bpf: Use correct permission flag for mixed signed bounds arithmetic
[linux-block.git] / kernel / bpf / verifier.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6#include <uapi/linux/btf.h>
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
11#include <linux/btf.h>
12#include <linux/bpf_verifier.h>
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
17#include <linux/stringify.h>
18#include <linux/bsearch.h>
19#include <linux/sort.h>
20#include <linux/perf_event.h>
21#include <linux/ctype.h>
22#include <linux/error-injection.h>
23#include <linux/bpf_lsm.h>
24#include <linux/btf_ids.h>
25
26#include "disasm.h"
27
28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
32#define BPF_LINK_TYPE(_id, _name)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36#undef BPF_LINK_TYPE
37};
38
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
165struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176};
177
178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179#define BPF_COMPLEXITY_LIMIT_STATES 64
180
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229}
230
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
237struct bpf_call_arg_meta {
238 struct bpf_map *map_ptr;
239 bool raw_mode;
240 bool pkt_access;
241 int regno;
242 int access_size;
243 int mem_size;
244 u64 msize_max_value;
245 int ref_obj_id;
246 int func_id;
247 struct btf *btf;
248 u32 btf_id;
249 struct btf *ret_btf;
250 u32 ret_btf_id;
251};
252
253struct btf *btf_vmlinux;
254
255static DEFINE_MUTEX(bpf_verifier_lock);
256
257static const struct bpf_line_info *
258find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
259{
260 const struct bpf_line_info *linfo;
261 const struct bpf_prog *prog;
262 u32 i, nr_linfo;
263
264 prog = env->prog;
265 nr_linfo = prog->aux->nr_linfo;
266
267 if (!nr_linfo || insn_off >= prog->len)
268 return NULL;
269
270 linfo = prog->aux->linfo;
271 for (i = 1; i < nr_linfo; i++)
272 if (insn_off < linfo[i].insn_off)
273 break;
274
275 return &linfo[i - 1];
276}
277
278void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
279 va_list args)
280{
281 unsigned int n;
282
283 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
284
285 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
286 "verifier log line truncated - local buffer too short\n");
287
288 n = min(log->len_total - log->len_used - 1, n);
289 log->kbuf[n] = '\0';
290
291 if (log->level == BPF_LOG_KERNEL) {
292 pr_err("BPF:%s\n", log->kbuf);
293 return;
294 }
295 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
296 log->len_used += n;
297 else
298 log->ubuf = NULL;
299}
300
301static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
302{
303 char zero = 0;
304
305 if (!bpf_verifier_log_needed(log))
306 return;
307
308 log->len_used = new_pos;
309 if (put_user(zero, log->ubuf + new_pos))
310 log->ubuf = NULL;
311}
312
313/* log_level controls verbosity level of eBPF verifier.
314 * bpf_verifier_log_write() is used to dump the verification trace to the log,
315 * so the user can figure out what's wrong with the program
316 */
317__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
318 const char *fmt, ...)
319{
320 va_list args;
321
322 if (!bpf_verifier_log_needed(&env->log))
323 return;
324
325 va_start(args, fmt);
326 bpf_verifier_vlog(&env->log, fmt, args);
327 va_end(args);
328}
329EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
330
331__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
332{
333 struct bpf_verifier_env *env = private_data;
334 va_list args;
335
336 if (!bpf_verifier_log_needed(&env->log))
337 return;
338
339 va_start(args, fmt);
340 bpf_verifier_vlog(&env->log, fmt, args);
341 va_end(args);
342}
343
344__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
345 const char *fmt, ...)
346{
347 va_list args;
348
349 if (!bpf_verifier_log_needed(log))
350 return;
351
352 va_start(args, fmt);
353 bpf_verifier_vlog(log, fmt, args);
354 va_end(args);
355}
356
357static const char *ltrim(const char *s)
358{
359 while (isspace(*s))
360 s++;
361
362 return s;
363}
364
365__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
366 u32 insn_off,
367 const char *prefix_fmt, ...)
368{
369 const struct bpf_line_info *linfo;
370
371 if (!bpf_verifier_log_needed(&env->log))
372 return;
373
374 linfo = find_linfo(env, insn_off);
375 if (!linfo || linfo == env->prev_linfo)
376 return;
377
378 if (prefix_fmt) {
379 va_list args;
380
381 va_start(args, prefix_fmt);
382 bpf_verifier_vlog(&env->log, prefix_fmt, args);
383 va_end(args);
384 }
385
386 verbose(env, "%s\n",
387 ltrim(btf_name_by_offset(env->prog->aux->btf,
388 linfo->line_off)));
389
390 env->prev_linfo = linfo;
391}
392
393static bool type_is_pkt_pointer(enum bpf_reg_type type)
394{
395 return type == PTR_TO_PACKET ||
396 type == PTR_TO_PACKET_META;
397}
398
399static bool type_is_sk_pointer(enum bpf_reg_type type)
400{
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_SOCK_COMMON ||
403 type == PTR_TO_TCP_SOCK ||
404 type == PTR_TO_XDP_SOCK;
405}
406
407static bool reg_type_not_null(enum bpf_reg_type type)
408{
409 return type == PTR_TO_SOCKET ||
410 type == PTR_TO_TCP_SOCK ||
411 type == PTR_TO_MAP_VALUE ||
412 type == PTR_TO_SOCK_COMMON;
413}
414
415static bool reg_type_may_be_null(enum bpf_reg_type type)
416{
417 return type == PTR_TO_MAP_VALUE_OR_NULL ||
418 type == PTR_TO_SOCKET_OR_NULL ||
419 type == PTR_TO_SOCK_COMMON_OR_NULL ||
420 type == PTR_TO_TCP_SOCK_OR_NULL ||
421 type == PTR_TO_BTF_ID_OR_NULL ||
422 type == PTR_TO_MEM_OR_NULL ||
423 type == PTR_TO_RDONLY_BUF_OR_NULL ||
424 type == PTR_TO_RDWR_BUF_OR_NULL;
425}
426
427static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
428{
429 return reg->type == PTR_TO_MAP_VALUE &&
430 map_value_has_spin_lock(reg->map_ptr);
431}
432
433static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
434{
435 return type == PTR_TO_SOCKET ||
436 type == PTR_TO_SOCKET_OR_NULL ||
437 type == PTR_TO_TCP_SOCK ||
438 type == PTR_TO_TCP_SOCK_OR_NULL ||
439 type == PTR_TO_MEM ||
440 type == PTR_TO_MEM_OR_NULL;
441}
442
443static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
444{
445 return type == ARG_PTR_TO_SOCK_COMMON;
446}
447
448static bool arg_type_may_be_null(enum bpf_arg_type type)
449{
450 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
451 type == ARG_PTR_TO_MEM_OR_NULL ||
452 type == ARG_PTR_TO_CTX_OR_NULL ||
453 type == ARG_PTR_TO_SOCKET_OR_NULL ||
454 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
455}
456
457/* Determine whether the function releases some resources allocated by another
458 * function call. The first reference type argument will be assumed to be
459 * released by release_reference().
460 */
461static bool is_release_function(enum bpf_func_id func_id)
462{
463 return func_id == BPF_FUNC_sk_release ||
464 func_id == BPF_FUNC_ringbuf_submit ||
465 func_id == BPF_FUNC_ringbuf_discard;
466}
467
468static bool may_be_acquire_function(enum bpf_func_id func_id)
469{
470 return func_id == BPF_FUNC_sk_lookup_tcp ||
471 func_id == BPF_FUNC_sk_lookup_udp ||
472 func_id == BPF_FUNC_skc_lookup_tcp ||
473 func_id == BPF_FUNC_map_lookup_elem ||
474 func_id == BPF_FUNC_ringbuf_reserve;
475}
476
477static bool is_acquire_function(enum bpf_func_id func_id,
478 const struct bpf_map *map)
479{
480 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
481
482 if (func_id == BPF_FUNC_sk_lookup_tcp ||
483 func_id == BPF_FUNC_sk_lookup_udp ||
484 func_id == BPF_FUNC_skc_lookup_tcp ||
485 func_id == BPF_FUNC_ringbuf_reserve)
486 return true;
487
488 if (func_id == BPF_FUNC_map_lookup_elem &&
489 (map_type == BPF_MAP_TYPE_SOCKMAP ||
490 map_type == BPF_MAP_TYPE_SOCKHASH))
491 return true;
492
493 return false;
494}
495
496static bool is_ptr_cast_function(enum bpf_func_id func_id)
497{
498 return func_id == BPF_FUNC_tcp_sock ||
499 func_id == BPF_FUNC_sk_fullsock ||
500 func_id == BPF_FUNC_skc_to_tcp_sock ||
501 func_id == BPF_FUNC_skc_to_tcp6_sock ||
502 func_id == BPF_FUNC_skc_to_udp6_sock ||
503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
504 func_id == BPF_FUNC_skc_to_tcp_request_sock;
505}
506
507static bool is_cmpxchg_insn(const struct bpf_insn *insn)
508{
509 return BPF_CLASS(insn->code) == BPF_STX &&
510 BPF_MODE(insn->code) == BPF_ATOMIC &&
511 insn->imm == BPF_CMPXCHG;
512}
513
514/* string representation of 'enum bpf_reg_type' */
515static const char * const reg_type_str[] = {
516 [NOT_INIT] = "?",
517 [SCALAR_VALUE] = "inv",
518 [PTR_TO_CTX] = "ctx",
519 [CONST_PTR_TO_MAP] = "map_ptr",
520 [PTR_TO_MAP_VALUE] = "map_value",
521 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
522 [PTR_TO_STACK] = "fp",
523 [PTR_TO_PACKET] = "pkt",
524 [PTR_TO_PACKET_META] = "pkt_meta",
525 [PTR_TO_PACKET_END] = "pkt_end",
526 [PTR_TO_FLOW_KEYS] = "flow_keys",
527 [PTR_TO_SOCKET] = "sock",
528 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
529 [PTR_TO_SOCK_COMMON] = "sock_common",
530 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
531 [PTR_TO_TCP_SOCK] = "tcp_sock",
532 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
533 [PTR_TO_TP_BUFFER] = "tp_buffer",
534 [PTR_TO_XDP_SOCK] = "xdp_sock",
535 [PTR_TO_BTF_ID] = "ptr_",
536 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
537 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
538 [PTR_TO_MEM] = "mem",
539 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
540 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
541 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
542 [PTR_TO_RDWR_BUF] = "rdwr_buf",
543 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
544};
545
546static char slot_type_char[] = {
547 [STACK_INVALID] = '?',
548 [STACK_SPILL] = 'r',
549 [STACK_MISC] = 'm',
550 [STACK_ZERO] = '0',
551};
552
553static void print_liveness(struct bpf_verifier_env *env,
554 enum bpf_reg_liveness live)
555{
556 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
557 verbose(env, "_");
558 if (live & REG_LIVE_READ)
559 verbose(env, "r");
560 if (live & REG_LIVE_WRITTEN)
561 verbose(env, "w");
562 if (live & REG_LIVE_DONE)
563 verbose(env, "D");
564}
565
566static struct bpf_func_state *func(struct bpf_verifier_env *env,
567 const struct bpf_reg_state *reg)
568{
569 struct bpf_verifier_state *cur = env->cur_state;
570
571 return cur->frame[reg->frameno];
572}
573
574static const char *kernel_type_name(const struct btf* btf, u32 id)
575{
576 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
577}
578
579static void print_verifier_state(struct bpf_verifier_env *env,
580 const struct bpf_func_state *state)
581{
582 const struct bpf_reg_state *reg;
583 enum bpf_reg_type t;
584 int i;
585
586 if (state->frameno)
587 verbose(env, " frame%d:", state->frameno);
588 for (i = 0; i < MAX_BPF_REG; i++) {
589 reg = &state->regs[i];
590 t = reg->type;
591 if (t == NOT_INIT)
592 continue;
593 verbose(env, " R%d", i);
594 print_liveness(env, reg->live);
595 verbose(env, "=%s", reg_type_str[t]);
596 if (t == SCALAR_VALUE && reg->precise)
597 verbose(env, "P");
598 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
599 tnum_is_const(reg->var_off)) {
600 /* reg->off should be 0 for SCALAR_VALUE */
601 verbose(env, "%lld", reg->var_off.value + reg->off);
602 } else {
603 if (t == PTR_TO_BTF_ID ||
604 t == PTR_TO_BTF_ID_OR_NULL ||
605 t == PTR_TO_PERCPU_BTF_ID)
606 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
607 verbose(env, "(id=%d", reg->id);
608 if (reg_type_may_be_refcounted_or_null(t))
609 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
610 if (t != SCALAR_VALUE)
611 verbose(env, ",off=%d", reg->off);
612 if (type_is_pkt_pointer(t))
613 verbose(env, ",r=%d", reg->range);
614 else if (t == CONST_PTR_TO_MAP ||
615 t == PTR_TO_MAP_VALUE ||
616 t == PTR_TO_MAP_VALUE_OR_NULL)
617 verbose(env, ",ks=%d,vs=%d",
618 reg->map_ptr->key_size,
619 reg->map_ptr->value_size);
620 if (tnum_is_const(reg->var_off)) {
621 /* Typically an immediate SCALAR_VALUE, but
622 * could be a pointer whose offset is too big
623 * for reg->off
624 */
625 verbose(env, ",imm=%llx", reg->var_off.value);
626 } else {
627 if (reg->smin_value != reg->umin_value &&
628 reg->smin_value != S64_MIN)
629 verbose(env, ",smin_value=%lld",
630 (long long)reg->smin_value);
631 if (reg->smax_value != reg->umax_value &&
632 reg->smax_value != S64_MAX)
633 verbose(env, ",smax_value=%lld",
634 (long long)reg->smax_value);
635 if (reg->umin_value != 0)
636 verbose(env, ",umin_value=%llu",
637 (unsigned long long)reg->umin_value);
638 if (reg->umax_value != U64_MAX)
639 verbose(env, ",umax_value=%llu",
640 (unsigned long long)reg->umax_value);
641 if (!tnum_is_unknown(reg->var_off)) {
642 char tn_buf[48];
643
644 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
645 verbose(env, ",var_off=%s", tn_buf);
646 }
647 if (reg->s32_min_value != reg->smin_value &&
648 reg->s32_min_value != S32_MIN)
649 verbose(env, ",s32_min_value=%d",
650 (int)(reg->s32_min_value));
651 if (reg->s32_max_value != reg->smax_value &&
652 reg->s32_max_value != S32_MAX)
653 verbose(env, ",s32_max_value=%d",
654 (int)(reg->s32_max_value));
655 if (reg->u32_min_value != reg->umin_value &&
656 reg->u32_min_value != U32_MIN)
657 verbose(env, ",u32_min_value=%d",
658 (int)(reg->u32_min_value));
659 if (reg->u32_max_value != reg->umax_value &&
660 reg->u32_max_value != U32_MAX)
661 verbose(env, ",u32_max_value=%d",
662 (int)(reg->u32_max_value));
663 }
664 verbose(env, ")");
665 }
666 }
667 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
668 char types_buf[BPF_REG_SIZE + 1];
669 bool valid = false;
670 int j;
671
672 for (j = 0; j < BPF_REG_SIZE; j++) {
673 if (state->stack[i].slot_type[j] != STACK_INVALID)
674 valid = true;
675 types_buf[j] = slot_type_char[
676 state->stack[i].slot_type[j]];
677 }
678 types_buf[BPF_REG_SIZE] = 0;
679 if (!valid)
680 continue;
681 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
682 print_liveness(env, state->stack[i].spilled_ptr.live);
683 if (state->stack[i].slot_type[0] == STACK_SPILL) {
684 reg = &state->stack[i].spilled_ptr;
685 t = reg->type;
686 verbose(env, "=%s", reg_type_str[t]);
687 if (t == SCALAR_VALUE && reg->precise)
688 verbose(env, "P");
689 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
690 verbose(env, "%lld", reg->var_off.value + reg->off);
691 } else {
692 verbose(env, "=%s", types_buf);
693 }
694 }
695 if (state->acquired_refs && state->refs[0].id) {
696 verbose(env, " refs=%d", state->refs[0].id);
697 for (i = 1; i < state->acquired_refs; i++)
698 if (state->refs[i].id)
699 verbose(env, ",%d", state->refs[i].id);
700 }
701 verbose(env, "\n");
702}
703
704#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
705static int copy_##NAME##_state(struct bpf_func_state *dst, \
706 const struct bpf_func_state *src) \
707{ \
708 if (!src->FIELD) \
709 return 0; \
710 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
711 /* internal bug, make state invalid to reject the program */ \
712 memset(dst, 0, sizeof(*dst)); \
713 return -EFAULT; \
714 } \
715 memcpy(dst->FIELD, src->FIELD, \
716 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
717 return 0; \
718}
719/* copy_reference_state() */
720COPY_STATE_FN(reference, acquired_refs, refs, 1)
721/* copy_stack_state() */
722COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
723#undef COPY_STATE_FN
724
725#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
726static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
727 bool copy_old) \
728{ \
729 u32 old_size = state->COUNT; \
730 struct bpf_##NAME##_state *new_##FIELD; \
731 int slot = size / SIZE; \
732 \
733 if (size <= old_size || !size) { \
734 if (copy_old) \
735 return 0; \
736 state->COUNT = slot * SIZE; \
737 if (!size && old_size) { \
738 kfree(state->FIELD); \
739 state->FIELD = NULL; \
740 } \
741 return 0; \
742 } \
743 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
744 GFP_KERNEL); \
745 if (!new_##FIELD) \
746 return -ENOMEM; \
747 if (copy_old) { \
748 if (state->FIELD) \
749 memcpy(new_##FIELD, state->FIELD, \
750 sizeof(*new_##FIELD) * (old_size / SIZE)); \
751 memset(new_##FIELD + old_size / SIZE, 0, \
752 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
753 } \
754 state->COUNT = slot * SIZE; \
755 kfree(state->FIELD); \
756 state->FIELD = new_##FIELD; \
757 return 0; \
758}
759/* realloc_reference_state() */
760REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
761/* realloc_stack_state() */
762REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
763#undef REALLOC_STATE_FN
764
765/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
766 * make it consume minimal amount of memory. check_stack_write() access from
767 * the program calls into realloc_func_state() to grow the stack size.
768 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
769 * which realloc_stack_state() copies over. It points to previous
770 * bpf_verifier_state which is never reallocated.
771 */
772static int realloc_func_state(struct bpf_func_state *state, int stack_size,
773 int refs_size, bool copy_old)
774{
775 int err = realloc_reference_state(state, refs_size, copy_old);
776 if (err)
777 return err;
778 return realloc_stack_state(state, stack_size, copy_old);
779}
780
781/* Acquire a pointer id from the env and update the state->refs to include
782 * this new pointer reference.
783 * On success, returns a valid pointer id to associate with the register
784 * On failure, returns a negative errno.
785 */
786static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
787{
788 struct bpf_func_state *state = cur_func(env);
789 int new_ofs = state->acquired_refs;
790 int id, err;
791
792 err = realloc_reference_state(state, state->acquired_refs + 1, true);
793 if (err)
794 return err;
795 id = ++env->id_gen;
796 state->refs[new_ofs].id = id;
797 state->refs[new_ofs].insn_idx = insn_idx;
798
799 return id;
800}
801
802/* release function corresponding to acquire_reference_state(). Idempotent. */
803static int release_reference_state(struct bpf_func_state *state, int ptr_id)
804{
805 int i, last_idx;
806
807 last_idx = state->acquired_refs - 1;
808 for (i = 0; i < state->acquired_refs; i++) {
809 if (state->refs[i].id == ptr_id) {
810 if (last_idx && i != last_idx)
811 memcpy(&state->refs[i], &state->refs[last_idx],
812 sizeof(*state->refs));
813 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
814 state->acquired_refs--;
815 return 0;
816 }
817 }
818 return -EINVAL;
819}
820
821static int transfer_reference_state(struct bpf_func_state *dst,
822 struct bpf_func_state *src)
823{
824 int err = realloc_reference_state(dst, src->acquired_refs, false);
825 if (err)
826 return err;
827 err = copy_reference_state(dst, src);
828 if (err)
829 return err;
830 return 0;
831}
832
833static void free_func_state(struct bpf_func_state *state)
834{
835 if (!state)
836 return;
837 kfree(state->refs);
838 kfree(state->stack);
839 kfree(state);
840}
841
842static void clear_jmp_history(struct bpf_verifier_state *state)
843{
844 kfree(state->jmp_history);
845 state->jmp_history = NULL;
846 state->jmp_history_cnt = 0;
847}
848
849static void free_verifier_state(struct bpf_verifier_state *state,
850 bool free_self)
851{
852 int i;
853
854 for (i = 0; i <= state->curframe; i++) {
855 free_func_state(state->frame[i]);
856 state->frame[i] = NULL;
857 }
858 clear_jmp_history(state);
859 if (free_self)
860 kfree(state);
861}
862
863/* copy verifier state from src to dst growing dst stack space
864 * when necessary to accommodate larger src stack
865 */
866static int copy_func_state(struct bpf_func_state *dst,
867 const struct bpf_func_state *src)
868{
869 int err;
870
871 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
872 false);
873 if (err)
874 return err;
875 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
876 err = copy_reference_state(dst, src);
877 if (err)
878 return err;
879 return copy_stack_state(dst, src);
880}
881
882static int copy_verifier_state(struct bpf_verifier_state *dst_state,
883 const struct bpf_verifier_state *src)
884{
885 struct bpf_func_state *dst;
886 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
887 int i, err;
888
889 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
890 kfree(dst_state->jmp_history);
891 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
892 if (!dst_state->jmp_history)
893 return -ENOMEM;
894 }
895 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
896 dst_state->jmp_history_cnt = src->jmp_history_cnt;
897
898 /* if dst has more stack frames then src frame, free them */
899 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
900 free_func_state(dst_state->frame[i]);
901 dst_state->frame[i] = NULL;
902 }
903 dst_state->speculative = src->speculative;
904 dst_state->curframe = src->curframe;
905 dst_state->active_spin_lock = src->active_spin_lock;
906 dst_state->branches = src->branches;
907 dst_state->parent = src->parent;
908 dst_state->first_insn_idx = src->first_insn_idx;
909 dst_state->last_insn_idx = src->last_insn_idx;
910 for (i = 0; i <= src->curframe; i++) {
911 dst = dst_state->frame[i];
912 if (!dst) {
913 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
914 if (!dst)
915 return -ENOMEM;
916 dst_state->frame[i] = dst;
917 }
918 err = copy_func_state(dst, src->frame[i]);
919 if (err)
920 return err;
921 }
922 return 0;
923}
924
925static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
926{
927 while (st) {
928 u32 br = --st->branches;
929
930 /* WARN_ON(br > 1) technically makes sense here,
931 * but see comment in push_stack(), hence:
932 */
933 WARN_ONCE((int)br < 0,
934 "BUG update_branch_counts:branches_to_explore=%d\n",
935 br);
936 if (br)
937 break;
938 st = st->parent;
939 }
940}
941
942static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
943 int *insn_idx, bool pop_log)
944{
945 struct bpf_verifier_state *cur = env->cur_state;
946 struct bpf_verifier_stack_elem *elem, *head = env->head;
947 int err;
948
949 if (env->head == NULL)
950 return -ENOENT;
951
952 if (cur) {
953 err = copy_verifier_state(cur, &head->st);
954 if (err)
955 return err;
956 }
957 if (pop_log)
958 bpf_vlog_reset(&env->log, head->log_pos);
959 if (insn_idx)
960 *insn_idx = head->insn_idx;
961 if (prev_insn_idx)
962 *prev_insn_idx = head->prev_insn_idx;
963 elem = head->next;
964 free_verifier_state(&head->st, false);
965 kfree(head);
966 env->head = elem;
967 env->stack_size--;
968 return 0;
969}
970
971static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
972 int insn_idx, int prev_insn_idx,
973 bool speculative)
974{
975 struct bpf_verifier_state *cur = env->cur_state;
976 struct bpf_verifier_stack_elem *elem;
977 int err;
978
979 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
980 if (!elem)
981 goto err;
982
983 elem->insn_idx = insn_idx;
984 elem->prev_insn_idx = prev_insn_idx;
985 elem->next = env->head;
986 elem->log_pos = env->log.len_used;
987 env->head = elem;
988 env->stack_size++;
989 err = copy_verifier_state(&elem->st, cur);
990 if (err)
991 goto err;
992 elem->st.speculative |= speculative;
993 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
994 verbose(env, "The sequence of %d jumps is too complex.\n",
995 env->stack_size);
996 goto err;
997 }
998 if (elem->st.parent) {
999 ++elem->st.parent->branches;
1000 /* WARN_ON(branches > 2) technically makes sense here,
1001 * but
1002 * 1. speculative states will bump 'branches' for non-branch
1003 * instructions
1004 * 2. is_state_visited() heuristics may decide not to create
1005 * a new state for a sequence of branches and all such current
1006 * and cloned states will be pointing to a single parent state
1007 * which might have large 'branches' count.
1008 */
1009 }
1010 return &elem->st;
1011err:
1012 free_verifier_state(env->cur_state, true);
1013 env->cur_state = NULL;
1014 /* pop all elements and return */
1015 while (!pop_stack(env, NULL, NULL, false));
1016 return NULL;
1017}
1018
1019#define CALLER_SAVED_REGS 6
1020static const int caller_saved[CALLER_SAVED_REGS] = {
1021 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1022};
1023
1024static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1025 struct bpf_reg_state *reg);
1026
1027/* This helper doesn't clear reg->id */
1028static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1029{
1030 reg->var_off = tnum_const(imm);
1031 reg->smin_value = (s64)imm;
1032 reg->smax_value = (s64)imm;
1033 reg->umin_value = imm;
1034 reg->umax_value = imm;
1035
1036 reg->s32_min_value = (s32)imm;
1037 reg->s32_max_value = (s32)imm;
1038 reg->u32_min_value = (u32)imm;
1039 reg->u32_max_value = (u32)imm;
1040}
1041
1042/* Mark the unknown part of a register (variable offset or scalar value) as
1043 * known to have the value @imm.
1044 */
1045static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1046{
1047 /* Clear id, off, and union(map_ptr, range) */
1048 memset(((u8 *)reg) + sizeof(reg->type), 0,
1049 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1050 ___mark_reg_known(reg, imm);
1051}
1052
1053static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1054{
1055 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1056 reg->s32_min_value = (s32)imm;
1057 reg->s32_max_value = (s32)imm;
1058 reg->u32_min_value = (u32)imm;
1059 reg->u32_max_value = (u32)imm;
1060}
1061
1062/* Mark the 'variable offset' part of a register as zero. This should be
1063 * used only on registers holding a pointer type.
1064 */
1065static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1066{
1067 __mark_reg_known(reg, 0);
1068}
1069
1070static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1071{
1072 __mark_reg_known(reg, 0);
1073 reg->type = SCALAR_VALUE;
1074}
1075
1076static void mark_reg_known_zero(struct bpf_verifier_env *env,
1077 struct bpf_reg_state *regs, u32 regno)
1078{
1079 if (WARN_ON(regno >= MAX_BPF_REG)) {
1080 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1081 /* Something bad happened, let's kill all regs */
1082 for (regno = 0; regno < MAX_BPF_REG; regno++)
1083 __mark_reg_not_init(env, regs + regno);
1084 return;
1085 }
1086 __mark_reg_known_zero(regs + regno);
1087}
1088
1089static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1090{
1091 switch (reg->type) {
1092 case PTR_TO_MAP_VALUE_OR_NULL: {
1093 const struct bpf_map *map = reg->map_ptr;
1094
1095 if (map->inner_map_meta) {
1096 reg->type = CONST_PTR_TO_MAP;
1097 reg->map_ptr = map->inner_map_meta;
1098 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1099 reg->type = PTR_TO_XDP_SOCK;
1100 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1101 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1102 reg->type = PTR_TO_SOCKET;
1103 } else {
1104 reg->type = PTR_TO_MAP_VALUE;
1105 }
1106 break;
1107 }
1108 case PTR_TO_SOCKET_OR_NULL:
1109 reg->type = PTR_TO_SOCKET;
1110 break;
1111 case PTR_TO_SOCK_COMMON_OR_NULL:
1112 reg->type = PTR_TO_SOCK_COMMON;
1113 break;
1114 case PTR_TO_TCP_SOCK_OR_NULL:
1115 reg->type = PTR_TO_TCP_SOCK;
1116 break;
1117 case PTR_TO_BTF_ID_OR_NULL:
1118 reg->type = PTR_TO_BTF_ID;
1119 break;
1120 case PTR_TO_MEM_OR_NULL:
1121 reg->type = PTR_TO_MEM;
1122 break;
1123 case PTR_TO_RDONLY_BUF_OR_NULL:
1124 reg->type = PTR_TO_RDONLY_BUF;
1125 break;
1126 case PTR_TO_RDWR_BUF_OR_NULL:
1127 reg->type = PTR_TO_RDWR_BUF;
1128 break;
1129 default:
1130 WARN_ONCE(1, "unknown nullable register type");
1131 }
1132}
1133
1134static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1135{
1136 return type_is_pkt_pointer(reg->type);
1137}
1138
1139static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1140{
1141 return reg_is_pkt_pointer(reg) ||
1142 reg->type == PTR_TO_PACKET_END;
1143}
1144
1145/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1146static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1147 enum bpf_reg_type which)
1148{
1149 /* The register can already have a range from prior markings.
1150 * This is fine as long as it hasn't been advanced from its
1151 * origin.
1152 */
1153 return reg->type == which &&
1154 reg->id == 0 &&
1155 reg->off == 0 &&
1156 tnum_equals_const(reg->var_off, 0);
1157}
1158
1159/* Reset the min/max bounds of a register */
1160static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1161{
1162 reg->smin_value = S64_MIN;
1163 reg->smax_value = S64_MAX;
1164 reg->umin_value = 0;
1165 reg->umax_value = U64_MAX;
1166
1167 reg->s32_min_value = S32_MIN;
1168 reg->s32_max_value = S32_MAX;
1169 reg->u32_min_value = 0;
1170 reg->u32_max_value = U32_MAX;
1171}
1172
1173static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1174{
1175 reg->smin_value = S64_MIN;
1176 reg->smax_value = S64_MAX;
1177 reg->umin_value = 0;
1178 reg->umax_value = U64_MAX;
1179}
1180
1181static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1182{
1183 reg->s32_min_value = S32_MIN;
1184 reg->s32_max_value = S32_MAX;
1185 reg->u32_min_value = 0;
1186 reg->u32_max_value = U32_MAX;
1187}
1188
1189static void __update_reg32_bounds(struct bpf_reg_state *reg)
1190{
1191 struct tnum var32_off = tnum_subreg(reg->var_off);
1192
1193 /* min signed is max(sign bit) | min(other bits) */
1194 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1195 var32_off.value | (var32_off.mask & S32_MIN));
1196 /* max signed is min(sign bit) | max(other bits) */
1197 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1198 var32_off.value | (var32_off.mask & S32_MAX));
1199 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1200 reg->u32_max_value = min(reg->u32_max_value,
1201 (u32)(var32_off.value | var32_off.mask));
1202}
1203
1204static void __update_reg64_bounds(struct bpf_reg_state *reg)
1205{
1206 /* min signed is max(sign bit) | min(other bits) */
1207 reg->smin_value = max_t(s64, reg->smin_value,
1208 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1209 /* max signed is min(sign bit) | max(other bits) */
1210 reg->smax_value = min_t(s64, reg->smax_value,
1211 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1212 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1213 reg->umax_value = min(reg->umax_value,
1214 reg->var_off.value | reg->var_off.mask);
1215}
1216
1217static void __update_reg_bounds(struct bpf_reg_state *reg)
1218{
1219 __update_reg32_bounds(reg);
1220 __update_reg64_bounds(reg);
1221}
1222
1223/* Uses signed min/max values to inform unsigned, and vice-versa */
1224static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1225{
1226 /* Learn sign from signed bounds.
1227 * If we cannot cross the sign boundary, then signed and unsigned bounds
1228 * are the same, so combine. This works even in the negative case, e.g.
1229 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1230 */
1231 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1232 reg->s32_min_value = reg->u32_min_value =
1233 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1234 reg->s32_max_value = reg->u32_max_value =
1235 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1236 return;
1237 }
1238 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1239 * boundary, so we must be careful.
1240 */
1241 if ((s32)reg->u32_max_value >= 0) {
1242 /* Positive. We can't learn anything from the smin, but smax
1243 * is positive, hence safe.
1244 */
1245 reg->s32_min_value = reg->u32_min_value;
1246 reg->s32_max_value = reg->u32_max_value =
1247 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1248 } else if ((s32)reg->u32_min_value < 0) {
1249 /* Negative. We can't learn anything from the smax, but smin
1250 * is negative, hence safe.
1251 */
1252 reg->s32_min_value = reg->u32_min_value =
1253 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1254 reg->s32_max_value = reg->u32_max_value;
1255 }
1256}
1257
1258static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1259{
1260 /* Learn sign from signed bounds.
1261 * If we cannot cross the sign boundary, then signed and unsigned bounds
1262 * are the same, so combine. This works even in the negative case, e.g.
1263 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1264 */
1265 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1266 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1267 reg->umin_value);
1268 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1269 reg->umax_value);
1270 return;
1271 }
1272 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1273 * boundary, so we must be careful.
1274 */
1275 if ((s64)reg->umax_value >= 0) {
1276 /* Positive. We can't learn anything from the smin, but smax
1277 * is positive, hence safe.
1278 */
1279 reg->smin_value = reg->umin_value;
1280 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1281 reg->umax_value);
1282 } else if ((s64)reg->umin_value < 0) {
1283 /* Negative. We can't learn anything from the smax, but smin
1284 * is negative, hence safe.
1285 */
1286 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1287 reg->umin_value);
1288 reg->smax_value = reg->umax_value;
1289 }
1290}
1291
1292static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1293{
1294 __reg32_deduce_bounds(reg);
1295 __reg64_deduce_bounds(reg);
1296}
1297
1298/* Attempts to improve var_off based on unsigned min/max information */
1299static void __reg_bound_offset(struct bpf_reg_state *reg)
1300{
1301 struct tnum var64_off = tnum_intersect(reg->var_off,
1302 tnum_range(reg->umin_value,
1303 reg->umax_value));
1304 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1305 tnum_range(reg->u32_min_value,
1306 reg->u32_max_value));
1307
1308 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1309}
1310
1311static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1312{
1313 reg->umin_value = reg->u32_min_value;
1314 reg->umax_value = reg->u32_max_value;
1315 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1316 * but must be positive otherwise set to worse case bounds
1317 * and refine later from tnum.
1318 */
1319 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1320 reg->smax_value = reg->s32_max_value;
1321 else
1322 reg->smax_value = U32_MAX;
1323 if (reg->s32_min_value >= 0)
1324 reg->smin_value = reg->s32_min_value;
1325 else
1326 reg->smin_value = 0;
1327}
1328
1329static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1330{
1331 /* special case when 64-bit register has upper 32-bit register
1332 * zeroed. Typically happens after zext or <<32, >>32 sequence
1333 * allowing us to use 32-bit bounds directly,
1334 */
1335 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1336 __reg_assign_32_into_64(reg);
1337 } else {
1338 /* Otherwise the best we can do is push lower 32bit known and
1339 * unknown bits into register (var_off set from jmp logic)
1340 * then learn as much as possible from the 64-bit tnum
1341 * known and unknown bits. The previous smin/smax bounds are
1342 * invalid here because of jmp32 compare so mark them unknown
1343 * so they do not impact tnum bounds calculation.
1344 */
1345 __mark_reg64_unbounded(reg);
1346 __update_reg_bounds(reg);
1347 }
1348
1349 /* Intersecting with the old var_off might have improved our bounds
1350 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1351 * then new var_off is (0; 0x7f...fc) which improves our umax.
1352 */
1353 __reg_deduce_bounds(reg);
1354 __reg_bound_offset(reg);
1355 __update_reg_bounds(reg);
1356}
1357
1358static bool __reg64_bound_s32(s64 a)
1359{
1360 return a > S32_MIN && a < S32_MAX;
1361}
1362
1363static bool __reg64_bound_u32(u64 a)
1364{
1365 if (a > U32_MIN && a < U32_MAX)
1366 return true;
1367 return false;
1368}
1369
1370static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1371{
1372 __mark_reg32_unbounded(reg);
1373
1374 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1375 reg->s32_min_value = (s32)reg->smin_value;
1376 reg->s32_max_value = (s32)reg->smax_value;
1377 }
1378 if (__reg64_bound_u32(reg->umin_value))
1379 reg->u32_min_value = (u32)reg->umin_value;
1380 if (__reg64_bound_u32(reg->umax_value))
1381 reg->u32_max_value = (u32)reg->umax_value;
1382
1383 /* Intersecting with the old var_off might have improved our bounds
1384 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1385 * then new var_off is (0; 0x7f...fc) which improves our umax.
1386 */
1387 __reg_deduce_bounds(reg);
1388 __reg_bound_offset(reg);
1389 __update_reg_bounds(reg);
1390}
1391
1392/* Mark a register as having a completely unknown (scalar) value. */
1393static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1394 struct bpf_reg_state *reg)
1395{
1396 /*
1397 * Clear type, id, off, and union(map_ptr, range) and
1398 * padding between 'type' and union
1399 */
1400 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1401 reg->type = SCALAR_VALUE;
1402 reg->var_off = tnum_unknown;
1403 reg->frameno = 0;
1404 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1405 __mark_reg_unbounded(reg);
1406}
1407
1408static void mark_reg_unknown(struct bpf_verifier_env *env,
1409 struct bpf_reg_state *regs, u32 regno)
1410{
1411 if (WARN_ON(regno >= MAX_BPF_REG)) {
1412 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1413 /* Something bad happened, let's kill all regs except FP */
1414 for (regno = 0; regno < BPF_REG_FP; regno++)
1415 __mark_reg_not_init(env, regs + regno);
1416 return;
1417 }
1418 __mark_reg_unknown(env, regs + regno);
1419}
1420
1421static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1422 struct bpf_reg_state *reg)
1423{
1424 __mark_reg_unknown(env, reg);
1425 reg->type = NOT_INIT;
1426}
1427
1428static void mark_reg_not_init(struct bpf_verifier_env *env,
1429 struct bpf_reg_state *regs, u32 regno)
1430{
1431 if (WARN_ON(regno >= MAX_BPF_REG)) {
1432 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1433 /* Something bad happened, let's kill all regs except FP */
1434 for (regno = 0; regno < BPF_REG_FP; regno++)
1435 __mark_reg_not_init(env, regs + regno);
1436 return;
1437 }
1438 __mark_reg_not_init(env, regs + regno);
1439}
1440
1441static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1442 struct bpf_reg_state *regs, u32 regno,
1443 enum bpf_reg_type reg_type,
1444 struct btf *btf, u32 btf_id)
1445{
1446 if (reg_type == SCALAR_VALUE) {
1447 mark_reg_unknown(env, regs, regno);
1448 return;
1449 }
1450 mark_reg_known_zero(env, regs, regno);
1451 regs[regno].type = PTR_TO_BTF_ID;
1452 regs[regno].btf = btf;
1453 regs[regno].btf_id = btf_id;
1454}
1455
1456#define DEF_NOT_SUBREG (0)
1457static void init_reg_state(struct bpf_verifier_env *env,
1458 struct bpf_func_state *state)
1459{
1460 struct bpf_reg_state *regs = state->regs;
1461 int i;
1462
1463 for (i = 0; i < MAX_BPF_REG; i++) {
1464 mark_reg_not_init(env, regs, i);
1465 regs[i].live = REG_LIVE_NONE;
1466 regs[i].parent = NULL;
1467 regs[i].subreg_def = DEF_NOT_SUBREG;
1468 }
1469
1470 /* frame pointer */
1471 regs[BPF_REG_FP].type = PTR_TO_STACK;
1472 mark_reg_known_zero(env, regs, BPF_REG_FP);
1473 regs[BPF_REG_FP].frameno = state->frameno;
1474}
1475
1476#define BPF_MAIN_FUNC (-1)
1477static void init_func_state(struct bpf_verifier_env *env,
1478 struct bpf_func_state *state,
1479 int callsite, int frameno, int subprogno)
1480{
1481 state->callsite = callsite;
1482 state->frameno = frameno;
1483 state->subprogno = subprogno;
1484 init_reg_state(env, state);
1485}
1486
1487enum reg_arg_type {
1488 SRC_OP, /* register is used as source operand */
1489 DST_OP, /* register is used as destination operand */
1490 DST_OP_NO_MARK /* same as above, check only, don't mark */
1491};
1492
1493static int cmp_subprogs(const void *a, const void *b)
1494{
1495 return ((struct bpf_subprog_info *)a)->start -
1496 ((struct bpf_subprog_info *)b)->start;
1497}
1498
1499static int find_subprog(struct bpf_verifier_env *env, int off)
1500{
1501 struct bpf_subprog_info *p;
1502
1503 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1504 sizeof(env->subprog_info[0]), cmp_subprogs);
1505 if (!p)
1506 return -ENOENT;
1507 return p - env->subprog_info;
1508
1509}
1510
1511static int add_subprog(struct bpf_verifier_env *env, int off)
1512{
1513 int insn_cnt = env->prog->len;
1514 int ret;
1515
1516 if (off >= insn_cnt || off < 0) {
1517 verbose(env, "call to invalid destination\n");
1518 return -EINVAL;
1519 }
1520 ret = find_subprog(env, off);
1521 if (ret >= 0)
1522 return 0;
1523 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1524 verbose(env, "too many subprograms\n");
1525 return -E2BIG;
1526 }
1527 env->subprog_info[env->subprog_cnt++].start = off;
1528 sort(env->subprog_info, env->subprog_cnt,
1529 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1530 return 0;
1531}
1532
1533static int check_subprogs(struct bpf_verifier_env *env)
1534{
1535 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1536 struct bpf_subprog_info *subprog = env->subprog_info;
1537 struct bpf_insn *insn = env->prog->insnsi;
1538 int insn_cnt = env->prog->len;
1539
1540 /* Add entry function. */
1541 ret = add_subprog(env, 0);
1542 if (ret < 0)
1543 return ret;
1544
1545 /* determine subprog starts. The end is one before the next starts */
1546 for (i = 0; i < insn_cnt; i++) {
1547 if (!bpf_pseudo_call(insn + i))
1548 continue;
1549 if (!env->bpf_capable) {
1550 verbose(env,
1551 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1552 return -EPERM;
1553 }
1554 ret = add_subprog(env, i + insn[i].imm + 1);
1555 if (ret < 0)
1556 return ret;
1557 }
1558
1559 /* Add a fake 'exit' subprog which could simplify subprog iteration
1560 * logic. 'subprog_cnt' should not be increased.
1561 */
1562 subprog[env->subprog_cnt].start = insn_cnt;
1563
1564 if (env->log.level & BPF_LOG_LEVEL2)
1565 for (i = 0; i < env->subprog_cnt; i++)
1566 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1567
1568 /* now check that all jumps are within the same subprog */
1569 subprog_start = subprog[cur_subprog].start;
1570 subprog_end = subprog[cur_subprog + 1].start;
1571 for (i = 0; i < insn_cnt; i++) {
1572 u8 code = insn[i].code;
1573
1574 if (code == (BPF_JMP | BPF_CALL) &&
1575 insn[i].imm == BPF_FUNC_tail_call &&
1576 insn[i].src_reg != BPF_PSEUDO_CALL)
1577 subprog[cur_subprog].has_tail_call = true;
1578 if (BPF_CLASS(code) == BPF_LD &&
1579 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1580 subprog[cur_subprog].has_ld_abs = true;
1581 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1582 goto next;
1583 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1584 goto next;
1585 off = i + insn[i].off + 1;
1586 if (off < subprog_start || off >= subprog_end) {
1587 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1588 return -EINVAL;
1589 }
1590next:
1591 if (i == subprog_end - 1) {
1592 /* to avoid fall-through from one subprog into another
1593 * the last insn of the subprog should be either exit
1594 * or unconditional jump back
1595 */
1596 if (code != (BPF_JMP | BPF_EXIT) &&
1597 code != (BPF_JMP | BPF_JA)) {
1598 verbose(env, "last insn is not an exit or jmp\n");
1599 return -EINVAL;
1600 }
1601 subprog_start = subprog_end;
1602 cur_subprog++;
1603 if (cur_subprog < env->subprog_cnt)
1604 subprog_end = subprog[cur_subprog + 1].start;
1605 }
1606 }
1607 return 0;
1608}
1609
1610/* Parentage chain of this register (or stack slot) should take care of all
1611 * issues like callee-saved registers, stack slot allocation time, etc.
1612 */
1613static int mark_reg_read(struct bpf_verifier_env *env,
1614 const struct bpf_reg_state *state,
1615 struct bpf_reg_state *parent, u8 flag)
1616{
1617 bool writes = parent == state->parent; /* Observe write marks */
1618 int cnt = 0;
1619
1620 while (parent) {
1621 /* if read wasn't screened by an earlier write ... */
1622 if (writes && state->live & REG_LIVE_WRITTEN)
1623 break;
1624 if (parent->live & REG_LIVE_DONE) {
1625 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1626 reg_type_str[parent->type],
1627 parent->var_off.value, parent->off);
1628 return -EFAULT;
1629 }
1630 /* The first condition is more likely to be true than the
1631 * second, checked it first.
1632 */
1633 if ((parent->live & REG_LIVE_READ) == flag ||
1634 parent->live & REG_LIVE_READ64)
1635 /* The parentage chain never changes and
1636 * this parent was already marked as LIVE_READ.
1637 * There is no need to keep walking the chain again and
1638 * keep re-marking all parents as LIVE_READ.
1639 * This case happens when the same register is read
1640 * multiple times without writes into it in-between.
1641 * Also, if parent has the stronger REG_LIVE_READ64 set,
1642 * then no need to set the weak REG_LIVE_READ32.
1643 */
1644 break;
1645 /* ... then we depend on parent's value */
1646 parent->live |= flag;
1647 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1648 if (flag == REG_LIVE_READ64)
1649 parent->live &= ~REG_LIVE_READ32;
1650 state = parent;
1651 parent = state->parent;
1652 writes = true;
1653 cnt++;
1654 }
1655
1656 if (env->longest_mark_read_walk < cnt)
1657 env->longest_mark_read_walk = cnt;
1658 return 0;
1659}
1660
1661/* This function is supposed to be used by the following 32-bit optimization
1662 * code only. It returns TRUE if the source or destination register operates
1663 * on 64-bit, otherwise return FALSE.
1664 */
1665static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1666 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1667{
1668 u8 code, class, op;
1669
1670 code = insn->code;
1671 class = BPF_CLASS(code);
1672 op = BPF_OP(code);
1673 if (class == BPF_JMP) {
1674 /* BPF_EXIT for "main" will reach here. Return TRUE
1675 * conservatively.
1676 */
1677 if (op == BPF_EXIT)
1678 return true;
1679 if (op == BPF_CALL) {
1680 /* BPF to BPF call will reach here because of marking
1681 * caller saved clobber with DST_OP_NO_MARK for which we
1682 * don't care the register def because they are anyway
1683 * marked as NOT_INIT already.
1684 */
1685 if (insn->src_reg == BPF_PSEUDO_CALL)
1686 return false;
1687 /* Helper call will reach here because of arg type
1688 * check, conservatively return TRUE.
1689 */
1690 if (t == SRC_OP)
1691 return true;
1692
1693 return false;
1694 }
1695 }
1696
1697 if (class == BPF_ALU64 || class == BPF_JMP ||
1698 /* BPF_END always use BPF_ALU class. */
1699 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1700 return true;
1701
1702 if (class == BPF_ALU || class == BPF_JMP32)
1703 return false;
1704
1705 if (class == BPF_LDX) {
1706 if (t != SRC_OP)
1707 return BPF_SIZE(code) == BPF_DW;
1708 /* LDX source must be ptr. */
1709 return true;
1710 }
1711
1712 if (class == BPF_STX) {
1713 /* BPF_STX (including atomic variants) has multiple source
1714 * operands, one of which is a ptr. Check whether the caller is
1715 * asking about it.
1716 */
1717 if (t == SRC_OP && reg->type != SCALAR_VALUE)
1718 return true;
1719 return BPF_SIZE(code) == BPF_DW;
1720 }
1721
1722 if (class == BPF_LD) {
1723 u8 mode = BPF_MODE(code);
1724
1725 /* LD_IMM64 */
1726 if (mode == BPF_IMM)
1727 return true;
1728
1729 /* Both LD_IND and LD_ABS return 32-bit data. */
1730 if (t != SRC_OP)
1731 return false;
1732
1733 /* Implicit ctx ptr. */
1734 if (regno == BPF_REG_6)
1735 return true;
1736
1737 /* Explicit source could be any width. */
1738 return true;
1739 }
1740
1741 if (class == BPF_ST)
1742 /* The only source register for BPF_ST is a ptr. */
1743 return true;
1744
1745 /* Conservatively return true at default. */
1746 return true;
1747}
1748
1749/* Return the regno defined by the insn, or -1. */
1750static int insn_def_regno(const struct bpf_insn *insn)
1751{
1752 switch (BPF_CLASS(insn->code)) {
1753 case BPF_JMP:
1754 case BPF_JMP32:
1755 case BPF_ST:
1756 return -1;
1757 case BPF_STX:
1758 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1759 (insn->imm & BPF_FETCH)) {
1760 if (insn->imm == BPF_CMPXCHG)
1761 return BPF_REG_0;
1762 else
1763 return insn->src_reg;
1764 } else {
1765 return -1;
1766 }
1767 default:
1768 return insn->dst_reg;
1769 }
1770}
1771
1772/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1773static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1774{
1775 int dst_reg = insn_def_regno(insn);
1776
1777 if (dst_reg == -1)
1778 return false;
1779
1780 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1781}
1782
1783static void mark_insn_zext(struct bpf_verifier_env *env,
1784 struct bpf_reg_state *reg)
1785{
1786 s32 def_idx = reg->subreg_def;
1787
1788 if (def_idx == DEF_NOT_SUBREG)
1789 return;
1790
1791 env->insn_aux_data[def_idx - 1].zext_dst = true;
1792 /* The dst will be zero extended, so won't be sub-register anymore. */
1793 reg->subreg_def = DEF_NOT_SUBREG;
1794}
1795
1796static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1797 enum reg_arg_type t)
1798{
1799 struct bpf_verifier_state *vstate = env->cur_state;
1800 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1801 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1802 struct bpf_reg_state *reg, *regs = state->regs;
1803 bool rw64;
1804
1805 if (regno >= MAX_BPF_REG) {
1806 verbose(env, "R%d is invalid\n", regno);
1807 return -EINVAL;
1808 }
1809
1810 reg = &regs[regno];
1811 rw64 = is_reg64(env, insn, regno, reg, t);
1812 if (t == SRC_OP) {
1813 /* check whether register used as source operand can be read */
1814 if (reg->type == NOT_INIT) {
1815 verbose(env, "R%d !read_ok\n", regno);
1816 return -EACCES;
1817 }
1818 /* We don't need to worry about FP liveness because it's read-only */
1819 if (regno == BPF_REG_FP)
1820 return 0;
1821
1822 if (rw64)
1823 mark_insn_zext(env, reg);
1824
1825 return mark_reg_read(env, reg, reg->parent,
1826 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1827 } else {
1828 /* check whether register used as dest operand can be written to */
1829 if (regno == BPF_REG_FP) {
1830 verbose(env, "frame pointer is read only\n");
1831 return -EACCES;
1832 }
1833 reg->live |= REG_LIVE_WRITTEN;
1834 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1835 if (t == DST_OP)
1836 mark_reg_unknown(env, regs, regno);
1837 }
1838 return 0;
1839}
1840
1841/* for any branch, call, exit record the history of jmps in the given state */
1842static int push_jmp_history(struct bpf_verifier_env *env,
1843 struct bpf_verifier_state *cur)
1844{
1845 u32 cnt = cur->jmp_history_cnt;
1846 struct bpf_idx_pair *p;
1847
1848 cnt++;
1849 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1850 if (!p)
1851 return -ENOMEM;
1852 p[cnt - 1].idx = env->insn_idx;
1853 p[cnt - 1].prev_idx = env->prev_insn_idx;
1854 cur->jmp_history = p;
1855 cur->jmp_history_cnt = cnt;
1856 return 0;
1857}
1858
1859/* Backtrack one insn at a time. If idx is not at the top of recorded
1860 * history then previous instruction came from straight line execution.
1861 */
1862static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1863 u32 *history)
1864{
1865 u32 cnt = *history;
1866
1867 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1868 i = st->jmp_history[cnt - 1].prev_idx;
1869 (*history)--;
1870 } else {
1871 i--;
1872 }
1873 return i;
1874}
1875
1876/* For given verifier state backtrack_insn() is called from the last insn to
1877 * the first insn. Its purpose is to compute a bitmask of registers and
1878 * stack slots that needs precision in the parent verifier state.
1879 */
1880static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1881 u32 *reg_mask, u64 *stack_mask)
1882{
1883 const struct bpf_insn_cbs cbs = {
1884 .cb_print = verbose,
1885 .private_data = env,
1886 };
1887 struct bpf_insn *insn = env->prog->insnsi + idx;
1888 u8 class = BPF_CLASS(insn->code);
1889 u8 opcode = BPF_OP(insn->code);
1890 u8 mode = BPF_MODE(insn->code);
1891 u32 dreg = 1u << insn->dst_reg;
1892 u32 sreg = 1u << insn->src_reg;
1893 u32 spi;
1894
1895 if (insn->code == 0)
1896 return 0;
1897 if (env->log.level & BPF_LOG_LEVEL) {
1898 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1899 verbose(env, "%d: ", idx);
1900 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1901 }
1902
1903 if (class == BPF_ALU || class == BPF_ALU64) {
1904 if (!(*reg_mask & dreg))
1905 return 0;
1906 if (opcode == BPF_MOV) {
1907 if (BPF_SRC(insn->code) == BPF_X) {
1908 /* dreg = sreg
1909 * dreg needs precision after this insn
1910 * sreg needs precision before this insn
1911 */
1912 *reg_mask &= ~dreg;
1913 *reg_mask |= sreg;
1914 } else {
1915 /* dreg = K
1916 * dreg needs precision after this insn.
1917 * Corresponding register is already marked
1918 * as precise=true in this verifier state.
1919 * No further markings in parent are necessary
1920 */
1921 *reg_mask &= ~dreg;
1922 }
1923 } else {
1924 if (BPF_SRC(insn->code) == BPF_X) {
1925 /* dreg += sreg
1926 * both dreg and sreg need precision
1927 * before this insn
1928 */
1929 *reg_mask |= sreg;
1930 } /* else dreg += K
1931 * dreg still needs precision before this insn
1932 */
1933 }
1934 } else if (class == BPF_LDX) {
1935 if (!(*reg_mask & dreg))
1936 return 0;
1937 *reg_mask &= ~dreg;
1938
1939 /* scalars can only be spilled into stack w/o losing precision.
1940 * Load from any other memory can be zero extended.
1941 * The desire to keep that precision is already indicated
1942 * by 'precise' mark in corresponding register of this state.
1943 * No further tracking necessary.
1944 */
1945 if (insn->src_reg != BPF_REG_FP)
1946 return 0;
1947 if (BPF_SIZE(insn->code) != BPF_DW)
1948 return 0;
1949
1950 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1951 * that [fp - off] slot contains scalar that needs to be
1952 * tracked with precision
1953 */
1954 spi = (-insn->off - 1) / BPF_REG_SIZE;
1955 if (spi >= 64) {
1956 verbose(env, "BUG spi %d\n", spi);
1957 WARN_ONCE(1, "verifier backtracking bug");
1958 return -EFAULT;
1959 }
1960 *stack_mask |= 1ull << spi;
1961 } else if (class == BPF_STX || class == BPF_ST) {
1962 if (*reg_mask & dreg)
1963 /* stx & st shouldn't be using _scalar_ dst_reg
1964 * to access memory. It means backtracking
1965 * encountered a case of pointer subtraction.
1966 */
1967 return -ENOTSUPP;
1968 /* scalars can only be spilled into stack */
1969 if (insn->dst_reg != BPF_REG_FP)
1970 return 0;
1971 if (BPF_SIZE(insn->code) != BPF_DW)
1972 return 0;
1973 spi = (-insn->off - 1) / BPF_REG_SIZE;
1974 if (spi >= 64) {
1975 verbose(env, "BUG spi %d\n", spi);
1976 WARN_ONCE(1, "verifier backtracking bug");
1977 return -EFAULT;
1978 }
1979 if (!(*stack_mask & (1ull << spi)))
1980 return 0;
1981 *stack_mask &= ~(1ull << spi);
1982 if (class == BPF_STX)
1983 *reg_mask |= sreg;
1984 } else if (class == BPF_JMP || class == BPF_JMP32) {
1985 if (opcode == BPF_CALL) {
1986 if (insn->src_reg == BPF_PSEUDO_CALL)
1987 return -ENOTSUPP;
1988 /* regular helper call sets R0 */
1989 *reg_mask &= ~1;
1990 if (*reg_mask & 0x3f) {
1991 /* if backtracing was looking for registers R1-R5
1992 * they should have been found already.
1993 */
1994 verbose(env, "BUG regs %x\n", *reg_mask);
1995 WARN_ONCE(1, "verifier backtracking bug");
1996 return -EFAULT;
1997 }
1998 } else if (opcode == BPF_EXIT) {
1999 return -ENOTSUPP;
2000 }
2001 } else if (class == BPF_LD) {
2002 if (!(*reg_mask & dreg))
2003 return 0;
2004 *reg_mask &= ~dreg;
2005 /* It's ld_imm64 or ld_abs or ld_ind.
2006 * For ld_imm64 no further tracking of precision
2007 * into parent is necessary
2008 */
2009 if (mode == BPF_IND || mode == BPF_ABS)
2010 /* to be analyzed */
2011 return -ENOTSUPP;
2012 }
2013 return 0;
2014}
2015
2016/* the scalar precision tracking algorithm:
2017 * . at the start all registers have precise=false.
2018 * . scalar ranges are tracked as normal through alu and jmp insns.
2019 * . once precise value of the scalar register is used in:
2020 * . ptr + scalar alu
2021 * . if (scalar cond K|scalar)
2022 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2023 * backtrack through the verifier states and mark all registers and
2024 * stack slots with spilled constants that these scalar regisers
2025 * should be precise.
2026 * . during state pruning two registers (or spilled stack slots)
2027 * are equivalent if both are not precise.
2028 *
2029 * Note the verifier cannot simply walk register parentage chain,
2030 * since many different registers and stack slots could have been
2031 * used to compute single precise scalar.
2032 *
2033 * The approach of starting with precise=true for all registers and then
2034 * backtrack to mark a register as not precise when the verifier detects
2035 * that program doesn't care about specific value (e.g., when helper
2036 * takes register as ARG_ANYTHING parameter) is not safe.
2037 *
2038 * It's ok to walk single parentage chain of the verifier states.
2039 * It's possible that this backtracking will go all the way till 1st insn.
2040 * All other branches will be explored for needing precision later.
2041 *
2042 * The backtracking needs to deal with cases like:
2043 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2044 * r9 -= r8
2045 * r5 = r9
2046 * if r5 > 0x79f goto pc+7
2047 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2048 * r5 += 1
2049 * ...
2050 * call bpf_perf_event_output#25
2051 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2052 *
2053 * and this case:
2054 * r6 = 1
2055 * call foo // uses callee's r6 inside to compute r0
2056 * r0 += r6
2057 * if r0 == 0 goto
2058 *
2059 * to track above reg_mask/stack_mask needs to be independent for each frame.
2060 *
2061 * Also if parent's curframe > frame where backtracking started,
2062 * the verifier need to mark registers in both frames, otherwise callees
2063 * may incorrectly prune callers. This is similar to
2064 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2065 *
2066 * For now backtracking falls back into conservative marking.
2067 */
2068static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2069 struct bpf_verifier_state *st)
2070{
2071 struct bpf_func_state *func;
2072 struct bpf_reg_state *reg;
2073 int i, j;
2074
2075 /* big hammer: mark all scalars precise in this path.
2076 * pop_stack may still get !precise scalars.
2077 */
2078 for (; st; st = st->parent)
2079 for (i = 0; i <= st->curframe; i++) {
2080 func = st->frame[i];
2081 for (j = 0; j < BPF_REG_FP; j++) {
2082 reg = &func->regs[j];
2083 if (reg->type != SCALAR_VALUE)
2084 continue;
2085 reg->precise = true;
2086 }
2087 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2088 if (func->stack[j].slot_type[0] != STACK_SPILL)
2089 continue;
2090 reg = &func->stack[j].spilled_ptr;
2091 if (reg->type != SCALAR_VALUE)
2092 continue;
2093 reg->precise = true;
2094 }
2095 }
2096}
2097
2098static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2099 int spi)
2100{
2101 struct bpf_verifier_state *st = env->cur_state;
2102 int first_idx = st->first_insn_idx;
2103 int last_idx = env->insn_idx;
2104 struct bpf_func_state *func;
2105 struct bpf_reg_state *reg;
2106 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2107 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2108 bool skip_first = true;
2109 bool new_marks = false;
2110 int i, err;
2111
2112 if (!env->bpf_capable)
2113 return 0;
2114
2115 func = st->frame[st->curframe];
2116 if (regno >= 0) {
2117 reg = &func->regs[regno];
2118 if (reg->type != SCALAR_VALUE) {
2119 WARN_ONCE(1, "backtracing misuse");
2120 return -EFAULT;
2121 }
2122 if (!reg->precise)
2123 new_marks = true;
2124 else
2125 reg_mask = 0;
2126 reg->precise = true;
2127 }
2128
2129 while (spi >= 0) {
2130 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2131 stack_mask = 0;
2132 break;
2133 }
2134 reg = &func->stack[spi].spilled_ptr;
2135 if (reg->type != SCALAR_VALUE) {
2136 stack_mask = 0;
2137 break;
2138 }
2139 if (!reg->precise)
2140 new_marks = true;
2141 else
2142 stack_mask = 0;
2143 reg->precise = true;
2144 break;
2145 }
2146
2147 if (!new_marks)
2148 return 0;
2149 if (!reg_mask && !stack_mask)
2150 return 0;
2151 for (;;) {
2152 DECLARE_BITMAP(mask, 64);
2153 u32 history = st->jmp_history_cnt;
2154
2155 if (env->log.level & BPF_LOG_LEVEL)
2156 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2157 for (i = last_idx;;) {
2158 if (skip_first) {
2159 err = 0;
2160 skip_first = false;
2161 } else {
2162 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2163 }
2164 if (err == -ENOTSUPP) {
2165 mark_all_scalars_precise(env, st);
2166 return 0;
2167 } else if (err) {
2168 return err;
2169 }
2170 if (!reg_mask && !stack_mask)
2171 /* Found assignment(s) into tracked register in this state.
2172 * Since this state is already marked, just return.
2173 * Nothing to be tracked further in the parent state.
2174 */
2175 return 0;
2176 if (i == first_idx)
2177 break;
2178 i = get_prev_insn_idx(st, i, &history);
2179 if (i >= env->prog->len) {
2180 /* This can happen if backtracking reached insn 0
2181 * and there are still reg_mask or stack_mask
2182 * to backtrack.
2183 * It means the backtracking missed the spot where
2184 * particular register was initialized with a constant.
2185 */
2186 verbose(env, "BUG backtracking idx %d\n", i);
2187 WARN_ONCE(1, "verifier backtracking bug");
2188 return -EFAULT;
2189 }
2190 }
2191 st = st->parent;
2192 if (!st)
2193 break;
2194
2195 new_marks = false;
2196 func = st->frame[st->curframe];
2197 bitmap_from_u64(mask, reg_mask);
2198 for_each_set_bit(i, mask, 32) {
2199 reg = &func->regs[i];
2200 if (reg->type != SCALAR_VALUE) {
2201 reg_mask &= ~(1u << i);
2202 continue;
2203 }
2204 if (!reg->precise)
2205 new_marks = true;
2206 reg->precise = true;
2207 }
2208
2209 bitmap_from_u64(mask, stack_mask);
2210 for_each_set_bit(i, mask, 64) {
2211 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2212 /* the sequence of instructions:
2213 * 2: (bf) r3 = r10
2214 * 3: (7b) *(u64 *)(r3 -8) = r0
2215 * 4: (79) r4 = *(u64 *)(r10 -8)
2216 * doesn't contain jmps. It's backtracked
2217 * as a single block.
2218 * During backtracking insn 3 is not recognized as
2219 * stack access, so at the end of backtracking
2220 * stack slot fp-8 is still marked in stack_mask.
2221 * However the parent state may not have accessed
2222 * fp-8 and it's "unallocated" stack space.
2223 * In such case fallback to conservative.
2224 */
2225 mark_all_scalars_precise(env, st);
2226 return 0;
2227 }
2228
2229 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2230 stack_mask &= ~(1ull << i);
2231 continue;
2232 }
2233 reg = &func->stack[i].spilled_ptr;
2234 if (reg->type != SCALAR_VALUE) {
2235 stack_mask &= ~(1ull << i);
2236 continue;
2237 }
2238 if (!reg->precise)
2239 new_marks = true;
2240 reg->precise = true;
2241 }
2242 if (env->log.level & BPF_LOG_LEVEL) {
2243 print_verifier_state(env, func);
2244 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2245 new_marks ? "didn't have" : "already had",
2246 reg_mask, stack_mask);
2247 }
2248
2249 if (!reg_mask && !stack_mask)
2250 break;
2251 if (!new_marks)
2252 break;
2253
2254 last_idx = st->last_insn_idx;
2255 first_idx = st->first_insn_idx;
2256 }
2257 return 0;
2258}
2259
2260static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2261{
2262 return __mark_chain_precision(env, regno, -1);
2263}
2264
2265static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2266{
2267 return __mark_chain_precision(env, -1, spi);
2268}
2269
2270static bool is_spillable_regtype(enum bpf_reg_type type)
2271{
2272 switch (type) {
2273 case PTR_TO_MAP_VALUE:
2274 case PTR_TO_MAP_VALUE_OR_NULL:
2275 case PTR_TO_STACK:
2276 case PTR_TO_CTX:
2277 case PTR_TO_PACKET:
2278 case PTR_TO_PACKET_META:
2279 case PTR_TO_PACKET_END:
2280 case PTR_TO_FLOW_KEYS:
2281 case CONST_PTR_TO_MAP:
2282 case PTR_TO_SOCKET:
2283 case PTR_TO_SOCKET_OR_NULL:
2284 case PTR_TO_SOCK_COMMON:
2285 case PTR_TO_SOCK_COMMON_OR_NULL:
2286 case PTR_TO_TCP_SOCK:
2287 case PTR_TO_TCP_SOCK_OR_NULL:
2288 case PTR_TO_XDP_SOCK:
2289 case PTR_TO_BTF_ID:
2290 case PTR_TO_BTF_ID_OR_NULL:
2291 case PTR_TO_RDONLY_BUF:
2292 case PTR_TO_RDONLY_BUF_OR_NULL:
2293 case PTR_TO_RDWR_BUF:
2294 case PTR_TO_RDWR_BUF_OR_NULL:
2295 case PTR_TO_PERCPU_BTF_ID:
2296 case PTR_TO_MEM:
2297 case PTR_TO_MEM_OR_NULL:
2298 return true;
2299 default:
2300 return false;
2301 }
2302}
2303
2304/* Does this register contain a constant zero? */
2305static bool register_is_null(struct bpf_reg_state *reg)
2306{
2307 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2308}
2309
2310static bool register_is_const(struct bpf_reg_state *reg)
2311{
2312 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2313}
2314
2315static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2316{
2317 return tnum_is_unknown(reg->var_off) &&
2318 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2319 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2320 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2321 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2322}
2323
2324static bool register_is_bounded(struct bpf_reg_state *reg)
2325{
2326 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2327}
2328
2329static bool __is_pointer_value(bool allow_ptr_leaks,
2330 const struct bpf_reg_state *reg)
2331{
2332 if (allow_ptr_leaks)
2333 return false;
2334
2335 return reg->type != SCALAR_VALUE;
2336}
2337
2338static void save_register_state(struct bpf_func_state *state,
2339 int spi, struct bpf_reg_state *reg)
2340{
2341 int i;
2342
2343 state->stack[spi].spilled_ptr = *reg;
2344 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2345
2346 for (i = 0; i < BPF_REG_SIZE; i++)
2347 state->stack[spi].slot_type[i] = STACK_SPILL;
2348}
2349
2350/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2351 * stack boundary and alignment are checked in check_mem_access()
2352 */
2353static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2354 /* stack frame we're writing to */
2355 struct bpf_func_state *state,
2356 int off, int size, int value_regno,
2357 int insn_idx)
2358{
2359 struct bpf_func_state *cur; /* state of the current function */
2360 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2361 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2362 struct bpf_reg_state *reg = NULL;
2363
2364 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2365 state->acquired_refs, true);
2366 if (err)
2367 return err;
2368 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2369 * so it's aligned access and [off, off + size) are within stack limits
2370 */
2371 if (!env->allow_ptr_leaks &&
2372 state->stack[spi].slot_type[0] == STACK_SPILL &&
2373 size != BPF_REG_SIZE) {
2374 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2375 return -EACCES;
2376 }
2377
2378 cur = env->cur_state->frame[env->cur_state->curframe];
2379 if (value_regno >= 0)
2380 reg = &cur->regs[value_regno];
2381
2382 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2383 !register_is_null(reg) && env->bpf_capable) {
2384 if (dst_reg != BPF_REG_FP) {
2385 /* The backtracking logic can only recognize explicit
2386 * stack slot address like [fp - 8]. Other spill of
2387 * scalar via different register has to be conervative.
2388 * Backtrack from here and mark all registers as precise
2389 * that contributed into 'reg' being a constant.
2390 */
2391 err = mark_chain_precision(env, value_regno);
2392 if (err)
2393 return err;
2394 }
2395 save_register_state(state, spi, reg);
2396 } else if (reg && is_spillable_regtype(reg->type)) {
2397 /* register containing pointer is being spilled into stack */
2398 if (size != BPF_REG_SIZE) {
2399 verbose_linfo(env, insn_idx, "; ");
2400 verbose(env, "invalid size of register spill\n");
2401 return -EACCES;
2402 }
2403
2404 if (state != cur && reg->type == PTR_TO_STACK) {
2405 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2406 return -EINVAL;
2407 }
2408
2409 if (!env->bypass_spec_v4) {
2410 bool sanitize = false;
2411
2412 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2413 register_is_const(&state->stack[spi].spilled_ptr))
2414 sanitize = true;
2415 for (i = 0; i < BPF_REG_SIZE; i++)
2416 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2417 sanitize = true;
2418 break;
2419 }
2420 if (sanitize) {
2421 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2422 int soff = (-spi - 1) * BPF_REG_SIZE;
2423
2424 /* detected reuse of integer stack slot with a pointer
2425 * which means either llvm is reusing stack slot or
2426 * an attacker is trying to exploit CVE-2018-3639
2427 * (speculative store bypass)
2428 * Have to sanitize that slot with preemptive
2429 * store of zero.
2430 */
2431 if (*poff && *poff != soff) {
2432 /* disallow programs where single insn stores
2433 * into two different stack slots, since verifier
2434 * cannot sanitize them
2435 */
2436 verbose(env,
2437 "insn %d cannot access two stack slots fp%d and fp%d",
2438 insn_idx, *poff, soff);
2439 return -EINVAL;
2440 }
2441 *poff = soff;
2442 }
2443 }
2444 save_register_state(state, spi, reg);
2445 } else {
2446 u8 type = STACK_MISC;
2447
2448 /* regular write of data into stack destroys any spilled ptr */
2449 state->stack[spi].spilled_ptr.type = NOT_INIT;
2450 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2451 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2452 for (i = 0; i < BPF_REG_SIZE; i++)
2453 state->stack[spi].slot_type[i] = STACK_MISC;
2454
2455 /* only mark the slot as written if all 8 bytes were written
2456 * otherwise read propagation may incorrectly stop too soon
2457 * when stack slots are partially written.
2458 * This heuristic means that read propagation will be
2459 * conservative, since it will add reg_live_read marks
2460 * to stack slots all the way to first state when programs
2461 * writes+reads less than 8 bytes
2462 */
2463 if (size == BPF_REG_SIZE)
2464 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2465
2466 /* when we zero initialize stack slots mark them as such */
2467 if (reg && register_is_null(reg)) {
2468 /* backtracking doesn't work for STACK_ZERO yet. */
2469 err = mark_chain_precision(env, value_regno);
2470 if (err)
2471 return err;
2472 type = STACK_ZERO;
2473 }
2474
2475 /* Mark slots affected by this stack write. */
2476 for (i = 0; i < size; i++)
2477 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2478 type;
2479 }
2480 return 0;
2481}
2482
2483/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2484 * known to contain a variable offset.
2485 * This function checks whether the write is permitted and conservatively
2486 * tracks the effects of the write, considering that each stack slot in the
2487 * dynamic range is potentially written to.
2488 *
2489 * 'off' includes 'regno->off'.
2490 * 'value_regno' can be -1, meaning that an unknown value is being written to
2491 * the stack.
2492 *
2493 * Spilled pointers in range are not marked as written because we don't know
2494 * what's going to be actually written. This means that read propagation for
2495 * future reads cannot be terminated by this write.
2496 *
2497 * For privileged programs, uninitialized stack slots are considered
2498 * initialized by this write (even though we don't know exactly what offsets
2499 * are going to be written to). The idea is that we don't want the verifier to
2500 * reject future reads that access slots written to through variable offsets.
2501 */
2502static int check_stack_write_var_off(struct bpf_verifier_env *env,
2503 /* func where register points to */
2504 struct bpf_func_state *state,
2505 int ptr_regno, int off, int size,
2506 int value_regno, int insn_idx)
2507{
2508 struct bpf_func_state *cur; /* state of the current function */
2509 int min_off, max_off;
2510 int i, err;
2511 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2512 bool writing_zero = false;
2513 /* set if the fact that we're writing a zero is used to let any
2514 * stack slots remain STACK_ZERO
2515 */
2516 bool zero_used = false;
2517
2518 cur = env->cur_state->frame[env->cur_state->curframe];
2519 ptr_reg = &cur->regs[ptr_regno];
2520 min_off = ptr_reg->smin_value + off;
2521 max_off = ptr_reg->smax_value + off + size;
2522 if (value_regno >= 0)
2523 value_reg = &cur->regs[value_regno];
2524 if (value_reg && register_is_null(value_reg))
2525 writing_zero = true;
2526
2527 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2528 state->acquired_refs, true);
2529 if (err)
2530 return err;
2531
2532
2533 /* Variable offset writes destroy any spilled pointers in range. */
2534 for (i = min_off; i < max_off; i++) {
2535 u8 new_type, *stype;
2536 int slot, spi;
2537
2538 slot = -i - 1;
2539 spi = slot / BPF_REG_SIZE;
2540 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2541
2542 if (!env->allow_ptr_leaks
2543 && *stype != NOT_INIT
2544 && *stype != SCALAR_VALUE) {
2545 /* Reject the write if there's are spilled pointers in
2546 * range. If we didn't reject here, the ptr status
2547 * would be erased below (even though not all slots are
2548 * actually overwritten), possibly opening the door to
2549 * leaks.
2550 */
2551 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2552 insn_idx, i);
2553 return -EINVAL;
2554 }
2555
2556 /* Erase all spilled pointers. */
2557 state->stack[spi].spilled_ptr.type = NOT_INIT;
2558
2559 /* Update the slot type. */
2560 new_type = STACK_MISC;
2561 if (writing_zero && *stype == STACK_ZERO) {
2562 new_type = STACK_ZERO;
2563 zero_used = true;
2564 }
2565 /* If the slot is STACK_INVALID, we check whether it's OK to
2566 * pretend that it will be initialized by this write. The slot
2567 * might not actually be written to, and so if we mark it as
2568 * initialized future reads might leak uninitialized memory.
2569 * For privileged programs, we will accept such reads to slots
2570 * that may or may not be written because, if we're reject
2571 * them, the error would be too confusing.
2572 */
2573 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2574 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2575 insn_idx, i);
2576 return -EINVAL;
2577 }
2578 *stype = new_type;
2579 }
2580 if (zero_used) {
2581 /* backtracking doesn't work for STACK_ZERO yet. */
2582 err = mark_chain_precision(env, value_regno);
2583 if (err)
2584 return err;
2585 }
2586 return 0;
2587}
2588
2589/* When register 'dst_regno' is assigned some values from stack[min_off,
2590 * max_off), we set the register's type according to the types of the
2591 * respective stack slots. If all the stack values are known to be zeros, then
2592 * so is the destination reg. Otherwise, the register is considered to be
2593 * SCALAR. This function does not deal with register filling; the caller must
2594 * ensure that all spilled registers in the stack range have been marked as
2595 * read.
2596 */
2597static void mark_reg_stack_read(struct bpf_verifier_env *env,
2598 /* func where src register points to */
2599 struct bpf_func_state *ptr_state,
2600 int min_off, int max_off, int dst_regno)
2601{
2602 struct bpf_verifier_state *vstate = env->cur_state;
2603 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2604 int i, slot, spi;
2605 u8 *stype;
2606 int zeros = 0;
2607
2608 for (i = min_off; i < max_off; i++) {
2609 slot = -i - 1;
2610 spi = slot / BPF_REG_SIZE;
2611 stype = ptr_state->stack[spi].slot_type;
2612 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2613 break;
2614 zeros++;
2615 }
2616 if (zeros == max_off - min_off) {
2617 /* any access_size read into register is zero extended,
2618 * so the whole register == const_zero
2619 */
2620 __mark_reg_const_zero(&state->regs[dst_regno]);
2621 /* backtracking doesn't support STACK_ZERO yet,
2622 * so mark it precise here, so that later
2623 * backtracking can stop here.
2624 * Backtracking may not need this if this register
2625 * doesn't participate in pointer adjustment.
2626 * Forward propagation of precise flag is not
2627 * necessary either. This mark is only to stop
2628 * backtracking. Any register that contributed
2629 * to const 0 was marked precise before spill.
2630 */
2631 state->regs[dst_regno].precise = true;
2632 } else {
2633 /* have read misc data from the stack */
2634 mark_reg_unknown(env, state->regs, dst_regno);
2635 }
2636 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2637}
2638
2639/* Read the stack at 'off' and put the results into the register indicated by
2640 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2641 * spilled reg.
2642 *
2643 * 'dst_regno' can be -1, meaning that the read value is not going to a
2644 * register.
2645 *
2646 * The access is assumed to be within the current stack bounds.
2647 */
2648static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2649 /* func where src register points to */
2650 struct bpf_func_state *reg_state,
2651 int off, int size, int dst_regno)
2652{
2653 struct bpf_verifier_state *vstate = env->cur_state;
2654 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2655 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2656 struct bpf_reg_state *reg;
2657 u8 *stype;
2658
2659 stype = reg_state->stack[spi].slot_type;
2660 reg = &reg_state->stack[spi].spilled_ptr;
2661
2662 if (stype[0] == STACK_SPILL) {
2663 if (size != BPF_REG_SIZE) {
2664 if (reg->type != SCALAR_VALUE) {
2665 verbose_linfo(env, env->insn_idx, "; ");
2666 verbose(env, "invalid size of register fill\n");
2667 return -EACCES;
2668 }
2669 if (dst_regno >= 0) {
2670 mark_reg_unknown(env, state->regs, dst_regno);
2671 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2672 }
2673 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2674 return 0;
2675 }
2676 for (i = 1; i < BPF_REG_SIZE; i++) {
2677 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2678 verbose(env, "corrupted spill memory\n");
2679 return -EACCES;
2680 }
2681 }
2682
2683 if (dst_regno >= 0) {
2684 /* restore register state from stack */
2685 state->regs[dst_regno] = *reg;
2686 /* mark reg as written since spilled pointer state likely
2687 * has its liveness marks cleared by is_state_visited()
2688 * which resets stack/reg liveness for state transitions
2689 */
2690 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2691 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2692 /* If dst_regno==-1, the caller is asking us whether
2693 * it is acceptable to use this value as a SCALAR_VALUE
2694 * (e.g. for XADD).
2695 * We must not allow unprivileged callers to do that
2696 * with spilled pointers.
2697 */
2698 verbose(env, "leaking pointer from stack off %d\n",
2699 off);
2700 return -EACCES;
2701 }
2702 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2703 } else {
2704 u8 type;
2705
2706 for (i = 0; i < size; i++) {
2707 type = stype[(slot - i) % BPF_REG_SIZE];
2708 if (type == STACK_MISC)
2709 continue;
2710 if (type == STACK_ZERO)
2711 continue;
2712 verbose(env, "invalid read from stack off %d+%d size %d\n",
2713 off, i, size);
2714 return -EACCES;
2715 }
2716 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2717 if (dst_regno >= 0)
2718 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2719 }
2720 return 0;
2721}
2722
2723enum stack_access_src {
2724 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2725 ACCESS_HELPER = 2, /* the access is performed by a helper */
2726};
2727
2728static int check_stack_range_initialized(struct bpf_verifier_env *env,
2729 int regno, int off, int access_size,
2730 bool zero_size_allowed,
2731 enum stack_access_src type,
2732 struct bpf_call_arg_meta *meta);
2733
2734static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2735{
2736 return cur_regs(env) + regno;
2737}
2738
2739/* Read the stack at 'ptr_regno + off' and put the result into the register
2740 * 'dst_regno'.
2741 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2742 * but not its variable offset.
2743 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2744 *
2745 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2746 * filling registers (i.e. reads of spilled register cannot be detected when
2747 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2748 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2749 * offset; for a fixed offset check_stack_read_fixed_off should be used
2750 * instead.
2751 */
2752static int check_stack_read_var_off(struct bpf_verifier_env *env,
2753 int ptr_regno, int off, int size, int dst_regno)
2754{
2755 /* The state of the source register. */
2756 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2757 struct bpf_func_state *ptr_state = func(env, reg);
2758 int err;
2759 int min_off, max_off;
2760
2761 /* Note that we pass a NULL meta, so raw access will not be permitted.
2762 */
2763 err = check_stack_range_initialized(env, ptr_regno, off, size,
2764 false, ACCESS_DIRECT, NULL);
2765 if (err)
2766 return err;
2767
2768 min_off = reg->smin_value + off;
2769 max_off = reg->smax_value + off;
2770 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2771 return 0;
2772}
2773
2774/* check_stack_read dispatches to check_stack_read_fixed_off or
2775 * check_stack_read_var_off.
2776 *
2777 * The caller must ensure that the offset falls within the allocated stack
2778 * bounds.
2779 *
2780 * 'dst_regno' is a register which will receive the value from the stack. It
2781 * can be -1, meaning that the read value is not going to a register.
2782 */
2783static int check_stack_read(struct bpf_verifier_env *env,
2784 int ptr_regno, int off, int size,
2785 int dst_regno)
2786{
2787 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2788 struct bpf_func_state *state = func(env, reg);
2789 int err;
2790 /* Some accesses are only permitted with a static offset. */
2791 bool var_off = !tnum_is_const(reg->var_off);
2792
2793 /* The offset is required to be static when reads don't go to a
2794 * register, in order to not leak pointers (see
2795 * check_stack_read_fixed_off).
2796 */
2797 if (dst_regno < 0 && var_off) {
2798 char tn_buf[48];
2799
2800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2801 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2802 tn_buf, off, size);
2803 return -EACCES;
2804 }
2805 /* Variable offset is prohibited for unprivileged mode for simplicity
2806 * since it requires corresponding support in Spectre masking for stack
2807 * ALU. See also retrieve_ptr_limit().
2808 */
2809 if (!env->bypass_spec_v1 && var_off) {
2810 char tn_buf[48];
2811
2812 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2813 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2814 ptr_regno, tn_buf);
2815 return -EACCES;
2816 }
2817
2818 if (!var_off) {
2819 off += reg->var_off.value;
2820 err = check_stack_read_fixed_off(env, state, off, size,
2821 dst_regno);
2822 } else {
2823 /* Variable offset stack reads need more conservative handling
2824 * than fixed offset ones. Note that dst_regno >= 0 on this
2825 * branch.
2826 */
2827 err = check_stack_read_var_off(env, ptr_regno, off, size,
2828 dst_regno);
2829 }
2830 return err;
2831}
2832
2833
2834/* check_stack_write dispatches to check_stack_write_fixed_off or
2835 * check_stack_write_var_off.
2836 *
2837 * 'ptr_regno' is the register used as a pointer into the stack.
2838 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2839 * 'value_regno' is the register whose value we're writing to the stack. It can
2840 * be -1, meaning that we're not writing from a register.
2841 *
2842 * The caller must ensure that the offset falls within the maximum stack size.
2843 */
2844static int check_stack_write(struct bpf_verifier_env *env,
2845 int ptr_regno, int off, int size,
2846 int value_regno, int insn_idx)
2847{
2848 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2849 struct bpf_func_state *state = func(env, reg);
2850 int err;
2851
2852 if (tnum_is_const(reg->var_off)) {
2853 off += reg->var_off.value;
2854 err = check_stack_write_fixed_off(env, state, off, size,
2855 value_regno, insn_idx);
2856 } else {
2857 /* Variable offset stack reads need more conservative handling
2858 * than fixed offset ones.
2859 */
2860 err = check_stack_write_var_off(env, state,
2861 ptr_regno, off, size,
2862 value_regno, insn_idx);
2863 }
2864 return err;
2865}
2866
2867static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2868 int off, int size, enum bpf_access_type type)
2869{
2870 struct bpf_reg_state *regs = cur_regs(env);
2871 struct bpf_map *map = regs[regno].map_ptr;
2872 u32 cap = bpf_map_flags_to_cap(map);
2873
2874 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2875 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2876 map->value_size, off, size);
2877 return -EACCES;
2878 }
2879
2880 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2881 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2882 map->value_size, off, size);
2883 return -EACCES;
2884 }
2885
2886 return 0;
2887}
2888
2889/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2890static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2891 int off, int size, u32 mem_size,
2892 bool zero_size_allowed)
2893{
2894 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2895 struct bpf_reg_state *reg;
2896
2897 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2898 return 0;
2899
2900 reg = &cur_regs(env)[regno];
2901 switch (reg->type) {
2902 case PTR_TO_MAP_VALUE:
2903 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2904 mem_size, off, size);
2905 break;
2906 case PTR_TO_PACKET:
2907 case PTR_TO_PACKET_META:
2908 case PTR_TO_PACKET_END:
2909 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2910 off, size, regno, reg->id, off, mem_size);
2911 break;
2912 case PTR_TO_MEM:
2913 default:
2914 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2915 mem_size, off, size);
2916 }
2917
2918 return -EACCES;
2919}
2920
2921/* check read/write into a memory region with possible variable offset */
2922static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2923 int off, int size, u32 mem_size,
2924 bool zero_size_allowed)
2925{
2926 struct bpf_verifier_state *vstate = env->cur_state;
2927 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2928 struct bpf_reg_state *reg = &state->regs[regno];
2929 int err;
2930
2931 /* We may have adjusted the register pointing to memory region, so we
2932 * need to try adding each of min_value and max_value to off
2933 * to make sure our theoretical access will be safe.
2934 */
2935 if (env->log.level & BPF_LOG_LEVEL)
2936 print_verifier_state(env, state);
2937
2938 /* The minimum value is only important with signed
2939 * comparisons where we can't assume the floor of a
2940 * value is 0. If we are using signed variables for our
2941 * index'es we need to make sure that whatever we use
2942 * will have a set floor within our range.
2943 */
2944 if (reg->smin_value < 0 &&
2945 (reg->smin_value == S64_MIN ||
2946 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2947 reg->smin_value + off < 0)) {
2948 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2949 regno);
2950 return -EACCES;
2951 }
2952 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2953 mem_size, zero_size_allowed);
2954 if (err) {
2955 verbose(env, "R%d min value is outside of the allowed memory range\n",
2956 regno);
2957 return err;
2958 }
2959
2960 /* If we haven't set a max value then we need to bail since we can't be
2961 * sure we won't do bad things.
2962 * If reg->umax_value + off could overflow, treat that as unbounded too.
2963 */
2964 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2965 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2966 regno);
2967 return -EACCES;
2968 }
2969 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2970 mem_size, zero_size_allowed);
2971 if (err) {
2972 verbose(env, "R%d max value is outside of the allowed memory range\n",
2973 regno);
2974 return err;
2975 }
2976
2977 return 0;
2978}
2979
2980/* check read/write into a map element with possible variable offset */
2981static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2982 int off, int size, bool zero_size_allowed)
2983{
2984 struct bpf_verifier_state *vstate = env->cur_state;
2985 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2986 struct bpf_reg_state *reg = &state->regs[regno];
2987 struct bpf_map *map = reg->map_ptr;
2988 int err;
2989
2990 err = check_mem_region_access(env, regno, off, size, map->value_size,
2991 zero_size_allowed);
2992 if (err)
2993 return err;
2994
2995 if (map_value_has_spin_lock(map)) {
2996 u32 lock = map->spin_lock_off;
2997
2998 /* if any part of struct bpf_spin_lock can be touched by
2999 * load/store reject this program.
3000 * To check that [x1, x2) overlaps with [y1, y2)
3001 * it is sufficient to check x1 < y2 && y1 < x2.
3002 */
3003 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3004 lock < reg->umax_value + off + size) {
3005 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3006 return -EACCES;
3007 }
3008 }
3009 return err;
3010}
3011
3012#define MAX_PACKET_OFF 0xffff
3013
3014static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3015{
3016 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3017}
3018
3019static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3020 const struct bpf_call_arg_meta *meta,
3021 enum bpf_access_type t)
3022{
3023 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3024
3025 switch (prog_type) {
3026 /* Program types only with direct read access go here! */
3027 case BPF_PROG_TYPE_LWT_IN:
3028 case BPF_PROG_TYPE_LWT_OUT:
3029 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3030 case BPF_PROG_TYPE_SK_REUSEPORT:
3031 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3032 case BPF_PROG_TYPE_CGROUP_SKB:
3033 if (t == BPF_WRITE)
3034 return false;
3035 fallthrough;
3036
3037 /* Program types with direct read + write access go here! */
3038 case BPF_PROG_TYPE_SCHED_CLS:
3039 case BPF_PROG_TYPE_SCHED_ACT:
3040 case BPF_PROG_TYPE_XDP:
3041 case BPF_PROG_TYPE_LWT_XMIT:
3042 case BPF_PROG_TYPE_SK_SKB:
3043 case BPF_PROG_TYPE_SK_MSG:
3044 if (meta)
3045 return meta->pkt_access;
3046
3047 env->seen_direct_write = true;
3048 return true;
3049
3050 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3051 if (t == BPF_WRITE)
3052 env->seen_direct_write = true;
3053
3054 return true;
3055
3056 default:
3057 return false;
3058 }
3059}
3060
3061static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3062 int size, bool zero_size_allowed)
3063{
3064 struct bpf_reg_state *regs = cur_regs(env);
3065 struct bpf_reg_state *reg = &regs[regno];
3066 int err;
3067
3068 /* We may have added a variable offset to the packet pointer; but any
3069 * reg->range we have comes after that. We are only checking the fixed
3070 * offset.
3071 */
3072
3073 /* We don't allow negative numbers, because we aren't tracking enough
3074 * detail to prove they're safe.
3075 */
3076 if (reg->smin_value < 0) {
3077 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3078 regno);
3079 return -EACCES;
3080 }
3081
3082 err = reg->range < 0 ? -EINVAL :
3083 __check_mem_access(env, regno, off, size, reg->range,
3084 zero_size_allowed);
3085 if (err) {
3086 verbose(env, "R%d offset is outside of the packet\n", regno);
3087 return err;
3088 }
3089
3090 /* __check_mem_access has made sure "off + size - 1" is within u16.
3091 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3092 * otherwise find_good_pkt_pointers would have refused to set range info
3093 * that __check_mem_access would have rejected this pkt access.
3094 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3095 */
3096 env->prog->aux->max_pkt_offset =
3097 max_t(u32, env->prog->aux->max_pkt_offset,
3098 off + reg->umax_value + size - 1);
3099
3100 return err;
3101}
3102
3103/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
3104static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3105 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3106 struct btf **btf, u32 *btf_id)
3107{
3108 struct bpf_insn_access_aux info = {
3109 .reg_type = *reg_type,
3110 .log = &env->log,
3111 };
3112
3113 if (env->ops->is_valid_access &&
3114 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3115 /* A non zero info.ctx_field_size indicates that this field is a
3116 * candidate for later verifier transformation to load the whole
3117 * field and then apply a mask when accessed with a narrower
3118 * access than actual ctx access size. A zero info.ctx_field_size
3119 * will only allow for whole field access and rejects any other
3120 * type of narrower access.
3121 */
3122 *reg_type = info.reg_type;
3123
3124 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3125 *btf = info.btf;
3126 *btf_id = info.btf_id;
3127 } else {
3128 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3129 }
3130 /* remember the offset of last byte accessed in ctx */
3131 if (env->prog->aux->max_ctx_offset < off + size)
3132 env->prog->aux->max_ctx_offset = off + size;
3133 return 0;
3134 }
3135
3136 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3137 return -EACCES;
3138}
3139
3140static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3141 int size)
3142{
3143 if (size < 0 || off < 0 ||
3144 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3145 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3146 off, size);
3147 return -EACCES;
3148 }
3149 return 0;
3150}
3151
3152static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3153 u32 regno, int off, int size,
3154 enum bpf_access_type t)
3155{
3156 struct bpf_reg_state *regs = cur_regs(env);
3157 struct bpf_reg_state *reg = &regs[regno];
3158 struct bpf_insn_access_aux info = {};
3159 bool valid;
3160
3161 if (reg->smin_value < 0) {
3162 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3163 regno);
3164 return -EACCES;
3165 }
3166
3167 switch (reg->type) {
3168 case PTR_TO_SOCK_COMMON:
3169 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3170 break;
3171 case PTR_TO_SOCKET:
3172 valid = bpf_sock_is_valid_access(off, size, t, &info);
3173 break;
3174 case PTR_TO_TCP_SOCK:
3175 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3176 break;
3177 case PTR_TO_XDP_SOCK:
3178 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3179 break;
3180 default:
3181 valid = false;
3182 }
3183
3184
3185 if (valid) {
3186 env->insn_aux_data[insn_idx].ctx_field_size =
3187 info.ctx_field_size;
3188 return 0;
3189 }
3190
3191 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3192 regno, reg_type_str[reg->type], off, size);
3193
3194 return -EACCES;
3195}
3196
3197static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3198{
3199 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3200}
3201
3202static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3203{
3204 const struct bpf_reg_state *reg = reg_state(env, regno);
3205
3206 return reg->type == PTR_TO_CTX;
3207}
3208
3209static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3210{
3211 const struct bpf_reg_state *reg = reg_state(env, regno);
3212
3213 return type_is_sk_pointer(reg->type);
3214}
3215
3216static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3217{
3218 const struct bpf_reg_state *reg = reg_state(env, regno);
3219
3220 return type_is_pkt_pointer(reg->type);
3221}
3222
3223static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3224{
3225 const struct bpf_reg_state *reg = reg_state(env, regno);
3226
3227 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3228 return reg->type == PTR_TO_FLOW_KEYS;
3229}
3230
3231static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3232 const struct bpf_reg_state *reg,
3233 int off, int size, bool strict)
3234{
3235 struct tnum reg_off;
3236 int ip_align;
3237
3238 /* Byte size accesses are always allowed. */
3239 if (!strict || size == 1)
3240 return 0;
3241
3242 /* For platforms that do not have a Kconfig enabling
3243 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3244 * NET_IP_ALIGN is universally set to '2'. And on platforms
3245 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3246 * to this code only in strict mode where we want to emulate
3247 * the NET_IP_ALIGN==2 checking. Therefore use an
3248 * unconditional IP align value of '2'.
3249 */
3250 ip_align = 2;
3251
3252 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3253 if (!tnum_is_aligned(reg_off, size)) {
3254 char tn_buf[48];
3255
3256 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3257 verbose(env,
3258 "misaligned packet access off %d+%s+%d+%d size %d\n",
3259 ip_align, tn_buf, reg->off, off, size);
3260 return -EACCES;
3261 }
3262
3263 return 0;
3264}
3265
3266static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3267 const struct bpf_reg_state *reg,
3268 const char *pointer_desc,
3269 int off, int size, bool strict)
3270{
3271 struct tnum reg_off;
3272
3273 /* Byte size accesses are always allowed. */
3274 if (!strict || size == 1)
3275 return 0;
3276
3277 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3278 if (!tnum_is_aligned(reg_off, size)) {
3279 char tn_buf[48];
3280
3281 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3282 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3283 pointer_desc, tn_buf, reg->off, off, size);
3284 return -EACCES;
3285 }
3286
3287 return 0;
3288}
3289
3290static int check_ptr_alignment(struct bpf_verifier_env *env,
3291 const struct bpf_reg_state *reg, int off,
3292 int size, bool strict_alignment_once)
3293{
3294 bool strict = env->strict_alignment || strict_alignment_once;
3295 const char *pointer_desc = "";
3296
3297 switch (reg->type) {
3298 case PTR_TO_PACKET:
3299 case PTR_TO_PACKET_META:
3300 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3301 * right in front, treat it the very same way.
3302 */
3303 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3304 case PTR_TO_FLOW_KEYS:
3305 pointer_desc = "flow keys ";
3306 break;
3307 case PTR_TO_MAP_VALUE:
3308 pointer_desc = "value ";
3309 break;
3310 case PTR_TO_CTX:
3311 pointer_desc = "context ";
3312 break;
3313 case PTR_TO_STACK:
3314 pointer_desc = "stack ";
3315 /* The stack spill tracking logic in check_stack_write_fixed_off()
3316 * and check_stack_read_fixed_off() relies on stack accesses being
3317 * aligned.
3318 */
3319 strict = true;
3320 break;
3321 case PTR_TO_SOCKET:
3322 pointer_desc = "sock ";
3323 break;
3324 case PTR_TO_SOCK_COMMON:
3325 pointer_desc = "sock_common ";
3326 break;
3327 case PTR_TO_TCP_SOCK:
3328 pointer_desc = "tcp_sock ";
3329 break;
3330 case PTR_TO_XDP_SOCK:
3331 pointer_desc = "xdp_sock ";
3332 break;
3333 default:
3334 break;
3335 }
3336 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3337 strict);
3338}
3339
3340static int update_stack_depth(struct bpf_verifier_env *env,
3341 const struct bpf_func_state *func,
3342 int off)
3343{
3344 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3345
3346 if (stack >= -off)
3347 return 0;
3348
3349 /* update known max for given subprogram */
3350 env->subprog_info[func->subprogno].stack_depth = -off;
3351 return 0;
3352}
3353
3354/* starting from main bpf function walk all instructions of the function
3355 * and recursively walk all callees that given function can call.
3356 * Ignore jump and exit insns.
3357 * Since recursion is prevented by check_cfg() this algorithm
3358 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3359 */
3360static int check_max_stack_depth(struct bpf_verifier_env *env)
3361{
3362 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3363 struct bpf_subprog_info *subprog = env->subprog_info;
3364 struct bpf_insn *insn = env->prog->insnsi;
3365 bool tail_call_reachable = false;
3366 int ret_insn[MAX_CALL_FRAMES];
3367 int ret_prog[MAX_CALL_FRAMES];
3368 int j;
3369
3370process_func:
3371 /* protect against potential stack overflow that might happen when
3372 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3373 * depth for such case down to 256 so that the worst case scenario
3374 * would result in 8k stack size (32 which is tailcall limit * 256 =
3375 * 8k).
3376 *
3377 * To get the idea what might happen, see an example:
3378 * func1 -> sub rsp, 128
3379 * subfunc1 -> sub rsp, 256
3380 * tailcall1 -> add rsp, 256
3381 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3382 * subfunc2 -> sub rsp, 64
3383 * subfunc22 -> sub rsp, 128
3384 * tailcall2 -> add rsp, 128
3385 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3386 *
3387 * tailcall will unwind the current stack frame but it will not get rid
3388 * of caller's stack as shown on the example above.
3389 */
3390 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3391 verbose(env,
3392 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3393 depth);
3394 return -EACCES;
3395 }
3396 /* round up to 32-bytes, since this is granularity
3397 * of interpreter stack size
3398 */
3399 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3400 if (depth > MAX_BPF_STACK) {
3401 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3402 frame + 1, depth);
3403 return -EACCES;
3404 }
3405continue_func:
3406 subprog_end = subprog[idx + 1].start;
3407 for (; i < subprog_end; i++) {
3408 if (!bpf_pseudo_call(insn + i))
3409 continue;
3410 /* remember insn and function to return to */
3411 ret_insn[frame] = i + 1;
3412 ret_prog[frame] = idx;
3413
3414 /* find the callee */
3415 i = i + insn[i].imm + 1;
3416 idx = find_subprog(env, i);
3417 if (idx < 0) {
3418 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3419 i);
3420 return -EFAULT;
3421 }
3422
3423 if (subprog[idx].has_tail_call)
3424 tail_call_reachable = true;
3425
3426 frame++;
3427 if (frame >= MAX_CALL_FRAMES) {
3428 verbose(env, "the call stack of %d frames is too deep !\n",
3429 frame);
3430 return -E2BIG;
3431 }
3432 goto process_func;
3433 }
3434 /* if tail call got detected across bpf2bpf calls then mark each of the
3435 * currently present subprog frames as tail call reachable subprogs;
3436 * this info will be utilized by JIT so that we will be preserving the
3437 * tail call counter throughout bpf2bpf calls combined with tailcalls
3438 */
3439 if (tail_call_reachable)
3440 for (j = 0; j < frame; j++)
3441 subprog[ret_prog[j]].tail_call_reachable = true;
3442
3443 /* end of for() loop means the last insn of the 'subprog'
3444 * was reached. Doesn't matter whether it was JA or EXIT
3445 */
3446 if (frame == 0)
3447 return 0;
3448 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3449 frame--;
3450 i = ret_insn[frame];
3451 idx = ret_prog[frame];
3452 goto continue_func;
3453}
3454
3455#ifndef CONFIG_BPF_JIT_ALWAYS_ON
3456static int get_callee_stack_depth(struct bpf_verifier_env *env,
3457 const struct bpf_insn *insn, int idx)
3458{
3459 int start = idx + insn->imm + 1, subprog;
3460
3461 subprog = find_subprog(env, start);
3462 if (subprog < 0) {
3463 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3464 start);
3465 return -EFAULT;
3466 }
3467 return env->subprog_info[subprog].stack_depth;
3468}
3469#endif
3470
3471int check_ctx_reg(struct bpf_verifier_env *env,
3472 const struct bpf_reg_state *reg, int regno)
3473{
3474 /* Access to ctx or passing it to a helper is only allowed in
3475 * its original, unmodified form.
3476 */
3477
3478 if (reg->off) {
3479 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3480 regno, reg->off);
3481 return -EACCES;
3482 }
3483
3484 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3485 char tn_buf[48];
3486
3487 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3488 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3489 return -EACCES;
3490 }
3491
3492 return 0;
3493}
3494
3495static int __check_buffer_access(struct bpf_verifier_env *env,
3496 const char *buf_info,
3497 const struct bpf_reg_state *reg,
3498 int regno, int off, int size)
3499{
3500 if (off < 0) {
3501 verbose(env,
3502 "R%d invalid %s buffer access: off=%d, size=%d\n",
3503 regno, buf_info, off, size);
3504 return -EACCES;
3505 }
3506 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3507 char tn_buf[48];
3508
3509 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3510 verbose(env,
3511 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3512 regno, off, tn_buf);
3513 return -EACCES;
3514 }
3515
3516 return 0;
3517}
3518
3519static int check_tp_buffer_access(struct bpf_verifier_env *env,
3520 const struct bpf_reg_state *reg,
3521 int regno, int off, int size)
3522{
3523 int err;
3524
3525 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3526 if (err)
3527 return err;
3528
3529 if (off + size > env->prog->aux->max_tp_access)
3530 env->prog->aux->max_tp_access = off + size;
3531
3532 return 0;
3533}
3534
3535static int check_buffer_access(struct bpf_verifier_env *env,
3536 const struct bpf_reg_state *reg,
3537 int regno, int off, int size,
3538 bool zero_size_allowed,
3539 const char *buf_info,
3540 u32 *max_access)
3541{
3542 int err;
3543
3544 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3545 if (err)
3546 return err;
3547
3548 if (off + size > *max_access)
3549 *max_access = off + size;
3550
3551 return 0;
3552}
3553
3554/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3555static void zext_32_to_64(struct bpf_reg_state *reg)
3556{
3557 reg->var_off = tnum_subreg(reg->var_off);
3558 __reg_assign_32_into_64(reg);
3559}
3560
3561/* truncate register to smaller size (in bytes)
3562 * must be called with size < BPF_REG_SIZE
3563 */
3564static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3565{
3566 u64 mask;
3567
3568 /* clear high bits in bit representation */
3569 reg->var_off = tnum_cast(reg->var_off, size);
3570
3571 /* fix arithmetic bounds */
3572 mask = ((u64)1 << (size * 8)) - 1;
3573 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3574 reg->umin_value &= mask;
3575 reg->umax_value &= mask;
3576 } else {
3577 reg->umin_value = 0;
3578 reg->umax_value = mask;
3579 }
3580 reg->smin_value = reg->umin_value;
3581 reg->smax_value = reg->umax_value;
3582
3583 /* If size is smaller than 32bit register the 32bit register
3584 * values are also truncated so we push 64-bit bounds into
3585 * 32-bit bounds. Above were truncated < 32-bits already.
3586 */
3587 if (size >= 4)
3588 return;
3589 __reg_combine_64_into_32(reg);
3590}
3591
3592static bool bpf_map_is_rdonly(const struct bpf_map *map)
3593{
3594 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3595}
3596
3597static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3598{
3599 void *ptr;
3600 u64 addr;
3601 int err;
3602
3603 err = map->ops->map_direct_value_addr(map, &addr, off);
3604 if (err)
3605 return err;
3606 ptr = (void *)(long)addr + off;
3607
3608 switch (size) {
3609 case sizeof(u8):
3610 *val = (u64)*(u8 *)ptr;
3611 break;
3612 case sizeof(u16):
3613 *val = (u64)*(u16 *)ptr;
3614 break;
3615 case sizeof(u32):
3616 *val = (u64)*(u32 *)ptr;
3617 break;
3618 case sizeof(u64):
3619 *val = *(u64 *)ptr;
3620 break;
3621 default:
3622 return -EINVAL;
3623 }
3624 return 0;
3625}
3626
3627static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3628 struct bpf_reg_state *regs,
3629 int regno, int off, int size,
3630 enum bpf_access_type atype,
3631 int value_regno)
3632{
3633 struct bpf_reg_state *reg = regs + regno;
3634 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3635 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3636 u32 btf_id;
3637 int ret;
3638
3639 if (off < 0) {
3640 verbose(env,
3641 "R%d is ptr_%s invalid negative access: off=%d\n",
3642 regno, tname, off);
3643 return -EACCES;
3644 }
3645 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3646 char tn_buf[48];
3647
3648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3649 verbose(env,
3650 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3651 regno, tname, off, tn_buf);
3652 return -EACCES;
3653 }
3654
3655 if (env->ops->btf_struct_access) {
3656 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3657 off, size, atype, &btf_id);
3658 } else {
3659 if (atype != BPF_READ) {
3660 verbose(env, "only read is supported\n");
3661 return -EACCES;
3662 }
3663
3664 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3665 atype, &btf_id);
3666 }
3667
3668 if (ret < 0)
3669 return ret;
3670
3671 if (atype == BPF_READ && value_regno >= 0)
3672 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3673
3674 return 0;
3675}
3676
3677static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3678 struct bpf_reg_state *regs,
3679 int regno, int off, int size,
3680 enum bpf_access_type atype,
3681 int value_regno)
3682{
3683 struct bpf_reg_state *reg = regs + regno;
3684 struct bpf_map *map = reg->map_ptr;
3685 const struct btf_type *t;
3686 const char *tname;
3687 u32 btf_id;
3688 int ret;
3689
3690 if (!btf_vmlinux) {
3691 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3692 return -ENOTSUPP;
3693 }
3694
3695 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3696 verbose(env, "map_ptr access not supported for map type %d\n",
3697 map->map_type);
3698 return -ENOTSUPP;
3699 }
3700
3701 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3702 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3703
3704 if (!env->allow_ptr_to_map_access) {
3705 verbose(env,
3706 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3707 tname);
3708 return -EPERM;
3709 }
3710
3711 if (off < 0) {
3712 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3713 regno, tname, off);
3714 return -EACCES;
3715 }
3716
3717 if (atype != BPF_READ) {
3718 verbose(env, "only read from %s is supported\n", tname);
3719 return -EACCES;
3720 }
3721
3722 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3723 if (ret < 0)
3724 return ret;
3725
3726 if (value_regno >= 0)
3727 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3728
3729 return 0;
3730}
3731
3732/* Check that the stack access at the given offset is within bounds. The
3733 * maximum valid offset is -1.
3734 *
3735 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3736 * -state->allocated_stack for reads.
3737 */
3738static int check_stack_slot_within_bounds(int off,
3739 struct bpf_func_state *state,
3740 enum bpf_access_type t)
3741{
3742 int min_valid_off;
3743
3744 if (t == BPF_WRITE)
3745 min_valid_off = -MAX_BPF_STACK;
3746 else
3747 min_valid_off = -state->allocated_stack;
3748
3749 if (off < min_valid_off || off > -1)
3750 return -EACCES;
3751 return 0;
3752}
3753
3754/* Check that the stack access at 'regno + off' falls within the maximum stack
3755 * bounds.
3756 *
3757 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3758 */
3759static int check_stack_access_within_bounds(
3760 struct bpf_verifier_env *env,
3761 int regno, int off, int access_size,
3762 enum stack_access_src src, enum bpf_access_type type)
3763{
3764 struct bpf_reg_state *regs = cur_regs(env);
3765 struct bpf_reg_state *reg = regs + regno;
3766 struct bpf_func_state *state = func(env, reg);
3767 int min_off, max_off;
3768 int err;
3769 char *err_extra;
3770
3771 if (src == ACCESS_HELPER)
3772 /* We don't know if helpers are reading or writing (or both). */
3773 err_extra = " indirect access to";
3774 else if (type == BPF_READ)
3775 err_extra = " read from";
3776 else
3777 err_extra = " write to";
3778
3779 if (tnum_is_const(reg->var_off)) {
3780 min_off = reg->var_off.value + off;
3781 if (access_size > 0)
3782 max_off = min_off + access_size - 1;
3783 else
3784 max_off = min_off;
3785 } else {
3786 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3787 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3788 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3789 err_extra, regno);
3790 return -EACCES;
3791 }
3792 min_off = reg->smin_value + off;
3793 if (access_size > 0)
3794 max_off = reg->smax_value + off + access_size - 1;
3795 else
3796 max_off = min_off;
3797 }
3798
3799 err = check_stack_slot_within_bounds(min_off, state, type);
3800 if (!err)
3801 err = check_stack_slot_within_bounds(max_off, state, type);
3802
3803 if (err) {
3804 if (tnum_is_const(reg->var_off)) {
3805 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3806 err_extra, regno, off, access_size);
3807 } else {
3808 char tn_buf[48];
3809
3810 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3811 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3812 err_extra, regno, tn_buf, access_size);
3813 }
3814 }
3815 return err;
3816}
3817
3818/* check whether memory at (regno + off) is accessible for t = (read | write)
3819 * if t==write, value_regno is a register which value is stored into memory
3820 * if t==read, value_regno is a register which will receive the value from memory
3821 * if t==write && value_regno==-1, some unknown value is stored into memory
3822 * if t==read && value_regno==-1, don't care what we read from memory
3823 */
3824static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3825 int off, int bpf_size, enum bpf_access_type t,
3826 int value_regno, bool strict_alignment_once)
3827{
3828 struct bpf_reg_state *regs = cur_regs(env);
3829 struct bpf_reg_state *reg = regs + regno;
3830 struct bpf_func_state *state;
3831 int size, err = 0;
3832
3833 size = bpf_size_to_bytes(bpf_size);
3834 if (size < 0)
3835 return size;
3836
3837 /* alignment checks will add in reg->off themselves */
3838 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3839 if (err)
3840 return err;
3841
3842 /* for access checks, reg->off is just part of off */
3843 off += reg->off;
3844
3845 if (reg->type == PTR_TO_MAP_VALUE) {
3846 if (t == BPF_WRITE && value_regno >= 0 &&
3847 is_pointer_value(env, value_regno)) {
3848 verbose(env, "R%d leaks addr into map\n", value_regno);
3849 return -EACCES;
3850 }
3851 err = check_map_access_type(env, regno, off, size, t);
3852 if (err)
3853 return err;
3854 err = check_map_access(env, regno, off, size, false);
3855 if (!err && t == BPF_READ && value_regno >= 0) {
3856 struct bpf_map *map = reg->map_ptr;
3857
3858 /* if map is read-only, track its contents as scalars */
3859 if (tnum_is_const(reg->var_off) &&
3860 bpf_map_is_rdonly(map) &&
3861 map->ops->map_direct_value_addr) {
3862 int map_off = off + reg->var_off.value;
3863 u64 val = 0;
3864
3865 err = bpf_map_direct_read(map, map_off, size,
3866 &val);
3867 if (err)
3868 return err;
3869
3870 regs[value_regno].type = SCALAR_VALUE;
3871 __mark_reg_known(&regs[value_regno], val);
3872 } else {
3873 mark_reg_unknown(env, regs, value_regno);
3874 }
3875 }
3876 } else if (reg->type == PTR_TO_MEM) {
3877 if (t == BPF_WRITE && value_regno >= 0 &&
3878 is_pointer_value(env, value_regno)) {
3879 verbose(env, "R%d leaks addr into mem\n", value_regno);
3880 return -EACCES;
3881 }
3882 err = check_mem_region_access(env, regno, off, size,
3883 reg->mem_size, false);
3884 if (!err && t == BPF_READ && value_regno >= 0)
3885 mark_reg_unknown(env, regs, value_regno);
3886 } else if (reg->type == PTR_TO_CTX) {
3887 enum bpf_reg_type reg_type = SCALAR_VALUE;
3888 struct btf *btf = NULL;
3889 u32 btf_id = 0;
3890
3891 if (t == BPF_WRITE && value_regno >= 0 &&
3892 is_pointer_value(env, value_regno)) {
3893 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3894 return -EACCES;
3895 }
3896
3897 err = check_ctx_reg(env, reg, regno);
3898 if (err < 0)
3899 return err;
3900
3901 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3902 if (err)
3903 verbose_linfo(env, insn_idx, "; ");
3904 if (!err && t == BPF_READ && value_regno >= 0) {
3905 /* ctx access returns either a scalar, or a
3906 * PTR_TO_PACKET[_META,_END]. In the latter
3907 * case, we know the offset is zero.
3908 */
3909 if (reg_type == SCALAR_VALUE) {
3910 mark_reg_unknown(env, regs, value_regno);
3911 } else {
3912 mark_reg_known_zero(env, regs,
3913 value_regno);
3914 if (reg_type_may_be_null(reg_type))
3915 regs[value_regno].id = ++env->id_gen;
3916 /* A load of ctx field could have different
3917 * actual load size with the one encoded in the
3918 * insn. When the dst is PTR, it is for sure not
3919 * a sub-register.
3920 */
3921 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3922 if (reg_type == PTR_TO_BTF_ID ||
3923 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3924 regs[value_regno].btf = btf;
3925 regs[value_regno].btf_id = btf_id;
3926 }
3927 }
3928 regs[value_regno].type = reg_type;
3929 }
3930
3931 } else if (reg->type == PTR_TO_STACK) {
3932 /* Basic bounds checks. */
3933 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3934 if (err)
3935 return err;
3936
3937 state = func(env, reg);
3938 err = update_stack_depth(env, state, off);
3939 if (err)
3940 return err;
3941
3942 if (t == BPF_READ)
3943 err = check_stack_read(env, regno, off, size,
3944 value_regno);
3945 else
3946 err = check_stack_write(env, regno, off, size,
3947 value_regno, insn_idx);
3948 } else if (reg_is_pkt_pointer(reg)) {
3949 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3950 verbose(env, "cannot write into packet\n");
3951 return -EACCES;
3952 }
3953 if (t == BPF_WRITE && value_regno >= 0 &&
3954 is_pointer_value(env, value_regno)) {
3955 verbose(env, "R%d leaks addr into packet\n",
3956 value_regno);
3957 return -EACCES;
3958 }
3959 err = check_packet_access(env, regno, off, size, false);
3960 if (!err && t == BPF_READ && value_regno >= 0)
3961 mark_reg_unknown(env, regs, value_regno);
3962 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3963 if (t == BPF_WRITE && value_regno >= 0 &&
3964 is_pointer_value(env, value_regno)) {
3965 verbose(env, "R%d leaks addr into flow keys\n",
3966 value_regno);
3967 return -EACCES;
3968 }
3969
3970 err = check_flow_keys_access(env, off, size);
3971 if (!err && t == BPF_READ && value_regno >= 0)
3972 mark_reg_unknown(env, regs, value_regno);
3973 } else if (type_is_sk_pointer(reg->type)) {
3974 if (t == BPF_WRITE) {
3975 verbose(env, "R%d cannot write into %s\n",
3976 regno, reg_type_str[reg->type]);
3977 return -EACCES;
3978 }
3979 err = check_sock_access(env, insn_idx, regno, off, size, t);
3980 if (!err && value_regno >= 0)
3981 mark_reg_unknown(env, regs, value_regno);
3982 } else if (reg->type == PTR_TO_TP_BUFFER) {
3983 err = check_tp_buffer_access(env, reg, regno, off, size);
3984 if (!err && t == BPF_READ && value_regno >= 0)
3985 mark_reg_unknown(env, regs, value_regno);
3986 } else if (reg->type == PTR_TO_BTF_ID) {
3987 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3988 value_regno);
3989 } else if (reg->type == CONST_PTR_TO_MAP) {
3990 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3991 value_regno);
3992 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3993 if (t == BPF_WRITE) {
3994 verbose(env, "R%d cannot write into %s\n",
3995 regno, reg_type_str[reg->type]);
3996 return -EACCES;
3997 }
3998 err = check_buffer_access(env, reg, regno, off, size, false,
3999 "rdonly",
4000 &env->prog->aux->max_rdonly_access);
4001 if (!err && value_regno >= 0)
4002 mark_reg_unknown(env, regs, value_regno);
4003 } else if (reg->type == PTR_TO_RDWR_BUF) {
4004 err = check_buffer_access(env, reg, regno, off, size, false,
4005 "rdwr",
4006 &env->prog->aux->max_rdwr_access);
4007 if (!err && t == BPF_READ && value_regno >= 0)
4008 mark_reg_unknown(env, regs, value_regno);
4009 } else {
4010 verbose(env, "R%d invalid mem access '%s'\n", regno,
4011 reg_type_str[reg->type]);
4012 return -EACCES;
4013 }
4014
4015 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4016 regs[value_regno].type == SCALAR_VALUE) {
4017 /* b/h/w load zero-extends, mark upper bits as known 0 */
4018 coerce_reg_to_size(&regs[value_regno], size);
4019 }
4020 return err;
4021}
4022
4023static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4024{
4025 int load_reg;
4026 int err;
4027
4028 switch (insn->imm) {
4029 case BPF_ADD:
4030 case BPF_ADD | BPF_FETCH:
4031 case BPF_AND:
4032 case BPF_AND | BPF_FETCH:
4033 case BPF_OR:
4034 case BPF_OR | BPF_FETCH:
4035 case BPF_XOR:
4036 case BPF_XOR | BPF_FETCH:
4037 case BPF_XCHG:
4038 case BPF_CMPXCHG:
4039 break;
4040 default:
4041 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4042 return -EINVAL;
4043 }
4044
4045 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4046 verbose(env, "invalid atomic operand size\n");
4047 return -EINVAL;
4048 }
4049
4050 /* check src1 operand */
4051 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4052 if (err)
4053 return err;
4054
4055 /* check src2 operand */
4056 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4057 if (err)
4058 return err;
4059
4060 if (insn->imm == BPF_CMPXCHG) {
4061 /* Check comparison of R0 with memory location */
4062 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4063 if (err)
4064 return err;
4065 }
4066
4067 if (is_pointer_value(env, insn->src_reg)) {
4068 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4069 return -EACCES;
4070 }
4071
4072 if (is_ctx_reg(env, insn->dst_reg) ||
4073 is_pkt_reg(env, insn->dst_reg) ||
4074 is_flow_key_reg(env, insn->dst_reg) ||
4075 is_sk_reg(env, insn->dst_reg)) {
4076 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4077 insn->dst_reg,
4078 reg_type_str[reg_state(env, insn->dst_reg)->type]);
4079 return -EACCES;
4080 }
4081
4082 if (insn->imm & BPF_FETCH) {
4083 if (insn->imm == BPF_CMPXCHG)
4084 load_reg = BPF_REG_0;
4085 else
4086 load_reg = insn->src_reg;
4087
4088 /* check and record load of old value */
4089 err = check_reg_arg(env, load_reg, DST_OP);
4090 if (err)
4091 return err;
4092 } else {
4093 /* This instruction accesses a memory location but doesn't
4094 * actually load it into a register.
4095 */
4096 load_reg = -1;
4097 }
4098
4099 /* check whether we can read the memory */
4100 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4101 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4102 if (err)
4103 return err;
4104
4105 /* check whether we can write into the same memory */
4106 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4107 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4108 if (err)
4109 return err;
4110
4111 return 0;
4112}
4113
4114/* When register 'regno' is used to read the stack (either directly or through
4115 * a helper function) make sure that it's within stack boundary and, depending
4116 * on the access type, that all elements of the stack are initialized.
4117 *
4118 * 'off' includes 'regno->off', but not its dynamic part (if any).
4119 *
4120 * All registers that have been spilled on the stack in the slots within the
4121 * read offsets are marked as read.
4122 */
4123static int check_stack_range_initialized(
4124 struct bpf_verifier_env *env, int regno, int off,
4125 int access_size, bool zero_size_allowed,
4126 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4127{
4128 struct bpf_reg_state *reg = reg_state(env, regno);
4129 struct bpf_func_state *state = func(env, reg);
4130 int err, min_off, max_off, i, j, slot, spi;
4131 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4132 enum bpf_access_type bounds_check_type;
4133 /* Some accesses can write anything into the stack, others are
4134 * read-only.
4135 */
4136 bool clobber = false;
4137
4138 if (access_size == 0 && !zero_size_allowed) {
4139 verbose(env, "invalid zero-sized read\n");
4140 return -EACCES;
4141 }
4142
4143 if (type == ACCESS_HELPER) {
4144 /* The bounds checks for writes are more permissive than for
4145 * reads. However, if raw_mode is not set, we'll do extra
4146 * checks below.
4147 */
4148 bounds_check_type = BPF_WRITE;
4149 clobber = true;
4150 } else {
4151 bounds_check_type = BPF_READ;
4152 }
4153 err = check_stack_access_within_bounds(env, regno, off, access_size,
4154 type, bounds_check_type);
4155 if (err)
4156 return err;
4157
4158
4159 if (tnum_is_const(reg->var_off)) {
4160 min_off = max_off = reg->var_off.value + off;
4161 } else {
4162 /* Variable offset is prohibited for unprivileged mode for
4163 * simplicity since it requires corresponding support in
4164 * Spectre masking for stack ALU.
4165 * See also retrieve_ptr_limit().
4166 */
4167 if (!env->bypass_spec_v1) {
4168 char tn_buf[48];
4169
4170 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4171 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4172 regno, err_extra, tn_buf);
4173 return -EACCES;
4174 }
4175 /* Only initialized buffer on stack is allowed to be accessed
4176 * with variable offset. With uninitialized buffer it's hard to
4177 * guarantee that whole memory is marked as initialized on
4178 * helper return since specific bounds are unknown what may
4179 * cause uninitialized stack leaking.
4180 */
4181 if (meta && meta->raw_mode)
4182 meta = NULL;
4183
4184 min_off = reg->smin_value + off;
4185 max_off = reg->smax_value + off;
4186 }
4187
4188 if (meta && meta->raw_mode) {
4189 meta->access_size = access_size;
4190 meta->regno = regno;
4191 return 0;
4192 }
4193
4194 for (i = min_off; i < max_off + access_size; i++) {
4195 u8 *stype;
4196
4197 slot = -i - 1;
4198 spi = slot / BPF_REG_SIZE;
4199 if (state->allocated_stack <= slot)
4200 goto err;
4201 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4202 if (*stype == STACK_MISC)
4203 goto mark;
4204 if (*stype == STACK_ZERO) {
4205 if (clobber) {
4206 /* helper can write anything into the stack */
4207 *stype = STACK_MISC;
4208 }
4209 goto mark;
4210 }
4211
4212 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4213 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4214 goto mark;
4215
4216 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4217 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4218 env->allow_ptr_leaks)) {
4219 if (clobber) {
4220 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4221 for (j = 0; j < BPF_REG_SIZE; j++)
4222 state->stack[spi].slot_type[j] = STACK_MISC;
4223 }
4224 goto mark;
4225 }
4226
4227err:
4228 if (tnum_is_const(reg->var_off)) {
4229 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4230 err_extra, regno, min_off, i - min_off, access_size);
4231 } else {
4232 char tn_buf[48];
4233
4234 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4236 err_extra, regno, tn_buf, i - min_off, access_size);
4237 }
4238 return -EACCES;
4239mark:
4240 /* reading any byte out of 8-byte 'spill_slot' will cause
4241 * the whole slot to be marked as 'read'
4242 */
4243 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4244 state->stack[spi].spilled_ptr.parent,
4245 REG_LIVE_READ64);
4246 }
4247 return update_stack_depth(env, state, min_off);
4248}
4249
4250static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4251 int access_size, bool zero_size_allowed,
4252 struct bpf_call_arg_meta *meta)
4253{
4254 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4255
4256 switch (reg->type) {
4257 case PTR_TO_PACKET:
4258 case PTR_TO_PACKET_META:
4259 return check_packet_access(env, regno, reg->off, access_size,
4260 zero_size_allowed);
4261 case PTR_TO_MAP_VALUE:
4262 if (check_map_access_type(env, regno, reg->off, access_size,
4263 meta && meta->raw_mode ? BPF_WRITE :
4264 BPF_READ))
4265 return -EACCES;
4266 return check_map_access(env, regno, reg->off, access_size,
4267 zero_size_allowed);
4268 case PTR_TO_MEM:
4269 return check_mem_region_access(env, regno, reg->off,
4270 access_size, reg->mem_size,
4271 zero_size_allowed);
4272 case PTR_TO_RDONLY_BUF:
4273 if (meta && meta->raw_mode)
4274 return -EACCES;
4275 return check_buffer_access(env, reg, regno, reg->off,
4276 access_size, zero_size_allowed,
4277 "rdonly",
4278 &env->prog->aux->max_rdonly_access);
4279 case PTR_TO_RDWR_BUF:
4280 return check_buffer_access(env, reg, regno, reg->off,
4281 access_size, zero_size_allowed,
4282 "rdwr",
4283 &env->prog->aux->max_rdwr_access);
4284 case PTR_TO_STACK:
4285 return check_stack_range_initialized(
4286 env,
4287 regno, reg->off, access_size,
4288 zero_size_allowed, ACCESS_HELPER, meta);
4289 default: /* scalar_value or invalid ptr */
4290 /* Allow zero-byte read from NULL, regardless of pointer type */
4291 if (zero_size_allowed && access_size == 0 &&
4292 register_is_null(reg))
4293 return 0;
4294
4295 verbose(env, "R%d type=%s expected=%s\n", regno,
4296 reg_type_str[reg->type],
4297 reg_type_str[PTR_TO_STACK]);
4298 return -EACCES;
4299 }
4300}
4301
4302int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4303 u32 regno, u32 mem_size)
4304{
4305 if (register_is_null(reg))
4306 return 0;
4307
4308 if (reg_type_may_be_null(reg->type)) {
4309 /* Assuming that the register contains a value check if the memory
4310 * access is safe. Temporarily save and restore the register's state as
4311 * the conversion shouldn't be visible to a caller.
4312 */
4313 const struct bpf_reg_state saved_reg = *reg;
4314 int rv;
4315
4316 mark_ptr_not_null_reg(reg);
4317 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4318 *reg = saved_reg;
4319 return rv;
4320 }
4321
4322 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4323}
4324
4325/* Implementation details:
4326 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4327 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4328 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4329 * value_or_null->value transition, since the verifier only cares about
4330 * the range of access to valid map value pointer and doesn't care about actual
4331 * address of the map element.
4332 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4333 * reg->id > 0 after value_or_null->value transition. By doing so
4334 * two bpf_map_lookups will be considered two different pointers that
4335 * point to different bpf_spin_locks.
4336 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4337 * dead-locks.
4338 * Since only one bpf_spin_lock is allowed the checks are simpler than
4339 * reg_is_refcounted() logic. The verifier needs to remember only
4340 * one spin_lock instead of array of acquired_refs.
4341 * cur_state->active_spin_lock remembers which map value element got locked
4342 * and clears it after bpf_spin_unlock.
4343 */
4344static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4345 bool is_lock)
4346{
4347 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4348 struct bpf_verifier_state *cur = env->cur_state;
4349 bool is_const = tnum_is_const(reg->var_off);
4350 struct bpf_map *map = reg->map_ptr;
4351 u64 val = reg->var_off.value;
4352
4353 if (!is_const) {
4354 verbose(env,
4355 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4356 regno);
4357 return -EINVAL;
4358 }
4359 if (!map->btf) {
4360 verbose(env,
4361 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4362 map->name);
4363 return -EINVAL;
4364 }
4365 if (!map_value_has_spin_lock(map)) {
4366 if (map->spin_lock_off == -E2BIG)
4367 verbose(env,
4368 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4369 map->name);
4370 else if (map->spin_lock_off == -ENOENT)
4371 verbose(env,
4372 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4373 map->name);
4374 else
4375 verbose(env,
4376 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4377 map->name);
4378 return -EINVAL;
4379 }
4380 if (map->spin_lock_off != val + reg->off) {
4381 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4382 val + reg->off);
4383 return -EINVAL;
4384 }
4385 if (is_lock) {
4386 if (cur->active_spin_lock) {
4387 verbose(env,
4388 "Locking two bpf_spin_locks are not allowed\n");
4389 return -EINVAL;
4390 }
4391 cur->active_spin_lock = reg->id;
4392 } else {
4393 if (!cur->active_spin_lock) {
4394 verbose(env, "bpf_spin_unlock without taking a lock\n");
4395 return -EINVAL;
4396 }
4397 if (cur->active_spin_lock != reg->id) {
4398 verbose(env, "bpf_spin_unlock of different lock\n");
4399 return -EINVAL;
4400 }
4401 cur->active_spin_lock = 0;
4402 }
4403 return 0;
4404}
4405
4406static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4407{
4408 return type == ARG_PTR_TO_MEM ||
4409 type == ARG_PTR_TO_MEM_OR_NULL ||
4410 type == ARG_PTR_TO_UNINIT_MEM;
4411}
4412
4413static bool arg_type_is_mem_size(enum bpf_arg_type type)
4414{
4415 return type == ARG_CONST_SIZE ||
4416 type == ARG_CONST_SIZE_OR_ZERO;
4417}
4418
4419static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4420{
4421 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4422}
4423
4424static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4425{
4426 return type == ARG_PTR_TO_INT ||
4427 type == ARG_PTR_TO_LONG;
4428}
4429
4430static int int_ptr_type_to_size(enum bpf_arg_type type)
4431{
4432 if (type == ARG_PTR_TO_INT)
4433 return sizeof(u32);
4434 else if (type == ARG_PTR_TO_LONG)
4435 return sizeof(u64);
4436
4437 return -EINVAL;
4438}
4439
4440static int resolve_map_arg_type(struct bpf_verifier_env *env,
4441 const struct bpf_call_arg_meta *meta,
4442 enum bpf_arg_type *arg_type)
4443{
4444 if (!meta->map_ptr) {
4445 /* kernel subsystem misconfigured verifier */
4446 verbose(env, "invalid map_ptr to access map->type\n");
4447 return -EACCES;
4448 }
4449
4450 switch (meta->map_ptr->map_type) {
4451 case BPF_MAP_TYPE_SOCKMAP:
4452 case BPF_MAP_TYPE_SOCKHASH:
4453 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4454 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4455 } else {
4456 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4457 return -EINVAL;
4458 }
4459 break;
4460
4461 default:
4462 break;
4463 }
4464 return 0;
4465}
4466
4467struct bpf_reg_types {
4468 const enum bpf_reg_type types[10];
4469 u32 *btf_id;
4470};
4471
4472static const struct bpf_reg_types map_key_value_types = {
4473 .types = {
4474 PTR_TO_STACK,
4475 PTR_TO_PACKET,
4476 PTR_TO_PACKET_META,
4477 PTR_TO_MAP_VALUE,
4478 },
4479};
4480
4481static const struct bpf_reg_types sock_types = {
4482 .types = {
4483 PTR_TO_SOCK_COMMON,
4484 PTR_TO_SOCKET,
4485 PTR_TO_TCP_SOCK,
4486 PTR_TO_XDP_SOCK,
4487 },
4488};
4489
4490#ifdef CONFIG_NET
4491static const struct bpf_reg_types btf_id_sock_common_types = {
4492 .types = {
4493 PTR_TO_SOCK_COMMON,
4494 PTR_TO_SOCKET,
4495 PTR_TO_TCP_SOCK,
4496 PTR_TO_XDP_SOCK,
4497 PTR_TO_BTF_ID,
4498 },
4499 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4500};
4501#endif
4502
4503static const struct bpf_reg_types mem_types = {
4504 .types = {
4505 PTR_TO_STACK,
4506 PTR_TO_PACKET,
4507 PTR_TO_PACKET_META,
4508 PTR_TO_MAP_VALUE,
4509 PTR_TO_MEM,
4510 PTR_TO_RDONLY_BUF,
4511 PTR_TO_RDWR_BUF,
4512 },
4513};
4514
4515static const struct bpf_reg_types int_ptr_types = {
4516 .types = {
4517 PTR_TO_STACK,
4518 PTR_TO_PACKET,
4519 PTR_TO_PACKET_META,
4520 PTR_TO_MAP_VALUE,
4521 },
4522};
4523
4524static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4525static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4526static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4527static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4528static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4529static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4530static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4531static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4532
4533static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4534 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4535 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4536 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4537 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4538 [ARG_CONST_SIZE] = &scalar_types,
4539 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4540 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4541 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4542 [ARG_PTR_TO_CTX] = &context_types,
4543 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4544 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4545#ifdef CONFIG_NET
4546 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4547#endif
4548 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4549 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4550 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4551 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4552 [ARG_PTR_TO_MEM] = &mem_types,
4553 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4554 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4555 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4556 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4557 [ARG_PTR_TO_INT] = &int_ptr_types,
4558 [ARG_PTR_TO_LONG] = &int_ptr_types,
4559 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4560};
4561
4562static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4563 enum bpf_arg_type arg_type,
4564 const u32 *arg_btf_id)
4565{
4566 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4567 enum bpf_reg_type expected, type = reg->type;
4568 const struct bpf_reg_types *compatible;
4569 int i, j;
4570
4571 compatible = compatible_reg_types[arg_type];
4572 if (!compatible) {
4573 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4574 return -EFAULT;
4575 }
4576
4577 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4578 expected = compatible->types[i];
4579 if (expected == NOT_INIT)
4580 break;
4581
4582 if (type == expected)
4583 goto found;
4584 }
4585
4586 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4587 for (j = 0; j + 1 < i; j++)
4588 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4589 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4590 return -EACCES;
4591
4592found:
4593 if (type == PTR_TO_BTF_ID) {
4594 if (!arg_btf_id) {
4595 if (!compatible->btf_id) {
4596 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4597 return -EFAULT;
4598 }
4599 arg_btf_id = compatible->btf_id;
4600 }
4601
4602 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4603 btf_vmlinux, *arg_btf_id)) {
4604 verbose(env, "R%d is of type %s but %s is expected\n",
4605 regno, kernel_type_name(reg->btf, reg->btf_id),
4606 kernel_type_name(btf_vmlinux, *arg_btf_id));
4607 return -EACCES;
4608 }
4609
4610 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4611 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4612 regno);
4613 return -EACCES;
4614 }
4615 }
4616
4617 return 0;
4618}
4619
4620static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4621 struct bpf_call_arg_meta *meta,
4622 const struct bpf_func_proto *fn)
4623{
4624 u32 regno = BPF_REG_1 + arg;
4625 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4626 enum bpf_arg_type arg_type = fn->arg_type[arg];
4627 enum bpf_reg_type type = reg->type;
4628 int err = 0;
4629
4630 if (arg_type == ARG_DONTCARE)
4631 return 0;
4632
4633 err = check_reg_arg(env, regno, SRC_OP);
4634 if (err)
4635 return err;
4636
4637 if (arg_type == ARG_ANYTHING) {
4638 if (is_pointer_value(env, regno)) {
4639 verbose(env, "R%d leaks addr into helper function\n",
4640 regno);
4641 return -EACCES;
4642 }
4643 return 0;
4644 }
4645
4646 if (type_is_pkt_pointer(type) &&
4647 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4648 verbose(env, "helper access to the packet is not allowed\n");
4649 return -EACCES;
4650 }
4651
4652 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4653 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4654 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4655 err = resolve_map_arg_type(env, meta, &arg_type);
4656 if (err)
4657 return err;
4658 }
4659
4660 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4661 /* A NULL register has a SCALAR_VALUE type, so skip
4662 * type checking.
4663 */
4664 goto skip_type_check;
4665
4666 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4667 if (err)
4668 return err;
4669
4670 if (type == PTR_TO_CTX) {
4671 err = check_ctx_reg(env, reg, regno);
4672 if (err < 0)
4673 return err;
4674 }
4675
4676skip_type_check:
4677 if (reg->ref_obj_id) {
4678 if (meta->ref_obj_id) {
4679 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4680 regno, reg->ref_obj_id,
4681 meta->ref_obj_id);
4682 return -EFAULT;
4683 }
4684 meta->ref_obj_id = reg->ref_obj_id;
4685 }
4686
4687 if (arg_type == ARG_CONST_MAP_PTR) {
4688 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4689 meta->map_ptr = reg->map_ptr;
4690 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4691 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4692 * check that [key, key + map->key_size) are within
4693 * stack limits and initialized
4694 */
4695 if (!meta->map_ptr) {
4696 /* in function declaration map_ptr must come before
4697 * map_key, so that it's verified and known before
4698 * we have to check map_key here. Otherwise it means
4699 * that kernel subsystem misconfigured verifier
4700 */
4701 verbose(env, "invalid map_ptr to access map->key\n");
4702 return -EACCES;
4703 }
4704 err = check_helper_mem_access(env, regno,
4705 meta->map_ptr->key_size, false,
4706 NULL);
4707 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4708 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4709 !register_is_null(reg)) ||
4710 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4711 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4712 * check [value, value + map->value_size) validity
4713 */
4714 if (!meta->map_ptr) {
4715 /* kernel subsystem misconfigured verifier */
4716 verbose(env, "invalid map_ptr to access map->value\n");
4717 return -EACCES;
4718 }
4719 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4720 err = check_helper_mem_access(env, regno,
4721 meta->map_ptr->value_size, false,
4722 meta);
4723 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4724 if (!reg->btf_id) {
4725 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4726 return -EACCES;
4727 }
4728 meta->ret_btf = reg->btf;
4729 meta->ret_btf_id = reg->btf_id;
4730 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4731 if (meta->func_id == BPF_FUNC_spin_lock) {
4732 if (process_spin_lock(env, regno, true))
4733 return -EACCES;
4734 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4735 if (process_spin_lock(env, regno, false))
4736 return -EACCES;
4737 } else {
4738 verbose(env, "verifier internal error\n");
4739 return -EFAULT;
4740 }
4741 } else if (arg_type_is_mem_ptr(arg_type)) {
4742 /* The access to this pointer is only checked when we hit the
4743 * next is_mem_size argument below.
4744 */
4745 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4746 } else if (arg_type_is_mem_size(arg_type)) {
4747 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4748
4749 /* This is used to refine r0 return value bounds for helpers
4750 * that enforce this value as an upper bound on return values.
4751 * See do_refine_retval_range() for helpers that can refine
4752 * the return value. C type of helper is u32 so we pull register
4753 * bound from umax_value however, if negative verifier errors
4754 * out. Only upper bounds can be learned because retval is an
4755 * int type and negative retvals are allowed.
4756 */
4757 meta->msize_max_value = reg->umax_value;
4758
4759 /* The register is SCALAR_VALUE; the access check
4760 * happens using its boundaries.
4761 */
4762 if (!tnum_is_const(reg->var_off))
4763 /* For unprivileged variable accesses, disable raw
4764 * mode so that the program is required to
4765 * initialize all the memory that the helper could
4766 * just partially fill up.
4767 */
4768 meta = NULL;
4769
4770 if (reg->smin_value < 0) {
4771 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4772 regno);
4773 return -EACCES;
4774 }
4775
4776 if (reg->umin_value == 0) {
4777 err = check_helper_mem_access(env, regno - 1, 0,
4778 zero_size_allowed,
4779 meta);
4780 if (err)
4781 return err;
4782 }
4783
4784 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4785 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4786 regno);
4787 return -EACCES;
4788 }
4789 err = check_helper_mem_access(env, regno - 1,
4790 reg->umax_value,
4791 zero_size_allowed, meta);
4792 if (!err)
4793 err = mark_chain_precision(env, regno);
4794 } else if (arg_type_is_alloc_size(arg_type)) {
4795 if (!tnum_is_const(reg->var_off)) {
4796 verbose(env, "R%d is not a known constant'\n",
4797 regno);
4798 return -EACCES;
4799 }
4800 meta->mem_size = reg->var_off.value;
4801 } else if (arg_type_is_int_ptr(arg_type)) {
4802 int size = int_ptr_type_to_size(arg_type);
4803
4804 err = check_helper_mem_access(env, regno, size, false, meta);
4805 if (err)
4806 return err;
4807 err = check_ptr_alignment(env, reg, 0, size, true);
4808 }
4809
4810 return err;
4811}
4812
4813static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4814{
4815 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4816 enum bpf_prog_type type = resolve_prog_type(env->prog);
4817
4818 if (func_id != BPF_FUNC_map_update_elem)
4819 return false;
4820
4821 /* It's not possible to get access to a locked struct sock in these
4822 * contexts, so updating is safe.
4823 */
4824 switch (type) {
4825 case BPF_PROG_TYPE_TRACING:
4826 if (eatype == BPF_TRACE_ITER)
4827 return true;
4828 break;
4829 case BPF_PROG_TYPE_SOCKET_FILTER:
4830 case BPF_PROG_TYPE_SCHED_CLS:
4831 case BPF_PROG_TYPE_SCHED_ACT:
4832 case BPF_PROG_TYPE_XDP:
4833 case BPF_PROG_TYPE_SK_REUSEPORT:
4834 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4835 case BPF_PROG_TYPE_SK_LOOKUP:
4836 return true;
4837 default:
4838 break;
4839 }
4840
4841 verbose(env, "cannot update sockmap in this context\n");
4842 return false;
4843}
4844
4845static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4846{
4847 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4848}
4849
4850static int check_map_func_compatibility(struct bpf_verifier_env *env,
4851 struct bpf_map *map, int func_id)
4852{
4853 if (!map)
4854 return 0;
4855
4856 /* We need a two way check, first is from map perspective ... */
4857 switch (map->map_type) {
4858 case BPF_MAP_TYPE_PROG_ARRAY:
4859 if (func_id != BPF_FUNC_tail_call)
4860 goto error;
4861 break;
4862 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4863 if (func_id != BPF_FUNC_perf_event_read &&
4864 func_id != BPF_FUNC_perf_event_output &&
4865 func_id != BPF_FUNC_skb_output &&
4866 func_id != BPF_FUNC_perf_event_read_value &&
4867 func_id != BPF_FUNC_xdp_output)
4868 goto error;
4869 break;
4870 case BPF_MAP_TYPE_RINGBUF:
4871 if (func_id != BPF_FUNC_ringbuf_output &&
4872 func_id != BPF_FUNC_ringbuf_reserve &&
4873 func_id != BPF_FUNC_ringbuf_submit &&
4874 func_id != BPF_FUNC_ringbuf_discard &&
4875 func_id != BPF_FUNC_ringbuf_query)
4876 goto error;
4877 break;
4878 case BPF_MAP_TYPE_STACK_TRACE:
4879 if (func_id != BPF_FUNC_get_stackid)
4880 goto error;
4881 break;
4882 case BPF_MAP_TYPE_CGROUP_ARRAY:
4883 if (func_id != BPF_FUNC_skb_under_cgroup &&
4884 func_id != BPF_FUNC_current_task_under_cgroup)
4885 goto error;
4886 break;
4887 case BPF_MAP_TYPE_CGROUP_STORAGE:
4888 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4889 if (func_id != BPF_FUNC_get_local_storage)
4890 goto error;
4891 break;
4892 case BPF_MAP_TYPE_DEVMAP:
4893 case BPF_MAP_TYPE_DEVMAP_HASH:
4894 if (func_id != BPF_FUNC_redirect_map &&
4895 func_id != BPF_FUNC_map_lookup_elem)
4896 goto error;
4897 break;
4898 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4899 * appear.
4900 */
4901 case BPF_MAP_TYPE_CPUMAP:
4902 if (func_id != BPF_FUNC_redirect_map)
4903 goto error;
4904 break;
4905 case BPF_MAP_TYPE_XSKMAP:
4906 if (func_id != BPF_FUNC_redirect_map &&
4907 func_id != BPF_FUNC_map_lookup_elem)
4908 goto error;
4909 break;
4910 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4911 case BPF_MAP_TYPE_HASH_OF_MAPS:
4912 if (func_id != BPF_FUNC_map_lookup_elem)
4913 goto error;
4914 break;
4915 case BPF_MAP_TYPE_SOCKMAP:
4916 if (func_id != BPF_FUNC_sk_redirect_map &&
4917 func_id != BPF_FUNC_sock_map_update &&
4918 func_id != BPF_FUNC_map_delete_elem &&
4919 func_id != BPF_FUNC_msg_redirect_map &&
4920 func_id != BPF_FUNC_sk_select_reuseport &&
4921 func_id != BPF_FUNC_map_lookup_elem &&
4922 !may_update_sockmap(env, func_id))
4923 goto error;
4924 break;
4925 case BPF_MAP_TYPE_SOCKHASH:
4926 if (func_id != BPF_FUNC_sk_redirect_hash &&
4927 func_id != BPF_FUNC_sock_hash_update &&
4928 func_id != BPF_FUNC_map_delete_elem &&
4929 func_id != BPF_FUNC_msg_redirect_hash &&
4930 func_id != BPF_FUNC_sk_select_reuseport &&
4931 func_id != BPF_FUNC_map_lookup_elem &&
4932 !may_update_sockmap(env, func_id))
4933 goto error;
4934 break;
4935 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4936 if (func_id != BPF_FUNC_sk_select_reuseport)
4937 goto error;
4938 break;
4939 case BPF_MAP_TYPE_QUEUE:
4940 case BPF_MAP_TYPE_STACK:
4941 if (func_id != BPF_FUNC_map_peek_elem &&
4942 func_id != BPF_FUNC_map_pop_elem &&
4943 func_id != BPF_FUNC_map_push_elem)
4944 goto error;
4945 break;
4946 case BPF_MAP_TYPE_SK_STORAGE:
4947 if (func_id != BPF_FUNC_sk_storage_get &&
4948 func_id != BPF_FUNC_sk_storage_delete)
4949 goto error;
4950 break;
4951 case BPF_MAP_TYPE_INODE_STORAGE:
4952 if (func_id != BPF_FUNC_inode_storage_get &&
4953 func_id != BPF_FUNC_inode_storage_delete)
4954 goto error;
4955 break;
4956 case BPF_MAP_TYPE_TASK_STORAGE:
4957 if (func_id != BPF_FUNC_task_storage_get &&
4958 func_id != BPF_FUNC_task_storage_delete)
4959 goto error;
4960 break;
4961 default:
4962 break;
4963 }
4964
4965 /* ... and second from the function itself. */
4966 switch (func_id) {
4967 case BPF_FUNC_tail_call:
4968 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4969 goto error;
4970 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4971 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4972 return -EINVAL;
4973 }
4974 break;
4975 case BPF_FUNC_perf_event_read:
4976 case BPF_FUNC_perf_event_output:
4977 case BPF_FUNC_perf_event_read_value:
4978 case BPF_FUNC_skb_output:
4979 case BPF_FUNC_xdp_output:
4980 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4981 goto error;
4982 break;
4983 case BPF_FUNC_get_stackid:
4984 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4985 goto error;
4986 break;
4987 case BPF_FUNC_current_task_under_cgroup:
4988 case BPF_FUNC_skb_under_cgroup:
4989 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4990 goto error;
4991 break;
4992 case BPF_FUNC_redirect_map:
4993 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4994 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4995 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4996 map->map_type != BPF_MAP_TYPE_XSKMAP)
4997 goto error;
4998 break;
4999 case BPF_FUNC_sk_redirect_map:
5000 case BPF_FUNC_msg_redirect_map:
5001 case BPF_FUNC_sock_map_update:
5002 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5003 goto error;
5004 break;
5005 case BPF_FUNC_sk_redirect_hash:
5006 case BPF_FUNC_msg_redirect_hash:
5007 case BPF_FUNC_sock_hash_update:
5008 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5009 goto error;
5010 break;
5011 case BPF_FUNC_get_local_storage:
5012 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5013 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5014 goto error;
5015 break;
5016 case BPF_FUNC_sk_select_reuseport:
5017 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5018 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5019 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5020 goto error;
5021 break;
5022 case BPF_FUNC_map_peek_elem:
5023 case BPF_FUNC_map_pop_elem:
5024 case BPF_FUNC_map_push_elem:
5025 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5026 map->map_type != BPF_MAP_TYPE_STACK)
5027 goto error;
5028 break;
5029 case BPF_FUNC_sk_storage_get:
5030 case BPF_FUNC_sk_storage_delete:
5031 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5032 goto error;
5033 break;
5034 case BPF_FUNC_inode_storage_get:
5035 case BPF_FUNC_inode_storage_delete:
5036 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5037 goto error;
5038 break;
5039 case BPF_FUNC_task_storage_get:
5040 case BPF_FUNC_task_storage_delete:
5041 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5042 goto error;
5043 break;
5044 default:
5045 break;
5046 }
5047
5048 return 0;
5049error:
5050 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5051 map->map_type, func_id_name(func_id), func_id);
5052 return -EINVAL;
5053}
5054
5055static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5056{
5057 int count = 0;
5058
5059 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5060 count++;
5061 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5062 count++;
5063 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5064 count++;
5065 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5066 count++;
5067 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5068 count++;
5069
5070 /* We only support one arg being in raw mode at the moment,
5071 * which is sufficient for the helper functions we have
5072 * right now.
5073 */
5074 return count <= 1;
5075}
5076
5077static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5078 enum bpf_arg_type arg_next)
5079{
5080 return (arg_type_is_mem_ptr(arg_curr) &&
5081 !arg_type_is_mem_size(arg_next)) ||
5082 (!arg_type_is_mem_ptr(arg_curr) &&
5083 arg_type_is_mem_size(arg_next));
5084}
5085
5086static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5087{
5088 /* bpf_xxx(..., buf, len) call will access 'len'
5089 * bytes from memory 'buf'. Both arg types need
5090 * to be paired, so make sure there's no buggy
5091 * helper function specification.
5092 */
5093 if (arg_type_is_mem_size(fn->arg1_type) ||
5094 arg_type_is_mem_ptr(fn->arg5_type) ||
5095 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5096 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5097 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5098 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5099 return false;
5100
5101 return true;
5102}
5103
5104static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5105{
5106 int count = 0;
5107
5108 if (arg_type_may_be_refcounted(fn->arg1_type))
5109 count++;
5110 if (arg_type_may_be_refcounted(fn->arg2_type))
5111 count++;
5112 if (arg_type_may_be_refcounted(fn->arg3_type))
5113 count++;
5114 if (arg_type_may_be_refcounted(fn->arg4_type))
5115 count++;
5116 if (arg_type_may_be_refcounted(fn->arg5_type))
5117 count++;
5118
5119 /* A reference acquiring function cannot acquire
5120 * another refcounted ptr.
5121 */
5122 if (may_be_acquire_function(func_id) && count)
5123 return false;
5124
5125 /* We only support one arg being unreferenced at the moment,
5126 * which is sufficient for the helper functions we have right now.
5127 */
5128 return count <= 1;
5129}
5130
5131static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5132{
5133 int i;
5134
5135 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5136 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5137 return false;
5138
5139 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5140 return false;
5141 }
5142
5143 return true;
5144}
5145
5146static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5147{
5148 return check_raw_mode_ok(fn) &&
5149 check_arg_pair_ok(fn) &&
5150 check_btf_id_ok(fn) &&
5151 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5152}
5153
5154/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5155 * are now invalid, so turn them into unknown SCALAR_VALUE.
5156 */
5157static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5158 struct bpf_func_state *state)
5159{
5160 struct bpf_reg_state *regs = state->regs, *reg;
5161 int i;
5162
5163 for (i = 0; i < MAX_BPF_REG; i++)
5164 if (reg_is_pkt_pointer_any(&regs[i]))
5165 mark_reg_unknown(env, regs, i);
5166
5167 bpf_for_each_spilled_reg(i, state, reg) {
5168 if (!reg)
5169 continue;
5170 if (reg_is_pkt_pointer_any(reg))
5171 __mark_reg_unknown(env, reg);
5172 }
5173}
5174
5175static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5176{
5177 struct bpf_verifier_state *vstate = env->cur_state;
5178 int i;
5179
5180 for (i = 0; i <= vstate->curframe; i++)
5181 __clear_all_pkt_pointers(env, vstate->frame[i]);
5182}
5183
5184enum {
5185 AT_PKT_END = -1,
5186 BEYOND_PKT_END = -2,
5187};
5188
5189static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5190{
5191 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5192 struct bpf_reg_state *reg = &state->regs[regn];
5193
5194 if (reg->type != PTR_TO_PACKET)
5195 /* PTR_TO_PACKET_META is not supported yet */
5196 return;
5197
5198 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5199 * How far beyond pkt_end it goes is unknown.
5200 * if (!range_open) it's the case of pkt >= pkt_end
5201 * if (range_open) it's the case of pkt > pkt_end
5202 * hence this pointer is at least 1 byte bigger than pkt_end
5203 */
5204 if (range_open)
5205 reg->range = BEYOND_PKT_END;
5206 else
5207 reg->range = AT_PKT_END;
5208}
5209
5210static void release_reg_references(struct bpf_verifier_env *env,
5211 struct bpf_func_state *state,
5212 int ref_obj_id)
5213{
5214 struct bpf_reg_state *regs = state->regs, *reg;
5215 int i;
5216
5217 for (i = 0; i < MAX_BPF_REG; i++)
5218 if (regs[i].ref_obj_id == ref_obj_id)
5219 mark_reg_unknown(env, regs, i);
5220
5221 bpf_for_each_spilled_reg(i, state, reg) {
5222 if (!reg)
5223 continue;
5224 if (reg->ref_obj_id == ref_obj_id)
5225 __mark_reg_unknown(env, reg);
5226 }
5227}
5228
5229/* The pointer with the specified id has released its reference to kernel
5230 * resources. Identify all copies of the same pointer and clear the reference.
5231 */
5232static int release_reference(struct bpf_verifier_env *env,
5233 int ref_obj_id)
5234{
5235 struct bpf_verifier_state *vstate = env->cur_state;
5236 int err;
5237 int i;
5238
5239 err = release_reference_state(cur_func(env), ref_obj_id);
5240 if (err)
5241 return err;
5242
5243 for (i = 0; i <= vstate->curframe; i++)
5244 release_reg_references(env, vstate->frame[i], ref_obj_id);
5245
5246 return 0;
5247}
5248
5249static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5250 struct bpf_reg_state *regs)
5251{
5252 int i;
5253
5254 /* after the call registers r0 - r5 were scratched */
5255 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5256 mark_reg_not_init(env, regs, caller_saved[i]);
5257 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5258 }
5259}
5260
5261static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5262 int *insn_idx)
5263{
5264 struct bpf_verifier_state *state = env->cur_state;
5265 struct bpf_func_info_aux *func_info_aux;
5266 struct bpf_func_state *caller, *callee;
5267 int i, err, subprog, target_insn;
5268 bool is_global = false;
5269
5270 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5271 verbose(env, "the call stack of %d frames is too deep\n",
5272 state->curframe + 2);
5273 return -E2BIG;
5274 }
5275
5276 target_insn = *insn_idx + insn->imm;
5277 subprog = find_subprog(env, target_insn + 1);
5278 if (subprog < 0) {
5279 verbose(env, "verifier bug. No program starts at insn %d\n",
5280 target_insn + 1);
5281 return -EFAULT;
5282 }
5283
5284 caller = state->frame[state->curframe];
5285 if (state->frame[state->curframe + 1]) {
5286 verbose(env, "verifier bug. Frame %d already allocated\n",
5287 state->curframe + 1);
5288 return -EFAULT;
5289 }
5290
5291 func_info_aux = env->prog->aux->func_info_aux;
5292 if (func_info_aux)
5293 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5294 err = btf_check_func_arg_match(env, subprog, caller->regs);
5295 if (err == -EFAULT)
5296 return err;
5297 if (is_global) {
5298 if (err) {
5299 verbose(env, "Caller passes invalid args into func#%d\n",
5300 subprog);
5301 return err;
5302 } else {
5303 if (env->log.level & BPF_LOG_LEVEL)
5304 verbose(env,
5305 "Func#%d is global and valid. Skipping.\n",
5306 subprog);
5307 clear_caller_saved_regs(env, caller->regs);
5308
5309 /* All global functions return a 64-bit SCALAR_VALUE */
5310 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5311 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5312
5313 /* continue with next insn after call */
5314 return 0;
5315 }
5316 }
5317
5318 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5319 if (!callee)
5320 return -ENOMEM;
5321 state->frame[state->curframe + 1] = callee;
5322
5323 /* callee cannot access r0, r6 - r9 for reading and has to write
5324 * into its own stack before reading from it.
5325 * callee can read/write into caller's stack
5326 */
5327 init_func_state(env, callee,
5328 /* remember the callsite, it will be used by bpf_exit */
5329 *insn_idx /* callsite */,
5330 state->curframe + 1 /* frameno within this callchain */,
5331 subprog /* subprog number within this prog */);
5332
5333 /* Transfer references to the callee */
5334 err = transfer_reference_state(callee, caller);
5335 if (err)
5336 return err;
5337
5338 /* copy r1 - r5 args that callee can access. The copy includes parent
5339 * pointers, which connects us up to the liveness chain
5340 */
5341 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5342 callee->regs[i] = caller->regs[i];
5343
5344 clear_caller_saved_regs(env, caller->regs);
5345
5346 /* only increment it after check_reg_arg() finished */
5347 state->curframe++;
5348
5349 /* and go analyze first insn of the callee */
5350 *insn_idx = target_insn;
5351
5352 if (env->log.level & BPF_LOG_LEVEL) {
5353 verbose(env, "caller:\n");
5354 print_verifier_state(env, caller);
5355 verbose(env, "callee:\n");
5356 print_verifier_state(env, callee);
5357 }
5358 return 0;
5359}
5360
5361static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5362{
5363 struct bpf_verifier_state *state = env->cur_state;
5364 struct bpf_func_state *caller, *callee;
5365 struct bpf_reg_state *r0;
5366 int err;
5367
5368 callee = state->frame[state->curframe];
5369 r0 = &callee->regs[BPF_REG_0];
5370 if (r0->type == PTR_TO_STACK) {
5371 /* technically it's ok to return caller's stack pointer
5372 * (or caller's caller's pointer) back to the caller,
5373 * since these pointers are valid. Only current stack
5374 * pointer will be invalid as soon as function exits,
5375 * but let's be conservative
5376 */
5377 verbose(env, "cannot return stack pointer to the caller\n");
5378 return -EINVAL;
5379 }
5380
5381 state->curframe--;
5382 caller = state->frame[state->curframe];
5383 /* return to the caller whatever r0 had in the callee */
5384 caller->regs[BPF_REG_0] = *r0;
5385
5386 /* Transfer references to the caller */
5387 err = transfer_reference_state(caller, callee);
5388 if (err)
5389 return err;
5390
5391 *insn_idx = callee->callsite + 1;
5392 if (env->log.level & BPF_LOG_LEVEL) {
5393 verbose(env, "returning from callee:\n");
5394 print_verifier_state(env, callee);
5395 verbose(env, "to caller at %d:\n", *insn_idx);
5396 print_verifier_state(env, caller);
5397 }
5398 /* clear everything in the callee */
5399 free_func_state(callee);
5400 state->frame[state->curframe + 1] = NULL;
5401 return 0;
5402}
5403
5404static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5405 int func_id,
5406 struct bpf_call_arg_meta *meta)
5407{
5408 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5409
5410 if (ret_type != RET_INTEGER ||
5411 (func_id != BPF_FUNC_get_stack &&
5412 func_id != BPF_FUNC_probe_read_str &&
5413 func_id != BPF_FUNC_probe_read_kernel_str &&
5414 func_id != BPF_FUNC_probe_read_user_str))
5415 return;
5416
5417 ret_reg->smax_value = meta->msize_max_value;
5418 ret_reg->s32_max_value = meta->msize_max_value;
5419 ret_reg->smin_value = -MAX_ERRNO;
5420 ret_reg->s32_min_value = -MAX_ERRNO;
5421 __reg_deduce_bounds(ret_reg);
5422 __reg_bound_offset(ret_reg);
5423 __update_reg_bounds(ret_reg);
5424}
5425
5426static int
5427record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5428 int func_id, int insn_idx)
5429{
5430 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5431 struct bpf_map *map = meta->map_ptr;
5432
5433 if (func_id != BPF_FUNC_tail_call &&
5434 func_id != BPF_FUNC_map_lookup_elem &&
5435 func_id != BPF_FUNC_map_update_elem &&
5436 func_id != BPF_FUNC_map_delete_elem &&
5437 func_id != BPF_FUNC_map_push_elem &&
5438 func_id != BPF_FUNC_map_pop_elem &&
5439 func_id != BPF_FUNC_map_peek_elem)
5440 return 0;
5441
5442 if (map == NULL) {
5443 verbose(env, "kernel subsystem misconfigured verifier\n");
5444 return -EINVAL;
5445 }
5446
5447 /* In case of read-only, some additional restrictions
5448 * need to be applied in order to prevent altering the
5449 * state of the map from program side.
5450 */
5451 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5452 (func_id == BPF_FUNC_map_delete_elem ||
5453 func_id == BPF_FUNC_map_update_elem ||
5454 func_id == BPF_FUNC_map_push_elem ||
5455 func_id == BPF_FUNC_map_pop_elem)) {
5456 verbose(env, "write into map forbidden\n");
5457 return -EACCES;
5458 }
5459
5460 if (!BPF_MAP_PTR(aux->map_ptr_state))
5461 bpf_map_ptr_store(aux, meta->map_ptr,
5462 !meta->map_ptr->bypass_spec_v1);
5463 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5464 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5465 !meta->map_ptr->bypass_spec_v1);
5466 return 0;
5467}
5468
5469static int
5470record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5471 int func_id, int insn_idx)
5472{
5473 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5474 struct bpf_reg_state *regs = cur_regs(env), *reg;
5475 struct bpf_map *map = meta->map_ptr;
5476 struct tnum range;
5477 u64 val;
5478 int err;
5479
5480 if (func_id != BPF_FUNC_tail_call)
5481 return 0;
5482 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5483 verbose(env, "kernel subsystem misconfigured verifier\n");
5484 return -EINVAL;
5485 }
5486
5487 range = tnum_range(0, map->max_entries - 1);
5488 reg = &regs[BPF_REG_3];
5489
5490 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5491 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5492 return 0;
5493 }
5494
5495 err = mark_chain_precision(env, BPF_REG_3);
5496 if (err)
5497 return err;
5498
5499 val = reg->var_off.value;
5500 if (bpf_map_key_unseen(aux))
5501 bpf_map_key_store(aux, val);
5502 else if (!bpf_map_key_poisoned(aux) &&
5503 bpf_map_key_immediate(aux) != val)
5504 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5505 return 0;
5506}
5507
5508static int check_reference_leak(struct bpf_verifier_env *env)
5509{
5510 struct bpf_func_state *state = cur_func(env);
5511 int i;
5512
5513 for (i = 0; i < state->acquired_refs; i++) {
5514 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5515 state->refs[i].id, state->refs[i].insn_idx);
5516 }
5517 return state->acquired_refs ? -EINVAL : 0;
5518}
5519
5520static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5521{
5522 const struct bpf_func_proto *fn = NULL;
5523 struct bpf_reg_state *regs;
5524 struct bpf_call_arg_meta meta;
5525 bool changes_data;
5526 int i, err;
5527
5528 /* find function prototype */
5529 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5530 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5531 func_id);
5532 return -EINVAL;
5533 }
5534
5535 if (env->ops->get_func_proto)
5536 fn = env->ops->get_func_proto(func_id, env->prog);
5537 if (!fn) {
5538 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5539 func_id);
5540 return -EINVAL;
5541 }
5542
5543 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5544 if (!env->prog->gpl_compatible && fn->gpl_only) {
5545 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5546 return -EINVAL;
5547 }
5548
5549 if (fn->allowed && !fn->allowed(env->prog)) {
5550 verbose(env, "helper call is not allowed in probe\n");
5551 return -EINVAL;
5552 }
5553
5554 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5555 changes_data = bpf_helper_changes_pkt_data(fn->func);
5556 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5557 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5558 func_id_name(func_id), func_id);
5559 return -EINVAL;
5560 }
5561
5562 memset(&meta, 0, sizeof(meta));
5563 meta.pkt_access = fn->pkt_access;
5564
5565 err = check_func_proto(fn, func_id);
5566 if (err) {
5567 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5568 func_id_name(func_id), func_id);
5569 return err;
5570 }
5571
5572 meta.func_id = func_id;
5573 /* check args */
5574 for (i = 0; i < 5; i++) {
5575 err = check_func_arg(env, i, &meta, fn);
5576 if (err)
5577 return err;
5578 }
5579
5580 err = record_func_map(env, &meta, func_id, insn_idx);
5581 if (err)
5582 return err;
5583
5584 err = record_func_key(env, &meta, func_id, insn_idx);
5585 if (err)
5586 return err;
5587
5588 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5589 * is inferred from register state.
5590 */
5591 for (i = 0; i < meta.access_size; i++) {
5592 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5593 BPF_WRITE, -1, false);
5594 if (err)
5595 return err;
5596 }
5597
5598 if (func_id == BPF_FUNC_tail_call) {
5599 err = check_reference_leak(env);
5600 if (err) {
5601 verbose(env, "tail_call would lead to reference leak\n");
5602 return err;
5603 }
5604 } else if (is_release_function(func_id)) {
5605 err = release_reference(env, meta.ref_obj_id);
5606 if (err) {
5607 verbose(env, "func %s#%d reference has not been acquired before\n",
5608 func_id_name(func_id), func_id);
5609 return err;
5610 }
5611 }
5612
5613 regs = cur_regs(env);
5614
5615 /* check that flags argument in get_local_storage(map, flags) is 0,
5616 * this is required because get_local_storage() can't return an error.
5617 */
5618 if (func_id == BPF_FUNC_get_local_storage &&
5619 !register_is_null(&regs[BPF_REG_2])) {
5620 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5621 return -EINVAL;
5622 }
5623
5624 /* reset caller saved regs */
5625 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5626 mark_reg_not_init(env, regs, caller_saved[i]);
5627 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5628 }
5629
5630 /* helper call returns 64-bit value. */
5631 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5632
5633 /* update return register (already marked as written above) */
5634 if (fn->ret_type == RET_INTEGER) {
5635 /* sets type to SCALAR_VALUE */
5636 mark_reg_unknown(env, regs, BPF_REG_0);
5637 } else if (fn->ret_type == RET_VOID) {
5638 regs[BPF_REG_0].type = NOT_INIT;
5639 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5640 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5641 /* There is no offset yet applied, variable or fixed */
5642 mark_reg_known_zero(env, regs, BPF_REG_0);
5643 /* remember map_ptr, so that check_map_access()
5644 * can check 'value_size' boundary of memory access
5645 * to map element returned from bpf_map_lookup_elem()
5646 */
5647 if (meta.map_ptr == NULL) {
5648 verbose(env,
5649 "kernel subsystem misconfigured verifier\n");
5650 return -EINVAL;
5651 }
5652 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5653 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5654 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5655 if (map_value_has_spin_lock(meta.map_ptr))
5656 regs[BPF_REG_0].id = ++env->id_gen;
5657 } else {
5658 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5659 }
5660 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5661 mark_reg_known_zero(env, regs, BPF_REG_0);
5662 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5663 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5664 mark_reg_known_zero(env, regs, BPF_REG_0);
5665 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5666 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5667 mark_reg_known_zero(env, regs, BPF_REG_0);
5668 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5669 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5670 mark_reg_known_zero(env, regs, BPF_REG_0);
5671 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5672 regs[BPF_REG_0].mem_size = meta.mem_size;
5673 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5674 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5675 const struct btf_type *t;
5676
5677 mark_reg_known_zero(env, regs, BPF_REG_0);
5678 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5679 if (!btf_type_is_struct(t)) {
5680 u32 tsize;
5681 const struct btf_type *ret;
5682 const char *tname;
5683
5684 /* resolve the type size of ksym. */
5685 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5686 if (IS_ERR(ret)) {
5687 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5688 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5689 tname, PTR_ERR(ret));
5690 return -EINVAL;
5691 }
5692 regs[BPF_REG_0].type =
5693 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5694 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5695 regs[BPF_REG_0].mem_size = tsize;
5696 } else {
5697 regs[BPF_REG_0].type =
5698 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5699 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5700 regs[BPF_REG_0].btf = meta.ret_btf;
5701 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5702 }
5703 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5704 fn->ret_type == RET_PTR_TO_BTF_ID) {
5705 int ret_btf_id;
5706
5707 mark_reg_known_zero(env, regs, BPF_REG_0);
5708 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5709 PTR_TO_BTF_ID :
5710 PTR_TO_BTF_ID_OR_NULL;
5711 ret_btf_id = *fn->ret_btf_id;
5712 if (ret_btf_id == 0) {
5713 verbose(env, "invalid return type %d of func %s#%d\n",
5714 fn->ret_type, func_id_name(func_id), func_id);
5715 return -EINVAL;
5716 }
5717 /* current BPF helper definitions are only coming from
5718 * built-in code with type IDs from vmlinux BTF
5719 */
5720 regs[BPF_REG_0].btf = btf_vmlinux;
5721 regs[BPF_REG_0].btf_id = ret_btf_id;
5722 } else {
5723 verbose(env, "unknown return type %d of func %s#%d\n",
5724 fn->ret_type, func_id_name(func_id), func_id);
5725 return -EINVAL;
5726 }
5727
5728 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5729 regs[BPF_REG_0].id = ++env->id_gen;
5730
5731 if (is_ptr_cast_function(func_id)) {
5732 /* For release_reference() */
5733 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5734 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5735 int id = acquire_reference_state(env, insn_idx);
5736
5737 if (id < 0)
5738 return id;
5739 /* For mark_ptr_or_null_reg() */
5740 regs[BPF_REG_0].id = id;
5741 /* For release_reference() */
5742 regs[BPF_REG_0].ref_obj_id = id;
5743 }
5744
5745 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5746
5747 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5748 if (err)
5749 return err;
5750
5751 if ((func_id == BPF_FUNC_get_stack ||
5752 func_id == BPF_FUNC_get_task_stack) &&
5753 !env->prog->has_callchain_buf) {
5754 const char *err_str;
5755
5756#ifdef CONFIG_PERF_EVENTS
5757 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5758 err_str = "cannot get callchain buffer for func %s#%d\n";
5759#else
5760 err = -ENOTSUPP;
5761 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5762#endif
5763 if (err) {
5764 verbose(env, err_str, func_id_name(func_id), func_id);
5765 return err;
5766 }
5767
5768 env->prog->has_callchain_buf = true;
5769 }
5770
5771 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5772 env->prog->call_get_stack = true;
5773
5774 if (changes_data)
5775 clear_all_pkt_pointers(env);
5776 return 0;
5777}
5778
5779static bool signed_add_overflows(s64 a, s64 b)
5780{
5781 /* Do the add in u64, where overflow is well-defined */
5782 s64 res = (s64)((u64)a + (u64)b);
5783
5784 if (b < 0)
5785 return res > a;
5786 return res < a;
5787}
5788
5789static bool signed_add32_overflows(s32 a, s32 b)
5790{
5791 /* Do the add in u32, where overflow is well-defined */
5792 s32 res = (s32)((u32)a + (u32)b);
5793
5794 if (b < 0)
5795 return res > a;
5796 return res < a;
5797}
5798
5799static bool signed_sub_overflows(s64 a, s64 b)
5800{
5801 /* Do the sub in u64, where overflow is well-defined */
5802 s64 res = (s64)((u64)a - (u64)b);
5803
5804 if (b < 0)
5805 return res < a;
5806 return res > a;
5807}
5808
5809static bool signed_sub32_overflows(s32 a, s32 b)
5810{
5811 /* Do the sub in u32, where overflow is well-defined */
5812 s32 res = (s32)((u32)a - (u32)b);
5813
5814 if (b < 0)
5815 return res < a;
5816 return res > a;
5817}
5818
5819static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5820 const struct bpf_reg_state *reg,
5821 enum bpf_reg_type type)
5822{
5823 bool known = tnum_is_const(reg->var_off);
5824 s64 val = reg->var_off.value;
5825 s64 smin = reg->smin_value;
5826
5827 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5828 verbose(env, "math between %s pointer and %lld is not allowed\n",
5829 reg_type_str[type], val);
5830 return false;
5831 }
5832
5833 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5834 verbose(env, "%s pointer offset %d is not allowed\n",
5835 reg_type_str[type], reg->off);
5836 return false;
5837 }
5838
5839 if (smin == S64_MIN) {
5840 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5841 reg_type_str[type]);
5842 return false;
5843 }
5844
5845 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5846 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5847 smin, reg_type_str[type]);
5848 return false;
5849 }
5850
5851 return true;
5852}
5853
5854static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5855{
5856 return &env->insn_aux_data[env->insn_idx];
5857}
5858
5859static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5860 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5861{
5862 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5863 (opcode == BPF_SUB && !off_is_neg);
5864 u32 off, max;
5865
5866 switch (ptr_reg->type) {
5867 case PTR_TO_STACK:
5868 /* Offset 0 is out-of-bounds, but acceptable start for the
5869 * left direction, see BPF_REG_FP.
5870 */
5871 max = MAX_BPF_STACK + mask_to_left;
5872 /* Indirect variable offset stack access is prohibited in
5873 * unprivileged mode so it's not handled here.
5874 */
5875 off = ptr_reg->off + ptr_reg->var_off.value;
5876 if (mask_to_left)
5877 *ptr_limit = MAX_BPF_STACK + off;
5878 else
5879 *ptr_limit = -off - 1;
5880 return *ptr_limit >= max ? -ERANGE : 0;
5881 case PTR_TO_MAP_VALUE:
5882 max = ptr_reg->map_ptr->value_size;
5883 if (mask_to_left) {
5884 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5885 } else {
5886 off = ptr_reg->smin_value + ptr_reg->off;
5887 *ptr_limit = ptr_reg->map_ptr->value_size - off - 1;
5888 }
5889 return *ptr_limit >= max ? -ERANGE : 0;
5890 default:
5891 return -EINVAL;
5892 }
5893}
5894
5895static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5896 const struct bpf_insn *insn)
5897{
5898 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5899}
5900
5901static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5902 u32 alu_state, u32 alu_limit)
5903{
5904 /* If we arrived here from different branches with different
5905 * state or limits to sanitize, then this won't work.
5906 */
5907 if (aux->alu_state &&
5908 (aux->alu_state != alu_state ||
5909 aux->alu_limit != alu_limit))
5910 return -EACCES;
5911
5912 /* Corresponding fixup done in fixup_bpf_calls(). */
5913 aux->alu_state = alu_state;
5914 aux->alu_limit = alu_limit;
5915 return 0;
5916}
5917
5918static int sanitize_val_alu(struct bpf_verifier_env *env,
5919 struct bpf_insn *insn)
5920{
5921 struct bpf_insn_aux_data *aux = cur_aux(env);
5922
5923 if (can_skip_alu_sanitation(env, insn))
5924 return 0;
5925
5926 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5927}
5928
5929static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5930 struct bpf_insn *insn,
5931 const struct bpf_reg_state *ptr_reg,
5932 struct bpf_reg_state *dst_reg,
5933 bool off_is_neg)
5934{
5935 struct bpf_verifier_state *vstate = env->cur_state;
5936 struct bpf_insn_aux_data *aux = cur_aux(env);
5937 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5938 u8 opcode = BPF_OP(insn->code);
5939 u32 alu_state, alu_limit;
5940 struct bpf_reg_state tmp;
5941 bool ret;
5942 int err;
5943
5944 if (can_skip_alu_sanitation(env, insn))
5945 return 0;
5946
5947 /* We already marked aux for masking from non-speculative
5948 * paths, thus we got here in the first place. We only care
5949 * to explore bad access from here.
5950 */
5951 if (vstate->speculative)
5952 goto do_sim;
5953
5954 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5955 alu_state |= ptr_is_dst_reg ?
5956 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5957
5958 err = retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg);
5959 if (err < 0)
5960 return err;
5961
5962 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5963 if (err < 0)
5964 return err;
5965do_sim:
5966 /* Simulate and find potential out-of-bounds access under
5967 * speculative execution from truncation as a result of
5968 * masking when off was not within expected range. If off
5969 * sits in dst, then we temporarily need to move ptr there
5970 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5971 * for cases where we use K-based arithmetic in one direction
5972 * and truncated reg-based in the other in order to explore
5973 * bad access.
5974 */
5975 if (!ptr_is_dst_reg) {
5976 tmp = *dst_reg;
5977 *dst_reg = *ptr_reg;
5978 }
5979 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5980 if (!ptr_is_dst_reg && ret)
5981 *dst_reg = tmp;
5982 return !ret ? -EFAULT : 0;
5983}
5984
5985/* check that stack access falls within stack limits and that 'reg' doesn't
5986 * have a variable offset.
5987 *
5988 * Variable offset is prohibited for unprivileged mode for simplicity since it
5989 * requires corresponding support in Spectre masking for stack ALU. See also
5990 * retrieve_ptr_limit().
5991 *
5992 *
5993 * 'off' includes 'reg->off'.
5994 */
5995static int check_stack_access_for_ptr_arithmetic(
5996 struct bpf_verifier_env *env,
5997 int regno,
5998 const struct bpf_reg_state *reg,
5999 int off)
6000{
6001 if (!tnum_is_const(reg->var_off)) {
6002 char tn_buf[48];
6003
6004 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6005 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6006 regno, tn_buf, off);
6007 return -EACCES;
6008 }
6009
6010 if (off >= 0 || off < -MAX_BPF_STACK) {
6011 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6012 "prohibited for !root; off=%d\n", regno, off);
6013 return -EACCES;
6014 }
6015
6016 return 0;
6017}
6018
6019
6020/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6021 * Caller should also handle BPF_MOV case separately.
6022 * If we return -EACCES, caller may want to try again treating pointer as a
6023 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6024 */
6025static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6026 struct bpf_insn *insn,
6027 const struct bpf_reg_state *ptr_reg,
6028 const struct bpf_reg_state *off_reg)
6029{
6030 struct bpf_verifier_state *vstate = env->cur_state;
6031 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6032 struct bpf_reg_state *regs = state->regs, *dst_reg;
6033 bool known = tnum_is_const(off_reg->var_off);
6034 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6035 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6036 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6037 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6038 u32 dst = insn->dst_reg, src = insn->src_reg;
6039 u8 opcode = BPF_OP(insn->code);
6040 int ret;
6041
6042 dst_reg = &regs[dst];
6043
6044 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6045 smin_val > smax_val || umin_val > umax_val) {
6046 /* Taint dst register if offset had invalid bounds derived from
6047 * e.g. dead branches.
6048 */
6049 __mark_reg_unknown(env, dst_reg);
6050 return 0;
6051 }
6052
6053 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6054 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6055 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6056 __mark_reg_unknown(env, dst_reg);
6057 return 0;
6058 }
6059
6060 verbose(env,
6061 "R%d 32-bit pointer arithmetic prohibited\n",
6062 dst);
6063 return -EACCES;
6064 }
6065
6066 switch (ptr_reg->type) {
6067 case PTR_TO_MAP_VALUE_OR_NULL:
6068 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6069 dst, reg_type_str[ptr_reg->type]);
6070 return -EACCES;
6071 case CONST_PTR_TO_MAP:
6072 /* smin_val represents the known value */
6073 if (known && smin_val == 0 && opcode == BPF_ADD)
6074 break;
6075 fallthrough;
6076 case PTR_TO_PACKET_END:
6077 case PTR_TO_SOCKET:
6078 case PTR_TO_SOCKET_OR_NULL:
6079 case PTR_TO_SOCK_COMMON:
6080 case PTR_TO_SOCK_COMMON_OR_NULL:
6081 case PTR_TO_TCP_SOCK:
6082 case PTR_TO_TCP_SOCK_OR_NULL:
6083 case PTR_TO_XDP_SOCK:
6084 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6085 dst, reg_type_str[ptr_reg->type]);
6086 return -EACCES;
6087 case PTR_TO_MAP_VALUE:
6088 if (!env->env->bypass_spec_v1 && !known && (smin_val < 0) != (smax_val < 0)) {
6089 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6090 off_reg == dst_reg ? dst : src);
6091 return -EACCES;
6092 }
6093 fallthrough;
6094 default:
6095 break;
6096 }
6097
6098 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6099 * The id may be overwritten later if we create a new variable offset.
6100 */
6101 dst_reg->type = ptr_reg->type;
6102 dst_reg->id = ptr_reg->id;
6103
6104 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6105 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6106 return -EINVAL;
6107
6108 /* pointer types do not carry 32-bit bounds at the moment. */
6109 __mark_reg32_unbounded(dst_reg);
6110
6111 switch (opcode) {
6112 case BPF_ADD:
6113 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6114 if (ret < 0) {
6115 verbose(env, "R%d tried to add from different maps, paths, or prohibited types\n", dst);
6116 return ret;
6117 }
6118 /* We can take a fixed offset as long as it doesn't overflow
6119 * the s32 'off' field
6120 */
6121 if (known && (ptr_reg->off + smin_val ==
6122 (s64)(s32)(ptr_reg->off + smin_val))) {
6123 /* pointer += K. Accumulate it into fixed offset */
6124 dst_reg->smin_value = smin_ptr;
6125 dst_reg->smax_value = smax_ptr;
6126 dst_reg->umin_value = umin_ptr;
6127 dst_reg->umax_value = umax_ptr;
6128 dst_reg->var_off = ptr_reg->var_off;
6129 dst_reg->off = ptr_reg->off + smin_val;
6130 dst_reg->raw = ptr_reg->raw;
6131 break;
6132 }
6133 /* A new variable offset is created. Note that off_reg->off
6134 * == 0, since it's a scalar.
6135 * dst_reg gets the pointer type and since some positive
6136 * integer value was added to the pointer, give it a new 'id'
6137 * if it's a PTR_TO_PACKET.
6138 * this creates a new 'base' pointer, off_reg (variable) gets
6139 * added into the variable offset, and we copy the fixed offset
6140 * from ptr_reg.
6141 */
6142 if (signed_add_overflows(smin_ptr, smin_val) ||
6143 signed_add_overflows(smax_ptr, smax_val)) {
6144 dst_reg->smin_value = S64_MIN;
6145 dst_reg->smax_value = S64_MAX;
6146 } else {
6147 dst_reg->smin_value = smin_ptr + smin_val;
6148 dst_reg->smax_value = smax_ptr + smax_val;
6149 }
6150 if (umin_ptr + umin_val < umin_ptr ||
6151 umax_ptr + umax_val < umax_ptr) {
6152 dst_reg->umin_value = 0;
6153 dst_reg->umax_value = U64_MAX;
6154 } else {
6155 dst_reg->umin_value = umin_ptr + umin_val;
6156 dst_reg->umax_value = umax_ptr + umax_val;
6157 }
6158 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6159 dst_reg->off = ptr_reg->off;
6160 dst_reg->raw = ptr_reg->raw;
6161 if (reg_is_pkt_pointer(ptr_reg)) {
6162 dst_reg->id = ++env->id_gen;
6163 /* something was added to pkt_ptr, set range to zero */
6164 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6165 }
6166 break;
6167 case BPF_SUB:
6168 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6169 if (ret < 0) {
6170 verbose(env, "R%d tried to sub from different maps, paths, or prohibited types\n", dst);
6171 return ret;
6172 }
6173 if (dst_reg == off_reg) {
6174 /* scalar -= pointer. Creates an unknown scalar */
6175 verbose(env, "R%d tried to subtract pointer from scalar\n",
6176 dst);
6177 return -EACCES;
6178 }
6179 /* We don't allow subtraction from FP, because (according to
6180 * test_verifier.c test "invalid fp arithmetic", JITs might not
6181 * be able to deal with it.
6182 */
6183 if (ptr_reg->type == PTR_TO_STACK) {
6184 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6185 dst);
6186 return -EACCES;
6187 }
6188 if (known && (ptr_reg->off - smin_val ==
6189 (s64)(s32)(ptr_reg->off - smin_val))) {
6190 /* pointer -= K. Subtract it from fixed offset */
6191 dst_reg->smin_value = smin_ptr;
6192 dst_reg->smax_value = smax_ptr;
6193 dst_reg->umin_value = umin_ptr;
6194 dst_reg->umax_value = umax_ptr;
6195 dst_reg->var_off = ptr_reg->var_off;
6196 dst_reg->id = ptr_reg->id;
6197 dst_reg->off = ptr_reg->off - smin_val;
6198 dst_reg->raw = ptr_reg->raw;
6199 break;
6200 }
6201 /* A new variable offset is created. If the subtrahend is known
6202 * nonnegative, then any reg->range we had before is still good.
6203 */
6204 if (signed_sub_overflows(smin_ptr, smax_val) ||
6205 signed_sub_overflows(smax_ptr, smin_val)) {
6206 /* Overflow possible, we know nothing */
6207 dst_reg->smin_value = S64_MIN;
6208 dst_reg->smax_value = S64_MAX;
6209 } else {
6210 dst_reg->smin_value = smin_ptr - smax_val;
6211 dst_reg->smax_value = smax_ptr - smin_val;
6212 }
6213 if (umin_ptr < umax_val) {
6214 /* Overflow possible, we know nothing */
6215 dst_reg->umin_value = 0;
6216 dst_reg->umax_value = U64_MAX;
6217 } else {
6218 /* Cannot overflow (as long as bounds are consistent) */
6219 dst_reg->umin_value = umin_ptr - umax_val;
6220 dst_reg->umax_value = umax_ptr - umin_val;
6221 }
6222 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6223 dst_reg->off = ptr_reg->off;
6224 dst_reg->raw = ptr_reg->raw;
6225 if (reg_is_pkt_pointer(ptr_reg)) {
6226 dst_reg->id = ++env->id_gen;
6227 /* something was added to pkt_ptr, set range to zero */
6228 if (smin_val < 0)
6229 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6230 }
6231 break;
6232 case BPF_AND:
6233 case BPF_OR:
6234 case BPF_XOR:
6235 /* bitwise ops on pointers are troublesome, prohibit. */
6236 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6237 dst, bpf_alu_string[opcode >> 4]);
6238 return -EACCES;
6239 default:
6240 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6241 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6242 dst, bpf_alu_string[opcode >> 4]);
6243 return -EACCES;
6244 }
6245
6246 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6247 return -EINVAL;
6248
6249 __update_reg_bounds(dst_reg);
6250 __reg_deduce_bounds(dst_reg);
6251 __reg_bound_offset(dst_reg);
6252
6253 /* For unprivileged we require that resulting offset must be in bounds
6254 * in order to be able to sanitize access later on.
6255 */
6256 if (!env->bypass_spec_v1) {
6257 if (dst_reg->type == PTR_TO_MAP_VALUE &&
6258 check_map_access(env, dst, dst_reg->off, 1, false)) {
6259 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6260 "prohibited for !root\n", dst);
6261 return -EACCES;
6262 } else if (dst_reg->type == PTR_TO_STACK &&
6263 check_stack_access_for_ptr_arithmetic(
6264 env, dst, dst_reg, dst_reg->off +
6265 dst_reg->var_off.value)) {
6266 return -EACCES;
6267 }
6268 }
6269
6270 return 0;
6271}
6272
6273static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6274 struct bpf_reg_state *src_reg)
6275{
6276 s32 smin_val = src_reg->s32_min_value;
6277 s32 smax_val = src_reg->s32_max_value;
6278 u32 umin_val = src_reg->u32_min_value;
6279 u32 umax_val = src_reg->u32_max_value;
6280
6281 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6282 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6283 dst_reg->s32_min_value = S32_MIN;
6284 dst_reg->s32_max_value = S32_MAX;
6285 } else {
6286 dst_reg->s32_min_value += smin_val;
6287 dst_reg->s32_max_value += smax_val;
6288 }
6289 if (dst_reg->u32_min_value + umin_val < umin_val ||
6290 dst_reg->u32_max_value + umax_val < umax_val) {
6291 dst_reg->u32_min_value = 0;
6292 dst_reg->u32_max_value = U32_MAX;
6293 } else {
6294 dst_reg->u32_min_value += umin_val;
6295 dst_reg->u32_max_value += umax_val;
6296 }
6297}
6298
6299static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6300 struct bpf_reg_state *src_reg)
6301{
6302 s64 smin_val = src_reg->smin_value;
6303 s64 smax_val = src_reg->smax_value;
6304 u64 umin_val = src_reg->umin_value;
6305 u64 umax_val = src_reg->umax_value;
6306
6307 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6308 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6309 dst_reg->smin_value = S64_MIN;
6310 dst_reg->smax_value = S64_MAX;
6311 } else {
6312 dst_reg->smin_value += smin_val;
6313 dst_reg->smax_value += smax_val;
6314 }
6315 if (dst_reg->umin_value + umin_val < umin_val ||
6316 dst_reg->umax_value + umax_val < umax_val) {
6317 dst_reg->umin_value = 0;
6318 dst_reg->umax_value = U64_MAX;
6319 } else {
6320 dst_reg->umin_value += umin_val;
6321 dst_reg->umax_value += umax_val;
6322 }
6323}
6324
6325static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6326 struct bpf_reg_state *src_reg)
6327{
6328 s32 smin_val = src_reg->s32_min_value;
6329 s32 smax_val = src_reg->s32_max_value;
6330 u32 umin_val = src_reg->u32_min_value;
6331 u32 umax_val = src_reg->u32_max_value;
6332
6333 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6334 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6335 /* Overflow possible, we know nothing */
6336 dst_reg->s32_min_value = S32_MIN;
6337 dst_reg->s32_max_value = S32_MAX;
6338 } else {
6339 dst_reg->s32_min_value -= smax_val;
6340 dst_reg->s32_max_value -= smin_val;
6341 }
6342 if (dst_reg->u32_min_value < umax_val) {
6343 /* Overflow possible, we know nothing */
6344 dst_reg->u32_min_value = 0;
6345 dst_reg->u32_max_value = U32_MAX;
6346 } else {
6347 /* Cannot overflow (as long as bounds are consistent) */
6348 dst_reg->u32_min_value -= umax_val;
6349 dst_reg->u32_max_value -= umin_val;
6350 }
6351}
6352
6353static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6354 struct bpf_reg_state *src_reg)
6355{
6356 s64 smin_val = src_reg->smin_value;
6357 s64 smax_val = src_reg->smax_value;
6358 u64 umin_val = src_reg->umin_value;
6359 u64 umax_val = src_reg->umax_value;
6360
6361 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6362 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6363 /* Overflow possible, we know nothing */
6364 dst_reg->smin_value = S64_MIN;
6365 dst_reg->smax_value = S64_MAX;
6366 } else {
6367 dst_reg->smin_value -= smax_val;
6368 dst_reg->smax_value -= smin_val;
6369 }
6370 if (dst_reg->umin_value < umax_val) {
6371 /* Overflow possible, we know nothing */
6372 dst_reg->umin_value = 0;
6373 dst_reg->umax_value = U64_MAX;
6374 } else {
6375 /* Cannot overflow (as long as bounds are consistent) */
6376 dst_reg->umin_value -= umax_val;
6377 dst_reg->umax_value -= umin_val;
6378 }
6379}
6380
6381static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6382 struct bpf_reg_state *src_reg)
6383{
6384 s32 smin_val = src_reg->s32_min_value;
6385 u32 umin_val = src_reg->u32_min_value;
6386 u32 umax_val = src_reg->u32_max_value;
6387
6388 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6389 /* Ain't nobody got time to multiply that sign */
6390 __mark_reg32_unbounded(dst_reg);
6391 return;
6392 }
6393 /* Both values are positive, so we can work with unsigned and
6394 * copy the result to signed (unless it exceeds S32_MAX).
6395 */
6396 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6397 /* Potential overflow, we know nothing */
6398 __mark_reg32_unbounded(dst_reg);
6399 return;
6400 }
6401 dst_reg->u32_min_value *= umin_val;
6402 dst_reg->u32_max_value *= umax_val;
6403 if (dst_reg->u32_max_value > S32_MAX) {
6404 /* Overflow possible, we know nothing */
6405 dst_reg->s32_min_value = S32_MIN;
6406 dst_reg->s32_max_value = S32_MAX;
6407 } else {
6408 dst_reg->s32_min_value = dst_reg->u32_min_value;
6409 dst_reg->s32_max_value = dst_reg->u32_max_value;
6410 }
6411}
6412
6413static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6414 struct bpf_reg_state *src_reg)
6415{
6416 s64 smin_val = src_reg->smin_value;
6417 u64 umin_val = src_reg->umin_value;
6418 u64 umax_val = src_reg->umax_value;
6419
6420 if (smin_val < 0 || dst_reg->smin_value < 0) {
6421 /* Ain't nobody got time to multiply that sign */
6422 __mark_reg64_unbounded(dst_reg);
6423 return;
6424 }
6425 /* Both values are positive, so we can work with unsigned and
6426 * copy the result to signed (unless it exceeds S64_MAX).
6427 */
6428 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6429 /* Potential overflow, we know nothing */
6430 __mark_reg64_unbounded(dst_reg);
6431 return;
6432 }
6433 dst_reg->umin_value *= umin_val;
6434 dst_reg->umax_value *= umax_val;
6435 if (dst_reg->umax_value > S64_MAX) {
6436 /* Overflow possible, we know nothing */
6437 dst_reg->smin_value = S64_MIN;
6438 dst_reg->smax_value = S64_MAX;
6439 } else {
6440 dst_reg->smin_value = dst_reg->umin_value;
6441 dst_reg->smax_value = dst_reg->umax_value;
6442 }
6443}
6444
6445static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6446 struct bpf_reg_state *src_reg)
6447{
6448 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6449 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6450 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6451 s32 smin_val = src_reg->s32_min_value;
6452 u32 umax_val = src_reg->u32_max_value;
6453
6454 /* Assuming scalar64_min_max_and will be called so its safe
6455 * to skip updating register for known 32-bit case.
6456 */
6457 if (src_known && dst_known)
6458 return;
6459
6460 /* We get our minimum from the var_off, since that's inherently
6461 * bitwise. Our maximum is the minimum of the operands' maxima.
6462 */
6463 dst_reg->u32_min_value = var32_off.value;
6464 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6465 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6466 /* Lose signed bounds when ANDing negative numbers,
6467 * ain't nobody got time for that.
6468 */
6469 dst_reg->s32_min_value = S32_MIN;
6470 dst_reg->s32_max_value = S32_MAX;
6471 } else {
6472 /* ANDing two positives gives a positive, so safe to
6473 * cast result into s64.
6474 */
6475 dst_reg->s32_min_value = dst_reg->u32_min_value;
6476 dst_reg->s32_max_value = dst_reg->u32_max_value;
6477 }
6478
6479}
6480
6481static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6482 struct bpf_reg_state *src_reg)
6483{
6484 bool src_known = tnum_is_const(src_reg->var_off);
6485 bool dst_known = tnum_is_const(dst_reg->var_off);
6486 s64 smin_val = src_reg->smin_value;
6487 u64 umax_val = src_reg->umax_value;
6488
6489 if (src_known && dst_known) {
6490 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6491 return;
6492 }
6493
6494 /* We get our minimum from the var_off, since that's inherently
6495 * bitwise. Our maximum is the minimum of the operands' maxima.
6496 */
6497 dst_reg->umin_value = dst_reg->var_off.value;
6498 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6499 if (dst_reg->smin_value < 0 || smin_val < 0) {
6500 /* Lose signed bounds when ANDing negative numbers,
6501 * ain't nobody got time for that.
6502 */
6503 dst_reg->smin_value = S64_MIN;
6504 dst_reg->smax_value = S64_MAX;
6505 } else {
6506 /* ANDing two positives gives a positive, so safe to
6507 * cast result into s64.
6508 */
6509 dst_reg->smin_value = dst_reg->umin_value;
6510 dst_reg->smax_value = dst_reg->umax_value;
6511 }
6512 /* We may learn something more from the var_off */
6513 __update_reg_bounds(dst_reg);
6514}
6515
6516static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6517 struct bpf_reg_state *src_reg)
6518{
6519 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6520 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6521 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6522 s32 smin_val = src_reg->s32_min_value;
6523 u32 umin_val = src_reg->u32_min_value;
6524
6525 /* Assuming scalar64_min_max_or will be called so it is safe
6526 * to skip updating register for known case.
6527 */
6528 if (src_known && dst_known)
6529 return;
6530
6531 /* We get our maximum from the var_off, and our minimum is the
6532 * maximum of the operands' minima
6533 */
6534 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6535 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6536 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6537 /* Lose signed bounds when ORing negative numbers,
6538 * ain't nobody got time for that.
6539 */
6540 dst_reg->s32_min_value = S32_MIN;
6541 dst_reg->s32_max_value = S32_MAX;
6542 } else {
6543 /* ORing two positives gives a positive, so safe to
6544 * cast result into s64.
6545 */
6546 dst_reg->s32_min_value = dst_reg->u32_min_value;
6547 dst_reg->s32_max_value = dst_reg->u32_max_value;
6548 }
6549}
6550
6551static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6552 struct bpf_reg_state *src_reg)
6553{
6554 bool src_known = tnum_is_const(src_reg->var_off);
6555 bool dst_known = tnum_is_const(dst_reg->var_off);
6556 s64 smin_val = src_reg->smin_value;
6557 u64 umin_val = src_reg->umin_value;
6558
6559 if (src_known && dst_known) {
6560 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6561 return;
6562 }
6563
6564 /* We get our maximum from the var_off, and our minimum is the
6565 * maximum of the operands' minima
6566 */
6567 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6568 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6569 if (dst_reg->smin_value < 0 || smin_val < 0) {
6570 /* Lose signed bounds when ORing negative numbers,
6571 * ain't nobody got time for that.
6572 */
6573 dst_reg->smin_value = S64_MIN;
6574 dst_reg->smax_value = S64_MAX;
6575 } else {
6576 /* ORing two positives gives a positive, so safe to
6577 * cast result into s64.
6578 */
6579 dst_reg->smin_value = dst_reg->umin_value;
6580 dst_reg->smax_value = dst_reg->umax_value;
6581 }
6582 /* We may learn something more from the var_off */
6583 __update_reg_bounds(dst_reg);
6584}
6585
6586static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6587 struct bpf_reg_state *src_reg)
6588{
6589 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6590 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6591 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6592 s32 smin_val = src_reg->s32_min_value;
6593
6594 /* Assuming scalar64_min_max_xor will be called so it is safe
6595 * to skip updating register for known case.
6596 */
6597 if (src_known && dst_known)
6598 return;
6599
6600 /* We get both minimum and maximum from the var32_off. */
6601 dst_reg->u32_min_value = var32_off.value;
6602 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6603
6604 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6605 /* XORing two positive sign numbers gives a positive,
6606 * so safe to cast u32 result into s32.
6607 */
6608 dst_reg->s32_min_value = dst_reg->u32_min_value;
6609 dst_reg->s32_max_value = dst_reg->u32_max_value;
6610 } else {
6611 dst_reg->s32_min_value = S32_MIN;
6612 dst_reg->s32_max_value = S32_MAX;
6613 }
6614}
6615
6616static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6617 struct bpf_reg_state *src_reg)
6618{
6619 bool src_known = tnum_is_const(src_reg->var_off);
6620 bool dst_known = tnum_is_const(dst_reg->var_off);
6621 s64 smin_val = src_reg->smin_value;
6622
6623 if (src_known && dst_known) {
6624 /* dst_reg->var_off.value has been updated earlier */
6625 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6626 return;
6627 }
6628
6629 /* We get both minimum and maximum from the var_off. */
6630 dst_reg->umin_value = dst_reg->var_off.value;
6631 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6632
6633 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6634 /* XORing two positive sign numbers gives a positive,
6635 * so safe to cast u64 result into s64.
6636 */
6637 dst_reg->smin_value = dst_reg->umin_value;
6638 dst_reg->smax_value = dst_reg->umax_value;
6639 } else {
6640 dst_reg->smin_value = S64_MIN;
6641 dst_reg->smax_value = S64_MAX;
6642 }
6643
6644 __update_reg_bounds(dst_reg);
6645}
6646
6647static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6648 u64 umin_val, u64 umax_val)
6649{
6650 /* We lose all sign bit information (except what we can pick
6651 * up from var_off)
6652 */
6653 dst_reg->s32_min_value = S32_MIN;
6654 dst_reg->s32_max_value = S32_MAX;
6655 /* If we might shift our top bit out, then we know nothing */
6656 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6657 dst_reg->u32_min_value = 0;
6658 dst_reg->u32_max_value = U32_MAX;
6659 } else {
6660 dst_reg->u32_min_value <<= umin_val;
6661 dst_reg->u32_max_value <<= umax_val;
6662 }
6663}
6664
6665static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6666 struct bpf_reg_state *src_reg)
6667{
6668 u32 umax_val = src_reg->u32_max_value;
6669 u32 umin_val = src_reg->u32_min_value;
6670 /* u32 alu operation will zext upper bits */
6671 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6672
6673 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6674 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6675 /* Not required but being careful mark reg64 bounds as unknown so
6676 * that we are forced to pick them up from tnum and zext later and
6677 * if some path skips this step we are still safe.
6678 */
6679 __mark_reg64_unbounded(dst_reg);
6680 __update_reg32_bounds(dst_reg);
6681}
6682
6683static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6684 u64 umin_val, u64 umax_val)
6685{
6686 /* Special case <<32 because it is a common compiler pattern to sign
6687 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6688 * positive we know this shift will also be positive so we can track
6689 * bounds correctly. Otherwise we lose all sign bit information except
6690 * what we can pick up from var_off. Perhaps we can generalize this
6691 * later to shifts of any length.
6692 */
6693 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6694 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6695 else
6696 dst_reg->smax_value = S64_MAX;
6697
6698 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6699 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6700 else
6701 dst_reg->smin_value = S64_MIN;
6702
6703 /* If we might shift our top bit out, then we know nothing */
6704 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6705 dst_reg->umin_value = 0;
6706 dst_reg->umax_value = U64_MAX;
6707 } else {
6708 dst_reg->umin_value <<= umin_val;
6709 dst_reg->umax_value <<= umax_val;
6710 }
6711}
6712
6713static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6714 struct bpf_reg_state *src_reg)
6715{
6716 u64 umax_val = src_reg->umax_value;
6717 u64 umin_val = src_reg->umin_value;
6718
6719 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6720 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6721 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6722
6723 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6724 /* We may learn something more from the var_off */
6725 __update_reg_bounds(dst_reg);
6726}
6727
6728static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6729 struct bpf_reg_state *src_reg)
6730{
6731 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6732 u32 umax_val = src_reg->u32_max_value;
6733 u32 umin_val = src_reg->u32_min_value;
6734
6735 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6736 * be negative, then either:
6737 * 1) src_reg might be zero, so the sign bit of the result is
6738 * unknown, so we lose our signed bounds
6739 * 2) it's known negative, thus the unsigned bounds capture the
6740 * signed bounds
6741 * 3) the signed bounds cross zero, so they tell us nothing
6742 * about the result
6743 * If the value in dst_reg is known nonnegative, then again the
6744 * unsigned bounds capture the signed bounds.
6745 * Thus, in all cases it suffices to blow away our signed bounds
6746 * and rely on inferring new ones from the unsigned bounds and
6747 * var_off of the result.
6748 */
6749 dst_reg->s32_min_value = S32_MIN;
6750 dst_reg->s32_max_value = S32_MAX;
6751
6752 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6753 dst_reg->u32_min_value >>= umax_val;
6754 dst_reg->u32_max_value >>= umin_val;
6755
6756 __mark_reg64_unbounded(dst_reg);
6757 __update_reg32_bounds(dst_reg);
6758}
6759
6760static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6761 struct bpf_reg_state *src_reg)
6762{
6763 u64 umax_val = src_reg->umax_value;
6764 u64 umin_val = src_reg->umin_value;
6765
6766 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6767 * be negative, then either:
6768 * 1) src_reg might be zero, so the sign bit of the result is
6769 * unknown, so we lose our signed bounds
6770 * 2) it's known negative, thus the unsigned bounds capture the
6771 * signed bounds
6772 * 3) the signed bounds cross zero, so they tell us nothing
6773 * about the result
6774 * If the value in dst_reg is known nonnegative, then again the
6775 * unsigned bounds capture the signed bounds.
6776 * Thus, in all cases it suffices to blow away our signed bounds
6777 * and rely on inferring new ones from the unsigned bounds and
6778 * var_off of the result.
6779 */
6780 dst_reg->smin_value = S64_MIN;
6781 dst_reg->smax_value = S64_MAX;
6782 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6783 dst_reg->umin_value >>= umax_val;
6784 dst_reg->umax_value >>= umin_val;
6785
6786 /* Its not easy to operate on alu32 bounds here because it depends
6787 * on bits being shifted in. Take easy way out and mark unbounded
6788 * so we can recalculate later from tnum.
6789 */
6790 __mark_reg32_unbounded(dst_reg);
6791 __update_reg_bounds(dst_reg);
6792}
6793
6794static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6795 struct bpf_reg_state *src_reg)
6796{
6797 u64 umin_val = src_reg->u32_min_value;
6798
6799 /* Upon reaching here, src_known is true and
6800 * umax_val is equal to umin_val.
6801 */
6802 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6803 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6804
6805 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6806
6807 /* blow away the dst_reg umin_value/umax_value and rely on
6808 * dst_reg var_off to refine the result.
6809 */
6810 dst_reg->u32_min_value = 0;
6811 dst_reg->u32_max_value = U32_MAX;
6812
6813 __mark_reg64_unbounded(dst_reg);
6814 __update_reg32_bounds(dst_reg);
6815}
6816
6817static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6818 struct bpf_reg_state *src_reg)
6819{
6820 u64 umin_val = src_reg->umin_value;
6821
6822 /* Upon reaching here, src_known is true and umax_val is equal
6823 * to umin_val.
6824 */
6825 dst_reg->smin_value >>= umin_val;
6826 dst_reg->smax_value >>= umin_val;
6827
6828 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6829
6830 /* blow away the dst_reg umin_value/umax_value and rely on
6831 * dst_reg var_off to refine the result.
6832 */
6833 dst_reg->umin_value = 0;
6834 dst_reg->umax_value = U64_MAX;
6835
6836 /* Its not easy to operate on alu32 bounds here because it depends
6837 * on bits being shifted in from upper 32-bits. Take easy way out
6838 * and mark unbounded so we can recalculate later from tnum.
6839 */
6840 __mark_reg32_unbounded(dst_reg);
6841 __update_reg_bounds(dst_reg);
6842}
6843
6844/* WARNING: This function does calculations on 64-bit values, but the actual
6845 * execution may occur on 32-bit values. Therefore, things like bitshifts
6846 * need extra checks in the 32-bit case.
6847 */
6848static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6849 struct bpf_insn *insn,
6850 struct bpf_reg_state *dst_reg,
6851 struct bpf_reg_state src_reg)
6852{
6853 struct bpf_reg_state *regs = cur_regs(env);
6854 u8 opcode = BPF_OP(insn->code);
6855 bool src_known;
6856 s64 smin_val, smax_val;
6857 u64 umin_val, umax_val;
6858 s32 s32_min_val, s32_max_val;
6859 u32 u32_min_val, u32_max_val;
6860 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6861 u32 dst = insn->dst_reg;
6862 int ret;
6863 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6864
6865 smin_val = src_reg.smin_value;
6866 smax_val = src_reg.smax_value;
6867 umin_val = src_reg.umin_value;
6868 umax_val = src_reg.umax_value;
6869
6870 s32_min_val = src_reg.s32_min_value;
6871 s32_max_val = src_reg.s32_max_value;
6872 u32_min_val = src_reg.u32_min_value;
6873 u32_max_val = src_reg.u32_max_value;
6874
6875 if (alu32) {
6876 src_known = tnum_subreg_is_const(src_reg.var_off);
6877 if ((src_known &&
6878 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6879 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6880 /* Taint dst register if offset had invalid bounds
6881 * derived from e.g. dead branches.
6882 */
6883 __mark_reg_unknown(env, dst_reg);
6884 return 0;
6885 }
6886 } else {
6887 src_known = tnum_is_const(src_reg.var_off);
6888 if ((src_known &&
6889 (smin_val != smax_val || umin_val != umax_val)) ||
6890 smin_val > smax_val || umin_val > umax_val) {
6891 /* Taint dst register if offset had invalid bounds
6892 * derived from e.g. dead branches.
6893 */
6894 __mark_reg_unknown(env, dst_reg);
6895 return 0;
6896 }
6897 }
6898
6899 if (!src_known &&
6900 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6901 __mark_reg_unknown(env, dst_reg);
6902 return 0;
6903 }
6904
6905 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6906 * There are two classes of instructions: The first class we track both
6907 * alu32 and alu64 sign/unsigned bounds independently this provides the
6908 * greatest amount of precision when alu operations are mixed with jmp32
6909 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6910 * and BPF_OR. This is possible because these ops have fairly easy to
6911 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6912 * See alu32 verifier tests for examples. The second class of
6913 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6914 * with regards to tracking sign/unsigned bounds because the bits may
6915 * cross subreg boundaries in the alu64 case. When this happens we mark
6916 * the reg unbounded in the subreg bound space and use the resulting
6917 * tnum to calculate an approximation of the sign/unsigned bounds.
6918 */
6919 switch (opcode) {
6920 case BPF_ADD:
6921 ret = sanitize_val_alu(env, insn);
6922 if (ret < 0) {
6923 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6924 return ret;
6925 }
6926 scalar32_min_max_add(dst_reg, &src_reg);
6927 scalar_min_max_add(dst_reg, &src_reg);
6928 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6929 break;
6930 case BPF_SUB:
6931 ret = sanitize_val_alu(env, insn);
6932 if (ret < 0) {
6933 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6934 return ret;
6935 }
6936 scalar32_min_max_sub(dst_reg, &src_reg);
6937 scalar_min_max_sub(dst_reg, &src_reg);
6938 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6939 break;
6940 case BPF_MUL:
6941 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6942 scalar32_min_max_mul(dst_reg, &src_reg);
6943 scalar_min_max_mul(dst_reg, &src_reg);
6944 break;
6945 case BPF_AND:
6946 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6947 scalar32_min_max_and(dst_reg, &src_reg);
6948 scalar_min_max_and(dst_reg, &src_reg);
6949 break;
6950 case BPF_OR:
6951 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6952 scalar32_min_max_or(dst_reg, &src_reg);
6953 scalar_min_max_or(dst_reg, &src_reg);
6954 break;
6955 case BPF_XOR:
6956 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6957 scalar32_min_max_xor(dst_reg, &src_reg);
6958 scalar_min_max_xor(dst_reg, &src_reg);
6959 break;
6960 case BPF_LSH:
6961 if (umax_val >= insn_bitness) {
6962 /* Shifts greater than 31 or 63 are undefined.
6963 * This includes shifts by a negative number.
6964 */
6965 mark_reg_unknown(env, regs, insn->dst_reg);
6966 break;
6967 }
6968 if (alu32)
6969 scalar32_min_max_lsh(dst_reg, &src_reg);
6970 else
6971 scalar_min_max_lsh(dst_reg, &src_reg);
6972 break;
6973 case BPF_RSH:
6974 if (umax_val >= insn_bitness) {
6975 /* Shifts greater than 31 or 63 are undefined.
6976 * This includes shifts by a negative number.
6977 */
6978 mark_reg_unknown(env, regs, insn->dst_reg);
6979 break;
6980 }
6981 if (alu32)
6982 scalar32_min_max_rsh(dst_reg, &src_reg);
6983 else
6984 scalar_min_max_rsh(dst_reg, &src_reg);
6985 break;
6986 case BPF_ARSH:
6987 if (umax_val >= insn_bitness) {
6988 /* Shifts greater than 31 or 63 are undefined.
6989 * This includes shifts by a negative number.
6990 */
6991 mark_reg_unknown(env, regs, insn->dst_reg);
6992 break;
6993 }
6994 if (alu32)
6995 scalar32_min_max_arsh(dst_reg, &src_reg);
6996 else
6997 scalar_min_max_arsh(dst_reg, &src_reg);
6998 break;
6999 default:
7000 mark_reg_unknown(env, regs, insn->dst_reg);
7001 break;
7002 }
7003
7004 /* ALU32 ops are zero extended into 64bit register */
7005 if (alu32)
7006 zext_32_to_64(dst_reg);
7007
7008 __update_reg_bounds(dst_reg);
7009 __reg_deduce_bounds(dst_reg);
7010 __reg_bound_offset(dst_reg);
7011 return 0;
7012}
7013
7014/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7015 * and var_off.
7016 */
7017static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7018 struct bpf_insn *insn)
7019{
7020 struct bpf_verifier_state *vstate = env->cur_state;
7021 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7022 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7023 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7024 u8 opcode = BPF_OP(insn->code);
7025 int err;
7026
7027 dst_reg = &regs[insn->dst_reg];
7028 src_reg = NULL;
7029 if (dst_reg->type != SCALAR_VALUE)
7030 ptr_reg = dst_reg;
7031 else
7032 /* Make sure ID is cleared otherwise dst_reg min/max could be
7033 * incorrectly propagated into other registers by find_equal_scalars()
7034 */
7035 dst_reg->id = 0;
7036 if (BPF_SRC(insn->code) == BPF_X) {
7037 src_reg = &regs[insn->src_reg];
7038 if (src_reg->type != SCALAR_VALUE) {
7039 if (dst_reg->type != SCALAR_VALUE) {
7040 /* Combining two pointers by any ALU op yields
7041 * an arbitrary scalar. Disallow all math except
7042 * pointer subtraction
7043 */
7044 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7045 mark_reg_unknown(env, regs, insn->dst_reg);
7046 return 0;
7047 }
7048 verbose(env, "R%d pointer %s pointer prohibited\n",
7049 insn->dst_reg,
7050 bpf_alu_string[opcode >> 4]);
7051 return -EACCES;
7052 } else {
7053 /* scalar += pointer
7054 * This is legal, but we have to reverse our
7055 * src/dest handling in computing the range
7056 */
7057 err = mark_chain_precision(env, insn->dst_reg);
7058 if (err)
7059 return err;
7060 return adjust_ptr_min_max_vals(env, insn,
7061 src_reg, dst_reg);
7062 }
7063 } else if (ptr_reg) {
7064 /* pointer += scalar */
7065 err = mark_chain_precision(env, insn->src_reg);
7066 if (err)
7067 return err;
7068 return adjust_ptr_min_max_vals(env, insn,
7069 dst_reg, src_reg);
7070 }
7071 } else {
7072 /* Pretend the src is a reg with a known value, since we only
7073 * need to be able to read from this state.
7074 */
7075 off_reg.type = SCALAR_VALUE;
7076 __mark_reg_known(&off_reg, insn->imm);
7077 src_reg = &off_reg;
7078 if (ptr_reg) /* pointer += K */
7079 return adjust_ptr_min_max_vals(env, insn,
7080 ptr_reg, src_reg);
7081 }
7082
7083 /* Got here implies adding two SCALAR_VALUEs */
7084 if (WARN_ON_ONCE(ptr_reg)) {
7085 print_verifier_state(env, state);
7086 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7087 return -EINVAL;
7088 }
7089 if (WARN_ON(!src_reg)) {
7090 print_verifier_state(env, state);
7091 verbose(env, "verifier internal error: no src_reg\n");
7092 return -EINVAL;
7093 }
7094 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7095}
7096
7097/* check validity of 32-bit and 64-bit arithmetic operations */
7098static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7099{
7100 struct bpf_reg_state *regs = cur_regs(env);
7101 u8 opcode = BPF_OP(insn->code);
7102 int err;
7103
7104 if (opcode == BPF_END || opcode == BPF_NEG) {
7105 if (opcode == BPF_NEG) {
7106 if (BPF_SRC(insn->code) != 0 ||
7107 insn->src_reg != BPF_REG_0 ||
7108 insn->off != 0 || insn->imm != 0) {
7109 verbose(env, "BPF_NEG uses reserved fields\n");
7110 return -EINVAL;
7111 }
7112 } else {
7113 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7114 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7115 BPF_CLASS(insn->code) == BPF_ALU64) {
7116 verbose(env, "BPF_END uses reserved fields\n");
7117 return -EINVAL;
7118 }
7119 }
7120
7121 /* check src operand */
7122 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7123 if (err)
7124 return err;
7125
7126 if (is_pointer_value(env, insn->dst_reg)) {
7127 verbose(env, "R%d pointer arithmetic prohibited\n",
7128 insn->dst_reg);
7129 return -EACCES;
7130 }
7131
7132 /* check dest operand */
7133 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7134 if (err)
7135 return err;
7136
7137 } else if (opcode == BPF_MOV) {
7138
7139 if (BPF_SRC(insn->code) == BPF_X) {
7140 if (insn->imm != 0 || insn->off != 0) {
7141 verbose(env, "BPF_MOV uses reserved fields\n");
7142 return -EINVAL;
7143 }
7144
7145 /* check src operand */
7146 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7147 if (err)
7148 return err;
7149 } else {
7150 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7151 verbose(env, "BPF_MOV uses reserved fields\n");
7152 return -EINVAL;
7153 }
7154 }
7155
7156 /* check dest operand, mark as required later */
7157 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7158 if (err)
7159 return err;
7160
7161 if (BPF_SRC(insn->code) == BPF_X) {
7162 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7163 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7164
7165 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7166 /* case: R1 = R2
7167 * copy register state to dest reg
7168 */
7169 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7170 /* Assign src and dst registers the same ID
7171 * that will be used by find_equal_scalars()
7172 * to propagate min/max range.
7173 */
7174 src_reg->id = ++env->id_gen;
7175 *dst_reg = *src_reg;
7176 dst_reg->live |= REG_LIVE_WRITTEN;
7177 dst_reg->subreg_def = DEF_NOT_SUBREG;
7178 } else {
7179 /* R1 = (u32) R2 */
7180 if (is_pointer_value(env, insn->src_reg)) {
7181 verbose(env,
7182 "R%d partial copy of pointer\n",
7183 insn->src_reg);
7184 return -EACCES;
7185 } else if (src_reg->type == SCALAR_VALUE) {
7186 *dst_reg = *src_reg;
7187 /* Make sure ID is cleared otherwise
7188 * dst_reg min/max could be incorrectly
7189 * propagated into src_reg by find_equal_scalars()
7190 */
7191 dst_reg->id = 0;
7192 dst_reg->live |= REG_LIVE_WRITTEN;
7193 dst_reg->subreg_def = env->insn_idx + 1;
7194 } else {
7195 mark_reg_unknown(env, regs,
7196 insn->dst_reg);
7197 }
7198 zext_32_to_64(dst_reg);
7199 }
7200 } else {
7201 /* case: R = imm
7202 * remember the value we stored into this reg
7203 */
7204 /* clear any state __mark_reg_known doesn't set */
7205 mark_reg_unknown(env, regs, insn->dst_reg);
7206 regs[insn->dst_reg].type = SCALAR_VALUE;
7207 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7208 __mark_reg_known(regs + insn->dst_reg,
7209 insn->imm);
7210 } else {
7211 __mark_reg_known(regs + insn->dst_reg,
7212 (u32)insn->imm);
7213 }
7214 }
7215
7216 } else if (opcode > BPF_END) {
7217 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7218 return -EINVAL;
7219
7220 } else { /* all other ALU ops: and, sub, xor, add, ... */
7221
7222 if (BPF_SRC(insn->code) == BPF_X) {
7223 if (insn->imm != 0 || insn->off != 0) {
7224 verbose(env, "BPF_ALU uses reserved fields\n");
7225 return -EINVAL;
7226 }
7227 /* check src1 operand */
7228 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7229 if (err)
7230 return err;
7231 } else {
7232 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7233 verbose(env, "BPF_ALU uses reserved fields\n");
7234 return -EINVAL;
7235 }
7236 }
7237
7238 /* check src2 operand */
7239 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7240 if (err)
7241 return err;
7242
7243 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7244 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7245 verbose(env, "div by zero\n");
7246 return -EINVAL;
7247 }
7248
7249 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7250 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7251 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7252
7253 if (insn->imm < 0 || insn->imm >= size) {
7254 verbose(env, "invalid shift %d\n", insn->imm);
7255 return -EINVAL;
7256 }
7257 }
7258
7259 /* check dest operand */
7260 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7261 if (err)
7262 return err;
7263
7264 return adjust_reg_min_max_vals(env, insn);
7265 }
7266
7267 return 0;
7268}
7269
7270static void __find_good_pkt_pointers(struct bpf_func_state *state,
7271 struct bpf_reg_state *dst_reg,
7272 enum bpf_reg_type type, int new_range)
7273{
7274 struct bpf_reg_state *reg;
7275 int i;
7276
7277 for (i = 0; i < MAX_BPF_REG; i++) {
7278 reg = &state->regs[i];
7279 if (reg->type == type && reg->id == dst_reg->id)
7280 /* keep the maximum range already checked */
7281 reg->range = max(reg->range, new_range);
7282 }
7283
7284 bpf_for_each_spilled_reg(i, state, reg) {
7285 if (!reg)
7286 continue;
7287 if (reg->type == type && reg->id == dst_reg->id)
7288 reg->range = max(reg->range, new_range);
7289 }
7290}
7291
7292static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7293 struct bpf_reg_state *dst_reg,
7294 enum bpf_reg_type type,
7295 bool range_right_open)
7296{
7297 int new_range, i;
7298
7299 if (dst_reg->off < 0 ||
7300 (dst_reg->off == 0 && range_right_open))
7301 /* This doesn't give us any range */
7302 return;
7303
7304 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7305 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7306 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7307 * than pkt_end, but that's because it's also less than pkt.
7308 */
7309 return;
7310
7311 new_range = dst_reg->off;
7312 if (range_right_open)
7313 new_range--;
7314
7315 /* Examples for register markings:
7316 *
7317 * pkt_data in dst register:
7318 *
7319 * r2 = r3;
7320 * r2 += 8;
7321 * if (r2 > pkt_end) goto <handle exception>
7322 * <access okay>
7323 *
7324 * r2 = r3;
7325 * r2 += 8;
7326 * if (r2 < pkt_end) goto <access okay>
7327 * <handle exception>
7328 *
7329 * Where:
7330 * r2 == dst_reg, pkt_end == src_reg
7331 * r2=pkt(id=n,off=8,r=0)
7332 * r3=pkt(id=n,off=0,r=0)
7333 *
7334 * pkt_data in src register:
7335 *
7336 * r2 = r3;
7337 * r2 += 8;
7338 * if (pkt_end >= r2) goto <access okay>
7339 * <handle exception>
7340 *
7341 * r2 = r3;
7342 * r2 += 8;
7343 * if (pkt_end <= r2) goto <handle exception>
7344 * <access okay>
7345 *
7346 * Where:
7347 * pkt_end == dst_reg, r2 == src_reg
7348 * r2=pkt(id=n,off=8,r=0)
7349 * r3=pkt(id=n,off=0,r=0)
7350 *
7351 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7352 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7353 * and [r3, r3 + 8-1) respectively is safe to access depending on
7354 * the check.
7355 */
7356
7357 /* If our ids match, then we must have the same max_value. And we
7358 * don't care about the other reg's fixed offset, since if it's too big
7359 * the range won't allow anything.
7360 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7361 */
7362 for (i = 0; i <= vstate->curframe; i++)
7363 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7364 new_range);
7365}
7366
7367static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7368{
7369 struct tnum subreg = tnum_subreg(reg->var_off);
7370 s32 sval = (s32)val;
7371
7372 switch (opcode) {
7373 case BPF_JEQ:
7374 if (tnum_is_const(subreg))
7375 return !!tnum_equals_const(subreg, val);
7376 break;
7377 case BPF_JNE:
7378 if (tnum_is_const(subreg))
7379 return !tnum_equals_const(subreg, val);
7380 break;
7381 case BPF_JSET:
7382 if ((~subreg.mask & subreg.value) & val)
7383 return 1;
7384 if (!((subreg.mask | subreg.value) & val))
7385 return 0;
7386 break;
7387 case BPF_JGT:
7388 if (reg->u32_min_value > val)
7389 return 1;
7390 else if (reg->u32_max_value <= val)
7391 return 0;
7392 break;
7393 case BPF_JSGT:
7394 if (reg->s32_min_value > sval)
7395 return 1;
7396 else if (reg->s32_max_value <= sval)
7397 return 0;
7398 break;
7399 case BPF_JLT:
7400 if (reg->u32_max_value < val)
7401 return 1;
7402 else if (reg->u32_min_value >= val)
7403 return 0;
7404 break;
7405 case BPF_JSLT:
7406 if (reg->s32_max_value < sval)
7407 return 1;
7408 else if (reg->s32_min_value >= sval)
7409 return 0;
7410 break;
7411 case BPF_JGE:
7412 if (reg->u32_min_value >= val)
7413 return 1;
7414 else if (reg->u32_max_value < val)
7415 return 0;
7416 break;
7417 case BPF_JSGE:
7418 if (reg->s32_min_value >= sval)
7419 return 1;
7420 else if (reg->s32_max_value < sval)
7421 return 0;
7422 break;
7423 case BPF_JLE:
7424 if (reg->u32_max_value <= val)
7425 return 1;
7426 else if (reg->u32_min_value > val)
7427 return 0;
7428 break;
7429 case BPF_JSLE:
7430 if (reg->s32_max_value <= sval)
7431 return 1;
7432 else if (reg->s32_min_value > sval)
7433 return 0;
7434 break;
7435 }
7436
7437 return -1;
7438}
7439
7440
7441static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7442{
7443 s64 sval = (s64)val;
7444
7445 switch (opcode) {
7446 case BPF_JEQ:
7447 if (tnum_is_const(reg->var_off))
7448 return !!tnum_equals_const(reg->var_off, val);
7449 break;
7450 case BPF_JNE:
7451 if (tnum_is_const(reg->var_off))
7452 return !tnum_equals_const(reg->var_off, val);
7453 break;
7454 case BPF_JSET:
7455 if ((~reg->var_off.mask & reg->var_off.value) & val)
7456 return 1;
7457 if (!((reg->var_off.mask | reg->var_off.value) & val))
7458 return 0;
7459 break;
7460 case BPF_JGT:
7461 if (reg->umin_value > val)
7462 return 1;
7463 else if (reg->umax_value <= val)
7464 return 0;
7465 break;
7466 case BPF_JSGT:
7467 if (reg->smin_value > sval)
7468 return 1;
7469 else if (reg->smax_value <= sval)
7470 return 0;
7471 break;
7472 case BPF_JLT:
7473 if (reg->umax_value < val)
7474 return 1;
7475 else if (reg->umin_value >= val)
7476 return 0;
7477 break;
7478 case BPF_JSLT:
7479 if (reg->smax_value < sval)
7480 return 1;
7481 else if (reg->smin_value >= sval)
7482 return 0;
7483 break;
7484 case BPF_JGE:
7485 if (reg->umin_value >= val)
7486 return 1;
7487 else if (reg->umax_value < val)
7488 return 0;
7489 break;
7490 case BPF_JSGE:
7491 if (reg->smin_value >= sval)
7492 return 1;
7493 else if (reg->smax_value < sval)
7494 return 0;
7495 break;
7496 case BPF_JLE:
7497 if (reg->umax_value <= val)
7498 return 1;
7499 else if (reg->umin_value > val)
7500 return 0;
7501 break;
7502 case BPF_JSLE:
7503 if (reg->smax_value <= sval)
7504 return 1;
7505 else if (reg->smin_value > sval)
7506 return 0;
7507 break;
7508 }
7509
7510 return -1;
7511}
7512
7513/* compute branch direction of the expression "if (reg opcode val) goto target;"
7514 * and return:
7515 * 1 - branch will be taken and "goto target" will be executed
7516 * 0 - branch will not be taken and fall-through to next insn
7517 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7518 * range [0,10]
7519 */
7520static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7521 bool is_jmp32)
7522{
7523 if (__is_pointer_value(false, reg)) {
7524 if (!reg_type_not_null(reg->type))
7525 return -1;
7526
7527 /* If pointer is valid tests against zero will fail so we can
7528 * use this to direct branch taken.
7529 */
7530 if (val != 0)
7531 return -1;
7532
7533 switch (opcode) {
7534 case BPF_JEQ:
7535 return 0;
7536 case BPF_JNE:
7537 return 1;
7538 default:
7539 return -1;
7540 }
7541 }
7542
7543 if (is_jmp32)
7544 return is_branch32_taken(reg, val, opcode);
7545 return is_branch64_taken(reg, val, opcode);
7546}
7547
7548static int flip_opcode(u32 opcode)
7549{
7550 /* How can we transform "a <op> b" into "b <op> a"? */
7551 static const u8 opcode_flip[16] = {
7552 /* these stay the same */
7553 [BPF_JEQ >> 4] = BPF_JEQ,
7554 [BPF_JNE >> 4] = BPF_JNE,
7555 [BPF_JSET >> 4] = BPF_JSET,
7556 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7557 [BPF_JGE >> 4] = BPF_JLE,
7558 [BPF_JGT >> 4] = BPF_JLT,
7559 [BPF_JLE >> 4] = BPF_JGE,
7560 [BPF_JLT >> 4] = BPF_JGT,
7561 [BPF_JSGE >> 4] = BPF_JSLE,
7562 [BPF_JSGT >> 4] = BPF_JSLT,
7563 [BPF_JSLE >> 4] = BPF_JSGE,
7564 [BPF_JSLT >> 4] = BPF_JSGT
7565 };
7566 return opcode_flip[opcode >> 4];
7567}
7568
7569static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7570 struct bpf_reg_state *src_reg,
7571 u8 opcode)
7572{
7573 struct bpf_reg_state *pkt;
7574
7575 if (src_reg->type == PTR_TO_PACKET_END) {
7576 pkt = dst_reg;
7577 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7578 pkt = src_reg;
7579 opcode = flip_opcode(opcode);
7580 } else {
7581 return -1;
7582 }
7583
7584 if (pkt->range >= 0)
7585 return -1;
7586
7587 switch (opcode) {
7588 case BPF_JLE:
7589 /* pkt <= pkt_end */
7590 fallthrough;
7591 case BPF_JGT:
7592 /* pkt > pkt_end */
7593 if (pkt->range == BEYOND_PKT_END)
7594 /* pkt has at last one extra byte beyond pkt_end */
7595 return opcode == BPF_JGT;
7596 break;
7597 case BPF_JLT:
7598 /* pkt < pkt_end */
7599 fallthrough;
7600 case BPF_JGE:
7601 /* pkt >= pkt_end */
7602 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7603 return opcode == BPF_JGE;
7604 break;
7605 }
7606 return -1;
7607}
7608
7609/* Adjusts the register min/max values in the case that the dst_reg is the
7610 * variable register that we are working on, and src_reg is a constant or we're
7611 * simply doing a BPF_K check.
7612 * In JEQ/JNE cases we also adjust the var_off values.
7613 */
7614static void reg_set_min_max(struct bpf_reg_state *true_reg,
7615 struct bpf_reg_state *false_reg,
7616 u64 val, u32 val32,
7617 u8 opcode, bool is_jmp32)
7618{
7619 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7620 struct tnum false_64off = false_reg->var_off;
7621 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7622 struct tnum true_64off = true_reg->var_off;
7623 s64 sval = (s64)val;
7624 s32 sval32 = (s32)val32;
7625
7626 /* If the dst_reg is a pointer, we can't learn anything about its
7627 * variable offset from the compare (unless src_reg were a pointer into
7628 * the same object, but we don't bother with that.
7629 * Since false_reg and true_reg have the same type by construction, we
7630 * only need to check one of them for pointerness.
7631 */
7632 if (__is_pointer_value(false, false_reg))
7633 return;
7634
7635 switch (opcode) {
7636 case BPF_JEQ:
7637 case BPF_JNE:
7638 {
7639 struct bpf_reg_state *reg =
7640 opcode == BPF_JEQ ? true_reg : false_reg;
7641
7642 /* JEQ/JNE comparison doesn't change the register equivalence.
7643 * r1 = r2;
7644 * if (r1 == 42) goto label;
7645 * ...
7646 * label: // here both r1 and r2 are known to be 42.
7647 *
7648 * Hence when marking register as known preserve it's ID.
7649 */
7650 if (is_jmp32)
7651 __mark_reg32_known(reg, val32);
7652 else
7653 ___mark_reg_known(reg, val);
7654 break;
7655 }
7656 case BPF_JSET:
7657 if (is_jmp32) {
7658 false_32off = tnum_and(false_32off, tnum_const(~val32));
7659 if (is_power_of_2(val32))
7660 true_32off = tnum_or(true_32off,
7661 tnum_const(val32));
7662 } else {
7663 false_64off = tnum_and(false_64off, tnum_const(~val));
7664 if (is_power_of_2(val))
7665 true_64off = tnum_or(true_64off,
7666 tnum_const(val));
7667 }
7668 break;
7669 case BPF_JGE:
7670 case BPF_JGT:
7671 {
7672 if (is_jmp32) {
7673 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7674 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7675
7676 false_reg->u32_max_value = min(false_reg->u32_max_value,
7677 false_umax);
7678 true_reg->u32_min_value = max(true_reg->u32_min_value,
7679 true_umin);
7680 } else {
7681 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7682 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7683
7684 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7685 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7686 }
7687 break;
7688 }
7689 case BPF_JSGE:
7690 case BPF_JSGT:
7691 {
7692 if (is_jmp32) {
7693 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7694 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7695
7696 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7697 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7698 } else {
7699 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7700 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7701
7702 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7703 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7704 }
7705 break;
7706 }
7707 case BPF_JLE:
7708 case BPF_JLT:
7709 {
7710 if (is_jmp32) {
7711 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7712 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7713
7714 false_reg->u32_min_value = max(false_reg->u32_min_value,
7715 false_umin);
7716 true_reg->u32_max_value = min(true_reg->u32_max_value,
7717 true_umax);
7718 } else {
7719 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7720 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7721
7722 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7723 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7724 }
7725 break;
7726 }
7727 case BPF_JSLE:
7728 case BPF_JSLT:
7729 {
7730 if (is_jmp32) {
7731 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7732 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7733
7734 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7735 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7736 } else {
7737 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7738 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7739
7740 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7741 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7742 }
7743 break;
7744 }
7745 default:
7746 return;
7747 }
7748
7749 if (is_jmp32) {
7750 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7751 tnum_subreg(false_32off));
7752 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7753 tnum_subreg(true_32off));
7754 __reg_combine_32_into_64(false_reg);
7755 __reg_combine_32_into_64(true_reg);
7756 } else {
7757 false_reg->var_off = false_64off;
7758 true_reg->var_off = true_64off;
7759 __reg_combine_64_into_32(false_reg);
7760 __reg_combine_64_into_32(true_reg);
7761 }
7762}
7763
7764/* Same as above, but for the case that dst_reg holds a constant and src_reg is
7765 * the variable reg.
7766 */
7767static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7768 struct bpf_reg_state *false_reg,
7769 u64 val, u32 val32,
7770 u8 opcode, bool is_jmp32)
7771{
7772 opcode = flip_opcode(opcode);
7773 /* This uses zero as "not present in table"; luckily the zero opcode,
7774 * BPF_JA, can't get here.
7775 */
7776 if (opcode)
7777 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7778}
7779
7780/* Regs are known to be equal, so intersect their min/max/var_off */
7781static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7782 struct bpf_reg_state *dst_reg)
7783{
7784 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7785 dst_reg->umin_value);
7786 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7787 dst_reg->umax_value);
7788 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7789 dst_reg->smin_value);
7790 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7791 dst_reg->smax_value);
7792 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7793 dst_reg->var_off);
7794 /* We might have learned new bounds from the var_off. */
7795 __update_reg_bounds(src_reg);
7796 __update_reg_bounds(dst_reg);
7797 /* We might have learned something about the sign bit. */
7798 __reg_deduce_bounds(src_reg);
7799 __reg_deduce_bounds(dst_reg);
7800 /* We might have learned some bits from the bounds. */
7801 __reg_bound_offset(src_reg);
7802 __reg_bound_offset(dst_reg);
7803 /* Intersecting with the old var_off might have improved our bounds
7804 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7805 * then new var_off is (0; 0x7f...fc) which improves our umax.
7806 */
7807 __update_reg_bounds(src_reg);
7808 __update_reg_bounds(dst_reg);
7809}
7810
7811static void reg_combine_min_max(struct bpf_reg_state *true_src,
7812 struct bpf_reg_state *true_dst,
7813 struct bpf_reg_state *false_src,
7814 struct bpf_reg_state *false_dst,
7815 u8 opcode)
7816{
7817 switch (opcode) {
7818 case BPF_JEQ:
7819 __reg_combine_min_max(true_src, true_dst);
7820 break;
7821 case BPF_JNE:
7822 __reg_combine_min_max(false_src, false_dst);
7823 break;
7824 }
7825}
7826
7827static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7828 struct bpf_reg_state *reg, u32 id,
7829 bool is_null)
7830{
7831 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7832 !WARN_ON_ONCE(!reg->id)) {
7833 /* Old offset (both fixed and variable parts) should
7834 * have been known-zero, because we don't allow pointer
7835 * arithmetic on pointers that might be NULL.
7836 */
7837 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7838 !tnum_equals_const(reg->var_off, 0) ||
7839 reg->off)) {
7840 __mark_reg_known_zero(reg);
7841 reg->off = 0;
7842 }
7843 if (is_null) {
7844 reg->type = SCALAR_VALUE;
7845 /* We don't need id and ref_obj_id from this point
7846 * onwards anymore, thus we should better reset it,
7847 * so that state pruning has chances to take effect.
7848 */
7849 reg->id = 0;
7850 reg->ref_obj_id = 0;
7851
7852 return;
7853 }
7854
7855 mark_ptr_not_null_reg(reg);
7856
7857 if (!reg_may_point_to_spin_lock(reg)) {
7858 /* For not-NULL ptr, reg->ref_obj_id will be reset
7859 * in release_reg_references().
7860 *
7861 * reg->id is still used by spin_lock ptr. Other
7862 * than spin_lock ptr type, reg->id can be reset.
7863 */
7864 reg->id = 0;
7865 }
7866 }
7867}
7868
7869static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7870 bool is_null)
7871{
7872 struct bpf_reg_state *reg;
7873 int i;
7874
7875 for (i = 0; i < MAX_BPF_REG; i++)
7876 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7877
7878 bpf_for_each_spilled_reg(i, state, reg) {
7879 if (!reg)
7880 continue;
7881 mark_ptr_or_null_reg(state, reg, id, is_null);
7882 }
7883}
7884
7885/* The logic is similar to find_good_pkt_pointers(), both could eventually
7886 * be folded together at some point.
7887 */
7888static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7889 bool is_null)
7890{
7891 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7892 struct bpf_reg_state *regs = state->regs;
7893 u32 ref_obj_id = regs[regno].ref_obj_id;
7894 u32 id = regs[regno].id;
7895 int i;
7896
7897 if (ref_obj_id && ref_obj_id == id && is_null)
7898 /* regs[regno] is in the " == NULL" branch.
7899 * No one could have freed the reference state before
7900 * doing the NULL check.
7901 */
7902 WARN_ON_ONCE(release_reference_state(state, id));
7903
7904 for (i = 0; i <= vstate->curframe; i++)
7905 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7906}
7907
7908static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7909 struct bpf_reg_state *dst_reg,
7910 struct bpf_reg_state *src_reg,
7911 struct bpf_verifier_state *this_branch,
7912 struct bpf_verifier_state *other_branch)
7913{
7914 if (BPF_SRC(insn->code) != BPF_X)
7915 return false;
7916
7917 /* Pointers are always 64-bit. */
7918 if (BPF_CLASS(insn->code) == BPF_JMP32)
7919 return false;
7920
7921 switch (BPF_OP(insn->code)) {
7922 case BPF_JGT:
7923 if ((dst_reg->type == PTR_TO_PACKET &&
7924 src_reg->type == PTR_TO_PACKET_END) ||
7925 (dst_reg->type == PTR_TO_PACKET_META &&
7926 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7927 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7928 find_good_pkt_pointers(this_branch, dst_reg,
7929 dst_reg->type, false);
7930 mark_pkt_end(other_branch, insn->dst_reg, true);
7931 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7932 src_reg->type == PTR_TO_PACKET) ||
7933 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7934 src_reg->type == PTR_TO_PACKET_META)) {
7935 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7936 find_good_pkt_pointers(other_branch, src_reg,
7937 src_reg->type, true);
7938 mark_pkt_end(this_branch, insn->src_reg, false);
7939 } else {
7940 return false;
7941 }
7942 break;
7943 case BPF_JLT:
7944 if ((dst_reg->type == PTR_TO_PACKET &&
7945 src_reg->type == PTR_TO_PACKET_END) ||
7946 (dst_reg->type == PTR_TO_PACKET_META &&
7947 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7948 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7949 find_good_pkt_pointers(other_branch, dst_reg,
7950 dst_reg->type, true);
7951 mark_pkt_end(this_branch, insn->dst_reg, false);
7952 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7953 src_reg->type == PTR_TO_PACKET) ||
7954 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7955 src_reg->type == PTR_TO_PACKET_META)) {
7956 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7957 find_good_pkt_pointers(this_branch, src_reg,
7958 src_reg->type, false);
7959 mark_pkt_end(other_branch, insn->src_reg, true);
7960 } else {
7961 return false;
7962 }
7963 break;
7964 case BPF_JGE:
7965 if ((dst_reg->type == PTR_TO_PACKET &&
7966 src_reg->type == PTR_TO_PACKET_END) ||
7967 (dst_reg->type == PTR_TO_PACKET_META &&
7968 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7969 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7970 find_good_pkt_pointers(this_branch, dst_reg,
7971 dst_reg->type, true);
7972 mark_pkt_end(other_branch, insn->dst_reg, false);
7973 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7974 src_reg->type == PTR_TO_PACKET) ||
7975 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7976 src_reg->type == PTR_TO_PACKET_META)) {
7977 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7978 find_good_pkt_pointers(other_branch, src_reg,
7979 src_reg->type, false);
7980 mark_pkt_end(this_branch, insn->src_reg, true);
7981 } else {
7982 return false;
7983 }
7984 break;
7985 case BPF_JLE:
7986 if ((dst_reg->type == PTR_TO_PACKET &&
7987 src_reg->type == PTR_TO_PACKET_END) ||
7988 (dst_reg->type == PTR_TO_PACKET_META &&
7989 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7990 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7991 find_good_pkt_pointers(other_branch, dst_reg,
7992 dst_reg->type, false);
7993 mark_pkt_end(this_branch, insn->dst_reg, true);
7994 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7995 src_reg->type == PTR_TO_PACKET) ||
7996 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7997 src_reg->type == PTR_TO_PACKET_META)) {
7998 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7999 find_good_pkt_pointers(this_branch, src_reg,
8000 src_reg->type, true);
8001 mark_pkt_end(other_branch, insn->src_reg, false);
8002 } else {
8003 return false;
8004 }
8005 break;
8006 default:
8007 return false;
8008 }
8009
8010 return true;
8011}
8012
8013static void find_equal_scalars(struct bpf_verifier_state *vstate,
8014 struct bpf_reg_state *known_reg)
8015{
8016 struct bpf_func_state *state;
8017 struct bpf_reg_state *reg;
8018 int i, j;
8019
8020 for (i = 0; i <= vstate->curframe; i++) {
8021 state = vstate->frame[i];
8022 for (j = 0; j < MAX_BPF_REG; j++) {
8023 reg = &state->regs[j];
8024 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8025 *reg = *known_reg;
8026 }
8027
8028 bpf_for_each_spilled_reg(j, state, reg) {
8029 if (!reg)
8030 continue;
8031 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8032 *reg = *known_reg;
8033 }
8034 }
8035}
8036
8037static int check_cond_jmp_op(struct bpf_verifier_env *env,
8038 struct bpf_insn *insn, int *insn_idx)
8039{
8040 struct bpf_verifier_state *this_branch = env->cur_state;
8041 struct bpf_verifier_state *other_branch;
8042 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8043 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8044 u8 opcode = BPF_OP(insn->code);
8045 bool is_jmp32;
8046 int pred = -1;
8047 int err;
8048
8049 /* Only conditional jumps are expected to reach here. */
8050 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8051 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8052 return -EINVAL;
8053 }
8054
8055 if (BPF_SRC(insn->code) == BPF_X) {
8056 if (insn->imm != 0) {
8057 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8058 return -EINVAL;
8059 }
8060
8061 /* check src1 operand */
8062 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8063 if (err)
8064 return err;
8065
8066 if (is_pointer_value(env, insn->src_reg)) {
8067 verbose(env, "R%d pointer comparison prohibited\n",
8068 insn->src_reg);
8069 return -EACCES;
8070 }
8071 src_reg = &regs[insn->src_reg];
8072 } else {
8073 if (insn->src_reg != BPF_REG_0) {
8074 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8075 return -EINVAL;
8076 }
8077 }
8078
8079 /* check src2 operand */
8080 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8081 if (err)
8082 return err;
8083
8084 dst_reg = &regs[insn->dst_reg];
8085 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8086
8087 if (BPF_SRC(insn->code) == BPF_K) {
8088 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8089 } else if (src_reg->type == SCALAR_VALUE &&
8090 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8091 pred = is_branch_taken(dst_reg,
8092 tnum_subreg(src_reg->var_off).value,
8093 opcode,
8094 is_jmp32);
8095 } else if (src_reg->type == SCALAR_VALUE &&
8096 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8097 pred = is_branch_taken(dst_reg,
8098 src_reg->var_off.value,
8099 opcode,
8100 is_jmp32);
8101 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8102 reg_is_pkt_pointer_any(src_reg) &&
8103 !is_jmp32) {
8104 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8105 }
8106
8107 if (pred >= 0) {
8108 /* If we get here with a dst_reg pointer type it is because
8109 * above is_branch_taken() special cased the 0 comparison.
8110 */
8111 if (!__is_pointer_value(false, dst_reg))
8112 err = mark_chain_precision(env, insn->dst_reg);
8113 if (BPF_SRC(insn->code) == BPF_X && !err &&
8114 !__is_pointer_value(false, src_reg))
8115 err = mark_chain_precision(env, insn->src_reg);
8116 if (err)
8117 return err;
8118 }
8119 if (pred == 1) {
8120 /* only follow the goto, ignore fall-through */
8121 *insn_idx += insn->off;
8122 return 0;
8123 } else if (pred == 0) {
8124 /* only follow fall-through branch, since
8125 * that's where the program will go
8126 */
8127 return 0;
8128 }
8129
8130 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8131 false);
8132 if (!other_branch)
8133 return -EFAULT;
8134 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8135
8136 /* detect if we are comparing against a constant value so we can adjust
8137 * our min/max values for our dst register.
8138 * this is only legit if both are scalars (or pointers to the same
8139 * object, I suppose, but we don't support that right now), because
8140 * otherwise the different base pointers mean the offsets aren't
8141 * comparable.
8142 */
8143 if (BPF_SRC(insn->code) == BPF_X) {
8144 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8145
8146 if (dst_reg->type == SCALAR_VALUE &&
8147 src_reg->type == SCALAR_VALUE) {
8148 if (tnum_is_const(src_reg->var_off) ||
8149 (is_jmp32 &&
8150 tnum_is_const(tnum_subreg(src_reg->var_off))))
8151 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8152 dst_reg,
8153 src_reg->var_off.value,
8154 tnum_subreg(src_reg->var_off).value,
8155 opcode, is_jmp32);
8156 else if (tnum_is_const(dst_reg->var_off) ||
8157 (is_jmp32 &&
8158 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8159 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8160 src_reg,
8161 dst_reg->var_off.value,
8162 tnum_subreg(dst_reg->var_off).value,
8163 opcode, is_jmp32);
8164 else if (!is_jmp32 &&
8165 (opcode == BPF_JEQ || opcode == BPF_JNE))
8166 /* Comparing for equality, we can combine knowledge */
8167 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8168 &other_branch_regs[insn->dst_reg],
8169 src_reg, dst_reg, opcode);
8170 if (src_reg->id &&
8171 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8172 find_equal_scalars(this_branch, src_reg);
8173 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8174 }
8175
8176 }
8177 } else if (dst_reg->type == SCALAR_VALUE) {
8178 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8179 dst_reg, insn->imm, (u32)insn->imm,
8180 opcode, is_jmp32);
8181 }
8182
8183 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8184 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8185 find_equal_scalars(this_branch, dst_reg);
8186 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8187 }
8188
8189 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8190 * NOTE: these optimizations below are related with pointer comparison
8191 * which will never be JMP32.
8192 */
8193 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8194 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8195 reg_type_may_be_null(dst_reg->type)) {
8196 /* Mark all identical registers in each branch as either
8197 * safe or unknown depending R == 0 or R != 0 conditional.
8198 */
8199 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8200 opcode == BPF_JNE);
8201 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8202 opcode == BPF_JEQ);
8203 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8204 this_branch, other_branch) &&
8205 is_pointer_value(env, insn->dst_reg)) {
8206 verbose(env, "R%d pointer comparison prohibited\n",
8207 insn->dst_reg);
8208 return -EACCES;
8209 }
8210 if (env->log.level & BPF_LOG_LEVEL)
8211 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8212 return 0;
8213}
8214
8215/* verify BPF_LD_IMM64 instruction */
8216static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8217{
8218 struct bpf_insn_aux_data *aux = cur_aux(env);
8219 struct bpf_reg_state *regs = cur_regs(env);
8220 struct bpf_reg_state *dst_reg;
8221 struct bpf_map *map;
8222 int err;
8223
8224 if (BPF_SIZE(insn->code) != BPF_DW) {
8225 verbose(env, "invalid BPF_LD_IMM insn\n");
8226 return -EINVAL;
8227 }
8228 if (insn->off != 0) {
8229 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8230 return -EINVAL;
8231 }
8232
8233 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8234 if (err)
8235 return err;
8236
8237 dst_reg = &regs[insn->dst_reg];
8238 if (insn->src_reg == 0) {
8239 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8240
8241 dst_reg->type = SCALAR_VALUE;
8242 __mark_reg_known(&regs[insn->dst_reg], imm);
8243 return 0;
8244 }
8245
8246 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8247 mark_reg_known_zero(env, regs, insn->dst_reg);
8248
8249 dst_reg->type = aux->btf_var.reg_type;
8250 switch (dst_reg->type) {
8251 case PTR_TO_MEM:
8252 dst_reg->mem_size = aux->btf_var.mem_size;
8253 break;
8254 case PTR_TO_BTF_ID:
8255 case PTR_TO_PERCPU_BTF_ID:
8256 dst_reg->btf = aux->btf_var.btf;
8257 dst_reg->btf_id = aux->btf_var.btf_id;
8258 break;
8259 default:
8260 verbose(env, "bpf verifier is misconfigured\n");
8261 return -EFAULT;
8262 }
8263 return 0;
8264 }
8265
8266 map = env->used_maps[aux->map_index];
8267 mark_reg_known_zero(env, regs, insn->dst_reg);
8268 dst_reg->map_ptr = map;
8269
8270 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8271 dst_reg->type = PTR_TO_MAP_VALUE;
8272 dst_reg->off = aux->map_off;
8273 if (map_value_has_spin_lock(map))
8274 dst_reg->id = ++env->id_gen;
8275 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8276 dst_reg->type = CONST_PTR_TO_MAP;
8277 } else {
8278 verbose(env, "bpf verifier is misconfigured\n");
8279 return -EINVAL;
8280 }
8281
8282 return 0;
8283}
8284
8285static bool may_access_skb(enum bpf_prog_type type)
8286{
8287 switch (type) {
8288 case BPF_PROG_TYPE_SOCKET_FILTER:
8289 case BPF_PROG_TYPE_SCHED_CLS:
8290 case BPF_PROG_TYPE_SCHED_ACT:
8291 return true;
8292 default:
8293 return false;
8294 }
8295}
8296
8297/* verify safety of LD_ABS|LD_IND instructions:
8298 * - they can only appear in the programs where ctx == skb
8299 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8300 * preserve R6-R9, and store return value into R0
8301 *
8302 * Implicit input:
8303 * ctx == skb == R6 == CTX
8304 *
8305 * Explicit input:
8306 * SRC == any register
8307 * IMM == 32-bit immediate
8308 *
8309 * Output:
8310 * R0 - 8/16/32-bit skb data converted to cpu endianness
8311 */
8312static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8313{
8314 struct bpf_reg_state *regs = cur_regs(env);
8315 static const int ctx_reg = BPF_REG_6;
8316 u8 mode = BPF_MODE(insn->code);
8317 int i, err;
8318
8319 if (!may_access_skb(resolve_prog_type(env->prog))) {
8320 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8321 return -EINVAL;
8322 }
8323
8324 if (!env->ops->gen_ld_abs) {
8325 verbose(env, "bpf verifier is misconfigured\n");
8326 return -EINVAL;
8327 }
8328
8329 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8330 BPF_SIZE(insn->code) == BPF_DW ||
8331 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8332 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8333 return -EINVAL;
8334 }
8335
8336 /* check whether implicit source operand (register R6) is readable */
8337 err = check_reg_arg(env, ctx_reg, SRC_OP);
8338 if (err)
8339 return err;
8340
8341 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8342 * gen_ld_abs() may terminate the program at runtime, leading to
8343 * reference leak.
8344 */
8345 err = check_reference_leak(env);
8346 if (err) {
8347 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8348 return err;
8349 }
8350
8351 if (env->cur_state->active_spin_lock) {
8352 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8353 return -EINVAL;
8354 }
8355
8356 if (regs[ctx_reg].type != PTR_TO_CTX) {
8357 verbose(env,
8358 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8359 return -EINVAL;
8360 }
8361
8362 if (mode == BPF_IND) {
8363 /* check explicit source operand */
8364 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8365 if (err)
8366 return err;
8367 }
8368
8369 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8370 if (err < 0)
8371 return err;
8372
8373 /* reset caller saved regs to unreadable */
8374 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8375 mark_reg_not_init(env, regs, caller_saved[i]);
8376 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8377 }
8378
8379 /* mark destination R0 register as readable, since it contains
8380 * the value fetched from the packet.
8381 * Already marked as written above.
8382 */
8383 mark_reg_unknown(env, regs, BPF_REG_0);
8384 /* ld_abs load up to 32-bit skb data. */
8385 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8386 return 0;
8387}
8388
8389static int check_return_code(struct bpf_verifier_env *env)
8390{
8391 struct tnum enforce_attach_type_range = tnum_unknown;
8392 const struct bpf_prog *prog = env->prog;
8393 struct bpf_reg_state *reg;
8394 struct tnum range = tnum_range(0, 1);
8395 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8396 int err;
8397 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8398
8399 /* LSM and struct_ops func-ptr's return type could be "void" */
8400 if (!is_subprog &&
8401 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8402 prog_type == BPF_PROG_TYPE_LSM) &&
8403 !prog->aux->attach_func_proto->type)
8404 return 0;
8405
8406 /* eBPF calling convetion is such that R0 is used
8407 * to return the value from eBPF program.
8408 * Make sure that it's readable at this time
8409 * of bpf_exit, which means that program wrote
8410 * something into it earlier
8411 */
8412 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8413 if (err)
8414 return err;
8415
8416 if (is_pointer_value(env, BPF_REG_0)) {
8417 verbose(env, "R0 leaks addr as return value\n");
8418 return -EACCES;
8419 }
8420
8421 reg = cur_regs(env) + BPF_REG_0;
8422 if (is_subprog) {
8423 if (reg->type != SCALAR_VALUE) {
8424 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8425 reg_type_str[reg->type]);
8426 return -EINVAL;
8427 }
8428 return 0;
8429 }
8430
8431 switch (prog_type) {
8432 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8433 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8434 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8435 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8436 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8437 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8438 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8439 range = tnum_range(1, 1);
8440 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8441 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8442 range = tnum_range(0, 3);
8443 break;
8444 case BPF_PROG_TYPE_CGROUP_SKB:
8445 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8446 range = tnum_range(0, 3);
8447 enforce_attach_type_range = tnum_range(2, 3);
8448 }
8449 break;
8450 case BPF_PROG_TYPE_CGROUP_SOCK:
8451 case BPF_PROG_TYPE_SOCK_OPS:
8452 case BPF_PROG_TYPE_CGROUP_DEVICE:
8453 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8454 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8455 break;
8456 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8457 if (!env->prog->aux->attach_btf_id)
8458 return 0;
8459 range = tnum_const(0);
8460 break;
8461 case BPF_PROG_TYPE_TRACING:
8462 switch (env->prog->expected_attach_type) {
8463 case BPF_TRACE_FENTRY:
8464 case BPF_TRACE_FEXIT:
8465 range = tnum_const(0);
8466 break;
8467 case BPF_TRACE_RAW_TP:
8468 case BPF_MODIFY_RETURN:
8469 return 0;
8470 case BPF_TRACE_ITER:
8471 break;
8472 default:
8473 return -ENOTSUPP;
8474 }
8475 break;
8476 case BPF_PROG_TYPE_SK_LOOKUP:
8477 range = tnum_range(SK_DROP, SK_PASS);
8478 break;
8479 case BPF_PROG_TYPE_EXT:
8480 /* freplace program can return anything as its return value
8481 * depends on the to-be-replaced kernel func or bpf program.
8482 */
8483 default:
8484 return 0;
8485 }
8486
8487 if (reg->type != SCALAR_VALUE) {
8488 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8489 reg_type_str[reg->type]);
8490 return -EINVAL;
8491 }
8492
8493 if (!tnum_in(range, reg->var_off)) {
8494 char tn_buf[48];
8495
8496 verbose(env, "At program exit the register R0 ");
8497 if (!tnum_is_unknown(reg->var_off)) {
8498 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8499 verbose(env, "has value %s", tn_buf);
8500 } else {
8501 verbose(env, "has unknown scalar value");
8502 }
8503 tnum_strn(tn_buf, sizeof(tn_buf), range);
8504 verbose(env, " should have been in %s\n", tn_buf);
8505 return -EINVAL;
8506 }
8507
8508 if (!tnum_is_unknown(enforce_attach_type_range) &&
8509 tnum_in(enforce_attach_type_range, reg->var_off))
8510 env->prog->enforce_expected_attach_type = 1;
8511 return 0;
8512}
8513
8514/* non-recursive DFS pseudo code
8515 * 1 procedure DFS-iterative(G,v):
8516 * 2 label v as discovered
8517 * 3 let S be a stack
8518 * 4 S.push(v)
8519 * 5 while S is not empty
8520 * 6 t <- S.pop()
8521 * 7 if t is what we're looking for:
8522 * 8 return t
8523 * 9 for all edges e in G.adjacentEdges(t) do
8524 * 10 if edge e is already labelled
8525 * 11 continue with the next edge
8526 * 12 w <- G.adjacentVertex(t,e)
8527 * 13 if vertex w is not discovered and not explored
8528 * 14 label e as tree-edge
8529 * 15 label w as discovered
8530 * 16 S.push(w)
8531 * 17 continue at 5
8532 * 18 else if vertex w is discovered
8533 * 19 label e as back-edge
8534 * 20 else
8535 * 21 // vertex w is explored
8536 * 22 label e as forward- or cross-edge
8537 * 23 label t as explored
8538 * 24 S.pop()
8539 *
8540 * convention:
8541 * 0x10 - discovered
8542 * 0x11 - discovered and fall-through edge labelled
8543 * 0x12 - discovered and fall-through and branch edges labelled
8544 * 0x20 - explored
8545 */
8546
8547enum {
8548 DISCOVERED = 0x10,
8549 EXPLORED = 0x20,
8550 FALLTHROUGH = 1,
8551 BRANCH = 2,
8552};
8553
8554static u32 state_htab_size(struct bpf_verifier_env *env)
8555{
8556 return env->prog->len;
8557}
8558
8559static struct bpf_verifier_state_list **explored_state(
8560 struct bpf_verifier_env *env,
8561 int idx)
8562{
8563 struct bpf_verifier_state *cur = env->cur_state;
8564 struct bpf_func_state *state = cur->frame[cur->curframe];
8565
8566 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8567}
8568
8569static void init_explored_state(struct bpf_verifier_env *env, int idx)
8570{
8571 env->insn_aux_data[idx].prune_point = true;
8572}
8573
8574enum {
8575 DONE_EXPLORING = 0,
8576 KEEP_EXPLORING = 1,
8577};
8578
8579/* t, w, e - match pseudo-code above:
8580 * t - index of current instruction
8581 * w - next instruction
8582 * e - edge
8583 */
8584static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8585 bool loop_ok)
8586{
8587 int *insn_stack = env->cfg.insn_stack;
8588 int *insn_state = env->cfg.insn_state;
8589
8590 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8591 return DONE_EXPLORING;
8592
8593 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8594 return DONE_EXPLORING;
8595
8596 if (w < 0 || w >= env->prog->len) {
8597 verbose_linfo(env, t, "%d: ", t);
8598 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8599 return -EINVAL;
8600 }
8601
8602 if (e == BRANCH)
8603 /* mark branch target for state pruning */
8604 init_explored_state(env, w);
8605
8606 if (insn_state[w] == 0) {
8607 /* tree-edge */
8608 insn_state[t] = DISCOVERED | e;
8609 insn_state[w] = DISCOVERED;
8610 if (env->cfg.cur_stack >= env->prog->len)
8611 return -E2BIG;
8612 insn_stack[env->cfg.cur_stack++] = w;
8613 return KEEP_EXPLORING;
8614 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8615 if (loop_ok && env->bpf_capable)
8616 return DONE_EXPLORING;
8617 verbose_linfo(env, t, "%d: ", t);
8618 verbose_linfo(env, w, "%d: ", w);
8619 verbose(env, "back-edge from insn %d to %d\n", t, w);
8620 return -EINVAL;
8621 } else if (insn_state[w] == EXPLORED) {
8622 /* forward- or cross-edge */
8623 insn_state[t] = DISCOVERED | e;
8624 } else {
8625 verbose(env, "insn state internal bug\n");
8626 return -EFAULT;
8627 }
8628 return DONE_EXPLORING;
8629}
8630
8631/* Visits the instruction at index t and returns one of the following:
8632 * < 0 - an error occurred
8633 * DONE_EXPLORING - the instruction was fully explored
8634 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8635 */
8636static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8637{
8638 struct bpf_insn *insns = env->prog->insnsi;
8639 int ret;
8640
8641 /* All non-branch instructions have a single fall-through edge. */
8642 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8643 BPF_CLASS(insns[t].code) != BPF_JMP32)
8644 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8645
8646 switch (BPF_OP(insns[t].code)) {
8647 case BPF_EXIT:
8648 return DONE_EXPLORING;
8649
8650 case BPF_CALL:
8651 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8652 if (ret)
8653 return ret;
8654
8655 if (t + 1 < insn_cnt)
8656 init_explored_state(env, t + 1);
8657 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8658 init_explored_state(env, t);
8659 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8660 env, false);
8661 }
8662 return ret;
8663
8664 case BPF_JA:
8665 if (BPF_SRC(insns[t].code) != BPF_K)
8666 return -EINVAL;
8667
8668 /* unconditional jump with single edge */
8669 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8670 true);
8671 if (ret)
8672 return ret;
8673
8674 /* unconditional jmp is not a good pruning point,
8675 * but it's marked, since backtracking needs
8676 * to record jmp history in is_state_visited().
8677 */
8678 init_explored_state(env, t + insns[t].off + 1);
8679 /* tell verifier to check for equivalent states
8680 * after every call and jump
8681 */
8682 if (t + 1 < insn_cnt)
8683 init_explored_state(env, t + 1);
8684
8685 return ret;
8686
8687 default:
8688 /* conditional jump with two edges */
8689 init_explored_state(env, t);
8690 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8691 if (ret)
8692 return ret;
8693
8694 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8695 }
8696}
8697
8698/* non-recursive depth-first-search to detect loops in BPF program
8699 * loop == back-edge in directed graph
8700 */
8701static int check_cfg(struct bpf_verifier_env *env)
8702{
8703 int insn_cnt = env->prog->len;
8704 int *insn_stack, *insn_state;
8705 int ret = 0;
8706 int i;
8707
8708 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8709 if (!insn_state)
8710 return -ENOMEM;
8711
8712 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8713 if (!insn_stack) {
8714 kvfree(insn_state);
8715 return -ENOMEM;
8716 }
8717
8718 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8719 insn_stack[0] = 0; /* 0 is the first instruction */
8720 env->cfg.cur_stack = 1;
8721
8722 while (env->cfg.cur_stack > 0) {
8723 int t = insn_stack[env->cfg.cur_stack - 1];
8724
8725 ret = visit_insn(t, insn_cnt, env);
8726 switch (ret) {
8727 case DONE_EXPLORING:
8728 insn_state[t] = EXPLORED;
8729 env->cfg.cur_stack--;
8730 break;
8731 case KEEP_EXPLORING:
8732 break;
8733 default:
8734 if (ret > 0) {
8735 verbose(env, "visit_insn internal bug\n");
8736 ret = -EFAULT;
8737 }
8738 goto err_free;
8739 }
8740 }
8741
8742 if (env->cfg.cur_stack < 0) {
8743 verbose(env, "pop stack internal bug\n");
8744 ret = -EFAULT;
8745 goto err_free;
8746 }
8747
8748 for (i = 0; i < insn_cnt; i++) {
8749 if (insn_state[i] != EXPLORED) {
8750 verbose(env, "unreachable insn %d\n", i);
8751 ret = -EINVAL;
8752 goto err_free;
8753 }
8754 }
8755 ret = 0; /* cfg looks good */
8756
8757err_free:
8758 kvfree(insn_state);
8759 kvfree(insn_stack);
8760 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8761 return ret;
8762}
8763
8764static int check_abnormal_return(struct bpf_verifier_env *env)
8765{
8766 int i;
8767
8768 for (i = 1; i < env->subprog_cnt; i++) {
8769 if (env->subprog_info[i].has_ld_abs) {
8770 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8771 return -EINVAL;
8772 }
8773 if (env->subprog_info[i].has_tail_call) {
8774 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8775 return -EINVAL;
8776 }
8777 }
8778 return 0;
8779}
8780
8781/* The minimum supported BTF func info size */
8782#define MIN_BPF_FUNCINFO_SIZE 8
8783#define MAX_FUNCINFO_REC_SIZE 252
8784
8785static int check_btf_func(struct bpf_verifier_env *env,
8786 const union bpf_attr *attr,
8787 union bpf_attr __user *uattr)
8788{
8789 const struct btf_type *type, *func_proto, *ret_type;
8790 u32 i, nfuncs, urec_size, min_size;
8791 u32 krec_size = sizeof(struct bpf_func_info);
8792 struct bpf_func_info *krecord;
8793 struct bpf_func_info_aux *info_aux = NULL;
8794 struct bpf_prog *prog;
8795 const struct btf *btf;
8796 void __user *urecord;
8797 u32 prev_offset = 0;
8798 bool scalar_return;
8799 int ret = -ENOMEM;
8800
8801 nfuncs = attr->func_info_cnt;
8802 if (!nfuncs) {
8803 if (check_abnormal_return(env))
8804 return -EINVAL;
8805 return 0;
8806 }
8807
8808 if (nfuncs != env->subprog_cnt) {
8809 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8810 return -EINVAL;
8811 }
8812
8813 urec_size = attr->func_info_rec_size;
8814 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8815 urec_size > MAX_FUNCINFO_REC_SIZE ||
8816 urec_size % sizeof(u32)) {
8817 verbose(env, "invalid func info rec size %u\n", urec_size);
8818 return -EINVAL;
8819 }
8820
8821 prog = env->prog;
8822 btf = prog->aux->btf;
8823
8824 urecord = u64_to_user_ptr(attr->func_info);
8825 min_size = min_t(u32, krec_size, urec_size);
8826
8827 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8828 if (!krecord)
8829 return -ENOMEM;
8830 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8831 if (!info_aux)
8832 goto err_free;
8833
8834 for (i = 0; i < nfuncs; i++) {
8835 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8836 if (ret) {
8837 if (ret == -E2BIG) {
8838 verbose(env, "nonzero tailing record in func info");
8839 /* set the size kernel expects so loader can zero
8840 * out the rest of the record.
8841 */
8842 if (put_user(min_size, &uattr->func_info_rec_size))
8843 ret = -EFAULT;
8844 }
8845 goto err_free;
8846 }
8847
8848 if (copy_from_user(&krecord[i], urecord, min_size)) {
8849 ret = -EFAULT;
8850 goto err_free;
8851 }
8852
8853 /* check insn_off */
8854 ret = -EINVAL;
8855 if (i == 0) {
8856 if (krecord[i].insn_off) {
8857 verbose(env,
8858 "nonzero insn_off %u for the first func info record",
8859 krecord[i].insn_off);
8860 goto err_free;
8861 }
8862 } else if (krecord[i].insn_off <= prev_offset) {
8863 verbose(env,
8864 "same or smaller insn offset (%u) than previous func info record (%u)",
8865 krecord[i].insn_off, prev_offset);
8866 goto err_free;
8867 }
8868
8869 if (env->subprog_info[i].start != krecord[i].insn_off) {
8870 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8871 goto err_free;
8872 }
8873
8874 /* check type_id */
8875 type = btf_type_by_id(btf, krecord[i].type_id);
8876 if (!type || !btf_type_is_func(type)) {
8877 verbose(env, "invalid type id %d in func info",
8878 krecord[i].type_id);
8879 goto err_free;
8880 }
8881 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8882
8883 func_proto = btf_type_by_id(btf, type->type);
8884 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8885 /* btf_func_check() already verified it during BTF load */
8886 goto err_free;
8887 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8888 scalar_return =
8889 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8890 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8891 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8892 goto err_free;
8893 }
8894 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8895 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8896 goto err_free;
8897 }
8898
8899 prev_offset = krecord[i].insn_off;
8900 urecord += urec_size;
8901 }
8902
8903 prog->aux->func_info = krecord;
8904 prog->aux->func_info_cnt = nfuncs;
8905 prog->aux->func_info_aux = info_aux;
8906 return 0;
8907
8908err_free:
8909 kvfree(krecord);
8910 kfree(info_aux);
8911 return ret;
8912}
8913
8914static void adjust_btf_func(struct bpf_verifier_env *env)
8915{
8916 struct bpf_prog_aux *aux = env->prog->aux;
8917 int i;
8918
8919 if (!aux->func_info)
8920 return;
8921
8922 for (i = 0; i < env->subprog_cnt; i++)
8923 aux->func_info[i].insn_off = env->subprog_info[i].start;
8924}
8925
8926#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8927 sizeof(((struct bpf_line_info *)(0))->line_col))
8928#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8929
8930static int check_btf_line(struct bpf_verifier_env *env,
8931 const union bpf_attr *attr,
8932 union bpf_attr __user *uattr)
8933{
8934 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8935 struct bpf_subprog_info *sub;
8936 struct bpf_line_info *linfo;
8937 struct bpf_prog *prog;
8938 const struct btf *btf;
8939 void __user *ulinfo;
8940 int err;
8941
8942 nr_linfo = attr->line_info_cnt;
8943 if (!nr_linfo)
8944 return 0;
8945
8946 rec_size = attr->line_info_rec_size;
8947 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8948 rec_size > MAX_LINEINFO_REC_SIZE ||
8949 rec_size & (sizeof(u32) - 1))
8950 return -EINVAL;
8951
8952 /* Need to zero it in case the userspace may
8953 * pass in a smaller bpf_line_info object.
8954 */
8955 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8956 GFP_KERNEL | __GFP_NOWARN);
8957 if (!linfo)
8958 return -ENOMEM;
8959
8960 prog = env->prog;
8961 btf = prog->aux->btf;
8962
8963 s = 0;
8964 sub = env->subprog_info;
8965 ulinfo = u64_to_user_ptr(attr->line_info);
8966 expected_size = sizeof(struct bpf_line_info);
8967 ncopy = min_t(u32, expected_size, rec_size);
8968 for (i = 0; i < nr_linfo; i++) {
8969 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8970 if (err) {
8971 if (err == -E2BIG) {
8972 verbose(env, "nonzero tailing record in line_info");
8973 if (put_user(expected_size,
8974 &uattr->line_info_rec_size))
8975 err = -EFAULT;
8976 }
8977 goto err_free;
8978 }
8979
8980 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8981 err = -EFAULT;
8982 goto err_free;
8983 }
8984
8985 /*
8986 * Check insn_off to ensure
8987 * 1) strictly increasing AND
8988 * 2) bounded by prog->len
8989 *
8990 * The linfo[0].insn_off == 0 check logically falls into
8991 * the later "missing bpf_line_info for func..." case
8992 * because the first linfo[0].insn_off must be the
8993 * first sub also and the first sub must have
8994 * subprog_info[0].start == 0.
8995 */
8996 if ((i && linfo[i].insn_off <= prev_offset) ||
8997 linfo[i].insn_off >= prog->len) {
8998 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8999 i, linfo[i].insn_off, prev_offset,
9000 prog->len);
9001 err = -EINVAL;
9002 goto err_free;
9003 }
9004
9005 if (!prog->insnsi[linfo[i].insn_off].code) {
9006 verbose(env,
9007 "Invalid insn code at line_info[%u].insn_off\n",
9008 i);
9009 err = -EINVAL;
9010 goto err_free;
9011 }
9012
9013 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9014 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9015 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9016 err = -EINVAL;
9017 goto err_free;
9018 }
9019
9020 if (s != env->subprog_cnt) {
9021 if (linfo[i].insn_off == sub[s].start) {
9022 sub[s].linfo_idx = i;
9023 s++;
9024 } else if (sub[s].start < linfo[i].insn_off) {
9025 verbose(env, "missing bpf_line_info for func#%u\n", s);
9026 err = -EINVAL;
9027 goto err_free;
9028 }
9029 }
9030
9031 prev_offset = linfo[i].insn_off;
9032 ulinfo += rec_size;
9033 }
9034
9035 if (s != env->subprog_cnt) {
9036 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9037 env->subprog_cnt - s, s);
9038 err = -EINVAL;
9039 goto err_free;
9040 }
9041
9042 prog->aux->linfo = linfo;
9043 prog->aux->nr_linfo = nr_linfo;
9044
9045 return 0;
9046
9047err_free:
9048 kvfree(linfo);
9049 return err;
9050}
9051
9052static int check_btf_info(struct bpf_verifier_env *env,
9053 const union bpf_attr *attr,
9054 union bpf_attr __user *uattr)
9055{
9056 struct btf *btf;
9057 int err;
9058
9059 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9060 if (check_abnormal_return(env))
9061 return -EINVAL;
9062 return 0;
9063 }
9064
9065 btf = btf_get_by_fd(attr->prog_btf_fd);
9066 if (IS_ERR(btf))
9067 return PTR_ERR(btf);
9068 if (btf_is_kernel(btf)) {
9069 btf_put(btf);
9070 return -EACCES;
9071 }
9072 env->prog->aux->btf = btf;
9073
9074 err = check_btf_func(env, attr, uattr);
9075 if (err)
9076 return err;
9077
9078 err = check_btf_line(env, attr, uattr);
9079 if (err)
9080 return err;
9081
9082 return 0;
9083}
9084
9085/* check %cur's range satisfies %old's */
9086static bool range_within(struct bpf_reg_state *old,
9087 struct bpf_reg_state *cur)
9088{
9089 return old->umin_value <= cur->umin_value &&
9090 old->umax_value >= cur->umax_value &&
9091 old->smin_value <= cur->smin_value &&
9092 old->smax_value >= cur->smax_value &&
9093 old->u32_min_value <= cur->u32_min_value &&
9094 old->u32_max_value >= cur->u32_max_value &&
9095 old->s32_min_value <= cur->s32_min_value &&
9096 old->s32_max_value >= cur->s32_max_value;
9097}
9098
9099/* Maximum number of register states that can exist at once */
9100#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9101struct idpair {
9102 u32 old;
9103 u32 cur;
9104};
9105
9106/* If in the old state two registers had the same id, then they need to have
9107 * the same id in the new state as well. But that id could be different from
9108 * the old state, so we need to track the mapping from old to new ids.
9109 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9110 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9111 * regs with a different old id could still have new id 9, we don't care about
9112 * that.
9113 * So we look through our idmap to see if this old id has been seen before. If
9114 * so, we require the new id to match; otherwise, we add the id pair to the map.
9115 */
9116static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9117{
9118 unsigned int i;
9119
9120 for (i = 0; i < ID_MAP_SIZE; i++) {
9121 if (!idmap[i].old) {
9122 /* Reached an empty slot; haven't seen this id before */
9123 idmap[i].old = old_id;
9124 idmap[i].cur = cur_id;
9125 return true;
9126 }
9127 if (idmap[i].old == old_id)
9128 return idmap[i].cur == cur_id;
9129 }
9130 /* We ran out of idmap slots, which should be impossible */
9131 WARN_ON_ONCE(1);
9132 return false;
9133}
9134
9135static void clean_func_state(struct bpf_verifier_env *env,
9136 struct bpf_func_state *st)
9137{
9138 enum bpf_reg_liveness live;
9139 int i, j;
9140
9141 for (i = 0; i < BPF_REG_FP; i++) {
9142 live = st->regs[i].live;
9143 /* liveness must not touch this register anymore */
9144 st->regs[i].live |= REG_LIVE_DONE;
9145 if (!(live & REG_LIVE_READ))
9146 /* since the register is unused, clear its state
9147 * to make further comparison simpler
9148 */
9149 __mark_reg_not_init(env, &st->regs[i]);
9150 }
9151
9152 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9153 live = st->stack[i].spilled_ptr.live;
9154 /* liveness must not touch this stack slot anymore */
9155 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9156 if (!(live & REG_LIVE_READ)) {
9157 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9158 for (j = 0; j < BPF_REG_SIZE; j++)
9159 st->stack[i].slot_type[j] = STACK_INVALID;
9160 }
9161 }
9162}
9163
9164static void clean_verifier_state(struct bpf_verifier_env *env,
9165 struct bpf_verifier_state *st)
9166{
9167 int i;
9168
9169 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9170 /* all regs in this state in all frames were already marked */
9171 return;
9172
9173 for (i = 0; i <= st->curframe; i++)
9174 clean_func_state(env, st->frame[i]);
9175}
9176
9177/* the parentage chains form a tree.
9178 * the verifier states are added to state lists at given insn and
9179 * pushed into state stack for future exploration.
9180 * when the verifier reaches bpf_exit insn some of the verifer states
9181 * stored in the state lists have their final liveness state already,
9182 * but a lot of states will get revised from liveness point of view when
9183 * the verifier explores other branches.
9184 * Example:
9185 * 1: r0 = 1
9186 * 2: if r1 == 100 goto pc+1
9187 * 3: r0 = 2
9188 * 4: exit
9189 * when the verifier reaches exit insn the register r0 in the state list of
9190 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9191 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9192 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9193 *
9194 * Since the verifier pushes the branch states as it sees them while exploring
9195 * the program the condition of walking the branch instruction for the second
9196 * time means that all states below this branch were already explored and
9197 * their final liveness markes are already propagated.
9198 * Hence when the verifier completes the search of state list in is_state_visited()
9199 * we can call this clean_live_states() function to mark all liveness states
9200 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9201 * will not be used.
9202 * This function also clears the registers and stack for states that !READ
9203 * to simplify state merging.
9204 *
9205 * Important note here that walking the same branch instruction in the callee
9206 * doesn't meant that the states are DONE. The verifier has to compare
9207 * the callsites
9208 */
9209static void clean_live_states(struct bpf_verifier_env *env, int insn,
9210 struct bpf_verifier_state *cur)
9211{
9212 struct bpf_verifier_state_list *sl;
9213 int i;
9214
9215 sl = *explored_state(env, insn);
9216 while (sl) {
9217 if (sl->state.branches)
9218 goto next;
9219 if (sl->state.insn_idx != insn ||
9220 sl->state.curframe != cur->curframe)
9221 goto next;
9222 for (i = 0; i <= cur->curframe; i++)
9223 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9224 goto next;
9225 clean_verifier_state(env, &sl->state);
9226next:
9227 sl = sl->next;
9228 }
9229}
9230
9231/* Returns true if (rold safe implies rcur safe) */
9232static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9233 struct idpair *idmap)
9234{
9235 bool equal;
9236
9237 if (!(rold->live & REG_LIVE_READ))
9238 /* explored state didn't use this */
9239 return true;
9240
9241 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9242
9243 if (rold->type == PTR_TO_STACK)
9244 /* two stack pointers are equal only if they're pointing to
9245 * the same stack frame, since fp-8 in foo != fp-8 in bar
9246 */
9247 return equal && rold->frameno == rcur->frameno;
9248
9249 if (equal)
9250 return true;
9251
9252 if (rold->type == NOT_INIT)
9253 /* explored state can't have used this */
9254 return true;
9255 if (rcur->type == NOT_INIT)
9256 return false;
9257 switch (rold->type) {
9258 case SCALAR_VALUE:
9259 if (rcur->type == SCALAR_VALUE) {
9260 if (!rold->precise && !rcur->precise)
9261 return true;
9262 /* new val must satisfy old val knowledge */
9263 return range_within(rold, rcur) &&
9264 tnum_in(rold->var_off, rcur->var_off);
9265 } else {
9266 /* We're trying to use a pointer in place of a scalar.
9267 * Even if the scalar was unbounded, this could lead to
9268 * pointer leaks because scalars are allowed to leak
9269 * while pointers are not. We could make this safe in
9270 * special cases if root is calling us, but it's
9271 * probably not worth the hassle.
9272 */
9273 return false;
9274 }
9275 case PTR_TO_MAP_VALUE:
9276 /* If the new min/max/var_off satisfy the old ones and
9277 * everything else matches, we are OK.
9278 * 'id' is not compared, since it's only used for maps with
9279 * bpf_spin_lock inside map element and in such cases if
9280 * the rest of the prog is valid for one map element then
9281 * it's valid for all map elements regardless of the key
9282 * used in bpf_map_lookup()
9283 */
9284 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9285 range_within(rold, rcur) &&
9286 tnum_in(rold->var_off, rcur->var_off);
9287 case PTR_TO_MAP_VALUE_OR_NULL:
9288 /* a PTR_TO_MAP_VALUE could be safe to use as a
9289 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9290 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9291 * checked, doing so could have affected others with the same
9292 * id, and we can't check for that because we lost the id when
9293 * we converted to a PTR_TO_MAP_VALUE.
9294 */
9295 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9296 return false;
9297 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9298 return false;
9299 /* Check our ids match any regs they're supposed to */
9300 return check_ids(rold->id, rcur->id, idmap);
9301 case PTR_TO_PACKET_META:
9302 case PTR_TO_PACKET:
9303 if (rcur->type != rold->type)
9304 return false;
9305 /* We must have at least as much range as the old ptr
9306 * did, so that any accesses which were safe before are
9307 * still safe. This is true even if old range < old off,
9308 * since someone could have accessed through (ptr - k), or
9309 * even done ptr -= k in a register, to get a safe access.
9310 */
9311 if (rold->range > rcur->range)
9312 return false;
9313 /* If the offsets don't match, we can't trust our alignment;
9314 * nor can we be sure that we won't fall out of range.
9315 */
9316 if (rold->off != rcur->off)
9317 return false;
9318 /* id relations must be preserved */
9319 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9320 return false;
9321 /* new val must satisfy old val knowledge */
9322 return range_within(rold, rcur) &&
9323 tnum_in(rold->var_off, rcur->var_off);
9324 case PTR_TO_CTX:
9325 case CONST_PTR_TO_MAP:
9326 case PTR_TO_PACKET_END:
9327 case PTR_TO_FLOW_KEYS:
9328 case PTR_TO_SOCKET:
9329 case PTR_TO_SOCKET_OR_NULL:
9330 case PTR_TO_SOCK_COMMON:
9331 case PTR_TO_SOCK_COMMON_OR_NULL:
9332 case PTR_TO_TCP_SOCK:
9333 case PTR_TO_TCP_SOCK_OR_NULL:
9334 case PTR_TO_XDP_SOCK:
9335 /* Only valid matches are exact, which memcmp() above
9336 * would have accepted
9337 */
9338 default:
9339 /* Don't know what's going on, just say it's not safe */
9340 return false;
9341 }
9342
9343 /* Shouldn't get here; if we do, say it's not safe */
9344 WARN_ON_ONCE(1);
9345 return false;
9346}
9347
9348static bool stacksafe(struct bpf_func_state *old,
9349 struct bpf_func_state *cur,
9350 struct idpair *idmap)
9351{
9352 int i, spi;
9353
9354 /* walk slots of the explored stack and ignore any additional
9355 * slots in the current stack, since explored(safe) state
9356 * didn't use them
9357 */
9358 for (i = 0; i < old->allocated_stack; i++) {
9359 spi = i / BPF_REG_SIZE;
9360
9361 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9362 i += BPF_REG_SIZE - 1;
9363 /* explored state didn't use this */
9364 continue;
9365 }
9366
9367 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9368 continue;
9369
9370 /* explored stack has more populated slots than current stack
9371 * and these slots were used
9372 */
9373 if (i >= cur->allocated_stack)
9374 return false;
9375
9376 /* if old state was safe with misc data in the stack
9377 * it will be safe with zero-initialized stack.
9378 * The opposite is not true
9379 */
9380 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9381 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9382 continue;
9383 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9384 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9385 /* Ex: old explored (safe) state has STACK_SPILL in
9386 * this stack slot, but current has STACK_MISC ->
9387 * this verifier states are not equivalent,
9388 * return false to continue verification of this path
9389 */
9390 return false;
9391 if (i % BPF_REG_SIZE)
9392 continue;
9393 if (old->stack[spi].slot_type[0] != STACK_SPILL)
9394 continue;
9395 if (!regsafe(&old->stack[spi].spilled_ptr,
9396 &cur->stack[spi].spilled_ptr,
9397 idmap))
9398 /* when explored and current stack slot are both storing
9399 * spilled registers, check that stored pointers types
9400 * are the same as well.
9401 * Ex: explored safe path could have stored
9402 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9403 * but current path has stored:
9404 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9405 * such verifier states are not equivalent.
9406 * return false to continue verification of this path
9407 */
9408 return false;
9409 }
9410 return true;
9411}
9412
9413static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9414{
9415 if (old->acquired_refs != cur->acquired_refs)
9416 return false;
9417 return !memcmp(old->refs, cur->refs,
9418 sizeof(*old->refs) * old->acquired_refs);
9419}
9420
9421/* compare two verifier states
9422 *
9423 * all states stored in state_list are known to be valid, since
9424 * verifier reached 'bpf_exit' instruction through them
9425 *
9426 * this function is called when verifier exploring different branches of
9427 * execution popped from the state stack. If it sees an old state that has
9428 * more strict register state and more strict stack state then this execution
9429 * branch doesn't need to be explored further, since verifier already
9430 * concluded that more strict state leads to valid finish.
9431 *
9432 * Therefore two states are equivalent if register state is more conservative
9433 * and explored stack state is more conservative than the current one.
9434 * Example:
9435 * explored current
9436 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9437 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9438 *
9439 * In other words if current stack state (one being explored) has more
9440 * valid slots than old one that already passed validation, it means
9441 * the verifier can stop exploring and conclude that current state is valid too
9442 *
9443 * Similarly with registers. If explored state has register type as invalid
9444 * whereas register type in current state is meaningful, it means that
9445 * the current state will reach 'bpf_exit' instruction safely
9446 */
9447static bool func_states_equal(struct bpf_func_state *old,
9448 struct bpf_func_state *cur)
9449{
9450 struct idpair *idmap;
9451 bool ret = false;
9452 int i;
9453
9454 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9455 /* If we failed to allocate the idmap, just say it's not safe */
9456 if (!idmap)
9457 return false;
9458
9459 for (i = 0; i < MAX_BPF_REG; i++) {
9460 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9461 goto out_free;
9462 }
9463
9464 if (!stacksafe(old, cur, idmap))
9465 goto out_free;
9466
9467 if (!refsafe(old, cur))
9468 goto out_free;
9469 ret = true;
9470out_free:
9471 kfree(idmap);
9472 return ret;
9473}
9474
9475static bool states_equal(struct bpf_verifier_env *env,
9476 struct bpf_verifier_state *old,
9477 struct bpf_verifier_state *cur)
9478{
9479 int i;
9480
9481 if (old->curframe != cur->curframe)
9482 return false;
9483
9484 /* Verification state from speculative execution simulation
9485 * must never prune a non-speculative execution one.
9486 */
9487 if (old->speculative && !cur->speculative)
9488 return false;
9489
9490 if (old->active_spin_lock != cur->active_spin_lock)
9491 return false;
9492
9493 /* for states to be equal callsites have to be the same
9494 * and all frame states need to be equivalent
9495 */
9496 for (i = 0; i <= old->curframe; i++) {
9497 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9498 return false;
9499 if (!func_states_equal(old->frame[i], cur->frame[i]))
9500 return false;
9501 }
9502 return true;
9503}
9504
9505/* Return 0 if no propagation happened. Return negative error code if error
9506 * happened. Otherwise, return the propagated bit.
9507 */
9508static int propagate_liveness_reg(struct bpf_verifier_env *env,
9509 struct bpf_reg_state *reg,
9510 struct bpf_reg_state *parent_reg)
9511{
9512 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9513 u8 flag = reg->live & REG_LIVE_READ;
9514 int err;
9515
9516 /* When comes here, read flags of PARENT_REG or REG could be any of
9517 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9518 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9519 */
9520 if (parent_flag == REG_LIVE_READ64 ||
9521 /* Or if there is no read flag from REG. */
9522 !flag ||
9523 /* Or if the read flag from REG is the same as PARENT_REG. */
9524 parent_flag == flag)
9525 return 0;
9526
9527 err = mark_reg_read(env, reg, parent_reg, flag);
9528 if (err)
9529 return err;
9530
9531 return flag;
9532}
9533
9534/* A write screens off any subsequent reads; but write marks come from the
9535 * straight-line code between a state and its parent. When we arrive at an
9536 * equivalent state (jump target or such) we didn't arrive by the straight-line
9537 * code, so read marks in the state must propagate to the parent regardless
9538 * of the state's write marks. That's what 'parent == state->parent' comparison
9539 * in mark_reg_read() is for.
9540 */
9541static int propagate_liveness(struct bpf_verifier_env *env,
9542 const struct bpf_verifier_state *vstate,
9543 struct bpf_verifier_state *vparent)
9544{
9545 struct bpf_reg_state *state_reg, *parent_reg;
9546 struct bpf_func_state *state, *parent;
9547 int i, frame, err = 0;
9548
9549 if (vparent->curframe != vstate->curframe) {
9550 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9551 vparent->curframe, vstate->curframe);
9552 return -EFAULT;
9553 }
9554 /* Propagate read liveness of registers... */
9555 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9556 for (frame = 0; frame <= vstate->curframe; frame++) {
9557 parent = vparent->frame[frame];
9558 state = vstate->frame[frame];
9559 parent_reg = parent->regs;
9560 state_reg = state->regs;
9561 /* We don't need to worry about FP liveness, it's read-only */
9562 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9563 err = propagate_liveness_reg(env, &state_reg[i],
9564 &parent_reg[i]);
9565 if (err < 0)
9566 return err;
9567 if (err == REG_LIVE_READ64)
9568 mark_insn_zext(env, &parent_reg[i]);
9569 }
9570
9571 /* Propagate stack slots. */
9572 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9573 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9574 parent_reg = &parent->stack[i].spilled_ptr;
9575 state_reg = &state->stack[i].spilled_ptr;
9576 err = propagate_liveness_reg(env, state_reg,
9577 parent_reg);
9578 if (err < 0)
9579 return err;
9580 }
9581 }
9582 return 0;
9583}
9584
9585/* find precise scalars in the previous equivalent state and
9586 * propagate them into the current state
9587 */
9588static int propagate_precision(struct bpf_verifier_env *env,
9589 const struct bpf_verifier_state *old)
9590{
9591 struct bpf_reg_state *state_reg;
9592 struct bpf_func_state *state;
9593 int i, err = 0;
9594
9595 state = old->frame[old->curframe];
9596 state_reg = state->regs;
9597 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9598 if (state_reg->type != SCALAR_VALUE ||
9599 !state_reg->precise)
9600 continue;
9601 if (env->log.level & BPF_LOG_LEVEL2)
9602 verbose(env, "propagating r%d\n", i);
9603 err = mark_chain_precision(env, i);
9604 if (err < 0)
9605 return err;
9606 }
9607
9608 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9609 if (state->stack[i].slot_type[0] != STACK_SPILL)
9610 continue;
9611 state_reg = &state->stack[i].spilled_ptr;
9612 if (state_reg->type != SCALAR_VALUE ||
9613 !state_reg->precise)
9614 continue;
9615 if (env->log.level & BPF_LOG_LEVEL2)
9616 verbose(env, "propagating fp%d\n",
9617 (-i - 1) * BPF_REG_SIZE);
9618 err = mark_chain_precision_stack(env, i);
9619 if (err < 0)
9620 return err;
9621 }
9622 return 0;
9623}
9624
9625static bool states_maybe_looping(struct bpf_verifier_state *old,
9626 struct bpf_verifier_state *cur)
9627{
9628 struct bpf_func_state *fold, *fcur;
9629 int i, fr = cur->curframe;
9630
9631 if (old->curframe != fr)
9632 return false;
9633
9634 fold = old->frame[fr];
9635 fcur = cur->frame[fr];
9636 for (i = 0; i < MAX_BPF_REG; i++)
9637 if (memcmp(&fold->regs[i], &fcur->regs[i],
9638 offsetof(struct bpf_reg_state, parent)))
9639 return false;
9640 return true;
9641}
9642
9643
9644static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9645{
9646 struct bpf_verifier_state_list *new_sl;
9647 struct bpf_verifier_state_list *sl, **pprev;
9648 struct bpf_verifier_state *cur = env->cur_state, *new;
9649 int i, j, err, states_cnt = 0;
9650 bool add_new_state = env->test_state_freq ? true : false;
9651
9652 cur->last_insn_idx = env->prev_insn_idx;
9653 if (!env->insn_aux_data[insn_idx].prune_point)
9654 /* this 'insn_idx' instruction wasn't marked, so we will not
9655 * be doing state search here
9656 */
9657 return 0;
9658
9659 /* bpf progs typically have pruning point every 4 instructions
9660 * http://vger.kernel.org/bpfconf2019.html#session-1
9661 * Do not add new state for future pruning if the verifier hasn't seen
9662 * at least 2 jumps and at least 8 instructions.
9663 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9664 * In tests that amounts to up to 50% reduction into total verifier
9665 * memory consumption and 20% verifier time speedup.
9666 */
9667 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9668 env->insn_processed - env->prev_insn_processed >= 8)
9669 add_new_state = true;
9670
9671 pprev = explored_state(env, insn_idx);
9672 sl = *pprev;
9673
9674 clean_live_states(env, insn_idx, cur);
9675
9676 while (sl) {
9677 states_cnt++;
9678 if (sl->state.insn_idx != insn_idx)
9679 goto next;
9680 if (sl->state.branches) {
9681 if (states_maybe_looping(&sl->state, cur) &&
9682 states_equal(env, &sl->state, cur)) {
9683 verbose_linfo(env, insn_idx, "; ");
9684 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9685 return -EINVAL;
9686 }
9687 /* if the verifier is processing a loop, avoid adding new state
9688 * too often, since different loop iterations have distinct
9689 * states and may not help future pruning.
9690 * This threshold shouldn't be too low to make sure that
9691 * a loop with large bound will be rejected quickly.
9692 * The most abusive loop will be:
9693 * r1 += 1
9694 * if r1 < 1000000 goto pc-2
9695 * 1M insn_procssed limit / 100 == 10k peak states.
9696 * This threshold shouldn't be too high either, since states
9697 * at the end of the loop are likely to be useful in pruning.
9698 */
9699 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9700 env->insn_processed - env->prev_insn_processed < 100)
9701 add_new_state = false;
9702 goto miss;
9703 }
9704 if (states_equal(env, &sl->state, cur)) {
9705 sl->hit_cnt++;
9706 /* reached equivalent register/stack state,
9707 * prune the search.
9708 * Registers read by the continuation are read by us.
9709 * If we have any write marks in env->cur_state, they
9710 * will prevent corresponding reads in the continuation
9711 * from reaching our parent (an explored_state). Our
9712 * own state will get the read marks recorded, but
9713 * they'll be immediately forgotten as we're pruning
9714 * this state and will pop a new one.
9715 */
9716 err = propagate_liveness(env, &sl->state, cur);
9717
9718 /* if previous state reached the exit with precision and
9719 * current state is equivalent to it (except precsion marks)
9720 * the precision needs to be propagated back in
9721 * the current state.
9722 */
9723 err = err ? : push_jmp_history(env, cur);
9724 err = err ? : propagate_precision(env, &sl->state);
9725 if (err)
9726 return err;
9727 return 1;
9728 }
9729miss:
9730 /* when new state is not going to be added do not increase miss count.
9731 * Otherwise several loop iterations will remove the state
9732 * recorded earlier. The goal of these heuristics is to have
9733 * states from some iterations of the loop (some in the beginning
9734 * and some at the end) to help pruning.
9735 */
9736 if (add_new_state)
9737 sl->miss_cnt++;
9738 /* heuristic to determine whether this state is beneficial
9739 * to keep checking from state equivalence point of view.
9740 * Higher numbers increase max_states_per_insn and verification time,
9741 * but do not meaningfully decrease insn_processed.
9742 */
9743 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9744 /* the state is unlikely to be useful. Remove it to
9745 * speed up verification
9746 */
9747 *pprev = sl->next;
9748 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9749 u32 br = sl->state.branches;
9750
9751 WARN_ONCE(br,
9752 "BUG live_done but branches_to_explore %d\n",
9753 br);
9754 free_verifier_state(&sl->state, false);
9755 kfree(sl);
9756 env->peak_states--;
9757 } else {
9758 /* cannot free this state, since parentage chain may
9759 * walk it later. Add it for free_list instead to
9760 * be freed at the end of verification
9761 */
9762 sl->next = env->free_list;
9763 env->free_list = sl;
9764 }
9765 sl = *pprev;
9766 continue;
9767 }
9768next:
9769 pprev = &sl->next;
9770 sl = *pprev;
9771 }
9772
9773 if (env->max_states_per_insn < states_cnt)
9774 env->max_states_per_insn = states_cnt;
9775
9776 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9777 return push_jmp_history(env, cur);
9778
9779 if (!add_new_state)
9780 return push_jmp_history(env, cur);
9781
9782 /* There were no equivalent states, remember the current one.
9783 * Technically the current state is not proven to be safe yet,
9784 * but it will either reach outer most bpf_exit (which means it's safe)
9785 * or it will be rejected. When there are no loops the verifier won't be
9786 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9787 * again on the way to bpf_exit.
9788 * When looping the sl->state.branches will be > 0 and this state
9789 * will not be considered for equivalence until branches == 0.
9790 */
9791 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9792 if (!new_sl)
9793 return -ENOMEM;
9794 env->total_states++;
9795 env->peak_states++;
9796 env->prev_jmps_processed = env->jmps_processed;
9797 env->prev_insn_processed = env->insn_processed;
9798
9799 /* add new state to the head of linked list */
9800 new = &new_sl->state;
9801 err = copy_verifier_state(new, cur);
9802 if (err) {
9803 free_verifier_state(new, false);
9804 kfree(new_sl);
9805 return err;
9806 }
9807 new->insn_idx = insn_idx;
9808 WARN_ONCE(new->branches != 1,
9809 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9810
9811 cur->parent = new;
9812 cur->first_insn_idx = insn_idx;
9813 clear_jmp_history(cur);
9814 new_sl->next = *explored_state(env, insn_idx);
9815 *explored_state(env, insn_idx) = new_sl;
9816 /* connect new state to parentage chain. Current frame needs all
9817 * registers connected. Only r6 - r9 of the callers are alive (pushed
9818 * to the stack implicitly by JITs) so in callers' frames connect just
9819 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9820 * the state of the call instruction (with WRITTEN set), and r0 comes
9821 * from callee with its full parentage chain, anyway.
9822 */
9823 /* clear write marks in current state: the writes we did are not writes
9824 * our child did, so they don't screen off its reads from us.
9825 * (There are no read marks in current state, because reads always mark
9826 * their parent and current state never has children yet. Only
9827 * explored_states can get read marks.)
9828 */
9829 for (j = 0; j <= cur->curframe; j++) {
9830 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9831 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9832 for (i = 0; i < BPF_REG_FP; i++)
9833 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9834 }
9835
9836 /* all stack frames are accessible from callee, clear them all */
9837 for (j = 0; j <= cur->curframe; j++) {
9838 struct bpf_func_state *frame = cur->frame[j];
9839 struct bpf_func_state *newframe = new->frame[j];
9840
9841 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9842 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9843 frame->stack[i].spilled_ptr.parent =
9844 &newframe->stack[i].spilled_ptr;
9845 }
9846 }
9847 return 0;
9848}
9849
9850/* Return true if it's OK to have the same insn return a different type. */
9851static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9852{
9853 switch (type) {
9854 case PTR_TO_CTX:
9855 case PTR_TO_SOCKET:
9856 case PTR_TO_SOCKET_OR_NULL:
9857 case PTR_TO_SOCK_COMMON:
9858 case PTR_TO_SOCK_COMMON_OR_NULL:
9859 case PTR_TO_TCP_SOCK:
9860 case PTR_TO_TCP_SOCK_OR_NULL:
9861 case PTR_TO_XDP_SOCK:
9862 case PTR_TO_BTF_ID:
9863 case PTR_TO_BTF_ID_OR_NULL:
9864 return false;
9865 default:
9866 return true;
9867 }
9868}
9869
9870/* If an instruction was previously used with particular pointer types, then we
9871 * need to be careful to avoid cases such as the below, where it may be ok
9872 * for one branch accessing the pointer, but not ok for the other branch:
9873 *
9874 * R1 = sock_ptr
9875 * goto X;
9876 * ...
9877 * R1 = some_other_valid_ptr;
9878 * goto X;
9879 * ...
9880 * R2 = *(u32 *)(R1 + 0);
9881 */
9882static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9883{
9884 return src != prev && (!reg_type_mismatch_ok(src) ||
9885 !reg_type_mismatch_ok(prev));
9886}
9887
9888static int do_check(struct bpf_verifier_env *env)
9889{
9890 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9891 struct bpf_verifier_state *state = env->cur_state;
9892 struct bpf_insn *insns = env->prog->insnsi;
9893 struct bpf_reg_state *regs;
9894 int insn_cnt = env->prog->len;
9895 bool do_print_state = false;
9896 int prev_insn_idx = -1;
9897
9898 for (;;) {
9899 struct bpf_insn *insn;
9900 u8 class;
9901 int err;
9902
9903 env->prev_insn_idx = prev_insn_idx;
9904 if (env->insn_idx >= insn_cnt) {
9905 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9906 env->insn_idx, insn_cnt);
9907 return -EFAULT;
9908 }
9909
9910 insn = &insns[env->insn_idx];
9911 class = BPF_CLASS(insn->code);
9912
9913 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9914 verbose(env,
9915 "BPF program is too large. Processed %d insn\n",
9916 env->insn_processed);
9917 return -E2BIG;
9918 }
9919
9920 err = is_state_visited(env, env->insn_idx);
9921 if (err < 0)
9922 return err;
9923 if (err == 1) {
9924 /* found equivalent state, can prune the search */
9925 if (env->log.level & BPF_LOG_LEVEL) {
9926 if (do_print_state)
9927 verbose(env, "\nfrom %d to %d%s: safe\n",
9928 env->prev_insn_idx, env->insn_idx,
9929 env->cur_state->speculative ?
9930 " (speculative execution)" : "");
9931 else
9932 verbose(env, "%d: safe\n", env->insn_idx);
9933 }
9934 goto process_bpf_exit;
9935 }
9936
9937 if (signal_pending(current))
9938 return -EAGAIN;
9939
9940 if (need_resched())
9941 cond_resched();
9942
9943 if (env->log.level & BPF_LOG_LEVEL2 ||
9944 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9945 if (env->log.level & BPF_LOG_LEVEL2)
9946 verbose(env, "%d:", env->insn_idx);
9947 else
9948 verbose(env, "\nfrom %d to %d%s:",
9949 env->prev_insn_idx, env->insn_idx,
9950 env->cur_state->speculative ?
9951 " (speculative execution)" : "");
9952 print_verifier_state(env, state->frame[state->curframe]);
9953 do_print_state = false;
9954 }
9955
9956 if (env->log.level & BPF_LOG_LEVEL) {
9957 const struct bpf_insn_cbs cbs = {
9958 .cb_print = verbose,
9959 .private_data = env,
9960 };
9961
9962 verbose_linfo(env, env->insn_idx, "; ");
9963 verbose(env, "%d: ", env->insn_idx);
9964 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9965 }
9966
9967 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9968 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9969 env->prev_insn_idx);
9970 if (err)
9971 return err;
9972 }
9973
9974 regs = cur_regs(env);
9975 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9976 prev_insn_idx = env->insn_idx;
9977
9978 if (class == BPF_ALU || class == BPF_ALU64) {
9979 err = check_alu_op(env, insn);
9980 if (err)
9981 return err;
9982
9983 } else if (class == BPF_LDX) {
9984 enum bpf_reg_type *prev_src_type, src_reg_type;
9985
9986 /* check for reserved fields is already done */
9987
9988 /* check src operand */
9989 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9990 if (err)
9991 return err;
9992
9993 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9994 if (err)
9995 return err;
9996
9997 src_reg_type = regs[insn->src_reg].type;
9998
9999 /* check that memory (src_reg + off) is readable,
10000 * the state of dst_reg will be updated by this func
10001 */
10002 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10003 insn->off, BPF_SIZE(insn->code),
10004 BPF_READ, insn->dst_reg, false);
10005 if (err)
10006 return err;
10007
10008 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10009
10010 if (*prev_src_type == NOT_INIT) {
10011 /* saw a valid insn
10012 * dst_reg = *(u32 *)(src_reg + off)
10013 * save type to validate intersecting paths
10014 */
10015 *prev_src_type = src_reg_type;
10016
10017 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10018 /* ABuser program is trying to use the same insn
10019 * dst_reg = *(u32*) (src_reg + off)
10020 * with different pointer types:
10021 * src_reg == ctx in one branch and
10022 * src_reg == stack|map in some other branch.
10023 * Reject it.
10024 */
10025 verbose(env, "same insn cannot be used with different pointers\n");
10026 return -EINVAL;
10027 }
10028
10029 } else if (class == BPF_STX) {
10030 enum bpf_reg_type *prev_dst_type, dst_reg_type;
10031
10032 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10033 err = check_atomic(env, env->insn_idx, insn);
10034 if (err)
10035 return err;
10036 env->insn_idx++;
10037 continue;
10038 }
10039
10040 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10041 verbose(env, "BPF_STX uses reserved fields\n");
10042 return -EINVAL;
10043 }
10044
10045 /* check src1 operand */
10046 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10047 if (err)
10048 return err;
10049 /* check src2 operand */
10050 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10051 if (err)
10052 return err;
10053
10054 dst_reg_type = regs[insn->dst_reg].type;
10055
10056 /* check that memory (dst_reg + off) is writeable */
10057 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10058 insn->off, BPF_SIZE(insn->code),
10059 BPF_WRITE, insn->src_reg, false);
10060 if (err)
10061 return err;
10062
10063 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10064
10065 if (*prev_dst_type == NOT_INIT) {
10066 *prev_dst_type = dst_reg_type;
10067 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10068 verbose(env, "same insn cannot be used with different pointers\n");
10069 return -EINVAL;
10070 }
10071
10072 } else if (class == BPF_ST) {
10073 if (BPF_MODE(insn->code) != BPF_MEM ||
10074 insn->src_reg != BPF_REG_0) {
10075 verbose(env, "BPF_ST uses reserved fields\n");
10076 return -EINVAL;
10077 }
10078 /* check src operand */
10079 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10080 if (err)
10081 return err;
10082
10083 if (is_ctx_reg(env, insn->dst_reg)) {
10084 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10085 insn->dst_reg,
10086 reg_type_str[reg_state(env, insn->dst_reg)->type]);
10087 return -EACCES;
10088 }
10089
10090 /* check that memory (dst_reg + off) is writeable */
10091 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10092 insn->off, BPF_SIZE(insn->code),
10093 BPF_WRITE, -1, false);
10094 if (err)
10095 return err;
10096
10097 } else if (class == BPF_JMP || class == BPF_JMP32) {
10098 u8 opcode = BPF_OP(insn->code);
10099
10100 env->jmps_processed++;
10101 if (opcode == BPF_CALL) {
10102 if (BPF_SRC(insn->code) != BPF_K ||
10103 insn->off != 0 ||
10104 (insn->src_reg != BPF_REG_0 &&
10105 insn->src_reg != BPF_PSEUDO_CALL) ||
10106 insn->dst_reg != BPF_REG_0 ||
10107 class == BPF_JMP32) {
10108 verbose(env, "BPF_CALL uses reserved fields\n");
10109 return -EINVAL;
10110 }
10111
10112 if (env->cur_state->active_spin_lock &&
10113 (insn->src_reg == BPF_PSEUDO_CALL ||
10114 insn->imm != BPF_FUNC_spin_unlock)) {
10115 verbose(env, "function calls are not allowed while holding a lock\n");
10116 return -EINVAL;
10117 }
10118 if (insn->src_reg == BPF_PSEUDO_CALL)
10119 err = check_func_call(env, insn, &env->insn_idx);
10120 else
10121 err = check_helper_call(env, insn->imm, env->insn_idx);
10122 if (err)
10123 return err;
10124
10125 } else if (opcode == BPF_JA) {
10126 if (BPF_SRC(insn->code) != BPF_K ||
10127 insn->imm != 0 ||
10128 insn->src_reg != BPF_REG_0 ||
10129 insn->dst_reg != BPF_REG_0 ||
10130 class == BPF_JMP32) {
10131 verbose(env, "BPF_JA uses reserved fields\n");
10132 return -EINVAL;
10133 }
10134
10135 env->insn_idx += insn->off + 1;
10136 continue;
10137
10138 } else if (opcode == BPF_EXIT) {
10139 if (BPF_SRC(insn->code) != BPF_K ||
10140 insn->imm != 0 ||
10141 insn->src_reg != BPF_REG_0 ||
10142 insn->dst_reg != BPF_REG_0 ||
10143 class == BPF_JMP32) {
10144 verbose(env, "BPF_EXIT uses reserved fields\n");
10145 return -EINVAL;
10146 }
10147
10148 if (env->cur_state->active_spin_lock) {
10149 verbose(env, "bpf_spin_unlock is missing\n");
10150 return -EINVAL;
10151 }
10152
10153 if (state->curframe) {
10154 /* exit from nested function */
10155 err = prepare_func_exit(env, &env->insn_idx);
10156 if (err)
10157 return err;
10158 do_print_state = true;
10159 continue;
10160 }
10161
10162 err = check_reference_leak(env);
10163 if (err)
10164 return err;
10165
10166 err = check_return_code(env);
10167 if (err)
10168 return err;
10169process_bpf_exit:
10170 update_branch_counts(env, env->cur_state);
10171 err = pop_stack(env, &prev_insn_idx,
10172 &env->insn_idx, pop_log);
10173 if (err < 0) {
10174 if (err != -ENOENT)
10175 return err;
10176 break;
10177 } else {
10178 do_print_state = true;
10179 continue;
10180 }
10181 } else {
10182 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10183 if (err)
10184 return err;
10185 }
10186 } else if (class == BPF_LD) {
10187 u8 mode = BPF_MODE(insn->code);
10188
10189 if (mode == BPF_ABS || mode == BPF_IND) {
10190 err = check_ld_abs(env, insn);
10191 if (err)
10192 return err;
10193
10194 } else if (mode == BPF_IMM) {
10195 err = check_ld_imm(env, insn);
10196 if (err)
10197 return err;
10198
10199 env->insn_idx++;
10200 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10201 } else {
10202 verbose(env, "invalid BPF_LD mode\n");
10203 return -EINVAL;
10204 }
10205 } else {
10206 verbose(env, "unknown insn class %d\n", class);
10207 return -EINVAL;
10208 }
10209
10210 env->insn_idx++;
10211 }
10212
10213 return 0;
10214}
10215
10216static int find_btf_percpu_datasec(struct btf *btf)
10217{
10218 const struct btf_type *t;
10219 const char *tname;
10220 int i, n;
10221
10222 /*
10223 * Both vmlinux and module each have their own ".data..percpu"
10224 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10225 * types to look at only module's own BTF types.
10226 */
10227 n = btf_nr_types(btf);
10228 if (btf_is_module(btf))
10229 i = btf_nr_types(btf_vmlinux);
10230 else
10231 i = 1;
10232
10233 for(; i < n; i++) {
10234 t = btf_type_by_id(btf, i);
10235 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10236 continue;
10237
10238 tname = btf_name_by_offset(btf, t->name_off);
10239 if (!strcmp(tname, ".data..percpu"))
10240 return i;
10241 }
10242
10243 return -ENOENT;
10244}
10245
10246/* replace pseudo btf_id with kernel symbol address */
10247static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10248 struct bpf_insn *insn,
10249 struct bpf_insn_aux_data *aux)
10250{
10251 const struct btf_var_secinfo *vsi;
10252 const struct btf_type *datasec;
10253 struct btf_mod_pair *btf_mod;
10254 const struct btf_type *t;
10255 const char *sym_name;
10256 bool percpu = false;
10257 u32 type, id = insn->imm;
10258 struct btf *btf;
10259 s32 datasec_id;
10260 u64 addr;
10261 int i, btf_fd, err;
10262
10263 btf_fd = insn[1].imm;
10264 if (btf_fd) {
10265 btf = btf_get_by_fd(btf_fd);
10266 if (IS_ERR(btf)) {
10267 verbose(env, "invalid module BTF object FD specified.\n");
10268 return -EINVAL;
10269 }
10270 } else {
10271 if (!btf_vmlinux) {
10272 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10273 return -EINVAL;
10274 }
10275 btf = btf_vmlinux;
10276 btf_get(btf);
10277 }
10278
10279 t = btf_type_by_id(btf, id);
10280 if (!t) {
10281 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10282 err = -ENOENT;
10283 goto err_put;
10284 }
10285
10286 if (!btf_type_is_var(t)) {
10287 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10288 err = -EINVAL;
10289 goto err_put;
10290 }
10291
10292 sym_name = btf_name_by_offset(btf, t->name_off);
10293 addr = kallsyms_lookup_name(sym_name);
10294 if (!addr) {
10295 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10296 sym_name);
10297 err = -ENOENT;
10298 goto err_put;
10299 }
10300
10301 datasec_id = find_btf_percpu_datasec(btf);
10302 if (datasec_id > 0) {
10303 datasec = btf_type_by_id(btf, datasec_id);
10304 for_each_vsi(i, datasec, vsi) {
10305 if (vsi->type == id) {
10306 percpu = true;
10307 break;
10308 }
10309 }
10310 }
10311
10312 insn[0].imm = (u32)addr;
10313 insn[1].imm = addr >> 32;
10314
10315 type = t->type;
10316 t = btf_type_skip_modifiers(btf, type, NULL);
10317 if (percpu) {
10318 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10319 aux->btf_var.btf = btf;
10320 aux->btf_var.btf_id = type;
10321 } else if (!btf_type_is_struct(t)) {
10322 const struct btf_type *ret;
10323 const char *tname;
10324 u32 tsize;
10325
10326 /* resolve the type size of ksym. */
10327 ret = btf_resolve_size(btf, t, &tsize);
10328 if (IS_ERR(ret)) {
10329 tname = btf_name_by_offset(btf, t->name_off);
10330 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10331 tname, PTR_ERR(ret));
10332 err = -EINVAL;
10333 goto err_put;
10334 }
10335 aux->btf_var.reg_type = PTR_TO_MEM;
10336 aux->btf_var.mem_size = tsize;
10337 } else {
10338 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10339 aux->btf_var.btf = btf;
10340 aux->btf_var.btf_id = type;
10341 }
10342
10343 /* check whether we recorded this BTF (and maybe module) already */
10344 for (i = 0; i < env->used_btf_cnt; i++) {
10345 if (env->used_btfs[i].btf == btf) {
10346 btf_put(btf);
10347 return 0;
10348 }
10349 }
10350
10351 if (env->used_btf_cnt >= MAX_USED_BTFS) {
10352 err = -E2BIG;
10353 goto err_put;
10354 }
10355
10356 btf_mod = &env->used_btfs[env->used_btf_cnt];
10357 btf_mod->btf = btf;
10358 btf_mod->module = NULL;
10359
10360 /* if we reference variables from kernel module, bump its refcount */
10361 if (btf_is_module(btf)) {
10362 btf_mod->module = btf_try_get_module(btf);
10363 if (!btf_mod->module) {
10364 err = -ENXIO;
10365 goto err_put;
10366 }
10367 }
10368
10369 env->used_btf_cnt++;
10370
10371 return 0;
10372err_put:
10373 btf_put(btf);
10374 return err;
10375}
10376
10377static int check_map_prealloc(struct bpf_map *map)
10378{
10379 return (map->map_type != BPF_MAP_TYPE_HASH &&
10380 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10381 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10382 !(map->map_flags & BPF_F_NO_PREALLOC);
10383}
10384
10385static bool is_tracing_prog_type(enum bpf_prog_type type)
10386{
10387 switch (type) {
10388 case BPF_PROG_TYPE_KPROBE:
10389 case BPF_PROG_TYPE_TRACEPOINT:
10390 case BPF_PROG_TYPE_PERF_EVENT:
10391 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10392 return true;
10393 default:
10394 return false;
10395 }
10396}
10397
10398static bool is_preallocated_map(struct bpf_map *map)
10399{
10400 if (!check_map_prealloc(map))
10401 return false;
10402 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10403 return false;
10404 return true;
10405}
10406
10407static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10408 struct bpf_map *map,
10409 struct bpf_prog *prog)
10410
10411{
10412 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10413 /*
10414 * Validate that trace type programs use preallocated hash maps.
10415 *
10416 * For programs attached to PERF events this is mandatory as the
10417 * perf NMI can hit any arbitrary code sequence.
10418 *
10419 * All other trace types using preallocated hash maps are unsafe as
10420 * well because tracepoint or kprobes can be inside locked regions
10421 * of the memory allocator or at a place where a recursion into the
10422 * memory allocator would see inconsistent state.
10423 *
10424 * On RT enabled kernels run-time allocation of all trace type
10425 * programs is strictly prohibited due to lock type constraints. On
10426 * !RT kernels it is allowed for backwards compatibility reasons for
10427 * now, but warnings are emitted so developers are made aware of
10428 * the unsafety and can fix their programs before this is enforced.
10429 */
10430 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10431 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10432 verbose(env, "perf_event programs can only use preallocated hash map\n");
10433 return -EINVAL;
10434 }
10435 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10436 verbose(env, "trace type programs can only use preallocated hash map\n");
10437 return -EINVAL;
10438 }
10439 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10440 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10441 }
10442
10443 if (map_value_has_spin_lock(map)) {
10444 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10445 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10446 return -EINVAL;
10447 }
10448
10449 if (is_tracing_prog_type(prog_type)) {
10450 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10451 return -EINVAL;
10452 }
10453
10454 if (prog->aux->sleepable) {
10455 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10456 return -EINVAL;
10457 }
10458 }
10459
10460 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10461 !bpf_offload_prog_map_match(prog, map)) {
10462 verbose(env, "offload device mismatch between prog and map\n");
10463 return -EINVAL;
10464 }
10465
10466 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10467 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10468 return -EINVAL;
10469 }
10470
10471 if (prog->aux->sleepable)
10472 switch (map->map_type) {
10473 case BPF_MAP_TYPE_HASH:
10474 case BPF_MAP_TYPE_LRU_HASH:
10475 case BPF_MAP_TYPE_ARRAY:
10476 case BPF_MAP_TYPE_PERCPU_HASH:
10477 case BPF_MAP_TYPE_PERCPU_ARRAY:
10478 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10479 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10480 case BPF_MAP_TYPE_HASH_OF_MAPS:
10481 if (!is_preallocated_map(map)) {
10482 verbose(env,
10483 "Sleepable programs can only use preallocated maps\n");
10484 return -EINVAL;
10485 }
10486 break;
10487 case BPF_MAP_TYPE_RINGBUF:
10488 break;
10489 default:
10490 verbose(env,
10491 "Sleepable programs can only use array, hash, and ringbuf maps\n");
10492 return -EINVAL;
10493 }
10494
10495 return 0;
10496}
10497
10498static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10499{
10500 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10501 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10502}
10503
10504/* find and rewrite pseudo imm in ld_imm64 instructions:
10505 *
10506 * 1. if it accesses map FD, replace it with actual map pointer.
10507 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10508 *
10509 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10510 */
10511static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10512{
10513 struct bpf_insn *insn = env->prog->insnsi;
10514 int insn_cnt = env->prog->len;
10515 int i, j, err;
10516
10517 err = bpf_prog_calc_tag(env->prog);
10518 if (err)
10519 return err;
10520
10521 for (i = 0; i < insn_cnt; i++, insn++) {
10522 if (BPF_CLASS(insn->code) == BPF_LDX &&
10523 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10524 verbose(env, "BPF_LDX uses reserved fields\n");
10525 return -EINVAL;
10526 }
10527
10528 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10529 struct bpf_insn_aux_data *aux;
10530 struct bpf_map *map;
10531 struct fd f;
10532 u64 addr;
10533
10534 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10535 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10536 insn[1].off != 0) {
10537 verbose(env, "invalid bpf_ld_imm64 insn\n");
10538 return -EINVAL;
10539 }
10540
10541 if (insn[0].src_reg == 0)
10542 /* valid generic load 64-bit imm */
10543 goto next_insn;
10544
10545 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10546 aux = &env->insn_aux_data[i];
10547 err = check_pseudo_btf_id(env, insn, aux);
10548 if (err)
10549 return err;
10550 goto next_insn;
10551 }
10552
10553 /* In final convert_pseudo_ld_imm64() step, this is
10554 * converted into regular 64-bit imm load insn.
10555 */
10556 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10557 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10558 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10559 insn[1].imm != 0)) {
10560 verbose(env,
10561 "unrecognized bpf_ld_imm64 insn\n");
10562 return -EINVAL;
10563 }
10564
10565 f = fdget(insn[0].imm);
10566 map = __bpf_map_get(f);
10567 if (IS_ERR(map)) {
10568 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10569 insn[0].imm);
10570 return PTR_ERR(map);
10571 }
10572
10573 err = check_map_prog_compatibility(env, map, env->prog);
10574 if (err) {
10575 fdput(f);
10576 return err;
10577 }
10578
10579 aux = &env->insn_aux_data[i];
10580 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10581 addr = (unsigned long)map;
10582 } else {
10583 u32 off = insn[1].imm;
10584
10585 if (off >= BPF_MAX_VAR_OFF) {
10586 verbose(env, "direct value offset of %u is not allowed\n", off);
10587 fdput(f);
10588 return -EINVAL;
10589 }
10590
10591 if (!map->ops->map_direct_value_addr) {
10592 verbose(env, "no direct value access support for this map type\n");
10593 fdput(f);
10594 return -EINVAL;
10595 }
10596
10597 err = map->ops->map_direct_value_addr(map, &addr, off);
10598 if (err) {
10599 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10600 map->value_size, off);
10601 fdput(f);
10602 return err;
10603 }
10604
10605 aux->map_off = off;
10606 addr += off;
10607 }
10608
10609 insn[0].imm = (u32)addr;
10610 insn[1].imm = addr >> 32;
10611
10612 /* check whether we recorded this map already */
10613 for (j = 0; j < env->used_map_cnt; j++) {
10614 if (env->used_maps[j] == map) {
10615 aux->map_index = j;
10616 fdput(f);
10617 goto next_insn;
10618 }
10619 }
10620
10621 if (env->used_map_cnt >= MAX_USED_MAPS) {
10622 fdput(f);
10623 return -E2BIG;
10624 }
10625
10626 /* hold the map. If the program is rejected by verifier,
10627 * the map will be released by release_maps() or it
10628 * will be used by the valid program until it's unloaded
10629 * and all maps are released in free_used_maps()
10630 */
10631 bpf_map_inc(map);
10632
10633 aux->map_index = env->used_map_cnt;
10634 env->used_maps[env->used_map_cnt++] = map;
10635
10636 if (bpf_map_is_cgroup_storage(map) &&
10637 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10638 verbose(env, "only one cgroup storage of each type is allowed\n");
10639 fdput(f);
10640 return -EBUSY;
10641 }
10642
10643 fdput(f);
10644next_insn:
10645 insn++;
10646 i++;
10647 continue;
10648 }
10649
10650 /* Basic sanity check before we invest more work here. */
10651 if (!bpf_opcode_in_insntable(insn->code)) {
10652 verbose(env, "unknown opcode %02x\n", insn->code);
10653 return -EINVAL;
10654 }
10655 }
10656
10657 /* now all pseudo BPF_LD_IMM64 instructions load valid
10658 * 'struct bpf_map *' into a register instead of user map_fd.
10659 * These pointers will be used later by verifier to validate map access.
10660 */
10661 return 0;
10662}
10663
10664/* drop refcnt of maps used by the rejected program */
10665static void release_maps(struct bpf_verifier_env *env)
10666{
10667 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10668 env->used_map_cnt);
10669}
10670
10671/* drop refcnt of maps used by the rejected program */
10672static void release_btfs(struct bpf_verifier_env *env)
10673{
10674 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10675 env->used_btf_cnt);
10676}
10677
10678/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10679static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10680{
10681 struct bpf_insn *insn = env->prog->insnsi;
10682 int insn_cnt = env->prog->len;
10683 int i;
10684
10685 for (i = 0; i < insn_cnt; i++, insn++)
10686 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10687 insn->src_reg = 0;
10688}
10689
10690/* single env->prog->insni[off] instruction was replaced with the range
10691 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10692 * [0, off) and [off, end) to new locations, so the patched range stays zero
10693 */
10694static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10695 struct bpf_prog *new_prog, u32 off, u32 cnt)
10696{
10697 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10698 struct bpf_insn *insn = new_prog->insnsi;
10699 u32 prog_len;
10700 int i;
10701
10702 /* aux info at OFF always needs adjustment, no matter fast path
10703 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10704 * original insn at old prog.
10705 */
10706 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10707
10708 if (cnt == 1)
10709 return 0;
10710 prog_len = new_prog->len;
10711 new_data = vzalloc(array_size(prog_len,
10712 sizeof(struct bpf_insn_aux_data)));
10713 if (!new_data)
10714 return -ENOMEM;
10715 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10716 memcpy(new_data + off + cnt - 1, old_data + off,
10717 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10718 for (i = off; i < off + cnt - 1; i++) {
10719 new_data[i].seen = env->pass_cnt;
10720 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10721 }
10722 env->insn_aux_data = new_data;
10723 vfree(old_data);
10724 return 0;
10725}
10726
10727static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10728{
10729 int i;
10730
10731 if (len == 1)
10732 return;
10733 /* NOTE: fake 'exit' subprog should be updated as well. */
10734 for (i = 0; i <= env->subprog_cnt; i++) {
10735 if (env->subprog_info[i].start <= off)
10736 continue;
10737 env->subprog_info[i].start += len - 1;
10738 }
10739}
10740
10741static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10742{
10743 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10744 int i, sz = prog->aux->size_poke_tab;
10745 struct bpf_jit_poke_descriptor *desc;
10746
10747 for (i = 0; i < sz; i++) {
10748 desc = &tab[i];
10749 desc->insn_idx += len - 1;
10750 }
10751}
10752
10753static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10754 const struct bpf_insn *patch, u32 len)
10755{
10756 struct bpf_prog *new_prog;
10757
10758 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10759 if (IS_ERR(new_prog)) {
10760 if (PTR_ERR(new_prog) == -ERANGE)
10761 verbose(env,
10762 "insn %d cannot be patched due to 16-bit range\n",
10763 env->insn_aux_data[off].orig_idx);
10764 return NULL;
10765 }
10766 if (adjust_insn_aux_data(env, new_prog, off, len))
10767 return NULL;
10768 adjust_subprog_starts(env, off, len);
10769 adjust_poke_descs(new_prog, len);
10770 return new_prog;
10771}
10772
10773static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10774 u32 off, u32 cnt)
10775{
10776 int i, j;
10777
10778 /* find first prog starting at or after off (first to remove) */
10779 for (i = 0; i < env->subprog_cnt; i++)
10780 if (env->subprog_info[i].start >= off)
10781 break;
10782 /* find first prog starting at or after off + cnt (first to stay) */
10783 for (j = i; j < env->subprog_cnt; j++)
10784 if (env->subprog_info[j].start >= off + cnt)
10785 break;
10786 /* if j doesn't start exactly at off + cnt, we are just removing
10787 * the front of previous prog
10788 */
10789 if (env->subprog_info[j].start != off + cnt)
10790 j--;
10791
10792 if (j > i) {
10793 struct bpf_prog_aux *aux = env->prog->aux;
10794 int move;
10795
10796 /* move fake 'exit' subprog as well */
10797 move = env->subprog_cnt + 1 - j;
10798
10799 memmove(env->subprog_info + i,
10800 env->subprog_info + j,
10801 sizeof(*env->subprog_info) * move);
10802 env->subprog_cnt -= j - i;
10803
10804 /* remove func_info */
10805 if (aux->func_info) {
10806 move = aux->func_info_cnt - j;
10807
10808 memmove(aux->func_info + i,
10809 aux->func_info + j,
10810 sizeof(*aux->func_info) * move);
10811 aux->func_info_cnt -= j - i;
10812 /* func_info->insn_off is set after all code rewrites,
10813 * in adjust_btf_func() - no need to adjust
10814 */
10815 }
10816 } else {
10817 /* convert i from "first prog to remove" to "first to adjust" */
10818 if (env->subprog_info[i].start == off)
10819 i++;
10820 }
10821
10822 /* update fake 'exit' subprog as well */
10823 for (; i <= env->subprog_cnt; i++)
10824 env->subprog_info[i].start -= cnt;
10825
10826 return 0;
10827}
10828
10829static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10830 u32 cnt)
10831{
10832 struct bpf_prog *prog = env->prog;
10833 u32 i, l_off, l_cnt, nr_linfo;
10834 struct bpf_line_info *linfo;
10835
10836 nr_linfo = prog->aux->nr_linfo;
10837 if (!nr_linfo)
10838 return 0;
10839
10840 linfo = prog->aux->linfo;
10841
10842 /* find first line info to remove, count lines to be removed */
10843 for (i = 0; i < nr_linfo; i++)
10844 if (linfo[i].insn_off >= off)
10845 break;
10846
10847 l_off = i;
10848 l_cnt = 0;
10849 for (; i < nr_linfo; i++)
10850 if (linfo[i].insn_off < off + cnt)
10851 l_cnt++;
10852 else
10853 break;
10854
10855 /* First live insn doesn't match first live linfo, it needs to "inherit"
10856 * last removed linfo. prog is already modified, so prog->len == off
10857 * means no live instructions after (tail of the program was removed).
10858 */
10859 if (prog->len != off && l_cnt &&
10860 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10861 l_cnt--;
10862 linfo[--i].insn_off = off + cnt;
10863 }
10864
10865 /* remove the line info which refer to the removed instructions */
10866 if (l_cnt) {
10867 memmove(linfo + l_off, linfo + i,
10868 sizeof(*linfo) * (nr_linfo - i));
10869
10870 prog->aux->nr_linfo -= l_cnt;
10871 nr_linfo = prog->aux->nr_linfo;
10872 }
10873
10874 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10875 for (i = l_off; i < nr_linfo; i++)
10876 linfo[i].insn_off -= cnt;
10877
10878 /* fix up all subprogs (incl. 'exit') which start >= off */
10879 for (i = 0; i <= env->subprog_cnt; i++)
10880 if (env->subprog_info[i].linfo_idx > l_off) {
10881 /* program may have started in the removed region but
10882 * may not be fully removed
10883 */
10884 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10885 env->subprog_info[i].linfo_idx -= l_cnt;
10886 else
10887 env->subprog_info[i].linfo_idx = l_off;
10888 }
10889
10890 return 0;
10891}
10892
10893static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10894{
10895 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10896 unsigned int orig_prog_len = env->prog->len;
10897 int err;
10898
10899 if (bpf_prog_is_dev_bound(env->prog->aux))
10900 bpf_prog_offload_remove_insns(env, off, cnt);
10901
10902 err = bpf_remove_insns(env->prog, off, cnt);
10903 if (err)
10904 return err;
10905
10906 err = adjust_subprog_starts_after_remove(env, off, cnt);
10907 if (err)
10908 return err;
10909
10910 err = bpf_adj_linfo_after_remove(env, off, cnt);
10911 if (err)
10912 return err;
10913
10914 memmove(aux_data + off, aux_data + off + cnt,
10915 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10916
10917 return 0;
10918}
10919
10920/* The verifier does more data flow analysis than llvm and will not
10921 * explore branches that are dead at run time. Malicious programs can
10922 * have dead code too. Therefore replace all dead at-run-time code
10923 * with 'ja -1'.
10924 *
10925 * Just nops are not optimal, e.g. if they would sit at the end of the
10926 * program and through another bug we would manage to jump there, then
10927 * we'd execute beyond program memory otherwise. Returning exception
10928 * code also wouldn't work since we can have subprogs where the dead
10929 * code could be located.
10930 */
10931static void sanitize_dead_code(struct bpf_verifier_env *env)
10932{
10933 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10934 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10935 struct bpf_insn *insn = env->prog->insnsi;
10936 const int insn_cnt = env->prog->len;
10937 int i;
10938
10939 for (i = 0; i < insn_cnt; i++) {
10940 if (aux_data[i].seen)
10941 continue;
10942 memcpy(insn + i, &trap, sizeof(trap));
10943 }
10944}
10945
10946static bool insn_is_cond_jump(u8 code)
10947{
10948 u8 op;
10949
10950 if (BPF_CLASS(code) == BPF_JMP32)
10951 return true;
10952
10953 if (BPF_CLASS(code) != BPF_JMP)
10954 return false;
10955
10956 op = BPF_OP(code);
10957 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10958}
10959
10960static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10961{
10962 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10963 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10964 struct bpf_insn *insn = env->prog->insnsi;
10965 const int insn_cnt = env->prog->len;
10966 int i;
10967
10968 for (i = 0; i < insn_cnt; i++, insn++) {
10969 if (!insn_is_cond_jump(insn->code))
10970 continue;
10971
10972 if (!aux_data[i + 1].seen)
10973 ja.off = insn->off;
10974 else if (!aux_data[i + 1 + insn->off].seen)
10975 ja.off = 0;
10976 else
10977 continue;
10978
10979 if (bpf_prog_is_dev_bound(env->prog->aux))
10980 bpf_prog_offload_replace_insn(env, i, &ja);
10981
10982 memcpy(insn, &ja, sizeof(ja));
10983 }
10984}
10985
10986static int opt_remove_dead_code(struct bpf_verifier_env *env)
10987{
10988 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10989 int insn_cnt = env->prog->len;
10990 int i, err;
10991
10992 for (i = 0; i < insn_cnt; i++) {
10993 int j;
10994
10995 j = 0;
10996 while (i + j < insn_cnt && !aux_data[i + j].seen)
10997 j++;
10998 if (!j)
10999 continue;
11000
11001 err = verifier_remove_insns(env, i, j);
11002 if (err)
11003 return err;
11004 insn_cnt = env->prog->len;
11005 }
11006
11007 return 0;
11008}
11009
11010static int opt_remove_nops(struct bpf_verifier_env *env)
11011{
11012 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11013 struct bpf_insn *insn = env->prog->insnsi;
11014 int insn_cnt = env->prog->len;
11015 int i, err;
11016
11017 for (i = 0; i < insn_cnt; i++) {
11018 if (memcmp(&insn[i], &ja, sizeof(ja)))
11019 continue;
11020
11021 err = verifier_remove_insns(env, i, 1);
11022 if (err)
11023 return err;
11024 insn_cnt--;
11025 i--;
11026 }
11027
11028 return 0;
11029}
11030
11031static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11032 const union bpf_attr *attr)
11033{
11034 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11035 struct bpf_insn_aux_data *aux = env->insn_aux_data;
11036 int i, patch_len, delta = 0, len = env->prog->len;
11037 struct bpf_insn *insns = env->prog->insnsi;
11038 struct bpf_prog *new_prog;
11039 bool rnd_hi32;
11040
11041 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11042 zext_patch[1] = BPF_ZEXT_REG(0);
11043 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11044 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11045 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11046 for (i = 0; i < len; i++) {
11047 int adj_idx = i + delta;
11048 struct bpf_insn insn;
11049 int load_reg;
11050
11051 insn = insns[adj_idx];
11052 load_reg = insn_def_regno(&insn);
11053 if (!aux[adj_idx].zext_dst) {
11054 u8 code, class;
11055 u32 imm_rnd;
11056
11057 if (!rnd_hi32)
11058 continue;
11059
11060 code = insn.code;
11061 class = BPF_CLASS(code);
11062 if (load_reg == -1)
11063 continue;
11064
11065 /* NOTE: arg "reg" (the fourth one) is only used for
11066 * BPF_STX + SRC_OP, so it is safe to pass NULL
11067 * here.
11068 */
11069 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11070 if (class == BPF_LD &&
11071 BPF_MODE(code) == BPF_IMM)
11072 i++;
11073 continue;
11074 }
11075
11076 /* ctx load could be transformed into wider load. */
11077 if (class == BPF_LDX &&
11078 aux[adj_idx].ptr_type == PTR_TO_CTX)
11079 continue;
11080
11081 imm_rnd = get_random_int();
11082 rnd_hi32_patch[0] = insn;
11083 rnd_hi32_patch[1].imm = imm_rnd;
11084 rnd_hi32_patch[3].dst_reg = load_reg;
11085 patch = rnd_hi32_patch;
11086 patch_len = 4;
11087 goto apply_patch_buffer;
11088 }
11089
11090 /* Add in an zero-extend instruction if a) the JIT has requested
11091 * it or b) it's a CMPXCHG.
11092 *
11093 * The latter is because: BPF_CMPXCHG always loads a value into
11094 * R0, therefore always zero-extends. However some archs'
11095 * equivalent instruction only does this load when the
11096 * comparison is successful. This detail of CMPXCHG is
11097 * orthogonal to the general zero-extension behaviour of the
11098 * CPU, so it's treated independently of bpf_jit_needs_zext.
11099 */
11100 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11101 continue;
11102
11103 if (WARN_ON(load_reg == -1)) {
11104 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11105 return -EFAULT;
11106 }
11107
11108 zext_patch[0] = insn;
11109 zext_patch[1].dst_reg = load_reg;
11110 zext_patch[1].src_reg = load_reg;
11111 patch = zext_patch;
11112 patch_len = 2;
11113apply_patch_buffer:
11114 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11115 if (!new_prog)
11116 return -ENOMEM;
11117 env->prog = new_prog;
11118 insns = new_prog->insnsi;
11119 aux = env->insn_aux_data;
11120 delta += patch_len - 1;
11121 }
11122
11123 return 0;
11124}
11125
11126/* convert load instructions that access fields of a context type into a
11127 * sequence of instructions that access fields of the underlying structure:
11128 * struct __sk_buff -> struct sk_buff
11129 * struct bpf_sock_ops -> struct sock
11130 */
11131static int convert_ctx_accesses(struct bpf_verifier_env *env)
11132{
11133 const struct bpf_verifier_ops *ops = env->ops;
11134 int i, cnt, size, ctx_field_size, delta = 0;
11135 const int insn_cnt = env->prog->len;
11136 struct bpf_insn insn_buf[16], *insn;
11137 u32 target_size, size_default, off;
11138 struct bpf_prog *new_prog;
11139 enum bpf_access_type type;
11140 bool is_narrower_load;
11141
11142 if (ops->gen_prologue || env->seen_direct_write) {
11143 if (!ops->gen_prologue) {
11144 verbose(env, "bpf verifier is misconfigured\n");
11145 return -EINVAL;
11146 }
11147 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11148 env->prog);
11149 if (cnt >= ARRAY_SIZE(insn_buf)) {
11150 verbose(env, "bpf verifier is misconfigured\n");
11151 return -EINVAL;
11152 } else if (cnt) {
11153 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11154 if (!new_prog)
11155 return -ENOMEM;
11156
11157 env->prog = new_prog;
11158 delta += cnt - 1;
11159 }
11160 }
11161
11162 if (bpf_prog_is_dev_bound(env->prog->aux))
11163 return 0;
11164
11165 insn = env->prog->insnsi + delta;
11166
11167 for (i = 0; i < insn_cnt; i++, insn++) {
11168 bpf_convert_ctx_access_t convert_ctx_access;
11169
11170 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11171 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11172 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11173 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11174 type = BPF_READ;
11175 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11176 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11177 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11178 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11179 type = BPF_WRITE;
11180 else
11181 continue;
11182
11183 if (type == BPF_WRITE &&
11184 env->insn_aux_data[i + delta].sanitize_stack_off) {
11185 struct bpf_insn patch[] = {
11186 /* Sanitize suspicious stack slot with zero.
11187 * There are no memory dependencies for this store,
11188 * since it's only using frame pointer and immediate
11189 * constant of zero
11190 */
11191 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11192 env->insn_aux_data[i + delta].sanitize_stack_off,
11193 0),
11194 /* the original STX instruction will immediately
11195 * overwrite the same stack slot with appropriate value
11196 */
11197 *insn,
11198 };
11199
11200 cnt = ARRAY_SIZE(patch);
11201 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11202 if (!new_prog)
11203 return -ENOMEM;
11204
11205 delta += cnt - 1;
11206 env->prog = new_prog;
11207 insn = new_prog->insnsi + i + delta;
11208 continue;
11209 }
11210
11211 switch (env->insn_aux_data[i + delta].ptr_type) {
11212 case PTR_TO_CTX:
11213 if (!ops->convert_ctx_access)
11214 continue;
11215 convert_ctx_access = ops->convert_ctx_access;
11216 break;
11217 case PTR_TO_SOCKET:
11218 case PTR_TO_SOCK_COMMON:
11219 convert_ctx_access = bpf_sock_convert_ctx_access;
11220 break;
11221 case PTR_TO_TCP_SOCK:
11222 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11223 break;
11224 case PTR_TO_XDP_SOCK:
11225 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11226 break;
11227 case PTR_TO_BTF_ID:
11228 if (type == BPF_READ) {
11229 insn->code = BPF_LDX | BPF_PROBE_MEM |
11230 BPF_SIZE((insn)->code);
11231 env->prog->aux->num_exentries++;
11232 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11233 verbose(env, "Writes through BTF pointers are not allowed\n");
11234 return -EINVAL;
11235 }
11236 continue;
11237 default:
11238 continue;
11239 }
11240
11241 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11242 size = BPF_LDST_BYTES(insn);
11243
11244 /* If the read access is a narrower load of the field,
11245 * convert to a 4/8-byte load, to minimum program type specific
11246 * convert_ctx_access changes. If conversion is successful,
11247 * we will apply proper mask to the result.
11248 */
11249 is_narrower_load = size < ctx_field_size;
11250 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11251 off = insn->off;
11252 if (is_narrower_load) {
11253 u8 size_code;
11254
11255 if (type == BPF_WRITE) {
11256 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11257 return -EINVAL;
11258 }
11259
11260 size_code = BPF_H;
11261 if (ctx_field_size == 4)
11262 size_code = BPF_W;
11263 else if (ctx_field_size == 8)
11264 size_code = BPF_DW;
11265
11266 insn->off = off & ~(size_default - 1);
11267 insn->code = BPF_LDX | BPF_MEM | size_code;
11268 }
11269
11270 target_size = 0;
11271 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11272 &target_size);
11273 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11274 (ctx_field_size && !target_size)) {
11275 verbose(env, "bpf verifier is misconfigured\n");
11276 return -EINVAL;
11277 }
11278
11279 if (is_narrower_load && size < target_size) {
11280 u8 shift = bpf_ctx_narrow_access_offset(
11281 off, size, size_default) * 8;
11282 if (ctx_field_size <= 4) {
11283 if (shift)
11284 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11285 insn->dst_reg,
11286 shift);
11287 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11288 (1 << size * 8) - 1);
11289 } else {
11290 if (shift)
11291 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11292 insn->dst_reg,
11293 shift);
11294 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11295 (1ULL << size * 8) - 1);
11296 }
11297 }
11298
11299 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11300 if (!new_prog)
11301 return -ENOMEM;
11302
11303 delta += cnt - 1;
11304
11305 /* keep walking new program and skip insns we just inserted */
11306 env->prog = new_prog;
11307 insn = new_prog->insnsi + i + delta;
11308 }
11309
11310 return 0;
11311}
11312
11313static int jit_subprogs(struct bpf_verifier_env *env)
11314{
11315 struct bpf_prog *prog = env->prog, **func, *tmp;
11316 int i, j, subprog_start, subprog_end = 0, len, subprog;
11317 struct bpf_map *map_ptr;
11318 struct bpf_insn *insn;
11319 void *old_bpf_func;
11320 int err, num_exentries;
11321
11322 if (env->subprog_cnt <= 1)
11323 return 0;
11324
11325 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11326 if (!bpf_pseudo_call(insn))
11327 continue;
11328 /* Upon error here we cannot fall back to interpreter but
11329 * need a hard reject of the program. Thus -EFAULT is
11330 * propagated in any case.
11331 */
11332 subprog = find_subprog(env, i + insn->imm + 1);
11333 if (subprog < 0) {
11334 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11335 i + insn->imm + 1);
11336 return -EFAULT;
11337 }
11338 /* temporarily remember subprog id inside insn instead of
11339 * aux_data, since next loop will split up all insns into funcs
11340 */
11341 insn->off = subprog;
11342 /* remember original imm in case JIT fails and fallback
11343 * to interpreter will be needed
11344 */
11345 env->insn_aux_data[i].call_imm = insn->imm;
11346 /* point imm to __bpf_call_base+1 from JITs point of view */
11347 insn->imm = 1;
11348 }
11349
11350 err = bpf_prog_alloc_jited_linfo(prog);
11351 if (err)
11352 goto out_undo_insn;
11353
11354 err = -ENOMEM;
11355 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11356 if (!func)
11357 goto out_undo_insn;
11358
11359 for (i = 0; i < env->subprog_cnt; i++) {
11360 subprog_start = subprog_end;
11361 subprog_end = env->subprog_info[i + 1].start;
11362
11363 len = subprog_end - subprog_start;
11364 /* BPF_PROG_RUN doesn't call subprogs directly,
11365 * hence main prog stats include the runtime of subprogs.
11366 * subprogs don't have IDs and not reachable via prog_get_next_id
11367 * func[i]->stats will never be accessed and stays NULL
11368 */
11369 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11370 if (!func[i])
11371 goto out_free;
11372 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11373 len * sizeof(struct bpf_insn));
11374 func[i]->type = prog->type;
11375 func[i]->len = len;
11376 if (bpf_prog_calc_tag(func[i]))
11377 goto out_free;
11378 func[i]->is_func = 1;
11379 func[i]->aux->func_idx = i;
11380 /* the btf and func_info will be freed only at prog->aux */
11381 func[i]->aux->btf = prog->aux->btf;
11382 func[i]->aux->func_info = prog->aux->func_info;
11383
11384 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11385 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11386 int ret;
11387
11388 if (!(insn_idx >= subprog_start &&
11389 insn_idx <= subprog_end))
11390 continue;
11391
11392 ret = bpf_jit_add_poke_descriptor(func[i],
11393 &prog->aux->poke_tab[j]);
11394 if (ret < 0) {
11395 verbose(env, "adding tail call poke descriptor failed\n");
11396 goto out_free;
11397 }
11398
11399 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11400
11401 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11402 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11403 if (ret < 0) {
11404 verbose(env, "tracking tail call prog failed\n");
11405 goto out_free;
11406 }
11407 }
11408
11409 /* Use bpf_prog_F_tag to indicate functions in stack traces.
11410 * Long term would need debug info to populate names
11411 */
11412 func[i]->aux->name[0] = 'F';
11413 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11414 func[i]->jit_requested = 1;
11415 func[i]->aux->linfo = prog->aux->linfo;
11416 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11417 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11418 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11419 num_exentries = 0;
11420 insn = func[i]->insnsi;
11421 for (j = 0; j < func[i]->len; j++, insn++) {
11422 if (BPF_CLASS(insn->code) == BPF_LDX &&
11423 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11424 num_exentries++;
11425 }
11426 func[i]->aux->num_exentries = num_exentries;
11427 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11428 func[i] = bpf_int_jit_compile(func[i]);
11429 if (!func[i]->jited) {
11430 err = -ENOTSUPP;
11431 goto out_free;
11432 }
11433 cond_resched();
11434 }
11435
11436 /* Untrack main program's aux structs so that during map_poke_run()
11437 * we will not stumble upon the unfilled poke descriptors; each
11438 * of the main program's poke descs got distributed across subprogs
11439 * and got tracked onto map, so we are sure that none of them will
11440 * be missed after the operation below
11441 */
11442 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11443 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11444
11445 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11446 }
11447
11448 /* at this point all bpf functions were successfully JITed
11449 * now populate all bpf_calls with correct addresses and
11450 * run last pass of JIT
11451 */
11452 for (i = 0; i < env->subprog_cnt; i++) {
11453 insn = func[i]->insnsi;
11454 for (j = 0; j < func[i]->len; j++, insn++) {
11455 if (!bpf_pseudo_call(insn))
11456 continue;
11457 subprog = insn->off;
11458 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11459 __bpf_call_base;
11460 }
11461
11462 /* we use the aux data to keep a list of the start addresses
11463 * of the JITed images for each function in the program
11464 *
11465 * for some architectures, such as powerpc64, the imm field
11466 * might not be large enough to hold the offset of the start
11467 * address of the callee's JITed image from __bpf_call_base
11468 *
11469 * in such cases, we can lookup the start address of a callee
11470 * by using its subprog id, available from the off field of
11471 * the call instruction, as an index for this list
11472 */
11473 func[i]->aux->func = func;
11474 func[i]->aux->func_cnt = env->subprog_cnt;
11475 }
11476 for (i = 0; i < env->subprog_cnt; i++) {
11477 old_bpf_func = func[i]->bpf_func;
11478 tmp = bpf_int_jit_compile(func[i]);
11479 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11480 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11481 err = -ENOTSUPP;
11482 goto out_free;
11483 }
11484 cond_resched();
11485 }
11486
11487 /* finally lock prog and jit images for all functions and
11488 * populate kallsysm
11489 */
11490 for (i = 0; i < env->subprog_cnt; i++) {
11491 bpf_prog_lock_ro(func[i]);
11492 bpf_prog_kallsyms_add(func[i]);
11493 }
11494
11495 /* Last step: make now unused interpreter insns from main
11496 * prog consistent for later dump requests, so they can
11497 * later look the same as if they were interpreted only.
11498 */
11499 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11500 if (!bpf_pseudo_call(insn))
11501 continue;
11502 insn->off = env->insn_aux_data[i].call_imm;
11503 subprog = find_subprog(env, i + insn->off + 1);
11504 insn->imm = subprog;
11505 }
11506
11507 prog->jited = 1;
11508 prog->bpf_func = func[0]->bpf_func;
11509 prog->aux->func = func;
11510 prog->aux->func_cnt = env->subprog_cnt;
11511 bpf_prog_free_unused_jited_linfo(prog);
11512 return 0;
11513out_free:
11514 for (i = 0; i < env->subprog_cnt; i++) {
11515 if (!func[i])
11516 continue;
11517
11518 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11519 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11520 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11521 }
11522 bpf_jit_free(func[i]);
11523 }
11524 kfree(func);
11525out_undo_insn:
11526 /* cleanup main prog to be interpreted */
11527 prog->jit_requested = 0;
11528 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11529 if (!bpf_pseudo_call(insn))
11530 continue;
11531 insn->off = 0;
11532 insn->imm = env->insn_aux_data[i].call_imm;
11533 }
11534 bpf_prog_free_jited_linfo(prog);
11535 return err;
11536}
11537
11538static int fixup_call_args(struct bpf_verifier_env *env)
11539{
11540#ifndef CONFIG_BPF_JIT_ALWAYS_ON
11541 struct bpf_prog *prog = env->prog;
11542 struct bpf_insn *insn = prog->insnsi;
11543 int i, depth;
11544#endif
11545 int err = 0;
11546
11547 if (env->prog->jit_requested &&
11548 !bpf_prog_is_dev_bound(env->prog->aux)) {
11549 err = jit_subprogs(env);
11550 if (err == 0)
11551 return 0;
11552 if (err == -EFAULT)
11553 return err;
11554 }
11555#ifndef CONFIG_BPF_JIT_ALWAYS_ON
11556 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11557 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11558 * have to be rejected, since interpreter doesn't support them yet.
11559 */
11560 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11561 return -EINVAL;
11562 }
11563 for (i = 0; i < prog->len; i++, insn++) {
11564 if (!bpf_pseudo_call(insn))
11565 continue;
11566 depth = get_callee_stack_depth(env, insn, i);
11567 if (depth < 0)
11568 return depth;
11569 bpf_patch_call_args(insn, depth);
11570 }
11571 err = 0;
11572#endif
11573 return err;
11574}
11575
11576/* fixup insn->imm field of bpf_call instructions
11577 * and inline eligible helpers as explicit sequence of BPF instructions
11578 *
11579 * this function is called after eBPF program passed verification
11580 */
11581static int fixup_bpf_calls(struct bpf_verifier_env *env)
11582{
11583 struct bpf_prog *prog = env->prog;
11584 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11585 struct bpf_insn *insn = prog->insnsi;
11586 const struct bpf_func_proto *fn;
11587 const int insn_cnt = prog->len;
11588 const struct bpf_map_ops *ops;
11589 struct bpf_insn_aux_data *aux;
11590 struct bpf_insn insn_buf[16];
11591 struct bpf_prog *new_prog;
11592 struct bpf_map *map_ptr;
11593 int i, ret, cnt, delta = 0;
11594
11595 for (i = 0; i < insn_cnt; i++, insn++) {
11596 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11597 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11598 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11599 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11600 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11601 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11602 struct bpf_insn *patchlet;
11603 struct bpf_insn chk_and_div[] = {
11604 /* [R,W]x div 0 -> 0 */
11605 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11606 BPF_JNE | BPF_K, insn->src_reg,
11607 0, 2, 0),
11608 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11609 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11610 *insn,
11611 };
11612 struct bpf_insn chk_and_mod[] = {
11613 /* [R,W]x mod 0 -> [R,W]x */
11614 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11615 BPF_JEQ | BPF_K, insn->src_reg,
11616 0, 1 + (is64 ? 0 : 1), 0),
11617 *insn,
11618 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11619 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11620 };
11621
11622 patchlet = isdiv ? chk_and_div : chk_and_mod;
11623 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11624 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11625
11626 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11627 if (!new_prog)
11628 return -ENOMEM;
11629
11630 delta += cnt - 1;
11631 env->prog = prog = new_prog;
11632 insn = new_prog->insnsi + i + delta;
11633 continue;
11634 }
11635
11636 if (BPF_CLASS(insn->code) == BPF_LD &&
11637 (BPF_MODE(insn->code) == BPF_ABS ||
11638 BPF_MODE(insn->code) == BPF_IND)) {
11639 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11640 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11641 verbose(env, "bpf verifier is misconfigured\n");
11642 return -EINVAL;
11643 }
11644
11645 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11646 if (!new_prog)
11647 return -ENOMEM;
11648
11649 delta += cnt - 1;
11650 env->prog = prog = new_prog;
11651 insn = new_prog->insnsi + i + delta;
11652 continue;
11653 }
11654
11655 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11656 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11657 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11658 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11659 struct bpf_insn insn_buf[16];
11660 struct bpf_insn *patch = &insn_buf[0];
11661 bool issrc, isneg;
11662 u32 off_reg;
11663
11664 aux = &env->insn_aux_data[i + delta];
11665 if (!aux->alu_state ||
11666 aux->alu_state == BPF_ALU_NON_POINTER)
11667 continue;
11668
11669 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11670 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11671 BPF_ALU_SANITIZE_SRC;
11672
11673 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11674 if (isneg)
11675 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11676 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11677 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11678 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11679 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11680 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11681 if (issrc) {
11682 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11683 off_reg);
11684 insn->src_reg = BPF_REG_AX;
11685 } else {
11686 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11687 BPF_REG_AX);
11688 }
11689 if (isneg)
11690 insn->code = insn->code == code_add ?
11691 code_sub : code_add;
11692 *patch++ = *insn;
11693 if (issrc && isneg)
11694 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11695 cnt = patch - insn_buf;
11696
11697 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11698 if (!new_prog)
11699 return -ENOMEM;
11700
11701 delta += cnt - 1;
11702 env->prog = prog = new_prog;
11703 insn = new_prog->insnsi + i + delta;
11704 continue;
11705 }
11706
11707 if (insn->code != (BPF_JMP | BPF_CALL))
11708 continue;
11709 if (insn->src_reg == BPF_PSEUDO_CALL)
11710 continue;
11711
11712 if (insn->imm == BPF_FUNC_get_route_realm)
11713 prog->dst_needed = 1;
11714 if (insn->imm == BPF_FUNC_get_prandom_u32)
11715 bpf_user_rnd_init_once();
11716 if (insn->imm == BPF_FUNC_override_return)
11717 prog->kprobe_override = 1;
11718 if (insn->imm == BPF_FUNC_tail_call) {
11719 /* If we tail call into other programs, we
11720 * cannot make any assumptions since they can
11721 * be replaced dynamically during runtime in
11722 * the program array.
11723 */
11724 prog->cb_access = 1;
11725 if (!allow_tail_call_in_subprogs(env))
11726 prog->aux->stack_depth = MAX_BPF_STACK;
11727 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11728
11729 /* mark bpf_tail_call as different opcode to avoid
11730 * conditional branch in the interpeter for every normal
11731 * call and to prevent accidental JITing by JIT compiler
11732 * that doesn't support bpf_tail_call yet
11733 */
11734 insn->imm = 0;
11735 insn->code = BPF_JMP | BPF_TAIL_CALL;
11736
11737 aux = &env->insn_aux_data[i + delta];
11738 if (env->bpf_capable && !expect_blinding &&
11739 prog->jit_requested &&
11740 !bpf_map_key_poisoned(aux) &&
11741 !bpf_map_ptr_poisoned(aux) &&
11742 !bpf_map_ptr_unpriv(aux)) {
11743 struct bpf_jit_poke_descriptor desc = {
11744 .reason = BPF_POKE_REASON_TAIL_CALL,
11745 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11746 .tail_call.key = bpf_map_key_immediate(aux),
11747 .insn_idx = i + delta,
11748 };
11749
11750 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11751 if (ret < 0) {
11752 verbose(env, "adding tail call poke descriptor failed\n");
11753 return ret;
11754 }
11755
11756 insn->imm = ret + 1;
11757 continue;
11758 }
11759
11760 if (!bpf_map_ptr_unpriv(aux))
11761 continue;
11762
11763 /* instead of changing every JIT dealing with tail_call
11764 * emit two extra insns:
11765 * if (index >= max_entries) goto out;
11766 * index &= array->index_mask;
11767 * to avoid out-of-bounds cpu speculation
11768 */
11769 if (bpf_map_ptr_poisoned(aux)) {
11770 verbose(env, "tail_call abusing map_ptr\n");
11771 return -EINVAL;
11772 }
11773
11774 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11775 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11776 map_ptr->max_entries, 2);
11777 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11778 container_of(map_ptr,
11779 struct bpf_array,
11780 map)->index_mask);
11781 insn_buf[2] = *insn;
11782 cnt = 3;
11783 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11784 if (!new_prog)
11785 return -ENOMEM;
11786
11787 delta += cnt - 1;
11788 env->prog = prog = new_prog;
11789 insn = new_prog->insnsi + i + delta;
11790 continue;
11791 }
11792
11793 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11794 * and other inlining handlers are currently limited to 64 bit
11795 * only.
11796 */
11797 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11798 (insn->imm == BPF_FUNC_map_lookup_elem ||
11799 insn->imm == BPF_FUNC_map_update_elem ||
11800 insn->imm == BPF_FUNC_map_delete_elem ||
11801 insn->imm == BPF_FUNC_map_push_elem ||
11802 insn->imm == BPF_FUNC_map_pop_elem ||
11803 insn->imm == BPF_FUNC_map_peek_elem)) {
11804 aux = &env->insn_aux_data[i + delta];
11805 if (bpf_map_ptr_poisoned(aux))
11806 goto patch_call_imm;
11807
11808 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11809 ops = map_ptr->ops;
11810 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11811 ops->map_gen_lookup) {
11812 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11813 if (cnt == -EOPNOTSUPP)
11814 goto patch_map_ops_generic;
11815 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11816 verbose(env, "bpf verifier is misconfigured\n");
11817 return -EINVAL;
11818 }
11819
11820 new_prog = bpf_patch_insn_data(env, i + delta,
11821 insn_buf, cnt);
11822 if (!new_prog)
11823 return -ENOMEM;
11824
11825 delta += cnt - 1;
11826 env->prog = prog = new_prog;
11827 insn = new_prog->insnsi + i + delta;
11828 continue;
11829 }
11830
11831 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11832 (void *(*)(struct bpf_map *map, void *key))NULL));
11833 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11834 (int (*)(struct bpf_map *map, void *key))NULL));
11835 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11836 (int (*)(struct bpf_map *map, void *key, void *value,
11837 u64 flags))NULL));
11838 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11839 (int (*)(struct bpf_map *map, void *value,
11840 u64 flags))NULL));
11841 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11842 (int (*)(struct bpf_map *map, void *value))NULL));
11843 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11844 (int (*)(struct bpf_map *map, void *value))NULL));
11845patch_map_ops_generic:
11846 switch (insn->imm) {
11847 case BPF_FUNC_map_lookup_elem:
11848 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11849 __bpf_call_base;
11850 continue;
11851 case BPF_FUNC_map_update_elem:
11852 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11853 __bpf_call_base;
11854 continue;
11855 case BPF_FUNC_map_delete_elem:
11856 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11857 __bpf_call_base;
11858 continue;
11859 case BPF_FUNC_map_push_elem:
11860 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11861 __bpf_call_base;
11862 continue;
11863 case BPF_FUNC_map_pop_elem:
11864 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11865 __bpf_call_base;
11866 continue;
11867 case BPF_FUNC_map_peek_elem:
11868 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11869 __bpf_call_base;
11870 continue;
11871 }
11872
11873 goto patch_call_imm;
11874 }
11875
11876 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11877 insn->imm == BPF_FUNC_jiffies64) {
11878 struct bpf_insn ld_jiffies_addr[2] = {
11879 BPF_LD_IMM64(BPF_REG_0,
11880 (unsigned long)&jiffies),
11881 };
11882
11883 insn_buf[0] = ld_jiffies_addr[0];
11884 insn_buf[1] = ld_jiffies_addr[1];
11885 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11886 BPF_REG_0, 0);
11887 cnt = 3;
11888
11889 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11890 cnt);
11891 if (!new_prog)
11892 return -ENOMEM;
11893
11894 delta += cnt - 1;
11895 env->prog = prog = new_prog;
11896 insn = new_prog->insnsi + i + delta;
11897 continue;
11898 }
11899
11900patch_call_imm:
11901 fn = env->ops->get_func_proto(insn->imm, env->prog);
11902 /* all functions that have prototype and verifier allowed
11903 * programs to call them, must be real in-kernel functions
11904 */
11905 if (!fn->func) {
11906 verbose(env,
11907 "kernel subsystem misconfigured func %s#%d\n",
11908 func_id_name(insn->imm), insn->imm);
11909 return -EFAULT;
11910 }
11911 insn->imm = fn->func - __bpf_call_base;
11912 }
11913
11914 /* Since poke tab is now finalized, publish aux to tracker. */
11915 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11916 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11917 if (!map_ptr->ops->map_poke_track ||
11918 !map_ptr->ops->map_poke_untrack ||
11919 !map_ptr->ops->map_poke_run) {
11920 verbose(env, "bpf verifier is misconfigured\n");
11921 return -EINVAL;
11922 }
11923
11924 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11925 if (ret < 0) {
11926 verbose(env, "tracking tail call prog failed\n");
11927 return ret;
11928 }
11929 }
11930
11931 return 0;
11932}
11933
11934static void free_states(struct bpf_verifier_env *env)
11935{
11936 struct bpf_verifier_state_list *sl, *sln;
11937 int i;
11938
11939 sl = env->free_list;
11940 while (sl) {
11941 sln = sl->next;
11942 free_verifier_state(&sl->state, false);
11943 kfree(sl);
11944 sl = sln;
11945 }
11946 env->free_list = NULL;
11947
11948 if (!env->explored_states)
11949 return;
11950
11951 for (i = 0; i < state_htab_size(env); i++) {
11952 sl = env->explored_states[i];
11953
11954 while (sl) {
11955 sln = sl->next;
11956 free_verifier_state(&sl->state, false);
11957 kfree(sl);
11958 sl = sln;
11959 }
11960 env->explored_states[i] = NULL;
11961 }
11962}
11963
11964/* The verifier is using insn_aux_data[] to store temporary data during
11965 * verification and to store information for passes that run after the
11966 * verification like dead code sanitization. do_check_common() for subprogram N
11967 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11968 * temporary data after do_check_common() finds that subprogram N cannot be
11969 * verified independently. pass_cnt counts the number of times
11970 * do_check_common() was run and insn->aux->seen tells the pass number
11971 * insn_aux_data was touched. These variables are compared to clear temporary
11972 * data from failed pass. For testing and experiments do_check_common() can be
11973 * run multiple times even when prior attempt to verify is unsuccessful.
11974 */
11975static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11976{
11977 struct bpf_insn *insn = env->prog->insnsi;
11978 struct bpf_insn_aux_data *aux;
11979 int i, class;
11980
11981 for (i = 0; i < env->prog->len; i++) {
11982 class = BPF_CLASS(insn[i].code);
11983 if (class != BPF_LDX && class != BPF_STX)
11984 continue;
11985 aux = &env->insn_aux_data[i];
11986 if (aux->seen != env->pass_cnt)
11987 continue;
11988 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11989 }
11990}
11991
11992static int do_check_common(struct bpf_verifier_env *env, int subprog)
11993{
11994 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11995 struct bpf_verifier_state *state;
11996 struct bpf_reg_state *regs;
11997 int ret, i;
11998
11999 env->prev_linfo = NULL;
12000 env->pass_cnt++;
12001
12002 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12003 if (!state)
12004 return -ENOMEM;
12005 state->curframe = 0;
12006 state->speculative = false;
12007 state->branches = 1;
12008 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12009 if (!state->frame[0]) {
12010 kfree(state);
12011 return -ENOMEM;
12012 }
12013 env->cur_state = state;
12014 init_func_state(env, state->frame[0],
12015 BPF_MAIN_FUNC /* callsite */,
12016 0 /* frameno */,
12017 subprog);
12018
12019 regs = state->frame[state->curframe]->regs;
12020 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12021 ret = btf_prepare_func_args(env, subprog, regs);
12022 if (ret)
12023 goto out;
12024 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12025 if (regs[i].type == PTR_TO_CTX)
12026 mark_reg_known_zero(env, regs, i);
12027 else if (regs[i].type == SCALAR_VALUE)
12028 mark_reg_unknown(env, regs, i);
12029 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12030 const u32 mem_size = regs[i].mem_size;
12031
12032 mark_reg_known_zero(env, regs, i);
12033 regs[i].mem_size = mem_size;
12034 regs[i].id = ++env->id_gen;
12035 }
12036 }
12037 } else {
12038 /* 1st arg to a function */
12039 regs[BPF_REG_1].type = PTR_TO_CTX;
12040 mark_reg_known_zero(env, regs, BPF_REG_1);
12041 ret = btf_check_func_arg_match(env, subprog, regs);
12042 if (ret == -EFAULT)
12043 /* unlikely verifier bug. abort.
12044 * ret == 0 and ret < 0 are sadly acceptable for
12045 * main() function due to backward compatibility.
12046 * Like socket filter program may be written as:
12047 * int bpf_prog(struct pt_regs *ctx)
12048 * and never dereference that ctx in the program.
12049 * 'struct pt_regs' is a type mismatch for socket
12050 * filter that should be using 'struct __sk_buff'.
12051 */
12052 goto out;
12053 }
12054
12055 ret = do_check(env);
12056out:
12057 /* check for NULL is necessary, since cur_state can be freed inside
12058 * do_check() under memory pressure.
12059 */
12060 if (env->cur_state) {
12061 free_verifier_state(env->cur_state, true);
12062 env->cur_state = NULL;
12063 }
12064 while (!pop_stack(env, NULL, NULL, false));
12065 if (!ret && pop_log)
12066 bpf_vlog_reset(&env->log, 0);
12067 free_states(env);
12068 if (ret)
12069 /* clean aux data in case subprog was rejected */
12070 sanitize_insn_aux_data(env);
12071 return ret;
12072}
12073
12074/* Verify all global functions in a BPF program one by one based on their BTF.
12075 * All global functions must pass verification. Otherwise the whole program is rejected.
12076 * Consider:
12077 * int bar(int);
12078 * int foo(int f)
12079 * {
12080 * return bar(f);
12081 * }
12082 * int bar(int b)
12083 * {
12084 * ...
12085 * }
12086 * foo() will be verified first for R1=any_scalar_value. During verification it
12087 * will be assumed that bar() already verified successfully and call to bar()
12088 * from foo() will be checked for type match only. Later bar() will be verified
12089 * independently to check that it's safe for R1=any_scalar_value.
12090 */
12091static int do_check_subprogs(struct bpf_verifier_env *env)
12092{
12093 struct bpf_prog_aux *aux = env->prog->aux;
12094 int i, ret;
12095
12096 if (!aux->func_info)
12097 return 0;
12098
12099 for (i = 1; i < env->subprog_cnt; i++) {
12100 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12101 continue;
12102 env->insn_idx = env->subprog_info[i].start;
12103 WARN_ON_ONCE(env->insn_idx == 0);
12104 ret = do_check_common(env, i);
12105 if (ret) {
12106 return ret;
12107 } else if (env->log.level & BPF_LOG_LEVEL) {
12108 verbose(env,
12109 "Func#%d is safe for any args that match its prototype\n",
12110 i);
12111 }
12112 }
12113 return 0;
12114}
12115
12116static int do_check_main(struct bpf_verifier_env *env)
12117{
12118 int ret;
12119
12120 env->insn_idx = 0;
12121 ret = do_check_common(env, 0);
12122 if (!ret)
12123 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12124 return ret;
12125}
12126
12127
12128static void print_verification_stats(struct bpf_verifier_env *env)
12129{
12130 int i;
12131
12132 if (env->log.level & BPF_LOG_STATS) {
12133 verbose(env, "verification time %lld usec\n",
12134 div_u64(env->verification_time, 1000));
12135 verbose(env, "stack depth ");
12136 for (i = 0; i < env->subprog_cnt; i++) {
12137 u32 depth = env->subprog_info[i].stack_depth;
12138
12139 verbose(env, "%d", depth);
12140 if (i + 1 < env->subprog_cnt)
12141 verbose(env, "+");
12142 }
12143 verbose(env, "\n");
12144 }
12145 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12146 "total_states %d peak_states %d mark_read %d\n",
12147 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12148 env->max_states_per_insn, env->total_states,
12149 env->peak_states, env->longest_mark_read_walk);
12150}
12151
12152static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12153{
12154 const struct btf_type *t, *func_proto;
12155 const struct bpf_struct_ops *st_ops;
12156 const struct btf_member *member;
12157 struct bpf_prog *prog = env->prog;
12158 u32 btf_id, member_idx;
12159 const char *mname;
12160
12161 if (!prog->gpl_compatible) {
12162 verbose(env, "struct ops programs must have a GPL compatible license\n");
12163 return -EINVAL;
12164 }
12165
12166 btf_id = prog->aux->attach_btf_id;
12167 st_ops = bpf_struct_ops_find(btf_id);
12168 if (!st_ops) {
12169 verbose(env, "attach_btf_id %u is not a supported struct\n",
12170 btf_id);
12171 return -ENOTSUPP;
12172 }
12173
12174 t = st_ops->type;
12175 member_idx = prog->expected_attach_type;
12176 if (member_idx >= btf_type_vlen(t)) {
12177 verbose(env, "attach to invalid member idx %u of struct %s\n",
12178 member_idx, st_ops->name);
12179 return -EINVAL;
12180 }
12181
12182 member = &btf_type_member(t)[member_idx];
12183 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12184 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12185 NULL);
12186 if (!func_proto) {
12187 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12188 mname, member_idx, st_ops->name);
12189 return -EINVAL;
12190 }
12191
12192 if (st_ops->check_member) {
12193 int err = st_ops->check_member(t, member);
12194
12195 if (err) {
12196 verbose(env, "attach to unsupported member %s of struct %s\n",
12197 mname, st_ops->name);
12198 return err;
12199 }
12200 }
12201
12202 prog->aux->attach_func_proto = func_proto;
12203 prog->aux->attach_func_name = mname;
12204 env->ops = st_ops->verifier_ops;
12205
12206 return 0;
12207}
12208#define SECURITY_PREFIX "security_"
12209
12210static int check_attach_modify_return(unsigned long addr, const char *func_name)
12211{
12212 if (within_error_injection_list(addr) ||
12213 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12214 return 0;
12215
12216 return -EINVAL;
12217}
12218
12219/* list of non-sleepable functions that are otherwise on
12220 * ALLOW_ERROR_INJECTION list
12221 */
12222BTF_SET_START(btf_non_sleepable_error_inject)
12223/* Three functions below can be called from sleepable and non-sleepable context.
12224 * Assume non-sleepable from bpf safety point of view.
12225 */
12226BTF_ID(func, __add_to_page_cache_locked)
12227BTF_ID(func, should_fail_alloc_page)
12228BTF_ID(func, should_failslab)
12229BTF_SET_END(btf_non_sleepable_error_inject)
12230
12231static int check_non_sleepable_error_inject(u32 btf_id)
12232{
12233 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12234}
12235
12236int bpf_check_attach_target(struct bpf_verifier_log *log,
12237 const struct bpf_prog *prog,
12238 const struct bpf_prog *tgt_prog,
12239 u32 btf_id,
12240 struct bpf_attach_target_info *tgt_info)
12241{
12242 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12243 const char prefix[] = "btf_trace_";
12244 int ret = 0, subprog = -1, i;
12245 const struct btf_type *t;
12246 bool conservative = true;
12247 const char *tname;
12248 struct btf *btf;
12249 long addr = 0;
12250
12251 if (!btf_id) {
12252 bpf_log(log, "Tracing programs must provide btf_id\n");
12253 return -EINVAL;
12254 }
12255 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12256 if (!btf) {
12257 bpf_log(log,
12258 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12259 return -EINVAL;
12260 }
12261 t = btf_type_by_id(btf, btf_id);
12262 if (!t) {
12263 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12264 return -EINVAL;
12265 }
12266 tname = btf_name_by_offset(btf, t->name_off);
12267 if (!tname) {
12268 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12269 return -EINVAL;
12270 }
12271 if (tgt_prog) {
12272 struct bpf_prog_aux *aux = tgt_prog->aux;
12273
12274 for (i = 0; i < aux->func_info_cnt; i++)
12275 if (aux->func_info[i].type_id == btf_id) {
12276 subprog = i;
12277 break;
12278 }
12279 if (subprog == -1) {
12280 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12281 return -EINVAL;
12282 }
12283 conservative = aux->func_info_aux[subprog].unreliable;
12284 if (prog_extension) {
12285 if (conservative) {
12286 bpf_log(log,
12287 "Cannot replace static functions\n");
12288 return -EINVAL;
12289 }
12290 if (!prog->jit_requested) {
12291 bpf_log(log,
12292 "Extension programs should be JITed\n");
12293 return -EINVAL;
12294 }
12295 }
12296 if (!tgt_prog->jited) {
12297 bpf_log(log, "Can attach to only JITed progs\n");
12298 return -EINVAL;
12299 }
12300 if (tgt_prog->type == prog->type) {
12301 /* Cannot fentry/fexit another fentry/fexit program.
12302 * Cannot attach program extension to another extension.
12303 * It's ok to attach fentry/fexit to extension program.
12304 */
12305 bpf_log(log, "Cannot recursively attach\n");
12306 return -EINVAL;
12307 }
12308 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12309 prog_extension &&
12310 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12311 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12312 /* Program extensions can extend all program types
12313 * except fentry/fexit. The reason is the following.
12314 * The fentry/fexit programs are used for performance
12315 * analysis, stats and can be attached to any program
12316 * type except themselves. When extension program is
12317 * replacing XDP function it is necessary to allow
12318 * performance analysis of all functions. Both original
12319 * XDP program and its program extension. Hence
12320 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12321 * allowed. If extending of fentry/fexit was allowed it
12322 * would be possible to create long call chain
12323 * fentry->extension->fentry->extension beyond
12324 * reasonable stack size. Hence extending fentry is not
12325 * allowed.
12326 */
12327 bpf_log(log, "Cannot extend fentry/fexit\n");
12328 return -EINVAL;
12329 }
12330 } else {
12331 if (prog_extension) {
12332 bpf_log(log, "Cannot replace kernel functions\n");
12333 return -EINVAL;
12334 }
12335 }
12336
12337 switch (prog->expected_attach_type) {
12338 case BPF_TRACE_RAW_TP:
12339 if (tgt_prog) {
12340 bpf_log(log,
12341 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12342 return -EINVAL;
12343 }
12344 if (!btf_type_is_typedef(t)) {
12345 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12346 btf_id);
12347 return -EINVAL;
12348 }
12349 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12350 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12351 btf_id, tname);
12352 return -EINVAL;
12353 }
12354 tname += sizeof(prefix) - 1;
12355 t = btf_type_by_id(btf, t->type);
12356 if (!btf_type_is_ptr(t))
12357 /* should never happen in valid vmlinux build */
12358 return -EINVAL;
12359 t = btf_type_by_id(btf, t->type);
12360 if (!btf_type_is_func_proto(t))
12361 /* should never happen in valid vmlinux build */
12362 return -EINVAL;
12363
12364 break;
12365 case BPF_TRACE_ITER:
12366 if (!btf_type_is_func(t)) {
12367 bpf_log(log, "attach_btf_id %u is not a function\n",
12368 btf_id);
12369 return -EINVAL;
12370 }
12371 t = btf_type_by_id(btf, t->type);
12372 if (!btf_type_is_func_proto(t))
12373 return -EINVAL;
12374 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12375 if (ret)
12376 return ret;
12377 break;
12378 default:
12379 if (!prog_extension)
12380 return -EINVAL;
12381 fallthrough;
12382 case BPF_MODIFY_RETURN:
12383 case BPF_LSM_MAC:
12384 case BPF_TRACE_FENTRY:
12385 case BPF_TRACE_FEXIT:
12386 if (!btf_type_is_func(t)) {
12387 bpf_log(log, "attach_btf_id %u is not a function\n",
12388 btf_id);
12389 return -EINVAL;
12390 }
12391 if (prog_extension &&
12392 btf_check_type_match(log, prog, btf, t))
12393 return -EINVAL;
12394 t = btf_type_by_id(btf, t->type);
12395 if (!btf_type_is_func_proto(t))
12396 return -EINVAL;
12397
12398 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12399 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12400 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12401 return -EINVAL;
12402
12403 if (tgt_prog && conservative)
12404 t = NULL;
12405
12406 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12407 if (ret < 0)
12408 return ret;
12409
12410 if (tgt_prog) {
12411 if (subprog == 0)
12412 addr = (long) tgt_prog->bpf_func;
12413 else
12414 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12415 } else {
12416 addr = kallsyms_lookup_name(tname);
12417 if (!addr) {
12418 bpf_log(log,
12419 "The address of function %s cannot be found\n",
12420 tname);
12421 return -ENOENT;
12422 }
12423 }
12424
12425 if (prog->aux->sleepable) {
12426 ret = -EINVAL;
12427 switch (prog->type) {
12428 case BPF_PROG_TYPE_TRACING:
12429 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12430 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12431 */
12432 if (!check_non_sleepable_error_inject(btf_id) &&
12433 within_error_injection_list(addr))
12434 ret = 0;
12435 break;
12436 case BPF_PROG_TYPE_LSM:
12437 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12438 * Only some of them are sleepable.
12439 */
12440 if (bpf_lsm_is_sleepable_hook(btf_id))
12441 ret = 0;
12442 break;
12443 default:
12444 break;
12445 }
12446 if (ret) {
12447 bpf_log(log, "%s is not sleepable\n", tname);
12448 return ret;
12449 }
12450 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12451 if (tgt_prog) {
12452 bpf_log(log, "can't modify return codes of BPF programs\n");
12453 return -EINVAL;
12454 }
12455 ret = check_attach_modify_return(addr, tname);
12456 if (ret) {
12457 bpf_log(log, "%s() is not modifiable\n", tname);
12458 return ret;
12459 }
12460 }
12461
12462 break;
12463 }
12464 tgt_info->tgt_addr = addr;
12465 tgt_info->tgt_name = tname;
12466 tgt_info->tgt_type = t;
12467 return 0;
12468}
12469
12470static int check_attach_btf_id(struct bpf_verifier_env *env)
12471{
12472 struct bpf_prog *prog = env->prog;
12473 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12474 struct bpf_attach_target_info tgt_info = {};
12475 u32 btf_id = prog->aux->attach_btf_id;
12476 struct bpf_trampoline *tr;
12477 int ret;
12478 u64 key;
12479
12480 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12481 prog->type != BPF_PROG_TYPE_LSM) {
12482 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12483 return -EINVAL;
12484 }
12485
12486 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12487 return check_struct_ops_btf_id(env);
12488
12489 if (prog->type != BPF_PROG_TYPE_TRACING &&
12490 prog->type != BPF_PROG_TYPE_LSM &&
12491 prog->type != BPF_PROG_TYPE_EXT)
12492 return 0;
12493
12494 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12495 if (ret)
12496 return ret;
12497
12498 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12499 /* to make freplace equivalent to their targets, they need to
12500 * inherit env->ops and expected_attach_type for the rest of the
12501 * verification
12502 */
12503 env->ops = bpf_verifier_ops[tgt_prog->type];
12504 prog->expected_attach_type = tgt_prog->expected_attach_type;
12505 }
12506
12507 /* store info about the attachment target that will be used later */
12508 prog->aux->attach_func_proto = tgt_info.tgt_type;
12509 prog->aux->attach_func_name = tgt_info.tgt_name;
12510
12511 if (tgt_prog) {
12512 prog->aux->saved_dst_prog_type = tgt_prog->type;
12513 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12514 }
12515
12516 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12517 prog->aux->attach_btf_trace = true;
12518 return 0;
12519 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12520 if (!bpf_iter_prog_supported(prog))
12521 return -EINVAL;
12522 return 0;
12523 }
12524
12525 if (prog->type == BPF_PROG_TYPE_LSM) {
12526 ret = bpf_lsm_verify_prog(&env->log, prog);
12527 if (ret < 0)
12528 return ret;
12529 }
12530
12531 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12532 tr = bpf_trampoline_get(key, &tgt_info);
12533 if (!tr)
12534 return -ENOMEM;
12535
12536 prog->aux->dst_trampoline = tr;
12537 return 0;
12538}
12539
12540struct btf *bpf_get_btf_vmlinux(void)
12541{
12542 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12543 mutex_lock(&bpf_verifier_lock);
12544 if (!btf_vmlinux)
12545 btf_vmlinux = btf_parse_vmlinux();
12546 mutex_unlock(&bpf_verifier_lock);
12547 }
12548 return btf_vmlinux;
12549}
12550
12551int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12552 union bpf_attr __user *uattr)
12553{
12554 u64 start_time = ktime_get_ns();
12555 struct bpf_verifier_env *env;
12556 struct bpf_verifier_log *log;
12557 int i, len, ret = -EINVAL;
12558 bool is_priv;
12559
12560 /* no program is valid */
12561 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12562 return -EINVAL;
12563
12564 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12565 * allocate/free it every time bpf_check() is called
12566 */
12567 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12568 if (!env)
12569 return -ENOMEM;
12570 log = &env->log;
12571
12572 len = (*prog)->len;
12573 env->insn_aux_data =
12574 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12575 ret = -ENOMEM;
12576 if (!env->insn_aux_data)
12577 goto err_free_env;
12578 for (i = 0; i < len; i++)
12579 env->insn_aux_data[i].orig_idx = i;
12580 env->prog = *prog;
12581 env->ops = bpf_verifier_ops[env->prog->type];
12582 is_priv = bpf_capable();
12583
12584 bpf_get_btf_vmlinux();
12585
12586 /* grab the mutex to protect few globals used by verifier */
12587 if (!is_priv)
12588 mutex_lock(&bpf_verifier_lock);
12589
12590 if (attr->log_level || attr->log_buf || attr->log_size) {
12591 /* user requested verbose verifier output
12592 * and supplied buffer to store the verification trace
12593 */
12594 log->level = attr->log_level;
12595 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12596 log->len_total = attr->log_size;
12597
12598 ret = -EINVAL;
12599 /* log attributes have to be sane */
12600 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12601 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12602 goto err_unlock;
12603 }
12604
12605 if (IS_ERR(btf_vmlinux)) {
12606 /* Either gcc or pahole or kernel are broken. */
12607 verbose(env, "in-kernel BTF is malformed\n");
12608 ret = PTR_ERR(btf_vmlinux);
12609 goto skip_full_check;
12610 }
12611
12612 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12613 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12614 env->strict_alignment = true;
12615 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12616 env->strict_alignment = false;
12617
12618 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12619 env->allow_uninit_stack = bpf_allow_uninit_stack();
12620 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12621 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12622 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12623 env->bpf_capable = bpf_capable();
12624
12625 if (is_priv)
12626 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12627
12628 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12629 ret = bpf_prog_offload_verifier_prep(env->prog);
12630 if (ret)
12631 goto skip_full_check;
12632 }
12633
12634 env->explored_states = kvcalloc(state_htab_size(env),
12635 sizeof(struct bpf_verifier_state_list *),
12636 GFP_USER);
12637 ret = -ENOMEM;
12638 if (!env->explored_states)
12639 goto skip_full_check;
12640
12641 ret = check_subprogs(env);
12642 if (ret < 0)
12643 goto skip_full_check;
12644
12645 ret = check_btf_info(env, attr, uattr);
12646 if (ret < 0)
12647 goto skip_full_check;
12648
12649 ret = check_attach_btf_id(env);
12650 if (ret)
12651 goto skip_full_check;
12652
12653 ret = resolve_pseudo_ldimm64(env);
12654 if (ret < 0)
12655 goto skip_full_check;
12656
12657 ret = check_cfg(env);
12658 if (ret < 0)
12659 goto skip_full_check;
12660
12661 ret = do_check_subprogs(env);
12662 ret = ret ?: do_check_main(env);
12663
12664 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12665 ret = bpf_prog_offload_finalize(env);
12666
12667skip_full_check:
12668 kvfree(env->explored_states);
12669
12670 if (ret == 0)
12671 ret = check_max_stack_depth(env);
12672
12673 /* instruction rewrites happen after this point */
12674 if (is_priv) {
12675 if (ret == 0)
12676 opt_hard_wire_dead_code_branches(env);
12677 if (ret == 0)
12678 ret = opt_remove_dead_code(env);
12679 if (ret == 0)
12680 ret = opt_remove_nops(env);
12681 } else {
12682 if (ret == 0)
12683 sanitize_dead_code(env);
12684 }
12685
12686 if (ret == 0)
12687 /* program is valid, convert *(u32*)(ctx + off) accesses */
12688 ret = convert_ctx_accesses(env);
12689
12690 if (ret == 0)
12691 ret = fixup_bpf_calls(env);
12692
12693 /* do 32-bit optimization after insn patching has done so those patched
12694 * insns could be handled correctly.
12695 */
12696 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12697 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12698 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12699 : false;
12700 }
12701
12702 if (ret == 0)
12703 ret = fixup_call_args(env);
12704
12705 env->verification_time = ktime_get_ns() - start_time;
12706 print_verification_stats(env);
12707
12708 if (log->level && bpf_verifier_log_full(log))
12709 ret = -ENOSPC;
12710 if (log->level && !log->ubuf) {
12711 ret = -EFAULT;
12712 goto err_release_maps;
12713 }
12714
12715 if (ret)
12716 goto err_release_maps;
12717
12718 if (env->used_map_cnt) {
12719 /* if program passed verifier, update used_maps in bpf_prog_info */
12720 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12721 sizeof(env->used_maps[0]),
12722 GFP_KERNEL);
12723
12724 if (!env->prog->aux->used_maps) {
12725 ret = -ENOMEM;
12726 goto err_release_maps;
12727 }
12728
12729 memcpy(env->prog->aux->used_maps, env->used_maps,
12730 sizeof(env->used_maps[0]) * env->used_map_cnt);
12731 env->prog->aux->used_map_cnt = env->used_map_cnt;
12732 }
12733 if (env->used_btf_cnt) {
12734 /* if program passed verifier, update used_btfs in bpf_prog_aux */
12735 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12736 sizeof(env->used_btfs[0]),
12737 GFP_KERNEL);
12738 if (!env->prog->aux->used_btfs) {
12739 ret = -ENOMEM;
12740 goto err_release_maps;
12741 }
12742
12743 memcpy(env->prog->aux->used_btfs, env->used_btfs,
12744 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
12745 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
12746 }
12747 if (env->used_map_cnt || env->used_btf_cnt) {
12748 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12749 * bpf_ld_imm64 instructions
12750 */
12751 convert_pseudo_ld_imm64(env);
12752 }
12753
12754 adjust_btf_func(env);
12755
12756err_release_maps:
12757 if (!env->prog->aux->used_maps)
12758 /* if we didn't copy map pointers into bpf_prog_info, release
12759 * them now. Otherwise free_used_maps() will release them.
12760 */
12761 release_maps(env);
12762 if (!env->prog->aux->used_btfs)
12763 release_btfs(env);
12764
12765 /* extension progs temporarily inherit the attach_type of their targets
12766 for verification purposes, so set it back to zero before returning
12767 */
12768 if (env->prog->type == BPF_PROG_TYPE_EXT)
12769 env->prog->expected_attach_type = 0;
12770
12771 *prog = env->prog;
12772err_unlock:
12773 if (!is_priv)
12774 mutex_unlock(&bpf_verifier_lock);
12775 vfree(env->insn_aux_data);
12776err_free_env:
12777 kfree(env);
12778 return ret;
12779}