unlock;
4683}
4684
4685/*
4686 * This is called when the refcnt of a css is confirmed to be killed.
4687 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4688 * initate destruction and put the css ref from kill_css().
4689 */
4690static void css_killed_work_fn(struct work_struct *work)
4691{
4692 struct cgroup_subsys_state *css =
4693 container_of(work, struct cgroup_subsys_state, destroy_work);
4694
4695 mutex_lock(&cgroup_mutex);
4696 offline_css(css);
4697 mutex_unlock(&cgroup_mutex);
4698
4699 css_put(css);
4700}
4701
4702/* css kill confirmation processing requires process context, bounce */
4703static void css_killed_ref_fn(struct percpu_ref *ref)
4704{
4705 struct cgroup_subsys_state *css =
4706 container_of(ref, struct cgroup_subsys_state, refcnt);
4707
4708 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4709 queue_work(cgroup_destroy_wq, &css->destroy_work);
4710}
4711
4712/**
4713 * kill_css - destroy a css
4714 * @css: css to destroy
4715 *
4716 * This function initiates destruction of @css by removing cgroup interface
4717 * files and putting its base reference. ->css_offline() will be invoked
4718 * asynchronously once css_tryget_online() is guaranteed to fail and when
4719 * the reference count reaches zero, @css will be released.
4720 */
4721static void kill_css(struct cgroup_subsys_state *css)
4722{
4723 lockdep_assert_held(&cgroup_mutex);
4724
4725 /*
4726 * This must happen before css is disassociated with its cgroup.
4727 * See seq_css() for details.
4728 */
4729 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4730
4731 /*
4732 * Killing would put the base ref, but we need to keep it alive
4733 * until after ->css_offline().
4734 */
4735 css_get(css);
4736
4737 /*
4738 * cgroup core guarantees that, by the time ->css_offline() is
4739 * invoked, no new css reference will be given out via
4740 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4741 * proceed to offlining css's because percpu_ref_kill() doesn't
4742 * guarantee that the ref is seen as killed on all CPUs on return.
4743 *
4744 * Use percpu_ref_kill_and_confirm() to get notifications as each
4745 * css is confirmed to be seen as killed on all CPUs.
4746 */
4747 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4748}
4749
4750/**
4751 * cgroup_destroy_locked - the first stage of cgroup destruction
4752 * @cgrp: cgroup to be destroyed
4753 *
4754 * css's make use of percpu refcnts whose killing latency shouldn't be
4755 * exposed to userland and are RCU protected. Also, cgroup core needs to
4756 * guarantee that css_tryget_online() won't succeed by the time
4757 * ->css_offline() is invoked. To satisfy all the requirements,
4758 * destruction is implemented in the following two steps.
4759 *
4760 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4761 * userland visible parts and start killing the percpu refcnts of
4762 * css's. Set up so that the next stage will be kicked off once all
4763 * the percpu refcnts are confirmed to be killed.
4764 *
4765 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4766 * rest of destruction. Once all cgroup references are gone, the
4767 * cgroup is RCU-freed.
4768 *
4769 * This function implements s1. After this step, @cgrp is gone as far as
4770 * the userland is concerned and a new cgroup with the same name may be
4771 * created. As cgroup doesn't care about the names internally, this
4772 * doesn't cause any problem.
4773 */
4774static int cgroup_destroy_locked(struct cgroup *cgrp)
4775 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4776{
4777 struct cgroup_subsys_state *css;
4778 bool empty;
4779 int ssid;
4780
4781 lockdep_assert_held(&cgroup_mutex);
4782
4783 /*
4784 * css_set_rwsem synchronizes access to ->cset_links and prevents
4785 * @cgrp from being removed while put_css_set() is in progress.
4786 */
4787 down_read(&css_set_rwsem);
4788 empty = list_empty(&cgrp->cset_links);
4789 up_read(&css_set_rwsem);
4790 if (!empty)
4791 return -EBUSY;
4792
4793 /*
4794 * Make sure there's no live children. We can't test emptiness of
4795 * ->self.children as dead children linger on it while being
4796 * drained; otherwise, "rmdir parent/child parent" may fail.
4797 */
4798 if (css_has_online_children(&cgrp->self))
4799 return -EBUSY;
4800
4801 /*
4802 * Mark @cgrp dead. This prevents further task migration and child
4803 * creation by disabling cgroup_lock_live_group().
4804 */
4805 cgrp->self.flags &= ~CSS_ONLINE;
4806
4807 /* initiate massacre of all css's */
4808 for_each_css(css, ssid, cgrp)
4809 kill_css(css);
4810
4811 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4812 raw_spin_lock(&release_list_lock);
4813 if (!list_empty(&cgrp->release_list))
4814 list_del_init(&cgrp->release_list);
4815 raw_spin_unlock(&release_list_lock);
4816
4817 /*
4818 * Remove @cgrp directory along with the base files. @cgrp has an
4819 * extra ref on its kn.
4820 */
4821 kernfs_remove(cgrp->kn);
4822
4823 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4824 check_for_release(cgroup_parent(cgrp));
4825
4826 /* put the base reference */
4827 percpu_ref_kill(&cgrp->self.refcnt);
4828
4829 return 0;
4830};
4831
4832static int cgroup_rmdir(struct kernfs_node *kn)
4833{
4834 struct cgroup *cgrp;
4835 int ret = 0;
4836
4837 cgrp = cgroup_kn_lock_live(kn);
4838 if (!cgrp)
4839 return 0;
4840 cgroup_get(cgrp); /* for @kn->priv clearing */
4841
4842 ret = cgroup_destroy_locked(cgrp);
4843
4844 cgroup_kn_unlock(kn);
4845
4846 cgroup_put(cgrp);
4847 return ret;
4848}
4849
4850static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4851 .remount_fs = cgroup_remount,
4852 .show_options = cgroup_show_options,
4853 .mkdir = cgroup_mkdir,
4854 .rmdir = cgroup_rmdir,
4855 .rename = cgroup_rename,
4856};
4857
4858static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4859{
4860 struct cgroup_subsys_state *css;
4861
4862 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4863
4864 mutex_lock(&cgroup_mutex);
4865
4866 idr_init(&ss->css_idr);
4867 INIT_LIST_HEAD(&ss->cfts);
4868
4869 /* Create the root cgroup state for this subsystem */
4870 ss->root = &cgrp_dfl_root;
4871 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4872 /* We don't handle early failures gracefully */
4873 BUG_ON(IS_ERR(css));
4874 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4875
4876 /*
4877 * Root csses are never destroyed and we can't initialize
4878 * percpu_ref during early init. Disable refcnting.
4879 */
4880 css->flags |= CSS_NO_REF;
4881
4882 if (early) {
4883 /* allocation can't be done safely during early init */
4884 css->id = 1;
4885 } else {
4886 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4887 BUG_ON(css->id < 0);
4888 }
4889
4890 /* Update the init_css_set to contain a subsys
4891 * pointer to this state - since the subsystem is
4892 * newly registered, all tasks and hence the
4893 * init_css_set is in the subsystem's root cgroup. */
4894 init_css_set.subsys[ss->id] = css;
4895
4896 need_forkexit_callback |= ss->fork || ss->exit;
4897
4898 /* At system boot, before all subsystems have been
4899 * registered, no tasks have been forked, so we don't
4900 * need to invoke fork callbacks here. */
4901 BUG_ON(!list_empty(&init_task.tasks));
4902
4903 BUG_ON(online_css(css));
4904
4905 mutex_unlock(&cgroup_mutex);
4906}
4907
4908/**
4909 * cgroup_init_early - cgroup initialization at system boot
4910 *
4911 * Initialize cgroups at system boot, and initialize any
4912 * subsystems that request early init.
4913 */
4914int __init cgroup_init_early(void)
4915{
4916 static struct cgroup_sb_opts __initdata opts;
4917 struct cgroup_subsys *ss;
4918 int i;
4919
4920 init_cgroup_root(&cgrp_dfl_root, &opts);
4921 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4922
4923 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4924
4925 for_each_subsys(ss, i) {
4926 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4927 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4928 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4929 ss->id, ss->name);
4930 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4931 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4932
4933 ss->id = i;
4934 ss->name = cgroup_subsys_name[i];
4935
4936 if (ss->early_init)
4937 cgroup_init_subsys(ss, true);
4938 }
4939 return 0;
4940}
4941
4942/**
4943 * cgroup_init - cgroup initialization
4944 *
4945 * Register cgroup filesystem and /proc file, and initialize
4946 * any subsystems that didn't request early init.
4947 */
4948int __init cgroup_init(void)
4949{
4950 struct cgroup_subsys *ss;
4951 unsigned long key;
4952 int ssid, err;
4953
4954 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4955 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4956
4957 mutex_lock(&cgroup_mutex);
4958
4959 /* Add init_css_set to the hash table */
4960 key = css_set_hash(init_css_set.subsys);
4961 hash_add(css_set_table, &init_css_set.hlist, key);
4962
4963 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4964
4965 mutex_unlock(&cgroup_mutex);
4966
4967 for_each_subsys(ss, ssid) {
4968 if (ss->early_init) {
4969 struct cgroup_subsys_state *css =
4970 init_css_set.subsys[ss->id];
4971
4972 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4973 GFP_KERNEL);
4974 BUG_ON(css->id < 0);
4975 } else {
4976 cgroup_init_subsys(ss, false);
4977 }
4978
4979 list_add_tail(&init_css_set.e_cset_node[ssid],
4980 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4981
4982 /*
4983 * Setting dfl_root subsys_mask needs to consider the
4984 * disabled flag and cftype registration needs kmalloc,
4985 * both of which aren't available during early_init.
4986 */
4987 if (ss->disabled)
4988 continue;
4989
4990 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4991
4992 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4993 ss->dfl_cftypes = ss->legacy_cftypes;
4994
4995 if (!ss->dfl_cftypes)
4996 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4997
4998 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4999 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5000 } else {
5001 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5002 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5003 }
5004 }
5005
5006 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5007 if (!cgroup_kobj)
5008 return -ENOMEM;
5009
5010 err = register_filesystem(&cgroup_fs_type);
5011 if (err < 0) {
5012 kobject_put(cgroup_kobj);
5013 return err;
5014 }
5015
5016 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5017 return 0;
5018}
5019
5020static int __init cgroup_wq_init(void)
5021{
5022 /*
5023 * There isn't much point in executing destruction path in
5024 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5025 * Use 1 for @max_active.
5026 *
5027 * We would prefer to do this in cgroup_init() above, but that
5028 * is called before init_workqueues(): so leave this until after.
5029 */
5030 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5031 BUG_ON(!cgroup_destroy_wq);
5032
5033 /*
5034 * Used to destroy pidlists and separate to serve as flush domain.
5035 * Cap @max_active to 1 too.
5036 */
5037 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5038 0, 1);
5039 BUG_ON(!cgroup_pidlist_destroy_wq);
5040
5041 return 0;
5042}
5043core_initcall(cgroup_wq_init);
5044
5045/*
5046 * proc_cgroup_show()
5047 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5048 * - Used for /proc/<pid>/cgroup.
5049 */
5050
5051/* TODO: Use a proper seq_file iterator */
5052int proc_cgroup_show(struct seq_file *m, void *v)
5053{
5054 struct pid *pid;
5055 struct task_struct *tsk;
5056 char *buf, *path;
5057 int retval;
5058 struct cgroup_root *root;
5059
5060 retval = -ENOMEM;
5061 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5062 if (!buf)
5063 goto out;
5064
5065 retval = -ESRCH;
5066 pid = m->private;
5067 tsk = get_pid_task(pid, PIDTYPE_PID);
5068 if (!tsk)
5069 goto out_free;
5070
5071 retval = 0;
5072
5073 mutex_lock(&cgroup_mutex);
5074 down_read(&css_set_rwsem);
5075
5076 for_each_root(root) {
5077 struct cgroup_subsys *ss;
5078 struct cgroup *cgrp;
5079 int ssid, count = 0;
5080
5081 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5082 continue;
5083
5084 seq_printf(m, "%d:", root->hierarchy_id);
5085 for_each_subsys(ss, ssid)
5086 if (root->subsys_mask & (1 << ssid))
5087 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5088 if (strlen(root->name))
5089 seq_printf(m, "%sname=%s", count ? "," : "",
5090 root->name);
5091 seq_putc(m, ':');
5092 cgrp = task_cgroup_from_root(tsk, root);
5093 path = cgroup_path(cgrp, buf, PATH_MAX);
5094 if (!path) {
5095 retval = -ENAMETOOLONG;
5096 goto out_unlock;
5097 }
5098 seq_puts(m, path);
5099 seq_putc(m, '\n');
5100 }
5101
5102out_unlock:
5103 up_read(&css_set_rwsem);
5104 mutex_unlock(&cgroup_mutex);
5105 put_task_struct(tsk);
5106out_free:
5107 kfree(buf);
5108out:
5109 return retval;
5110}
5111
5112/* Display information about each subsystem and each hierarchy */
5113static int proc_cgroupstats_show(struct seq_file *m, void *v)
5114{
5115 struct cgroup_subsys *ss;
5116 int i;
5117
5118 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5119 /*
5120 * ideally we don't want subsystems moving around while we do this.
5121 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5122 * subsys/hierarchy state.
5123 */
5124 mutex_lock(&cgroup_mutex);
5125
5126 for_each_subsys(ss, i)
5127 seq_printf(m, "%s\t%d\t%d\t%d\n",
5128 ss->name, ss->root->hierarchy_id,
5129 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5130
5131 mutex_unlock(&cgroup_mutex);
5132 return 0;
5133}
5134
5135static int cgroupstats_open(struct inode *inode, struct file *file)
5136{
5137 return single_open(file, proc_cgroupstats_show, NULL);
5138}
5139
5140static const struct file_operations proc_cgroupstats_operations = {
5141 .open = cgroupstats_open,
5142 .read = seq_read,
5143 .llseek = seq_lseek,
5144 .release = single_release,
5145};
5146
5147/**
5148 * cgroup_fork - initialize cgroup related fields during copy_process()
5149 * @child: pointer to task_struct of forking parent process.
5150 *
5151 * A task is associated with the init_css_set until cgroup_post_fork()
5152 * attaches it to the parent's css_set. Empty cg_list indicates that
5153 * @child isn't holding reference to its css_set.
5154 */
5155void cgroup_fork(struct task_struct *child)
5156{
5157 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5158 INIT_LIST_HEAD(&child->cg_list);
5159}
5160
5161/**
5162 * cgroup_post_fork - called on a new task after adding it to the task list
5163 * @child: the task in question
5164 *
5165 * Adds the task to the list running through its css_set if necessary and
5166 * call the subsystem fork() callbacks. Has to be after the task is
5167 * visible on the task list in case we race with the first call to
5168 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5169 * list.
5170 */
5171void cgroup_post_fork(struct task_struct *child)
5172{
5173 struct cgroup_subsys *ss;
5174 int i;
5175
5176 /*
5177 * This may race against cgroup_enable_task_cg_links(). As that
5178 * function sets use_task_css_set_links before grabbing
5179 * tasklist_lock and we just went through tasklist_lock to add
5180 * @child, it's guaranteed that either we see the set
5181 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5182 * @child during its iteration.
5183 *
5184 * If we won the race, @child is associated with %current's
5185 * css_set. Grabbing css_set_rwsem guarantees both that the
5186 * association is stable, and, on completion of the parent's
5187 * migration, @child is visible in the source of migration or
5188 * already in the destination cgroup. This guarantee is necessary
5189 * when implementing operations which need to migrate all tasks of
5190 * a cgroup to another.
5191 *
5192 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5193 * will remain in init_css_set. This is safe because all tasks are
5194 * in the init_css_set before cg_links is enabled and there's no
5195 * operation which transfers all tasks out of init_css_set.
5196 */
5197 if (use_task_css_set_links) {
5198 struct css_set *cset;
5199
5200 down_write(&css_set_rwsem);
5201 cset = task_css_set(current);
5202 if (list_empty(&child->cg_list)) {
5203 rcu_assign_pointer(child->cgroups, cset);
5204 list_add(&child->cg_list, &cset->tasks);
5205 get_css_set(cset);
5206 }
5207 up_write(&css_set_rwsem);
5208 }
5209
5210 /*
5211 * Call ss->fork(). This must happen after @child is linked on
5212 * css_set; otherwise, @child might change state between ->fork()
5213 * and addition to css_set.
5214 */
5215 if (need_forkexit_callback) {
5216 for_each_subsys(ss, i)
5217 if (ss->fork)
5218 ss->fork(child);
5219 }
5220}
5221
5222/**
5223 * cgroup_exit - detach cgroup from exiting task
5224 * @tsk: pointer to task_struct of exiting process
5225 *
5226 * Description: Detach cgroup from @tsk and release it.
5227 *
5228 * Note that cgroups marked notify_on_release force every task in
5229 * them to take the global cgroup_mutex mutex when exiting.
5230 * This could impact scaling on very large systems. Be reluctant to
5231 * use notify_on_release cgroups where very high task exit scaling
5232 * is required on large systems.
5233 *
5234 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5235 * call cgroup_exit() while the task is still competent to handle
5236 * notify_on_release(), then leave the task attached to the root cgroup in
5237 * each hierarchy for the remainder of its exit. No need to bother with
5238 * init_css_set refcnting. init_css_set never goes away and we can't race
5239 * with migration path - PF_EXITING is visible to migration path.
5240 */
5241void cgroup_exit(struct task_struct *tsk)
5242{
5243 struct cgroup_subsys *ss;
5244 struct css_set *cset;
5245 bool put_cset = false;
5246 int i;
5247
5248 /*
5249 * Unlink from @tsk from its css_set. As migration path can't race
5250 * with us, we can check cg_list without grabbing css_set_rwsem.
5251 */
5252 if (!list_empty(&tsk->cg_list)) {
5253 down_write(&css_set_rwsem);
5254 list_del_init(&tsk->cg_list);
5255 up_write(&css_set_rwsem);
5256 put_cset = true;
5257 }
5258
5259 /* Reassign the task to the init_css_set. */
5260 cset = task_css_set(tsk);
5261 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5262
5263 if (need_forkexit_callback) {
5264 /* see cgroup_post_fork() for details */
5265 for_each_subsys(ss, i) {
5266 if (ss->exit) {
5267 struct cgroup_subsys_state *old_css = cset->subsys[i];
5268 struct cgroup_subsys_state *css = task_css(tsk, i);
5269
5270 ss->exit(css, old_css, tsk);
5271 }
5272 }
5273 }
5274
5275 if (put_cset)
5276 put_css_set(cset, true);
5277}
5278
5279static void check_for_release(struct cgroup *cgrp)
5280{
5281 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5282 !css_has_online_children(&cgrp->self)) {
5283 /*
5284 * Control Group is currently removeable. If it's not
5285 * already queued for a userspace notification, queue
5286 * it now
5287 */
5288 int need_schedule_work = 0;
5289
5290 raw_spin_lock(&release_list_lock);
5291 if (!cgroup_is_dead(cgrp) &&
5292 list_empty(&cgrp->release_list)) {
5293 list_add(&cgrp->release_list, &release_list);
5294 need_schedule_work = 1;
5295 }
5296 raw_spin_unlock(&release_list_lock);
5297 if (need_schedule_work)
5298 schedule_work(&release_agent_work);
5299 }
5300}
5301
5302/*
5303 * Notify userspace when a cgroup is released, by running the
5304 * configured release agent with the name of the cgroup (path
5305 * relative to the root of cgroup file system) as the argument.
5306 *
5307 * Most likely, this user command will try to rmdir this cgroup.
5308 *
5309 * This races with the possibility that some other task will be
5310 * attached to this cgroup before it is removed, or that some other
5311 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5312 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5313 * unused, and this cgroup will be reprieved from its death sentence,
5314 * to continue to serve a useful existence. Next time it's released,
5315 * we will get notified again, if it still has 'notify_on_release' set.
5316 *
5317 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5318 * means only wait until the task is successfully execve()'d. The
5319 * separate release agent task is forked by call_usermodehelper(),
5320 * then control in this thread returns here, without waiting for the
5321 * release agent task. We don't bother to wait because the caller of
5322 * this routine has no use for the exit status of the release agent
5323 * task, so no sense holding our caller up for that.
5324 */
5325static void cgroup_release_agent(struct work_struct *work)
5326{
5327 BUG_ON(work != &release_agent_work);
5328 mutex_lock(&cgroup_mutex);
5329 raw_spin_lock(&release_list_lock);
5330 while (!list_empty(&release_list)) {
5331 char *argv[3], *envp[3];
5332 int i;
5333 char *pathbuf = NULL, *agentbuf = NULL, *path;
5334 struct cgroup *cgrp = list_entry(release_list.next,
5335 struct cgroup,
5336 release_list);
5337 list_del_init(&cgrp->release_list);
5338 raw_spin_unlock(&release_list_lock);
5339 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5340 if (!pathbuf)
5341 goto continue_free;
5342 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5343 if (!path)
5344 goto continue_free;
5345 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5346 if (!agentbuf)
5347 goto continue_free;
5348
5349 i = 0;
5350 argv[i++] = agentbuf;
5351 argv[i++] = path;
5352 argv[i] = NULL;
5353
5354 i = 0;
5355 /* minimal command environment */
5356 envp[i++] = "HOME=/";
5357 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5358 envp[i] = NULL;
5359
5360 /* Drop the lock while we invoke the usermode helper,
5361 * since the exec could involve hitting disk and hence
5362 * be a slow process */
5363 mutex_unlock(&cgroup_mutex);
5364 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5365 mutex_lock(&cgroup_mutex);
5366 continue_free:
5367 kfree(pathbuf);
5368 kfree(agentbuf);
5369 raw_spin_lock(&release_list_lock);
5370 }
5371 raw_spin_unlock(&release_list_lock);
5372 mutex_unlock(&cgroup_mutex);
5373}
5374
5375static int __init cgroup_disable(char *str)
5376{
5377 struct cgroup_subsys *ss;
5378 char *token;
5379 int i;
5380
5381 while ((token = strsep(&str, ",")) != NULL) {
5382 if (!*token)
5383 continue;
5384
5385 for_each_subsys(ss, i) {
5386 if (!strcmp(token, ss->name)) {
5387 ss->disabled = 1;
5388 printk(KERN_INFO "Disabling %s control group"
5389 " subsystem\n", ss->name);
5390 break;
5391 }
5392 }
5393 }
5394 return 1;
5395}
5396__setup("cgroup_disable=", cgroup_disable);
5397
5398static int __init cgroup_set_legacy_files_on_dfl(char *str)
5399{
5400 printk("cgroup: using legacy files on the default hierarchy\n");
5401 cgroup_legacy_files_on_dfl = true;
5402 return 0;
5403}
5404__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5405
5406/**
5407 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5408 * @dentry: directory dentry of interest
5409 * @ss: subsystem of interest
5410 *
5411 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5412 * to get the corresponding css and return it. If such css doesn't exist
5413 * or can't be pinned, an ERR_PTR value is returned.
5414 */
5415struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5416 struct cgroup_subsys *ss)
5417{
5418 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5419 struct cgroup_subsys_state *css = NULL;
5420 struct cgroup *cgrp;
5421
5422 /* is @dentry a cgroup dir? */
5423 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5424 kernfs_type(kn) != KERNFS_DIR)
5425 return ERR_PTR(-EBADF);
5426
5427 rcu_read_lock();
5428
5429 /*
5430 * This path doesn't originate from kernfs and @kn could already
5431 * have been or be removed at any point. @kn->priv is RCU
5432 * protected for this access. See css_release_work_fn() for details.
5433 */
5434 cgrp = rcu_dereference(kn->priv);
5435 if (cgrp)
5436 css = cgroup_css(cgrp, ss);
5437
5438 if (!css || !css_tryget_online(css))
5439 css = ERR_PTR(-ENOENT);
5440
5441 rcu_read_unlock();
5442 return css;
5443}
5444
5445/**
5446 * css_from_id - lookup css by id
5447 * @id: the cgroup id
5448 * @ss: cgroup subsys to be looked into
5449 *
5450 * Returns the css if there's valid one with @id, otherwise returns NULL.
5451 * Should be called under rcu_read_lock().
5452 */
5453struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5454{
5455 WARN_ON_ONCE(!rcu_read_lock_held());
5456 return idr_find(&ss->css_idr, id);
5457}
5458
5459#ifdef CONFIG_CGROUP_DEBUG
5460static struct cgroup_subsys_state *
5461debug_css_alloc(struct cgroup_subsys_state *parent_css)
5462{
5463 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5464
5465 if (!css)
5466 return ERR_PTR(-ENOMEM);
5467
5468 return css;
5469}
5470
5471static void debug_css_free(struct cgroup_subsys_state *css)
5472{
5473 kfree(css);
5474}
5475
5476static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5477 struct cftype *cft)
5478{
5479 return cgroup_task_count(css->cgroup);
5480}
5481
5482static u64 current_css_set_read(struct cgroup_subsys_state *css,
5483 struct cftype *cft)
5484{
5485 return (u64)(unsigned long)current->cgroups;
5486}
5487
5488static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5489 struct cftype *cft)
5490{
5491 u64 count;
5492
5493 rcu_read_lock();
5494 count = atomic_read(&task_css_set(current)->refcount);
5495 rcu_read_unlock();
5496 return count;
5497}
5498
5499static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5500{
5501 struct cgrp_cset_link *link;
5502 struct css_set *cset;
5503 char *name_buf;
5504
5505 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5506 if (!name_buf)
5507 return -ENOMEM;
5508
5509 down_read(&css_set_rwsem);
5510 rcu_read_lock();
5511 cset = rcu_dereference(current->cgroups);
5512 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5513 struct cgroup *c = link->cgrp;
5514
5515 cgroup_name(c, name_buf, NAME_MAX + 1);
5516 seq_printf(seq, "Root %d group %s\n",
5517 c->root->hierarchy_id, name_buf);
5518 }
5519 rcu_read_unlock();
5520 up_read(&css_set_rwsem);
5521 kfree(name_buf);
5522 return 0;
5523}
5524
5525#define MAX_TASKS_SHOWN_PER_CSS 25
5526static int cgroup_css_links_read(struct seq_file *seq, void *v)
5527{
5528 struct cgroup_subsys_state *css = seq_css(seq);
5529 struct cgrp_cset_link *link;
5530
5531 down_read(&css_set_rwsem);
5532 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5533 struct css_set *cset = link->cset;
5534 struct task_struct *task;
5535 int count = 0;
5536
5537 seq_printf(seq, "css_set %p\n", cset);
5538
5539 list_for_each_entry(task, &cset->tasks, cg_list) {
5540 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5541 goto overflow;
5542 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5543 }
5544
5545 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5546 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5547 goto overflow;
5548 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5549 }
5550 continue;
5551 overflow:
5552 seq_puts(seq, " ...\n");
5553 }
5554 up_read(&css_set_rwsem);
5555 return 0;
5556}
5557
5558static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5559{
5560 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5561}
5562
5563static struct cftype debug_files[] = {
5564 {
5565 .name = "taskcount",
5566 .read_u64 = debug_taskcount_read,
5567 },
5568
5569 {
5570 .name = "current_css_set",
5571 .read_u64 = current_css_set_read,
5572 },
5573
5574 {
5575 .name = "current_css_set_refcount",
5576 .read_u64 = current_css_set_refcount_read,
5577 },
5578
5579 {
5580 .name = "current_css_set_cg_links",
5581 .seq_show = current_css_set_cg_links_read,
5582 },
5583
5584 {
5585 .name = "cgroup_css_links",
5586 .seq_show = cgroup_css_links_read,
5587 },
5588
5589 {
5590 .name = "releasable",
5591 .read_u64 = releasable_read,
5592 },
5593
5594 { } /* terminate */
5595};
5596
5597struct cgroup_subsys debug_cgrp_subsys = {
5598 .css_alloc = debug_css_alloc,
5599 .css_free = debug_css_free,
5600 .legacy_cftypes = debug_files,
5601};
5602#endif /* CONFIG_CGROUP_DEBUG */