| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | #include "cgroup-internal.h" |
| 3 | |
| 4 | #include <linux/ctype.h> |
| 5 | #include <linux/kmod.h> |
| 6 | #include <linux/sort.h> |
| 7 | #include <linux/delay.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/sched/signal.h> |
| 10 | #include <linux/sched/task.h> |
| 11 | #include <linux/magic.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/vmalloc.h> |
| 14 | #include <linux/delayacct.h> |
| 15 | #include <linux/pid_namespace.h> |
| 16 | #include <linux/cgroupstats.h> |
| 17 | #include <linux/fs_parser.h> |
| 18 | |
| 19 | #include <trace/events/cgroup.h> |
| 20 | |
| 21 | /* |
| 22 | * pidlists linger the following amount before being destroyed. The goal |
| 23 | * is avoiding frequent destruction in the middle of consecutive read calls |
| 24 | * Expiring in the middle is a performance problem not a correctness one. |
| 25 | * 1 sec should be enough. |
| 26 | */ |
| 27 | #define CGROUP_PIDLIST_DESTROY_DELAY HZ |
| 28 | |
| 29 | /* Controllers blocked by the commandline in v1 */ |
| 30 | static u16 cgroup_no_v1_mask; |
| 31 | |
| 32 | /* disable named v1 mounts */ |
| 33 | static bool cgroup_no_v1_named; |
| 34 | |
| 35 | /* |
| 36 | * pidlist destructions need to be flushed on cgroup destruction. Use a |
| 37 | * separate workqueue as flush domain. |
| 38 | */ |
| 39 | static struct workqueue_struct *cgroup_pidlist_destroy_wq; |
| 40 | |
| 41 | /* protects cgroup_subsys->release_agent_path */ |
| 42 | static DEFINE_SPINLOCK(release_agent_path_lock); |
| 43 | |
| 44 | bool cgroup1_ssid_disabled(int ssid) |
| 45 | { |
| 46 | return cgroup_no_v1_mask & (1 << ssid); |
| 47 | } |
| 48 | |
| 49 | static bool cgroup1_subsys_absent(struct cgroup_subsys *ss) |
| 50 | { |
| 51 | /* Check also dfl_cftypes for file-less controllers, i.e. perf_event */ |
| 52 | return ss->legacy_cftypes == NULL && ss->dfl_cftypes; |
| 53 | } |
| 54 | |
| 55 | /** |
| 56 | * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' |
| 57 | * @from: attach to all cgroups of a given task |
| 58 | * @tsk: the task to be attached |
| 59 | * |
| 60 | * Return: %0 on success or a negative errno code on failure |
| 61 | */ |
| 62 | int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) |
| 63 | { |
| 64 | struct cgroup_root *root; |
| 65 | int retval = 0; |
| 66 | |
| 67 | cgroup_lock(); |
| 68 | cgroup_attach_lock(true); |
| 69 | for_each_root(root) { |
| 70 | struct cgroup *from_cgrp; |
| 71 | |
| 72 | spin_lock_irq(&css_set_lock); |
| 73 | from_cgrp = task_cgroup_from_root(from, root); |
| 74 | spin_unlock_irq(&css_set_lock); |
| 75 | |
| 76 | retval = cgroup_attach_task(from_cgrp, tsk, false); |
| 77 | if (retval) |
| 78 | break; |
| 79 | } |
| 80 | cgroup_attach_unlock(true); |
| 81 | cgroup_unlock(); |
| 82 | |
| 83 | return retval; |
| 84 | } |
| 85 | EXPORT_SYMBOL_GPL(cgroup_attach_task_all); |
| 86 | |
| 87 | /** |
| 88 | * cgroup_transfer_tasks - move tasks from one cgroup to another |
| 89 | * @to: cgroup to which the tasks will be moved |
| 90 | * @from: cgroup in which the tasks currently reside |
| 91 | * |
| 92 | * Locking rules between cgroup_post_fork() and the migration path |
| 93 | * guarantee that, if a task is forking while being migrated, the new child |
| 94 | * is guaranteed to be either visible in the source cgroup after the |
| 95 | * parent's migration is complete or put into the target cgroup. No task |
| 96 | * can slip out of migration through forking. |
| 97 | * |
| 98 | * Return: %0 on success or a negative errno code on failure |
| 99 | */ |
| 100 | int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) |
| 101 | { |
| 102 | DEFINE_CGROUP_MGCTX(mgctx); |
| 103 | struct cgrp_cset_link *link; |
| 104 | struct css_task_iter it; |
| 105 | struct task_struct *task; |
| 106 | int ret; |
| 107 | |
| 108 | if (cgroup_on_dfl(to)) |
| 109 | return -EINVAL; |
| 110 | |
| 111 | ret = cgroup_migrate_vet_dst(to); |
| 112 | if (ret) |
| 113 | return ret; |
| 114 | |
| 115 | cgroup_lock(); |
| 116 | |
| 117 | cgroup_attach_lock(true); |
| 118 | |
| 119 | /* all tasks in @from are being moved, all csets are source */ |
| 120 | spin_lock_irq(&css_set_lock); |
| 121 | list_for_each_entry(link, &from->cset_links, cset_link) |
| 122 | cgroup_migrate_add_src(link->cset, to, &mgctx); |
| 123 | spin_unlock_irq(&css_set_lock); |
| 124 | |
| 125 | ret = cgroup_migrate_prepare_dst(&mgctx); |
| 126 | if (ret) |
| 127 | goto out_err; |
| 128 | |
| 129 | /* |
| 130 | * Migrate tasks one-by-one until @from is empty. This fails iff |
| 131 | * ->can_attach() fails. |
| 132 | */ |
| 133 | do { |
| 134 | css_task_iter_start(&from->self, 0, &it); |
| 135 | |
| 136 | do { |
| 137 | task = css_task_iter_next(&it); |
| 138 | } while (task && (task->flags & PF_EXITING)); |
| 139 | |
| 140 | if (task) |
| 141 | get_task_struct(task); |
| 142 | css_task_iter_end(&it); |
| 143 | |
| 144 | if (task) { |
| 145 | ret = cgroup_migrate(task, false, &mgctx); |
| 146 | if (!ret) |
| 147 | TRACE_CGROUP_PATH(transfer_tasks, to, task, false); |
| 148 | put_task_struct(task); |
| 149 | } |
| 150 | } while (task && !ret); |
| 151 | out_err: |
| 152 | cgroup_migrate_finish(&mgctx); |
| 153 | cgroup_attach_unlock(true); |
| 154 | cgroup_unlock(); |
| 155 | return ret; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * Stuff for reading the 'tasks'/'procs' files. |
| 160 | * |
| 161 | * Reading this file can return large amounts of data if a cgroup has |
| 162 | * *lots* of attached tasks. So it may need several calls to read(), |
| 163 | * but we cannot guarantee that the information we produce is correct |
| 164 | * unless we produce it entirely atomically. |
| 165 | * |
| 166 | */ |
| 167 | |
| 168 | /* which pidlist file are we talking about? */ |
| 169 | enum cgroup_filetype { |
| 170 | CGROUP_FILE_PROCS, |
| 171 | CGROUP_FILE_TASKS, |
| 172 | }; |
| 173 | |
| 174 | /* |
| 175 | * A pidlist is a list of pids that virtually represents the contents of one |
| 176 | * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, |
| 177 | * a pair (one each for procs, tasks) for each pid namespace that's relevant |
| 178 | * to the cgroup. |
| 179 | */ |
| 180 | struct cgroup_pidlist { |
| 181 | /* |
| 182 | * used to find which pidlist is wanted. doesn't change as long as |
| 183 | * this particular list stays in the list. |
| 184 | */ |
| 185 | struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; |
| 186 | /* array of xids */ |
| 187 | pid_t *list; |
| 188 | /* how many elements the above list has */ |
| 189 | int length; |
| 190 | /* each of these stored in a list by its cgroup */ |
| 191 | struct list_head links; |
| 192 | /* pointer to the cgroup we belong to, for list removal purposes */ |
| 193 | struct cgroup *owner; |
| 194 | /* for delayed destruction */ |
| 195 | struct delayed_work destroy_dwork; |
| 196 | }; |
| 197 | |
| 198 | /* |
| 199 | * Used to destroy all pidlists lingering waiting for destroy timer. None |
| 200 | * should be left afterwards. |
| 201 | */ |
| 202 | void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) |
| 203 | { |
| 204 | struct cgroup_pidlist *l, *tmp_l; |
| 205 | |
| 206 | mutex_lock(&cgrp->pidlist_mutex); |
| 207 | list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) |
| 208 | mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); |
| 209 | mutex_unlock(&cgrp->pidlist_mutex); |
| 210 | |
| 211 | flush_workqueue(cgroup_pidlist_destroy_wq); |
| 212 | BUG_ON(!list_empty(&cgrp->pidlists)); |
| 213 | } |
| 214 | |
| 215 | static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) |
| 216 | { |
| 217 | struct delayed_work *dwork = to_delayed_work(work); |
| 218 | struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, |
| 219 | destroy_dwork); |
| 220 | struct cgroup_pidlist *tofree = NULL; |
| 221 | |
| 222 | mutex_lock(&l->owner->pidlist_mutex); |
| 223 | |
| 224 | /* |
| 225 | * Destroy iff we didn't get queued again. The state won't change |
| 226 | * as destroy_dwork can only be queued while locked. |
| 227 | */ |
| 228 | if (!delayed_work_pending(dwork)) { |
| 229 | list_del(&l->links); |
| 230 | kvfree(l->list); |
| 231 | put_pid_ns(l->key.ns); |
| 232 | tofree = l; |
| 233 | } |
| 234 | |
| 235 | mutex_unlock(&l->owner->pidlist_mutex); |
| 236 | kfree(tofree); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries |
| 241 | * Returns the number of unique elements. |
| 242 | */ |
| 243 | static int pidlist_uniq(pid_t *list, int length) |
| 244 | { |
| 245 | int src, dest = 1; |
| 246 | |
| 247 | /* |
| 248 | * we presume the 0th element is unique, so i starts at 1. trivial |
| 249 | * edge cases first; no work needs to be done for either |
| 250 | */ |
| 251 | if (length == 0 || length == 1) |
| 252 | return length; |
| 253 | /* src and dest walk down the list; dest counts unique elements */ |
| 254 | for (src = 1; src < length; src++) { |
| 255 | /* find next unique element */ |
| 256 | while (list[src] == list[src-1]) { |
| 257 | src++; |
| 258 | if (src == length) |
| 259 | goto after; |
| 260 | } |
| 261 | /* dest always points to where the next unique element goes */ |
| 262 | list[dest] = list[src]; |
| 263 | dest++; |
| 264 | } |
| 265 | after: |
| 266 | return dest; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * The two pid files - task and cgroup.procs - guaranteed that the result |
| 271 | * is sorted, which forced this whole pidlist fiasco. As pid order is |
| 272 | * different per namespace, each namespace needs differently sorted list, |
| 273 | * making it impossible to use, for example, single rbtree of member tasks |
| 274 | * sorted by task pointer. As pidlists can be fairly large, allocating one |
| 275 | * per open file is dangerous, so cgroup had to implement shared pool of |
| 276 | * pidlists keyed by cgroup and namespace. |
| 277 | */ |
| 278 | static int cmppid(const void *a, const void *b) |
| 279 | { |
| 280 | return *(pid_t *)a - *(pid_t *)b; |
| 281 | } |
| 282 | |
| 283 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| 284 | enum cgroup_filetype type) |
| 285 | { |
| 286 | struct cgroup_pidlist *l; |
| 287 | /* don't need task_nsproxy() if we're looking at ourself */ |
| 288 | struct pid_namespace *ns = task_active_pid_ns(current); |
| 289 | |
| 290 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 291 | |
| 292 | list_for_each_entry(l, &cgrp->pidlists, links) |
| 293 | if (l->key.type == type && l->key.ns == ns) |
| 294 | return l; |
| 295 | return NULL; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * find the appropriate pidlist for our purpose (given procs vs tasks) |
| 300 | * returns with the lock on that pidlist already held, and takes care |
| 301 | * of the use count, or returns NULL with no locks held if we're out of |
| 302 | * memory. |
| 303 | */ |
| 304 | static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, |
| 305 | enum cgroup_filetype type) |
| 306 | { |
| 307 | struct cgroup_pidlist *l; |
| 308 | |
| 309 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 310 | |
| 311 | l = cgroup_pidlist_find(cgrp, type); |
| 312 | if (l) |
| 313 | return l; |
| 314 | |
| 315 | /* entry not found; create a new one */ |
| 316 | l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); |
| 317 | if (!l) |
| 318 | return l; |
| 319 | |
| 320 | INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); |
| 321 | l->key.type = type; |
| 322 | /* don't need task_nsproxy() if we're looking at ourself */ |
| 323 | l->key.ns = get_pid_ns(task_active_pid_ns(current)); |
| 324 | l->owner = cgrp; |
| 325 | list_add(&l->links, &cgrp->pidlists); |
| 326 | return l; |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids |
| 331 | */ |
| 332 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, |
| 333 | struct cgroup_pidlist **lp) |
| 334 | { |
| 335 | pid_t *array; |
| 336 | int length; |
| 337 | int pid, n = 0; /* used for populating the array */ |
| 338 | struct css_task_iter it; |
| 339 | struct task_struct *tsk; |
| 340 | struct cgroup_pidlist *l; |
| 341 | |
| 342 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 343 | |
| 344 | /* |
| 345 | * If cgroup gets more users after we read count, we won't have |
| 346 | * enough space - tough. This race is indistinguishable to the |
| 347 | * caller from the case that the additional cgroup users didn't |
| 348 | * show up until sometime later on. |
| 349 | */ |
| 350 | length = cgroup_task_count(cgrp); |
| 351 | array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL); |
| 352 | if (!array) |
| 353 | return -ENOMEM; |
| 354 | /* now, populate the array */ |
| 355 | css_task_iter_start(&cgrp->self, 0, &it); |
| 356 | while ((tsk = css_task_iter_next(&it))) { |
| 357 | if (unlikely(n == length)) |
| 358 | break; |
| 359 | /* get tgid or pid for procs or tasks file respectively */ |
| 360 | if (type == CGROUP_FILE_PROCS) |
| 361 | pid = task_tgid_vnr(tsk); |
| 362 | else |
| 363 | pid = task_pid_vnr(tsk); |
| 364 | if (pid > 0) /* make sure to only use valid results */ |
| 365 | array[n++] = pid; |
| 366 | } |
| 367 | css_task_iter_end(&it); |
| 368 | length = n; |
| 369 | /* now sort & strip out duplicates (tgids or recycled thread PIDs) */ |
| 370 | sort(array, length, sizeof(pid_t), cmppid, NULL); |
| 371 | length = pidlist_uniq(array, length); |
| 372 | |
| 373 | l = cgroup_pidlist_find_create(cgrp, type); |
| 374 | if (!l) { |
| 375 | kvfree(array); |
| 376 | return -ENOMEM; |
| 377 | } |
| 378 | |
| 379 | /* store array, freeing old if necessary */ |
| 380 | kvfree(l->list); |
| 381 | l->list = array; |
| 382 | l->length = length; |
| 383 | *lp = l; |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * seq_file methods for the tasks/procs files. The seq_file position is the |
| 389 | * next pid to display; the seq_file iterator is a pointer to the pid |
| 390 | * in the cgroup->l->list array. |
| 391 | */ |
| 392 | |
| 393 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| 394 | { |
| 395 | /* |
| 396 | * Initially we receive a position value that corresponds to |
| 397 | * one more than the last pid shown (or 0 on the first call or |
| 398 | * after a seek to the start). Use a binary-search to find the |
| 399 | * next pid to display, if any |
| 400 | */ |
| 401 | struct kernfs_open_file *of = s->private; |
| 402 | struct cgroup_file_ctx *ctx = of->priv; |
| 403 | struct cgroup *cgrp = seq_css(s)->cgroup; |
| 404 | struct cgroup_pidlist *l; |
| 405 | enum cgroup_filetype type = seq_cft(s)->private; |
| 406 | int index = 0, pid = *pos; |
| 407 | int *iter, ret; |
| 408 | |
| 409 | mutex_lock(&cgrp->pidlist_mutex); |
| 410 | |
| 411 | /* |
| 412 | * !NULL @ctx->procs1.pidlist indicates that this isn't the first |
| 413 | * start() after open. If the matching pidlist is around, we can use |
| 414 | * that. Look for it. Note that @ctx->procs1.pidlist can't be used |
| 415 | * directly. It could already have been destroyed. |
| 416 | */ |
| 417 | if (ctx->procs1.pidlist) |
| 418 | ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type); |
| 419 | |
| 420 | /* |
| 421 | * Either this is the first start() after open or the matching |
| 422 | * pidlist has been destroyed inbetween. Create a new one. |
| 423 | */ |
| 424 | if (!ctx->procs1.pidlist) { |
| 425 | ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist); |
| 426 | if (ret) |
| 427 | return ERR_PTR(ret); |
| 428 | } |
| 429 | l = ctx->procs1.pidlist; |
| 430 | |
| 431 | if (pid) { |
| 432 | int end = l->length; |
| 433 | |
| 434 | while (index < end) { |
| 435 | int mid = (index + end) / 2; |
| 436 | if (l->list[mid] == pid) { |
| 437 | index = mid; |
| 438 | break; |
| 439 | } else if (l->list[mid] < pid) |
| 440 | index = mid + 1; |
| 441 | else |
| 442 | end = mid; |
| 443 | } |
| 444 | } |
| 445 | /* If we're off the end of the array, we're done */ |
| 446 | if (index >= l->length) |
| 447 | return NULL; |
| 448 | /* Update the abstract position to be the actual pid that we found */ |
| 449 | iter = l->list + index; |
| 450 | *pos = *iter; |
| 451 | return iter; |
| 452 | } |
| 453 | |
| 454 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| 455 | { |
| 456 | struct kernfs_open_file *of = s->private; |
| 457 | struct cgroup_file_ctx *ctx = of->priv; |
| 458 | struct cgroup_pidlist *l = ctx->procs1.pidlist; |
| 459 | |
| 460 | if (l) |
| 461 | mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, |
| 462 | CGROUP_PIDLIST_DESTROY_DELAY); |
| 463 | mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); |
| 464 | } |
| 465 | |
| 466 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| 467 | { |
| 468 | struct kernfs_open_file *of = s->private; |
| 469 | struct cgroup_file_ctx *ctx = of->priv; |
| 470 | struct cgroup_pidlist *l = ctx->procs1.pidlist; |
| 471 | pid_t *p = v; |
| 472 | pid_t *end = l->list + l->length; |
| 473 | /* |
| 474 | * Advance to the next pid in the array. If this goes off the |
| 475 | * end, we're done |
| 476 | */ |
| 477 | p++; |
| 478 | if (p >= end) { |
| 479 | (*pos)++; |
| 480 | return NULL; |
| 481 | } else { |
| 482 | *pos = *p; |
| 483 | return p; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| 488 | { |
| 489 | seq_printf(s, "%d\n", *(int *)v); |
| 490 | |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of, |
| 495 | char *buf, size_t nbytes, loff_t off, |
| 496 | bool threadgroup) |
| 497 | { |
| 498 | struct cgroup *cgrp; |
| 499 | struct task_struct *task; |
| 500 | const struct cred *cred, *tcred; |
| 501 | ssize_t ret; |
| 502 | bool locked; |
| 503 | |
| 504 | cgrp = cgroup_kn_lock_live(of->kn, false); |
| 505 | if (!cgrp) |
| 506 | return -ENODEV; |
| 507 | |
| 508 | task = cgroup_procs_write_start(buf, threadgroup, &locked); |
| 509 | ret = PTR_ERR_OR_ZERO(task); |
| 510 | if (ret) |
| 511 | goto out_unlock; |
| 512 | |
| 513 | /* |
| 514 | * Even if we're attaching all tasks in the thread group, we only need |
| 515 | * to check permissions on one of them. Check permissions using the |
| 516 | * credentials from file open to protect against inherited fd attacks. |
| 517 | */ |
| 518 | cred = of->file->f_cred; |
| 519 | tcred = get_task_cred(task); |
| 520 | if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && |
| 521 | !uid_eq(cred->euid, tcred->uid) && |
| 522 | !uid_eq(cred->euid, tcred->suid)) |
| 523 | ret = -EACCES; |
| 524 | put_cred(tcred); |
| 525 | if (ret) |
| 526 | goto out_finish; |
| 527 | |
| 528 | ret = cgroup_attach_task(cgrp, task, threadgroup); |
| 529 | |
| 530 | out_finish: |
| 531 | cgroup_procs_write_finish(task, locked); |
| 532 | out_unlock: |
| 533 | cgroup_kn_unlock(of->kn); |
| 534 | |
| 535 | return ret ?: nbytes; |
| 536 | } |
| 537 | |
| 538 | static ssize_t cgroup1_procs_write(struct kernfs_open_file *of, |
| 539 | char *buf, size_t nbytes, loff_t off) |
| 540 | { |
| 541 | return __cgroup1_procs_write(of, buf, nbytes, off, true); |
| 542 | } |
| 543 | |
| 544 | static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of, |
| 545 | char *buf, size_t nbytes, loff_t off) |
| 546 | { |
| 547 | return __cgroup1_procs_write(of, buf, nbytes, off, false); |
| 548 | } |
| 549 | |
| 550 | static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, |
| 551 | char *buf, size_t nbytes, loff_t off) |
| 552 | { |
| 553 | struct cgroup *cgrp; |
| 554 | struct cgroup_file_ctx *ctx; |
| 555 | |
| 556 | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); |
| 557 | |
| 558 | /* |
| 559 | * Release agent gets called with all capabilities, |
| 560 | * require capabilities to set release agent. |
| 561 | */ |
| 562 | ctx = of->priv; |
| 563 | if ((ctx->ns->user_ns != &init_user_ns) || |
| 564 | !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN)) |
| 565 | return -EPERM; |
| 566 | |
| 567 | cgrp = cgroup_kn_lock_live(of->kn, false); |
| 568 | if (!cgrp) |
| 569 | return -ENODEV; |
| 570 | spin_lock(&release_agent_path_lock); |
| 571 | strscpy(cgrp->root->release_agent_path, strstrip(buf), |
| 572 | sizeof(cgrp->root->release_agent_path)); |
| 573 | spin_unlock(&release_agent_path_lock); |
| 574 | cgroup_kn_unlock(of->kn); |
| 575 | return nbytes; |
| 576 | } |
| 577 | |
| 578 | static int cgroup_release_agent_show(struct seq_file *seq, void *v) |
| 579 | { |
| 580 | struct cgroup *cgrp = seq_css(seq)->cgroup; |
| 581 | |
| 582 | spin_lock(&release_agent_path_lock); |
| 583 | seq_puts(seq, cgrp->root->release_agent_path); |
| 584 | spin_unlock(&release_agent_path_lock); |
| 585 | seq_putc(seq, '\n'); |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) |
| 590 | { |
| 591 | seq_puts(seq, "0\n"); |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, |
| 596 | struct cftype *cft) |
| 597 | { |
| 598 | return notify_on_release(css->cgroup); |
| 599 | } |
| 600 | |
| 601 | static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, |
| 602 | struct cftype *cft, u64 val) |
| 603 | { |
| 604 | if (val) |
| 605 | set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| 606 | else |
| 607 | clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, |
| 612 | struct cftype *cft) |
| 613 | { |
| 614 | return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 615 | } |
| 616 | |
| 617 | static int cgroup_clone_children_write(struct cgroup_subsys_state *css, |
| 618 | struct cftype *cft, u64 val) |
| 619 | { |
| 620 | if (val) |
| 621 | set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 622 | else |
| 623 | clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | /* cgroup core interface files for the legacy hierarchies */ |
| 628 | struct cftype cgroup1_base_files[] = { |
| 629 | { |
| 630 | .name = "cgroup.procs", |
| 631 | .seq_start = cgroup_pidlist_start, |
| 632 | .seq_next = cgroup_pidlist_next, |
| 633 | .seq_stop = cgroup_pidlist_stop, |
| 634 | .seq_show = cgroup_pidlist_show, |
| 635 | .private = CGROUP_FILE_PROCS, |
| 636 | .write = cgroup1_procs_write, |
| 637 | }, |
| 638 | { |
| 639 | .name = "cgroup.clone_children", |
| 640 | .read_u64 = cgroup_clone_children_read, |
| 641 | .write_u64 = cgroup_clone_children_write, |
| 642 | }, |
| 643 | { |
| 644 | .name = "cgroup.sane_behavior", |
| 645 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 646 | .seq_show = cgroup_sane_behavior_show, |
| 647 | }, |
| 648 | { |
| 649 | .name = "tasks", |
| 650 | .seq_start = cgroup_pidlist_start, |
| 651 | .seq_next = cgroup_pidlist_next, |
| 652 | .seq_stop = cgroup_pidlist_stop, |
| 653 | .seq_show = cgroup_pidlist_show, |
| 654 | .private = CGROUP_FILE_TASKS, |
| 655 | .write = cgroup1_tasks_write, |
| 656 | }, |
| 657 | { |
| 658 | .name = "notify_on_release", |
| 659 | .read_u64 = cgroup_read_notify_on_release, |
| 660 | .write_u64 = cgroup_write_notify_on_release, |
| 661 | }, |
| 662 | { |
| 663 | .name = "release_agent", |
| 664 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 665 | .seq_show = cgroup_release_agent_show, |
| 666 | .write = cgroup_release_agent_write, |
| 667 | .max_write_len = PATH_MAX - 1, |
| 668 | }, |
| 669 | { } /* terminate */ |
| 670 | }; |
| 671 | |
| 672 | /* Display information about each subsystem and each hierarchy */ |
| 673 | int proc_cgroupstats_show(struct seq_file *m, void *v) |
| 674 | { |
| 675 | struct cgroup_subsys *ss; |
| 676 | bool cgrp_v1_visible = false; |
| 677 | int i; |
| 678 | |
| 679 | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); |
| 680 | /* |
| 681 | * Grab the subsystems state racily. No need to add avenue to |
| 682 | * cgroup_mutex contention. |
| 683 | */ |
| 684 | |
| 685 | for_each_subsys(ss, i) { |
| 686 | if (cgroup1_subsys_absent(ss)) |
| 687 | continue; |
| 688 | cgrp_v1_visible |= ss->root != &cgrp_dfl_root; |
| 689 | |
| 690 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
| 691 | ss->legacy_name, ss->root->hierarchy_id, |
| 692 | atomic_read(&ss->root->nr_cgrps), |
| 693 | cgroup_ssid_enabled(i)); |
| 694 | } |
| 695 | |
| 696 | if (cgrp_dfl_visible && !cgrp_v1_visible) |
| 697 | pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n"); |
| 698 | |
| 699 | |
| 700 | return 0; |
| 701 | } |
| 702 | |
| 703 | /** |
| 704 | * cgroupstats_build - build and fill cgroupstats |
| 705 | * @stats: cgroupstats to fill information into |
| 706 | * @dentry: A dentry entry belonging to the cgroup for which stats have |
| 707 | * been requested. |
| 708 | * |
| 709 | * Build and fill cgroupstats so that taskstats can export it to user |
| 710 | * space. |
| 711 | * |
| 712 | * Return: %0 on success or a negative errno code on failure |
| 713 | */ |
| 714 | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) |
| 715 | { |
| 716 | struct kernfs_node *kn = kernfs_node_from_dentry(dentry); |
| 717 | struct cgroup *cgrp; |
| 718 | struct css_task_iter it; |
| 719 | struct task_struct *tsk; |
| 720 | |
| 721 | /* it should be kernfs_node belonging to cgroupfs and is a directory */ |
| 722 | if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || |
| 723 | kernfs_type(kn) != KERNFS_DIR) |
| 724 | return -EINVAL; |
| 725 | |
| 726 | /* |
| 727 | * We aren't being called from kernfs and there's no guarantee on |
| 728 | * @kn->priv's validity. For this and css_tryget_online_from_dir(), |
| 729 | * @kn->priv is RCU safe. Let's do the RCU dancing. |
| 730 | */ |
| 731 | rcu_read_lock(); |
| 732 | cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); |
| 733 | if (!cgrp || !cgroup_tryget(cgrp)) { |
| 734 | rcu_read_unlock(); |
| 735 | return -ENOENT; |
| 736 | } |
| 737 | rcu_read_unlock(); |
| 738 | |
| 739 | css_task_iter_start(&cgrp->self, 0, &it); |
| 740 | while ((tsk = css_task_iter_next(&it))) { |
| 741 | switch (READ_ONCE(tsk->__state)) { |
| 742 | case TASK_RUNNING: |
| 743 | stats->nr_running++; |
| 744 | break; |
| 745 | case TASK_INTERRUPTIBLE: |
| 746 | stats->nr_sleeping++; |
| 747 | break; |
| 748 | case TASK_UNINTERRUPTIBLE: |
| 749 | stats->nr_uninterruptible++; |
| 750 | break; |
| 751 | case TASK_STOPPED: |
| 752 | stats->nr_stopped++; |
| 753 | break; |
| 754 | default: |
| 755 | if (tsk->in_iowait) |
| 756 | stats->nr_io_wait++; |
| 757 | break; |
| 758 | } |
| 759 | } |
| 760 | css_task_iter_end(&it); |
| 761 | |
| 762 | cgroup_put(cgrp); |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | void cgroup1_check_for_release(struct cgroup *cgrp) |
| 767 | { |
| 768 | if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && |
| 769 | !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) |
| 770 | schedule_work(&cgrp->release_agent_work); |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Notify userspace when a cgroup is released, by running the |
| 775 | * configured release agent with the name of the cgroup (path |
| 776 | * relative to the root of cgroup file system) as the argument. |
| 777 | * |
| 778 | * Most likely, this user command will try to rmdir this cgroup. |
| 779 | * |
| 780 | * This races with the possibility that some other task will be |
| 781 | * attached to this cgroup before it is removed, or that some other |
| 782 | * user task will 'mkdir' a child cgroup of this cgroup. That's ok. |
| 783 | * The presumed 'rmdir' will fail quietly if this cgroup is no longer |
| 784 | * unused, and this cgroup will be reprieved from its death sentence, |
| 785 | * to continue to serve a useful existence. Next time it's released, |
| 786 | * we will get notified again, if it still has 'notify_on_release' set. |
| 787 | * |
| 788 | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which |
| 789 | * means only wait until the task is successfully execve()'d. The |
| 790 | * separate release agent task is forked by call_usermodehelper(), |
| 791 | * then control in this thread returns here, without waiting for the |
| 792 | * release agent task. We don't bother to wait because the caller of |
| 793 | * this routine has no use for the exit status of the release agent |
| 794 | * task, so no sense holding our caller up for that. |
| 795 | */ |
| 796 | void cgroup1_release_agent(struct work_struct *work) |
| 797 | { |
| 798 | struct cgroup *cgrp = |
| 799 | container_of(work, struct cgroup, release_agent_work); |
| 800 | char *pathbuf, *agentbuf; |
| 801 | char *argv[3], *envp[3]; |
| 802 | int ret; |
| 803 | |
| 804 | /* snoop agent path and exit early if empty */ |
| 805 | if (!cgrp->root->release_agent_path[0]) |
| 806 | return; |
| 807 | |
| 808 | /* prepare argument buffers */ |
| 809 | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| 810 | agentbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| 811 | if (!pathbuf || !agentbuf) |
| 812 | goto out_free; |
| 813 | |
| 814 | spin_lock(&release_agent_path_lock); |
| 815 | strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX); |
| 816 | spin_unlock(&release_agent_path_lock); |
| 817 | if (!agentbuf[0]) |
| 818 | goto out_free; |
| 819 | |
| 820 | ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); |
| 821 | if (ret < 0) |
| 822 | goto out_free; |
| 823 | |
| 824 | argv[0] = agentbuf; |
| 825 | argv[1] = pathbuf; |
| 826 | argv[2] = NULL; |
| 827 | |
| 828 | /* minimal command environment */ |
| 829 | envp[0] = "HOME=/"; |
| 830 | envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; |
| 831 | envp[2] = NULL; |
| 832 | |
| 833 | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); |
| 834 | out_free: |
| 835 | kfree(agentbuf); |
| 836 | kfree(pathbuf); |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * cgroup_rename - Only allow simple rename of directories in place. |
| 841 | */ |
| 842 | static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, |
| 843 | const char *new_name_str) |
| 844 | { |
| 845 | struct cgroup *cgrp = kn->priv; |
| 846 | int ret; |
| 847 | |
| 848 | /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ |
| 849 | if (strchr(new_name_str, '\n')) |
| 850 | return -EINVAL; |
| 851 | |
| 852 | if (kernfs_type(kn) != KERNFS_DIR) |
| 853 | return -ENOTDIR; |
| 854 | if (rcu_access_pointer(kn->__parent) != new_parent) |
| 855 | return -EIO; |
| 856 | |
| 857 | /* |
| 858 | * We're gonna grab cgroup_mutex which nests outside kernfs |
| 859 | * active_ref. kernfs_rename() doesn't require active_ref |
| 860 | * protection. Break them before grabbing cgroup_mutex. |
| 861 | */ |
| 862 | kernfs_break_active_protection(new_parent); |
| 863 | kernfs_break_active_protection(kn); |
| 864 | |
| 865 | cgroup_lock(); |
| 866 | |
| 867 | ret = kernfs_rename(kn, new_parent, new_name_str); |
| 868 | if (!ret) |
| 869 | TRACE_CGROUP_PATH(rename, cgrp); |
| 870 | |
| 871 | cgroup_unlock(); |
| 872 | |
| 873 | kernfs_unbreak_active_protection(kn); |
| 874 | kernfs_unbreak_active_protection(new_parent); |
| 875 | return ret; |
| 876 | } |
| 877 | |
| 878 | static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) |
| 879 | { |
| 880 | struct cgroup_root *root = cgroup_root_from_kf(kf_root); |
| 881 | struct cgroup_subsys *ss; |
| 882 | int ssid; |
| 883 | |
| 884 | for_each_subsys(ss, ssid) |
| 885 | if (root->subsys_mask & (1 << ssid)) |
| 886 | seq_show_option(seq, ss->legacy_name, NULL); |
| 887 | if (root->flags & CGRP_ROOT_NOPREFIX) |
| 888 | seq_puts(seq, ",noprefix"); |
| 889 | if (root->flags & CGRP_ROOT_XATTR) |
| 890 | seq_puts(seq, ",xattr"); |
| 891 | if (root->flags & CGRP_ROOT_CPUSET_V2_MODE) |
| 892 | seq_puts(seq, ",cpuset_v2_mode"); |
| 893 | if (root->flags & CGRP_ROOT_FAVOR_DYNMODS) |
| 894 | seq_puts(seq, ",favordynmods"); |
| 895 | |
| 896 | spin_lock(&release_agent_path_lock); |
| 897 | if (strlen(root->release_agent_path)) |
| 898 | seq_show_option(seq, "release_agent", |
| 899 | root->release_agent_path); |
| 900 | spin_unlock(&release_agent_path_lock); |
| 901 | |
| 902 | if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) |
| 903 | seq_puts(seq, ",clone_children"); |
| 904 | if (strlen(root->name)) |
| 905 | seq_show_option(seq, "name", root->name); |
| 906 | return 0; |
| 907 | } |
| 908 | |
| 909 | enum cgroup1_param { |
| 910 | Opt_all, |
| 911 | Opt_clone_children, |
| 912 | Opt_cpuset_v2_mode, |
| 913 | Opt_name, |
| 914 | Opt_none, |
| 915 | Opt_noprefix, |
| 916 | Opt_release_agent, |
| 917 | Opt_xattr, |
| 918 | Opt_favordynmods, |
| 919 | Opt_nofavordynmods, |
| 920 | }; |
| 921 | |
| 922 | const struct fs_parameter_spec cgroup1_fs_parameters[] = { |
| 923 | fsparam_flag ("all", Opt_all), |
| 924 | fsparam_flag ("clone_children", Opt_clone_children), |
| 925 | fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), |
| 926 | fsparam_string("name", Opt_name), |
| 927 | fsparam_flag ("none", Opt_none), |
| 928 | fsparam_flag ("noprefix", Opt_noprefix), |
| 929 | fsparam_string("release_agent", Opt_release_agent), |
| 930 | fsparam_flag ("xattr", Opt_xattr), |
| 931 | fsparam_flag ("favordynmods", Opt_favordynmods), |
| 932 | fsparam_flag ("nofavordynmods", Opt_nofavordynmods), |
| 933 | {} |
| 934 | }; |
| 935 | |
| 936 | int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param) |
| 937 | { |
| 938 | struct cgroup_fs_context *ctx = cgroup_fc2context(fc); |
| 939 | struct cgroup_subsys *ss; |
| 940 | struct fs_parse_result result; |
| 941 | int opt, i; |
| 942 | |
| 943 | opt = fs_parse(fc, cgroup1_fs_parameters, param, &result); |
| 944 | if (opt == -ENOPARAM) { |
| 945 | int ret; |
| 946 | |
| 947 | ret = vfs_parse_fs_param_source(fc, param); |
| 948 | if (ret != -ENOPARAM) |
| 949 | return ret; |
| 950 | for_each_subsys(ss, i) { |
| 951 | if (strcmp(param->key, ss->legacy_name) || |
| 952 | cgroup1_subsys_absent(ss)) |
| 953 | continue; |
| 954 | if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i)) |
| 955 | return invalfc(fc, "Disabled controller '%s'", |
| 956 | param->key); |
| 957 | ctx->subsys_mask |= (1 << i); |
| 958 | return 0; |
| 959 | } |
| 960 | return invalfc(fc, "Unknown subsys name '%s'", param->key); |
| 961 | } |
| 962 | if (opt < 0) |
| 963 | return opt; |
| 964 | |
| 965 | switch (opt) { |
| 966 | case Opt_none: |
| 967 | /* Explicitly have no subsystems */ |
| 968 | ctx->none = true; |
| 969 | break; |
| 970 | case Opt_all: |
| 971 | ctx->all_ss = true; |
| 972 | break; |
| 973 | case Opt_noprefix: |
| 974 | ctx->flags |= CGRP_ROOT_NOPREFIX; |
| 975 | break; |
| 976 | case Opt_clone_children: |
| 977 | ctx->cpuset_clone_children = true; |
| 978 | break; |
| 979 | case Opt_cpuset_v2_mode: |
| 980 | ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; |
| 981 | break; |
| 982 | case Opt_xattr: |
| 983 | ctx->flags |= CGRP_ROOT_XATTR; |
| 984 | break; |
| 985 | case Opt_favordynmods: |
| 986 | ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; |
| 987 | break; |
| 988 | case Opt_nofavordynmods: |
| 989 | ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; |
| 990 | break; |
| 991 | case Opt_release_agent: |
| 992 | /* Specifying two release agents is forbidden */ |
| 993 | if (ctx->release_agent) |
| 994 | return invalfc(fc, "release_agent respecified"); |
| 995 | /* |
| 996 | * Release agent gets called with all capabilities, |
| 997 | * require capabilities to set release agent. |
| 998 | */ |
| 999 | if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) |
| 1000 | return invalfc(fc, "Setting release_agent not allowed"); |
| 1001 | ctx->release_agent = param->string; |
| 1002 | param->string = NULL; |
| 1003 | break; |
| 1004 | case Opt_name: |
| 1005 | /* blocked by boot param? */ |
| 1006 | if (cgroup_no_v1_named) |
| 1007 | return -ENOENT; |
| 1008 | /* Can't specify an empty name */ |
| 1009 | if (!param->size) |
| 1010 | return invalfc(fc, "Empty name"); |
| 1011 | if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1) |
| 1012 | return invalfc(fc, "Name too long"); |
| 1013 | /* Must match [\w.-]+ */ |
| 1014 | for (i = 0; i < param->size; i++) { |
| 1015 | char c = param->string[i]; |
| 1016 | if (isalnum(c)) |
| 1017 | continue; |
| 1018 | if ((c == '.') || (c == '-') || (c == '_')) |
| 1019 | continue; |
| 1020 | return invalfc(fc, "Invalid name"); |
| 1021 | } |
| 1022 | /* Specifying two names is forbidden */ |
| 1023 | if (ctx->name) |
| 1024 | return invalfc(fc, "name respecified"); |
| 1025 | ctx->name = param->string; |
| 1026 | param->string = NULL; |
| 1027 | break; |
| 1028 | } |
| 1029 | return 0; |
| 1030 | } |
| 1031 | |
| 1032 | static int check_cgroupfs_options(struct fs_context *fc) |
| 1033 | { |
| 1034 | struct cgroup_fs_context *ctx = cgroup_fc2context(fc); |
| 1035 | u16 mask = U16_MAX; |
| 1036 | u16 enabled = 0; |
| 1037 | struct cgroup_subsys *ss; |
| 1038 | int i; |
| 1039 | |
| 1040 | #ifdef CONFIG_CPUSETS |
| 1041 | mask = ~((u16)1 << cpuset_cgrp_id); |
| 1042 | #endif |
| 1043 | for_each_subsys(ss, i) |
| 1044 | if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) && |
| 1045 | !cgroup1_subsys_absent(ss)) |
| 1046 | enabled |= 1 << i; |
| 1047 | |
| 1048 | ctx->subsys_mask &= enabled; |
| 1049 | |
| 1050 | /* |
| 1051 | * In absence of 'none', 'name=' and subsystem name options, |
| 1052 | * let's default to 'all'. |
| 1053 | */ |
| 1054 | if (!ctx->subsys_mask && !ctx->none && !ctx->name) |
| 1055 | ctx->all_ss = true; |
| 1056 | |
| 1057 | if (ctx->all_ss) { |
| 1058 | /* Mutually exclusive option 'all' + subsystem name */ |
| 1059 | if (ctx->subsys_mask) |
| 1060 | return invalfc(fc, "subsys name conflicts with all"); |
| 1061 | /* 'all' => select all the subsystems */ |
| 1062 | ctx->subsys_mask = enabled; |
| 1063 | } |
| 1064 | |
| 1065 | /* |
| 1066 | * We either have to specify by name or by subsystems. (So all |
| 1067 | * empty hierarchies must have a name). |
| 1068 | */ |
| 1069 | if (!ctx->subsys_mask && !ctx->name) |
| 1070 | return invalfc(fc, "Need name or subsystem set"); |
| 1071 | |
| 1072 | /* |
| 1073 | * Option noprefix was introduced just for backward compatibility |
| 1074 | * with the old cpuset, so we allow noprefix only if mounting just |
| 1075 | * the cpuset subsystem. |
| 1076 | */ |
| 1077 | if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask)) |
| 1078 | return invalfc(fc, "noprefix used incorrectly"); |
| 1079 | |
| 1080 | /* Can't specify "none" and some subsystems */ |
| 1081 | if (ctx->subsys_mask && ctx->none) |
| 1082 | return invalfc(fc, "none used incorrectly"); |
| 1083 | |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | int cgroup1_reconfigure(struct fs_context *fc) |
| 1088 | { |
| 1089 | struct cgroup_fs_context *ctx = cgroup_fc2context(fc); |
| 1090 | struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb); |
| 1091 | struct cgroup_root *root = cgroup_root_from_kf(kf_root); |
| 1092 | int ret = 0; |
| 1093 | u16 added_mask, removed_mask; |
| 1094 | |
| 1095 | cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); |
| 1096 | |
| 1097 | /* See what subsystems are wanted */ |
| 1098 | ret = check_cgroupfs_options(fc); |
| 1099 | if (ret) |
| 1100 | goto out_unlock; |
| 1101 | |
| 1102 | if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent) |
| 1103 | pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", |
| 1104 | task_tgid_nr(current), current->comm); |
| 1105 | |
| 1106 | added_mask = ctx->subsys_mask & ~root->subsys_mask; |
| 1107 | removed_mask = root->subsys_mask & ~ctx->subsys_mask; |
| 1108 | |
| 1109 | /* Don't allow flags or name to change at remount */ |
| 1110 | if ((ctx->flags ^ root->flags) || |
| 1111 | (ctx->name && strcmp(ctx->name, root->name))) { |
| 1112 | errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"", |
| 1113 | ctx->flags, ctx->name ?: "", root->flags, root->name); |
| 1114 | ret = -EINVAL; |
| 1115 | goto out_unlock; |
| 1116 | } |
| 1117 | |
| 1118 | /* remounting is not allowed for populated hierarchies */ |
| 1119 | if (!list_empty(&root->cgrp.self.children)) { |
| 1120 | ret = -EBUSY; |
| 1121 | goto out_unlock; |
| 1122 | } |
| 1123 | |
| 1124 | ret = rebind_subsystems(root, added_mask); |
| 1125 | if (ret) |
| 1126 | goto out_unlock; |
| 1127 | |
| 1128 | WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); |
| 1129 | |
| 1130 | if (ctx->release_agent) { |
| 1131 | spin_lock(&release_agent_path_lock); |
| 1132 | strcpy(root->release_agent_path, ctx->release_agent); |
| 1133 | spin_unlock(&release_agent_path_lock); |
| 1134 | } |
| 1135 | |
| 1136 | trace_cgroup_remount(root); |
| 1137 | |
| 1138 | out_unlock: |
| 1139 | cgroup_unlock(); |
| 1140 | return ret; |
| 1141 | } |
| 1142 | |
| 1143 | struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { |
| 1144 | .rename = cgroup1_rename, |
| 1145 | .show_options = cgroup1_show_options, |
| 1146 | .mkdir = cgroup_mkdir, |
| 1147 | .rmdir = cgroup_rmdir, |
| 1148 | .show_path = cgroup_show_path, |
| 1149 | }; |
| 1150 | |
| 1151 | /* |
| 1152 | * The guts of cgroup1 mount - find or create cgroup_root to use. |
| 1153 | * Called with cgroup_mutex held; returns 0 on success, -E... on |
| 1154 | * error and positive - in case when the candidate is busy dying. |
| 1155 | * On success it stashes a reference to cgroup_root into given |
| 1156 | * cgroup_fs_context; that reference is *NOT* counting towards the |
| 1157 | * cgroup_root refcount. |
| 1158 | */ |
| 1159 | static int cgroup1_root_to_use(struct fs_context *fc) |
| 1160 | { |
| 1161 | struct cgroup_fs_context *ctx = cgroup_fc2context(fc); |
| 1162 | struct cgroup_root *root; |
| 1163 | struct cgroup_subsys *ss; |
| 1164 | int i, ret; |
| 1165 | |
| 1166 | /* First find the desired set of subsystems */ |
| 1167 | ret = check_cgroupfs_options(fc); |
| 1168 | if (ret) |
| 1169 | return ret; |
| 1170 | |
| 1171 | /* |
| 1172 | * Destruction of cgroup root is asynchronous, so subsystems may |
| 1173 | * still be dying after the previous unmount. Let's drain the |
| 1174 | * dying subsystems. We just need to ensure that the ones |
| 1175 | * unmounted previously finish dying and don't care about new ones |
| 1176 | * starting. Testing ref liveliness is good enough. |
| 1177 | */ |
| 1178 | for_each_subsys(ss, i) { |
| 1179 | if (!(ctx->subsys_mask & (1 << i)) || |
| 1180 | ss->root == &cgrp_dfl_root) |
| 1181 | continue; |
| 1182 | |
| 1183 | if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) |
| 1184 | return 1; /* restart */ |
| 1185 | cgroup_put(&ss->root->cgrp); |
| 1186 | } |
| 1187 | |
| 1188 | for_each_root(root) { |
| 1189 | bool name_match = false; |
| 1190 | |
| 1191 | if (root == &cgrp_dfl_root) |
| 1192 | continue; |
| 1193 | |
| 1194 | /* |
| 1195 | * If we asked for a name then it must match. Also, if |
| 1196 | * name matches but sybsys_mask doesn't, we should fail. |
| 1197 | * Remember whether name matched. |
| 1198 | */ |
| 1199 | if (ctx->name) { |
| 1200 | if (strcmp(ctx->name, root->name)) |
| 1201 | continue; |
| 1202 | name_match = true; |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * If we asked for subsystems (or explicitly for no |
| 1207 | * subsystems) then they must match. |
| 1208 | */ |
| 1209 | if ((ctx->subsys_mask || ctx->none) && |
| 1210 | (ctx->subsys_mask != root->subsys_mask)) { |
| 1211 | if (!name_match) |
| 1212 | continue; |
| 1213 | return -EBUSY; |
| 1214 | } |
| 1215 | |
| 1216 | if (root->flags ^ ctx->flags) |
| 1217 | pr_warn("new mount options do not match the existing superblock, will be ignored\n"); |
| 1218 | |
| 1219 | ctx->root = root; |
| 1220 | return 0; |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * No such thing, create a new one. name= matching without subsys |
| 1225 | * specification is allowed for already existing hierarchies but we |
| 1226 | * can't create new one without subsys specification. |
| 1227 | */ |
| 1228 | if (!ctx->subsys_mask && !ctx->none) |
| 1229 | return invalfc(fc, "No subsys list or none specified"); |
| 1230 | |
| 1231 | /* Hierarchies may only be created in the initial cgroup namespace. */ |
| 1232 | if (ctx->ns != &init_cgroup_ns) |
| 1233 | return -EPERM; |
| 1234 | |
| 1235 | root = kzalloc(sizeof(*root), GFP_KERNEL); |
| 1236 | if (!root) |
| 1237 | return -ENOMEM; |
| 1238 | |
| 1239 | ctx->root = root; |
| 1240 | init_cgroup_root(ctx); |
| 1241 | |
| 1242 | ret = cgroup_setup_root(root, ctx->subsys_mask); |
| 1243 | if (!ret) |
| 1244 | cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS); |
| 1245 | else |
| 1246 | cgroup_free_root(root); |
| 1247 | |
| 1248 | return ret; |
| 1249 | } |
| 1250 | |
| 1251 | int cgroup1_get_tree(struct fs_context *fc) |
| 1252 | { |
| 1253 | struct cgroup_fs_context *ctx = cgroup_fc2context(fc); |
| 1254 | int ret; |
| 1255 | |
| 1256 | /* Check if the caller has permission to mount. */ |
| 1257 | if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN)) |
| 1258 | return -EPERM; |
| 1259 | |
| 1260 | cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); |
| 1261 | |
| 1262 | ret = cgroup1_root_to_use(fc); |
| 1263 | if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt)) |
| 1264 | ret = 1; /* restart */ |
| 1265 | |
| 1266 | cgroup_unlock(); |
| 1267 | |
| 1268 | if (!ret) |
| 1269 | ret = cgroup_do_get_tree(fc); |
| 1270 | |
| 1271 | if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) { |
| 1272 | fc_drop_locked(fc); |
| 1273 | ret = 1; |
| 1274 | } |
| 1275 | |
| 1276 | if (unlikely(ret > 0)) { |
| 1277 | msleep(10); |
| 1278 | return restart_syscall(); |
| 1279 | } |
| 1280 | return ret; |
| 1281 | } |
| 1282 | |
| 1283 | /** |
| 1284 | * task_get_cgroup1 - Acquires the associated cgroup of a task within a |
| 1285 | * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its |
| 1286 | * hierarchy ID. |
| 1287 | * @tsk: The target task |
| 1288 | * @hierarchy_id: The ID of a cgroup1 hierarchy |
| 1289 | * |
| 1290 | * On success, the cgroup is returned. On failure, ERR_PTR is returned. |
| 1291 | * We limit it to cgroup1 only. |
| 1292 | */ |
| 1293 | struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id) |
| 1294 | { |
| 1295 | struct cgroup *cgrp = ERR_PTR(-ENOENT); |
| 1296 | struct cgroup_root *root; |
| 1297 | unsigned long flags; |
| 1298 | |
| 1299 | rcu_read_lock(); |
| 1300 | for_each_root(root) { |
| 1301 | /* cgroup1 only*/ |
| 1302 | if (root == &cgrp_dfl_root) |
| 1303 | continue; |
| 1304 | if (root->hierarchy_id != hierarchy_id) |
| 1305 | continue; |
| 1306 | spin_lock_irqsave(&css_set_lock, flags); |
| 1307 | cgrp = task_cgroup_from_root(tsk, root); |
| 1308 | if (!cgrp || !cgroup_tryget(cgrp)) |
| 1309 | cgrp = ERR_PTR(-ENOENT); |
| 1310 | spin_unlock_irqrestore(&css_set_lock, flags); |
| 1311 | break; |
| 1312 | } |
| 1313 | rcu_read_unlock(); |
| 1314 | return cgrp; |
| 1315 | } |
| 1316 | |
| 1317 | static int __init cgroup1_wq_init(void) |
| 1318 | { |
| 1319 | /* |
| 1320 | * Used to destroy pidlists and separate to serve as flush domain. |
| 1321 | * Cap @max_active to 1 too. |
| 1322 | */ |
| 1323 | cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", |
| 1324 | 0, 1); |
| 1325 | BUG_ON(!cgroup_pidlist_destroy_wq); |
| 1326 | return 0; |
| 1327 | } |
| 1328 | core_initcall(cgroup1_wq_init); |
| 1329 | |
| 1330 | static int __init cgroup_no_v1(char *str) |
| 1331 | { |
| 1332 | struct cgroup_subsys *ss; |
| 1333 | char *token; |
| 1334 | int i; |
| 1335 | |
| 1336 | while ((token = strsep(&str, ",")) != NULL) { |
| 1337 | if (!*token) |
| 1338 | continue; |
| 1339 | |
| 1340 | if (!strcmp(token, "all")) { |
| 1341 | cgroup_no_v1_mask = U16_MAX; |
| 1342 | continue; |
| 1343 | } |
| 1344 | |
| 1345 | if (!strcmp(token, "named")) { |
| 1346 | cgroup_no_v1_named = true; |
| 1347 | continue; |
| 1348 | } |
| 1349 | |
| 1350 | for_each_subsys(ss, i) { |
| 1351 | if (strcmp(token, ss->name) && |
| 1352 | strcmp(token, ss->legacy_name)) |
| 1353 | continue; |
| 1354 | |
| 1355 | cgroup_no_v1_mask |= 1 << i; |
| 1356 | break; |
| 1357 | } |
| 1358 | } |
| 1359 | return 1; |
| 1360 | } |
| 1361 | __setup("cgroup_no_v1=", cgroup_no_v1); |