Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-block.git] / kernel / cgroup / rstat.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2#include "cgroup-internal.h"
3
4#include <linux/sched/cputime.h>
5
6#include <linux/bpf.h>
7#include <linux/btf.h>
8#include <linux/btf_ids.h>
9
10static DEFINE_SPINLOCK(cgroup_rstat_lock);
11static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
12
13static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
14
15static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
16{
17 return per_cpu_ptr(cgrp->rstat_cpu, cpu);
18}
19
20/**
21 * cgroup_rstat_updated - keep track of updated rstat_cpu
22 * @cgrp: target cgroup
23 * @cpu: cpu on which rstat_cpu was updated
24 *
25 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching
26 * rstat_cpu->updated_children list. See the comment on top of
27 * cgroup_rstat_cpu definition for details.
28 */
29__bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
30{
31 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
32 unsigned long flags;
33
34 /*
35 * Speculative already-on-list test. This may race leading to
36 * temporary inaccuracies, which is fine.
37 *
38 * Because @parent's updated_children is terminated with @parent
39 * instead of NULL, we can tell whether @cgrp is on the list by
40 * testing the next pointer for NULL.
41 */
42 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
43 return;
44
45 raw_spin_lock_irqsave(cpu_lock, flags);
46
47 /* put @cgrp and all ancestors on the corresponding updated lists */
48 while (true) {
49 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
50 struct cgroup *parent = cgroup_parent(cgrp);
51 struct cgroup_rstat_cpu *prstatc;
52
53 /*
54 * Both additions and removals are bottom-up. If a cgroup
55 * is already in the tree, all ancestors are.
56 */
57 if (rstatc->updated_next)
58 break;
59
60 /* Root has no parent to link it to, but mark it busy */
61 if (!parent) {
62 rstatc->updated_next = cgrp;
63 break;
64 }
65
66 prstatc = cgroup_rstat_cpu(parent, cpu);
67 rstatc->updated_next = prstatc->updated_children;
68 prstatc->updated_children = cgrp;
69
70 cgrp = parent;
71 }
72
73 raw_spin_unlock_irqrestore(cpu_lock, flags);
74}
75
76/**
77 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree
78 * @pos: current position
79 * @root: root of the tree to traversal
80 * @cpu: target cpu
81 *
82 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts
83 * the traversal and %NULL return indicates the end. During traversal,
84 * each returned cgroup is unlinked from the tree. Must be called with the
85 * matching cgroup_rstat_cpu_lock held.
86 *
87 * The only ordering guarantee is that, for a parent and a child pair
88 * covered by a given traversal, if a child is visited, its parent is
89 * guaranteed to be visited afterwards.
90 */
91static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
92 struct cgroup *root, int cpu)
93{
94 struct cgroup_rstat_cpu *rstatc;
95 struct cgroup *parent;
96
97 if (pos == root)
98 return NULL;
99
100 /*
101 * We're gonna walk down to the first leaf and visit/remove it. We
102 * can pick whatever unvisited node as the starting point.
103 */
104 if (!pos) {
105 pos = root;
106 /* return NULL if this subtree is not on-list */
107 if (!cgroup_rstat_cpu(pos, cpu)->updated_next)
108 return NULL;
109 } else {
110 pos = cgroup_parent(pos);
111 }
112
113 /* walk down to the first leaf */
114 while (true) {
115 rstatc = cgroup_rstat_cpu(pos, cpu);
116 if (rstatc->updated_children == pos)
117 break;
118 pos = rstatc->updated_children;
119 }
120
121 /*
122 * Unlink @pos from the tree. As the updated_children list is
123 * singly linked, we have to walk it to find the removal point.
124 * However, due to the way we traverse, @pos will be the first
125 * child in most cases. The only exception is @root.
126 */
127 parent = cgroup_parent(pos);
128 if (parent) {
129 struct cgroup_rstat_cpu *prstatc;
130 struct cgroup **nextp;
131
132 prstatc = cgroup_rstat_cpu(parent, cpu);
133 nextp = &prstatc->updated_children;
134 while (*nextp != pos) {
135 struct cgroup_rstat_cpu *nrstatc;
136
137 nrstatc = cgroup_rstat_cpu(*nextp, cpu);
138 WARN_ON_ONCE(*nextp == parent);
139 nextp = &nrstatc->updated_next;
140 }
141 *nextp = rstatc->updated_next;
142 }
143
144 rstatc->updated_next = NULL;
145 return pos;
146}
147
148/*
149 * A hook for bpf stat collectors to attach to and flush their stats.
150 * Together with providing bpf kfuncs for cgroup_rstat_updated() and
151 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
152 * collect cgroup stats can integrate with rstat for efficient flushing.
153 *
154 * A static noinline declaration here could cause the compiler to optimize away
155 * the function. A global noinline declaration will keep the definition, but may
156 * optimize away the callsite. Therefore, __weak is needed to ensure that the
157 * call is still emitted, by telling the compiler that we don't know what the
158 * function might eventually be.
159 */
160
161__bpf_hook_start();
162
163__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
164 struct cgroup *parent, int cpu)
165{
166}
167
168__bpf_hook_end();
169
170/* see cgroup_rstat_flush() */
171static void cgroup_rstat_flush_locked(struct cgroup *cgrp)
172 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
173{
174 int cpu;
175
176 lockdep_assert_held(&cgroup_rstat_lock);
177
178 for_each_possible_cpu(cpu) {
179 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock,
180 cpu);
181 struct cgroup *pos = NULL;
182 unsigned long flags;
183
184 /*
185 * The _irqsave() is needed because cgroup_rstat_lock is
186 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
187 * this lock with the _irq() suffix only disables interrupts on
188 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
189 * interrupts on both configurations. The _irqsave() ensures
190 * that interrupts are always disabled and later restored.
191 */
192 raw_spin_lock_irqsave(cpu_lock, flags);
193 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) {
194 struct cgroup_subsys_state *css;
195
196 cgroup_base_stat_flush(pos, cpu);
197 bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
198
199 rcu_read_lock();
200 list_for_each_entry_rcu(css, &pos->rstat_css_list,
201 rstat_css_node)
202 css->ss->css_rstat_flush(css, cpu);
203 rcu_read_unlock();
204 }
205 raw_spin_unlock_irqrestore(cpu_lock, flags);
206
207 /* play nice and yield if necessary */
208 if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) {
209 spin_unlock_irq(&cgroup_rstat_lock);
210 if (!cond_resched())
211 cpu_relax();
212 spin_lock_irq(&cgroup_rstat_lock);
213 }
214 }
215}
216
217/**
218 * cgroup_rstat_flush - flush stats in @cgrp's subtree
219 * @cgrp: target cgroup
220 *
221 * Collect all per-cpu stats in @cgrp's subtree into the global counters
222 * and propagate them upwards. After this function returns, all cgroups in
223 * the subtree have up-to-date ->stat.
224 *
225 * This also gets all cgroups in the subtree including @cgrp off the
226 * ->updated_children lists.
227 *
228 * This function may block.
229 */
230__bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp)
231{
232 might_sleep();
233
234 spin_lock_irq(&cgroup_rstat_lock);
235 cgroup_rstat_flush_locked(cgrp);
236 spin_unlock_irq(&cgroup_rstat_lock);
237}
238
239/**
240 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
241 * @cgrp: target cgroup
242 *
243 * Flush stats in @cgrp's subtree and prevent further flushes. Must be
244 * paired with cgroup_rstat_flush_release().
245 *
246 * This function may block.
247 */
248void cgroup_rstat_flush_hold(struct cgroup *cgrp)
249 __acquires(&cgroup_rstat_lock)
250{
251 might_sleep();
252 spin_lock_irq(&cgroup_rstat_lock);
253 cgroup_rstat_flush_locked(cgrp);
254}
255
256/**
257 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
258 */
259void cgroup_rstat_flush_release(void)
260 __releases(&cgroup_rstat_lock)
261{
262 spin_unlock_irq(&cgroup_rstat_lock);
263}
264
265int cgroup_rstat_init(struct cgroup *cgrp)
266{
267 int cpu;
268
269 /* the root cgrp has rstat_cpu preallocated */
270 if (!cgrp->rstat_cpu) {
271 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
272 if (!cgrp->rstat_cpu)
273 return -ENOMEM;
274 }
275
276 /* ->updated_children list is self terminated */
277 for_each_possible_cpu(cpu) {
278 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
279
280 rstatc->updated_children = cgrp;
281 u64_stats_init(&rstatc->bsync);
282 }
283
284 return 0;
285}
286
287void cgroup_rstat_exit(struct cgroup *cgrp)
288{
289 int cpu;
290
291 cgroup_rstat_flush(cgrp);
292
293 /* sanity check */
294 for_each_possible_cpu(cpu) {
295 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
296
297 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
298 WARN_ON_ONCE(rstatc->updated_next))
299 return;
300 }
301
302 free_percpu(cgrp->rstat_cpu);
303 cgrp->rstat_cpu = NULL;
304}
305
306void __init cgroup_rstat_boot(void)
307{
308 int cpu;
309
310 for_each_possible_cpu(cpu)
311 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
312}
313
314/*
315 * Functions for cgroup basic resource statistics implemented on top of
316 * rstat.
317 */
318static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
319 struct cgroup_base_stat *src_bstat)
320{
321 dst_bstat->cputime.utime += src_bstat->cputime.utime;
322 dst_bstat->cputime.stime += src_bstat->cputime.stime;
323 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
324#ifdef CONFIG_SCHED_CORE
325 dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
326#endif
327}
328
329static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
330 struct cgroup_base_stat *src_bstat)
331{
332 dst_bstat->cputime.utime -= src_bstat->cputime.utime;
333 dst_bstat->cputime.stime -= src_bstat->cputime.stime;
334 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
335#ifdef CONFIG_SCHED_CORE
336 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
337#endif
338}
339
340static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
341{
342 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
343 struct cgroup *parent = cgroup_parent(cgrp);
344 struct cgroup_rstat_cpu *prstatc;
345 struct cgroup_base_stat delta;
346 unsigned seq;
347
348 /* Root-level stats are sourced from system-wide CPU stats */
349 if (!parent)
350 return;
351
352 /* fetch the current per-cpu values */
353 do {
354 seq = __u64_stats_fetch_begin(&rstatc->bsync);
355 delta = rstatc->bstat;
356 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
357
358 /* propagate per-cpu delta to cgroup and per-cpu global statistics */
359 cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
360 cgroup_base_stat_add(&cgrp->bstat, &delta);
361 cgroup_base_stat_add(&rstatc->last_bstat, &delta);
362 cgroup_base_stat_add(&rstatc->subtree_bstat, &delta);
363
364 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */
365 if (cgroup_parent(parent)) {
366 delta = cgrp->bstat;
367 cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
368 cgroup_base_stat_add(&parent->bstat, &delta);
369 cgroup_base_stat_add(&cgrp->last_bstat, &delta);
370
371 delta = rstatc->subtree_bstat;
372 prstatc = cgroup_rstat_cpu(parent, cpu);
373 cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat);
374 cgroup_base_stat_add(&prstatc->subtree_bstat, &delta);
375 cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta);
376 }
377}
378
379static struct cgroup_rstat_cpu *
380cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
381{
382 struct cgroup_rstat_cpu *rstatc;
383
384 rstatc = get_cpu_ptr(cgrp->rstat_cpu);
385 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
386 return rstatc;
387}
388
389static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
390 struct cgroup_rstat_cpu *rstatc,
391 unsigned long flags)
392{
393 u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
394 cgroup_rstat_updated(cgrp, smp_processor_id());
395 put_cpu_ptr(rstatc);
396}
397
398void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
399{
400 struct cgroup_rstat_cpu *rstatc;
401 unsigned long flags;
402
403 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
404 rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
405 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
406}
407
408void __cgroup_account_cputime_field(struct cgroup *cgrp,
409 enum cpu_usage_stat index, u64 delta_exec)
410{
411 struct cgroup_rstat_cpu *rstatc;
412 unsigned long flags;
413
414 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
415
416 switch (index) {
417 case CPUTIME_USER:
418 case CPUTIME_NICE:
419 rstatc->bstat.cputime.utime += delta_exec;
420 break;
421 case CPUTIME_SYSTEM:
422 case CPUTIME_IRQ:
423 case CPUTIME_SOFTIRQ:
424 rstatc->bstat.cputime.stime += delta_exec;
425 break;
426#ifdef CONFIG_SCHED_CORE
427 case CPUTIME_FORCEIDLE:
428 rstatc->bstat.forceidle_sum += delta_exec;
429 break;
430#endif
431 default:
432 break;
433 }
434
435 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
436}
437
438/*
439 * compute the cputime for the root cgroup by getting the per cpu data
440 * at a global level, then categorizing the fields in a manner consistent
441 * with how it is done by __cgroup_account_cputime_field for each bit of
442 * cpu time attributed to a cgroup.
443 */
444static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
445{
446 struct task_cputime *cputime = &bstat->cputime;
447 int i;
448
449 memset(bstat, 0, sizeof(*bstat));
450 for_each_possible_cpu(i) {
451 struct kernel_cpustat kcpustat;
452 u64 *cpustat = kcpustat.cpustat;
453 u64 user = 0;
454 u64 sys = 0;
455
456 kcpustat_cpu_fetch(&kcpustat, i);
457
458 user += cpustat[CPUTIME_USER];
459 user += cpustat[CPUTIME_NICE];
460 cputime->utime += user;
461
462 sys += cpustat[CPUTIME_SYSTEM];
463 sys += cpustat[CPUTIME_IRQ];
464 sys += cpustat[CPUTIME_SOFTIRQ];
465 cputime->stime += sys;
466
467 cputime->sum_exec_runtime += user;
468 cputime->sum_exec_runtime += sys;
469 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
470
471#ifdef CONFIG_SCHED_CORE
472 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
473#endif
474 }
475}
476
477void cgroup_base_stat_cputime_show(struct seq_file *seq)
478{
479 struct cgroup *cgrp = seq_css(seq)->cgroup;
480 u64 usage, utime, stime;
481 struct cgroup_base_stat bstat;
482#ifdef CONFIG_SCHED_CORE
483 u64 forceidle_time;
484#endif
485
486 if (cgroup_parent(cgrp)) {
487 cgroup_rstat_flush_hold(cgrp);
488 usage = cgrp->bstat.cputime.sum_exec_runtime;
489 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
490 &utime, &stime);
491#ifdef CONFIG_SCHED_CORE
492 forceidle_time = cgrp->bstat.forceidle_sum;
493#endif
494 cgroup_rstat_flush_release();
495 } else {
496 root_cgroup_cputime(&bstat);
497 usage = bstat.cputime.sum_exec_runtime;
498 utime = bstat.cputime.utime;
499 stime = bstat.cputime.stime;
500#ifdef CONFIG_SCHED_CORE
501 forceidle_time = bstat.forceidle_sum;
502#endif
503 }
504
505 do_div(usage, NSEC_PER_USEC);
506 do_div(utime, NSEC_PER_USEC);
507 do_div(stime, NSEC_PER_USEC);
508#ifdef CONFIG_SCHED_CORE
509 do_div(forceidle_time, NSEC_PER_USEC);
510#endif
511
512 seq_printf(seq, "usage_usec %llu\n"
513 "user_usec %llu\n"
514 "system_usec %llu\n",
515 usage, utime, stime);
516
517#ifdef CONFIG_SCHED_CORE
518 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
519#endif
520}
521
522/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
523BTF_SET8_START(bpf_rstat_kfunc_ids)
524BTF_ID_FLAGS(func, cgroup_rstat_updated)
525BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
526BTF_SET8_END(bpf_rstat_kfunc_ids)
527
528static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
529 .owner = THIS_MODULE,
530 .set = &bpf_rstat_kfunc_ids,
531};
532
533static int __init bpf_rstat_kfunc_init(void)
534{
535 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
536 &bpf_rstat_kfunc_set);
537}
538late_initcall(bpf_rstat_kfunc_init);