| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (c) 2018 Facebook */ |
| 3 | |
| 4 | #include <uapi/linux/btf.h> |
| 5 | #include <uapi/linux/bpf.h> |
| 6 | #include <uapi/linux/bpf_perf_event.h> |
| 7 | #include <uapi/linux/types.h> |
| 8 | #include <linux/seq_file.h> |
| 9 | #include <linux/compiler.h> |
| 10 | #include <linux/ctype.h> |
| 11 | #include <linux/errno.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/anon_inodes.h> |
| 14 | #include <linux/file.h> |
| 15 | #include <linux/uaccess.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/idr.h> |
| 18 | #include <linux/sort.h> |
| 19 | #include <linux/bpf_verifier.h> |
| 20 | #include <linux/btf.h> |
| 21 | #include <linux/btf_ids.h> |
| 22 | #include <linux/bpf.h> |
| 23 | #include <linux/bpf_lsm.h> |
| 24 | #include <linux/skmsg.h> |
| 25 | #include <linux/perf_event.h> |
| 26 | #include <linux/bsearch.h> |
| 27 | #include <linux/kobject.h> |
| 28 | #include <linux/sysfs.h> |
| 29 | #include <linux/overflow.h> |
| 30 | |
| 31 | #include <net/netfilter/nf_bpf_link.h> |
| 32 | |
| 33 | #include <net/sock.h> |
| 34 | #include <net/xdp.h> |
| 35 | #include "../tools/lib/bpf/relo_core.h" |
| 36 | |
| 37 | /* BTF (BPF Type Format) is the meta data format which describes |
| 38 | * the data types of BPF program/map. Hence, it basically focus |
| 39 | * on the C programming language which the modern BPF is primary |
| 40 | * using. |
| 41 | * |
| 42 | * ELF Section: |
| 43 | * ~~~~~~~~~~~ |
| 44 | * The BTF data is stored under the ".BTF" ELF section |
| 45 | * |
| 46 | * struct btf_type: |
| 47 | * ~~~~~~~~~~~~~~~ |
| 48 | * Each 'struct btf_type' object describes a C data type. |
| 49 | * Depending on the type it is describing, a 'struct btf_type' |
| 50 | * object may be followed by more data. F.e. |
| 51 | * To describe an array, 'struct btf_type' is followed by |
| 52 | * 'struct btf_array'. |
| 53 | * |
| 54 | * 'struct btf_type' and any extra data following it are |
| 55 | * 4 bytes aligned. |
| 56 | * |
| 57 | * Type section: |
| 58 | * ~~~~~~~~~~~~~ |
| 59 | * The BTF type section contains a list of 'struct btf_type' objects. |
| 60 | * Each one describes a C type. Recall from the above section |
| 61 | * that a 'struct btf_type' object could be immediately followed by extra |
| 62 | * data in order to describe some particular C types. |
| 63 | * |
| 64 | * type_id: |
| 65 | * ~~~~~~~ |
| 66 | * Each btf_type object is identified by a type_id. The type_id |
| 67 | * is implicitly implied by the location of the btf_type object in |
| 68 | * the BTF type section. The first one has type_id 1. The second |
| 69 | * one has type_id 2...etc. Hence, an earlier btf_type has |
| 70 | * a smaller type_id. |
| 71 | * |
| 72 | * A btf_type object may refer to another btf_type object by using |
| 73 | * type_id (i.e. the "type" in the "struct btf_type"). |
| 74 | * |
| 75 | * NOTE that we cannot assume any reference-order. |
| 76 | * A btf_type object can refer to an earlier btf_type object |
| 77 | * but it can also refer to a later btf_type object. |
| 78 | * |
| 79 | * For example, to describe "const void *". A btf_type |
| 80 | * object describing "const" may refer to another btf_type |
| 81 | * object describing "void *". This type-reference is done |
| 82 | * by specifying type_id: |
| 83 | * |
| 84 | * [1] CONST (anon) type_id=2 |
| 85 | * [2] PTR (anon) type_id=0 |
| 86 | * |
| 87 | * The above is the btf_verifier debug log: |
| 88 | * - Each line started with "[?]" is a btf_type object |
| 89 | * - [?] is the type_id of the btf_type object. |
| 90 | * - CONST/PTR is the BTF_KIND_XXX |
| 91 | * - "(anon)" is the name of the type. It just |
| 92 | * happens that CONST and PTR has no name. |
| 93 | * - type_id=XXX is the 'u32 type' in btf_type |
| 94 | * |
| 95 | * NOTE: "void" has type_id 0 |
| 96 | * |
| 97 | * String section: |
| 98 | * ~~~~~~~~~~~~~~ |
| 99 | * The BTF string section contains the names used by the type section. |
| 100 | * Each string is referred by an "offset" from the beginning of the |
| 101 | * string section. |
| 102 | * |
| 103 | * Each string is '\0' terminated. |
| 104 | * |
| 105 | * The first character in the string section must be '\0' |
| 106 | * which is used to mean 'anonymous'. Some btf_type may not |
| 107 | * have a name. |
| 108 | */ |
| 109 | |
| 110 | /* BTF verification: |
| 111 | * |
| 112 | * To verify BTF data, two passes are needed. |
| 113 | * |
| 114 | * Pass #1 |
| 115 | * ~~~~~~~ |
| 116 | * The first pass is to collect all btf_type objects to |
| 117 | * an array: "btf->types". |
| 118 | * |
| 119 | * Depending on the C type that a btf_type is describing, |
| 120 | * a btf_type may be followed by extra data. We don't know |
| 121 | * how many btf_type is there, and more importantly we don't |
| 122 | * know where each btf_type is located in the type section. |
| 123 | * |
| 124 | * Without knowing the location of each type_id, most verifications |
| 125 | * cannot be done. e.g. an earlier btf_type may refer to a later |
| 126 | * btf_type (recall the "const void *" above), so we cannot |
| 127 | * check this type-reference in the first pass. |
| 128 | * |
| 129 | * In the first pass, it still does some verifications (e.g. |
| 130 | * checking the name is a valid offset to the string section). |
| 131 | * |
| 132 | * Pass #2 |
| 133 | * ~~~~~~~ |
| 134 | * The main focus is to resolve a btf_type that is referring |
| 135 | * to another type. |
| 136 | * |
| 137 | * We have to ensure the referring type: |
| 138 | * 1) does exist in the BTF (i.e. in btf->types[]) |
| 139 | * 2) does not cause a loop: |
| 140 | * struct A { |
| 141 | * struct B b; |
| 142 | * }; |
| 143 | * |
| 144 | * struct B { |
| 145 | * struct A a; |
| 146 | * }; |
| 147 | * |
| 148 | * btf_type_needs_resolve() decides if a btf_type needs |
| 149 | * to be resolved. |
| 150 | * |
| 151 | * The needs_resolve type implements the "resolve()" ops which |
| 152 | * essentially does a DFS and detects backedge. |
| 153 | * |
| 154 | * During resolve (or DFS), different C types have different |
| 155 | * "RESOLVED" conditions. |
| 156 | * |
| 157 | * When resolving a BTF_KIND_STRUCT, we need to resolve all its |
| 158 | * members because a member is always referring to another |
| 159 | * type. A struct's member can be treated as "RESOLVED" if |
| 160 | * it is referring to a BTF_KIND_PTR. Otherwise, the |
| 161 | * following valid C struct would be rejected: |
| 162 | * |
| 163 | * struct A { |
| 164 | * int m; |
| 165 | * struct A *a; |
| 166 | * }; |
| 167 | * |
| 168 | * When resolving a BTF_KIND_PTR, it needs to keep resolving if |
| 169 | * it is referring to another BTF_KIND_PTR. Otherwise, we cannot |
| 170 | * detect a pointer loop, e.g.: |
| 171 | * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + |
| 172 | * ^ | |
| 173 | * +-----------------------------------------+ |
| 174 | * |
| 175 | */ |
| 176 | |
| 177 | #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) |
| 178 | #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) |
| 179 | #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) |
| 180 | #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) |
| 181 | #define BITS_ROUNDUP_BYTES(bits) \ |
| 182 | (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) |
| 183 | |
| 184 | #define BTF_INFO_MASK 0x9f00ffff |
| 185 | #define BTF_INT_MASK 0x0fffffff |
| 186 | #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) |
| 187 | #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) |
| 188 | |
| 189 | /* 16MB for 64k structs and each has 16 members and |
| 190 | * a few MB spaces for the string section. |
| 191 | * The hard limit is S32_MAX. |
| 192 | */ |
| 193 | #define BTF_MAX_SIZE (16 * 1024 * 1024) |
| 194 | |
| 195 | #define for_each_member_from(i, from, struct_type, member) \ |
| 196 | for (i = from, member = btf_type_member(struct_type) + from; \ |
| 197 | i < btf_type_vlen(struct_type); \ |
| 198 | i++, member++) |
| 199 | |
| 200 | #define for_each_vsi_from(i, from, struct_type, member) \ |
| 201 | for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ |
| 202 | i < btf_type_vlen(struct_type); \ |
| 203 | i++, member++) |
| 204 | |
| 205 | DEFINE_IDR(btf_idr); |
| 206 | DEFINE_SPINLOCK(btf_idr_lock); |
| 207 | |
| 208 | enum btf_kfunc_hook { |
| 209 | BTF_KFUNC_HOOK_COMMON, |
| 210 | BTF_KFUNC_HOOK_XDP, |
| 211 | BTF_KFUNC_HOOK_TC, |
| 212 | BTF_KFUNC_HOOK_STRUCT_OPS, |
| 213 | BTF_KFUNC_HOOK_TRACING, |
| 214 | BTF_KFUNC_HOOK_SYSCALL, |
| 215 | BTF_KFUNC_HOOK_FMODRET, |
| 216 | BTF_KFUNC_HOOK_CGROUP, |
| 217 | BTF_KFUNC_HOOK_SCHED_ACT, |
| 218 | BTF_KFUNC_HOOK_SK_SKB, |
| 219 | BTF_KFUNC_HOOK_SOCKET_FILTER, |
| 220 | BTF_KFUNC_HOOK_LWT, |
| 221 | BTF_KFUNC_HOOK_NETFILTER, |
| 222 | BTF_KFUNC_HOOK_KPROBE, |
| 223 | BTF_KFUNC_HOOK_MAX, |
| 224 | }; |
| 225 | |
| 226 | enum { |
| 227 | BTF_KFUNC_SET_MAX_CNT = 256, |
| 228 | BTF_DTOR_KFUNC_MAX_CNT = 256, |
| 229 | BTF_KFUNC_FILTER_MAX_CNT = 16, |
| 230 | }; |
| 231 | |
| 232 | struct btf_kfunc_hook_filter { |
| 233 | btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; |
| 234 | u32 nr_filters; |
| 235 | }; |
| 236 | |
| 237 | struct btf_kfunc_set_tab { |
| 238 | struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; |
| 239 | struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; |
| 240 | }; |
| 241 | |
| 242 | struct btf_id_dtor_kfunc_tab { |
| 243 | u32 cnt; |
| 244 | struct btf_id_dtor_kfunc dtors[]; |
| 245 | }; |
| 246 | |
| 247 | struct btf_struct_ops_tab { |
| 248 | u32 cnt; |
| 249 | u32 capacity; |
| 250 | struct bpf_struct_ops_desc ops[]; |
| 251 | }; |
| 252 | |
| 253 | struct btf { |
| 254 | void *data; |
| 255 | struct btf_type **types; |
| 256 | u32 *resolved_ids; |
| 257 | u32 *resolved_sizes; |
| 258 | const char *strings; |
| 259 | void *nohdr_data; |
| 260 | struct btf_header hdr; |
| 261 | u32 nr_types; /* includes VOID for base BTF */ |
| 262 | u32 types_size; |
| 263 | u32 data_size; |
| 264 | refcount_t refcnt; |
| 265 | u32 id; |
| 266 | struct rcu_head rcu; |
| 267 | struct btf_kfunc_set_tab *kfunc_set_tab; |
| 268 | struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; |
| 269 | struct btf_struct_metas *struct_meta_tab; |
| 270 | struct btf_struct_ops_tab *struct_ops_tab; |
| 271 | |
| 272 | /* split BTF support */ |
| 273 | struct btf *base_btf; |
| 274 | u32 start_id; /* first type ID in this BTF (0 for base BTF) */ |
| 275 | u32 start_str_off; /* first string offset (0 for base BTF) */ |
| 276 | char name[MODULE_NAME_LEN]; |
| 277 | bool kernel_btf; |
| 278 | __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ |
| 279 | }; |
| 280 | |
| 281 | enum verifier_phase { |
| 282 | CHECK_META, |
| 283 | CHECK_TYPE, |
| 284 | }; |
| 285 | |
| 286 | struct resolve_vertex { |
| 287 | const struct btf_type *t; |
| 288 | u32 type_id; |
| 289 | u16 next_member; |
| 290 | }; |
| 291 | |
| 292 | enum visit_state { |
| 293 | NOT_VISITED, |
| 294 | VISITED, |
| 295 | RESOLVED, |
| 296 | }; |
| 297 | |
| 298 | enum resolve_mode { |
| 299 | RESOLVE_TBD, /* To Be Determined */ |
| 300 | RESOLVE_PTR, /* Resolving for Pointer */ |
| 301 | RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union |
| 302 | * or array |
| 303 | */ |
| 304 | }; |
| 305 | |
| 306 | #define MAX_RESOLVE_DEPTH 32 |
| 307 | |
| 308 | struct btf_sec_info { |
| 309 | u32 off; |
| 310 | u32 len; |
| 311 | }; |
| 312 | |
| 313 | struct btf_verifier_env { |
| 314 | struct btf *btf; |
| 315 | u8 *visit_states; |
| 316 | struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; |
| 317 | struct bpf_verifier_log log; |
| 318 | u32 log_type_id; |
| 319 | u32 top_stack; |
| 320 | enum verifier_phase phase; |
| 321 | enum resolve_mode resolve_mode; |
| 322 | }; |
| 323 | |
| 324 | static const char * const btf_kind_str[NR_BTF_KINDS] = { |
| 325 | [BTF_KIND_UNKN] = "UNKNOWN", |
| 326 | [BTF_KIND_INT] = "INT", |
| 327 | [BTF_KIND_PTR] = "PTR", |
| 328 | [BTF_KIND_ARRAY] = "ARRAY", |
| 329 | [BTF_KIND_STRUCT] = "STRUCT", |
| 330 | [BTF_KIND_UNION] = "UNION", |
| 331 | [BTF_KIND_ENUM] = "ENUM", |
| 332 | [BTF_KIND_FWD] = "FWD", |
| 333 | [BTF_KIND_TYPEDEF] = "TYPEDEF", |
| 334 | [BTF_KIND_VOLATILE] = "VOLATILE", |
| 335 | [BTF_KIND_CONST] = "CONST", |
| 336 | [BTF_KIND_RESTRICT] = "RESTRICT", |
| 337 | [BTF_KIND_FUNC] = "FUNC", |
| 338 | [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", |
| 339 | [BTF_KIND_VAR] = "VAR", |
| 340 | [BTF_KIND_DATASEC] = "DATASEC", |
| 341 | [BTF_KIND_FLOAT] = "FLOAT", |
| 342 | [BTF_KIND_DECL_TAG] = "DECL_TAG", |
| 343 | [BTF_KIND_TYPE_TAG] = "TYPE_TAG", |
| 344 | [BTF_KIND_ENUM64] = "ENUM64", |
| 345 | }; |
| 346 | |
| 347 | const char *btf_type_str(const struct btf_type *t) |
| 348 | { |
| 349 | return btf_kind_str[BTF_INFO_KIND(t->info)]; |
| 350 | } |
| 351 | |
| 352 | /* Chunk size we use in safe copy of data to be shown. */ |
| 353 | #define BTF_SHOW_OBJ_SAFE_SIZE 32 |
| 354 | |
| 355 | /* |
| 356 | * This is the maximum size of a base type value (equivalent to a |
| 357 | * 128-bit int); if we are at the end of our safe buffer and have |
| 358 | * less than 16 bytes space we can't be assured of being able |
| 359 | * to copy the next type safely, so in such cases we will initiate |
| 360 | * a new copy. |
| 361 | */ |
| 362 | #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 |
| 363 | |
| 364 | /* Type name size */ |
| 365 | #define BTF_SHOW_NAME_SIZE 80 |
| 366 | |
| 367 | /* |
| 368 | * The suffix of a type that indicates it cannot alias another type when |
| 369 | * comparing BTF IDs for kfunc invocations. |
| 370 | */ |
| 371 | #define NOCAST_ALIAS_SUFFIX "___init" |
| 372 | |
| 373 | /* |
| 374 | * Common data to all BTF show operations. Private show functions can add |
| 375 | * their own data to a structure containing a struct btf_show and consult it |
| 376 | * in the show callback. See btf_type_show() below. |
| 377 | * |
| 378 | * One challenge with showing nested data is we want to skip 0-valued |
| 379 | * data, but in order to figure out whether a nested object is all zeros |
| 380 | * we need to walk through it. As a result, we need to make two passes |
| 381 | * when handling structs, unions and arrays; the first path simply looks |
| 382 | * for nonzero data, while the second actually does the display. The first |
| 383 | * pass is signalled by show->state.depth_check being set, and if we |
| 384 | * encounter a non-zero value we set show->state.depth_to_show to |
| 385 | * the depth at which we encountered it. When we have completed the |
| 386 | * first pass, we will know if anything needs to be displayed if |
| 387 | * depth_to_show > depth. See btf_[struct,array]_show() for the |
| 388 | * implementation of this. |
| 389 | * |
| 390 | * Another problem is we want to ensure the data for display is safe to |
| 391 | * access. To support this, the anonymous "struct {} obj" tracks the data |
| 392 | * object and our safe copy of it. We copy portions of the data needed |
| 393 | * to the object "copy" buffer, but because its size is limited to |
| 394 | * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we |
| 395 | * traverse larger objects for display. |
| 396 | * |
| 397 | * The various data type show functions all start with a call to |
| 398 | * btf_show_start_type() which returns a pointer to the safe copy |
| 399 | * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the |
| 400 | * raw data itself). btf_show_obj_safe() is responsible for |
| 401 | * using copy_from_kernel_nofault() to update the safe data if necessary |
| 402 | * as we traverse the object's data. skbuff-like semantics are |
| 403 | * used: |
| 404 | * |
| 405 | * - obj.head points to the start of the toplevel object for display |
| 406 | * - obj.size is the size of the toplevel object |
| 407 | * - obj.data points to the current point in the original data at |
| 408 | * which our safe data starts. obj.data will advance as we copy |
| 409 | * portions of the data. |
| 410 | * |
| 411 | * In most cases a single copy will suffice, but larger data structures |
| 412 | * such as "struct task_struct" will require many copies. The logic in |
| 413 | * btf_show_obj_safe() handles the logic that determines if a new |
| 414 | * copy_from_kernel_nofault() is needed. |
| 415 | */ |
| 416 | struct btf_show { |
| 417 | u64 flags; |
| 418 | void *target; /* target of show operation (seq file, buffer) */ |
| 419 | __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); |
| 420 | const struct btf *btf; |
| 421 | /* below are used during iteration */ |
| 422 | struct { |
| 423 | u8 depth; |
| 424 | u8 depth_to_show; |
| 425 | u8 depth_check; |
| 426 | u8 array_member:1, |
| 427 | array_terminated:1; |
| 428 | u16 array_encoding; |
| 429 | u32 type_id; |
| 430 | int status; /* non-zero for error */ |
| 431 | const struct btf_type *type; |
| 432 | const struct btf_member *member; |
| 433 | char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ |
| 434 | } state; |
| 435 | struct { |
| 436 | u32 size; |
| 437 | void *head; |
| 438 | void *data; |
| 439 | u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; |
| 440 | } obj; |
| 441 | }; |
| 442 | |
| 443 | struct btf_kind_operations { |
| 444 | s32 (*check_meta)(struct btf_verifier_env *env, |
| 445 | const struct btf_type *t, |
| 446 | u32 meta_left); |
| 447 | int (*resolve)(struct btf_verifier_env *env, |
| 448 | const struct resolve_vertex *v); |
| 449 | int (*check_member)(struct btf_verifier_env *env, |
| 450 | const struct btf_type *struct_type, |
| 451 | const struct btf_member *member, |
| 452 | const struct btf_type *member_type); |
| 453 | int (*check_kflag_member)(struct btf_verifier_env *env, |
| 454 | const struct btf_type *struct_type, |
| 455 | const struct btf_member *member, |
| 456 | const struct btf_type *member_type); |
| 457 | void (*log_details)(struct btf_verifier_env *env, |
| 458 | const struct btf_type *t); |
| 459 | void (*show)(const struct btf *btf, const struct btf_type *t, |
| 460 | u32 type_id, void *data, u8 bits_offsets, |
| 461 | struct btf_show *show); |
| 462 | }; |
| 463 | |
| 464 | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; |
| 465 | static struct btf_type btf_void; |
| 466 | |
| 467 | static int btf_resolve(struct btf_verifier_env *env, |
| 468 | const struct btf_type *t, u32 type_id); |
| 469 | |
| 470 | static int btf_func_check(struct btf_verifier_env *env, |
| 471 | const struct btf_type *t); |
| 472 | |
| 473 | static bool btf_type_is_modifier(const struct btf_type *t) |
| 474 | { |
| 475 | /* Some of them is not strictly a C modifier |
| 476 | * but they are grouped into the same bucket |
| 477 | * for BTF concern: |
| 478 | * A type (t) that refers to another |
| 479 | * type through t->type AND its size cannot |
| 480 | * be determined without following the t->type. |
| 481 | * |
| 482 | * ptr does not fall into this bucket |
| 483 | * because its size is always sizeof(void *). |
| 484 | */ |
| 485 | switch (BTF_INFO_KIND(t->info)) { |
| 486 | case BTF_KIND_TYPEDEF: |
| 487 | case BTF_KIND_VOLATILE: |
| 488 | case BTF_KIND_CONST: |
| 489 | case BTF_KIND_RESTRICT: |
| 490 | case BTF_KIND_TYPE_TAG: |
| 491 | return true; |
| 492 | } |
| 493 | |
| 494 | return false; |
| 495 | } |
| 496 | |
| 497 | bool btf_type_is_void(const struct btf_type *t) |
| 498 | { |
| 499 | return t == &btf_void; |
| 500 | } |
| 501 | |
| 502 | static bool btf_type_is_datasec(const struct btf_type *t) |
| 503 | { |
| 504 | return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; |
| 505 | } |
| 506 | |
| 507 | static bool btf_type_is_decl_tag(const struct btf_type *t) |
| 508 | { |
| 509 | return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; |
| 510 | } |
| 511 | |
| 512 | static bool btf_type_nosize(const struct btf_type *t) |
| 513 | { |
| 514 | return btf_type_is_void(t) || btf_type_is_fwd(t) || |
| 515 | btf_type_is_func(t) || btf_type_is_func_proto(t) || |
| 516 | btf_type_is_decl_tag(t); |
| 517 | } |
| 518 | |
| 519 | static bool btf_type_nosize_or_null(const struct btf_type *t) |
| 520 | { |
| 521 | return !t || btf_type_nosize(t); |
| 522 | } |
| 523 | |
| 524 | static bool btf_type_is_decl_tag_target(const struct btf_type *t) |
| 525 | { |
| 526 | return btf_type_is_func(t) || btf_type_is_struct(t) || |
| 527 | btf_type_is_var(t) || btf_type_is_typedef(t); |
| 528 | } |
| 529 | |
| 530 | bool btf_is_vmlinux(const struct btf *btf) |
| 531 | { |
| 532 | return btf->kernel_btf && !btf->base_btf; |
| 533 | } |
| 534 | |
| 535 | u32 btf_nr_types(const struct btf *btf) |
| 536 | { |
| 537 | u32 total = 0; |
| 538 | |
| 539 | while (btf) { |
| 540 | total += btf->nr_types; |
| 541 | btf = btf->base_btf; |
| 542 | } |
| 543 | |
| 544 | return total; |
| 545 | } |
| 546 | |
| 547 | s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) |
| 548 | { |
| 549 | const struct btf_type *t; |
| 550 | const char *tname; |
| 551 | u32 i, total; |
| 552 | |
| 553 | total = btf_nr_types(btf); |
| 554 | for (i = 1; i < total; i++) { |
| 555 | t = btf_type_by_id(btf, i); |
| 556 | if (BTF_INFO_KIND(t->info) != kind) |
| 557 | continue; |
| 558 | |
| 559 | tname = btf_name_by_offset(btf, t->name_off); |
| 560 | if (!strcmp(tname, name)) |
| 561 | return i; |
| 562 | } |
| 563 | |
| 564 | return -ENOENT; |
| 565 | } |
| 566 | |
| 567 | s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) |
| 568 | { |
| 569 | struct btf *btf; |
| 570 | s32 ret; |
| 571 | int id; |
| 572 | |
| 573 | btf = bpf_get_btf_vmlinux(); |
| 574 | if (IS_ERR(btf)) |
| 575 | return PTR_ERR(btf); |
| 576 | if (!btf) |
| 577 | return -EINVAL; |
| 578 | |
| 579 | ret = btf_find_by_name_kind(btf, name, kind); |
| 580 | /* ret is never zero, since btf_find_by_name_kind returns |
| 581 | * positive btf_id or negative error. |
| 582 | */ |
| 583 | if (ret > 0) { |
| 584 | btf_get(btf); |
| 585 | *btf_p = btf; |
| 586 | return ret; |
| 587 | } |
| 588 | |
| 589 | /* If name is not found in vmlinux's BTF then search in module's BTFs */ |
| 590 | spin_lock_bh(&btf_idr_lock); |
| 591 | idr_for_each_entry(&btf_idr, btf, id) { |
| 592 | if (!btf_is_module(btf)) |
| 593 | continue; |
| 594 | /* linear search could be slow hence unlock/lock |
| 595 | * the IDR to avoiding holding it for too long |
| 596 | */ |
| 597 | btf_get(btf); |
| 598 | spin_unlock_bh(&btf_idr_lock); |
| 599 | ret = btf_find_by_name_kind(btf, name, kind); |
| 600 | if (ret > 0) { |
| 601 | *btf_p = btf; |
| 602 | return ret; |
| 603 | } |
| 604 | btf_put(btf); |
| 605 | spin_lock_bh(&btf_idr_lock); |
| 606 | } |
| 607 | spin_unlock_bh(&btf_idr_lock); |
| 608 | return ret; |
| 609 | } |
| 610 | EXPORT_SYMBOL_GPL(bpf_find_btf_id); |
| 611 | |
| 612 | const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, |
| 613 | u32 id, u32 *res_id) |
| 614 | { |
| 615 | const struct btf_type *t = btf_type_by_id(btf, id); |
| 616 | |
| 617 | while (btf_type_is_modifier(t)) { |
| 618 | id = t->type; |
| 619 | t = btf_type_by_id(btf, t->type); |
| 620 | } |
| 621 | |
| 622 | if (res_id) |
| 623 | *res_id = id; |
| 624 | |
| 625 | return t; |
| 626 | } |
| 627 | |
| 628 | const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, |
| 629 | u32 id, u32 *res_id) |
| 630 | { |
| 631 | const struct btf_type *t; |
| 632 | |
| 633 | t = btf_type_skip_modifiers(btf, id, NULL); |
| 634 | if (!btf_type_is_ptr(t)) |
| 635 | return NULL; |
| 636 | |
| 637 | return btf_type_skip_modifiers(btf, t->type, res_id); |
| 638 | } |
| 639 | |
| 640 | const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, |
| 641 | u32 id, u32 *res_id) |
| 642 | { |
| 643 | const struct btf_type *ptype; |
| 644 | |
| 645 | ptype = btf_type_resolve_ptr(btf, id, res_id); |
| 646 | if (ptype && btf_type_is_func_proto(ptype)) |
| 647 | return ptype; |
| 648 | |
| 649 | return NULL; |
| 650 | } |
| 651 | |
| 652 | /* Types that act only as a source, not sink or intermediate |
| 653 | * type when resolving. |
| 654 | */ |
| 655 | static bool btf_type_is_resolve_source_only(const struct btf_type *t) |
| 656 | { |
| 657 | return btf_type_is_var(t) || |
| 658 | btf_type_is_decl_tag(t) || |
| 659 | btf_type_is_datasec(t); |
| 660 | } |
| 661 | |
| 662 | /* What types need to be resolved? |
| 663 | * |
| 664 | * btf_type_is_modifier() is an obvious one. |
| 665 | * |
| 666 | * btf_type_is_struct() because its member refers to |
| 667 | * another type (through member->type). |
| 668 | * |
| 669 | * btf_type_is_var() because the variable refers to |
| 670 | * another type. btf_type_is_datasec() holds multiple |
| 671 | * btf_type_is_var() types that need resolving. |
| 672 | * |
| 673 | * btf_type_is_array() because its element (array->type) |
| 674 | * refers to another type. Array can be thought of a |
| 675 | * special case of struct while array just has the same |
| 676 | * member-type repeated by array->nelems of times. |
| 677 | */ |
| 678 | static bool btf_type_needs_resolve(const struct btf_type *t) |
| 679 | { |
| 680 | return btf_type_is_modifier(t) || |
| 681 | btf_type_is_ptr(t) || |
| 682 | btf_type_is_struct(t) || |
| 683 | btf_type_is_array(t) || |
| 684 | btf_type_is_var(t) || |
| 685 | btf_type_is_func(t) || |
| 686 | btf_type_is_decl_tag(t) || |
| 687 | btf_type_is_datasec(t); |
| 688 | } |
| 689 | |
| 690 | /* t->size can be used */ |
| 691 | static bool btf_type_has_size(const struct btf_type *t) |
| 692 | { |
| 693 | switch (BTF_INFO_KIND(t->info)) { |
| 694 | case BTF_KIND_INT: |
| 695 | case BTF_KIND_STRUCT: |
| 696 | case BTF_KIND_UNION: |
| 697 | case BTF_KIND_ENUM: |
| 698 | case BTF_KIND_DATASEC: |
| 699 | case BTF_KIND_FLOAT: |
| 700 | case BTF_KIND_ENUM64: |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | static const char *btf_int_encoding_str(u8 encoding) |
| 708 | { |
| 709 | if (encoding == 0) |
| 710 | return "(none)"; |
| 711 | else if (encoding == BTF_INT_SIGNED) |
| 712 | return "SIGNED"; |
| 713 | else if (encoding == BTF_INT_CHAR) |
| 714 | return "CHAR"; |
| 715 | else if (encoding == BTF_INT_BOOL) |
| 716 | return "BOOL"; |
| 717 | else |
| 718 | return "UNKN"; |
| 719 | } |
| 720 | |
| 721 | static u32 btf_type_int(const struct btf_type *t) |
| 722 | { |
| 723 | return *(u32 *)(t + 1); |
| 724 | } |
| 725 | |
| 726 | static const struct btf_array *btf_type_array(const struct btf_type *t) |
| 727 | { |
| 728 | return (const struct btf_array *)(t + 1); |
| 729 | } |
| 730 | |
| 731 | static const struct btf_enum *btf_type_enum(const struct btf_type *t) |
| 732 | { |
| 733 | return (const struct btf_enum *)(t + 1); |
| 734 | } |
| 735 | |
| 736 | static const struct btf_var *btf_type_var(const struct btf_type *t) |
| 737 | { |
| 738 | return (const struct btf_var *)(t + 1); |
| 739 | } |
| 740 | |
| 741 | static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) |
| 742 | { |
| 743 | return (const struct btf_decl_tag *)(t + 1); |
| 744 | } |
| 745 | |
| 746 | static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) |
| 747 | { |
| 748 | return (const struct btf_enum64 *)(t + 1); |
| 749 | } |
| 750 | |
| 751 | static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) |
| 752 | { |
| 753 | return kind_ops[BTF_INFO_KIND(t->info)]; |
| 754 | } |
| 755 | |
| 756 | static bool btf_name_offset_valid(const struct btf *btf, u32 offset) |
| 757 | { |
| 758 | if (!BTF_STR_OFFSET_VALID(offset)) |
| 759 | return false; |
| 760 | |
| 761 | while (offset < btf->start_str_off) |
| 762 | btf = btf->base_btf; |
| 763 | |
| 764 | offset -= btf->start_str_off; |
| 765 | return offset < btf->hdr.str_len; |
| 766 | } |
| 767 | |
| 768 | static bool __btf_name_char_ok(char c, bool first) |
| 769 | { |
| 770 | if ((first ? !isalpha(c) : |
| 771 | !isalnum(c)) && |
| 772 | c != '_' && |
| 773 | c != '.') |
| 774 | return false; |
| 775 | return true; |
| 776 | } |
| 777 | |
| 778 | const char *btf_str_by_offset(const struct btf *btf, u32 offset) |
| 779 | { |
| 780 | while (offset < btf->start_str_off) |
| 781 | btf = btf->base_btf; |
| 782 | |
| 783 | offset -= btf->start_str_off; |
| 784 | if (offset < btf->hdr.str_len) |
| 785 | return &btf->strings[offset]; |
| 786 | |
| 787 | return NULL; |
| 788 | } |
| 789 | |
| 790 | static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) |
| 791 | { |
| 792 | /* offset must be valid */ |
| 793 | const char *src = btf_str_by_offset(btf, offset); |
| 794 | const char *src_limit; |
| 795 | |
| 796 | if (!__btf_name_char_ok(*src, true)) |
| 797 | return false; |
| 798 | |
| 799 | /* set a limit on identifier length */ |
| 800 | src_limit = src + KSYM_NAME_LEN; |
| 801 | src++; |
| 802 | while (*src && src < src_limit) { |
| 803 | if (!__btf_name_char_ok(*src, false)) |
| 804 | return false; |
| 805 | src++; |
| 806 | } |
| 807 | |
| 808 | return !*src; |
| 809 | } |
| 810 | |
| 811 | /* Allow any printable character in DATASEC names */ |
| 812 | static bool btf_name_valid_section(const struct btf *btf, u32 offset) |
| 813 | { |
| 814 | /* offset must be valid */ |
| 815 | const char *src = btf_str_by_offset(btf, offset); |
| 816 | const char *src_limit; |
| 817 | |
| 818 | if (!*src) |
| 819 | return false; |
| 820 | |
| 821 | /* set a limit on identifier length */ |
| 822 | src_limit = src + KSYM_NAME_LEN; |
| 823 | while (*src && src < src_limit) { |
| 824 | if (!isprint(*src)) |
| 825 | return false; |
| 826 | src++; |
| 827 | } |
| 828 | |
| 829 | return !*src; |
| 830 | } |
| 831 | |
| 832 | static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) |
| 833 | { |
| 834 | const char *name; |
| 835 | |
| 836 | if (!offset) |
| 837 | return "(anon)"; |
| 838 | |
| 839 | name = btf_str_by_offset(btf, offset); |
| 840 | return name ?: "(invalid-name-offset)"; |
| 841 | } |
| 842 | |
| 843 | const char *btf_name_by_offset(const struct btf *btf, u32 offset) |
| 844 | { |
| 845 | return btf_str_by_offset(btf, offset); |
| 846 | } |
| 847 | |
| 848 | const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) |
| 849 | { |
| 850 | while (type_id < btf->start_id) |
| 851 | btf = btf->base_btf; |
| 852 | |
| 853 | type_id -= btf->start_id; |
| 854 | if (type_id >= btf->nr_types) |
| 855 | return NULL; |
| 856 | return btf->types[type_id]; |
| 857 | } |
| 858 | EXPORT_SYMBOL_GPL(btf_type_by_id); |
| 859 | |
| 860 | /* |
| 861 | * Regular int is not a bit field and it must be either |
| 862 | * u8/u16/u32/u64 or __int128. |
| 863 | */ |
| 864 | static bool btf_type_int_is_regular(const struct btf_type *t) |
| 865 | { |
| 866 | u8 nr_bits, nr_bytes; |
| 867 | u32 int_data; |
| 868 | |
| 869 | int_data = btf_type_int(t); |
| 870 | nr_bits = BTF_INT_BITS(int_data); |
| 871 | nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); |
| 872 | if (BITS_PER_BYTE_MASKED(nr_bits) || |
| 873 | BTF_INT_OFFSET(int_data) || |
| 874 | (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && |
| 875 | nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && |
| 876 | nr_bytes != (2 * sizeof(u64)))) { |
| 877 | return false; |
| 878 | } |
| 879 | |
| 880 | return true; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * Check that given struct member is a regular int with expected |
| 885 | * offset and size. |
| 886 | */ |
| 887 | bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, |
| 888 | const struct btf_member *m, |
| 889 | u32 expected_offset, u32 expected_size) |
| 890 | { |
| 891 | const struct btf_type *t; |
| 892 | u32 id, int_data; |
| 893 | u8 nr_bits; |
| 894 | |
| 895 | id = m->type; |
| 896 | t = btf_type_id_size(btf, &id, NULL); |
| 897 | if (!t || !btf_type_is_int(t)) |
| 898 | return false; |
| 899 | |
| 900 | int_data = btf_type_int(t); |
| 901 | nr_bits = BTF_INT_BITS(int_data); |
| 902 | if (btf_type_kflag(s)) { |
| 903 | u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); |
| 904 | u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); |
| 905 | |
| 906 | /* if kflag set, int should be a regular int and |
| 907 | * bit offset should be at byte boundary. |
| 908 | */ |
| 909 | return !bitfield_size && |
| 910 | BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && |
| 911 | BITS_ROUNDUP_BYTES(nr_bits) == expected_size; |
| 912 | } |
| 913 | |
| 914 | if (BTF_INT_OFFSET(int_data) || |
| 915 | BITS_PER_BYTE_MASKED(m->offset) || |
| 916 | BITS_ROUNDUP_BYTES(m->offset) != expected_offset || |
| 917 | BITS_PER_BYTE_MASKED(nr_bits) || |
| 918 | BITS_ROUNDUP_BYTES(nr_bits) != expected_size) |
| 919 | return false; |
| 920 | |
| 921 | return true; |
| 922 | } |
| 923 | |
| 924 | /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ |
| 925 | static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, |
| 926 | u32 id) |
| 927 | { |
| 928 | const struct btf_type *t = btf_type_by_id(btf, id); |
| 929 | |
| 930 | while (btf_type_is_modifier(t) && |
| 931 | BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { |
| 932 | t = btf_type_by_id(btf, t->type); |
| 933 | } |
| 934 | |
| 935 | return t; |
| 936 | } |
| 937 | |
| 938 | #define BTF_SHOW_MAX_ITER 10 |
| 939 | |
| 940 | #define BTF_KIND_BIT(kind) (1ULL << kind) |
| 941 | |
| 942 | /* |
| 943 | * Populate show->state.name with type name information. |
| 944 | * Format of type name is |
| 945 | * |
| 946 | * [.member_name = ] (type_name) |
| 947 | */ |
| 948 | static const char *btf_show_name(struct btf_show *show) |
| 949 | { |
| 950 | /* BTF_MAX_ITER array suffixes "[]" */ |
| 951 | const char *array_suffixes = "[][][][][][][][][][]"; |
| 952 | const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; |
| 953 | /* BTF_MAX_ITER pointer suffixes "*" */ |
| 954 | const char *ptr_suffixes = "**********"; |
| 955 | const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; |
| 956 | const char *name = NULL, *prefix = "", *parens = ""; |
| 957 | const struct btf_member *m = show->state.member; |
| 958 | const struct btf_type *t; |
| 959 | const struct btf_array *array; |
| 960 | u32 id = show->state.type_id; |
| 961 | const char *member = NULL; |
| 962 | bool show_member = false; |
| 963 | u64 kinds = 0; |
| 964 | int i; |
| 965 | |
| 966 | show->state.name[0] = '\0'; |
| 967 | |
| 968 | /* |
| 969 | * Don't show type name if we're showing an array member; |
| 970 | * in that case we show the array type so don't need to repeat |
| 971 | * ourselves for each member. |
| 972 | */ |
| 973 | if (show->state.array_member) |
| 974 | return ""; |
| 975 | |
| 976 | /* Retrieve member name, if any. */ |
| 977 | if (m) { |
| 978 | member = btf_name_by_offset(show->btf, m->name_off); |
| 979 | show_member = strlen(member) > 0; |
| 980 | id = m->type; |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * Start with type_id, as we have resolved the struct btf_type * |
| 985 | * via btf_modifier_show() past the parent typedef to the child |
| 986 | * struct, int etc it is defined as. In such cases, the type_id |
| 987 | * still represents the starting type while the struct btf_type * |
| 988 | * in our show->state points at the resolved type of the typedef. |
| 989 | */ |
| 990 | t = btf_type_by_id(show->btf, id); |
| 991 | if (!t) |
| 992 | return ""; |
| 993 | |
| 994 | /* |
| 995 | * The goal here is to build up the right number of pointer and |
| 996 | * array suffixes while ensuring the type name for a typedef |
| 997 | * is represented. Along the way we accumulate a list of |
| 998 | * BTF kinds we have encountered, since these will inform later |
| 999 | * display; for example, pointer types will not require an |
| 1000 | * opening "{" for struct, we will just display the pointer value. |
| 1001 | * |
| 1002 | * We also want to accumulate the right number of pointer or array |
| 1003 | * indices in the format string while iterating until we get to |
| 1004 | * the typedef/pointee/array member target type. |
| 1005 | * |
| 1006 | * We start by pointing at the end of pointer and array suffix |
| 1007 | * strings; as we accumulate pointers and arrays we move the pointer |
| 1008 | * or array string backwards so it will show the expected number of |
| 1009 | * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers |
| 1010 | * and/or arrays and typedefs are supported as a precaution. |
| 1011 | * |
| 1012 | * We also want to get typedef name while proceeding to resolve |
| 1013 | * type it points to so that we can add parentheses if it is a |
| 1014 | * "typedef struct" etc. |
| 1015 | */ |
| 1016 | for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { |
| 1017 | |
| 1018 | switch (BTF_INFO_KIND(t->info)) { |
| 1019 | case BTF_KIND_TYPEDEF: |
| 1020 | if (!name) |
| 1021 | name = btf_name_by_offset(show->btf, |
| 1022 | t->name_off); |
| 1023 | kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); |
| 1024 | id = t->type; |
| 1025 | break; |
| 1026 | case BTF_KIND_ARRAY: |
| 1027 | kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); |
| 1028 | parens = "["; |
| 1029 | if (!t) |
| 1030 | return ""; |
| 1031 | array = btf_type_array(t); |
| 1032 | if (array_suffix > array_suffixes) |
| 1033 | array_suffix -= 2; |
| 1034 | id = array->type; |
| 1035 | break; |
| 1036 | case BTF_KIND_PTR: |
| 1037 | kinds |= BTF_KIND_BIT(BTF_KIND_PTR); |
| 1038 | if (ptr_suffix > ptr_suffixes) |
| 1039 | ptr_suffix -= 1; |
| 1040 | id = t->type; |
| 1041 | break; |
| 1042 | default: |
| 1043 | id = 0; |
| 1044 | break; |
| 1045 | } |
| 1046 | if (!id) |
| 1047 | break; |
| 1048 | t = btf_type_skip_qualifiers(show->btf, id); |
| 1049 | } |
| 1050 | /* We may not be able to represent this type; bail to be safe */ |
| 1051 | if (i == BTF_SHOW_MAX_ITER) |
| 1052 | return ""; |
| 1053 | |
| 1054 | if (!name) |
| 1055 | name = btf_name_by_offset(show->btf, t->name_off); |
| 1056 | |
| 1057 | switch (BTF_INFO_KIND(t->info)) { |
| 1058 | case BTF_KIND_STRUCT: |
| 1059 | case BTF_KIND_UNION: |
| 1060 | prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? |
| 1061 | "struct" : "union"; |
| 1062 | /* if it's an array of struct/union, parens is already set */ |
| 1063 | if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) |
| 1064 | parens = "{"; |
| 1065 | break; |
| 1066 | case BTF_KIND_ENUM: |
| 1067 | case BTF_KIND_ENUM64: |
| 1068 | prefix = "enum"; |
| 1069 | break; |
| 1070 | default: |
| 1071 | break; |
| 1072 | } |
| 1073 | |
| 1074 | /* pointer does not require parens */ |
| 1075 | if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) |
| 1076 | parens = ""; |
| 1077 | /* typedef does not require struct/union/enum prefix */ |
| 1078 | if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) |
| 1079 | prefix = ""; |
| 1080 | |
| 1081 | if (!name) |
| 1082 | name = ""; |
| 1083 | |
| 1084 | /* Even if we don't want type name info, we want parentheses etc */ |
| 1085 | if (show->flags & BTF_SHOW_NONAME) |
| 1086 | snprintf(show->state.name, sizeof(show->state.name), "%s", |
| 1087 | parens); |
| 1088 | else |
| 1089 | snprintf(show->state.name, sizeof(show->state.name), |
| 1090 | "%s%s%s(%s%s%s%s%s%s)%s", |
| 1091 | /* first 3 strings comprise ".member = " */ |
| 1092 | show_member ? "." : "", |
| 1093 | show_member ? member : "", |
| 1094 | show_member ? " = " : "", |
| 1095 | /* ...next is our prefix (struct, enum, etc) */ |
| 1096 | prefix, |
| 1097 | strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", |
| 1098 | /* ...this is the type name itself */ |
| 1099 | name, |
| 1100 | /* ...suffixed by the appropriate '*', '[]' suffixes */ |
| 1101 | strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, |
| 1102 | array_suffix, parens); |
| 1103 | |
| 1104 | return show->state.name; |
| 1105 | } |
| 1106 | |
| 1107 | static const char *__btf_show_indent(struct btf_show *show) |
| 1108 | { |
| 1109 | const char *indents = " "; |
| 1110 | const char *indent = &indents[strlen(indents)]; |
| 1111 | |
| 1112 | if ((indent - show->state.depth) >= indents) |
| 1113 | return indent - show->state.depth; |
| 1114 | return indents; |
| 1115 | } |
| 1116 | |
| 1117 | static const char *btf_show_indent(struct btf_show *show) |
| 1118 | { |
| 1119 | return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); |
| 1120 | } |
| 1121 | |
| 1122 | static const char *btf_show_newline(struct btf_show *show) |
| 1123 | { |
| 1124 | return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; |
| 1125 | } |
| 1126 | |
| 1127 | static const char *btf_show_delim(struct btf_show *show) |
| 1128 | { |
| 1129 | if (show->state.depth == 0) |
| 1130 | return ""; |
| 1131 | |
| 1132 | if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && |
| 1133 | BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) |
| 1134 | return "|"; |
| 1135 | |
| 1136 | return ","; |
| 1137 | } |
| 1138 | |
| 1139 | __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) |
| 1140 | { |
| 1141 | va_list args; |
| 1142 | |
| 1143 | if (!show->state.depth_check) { |
| 1144 | va_start(args, fmt); |
| 1145 | show->showfn(show, fmt, args); |
| 1146 | va_end(args); |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | /* Macros are used here as btf_show_type_value[s]() prepends and appends |
| 1151 | * format specifiers to the format specifier passed in; these do the work of |
| 1152 | * adding indentation, delimiters etc while the caller simply has to specify |
| 1153 | * the type value(s) in the format specifier + value(s). |
| 1154 | */ |
| 1155 | #define btf_show_type_value(show, fmt, value) \ |
| 1156 | do { \ |
| 1157 | if ((value) != (__typeof__(value))0 || \ |
| 1158 | (show->flags & BTF_SHOW_ZERO) || \ |
| 1159 | show->state.depth == 0) { \ |
| 1160 | btf_show(show, "%s%s" fmt "%s%s", \ |
| 1161 | btf_show_indent(show), \ |
| 1162 | btf_show_name(show), \ |
| 1163 | value, btf_show_delim(show), \ |
| 1164 | btf_show_newline(show)); \ |
| 1165 | if (show->state.depth > show->state.depth_to_show) \ |
| 1166 | show->state.depth_to_show = show->state.depth; \ |
| 1167 | } \ |
| 1168 | } while (0) |
| 1169 | |
| 1170 | #define btf_show_type_values(show, fmt, ...) \ |
| 1171 | do { \ |
| 1172 | btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ |
| 1173 | btf_show_name(show), \ |
| 1174 | __VA_ARGS__, btf_show_delim(show), \ |
| 1175 | btf_show_newline(show)); \ |
| 1176 | if (show->state.depth > show->state.depth_to_show) \ |
| 1177 | show->state.depth_to_show = show->state.depth; \ |
| 1178 | } while (0) |
| 1179 | |
| 1180 | /* How much is left to copy to safe buffer after @data? */ |
| 1181 | static int btf_show_obj_size_left(struct btf_show *show, void *data) |
| 1182 | { |
| 1183 | return show->obj.head + show->obj.size - data; |
| 1184 | } |
| 1185 | |
| 1186 | /* Is object pointed to by @data of @size already copied to our safe buffer? */ |
| 1187 | static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) |
| 1188 | { |
| 1189 | return data >= show->obj.data && |
| 1190 | (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * If object pointed to by @data of @size falls within our safe buffer, return |
| 1195 | * the equivalent pointer to the same safe data. Assumes |
| 1196 | * copy_from_kernel_nofault() has already happened and our safe buffer is |
| 1197 | * populated. |
| 1198 | */ |
| 1199 | static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) |
| 1200 | { |
| 1201 | if (btf_show_obj_is_safe(show, data, size)) |
| 1202 | return show->obj.safe + (data - show->obj.data); |
| 1203 | return NULL; |
| 1204 | } |
| 1205 | |
| 1206 | /* |
| 1207 | * Return a safe-to-access version of data pointed to by @data. |
| 1208 | * We do this by copying the relevant amount of information |
| 1209 | * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). |
| 1210 | * |
| 1211 | * If BTF_SHOW_UNSAFE is specified, just return data as-is; no |
| 1212 | * safe copy is needed. |
| 1213 | * |
| 1214 | * Otherwise we need to determine if we have the required amount |
| 1215 | * of data (determined by the @data pointer and the size of the |
| 1216 | * largest base type we can encounter (represented by |
| 1217 | * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures |
| 1218 | * that we will be able to print some of the current object, |
| 1219 | * and if more is needed a copy will be triggered. |
| 1220 | * Some objects such as structs will not fit into the buffer; |
| 1221 | * in such cases additional copies when we iterate over their |
| 1222 | * members may be needed. |
| 1223 | * |
| 1224 | * btf_show_obj_safe() is used to return a safe buffer for |
| 1225 | * btf_show_start_type(); this ensures that as we recurse into |
| 1226 | * nested types we always have safe data for the given type. |
| 1227 | * This approach is somewhat wasteful; it's possible for example |
| 1228 | * that when iterating over a large union we'll end up copying the |
| 1229 | * same data repeatedly, but the goal is safety not performance. |
| 1230 | * We use stack data as opposed to per-CPU buffers because the |
| 1231 | * iteration over a type can take some time, and preemption handling |
| 1232 | * would greatly complicate use of the safe buffer. |
| 1233 | */ |
| 1234 | static void *btf_show_obj_safe(struct btf_show *show, |
| 1235 | const struct btf_type *t, |
| 1236 | void *data) |
| 1237 | { |
| 1238 | const struct btf_type *rt; |
| 1239 | int size_left, size; |
| 1240 | void *safe = NULL; |
| 1241 | |
| 1242 | if (show->flags & BTF_SHOW_UNSAFE) |
| 1243 | return data; |
| 1244 | |
| 1245 | rt = btf_resolve_size(show->btf, t, &size); |
| 1246 | if (IS_ERR(rt)) { |
| 1247 | show->state.status = PTR_ERR(rt); |
| 1248 | return NULL; |
| 1249 | } |
| 1250 | |
| 1251 | /* |
| 1252 | * Is this toplevel object? If so, set total object size and |
| 1253 | * initialize pointers. Otherwise check if we still fall within |
| 1254 | * our safe object data. |
| 1255 | */ |
| 1256 | if (show->state.depth == 0) { |
| 1257 | show->obj.size = size; |
| 1258 | show->obj.head = data; |
| 1259 | } else { |
| 1260 | /* |
| 1261 | * If the size of the current object is > our remaining |
| 1262 | * safe buffer we _may_ need to do a new copy. However |
| 1263 | * consider the case of a nested struct; it's size pushes |
| 1264 | * us over the safe buffer limit, but showing any individual |
| 1265 | * struct members does not. In such cases, we don't need |
| 1266 | * to initiate a fresh copy yet; however we definitely need |
| 1267 | * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left |
| 1268 | * in our buffer, regardless of the current object size. |
| 1269 | * The logic here is that as we resolve types we will |
| 1270 | * hit a base type at some point, and we need to be sure |
| 1271 | * the next chunk of data is safely available to display |
| 1272 | * that type info safely. We cannot rely on the size of |
| 1273 | * the current object here because it may be much larger |
| 1274 | * than our current buffer (e.g. task_struct is 8k). |
| 1275 | * All we want to do here is ensure that we can print the |
| 1276 | * next basic type, which we can if either |
| 1277 | * - the current type size is within the safe buffer; or |
| 1278 | * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in |
| 1279 | * the safe buffer. |
| 1280 | */ |
| 1281 | safe = __btf_show_obj_safe(show, data, |
| 1282 | min(size, |
| 1283 | BTF_SHOW_OBJ_BASE_TYPE_SIZE)); |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | * We need a new copy to our safe object, either because we haven't |
| 1288 | * yet copied and are initializing safe data, or because the data |
| 1289 | * we want falls outside the boundaries of the safe object. |
| 1290 | */ |
| 1291 | if (!safe) { |
| 1292 | size_left = btf_show_obj_size_left(show, data); |
| 1293 | if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) |
| 1294 | size_left = BTF_SHOW_OBJ_SAFE_SIZE; |
| 1295 | show->state.status = copy_from_kernel_nofault(show->obj.safe, |
| 1296 | data, size_left); |
| 1297 | if (!show->state.status) { |
| 1298 | show->obj.data = data; |
| 1299 | safe = show->obj.safe; |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | return safe; |
| 1304 | } |
| 1305 | |
| 1306 | /* |
| 1307 | * Set the type we are starting to show and return a safe data pointer |
| 1308 | * to be used for showing the associated data. |
| 1309 | */ |
| 1310 | static void *btf_show_start_type(struct btf_show *show, |
| 1311 | const struct btf_type *t, |
| 1312 | u32 type_id, void *data) |
| 1313 | { |
| 1314 | show->state.type = t; |
| 1315 | show->state.type_id = type_id; |
| 1316 | show->state.name[0] = '\0'; |
| 1317 | |
| 1318 | return btf_show_obj_safe(show, t, data); |
| 1319 | } |
| 1320 | |
| 1321 | static void btf_show_end_type(struct btf_show *show) |
| 1322 | { |
| 1323 | show->state.type = NULL; |
| 1324 | show->state.type_id = 0; |
| 1325 | show->state.name[0] = '\0'; |
| 1326 | } |
| 1327 | |
| 1328 | static void *btf_show_start_aggr_type(struct btf_show *show, |
| 1329 | const struct btf_type *t, |
| 1330 | u32 type_id, void *data) |
| 1331 | { |
| 1332 | void *safe_data = btf_show_start_type(show, t, type_id, data); |
| 1333 | |
| 1334 | if (!safe_data) |
| 1335 | return safe_data; |
| 1336 | |
| 1337 | btf_show(show, "%s%s%s", btf_show_indent(show), |
| 1338 | btf_show_name(show), |
| 1339 | btf_show_newline(show)); |
| 1340 | show->state.depth++; |
| 1341 | return safe_data; |
| 1342 | } |
| 1343 | |
| 1344 | static void btf_show_end_aggr_type(struct btf_show *show, |
| 1345 | const char *suffix) |
| 1346 | { |
| 1347 | show->state.depth--; |
| 1348 | btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, |
| 1349 | btf_show_delim(show), btf_show_newline(show)); |
| 1350 | btf_show_end_type(show); |
| 1351 | } |
| 1352 | |
| 1353 | static void btf_show_start_member(struct btf_show *show, |
| 1354 | const struct btf_member *m) |
| 1355 | { |
| 1356 | show->state.member = m; |
| 1357 | } |
| 1358 | |
| 1359 | static void btf_show_start_array_member(struct btf_show *show) |
| 1360 | { |
| 1361 | show->state.array_member = 1; |
| 1362 | btf_show_start_member(show, NULL); |
| 1363 | } |
| 1364 | |
| 1365 | static void btf_show_end_member(struct btf_show *show) |
| 1366 | { |
| 1367 | show->state.member = NULL; |
| 1368 | } |
| 1369 | |
| 1370 | static void btf_show_end_array_member(struct btf_show *show) |
| 1371 | { |
| 1372 | show->state.array_member = 0; |
| 1373 | btf_show_end_member(show); |
| 1374 | } |
| 1375 | |
| 1376 | static void *btf_show_start_array_type(struct btf_show *show, |
| 1377 | const struct btf_type *t, |
| 1378 | u32 type_id, |
| 1379 | u16 array_encoding, |
| 1380 | void *data) |
| 1381 | { |
| 1382 | show->state.array_encoding = array_encoding; |
| 1383 | show->state.array_terminated = 0; |
| 1384 | return btf_show_start_aggr_type(show, t, type_id, data); |
| 1385 | } |
| 1386 | |
| 1387 | static void btf_show_end_array_type(struct btf_show *show) |
| 1388 | { |
| 1389 | show->state.array_encoding = 0; |
| 1390 | show->state.array_terminated = 0; |
| 1391 | btf_show_end_aggr_type(show, "]"); |
| 1392 | } |
| 1393 | |
| 1394 | static void *btf_show_start_struct_type(struct btf_show *show, |
| 1395 | const struct btf_type *t, |
| 1396 | u32 type_id, |
| 1397 | void *data) |
| 1398 | { |
| 1399 | return btf_show_start_aggr_type(show, t, type_id, data); |
| 1400 | } |
| 1401 | |
| 1402 | static void btf_show_end_struct_type(struct btf_show *show) |
| 1403 | { |
| 1404 | btf_show_end_aggr_type(show, "}"); |
| 1405 | } |
| 1406 | |
| 1407 | __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, |
| 1408 | const char *fmt, ...) |
| 1409 | { |
| 1410 | va_list args; |
| 1411 | |
| 1412 | va_start(args, fmt); |
| 1413 | bpf_verifier_vlog(log, fmt, args); |
| 1414 | va_end(args); |
| 1415 | } |
| 1416 | |
| 1417 | __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, |
| 1418 | const char *fmt, ...) |
| 1419 | { |
| 1420 | struct bpf_verifier_log *log = &env->log; |
| 1421 | va_list args; |
| 1422 | |
| 1423 | if (!bpf_verifier_log_needed(log)) |
| 1424 | return; |
| 1425 | |
| 1426 | va_start(args, fmt); |
| 1427 | bpf_verifier_vlog(log, fmt, args); |
| 1428 | va_end(args); |
| 1429 | } |
| 1430 | |
| 1431 | __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, |
| 1432 | const struct btf_type *t, |
| 1433 | bool log_details, |
| 1434 | const char *fmt, ...) |
| 1435 | { |
| 1436 | struct bpf_verifier_log *log = &env->log; |
| 1437 | struct btf *btf = env->btf; |
| 1438 | va_list args; |
| 1439 | |
| 1440 | if (!bpf_verifier_log_needed(log)) |
| 1441 | return; |
| 1442 | |
| 1443 | if (log->level == BPF_LOG_KERNEL) { |
| 1444 | /* btf verifier prints all types it is processing via |
| 1445 | * btf_verifier_log_type(..., fmt = NULL). |
| 1446 | * Skip those prints for in-kernel BTF verification. |
| 1447 | */ |
| 1448 | if (!fmt) |
| 1449 | return; |
| 1450 | |
| 1451 | /* Skip logging when loading module BTF with mismatches permitted */ |
| 1452 | if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) |
| 1453 | return; |
| 1454 | } |
| 1455 | |
| 1456 | __btf_verifier_log(log, "[%u] %s %s%s", |
| 1457 | env->log_type_id, |
| 1458 | btf_type_str(t), |
| 1459 | __btf_name_by_offset(btf, t->name_off), |
| 1460 | log_details ? " " : ""); |
| 1461 | |
| 1462 | if (log_details) |
| 1463 | btf_type_ops(t)->log_details(env, t); |
| 1464 | |
| 1465 | if (fmt && *fmt) { |
| 1466 | __btf_verifier_log(log, " "); |
| 1467 | va_start(args, fmt); |
| 1468 | bpf_verifier_vlog(log, fmt, args); |
| 1469 | va_end(args); |
| 1470 | } |
| 1471 | |
| 1472 | __btf_verifier_log(log, "\n"); |
| 1473 | } |
| 1474 | |
| 1475 | #define btf_verifier_log_type(env, t, ...) \ |
| 1476 | __btf_verifier_log_type((env), (t), true, __VA_ARGS__) |
| 1477 | #define btf_verifier_log_basic(env, t, ...) \ |
| 1478 | __btf_verifier_log_type((env), (t), false, __VA_ARGS__) |
| 1479 | |
| 1480 | __printf(4, 5) |
| 1481 | static void btf_verifier_log_member(struct btf_verifier_env *env, |
| 1482 | const struct btf_type *struct_type, |
| 1483 | const struct btf_member *member, |
| 1484 | const char *fmt, ...) |
| 1485 | { |
| 1486 | struct bpf_verifier_log *log = &env->log; |
| 1487 | struct btf *btf = env->btf; |
| 1488 | va_list args; |
| 1489 | |
| 1490 | if (!bpf_verifier_log_needed(log)) |
| 1491 | return; |
| 1492 | |
| 1493 | if (log->level == BPF_LOG_KERNEL) { |
| 1494 | if (!fmt) |
| 1495 | return; |
| 1496 | |
| 1497 | /* Skip logging when loading module BTF with mismatches permitted */ |
| 1498 | if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) |
| 1499 | return; |
| 1500 | } |
| 1501 | |
| 1502 | /* The CHECK_META phase already did a btf dump. |
| 1503 | * |
| 1504 | * If member is logged again, it must hit an error in |
| 1505 | * parsing this member. It is useful to print out which |
| 1506 | * struct this member belongs to. |
| 1507 | */ |
| 1508 | if (env->phase != CHECK_META) |
| 1509 | btf_verifier_log_type(env, struct_type, NULL); |
| 1510 | |
| 1511 | if (btf_type_kflag(struct_type)) |
| 1512 | __btf_verifier_log(log, |
| 1513 | "\t%s type_id=%u bitfield_size=%u bits_offset=%u", |
| 1514 | __btf_name_by_offset(btf, member->name_off), |
| 1515 | member->type, |
| 1516 | BTF_MEMBER_BITFIELD_SIZE(member->offset), |
| 1517 | BTF_MEMBER_BIT_OFFSET(member->offset)); |
| 1518 | else |
| 1519 | __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", |
| 1520 | __btf_name_by_offset(btf, member->name_off), |
| 1521 | member->type, member->offset); |
| 1522 | |
| 1523 | if (fmt && *fmt) { |
| 1524 | __btf_verifier_log(log, " "); |
| 1525 | va_start(args, fmt); |
| 1526 | bpf_verifier_vlog(log, fmt, args); |
| 1527 | va_end(args); |
| 1528 | } |
| 1529 | |
| 1530 | __btf_verifier_log(log, "\n"); |
| 1531 | } |
| 1532 | |
| 1533 | __printf(4, 5) |
| 1534 | static void btf_verifier_log_vsi(struct btf_verifier_env *env, |
| 1535 | const struct btf_type *datasec_type, |
| 1536 | const struct btf_var_secinfo *vsi, |
| 1537 | const char *fmt, ...) |
| 1538 | { |
| 1539 | struct bpf_verifier_log *log = &env->log; |
| 1540 | va_list args; |
| 1541 | |
| 1542 | if (!bpf_verifier_log_needed(log)) |
| 1543 | return; |
| 1544 | if (log->level == BPF_LOG_KERNEL && !fmt) |
| 1545 | return; |
| 1546 | if (env->phase != CHECK_META) |
| 1547 | btf_verifier_log_type(env, datasec_type, NULL); |
| 1548 | |
| 1549 | __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", |
| 1550 | vsi->type, vsi->offset, vsi->size); |
| 1551 | if (fmt && *fmt) { |
| 1552 | __btf_verifier_log(log, " "); |
| 1553 | va_start(args, fmt); |
| 1554 | bpf_verifier_vlog(log, fmt, args); |
| 1555 | va_end(args); |
| 1556 | } |
| 1557 | |
| 1558 | __btf_verifier_log(log, "\n"); |
| 1559 | } |
| 1560 | |
| 1561 | static void btf_verifier_log_hdr(struct btf_verifier_env *env, |
| 1562 | u32 btf_data_size) |
| 1563 | { |
| 1564 | struct bpf_verifier_log *log = &env->log; |
| 1565 | const struct btf *btf = env->btf; |
| 1566 | const struct btf_header *hdr; |
| 1567 | |
| 1568 | if (!bpf_verifier_log_needed(log)) |
| 1569 | return; |
| 1570 | |
| 1571 | if (log->level == BPF_LOG_KERNEL) |
| 1572 | return; |
| 1573 | hdr = &btf->hdr; |
| 1574 | __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); |
| 1575 | __btf_verifier_log(log, "version: %u\n", hdr->version); |
| 1576 | __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); |
| 1577 | __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); |
| 1578 | __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); |
| 1579 | __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); |
| 1580 | __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); |
| 1581 | __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); |
| 1582 | __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); |
| 1583 | } |
| 1584 | |
| 1585 | static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) |
| 1586 | { |
| 1587 | struct btf *btf = env->btf; |
| 1588 | |
| 1589 | if (btf->types_size == btf->nr_types) { |
| 1590 | /* Expand 'types' array */ |
| 1591 | |
| 1592 | struct btf_type **new_types; |
| 1593 | u32 expand_by, new_size; |
| 1594 | |
| 1595 | if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { |
| 1596 | btf_verifier_log(env, "Exceeded max num of types"); |
| 1597 | return -E2BIG; |
| 1598 | } |
| 1599 | |
| 1600 | expand_by = max_t(u32, btf->types_size >> 2, 16); |
| 1601 | new_size = min_t(u32, BTF_MAX_TYPE, |
| 1602 | btf->types_size + expand_by); |
| 1603 | |
| 1604 | new_types = kvcalloc(new_size, sizeof(*new_types), |
| 1605 | GFP_KERNEL | __GFP_NOWARN); |
| 1606 | if (!new_types) |
| 1607 | return -ENOMEM; |
| 1608 | |
| 1609 | if (btf->nr_types == 0) { |
| 1610 | if (!btf->base_btf) { |
| 1611 | /* lazily init VOID type */ |
| 1612 | new_types[0] = &btf_void; |
| 1613 | btf->nr_types++; |
| 1614 | } |
| 1615 | } else { |
| 1616 | memcpy(new_types, btf->types, |
| 1617 | sizeof(*btf->types) * btf->nr_types); |
| 1618 | } |
| 1619 | |
| 1620 | kvfree(btf->types); |
| 1621 | btf->types = new_types; |
| 1622 | btf->types_size = new_size; |
| 1623 | } |
| 1624 | |
| 1625 | btf->types[btf->nr_types++] = t; |
| 1626 | |
| 1627 | return 0; |
| 1628 | } |
| 1629 | |
| 1630 | static int btf_alloc_id(struct btf *btf) |
| 1631 | { |
| 1632 | int id; |
| 1633 | |
| 1634 | idr_preload(GFP_KERNEL); |
| 1635 | spin_lock_bh(&btf_idr_lock); |
| 1636 | id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); |
| 1637 | if (id > 0) |
| 1638 | btf->id = id; |
| 1639 | spin_unlock_bh(&btf_idr_lock); |
| 1640 | idr_preload_end(); |
| 1641 | |
| 1642 | if (WARN_ON_ONCE(!id)) |
| 1643 | return -ENOSPC; |
| 1644 | |
| 1645 | return id > 0 ? 0 : id; |
| 1646 | } |
| 1647 | |
| 1648 | static void btf_free_id(struct btf *btf) |
| 1649 | { |
| 1650 | unsigned long flags; |
| 1651 | |
| 1652 | /* |
| 1653 | * In map-in-map, calling map_delete_elem() on outer |
| 1654 | * map will call bpf_map_put on the inner map. |
| 1655 | * It will then eventually call btf_free_id() |
| 1656 | * on the inner map. Some of the map_delete_elem() |
| 1657 | * implementation may have irq disabled, so |
| 1658 | * we need to use the _irqsave() version instead |
| 1659 | * of the _bh() version. |
| 1660 | */ |
| 1661 | spin_lock_irqsave(&btf_idr_lock, flags); |
| 1662 | idr_remove(&btf_idr, btf->id); |
| 1663 | spin_unlock_irqrestore(&btf_idr_lock, flags); |
| 1664 | } |
| 1665 | |
| 1666 | static void btf_free_kfunc_set_tab(struct btf *btf) |
| 1667 | { |
| 1668 | struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; |
| 1669 | int hook; |
| 1670 | |
| 1671 | if (!tab) |
| 1672 | return; |
| 1673 | for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) |
| 1674 | kfree(tab->sets[hook]); |
| 1675 | kfree(tab); |
| 1676 | btf->kfunc_set_tab = NULL; |
| 1677 | } |
| 1678 | |
| 1679 | static void btf_free_dtor_kfunc_tab(struct btf *btf) |
| 1680 | { |
| 1681 | struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; |
| 1682 | |
| 1683 | if (!tab) |
| 1684 | return; |
| 1685 | kfree(tab); |
| 1686 | btf->dtor_kfunc_tab = NULL; |
| 1687 | } |
| 1688 | |
| 1689 | static void btf_struct_metas_free(struct btf_struct_metas *tab) |
| 1690 | { |
| 1691 | int i; |
| 1692 | |
| 1693 | if (!tab) |
| 1694 | return; |
| 1695 | for (i = 0; i < tab->cnt; i++) |
| 1696 | btf_record_free(tab->types[i].record); |
| 1697 | kfree(tab); |
| 1698 | } |
| 1699 | |
| 1700 | static void btf_free_struct_meta_tab(struct btf *btf) |
| 1701 | { |
| 1702 | struct btf_struct_metas *tab = btf->struct_meta_tab; |
| 1703 | |
| 1704 | btf_struct_metas_free(tab); |
| 1705 | btf->struct_meta_tab = NULL; |
| 1706 | } |
| 1707 | |
| 1708 | static void btf_free_struct_ops_tab(struct btf *btf) |
| 1709 | { |
| 1710 | struct btf_struct_ops_tab *tab = btf->struct_ops_tab; |
| 1711 | u32 i; |
| 1712 | |
| 1713 | if (!tab) |
| 1714 | return; |
| 1715 | |
| 1716 | for (i = 0; i < tab->cnt; i++) |
| 1717 | bpf_struct_ops_desc_release(&tab->ops[i]); |
| 1718 | |
| 1719 | kfree(tab); |
| 1720 | btf->struct_ops_tab = NULL; |
| 1721 | } |
| 1722 | |
| 1723 | static void btf_free(struct btf *btf) |
| 1724 | { |
| 1725 | btf_free_struct_meta_tab(btf); |
| 1726 | btf_free_dtor_kfunc_tab(btf); |
| 1727 | btf_free_kfunc_set_tab(btf); |
| 1728 | btf_free_struct_ops_tab(btf); |
| 1729 | kvfree(btf->types); |
| 1730 | kvfree(btf->resolved_sizes); |
| 1731 | kvfree(btf->resolved_ids); |
| 1732 | /* vmlinux does not allocate btf->data, it simply points it at |
| 1733 | * __start_BTF. |
| 1734 | */ |
| 1735 | if (!btf_is_vmlinux(btf)) |
| 1736 | kvfree(btf->data); |
| 1737 | kvfree(btf->base_id_map); |
| 1738 | kfree(btf); |
| 1739 | } |
| 1740 | |
| 1741 | static void btf_free_rcu(struct rcu_head *rcu) |
| 1742 | { |
| 1743 | struct btf *btf = container_of(rcu, struct btf, rcu); |
| 1744 | |
| 1745 | btf_free(btf); |
| 1746 | } |
| 1747 | |
| 1748 | const char *btf_get_name(const struct btf *btf) |
| 1749 | { |
| 1750 | return btf->name; |
| 1751 | } |
| 1752 | |
| 1753 | void btf_get(struct btf *btf) |
| 1754 | { |
| 1755 | refcount_inc(&btf->refcnt); |
| 1756 | } |
| 1757 | |
| 1758 | void btf_put(struct btf *btf) |
| 1759 | { |
| 1760 | if (btf && refcount_dec_and_test(&btf->refcnt)) { |
| 1761 | btf_free_id(btf); |
| 1762 | call_rcu(&btf->rcu, btf_free_rcu); |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | struct btf *btf_base_btf(const struct btf *btf) |
| 1767 | { |
| 1768 | return btf->base_btf; |
| 1769 | } |
| 1770 | |
| 1771 | const struct btf_header *btf_header(const struct btf *btf) |
| 1772 | { |
| 1773 | return &btf->hdr; |
| 1774 | } |
| 1775 | |
| 1776 | void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) |
| 1777 | { |
| 1778 | btf->base_btf = (struct btf *)base_btf; |
| 1779 | btf->start_id = btf_nr_types(base_btf); |
| 1780 | btf->start_str_off = base_btf->hdr.str_len; |
| 1781 | } |
| 1782 | |
| 1783 | static int env_resolve_init(struct btf_verifier_env *env) |
| 1784 | { |
| 1785 | struct btf *btf = env->btf; |
| 1786 | u32 nr_types = btf->nr_types; |
| 1787 | u32 *resolved_sizes = NULL; |
| 1788 | u32 *resolved_ids = NULL; |
| 1789 | u8 *visit_states = NULL; |
| 1790 | |
| 1791 | resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), |
| 1792 | GFP_KERNEL | __GFP_NOWARN); |
| 1793 | if (!resolved_sizes) |
| 1794 | goto nomem; |
| 1795 | |
| 1796 | resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), |
| 1797 | GFP_KERNEL | __GFP_NOWARN); |
| 1798 | if (!resolved_ids) |
| 1799 | goto nomem; |
| 1800 | |
| 1801 | visit_states = kvcalloc(nr_types, sizeof(*visit_states), |
| 1802 | GFP_KERNEL | __GFP_NOWARN); |
| 1803 | if (!visit_states) |
| 1804 | goto nomem; |
| 1805 | |
| 1806 | btf->resolved_sizes = resolved_sizes; |
| 1807 | btf->resolved_ids = resolved_ids; |
| 1808 | env->visit_states = visit_states; |
| 1809 | |
| 1810 | return 0; |
| 1811 | |
| 1812 | nomem: |
| 1813 | kvfree(resolved_sizes); |
| 1814 | kvfree(resolved_ids); |
| 1815 | kvfree(visit_states); |
| 1816 | return -ENOMEM; |
| 1817 | } |
| 1818 | |
| 1819 | static void btf_verifier_env_free(struct btf_verifier_env *env) |
| 1820 | { |
| 1821 | kvfree(env->visit_states); |
| 1822 | kfree(env); |
| 1823 | } |
| 1824 | |
| 1825 | static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, |
| 1826 | const struct btf_type *next_type) |
| 1827 | { |
| 1828 | switch (env->resolve_mode) { |
| 1829 | case RESOLVE_TBD: |
| 1830 | /* int, enum or void is a sink */ |
| 1831 | return !btf_type_needs_resolve(next_type); |
| 1832 | case RESOLVE_PTR: |
| 1833 | /* int, enum, void, struct, array, func or func_proto is a sink |
| 1834 | * for ptr |
| 1835 | */ |
| 1836 | return !btf_type_is_modifier(next_type) && |
| 1837 | !btf_type_is_ptr(next_type); |
| 1838 | case RESOLVE_STRUCT_OR_ARRAY: |
| 1839 | /* int, enum, void, ptr, func or func_proto is a sink |
| 1840 | * for struct and array |
| 1841 | */ |
| 1842 | return !btf_type_is_modifier(next_type) && |
| 1843 | !btf_type_is_array(next_type) && |
| 1844 | !btf_type_is_struct(next_type); |
| 1845 | default: |
| 1846 | BUG(); |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | static bool env_type_is_resolved(const struct btf_verifier_env *env, |
| 1851 | u32 type_id) |
| 1852 | { |
| 1853 | /* base BTF types should be resolved by now */ |
| 1854 | if (type_id < env->btf->start_id) |
| 1855 | return true; |
| 1856 | |
| 1857 | return env->visit_states[type_id - env->btf->start_id] == RESOLVED; |
| 1858 | } |
| 1859 | |
| 1860 | static int env_stack_push(struct btf_verifier_env *env, |
| 1861 | const struct btf_type *t, u32 type_id) |
| 1862 | { |
| 1863 | const struct btf *btf = env->btf; |
| 1864 | struct resolve_vertex *v; |
| 1865 | |
| 1866 | if (env->top_stack == MAX_RESOLVE_DEPTH) |
| 1867 | return -E2BIG; |
| 1868 | |
| 1869 | if (type_id < btf->start_id |
| 1870 | || env->visit_states[type_id - btf->start_id] != NOT_VISITED) |
| 1871 | return -EEXIST; |
| 1872 | |
| 1873 | env->visit_states[type_id - btf->start_id] = VISITED; |
| 1874 | |
| 1875 | v = &env->stack[env->top_stack++]; |
| 1876 | v->t = t; |
| 1877 | v->type_id = type_id; |
| 1878 | v->next_member = 0; |
| 1879 | |
| 1880 | if (env->resolve_mode == RESOLVE_TBD) { |
| 1881 | if (btf_type_is_ptr(t)) |
| 1882 | env->resolve_mode = RESOLVE_PTR; |
| 1883 | else if (btf_type_is_struct(t) || btf_type_is_array(t)) |
| 1884 | env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; |
| 1885 | } |
| 1886 | |
| 1887 | return 0; |
| 1888 | } |
| 1889 | |
| 1890 | static void env_stack_set_next_member(struct btf_verifier_env *env, |
| 1891 | u16 next_member) |
| 1892 | { |
| 1893 | env->stack[env->top_stack - 1].next_member = next_member; |
| 1894 | } |
| 1895 | |
| 1896 | static void env_stack_pop_resolved(struct btf_verifier_env *env, |
| 1897 | u32 resolved_type_id, |
| 1898 | u32 resolved_size) |
| 1899 | { |
| 1900 | u32 type_id = env->stack[--(env->top_stack)].type_id; |
| 1901 | struct btf *btf = env->btf; |
| 1902 | |
| 1903 | type_id -= btf->start_id; /* adjust to local type id */ |
| 1904 | btf->resolved_sizes[type_id] = resolved_size; |
| 1905 | btf->resolved_ids[type_id] = resolved_type_id; |
| 1906 | env->visit_states[type_id] = RESOLVED; |
| 1907 | } |
| 1908 | |
| 1909 | static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) |
| 1910 | { |
| 1911 | return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; |
| 1912 | } |
| 1913 | |
| 1914 | /* Resolve the size of a passed-in "type" |
| 1915 | * |
| 1916 | * type: is an array (e.g. u32 array[x][y]) |
| 1917 | * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, |
| 1918 | * *type_size: (x * y * sizeof(u32)). Hence, *type_size always |
| 1919 | * corresponds to the return type. |
| 1920 | * *elem_type: u32 |
| 1921 | * *elem_id: id of u32 |
| 1922 | * *total_nelems: (x * y). Hence, individual elem size is |
| 1923 | * (*type_size / *total_nelems) |
| 1924 | * *type_id: id of type if it's changed within the function, 0 if not |
| 1925 | * |
| 1926 | * type: is not an array (e.g. const struct X) |
| 1927 | * return type: type "struct X" |
| 1928 | * *type_size: sizeof(struct X) |
| 1929 | * *elem_type: same as return type ("struct X") |
| 1930 | * *elem_id: 0 |
| 1931 | * *total_nelems: 1 |
| 1932 | * *type_id: id of type if it's changed within the function, 0 if not |
| 1933 | */ |
| 1934 | static const struct btf_type * |
| 1935 | __btf_resolve_size(const struct btf *btf, const struct btf_type *type, |
| 1936 | u32 *type_size, const struct btf_type **elem_type, |
| 1937 | u32 *elem_id, u32 *total_nelems, u32 *type_id) |
| 1938 | { |
| 1939 | const struct btf_type *array_type = NULL; |
| 1940 | const struct btf_array *array = NULL; |
| 1941 | u32 i, size, nelems = 1, id = 0; |
| 1942 | |
| 1943 | for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { |
| 1944 | switch (BTF_INFO_KIND(type->info)) { |
| 1945 | /* type->size can be used */ |
| 1946 | case BTF_KIND_INT: |
| 1947 | case BTF_KIND_STRUCT: |
| 1948 | case BTF_KIND_UNION: |
| 1949 | case BTF_KIND_ENUM: |
| 1950 | case BTF_KIND_FLOAT: |
| 1951 | case BTF_KIND_ENUM64: |
| 1952 | size = type->size; |
| 1953 | goto resolved; |
| 1954 | |
| 1955 | case BTF_KIND_PTR: |
| 1956 | size = sizeof(void *); |
| 1957 | goto resolved; |
| 1958 | |
| 1959 | /* Modifiers */ |
| 1960 | case BTF_KIND_TYPEDEF: |
| 1961 | case BTF_KIND_VOLATILE: |
| 1962 | case BTF_KIND_CONST: |
| 1963 | case BTF_KIND_RESTRICT: |
| 1964 | case BTF_KIND_TYPE_TAG: |
| 1965 | id = type->type; |
| 1966 | type = btf_type_by_id(btf, type->type); |
| 1967 | break; |
| 1968 | |
| 1969 | case BTF_KIND_ARRAY: |
| 1970 | if (!array_type) |
| 1971 | array_type = type; |
| 1972 | array = btf_type_array(type); |
| 1973 | if (nelems && array->nelems > U32_MAX / nelems) |
| 1974 | return ERR_PTR(-EINVAL); |
| 1975 | nelems *= array->nelems; |
| 1976 | type = btf_type_by_id(btf, array->type); |
| 1977 | break; |
| 1978 | |
| 1979 | /* type without size */ |
| 1980 | default: |
| 1981 | return ERR_PTR(-EINVAL); |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | return ERR_PTR(-EINVAL); |
| 1986 | |
| 1987 | resolved: |
| 1988 | if (nelems && size > U32_MAX / nelems) |
| 1989 | return ERR_PTR(-EINVAL); |
| 1990 | |
| 1991 | *type_size = nelems * size; |
| 1992 | if (total_nelems) |
| 1993 | *total_nelems = nelems; |
| 1994 | if (elem_type) |
| 1995 | *elem_type = type; |
| 1996 | if (elem_id) |
| 1997 | *elem_id = array ? array->type : 0; |
| 1998 | if (type_id && id) |
| 1999 | *type_id = id; |
| 2000 | |
| 2001 | return array_type ? : type; |
| 2002 | } |
| 2003 | |
| 2004 | const struct btf_type * |
| 2005 | btf_resolve_size(const struct btf *btf, const struct btf_type *type, |
| 2006 | u32 *type_size) |
| 2007 | { |
| 2008 | return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); |
| 2009 | } |
| 2010 | |
| 2011 | static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) |
| 2012 | { |
| 2013 | while (type_id < btf->start_id) |
| 2014 | btf = btf->base_btf; |
| 2015 | |
| 2016 | return btf->resolved_ids[type_id - btf->start_id]; |
| 2017 | } |
| 2018 | |
| 2019 | /* The input param "type_id" must point to a needs_resolve type */ |
| 2020 | static const struct btf_type *btf_type_id_resolve(const struct btf *btf, |
| 2021 | u32 *type_id) |
| 2022 | { |
| 2023 | *type_id = btf_resolved_type_id(btf, *type_id); |
| 2024 | return btf_type_by_id(btf, *type_id); |
| 2025 | } |
| 2026 | |
| 2027 | static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) |
| 2028 | { |
| 2029 | while (type_id < btf->start_id) |
| 2030 | btf = btf->base_btf; |
| 2031 | |
| 2032 | return btf->resolved_sizes[type_id - btf->start_id]; |
| 2033 | } |
| 2034 | |
| 2035 | const struct btf_type *btf_type_id_size(const struct btf *btf, |
| 2036 | u32 *type_id, u32 *ret_size) |
| 2037 | { |
| 2038 | const struct btf_type *size_type; |
| 2039 | u32 size_type_id = *type_id; |
| 2040 | u32 size = 0; |
| 2041 | |
| 2042 | size_type = btf_type_by_id(btf, size_type_id); |
| 2043 | if (btf_type_nosize_or_null(size_type)) |
| 2044 | return NULL; |
| 2045 | |
| 2046 | if (btf_type_has_size(size_type)) { |
| 2047 | size = size_type->size; |
| 2048 | } else if (btf_type_is_array(size_type)) { |
| 2049 | size = btf_resolved_type_size(btf, size_type_id); |
| 2050 | } else if (btf_type_is_ptr(size_type)) { |
| 2051 | size = sizeof(void *); |
| 2052 | } else { |
| 2053 | if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && |
| 2054 | !btf_type_is_var(size_type))) |
| 2055 | return NULL; |
| 2056 | |
| 2057 | size_type_id = btf_resolved_type_id(btf, size_type_id); |
| 2058 | size_type = btf_type_by_id(btf, size_type_id); |
| 2059 | if (btf_type_nosize_or_null(size_type)) |
| 2060 | return NULL; |
| 2061 | else if (btf_type_has_size(size_type)) |
| 2062 | size = size_type->size; |
| 2063 | else if (btf_type_is_array(size_type)) |
| 2064 | size = btf_resolved_type_size(btf, size_type_id); |
| 2065 | else if (btf_type_is_ptr(size_type)) |
| 2066 | size = sizeof(void *); |
| 2067 | else |
| 2068 | return NULL; |
| 2069 | } |
| 2070 | |
| 2071 | *type_id = size_type_id; |
| 2072 | if (ret_size) |
| 2073 | *ret_size = size; |
| 2074 | |
| 2075 | return size_type; |
| 2076 | } |
| 2077 | |
| 2078 | static int btf_df_check_member(struct btf_verifier_env *env, |
| 2079 | const struct btf_type *struct_type, |
| 2080 | const struct btf_member *member, |
| 2081 | const struct btf_type *member_type) |
| 2082 | { |
| 2083 | btf_verifier_log_basic(env, struct_type, |
| 2084 | "Unsupported check_member"); |
| 2085 | return -EINVAL; |
| 2086 | } |
| 2087 | |
| 2088 | static int btf_df_check_kflag_member(struct btf_verifier_env *env, |
| 2089 | const struct btf_type *struct_type, |
| 2090 | const struct btf_member *member, |
| 2091 | const struct btf_type *member_type) |
| 2092 | { |
| 2093 | btf_verifier_log_basic(env, struct_type, |
| 2094 | "Unsupported check_kflag_member"); |
| 2095 | return -EINVAL; |
| 2096 | } |
| 2097 | |
| 2098 | /* Used for ptr, array struct/union and float type members. |
| 2099 | * int, enum and modifier types have their specific callback functions. |
| 2100 | */ |
| 2101 | static int btf_generic_check_kflag_member(struct btf_verifier_env *env, |
| 2102 | const struct btf_type *struct_type, |
| 2103 | const struct btf_member *member, |
| 2104 | const struct btf_type *member_type) |
| 2105 | { |
| 2106 | if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { |
| 2107 | btf_verifier_log_member(env, struct_type, member, |
| 2108 | "Invalid member bitfield_size"); |
| 2109 | return -EINVAL; |
| 2110 | } |
| 2111 | |
| 2112 | /* bitfield size is 0, so member->offset represents bit offset only. |
| 2113 | * It is safe to call non kflag check_member variants. |
| 2114 | */ |
| 2115 | return btf_type_ops(member_type)->check_member(env, struct_type, |
| 2116 | member, |
| 2117 | member_type); |
| 2118 | } |
| 2119 | |
| 2120 | static int btf_df_resolve(struct btf_verifier_env *env, |
| 2121 | const struct resolve_vertex *v) |
| 2122 | { |
| 2123 | btf_verifier_log_basic(env, v->t, "Unsupported resolve"); |
| 2124 | return -EINVAL; |
| 2125 | } |
| 2126 | |
| 2127 | static void btf_df_show(const struct btf *btf, const struct btf_type *t, |
| 2128 | u32 type_id, void *data, u8 bits_offsets, |
| 2129 | struct btf_show *show) |
| 2130 | { |
| 2131 | btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); |
| 2132 | } |
| 2133 | |
| 2134 | static int btf_int_check_member(struct btf_verifier_env *env, |
| 2135 | const struct btf_type *struct_type, |
| 2136 | const struct btf_member *member, |
| 2137 | const struct btf_type *member_type) |
| 2138 | { |
| 2139 | u32 int_data = btf_type_int(member_type); |
| 2140 | u32 struct_bits_off = member->offset; |
| 2141 | u32 struct_size = struct_type->size; |
| 2142 | u32 nr_copy_bits; |
| 2143 | u32 bytes_offset; |
| 2144 | |
| 2145 | if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { |
| 2146 | btf_verifier_log_member(env, struct_type, member, |
| 2147 | "bits_offset exceeds U32_MAX"); |
| 2148 | return -EINVAL; |
| 2149 | } |
| 2150 | |
| 2151 | struct_bits_off += BTF_INT_OFFSET(int_data); |
| 2152 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 2153 | nr_copy_bits = BTF_INT_BITS(int_data) + |
| 2154 | BITS_PER_BYTE_MASKED(struct_bits_off); |
| 2155 | |
| 2156 | if (nr_copy_bits > BITS_PER_U128) { |
| 2157 | btf_verifier_log_member(env, struct_type, member, |
| 2158 | "nr_copy_bits exceeds 128"); |
| 2159 | return -EINVAL; |
| 2160 | } |
| 2161 | |
| 2162 | if (struct_size < bytes_offset || |
| 2163 | struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { |
| 2164 | btf_verifier_log_member(env, struct_type, member, |
| 2165 | "Member exceeds struct_size"); |
| 2166 | return -EINVAL; |
| 2167 | } |
| 2168 | |
| 2169 | return 0; |
| 2170 | } |
| 2171 | |
| 2172 | static int btf_int_check_kflag_member(struct btf_verifier_env *env, |
| 2173 | const struct btf_type *struct_type, |
| 2174 | const struct btf_member *member, |
| 2175 | const struct btf_type *member_type) |
| 2176 | { |
| 2177 | u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; |
| 2178 | u32 int_data = btf_type_int(member_type); |
| 2179 | u32 struct_size = struct_type->size; |
| 2180 | u32 nr_copy_bits; |
| 2181 | |
| 2182 | /* a regular int type is required for the kflag int member */ |
| 2183 | if (!btf_type_int_is_regular(member_type)) { |
| 2184 | btf_verifier_log_member(env, struct_type, member, |
| 2185 | "Invalid member base type"); |
| 2186 | return -EINVAL; |
| 2187 | } |
| 2188 | |
| 2189 | /* check sanity of bitfield size */ |
| 2190 | nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); |
| 2191 | struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); |
| 2192 | nr_int_data_bits = BTF_INT_BITS(int_data); |
| 2193 | if (!nr_bits) { |
| 2194 | /* Not a bitfield member, member offset must be at byte |
| 2195 | * boundary. |
| 2196 | */ |
| 2197 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 2198 | btf_verifier_log_member(env, struct_type, member, |
| 2199 | "Invalid member offset"); |
| 2200 | return -EINVAL; |
| 2201 | } |
| 2202 | |
| 2203 | nr_bits = nr_int_data_bits; |
| 2204 | } else if (nr_bits > nr_int_data_bits) { |
| 2205 | btf_verifier_log_member(env, struct_type, member, |
| 2206 | "Invalid member bitfield_size"); |
| 2207 | return -EINVAL; |
| 2208 | } |
| 2209 | |
| 2210 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 2211 | nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); |
| 2212 | if (nr_copy_bits > BITS_PER_U128) { |
| 2213 | btf_verifier_log_member(env, struct_type, member, |
| 2214 | "nr_copy_bits exceeds 128"); |
| 2215 | return -EINVAL; |
| 2216 | } |
| 2217 | |
| 2218 | if (struct_size < bytes_offset || |
| 2219 | struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { |
| 2220 | btf_verifier_log_member(env, struct_type, member, |
| 2221 | "Member exceeds struct_size"); |
| 2222 | return -EINVAL; |
| 2223 | } |
| 2224 | |
| 2225 | return 0; |
| 2226 | } |
| 2227 | |
| 2228 | static s32 btf_int_check_meta(struct btf_verifier_env *env, |
| 2229 | const struct btf_type *t, |
| 2230 | u32 meta_left) |
| 2231 | { |
| 2232 | u32 int_data, nr_bits, meta_needed = sizeof(int_data); |
| 2233 | u16 encoding; |
| 2234 | |
| 2235 | if (meta_left < meta_needed) { |
| 2236 | btf_verifier_log_basic(env, t, |
| 2237 | "meta_left:%u meta_needed:%u", |
| 2238 | meta_left, meta_needed); |
| 2239 | return -EINVAL; |
| 2240 | } |
| 2241 | |
| 2242 | if (btf_type_vlen(t)) { |
| 2243 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 2244 | return -EINVAL; |
| 2245 | } |
| 2246 | |
| 2247 | if (btf_type_kflag(t)) { |
| 2248 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 2249 | return -EINVAL; |
| 2250 | } |
| 2251 | |
| 2252 | int_data = btf_type_int(t); |
| 2253 | if (int_data & ~BTF_INT_MASK) { |
| 2254 | btf_verifier_log_basic(env, t, "Invalid int_data:%x", |
| 2255 | int_data); |
| 2256 | return -EINVAL; |
| 2257 | } |
| 2258 | |
| 2259 | nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); |
| 2260 | |
| 2261 | if (nr_bits > BITS_PER_U128) { |
| 2262 | btf_verifier_log_type(env, t, "nr_bits exceeds %zu", |
| 2263 | BITS_PER_U128); |
| 2264 | return -EINVAL; |
| 2265 | } |
| 2266 | |
| 2267 | if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { |
| 2268 | btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); |
| 2269 | return -EINVAL; |
| 2270 | } |
| 2271 | |
| 2272 | /* |
| 2273 | * Only one of the encoding bits is allowed and it |
| 2274 | * should be sufficient for the pretty print purpose (i.e. decoding). |
| 2275 | * Multiple bits can be allowed later if it is found |
| 2276 | * to be insufficient. |
| 2277 | */ |
| 2278 | encoding = BTF_INT_ENCODING(int_data); |
| 2279 | if (encoding && |
| 2280 | encoding != BTF_INT_SIGNED && |
| 2281 | encoding != BTF_INT_CHAR && |
| 2282 | encoding != BTF_INT_BOOL) { |
| 2283 | btf_verifier_log_type(env, t, "Unsupported encoding"); |
| 2284 | return -ENOTSUPP; |
| 2285 | } |
| 2286 | |
| 2287 | btf_verifier_log_type(env, t, NULL); |
| 2288 | |
| 2289 | return meta_needed; |
| 2290 | } |
| 2291 | |
| 2292 | static void btf_int_log(struct btf_verifier_env *env, |
| 2293 | const struct btf_type *t) |
| 2294 | { |
| 2295 | int int_data = btf_type_int(t); |
| 2296 | |
| 2297 | btf_verifier_log(env, |
| 2298 | "size=%u bits_offset=%u nr_bits=%u encoding=%s", |
| 2299 | t->size, BTF_INT_OFFSET(int_data), |
| 2300 | BTF_INT_BITS(int_data), |
| 2301 | btf_int_encoding_str(BTF_INT_ENCODING(int_data))); |
| 2302 | } |
| 2303 | |
| 2304 | static void btf_int128_print(struct btf_show *show, void *data) |
| 2305 | { |
| 2306 | /* data points to a __int128 number. |
| 2307 | * Suppose |
| 2308 | * int128_num = *(__int128 *)data; |
| 2309 | * The below formulas shows what upper_num and lower_num represents: |
| 2310 | * upper_num = int128_num >> 64; |
| 2311 | * lower_num = int128_num & 0xffffffffFFFFFFFFULL; |
| 2312 | */ |
| 2313 | u64 upper_num, lower_num; |
| 2314 | |
| 2315 | #ifdef __BIG_ENDIAN_BITFIELD |
| 2316 | upper_num = *(u64 *)data; |
| 2317 | lower_num = *(u64 *)(data + 8); |
| 2318 | #else |
| 2319 | upper_num = *(u64 *)(data + 8); |
| 2320 | lower_num = *(u64 *)data; |
| 2321 | #endif |
| 2322 | if (upper_num == 0) |
| 2323 | btf_show_type_value(show, "0x%llx", lower_num); |
| 2324 | else |
| 2325 | btf_show_type_values(show, "0x%llx%016llx", upper_num, |
| 2326 | lower_num); |
| 2327 | } |
| 2328 | |
| 2329 | static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, |
| 2330 | u16 right_shift_bits) |
| 2331 | { |
| 2332 | u64 upper_num, lower_num; |
| 2333 | |
| 2334 | #ifdef __BIG_ENDIAN_BITFIELD |
| 2335 | upper_num = print_num[0]; |
| 2336 | lower_num = print_num[1]; |
| 2337 | #else |
| 2338 | upper_num = print_num[1]; |
| 2339 | lower_num = print_num[0]; |
| 2340 | #endif |
| 2341 | |
| 2342 | /* shake out un-needed bits by shift/or operations */ |
| 2343 | if (left_shift_bits >= 64) { |
| 2344 | upper_num = lower_num << (left_shift_bits - 64); |
| 2345 | lower_num = 0; |
| 2346 | } else { |
| 2347 | upper_num = (upper_num << left_shift_bits) | |
| 2348 | (lower_num >> (64 - left_shift_bits)); |
| 2349 | lower_num = lower_num << left_shift_bits; |
| 2350 | } |
| 2351 | |
| 2352 | if (right_shift_bits >= 64) { |
| 2353 | lower_num = upper_num >> (right_shift_bits - 64); |
| 2354 | upper_num = 0; |
| 2355 | } else { |
| 2356 | lower_num = (lower_num >> right_shift_bits) | |
| 2357 | (upper_num << (64 - right_shift_bits)); |
| 2358 | upper_num = upper_num >> right_shift_bits; |
| 2359 | } |
| 2360 | |
| 2361 | #ifdef __BIG_ENDIAN_BITFIELD |
| 2362 | print_num[0] = upper_num; |
| 2363 | print_num[1] = lower_num; |
| 2364 | #else |
| 2365 | print_num[0] = lower_num; |
| 2366 | print_num[1] = upper_num; |
| 2367 | #endif |
| 2368 | } |
| 2369 | |
| 2370 | static void btf_bitfield_show(void *data, u8 bits_offset, |
| 2371 | u8 nr_bits, struct btf_show *show) |
| 2372 | { |
| 2373 | u16 left_shift_bits, right_shift_bits; |
| 2374 | u8 nr_copy_bytes; |
| 2375 | u8 nr_copy_bits; |
| 2376 | u64 print_num[2] = {}; |
| 2377 | |
| 2378 | nr_copy_bits = nr_bits + bits_offset; |
| 2379 | nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); |
| 2380 | |
| 2381 | memcpy(print_num, data, nr_copy_bytes); |
| 2382 | |
| 2383 | #ifdef __BIG_ENDIAN_BITFIELD |
| 2384 | left_shift_bits = bits_offset; |
| 2385 | #else |
| 2386 | left_shift_bits = BITS_PER_U128 - nr_copy_bits; |
| 2387 | #endif |
| 2388 | right_shift_bits = BITS_PER_U128 - nr_bits; |
| 2389 | |
| 2390 | btf_int128_shift(print_num, left_shift_bits, right_shift_bits); |
| 2391 | btf_int128_print(show, print_num); |
| 2392 | } |
| 2393 | |
| 2394 | |
| 2395 | static void btf_int_bits_show(const struct btf *btf, |
| 2396 | const struct btf_type *t, |
| 2397 | void *data, u8 bits_offset, |
| 2398 | struct btf_show *show) |
| 2399 | { |
| 2400 | u32 int_data = btf_type_int(t); |
| 2401 | u8 nr_bits = BTF_INT_BITS(int_data); |
| 2402 | u8 total_bits_offset; |
| 2403 | |
| 2404 | /* |
| 2405 | * bits_offset is at most 7. |
| 2406 | * BTF_INT_OFFSET() cannot exceed 128 bits. |
| 2407 | */ |
| 2408 | total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); |
| 2409 | data += BITS_ROUNDDOWN_BYTES(total_bits_offset); |
| 2410 | bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); |
| 2411 | btf_bitfield_show(data, bits_offset, nr_bits, show); |
| 2412 | } |
| 2413 | |
| 2414 | static void btf_int_show(const struct btf *btf, const struct btf_type *t, |
| 2415 | u32 type_id, void *data, u8 bits_offset, |
| 2416 | struct btf_show *show) |
| 2417 | { |
| 2418 | u32 int_data = btf_type_int(t); |
| 2419 | u8 encoding = BTF_INT_ENCODING(int_data); |
| 2420 | bool sign = encoding & BTF_INT_SIGNED; |
| 2421 | u8 nr_bits = BTF_INT_BITS(int_data); |
| 2422 | void *safe_data; |
| 2423 | |
| 2424 | safe_data = btf_show_start_type(show, t, type_id, data); |
| 2425 | if (!safe_data) |
| 2426 | return; |
| 2427 | |
| 2428 | if (bits_offset || BTF_INT_OFFSET(int_data) || |
| 2429 | BITS_PER_BYTE_MASKED(nr_bits)) { |
| 2430 | btf_int_bits_show(btf, t, safe_data, bits_offset, show); |
| 2431 | goto out; |
| 2432 | } |
| 2433 | |
| 2434 | switch (nr_bits) { |
| 2435 | case 128: |
| 2436 | btf_int128_print(show, safe_data); |
| 2437 | break; |
| 2438 | case 64: |
| 2439 | if (sign) |
| 2440 | btf_show_type_value(show, "%lld", *(s64 *)safe_data); |
| 2441 | else |
| 2442 | btf_show_type_value(show, "%llu", *(u64 *)safe_data); |
| 2443 | break; |
| 2444 | case 32: |
| 2445 | if (sign) |
| 2446 | btf_show_type_value(show, "%d", *(s32 *)safe_data); |
| 2447 | else |
| 2448 | btf_show_type_value(show, "%u", *(u32 *)safe_data); |
| 2449 | break; |
| 2450 | case 16: |
| 2451 | if (sign) |
| 2452 | btf_show_type_value(show, "%d", *(s16 *)safe_data); |
| 2453 | else |
| 2454 | btf_show_type_value(show, "%u", *(u16 *)safe_data); |
| 2455 | break; |
| 2456 | case 8: |
| 2457 | if (show->state.array_encoding == BTF_INT_CHAR) { |
| 2458 | /* check for null terminator */ |
| 2459 | if (show->state.array_terminated) |
| 2460 | break; |
| 2461 | if (*(char *)data == '\0') { |
| 2462 | show->state.array_terminated = 1; |
| 2463 | break; |
| 2464 | } |
| 2465 | if (isprint(*(char *)data)) { |
| 2466 | btf_show_type_value(show, "'%c'", |
| 2467 | *(char *)safe_data); |
| 2468 | break; |
| 2469 | } |
| 2470 | } |
| 2471 | if (sign) |
| 2472 | btf_show_type_value(show, "%d", *(s8 *)safe_data); |
| 2473 | else |
| 2474 | btf_show_type_value(show, "%u", *(u8 *)safe_data); |
| 2475 | break; |
| 2476 | default: |
| 2477 | btf_int_bits_show(btf, t, safe_data, bits_offset, show); |
| 2478 | break; |
| 2479 | } |
| 2480 | out: |
| 2481 | btf_show_end_type(show); |
| 2482 | } |
| 2483 | |
| 2484 | static const struct btf_kind_operations int_ops = { |
| 2485 | .check_meta = btf_int_check_meta, |
| 2486 | .resolve = btf_df_resolve, |
| 2487 | .check_member = btf_int_check_member, |
| 2488 | .check_kflag_member = btf_int_check_kflag_member, |
| 2489 | .log_details = btf_int_log, |
| 2490 | .show = btf_int_show, |
| 2491 | }; |
| 2492 | |
| 2493 | static int btf_modifier_check_member(struct btf_verifier_env *env, |
| 2494 | const struct btf_type *struct_type, |
| 2495 | const struct btf_member *member, |
| 2496 | const struct btf_type *member_type) |
| 2497 | { |
| 2498 | const struct btf_type *resolved_type; |
| 2499 | u32 resolved_type_id = member->type; |
| 2500 | struct btf_member resolved_member; |
| 2501 | struct btf *btf = env->btf; |
| 2502 | |
| 2503 | resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); |
| 2504 | if (!resolved_type) { |
| 2505 | btf_verifier_log_member(env, struct_type, member, |
| 2506 | "Invalid member"); |
| 2507 | return -EINVAL; |
| 2508 | } |
| 2509 | |
| 2510 | resolved_member = *member; |
| 2511 | resolved_member.type = resolved_type_id; |
| 2512 | |
| 2513 | return btf_type_ops(resolved_type)->check_member(env, struct_type, |
| 2514 | &resolved_member, |
| 2515 | resolved_type); |
| 2516 | } |
| 2517 | |
| 2518 | static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, |
| 2519 | const struct btf_type *struct_type, |
| 2520 | const struct btf_member *member, |
| 2521 | const struct btf_type *member_type) |
| 2522 | { |
| 2523 | const struct btf_type *resolved_type; |
| 2524 | u32 resolved_type_id = member->type; |
| 2525 | struct btf_member resolved_member; |
| 2526 | struct btf *btf = env->btf; |
| 2527 | |
| 2528 | resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); |
| 2529 | if (!resolved_type) { |
| 2530 | btf_verifier_log_member(env, struct_type, member, |
| 2531 | "Invalid member"); |
| 2532 | return -EINVAL; |
| 2533 | } |
| 2534 | |
| 2535 | resolved_member = *member; |
| 2536 | resolved_member.type = resolved_type_id; |
| 2537 | |
| 2538 | return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, |
| 2539 | &resolved_member, |
| 2540 | resolved_type); |
| 2541 | } |
| 2542 | |
| 2543 | static int btf_ptr_check_member(struct btf_verifier_env *env, |
| 2544 | const struct btf_type *struct_type, |
| 2545 | const struct btf_member *member, |
| 2546 | const struct btf_type *member_type) |
| 2547 | { |
| 2548 | u32 struct_size, struct_bits_off, bytes_offset; |
| 2549 | |
| 2550 | struct_size = struct_type->size; |
| 2551 | struct_bits_off = member->offset; |
| 2552 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 2553 | |
| 2554 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 2555 | btf_verifier_log_member(env, struct_type, member, |
| 2556 | "Member is not byte aligned"); |
| 2557 | return -EINVAL; |
| 2558 | } |
| 2559 | |
| 2560 | if (struct_size - bytes_offset < sizeof(void *)) { |
| 2561 | btf_verifier_log_member(env, struct_type, member, |
| 2562 | "Member exceeds struct_size"); |
| 2563 | return -EINVAL; |
| 2564 | } |
| 2565 | |
| 2566 | return 0; |
| 2567 | } |
| 2568 | |
| 2569 | static int btf_ref_type_check_meta(struct btf_verifier_env *env, |
| 2570 | const struct btf_type *t, |
| 2571 | u32 meta_left) |
| 2572 | { |
| 2573 | const char *value; |
| 2574 | |
| 2575 | if (btf_type_vlen(t)) { |
| 2576 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 2577 | return -EINVAL; |
| 2578 | } |
| 2579 | |
| 2580 | if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { |
| 2581 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 2582 | return -EINVAL; |
| 2583 | } |
| 2584 | |
| 2585 | if (!BTF_TYPE_ID_VALID(t->type)) { |
| 2586 | btf_verifier_log_type(env, t, "Invalid type_id"); |
| 2587 | return -EINVAL; |
| 2588 | } |
| 2589 | |
| 2590 | /* typedef/type_tag type must have a valid name, and other ref types, |
| 2591 | * volatile, const, restrict, should have a null name. |
| 2592 | */ |
| 2593 | if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { |
| 2594 | if (!t->name_off || |
| 2595 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 2596 | btf_verifier_log_type(env, t, "Invalid name"); |
| 2597 | return -EINVAL; |
| 2598 | } |
| 2599 | } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { |
| 2600 | value = btf_name_by_offset(env->btf, t->name_off); |
| 2601 | if (!value || !value[0]) { |
| 2602 | btf_verifier_log_type(env, t, "Invalid name"); |
| 2603 | return -EINVAL; |
| 2604 | } |
| 2605 | } else { |
| 2606 | if (t->name_off) { |
| 2607 | btf_verifier_log_type(env, t, "Invalid name"); |
| 2608 | return -EINVAL; |
| 2609 | } |
| 2610 | } |
| 2611 | |
| 2612 | btf_verifier_log_type(env, t, NULL); |
| 2613 | |
| 2614 | return 0; |
| 2615 | } |
| 2616 | |
| 2617 | static int btf_modifier_resolve(struct btf_verifier_env *env, |
| 2618 | const struct resolve_vertex *v) |
| 2619 | { |
| 2620 | const struct btf_type *t = v->t; |
| 2621 | const struct btf_type *next_type; |
| 2622 | u32 next_type_id = t->type; |
| 2623 | struct btf *btf = env->btf; |
| 2624 | |
| 2625 | next_type = btf_type_by_id(btf, next_type_id); |
| 2626 | if (!next_type || btf_type_is_resolve_source_only(next_type)) { |
| 2627 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2628 | return -EINVAL; |
| 2629 | } |
| 2630 | |
| 2631 | if (!env_type_is_resolve_sink(env, next_type) && |
| 2632 | !env_type_is_resolved(env, next_type_id)) |
| 2633 | return env_stack_push(env, next_type, next_type_id); |
| 2634 | |
| 2635 | /* Figure out the resolved next_type_id with size. |
| 2636 | * They will be stored in the current modifier's |
| 2637 | * resolved_ids and resolved_sizes such that it can |
| 2638 | * save us a few type-following when we use it later (e.g. in |
| 2639 | * pretty print). |
| 2640 | */ |
| 2641 | if (!btf_type_id_size(btf, &next_type_id, NULL)) { |
| 2642 | if (env_type_is_resolved(env, next_type_id)) |
| 2643 | next_type = btf_type_id_resolve(btf, &next_type_id); |
| 2644 | |
| 2645 | /* "typedef void new_void", "const void"...etc */ |
| 2646 | if (!btf_type_is_void(next_type) && |
| 2647 | !btf_type_is_fwd(next_type) && |
| 2648 | !btf_type_is_func_proto(next_type)) { |
| 2649 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2650 | return -EINVAL; |
| 2651 | } |
| 2652 | } |
| 2653 | |
| 2654 | env_stack_pop_resolved(env, next_type_id, 0); |
| 2655 | |
| 2656 | return 0; |
| 2657 | } |
| 2658 | |
| 2659 | static int btf_var_resolve(struct btf_verifier_env *env, |
| 2660 | const struct resolve_vertex *v) |
| 2661 | { |
| 2662 | const struct btf_type *next_type; |
| 2663 | const struct btf_type *t = v->t; |
| 2664 | u32 next_type_id = t->type; |
| 2665 | struct btf *btf = env->btf; |
| 2666 | |
| 2667 | next_type = btf_type_by_id(btf, next_type_id); |
| 2668 | if (!next_type || btf_type_is_resolve_source_only(next_type)) { |
| 2669 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2670 | return -EINVAL; |
| 2671 | } |
| 2672 | |
| 2673 | if (!env_type_is_resolve_sink(env, next_type) && |
| 2674 | !env_type_is_resolved(env, next_type_id)) |
| 2675 | return env_stack_push(env, next_type, next_type_id); |
| 2676 | |
| 2677 | if (btf_type_is_modifier(next_type)) { |
| 2678 | const struct btf_type *resolved_type; |
| 2679 | u32 resolved_type_id; |
| 2680 | |
| 2681 | resolved_type_id = next_type_id; |
| 2682 | resolved_type = btf_type_id_resolve(btf, &resolved_type_id); |
| 2683 | |
| 2684 | if (btf_type_is_ptr(resolved_type) && |
| 2685 | !env_type_is_resolve_sink(env, resolved_type) && |
| 2686 | !env_type_is_resolved(env, resolved_type_id)) |
| 2687 | return env_stack_push(env, resolved_type, |
| 2688 | resolved_type_id); |
| 2689 | } |
| 2690 | |
| 2691 | /* We must resolve to something concrete at this point, no |
| 2692 | * forward types or similar that would resolve to size of |
| 2693 | * zero is allowed. |
| 2694 | */ |
| 2695 | if (!btf_type_id_size(btf, &next_type_id, NULL)) { |
| 2696 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2697 | return -EINVAL; |
| 2698 | } |
| 2699 | |
| 2700 | env_stack_pop_resolved(env, next_type_id, 0); |
| 2701 | |
| 2702 | return 0; |
| 2703 | } |
| 2704 | |
| 2705 | static int btf_ptr_resolve(struct btf_verifier_env *env, |
| 2706 | const struct resolve_vertex *v) |
| 2707 | { |
| 2708 | const struct btf_type *next_type; |
| 2709 | const struct btf_type *t = v->t; |
| 2710 | u32 next_type_id = t->type; |
| 2711 | struct btf *btf = env->btf; |
| 2712 | |
| 2713 | next_type = btf_type_by_id(btf, next_type_id); |
| 2714 | if (!next_type || btf_type_is_resolve_source_only(next_type)) { |
| 2715 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2716 | return -EINVAL; |
| 2717 | } |
| 2718 | |
| 2719 | if (!env_type_is_resolve_sink(env, next_type) && |
| 2720 | !env_type_is_resolved(env, next_type_id)) |
| 2721 | return env_stack_push(env, next_type, next_type_id); |
| 2722 | |
| 2723 | /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, |
| 2724 | * the modifier may have stopped resolving when it was resolved |
| 2725 | * to a ptr (last-resolved-ptr). |
| 2726 | * |
| 2727 | * We now need to continue from the last-resolved-ptr to |
| 2728 | * ensure the last-resolved-ptr will not referring back to |
| 2729 | * the current ptr (t). |
| 2730 | */ |
| 2731 | if (btf_type_is_modifier(next_type)) { |
| 2732 | const struct btf_type *resolved_type; |
| 2733 | u32 resolved_type_id; |
| 2734 | |
| 2735 | resolved_type_id = next_type_id; |
| 2736 | resolved_type = btf_type_id_resolve(btf, &resolved_type_id); |
| 2737 | |
| 2738 | if (btf_type_is_ptr(resolved_type) && |
| 2739 | !env_type_is_resolve_sink(env, resolved_type) && |
| 2740 | !env_type_is_resolved(env, resolved_type_id)) |
| 2741 | return env_stack_push(env, resolved_type, |
| 2742 | resolved_type_id); |
| 2743 | } |
| 2744 | |
| 2745 | if (!btf_type_id_size(btf, &next_type_id, NULL)) { |
| 2746 | if (env_type_is_resolved(env, next_type_id)) |
| 2747 | next_type = btf_type_id_resolve(btf, &next_type_id); |
| 2748 | |
| 2749 | if (!btf_type_is_void(next_type) && |
| 2750 | !btf_type_is_fwd(next_type) && |
| 2751 | !btf_type_is_func_proto(next_type)) { |
| 2752 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 2753 | return -EINVAL; |
| 2754 | } |
| 2755 | } |
| 2756 | |
| 2757 | env_stack_pop_resolved(env, next_type_id, 0); |
| 2758 | |
| 2759 | return 0; |
| 2760 | } |
| 2761 | |
| 2762 | static void btf_modifier_show(const struct btf *btf, |
| 2763 | const struct btf_type *t, |
| 2764 | u32 type_id, void *data, |
| 2765 | u8 bits_offset, struct btf_show *show) |
| 2766 | { |
| 2767 | if (btf->resolved_ids) |
| 2768 | t = btf_type_id_resolve(btf, &type_id); |
| 2769 | else |
| 2770 | t = btf_type_skip_modifiers(btf, type_id, NULL); |
| 2771 | |
| 2772 | btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); |
| 2773 | } |
| 2774 | |
| 2775 | static void btf_var_show(const struct btf *btf, const struct btf_type *t, |
| 2776 | u32 type_id, void *data, u8 bits_offset, |
| 2777 | struct btf_show *show) |
| 2778 | { |
| 2779 | t = btf_type_id_resolve(btf, &type_id); |
| 2780 | |
| 2781 | btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); |
| 2782 | } |
| 2783 | |
| 2784 | static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, |
| 2785 | u32 type_id, void *data, u8 bits_offset, |
| 2786 | struct btf_show *show) |
| 2787 | { |
| 2788 | void *safe_data; |
| 2789 | |
| 2790 | safe_data = btf_show_start_type(show, t, type_id, data); |
| 2791 | if (!safe_data) |
| 2792 | return; |
| 2793 | |
| 2794 | /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ |
| 2795 | if (show->flags & BTF_SHOW_PTR_RAW) |
| 2796 | btf_show_type_value(show, "0x%px", *(void **)safe_data); |
| 2797 | else |
| 2798 | btf_show_type_value(show, "0x%p", *(void **)safe_data); |
| 2799 | btf_show_end_type(show); |
| 2800 | } |
| 2801 | |
| 2802 | static void btf_ref_type_log(struct btf_verifier_env *env, |
| 2803 | const struct btf_type *t) |
| 2804 | { |
| 2805 | btf_verifier_log(env, "type_id=%u", t->type); |
| 2806 | } |
| 2807 | |
| 2808 | static const struct btf_kind_operations modifier_ops = { |
| 2809 | .check_meta = btf_ref_type_check_meta, |
| 2810 | .resolve = btf_modifier_resolve, |
| 2811 | .check_member = btf_modifier_check_member, |
| 2812 | .check_kflag_member = btf_modifier_check_kflag_member, |
| 2813 | .log_details = btf_ref_type_log, |
| 2814 | .show = btf_modifier_show, |
| 2815 | }; |
| 2816 | |
| 2817 | static const struct btf_kind_operations ptr_ops = { |
| 2818 | .check_meta = btf_ref_type_check_meta, |
| 2819 | .resolve = btf_ptr_resolve, |
| 2820 | .check_member = btf_ptr_check_member, |
| 2821 | .check_kflag_member = btf_generic_check_kflag_member, |
| 2822 | .log_details = btf_ref_type_log, |
| 2823 | .show = btf_ptr_show, |
| 2824 | }; |
| 2825 | |
| 2826 | static s32 btf_fwd_check_meta(struct btf_verifier_env *env, |
| 2827 | const struct btf_type *t, |
| 2828 | u32 meta_left) |
| 2829 | { |
| 2830 | if (btf_type_vlen(t)) { |
| 2831 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 2832 | return -EINVAL; |
| 2833 | } |
| 2834 | |
| 2835 | if (t->type) { |
| 2836 | btf_verifier_log_type(env, t, "type != 0"); |
| 2837 | return -EINVAL; |
| 2838 | } |
| 2839 | |
| 2840 | /* fwd type must have a valid name */ |
| 2841 | if (!t->name_off || |
| 2842 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 2843 | btf_verifier_log_type(env, t, "Invalid name"); |
| 2844 | return -EINVAL; |
| 2845 | } |
| 2846 | |
| 2847 | btf_verifier_log_type(env, t, NULL); |
| 2848 | |
| 2849 | return 0; |
| 2850 | } |
| 2851 | |
| 2852 | static void btf_fwd_type_log(struct btf_verifier_env *env, |
| 2853 | const struct btf_type *t) |
| 2854 | { |
| 2855 | btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); |
| 2856 | } |
| 2857 | |
| 2858 | static const struct btf_kind_operations fwd_ops = { |
| 2859 | .check_meta = btf_fwd_check_meta, |
| 2860 | .resolve = btf_df_resolve, |
| 2861 | .check_member = btf_df_check_member, |
| 2862 | .check_kflag_member = btf_df_check_kflag_member, |
| 2863 | .log_details = btf_fwd_type_log, |
| 2864 | .show = btf_df_show, |
| 2865 | }; |
| 2866 | |
| 2867 | static int btf_array_check_member(struct btf_verifier_env *env, |
| 2868 | const struct btf_type *struct_type, |
| 2869 | const struct btf_member *member, |
| 2870 | const struct btf_type *member_type) |
| 2871 | { |
| 2872 | u32 struct_bits_off = member->offset; |
| 2873 | u32 struct_size, bytes_offset; |
| 2874 | u32 array_type_id, array_size; |
| 2875 | struct btf *btf = env->btf; |
| 2876 | |
| 2877 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 2878 | btf_verifier_log_member(env, struct_type, member, |
| 2879 | "Member is not byte aligned"); |
| 2880 | return -EINVAL; |
| 2881 | } |
| 2882 | |
| 2883 | array_type_id = member->type; |
| 2884 | btf_type_id_size(btf, &array_type_id, &array_size); |
| 2885 | struct_size = struct_type->size; |
| 2886 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 2887 | if (struct_size - bytes_offset < array_size) { |
| 2888 | btf_verifier_log_member(env, struct_type, member, |
| 2889 | "Member exceeds struct_size"); |
| 2890 | return -EINVAL; |
| 2891 | } |
| 2892 | |
| 2893 | return 0; |
| 2894 | } |
| 2895 | |
| 2896 | static s32 btf_array_check_meta(struct btf_verifier_env *env, |
| 2897 | const struct btf_type *t, |
| 2898 | u32 meta_left) |
| 2899 | { |
| 2900 | const struct btf_array *array = btf_type_array(t); |
| 2901 | u32 meta_needed = sizeof(*array); |
| 2902 | |
| 2903 | if (meta_left < meta_needed) { |
| 2904 | btf_verifier_log_basic(env, t, |
| 2905 | "meta_left:%u meta_needed:%u", |
| 2906 | meta_left, meta_needed); |
| 2907 | return -EINVAL; |
| 2908 | } |
| 2909 | |
| 2910 | /* array type should not have a name */ |
| 2911 | if (t->name_off) { |
| 2912 | btf_verifier_log_type(env, t, "Invalid name"); |
| 2913 | return -EINVAL; |
| 2914 | } |
| 2915 | |
| 2916 | if (btf_type_vlen(t)) { |
| 2917 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 2918 | return -EINVAL; |
| 2919 | } |
| 2920 | |
| 2921 | if (btf_type_kflag(t)) { |
| 2922 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 2923 | return -EINVAL; |
| 2924 | } |
| 2925 | |
| 2926 | if (t->size) { |
| 2927 | btf_verifier_log_type(env, t, "size != 0"); |
| 2928 | return -EINVAL; |
| 2929 | } |
| 2930 | |
| 2931 | /* Array elem type and index type cannot be in type void, |
| 2932 | * so !array->type and !array->index_type are not allowed. |
| 2933 | */ |
| 2934 | if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { |
| 2935 | btf_verifier_log_type(env, t, "Invalid elem"); |
| 2936 | return -EINVAL; |
| 2937 | } |
| 2938 | |
| 2939 | if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { |
| 2940 | btf_verifier_log_type(env, t, "Invalid index"); |
| 2941 | return -EINVAL; |
| 2942 | } |
| 2943 | |
| 2944 | btf_verifier_log_type(env, t, NULL); |
| 2945 | |
| 2946 | return meta_needed; |
| 2947 | } |
| 2948 | |
| 2949 | static int btf_array_resolve(struct btf_verifier_env *env, |
| 2950 | const struct resolve_vertex *v) |
| 2951 | { |
| 2952 | const struct btf_array *array = btf_type_array(v->t); |
| 2953 | const struct btf_type *elem_type, *index_type; |
| 2954 | u32 elem_type_id, index_type_id; |
| 2955 | struct btf *btf = env->btf; |
| 2956 | u32 elem_size; |
| 2957 | |
| 2958 | /* Check array->index_type */ |
| 2959 | index_type_id = array->index_type; |
| 2960 | index_type = btf_type_by_id(btf, index_type_id); |
| 2961 | if (btf_type_nosize_or_null(index_type) || |
| 2962 | btf_type_is_resolve_source_only(index_type)) { |
| 2963 | btf_verifier_log_type(env, v->t, "Invalid index"); |
| 2964 | return -EINVAL; |
| 2965 | } |
| 2966 | |
| 2967 | if (!env_type_is_resolve_sink(env, index_type) && |
| 2968 | !env_type_is_resolved(env, index_type_id)) |
| 2969 | return env_stack_push(env, index_type, index_type_id); |
| 2970 | |
| 2971 | index_type = btf_type_id_size(btf, &index_type_id, NULL); |
| 2972 | if (!index_type || !btf_type_is_int(index_type) || |
| 2973 | !btf_type_int_is_regular(index_type)) { |
| 2974 | btf_verifier_log_type(env, v->t, "Invalid index"); |
| 2975 | return -EINVAL; |
| 2976 | } |
| 2977 | |
| 2978 | /* Check array->type */ |
| 2979 | elem_type_id = array->type; |
| 2980 | elem_type = btf_type_by_id(btf, elem_type_id); |
| 2981 | if (btf_type_nosize_or_null(elem_type) || |
| 2982 | btf_type_is_resolve_source_only(elem_type)) { |
| 2983 | btf_verifier_log_type(env, v->t, |
| 2984 | "Invalid elem"); |
| 2985 | return -EINVAL; |
| 2986 | } |
| 2987 | |
| 2988 | if (!env_type_is_resolve_sink(env, elem_type) && |
| 2989 | !env_type_is_resolved(env, elem_type_id)) |
| 2990 | return env_stack_push(env, elem_type, elem_type_id); |
| 2991 | |
| 2992 | elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); |
| 2993 | if (!elem_type) { |
| 2994 | btf_verifier_log_type(env, v->t, "Invalid elem"); |
| 2995 | return -EINVAL; |
| 2996 | } |
| 2997 | |
| 2998 | if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { |
| 2999 | btf_verifier_log_type(env, v->t, "Invalid array of int"); |
| 3000 | return -EINVAL; |
| 3001 | } |
| 3002 | |
| 3003 | if (array->nelems && elem_size > U32_MAX / array->nelems) { |
| 3004 | btf_verifier_log_type(env, v->t, |
| 3005 | "Array size overflows U32_MAX"); |
| 3006 | return -EINVAL; |
| 3007 | } |
| 3008 | |
| 3009 | env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); |
| 3010 | |
| 3011 | return 0; |
| 3012 | } |
| 3013 | |
| 3014 | static void btf_array_log(struct btf_verifier_env *env, |
| 3015 | const struct btf_type *t) |
| 3016 | { |
| 3017 | const struct btf_array *array = btf_type_array(t); |
| 3018 | |
| 3019 | btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", |
| 3020 | array->type, array->index_type, array->nelems); |
| 3021 | } |
| 3022 | |
| 3023 | static void __btf_array_show(const struct btf *btf, const struct btf_type *t, |
| 3024 | u32 type_id, void *data, u8 bits_offset, |
| 3025 | struct btf_show *show) |
| 3026 | { |
| 3027 | const struct btf_array *array = btf_type_array(t); |
| 3028 | const struct btf_kind_operations *elem_ops; |
| 3029 | const struct btf_type *elem_type; |
| 3030 | u32 i, elem_size = 0, elem_type_id; |
| 3031 | u16 encoding = 0; |
| 3032 | |
| 3033 | elem_type_id = array->type; |
| 3034 | elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); |
| 3035 | if (elem_type && btf_type_has_size(elem_type)) |
| 3036 | elem_size = elem_type->size; |
| 3037 | |
| 3038 | if (elem_type && btf_type_is_int(elem_type)) { |
| 3039 | u32 int_type = btf_type_int(elem_type); |
| 3040 | |
| 3041 | encoding = BTF_INT_ENCODING(int_type); |
| 3042 | |
| 3043 | /* |
| 3044 | * BTF_INT_CHAR encoding never seems to be set for |
| 3045 | * char arrays, so if size is 1 and element is |
| 3046 | * printable as a char, we'll do that. |
| 3047 | */ |
| 3048 | if (elem_size == 1) |
| 3049 | encoding = BTF_INT_CHAR; |
| 3050 | } |
| 3051 | |
| 3052 | if (!btf_show_start_array_type(show, t, type_id, encoding, data)) |
| 3053 | return; |
| 3054 | |
| 3055 | if (!elem_type) |
| 3056 | goto out; |
| 3057 | elem_ops = btf_type_ops(elem_type); |
| 3058 | |
| 3059 | for (i = 0; i < array->nelems; i++) { |
| 3060 | |
| 3061 | btf_show_start_array_member(show); |
| 3062 | |
| 3063 | elem_ops->show(btf, elem_type, elem_type_id, data, |
| 3064 | bits_offset, show); |
| 3065 | data += elem_size; |
| 3066 | |
| 3067 | btf_show_end_array_member(show); |
| 3068 | |
| 3069 | if (show->state.array_terminated) |
| 3070 | break; |
| 3071 | } |
| 3072 | out: |
| 3073 | btf_show_end_array_type(show); |
| 3074 | } |
| 3075 | |
| 3076 | static void btf_array_show(const struct btf *btf, const struct btf_type *t, |
| 3077 | u32 type_id, void *data, u8 bits_offset, |
| 3078 | struct btf_show *show) |
| 3079 | { |
| 3080 | const struct btf_member *m = show->state.member; |
| 3081 | |
| 3082 | /* |
| 3083 | * First check if any members would be shown (are non-zero). |
| 3084 | * See comments above "struct btf_show" definition for more |
| 3085 | * details on how this works at a high-level. |
| 3086 | */ |
| 3087 | if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { |
| 3088 | if (!show->state.depth_check) { |
| 3089 | show->state.depth_check = show->state.depth + 1; |
| 3090 | show->state.depth_to_show = 0; |
| 3091 | } |
| 3092 | __btf_array_show(btf, t, type_id, data, bits_offset, show); |
| 3093 | show->state.member = m; |
| 3094 | |
| 3095 | if (show->state.depth_check != show->state.depth + 1) |
| 3096 | return; |
| 3097 | show->state.depth_check = 0; |
| 3098 | |
| 3099 | if (show->state.depth_to_show <= show->state.depth) |
| 3100 | return; |
| 3101 | /* |
| 3102 | * Reaching here indicates we have recursed and found |
| 3103 | * non-zero array member(s). |
| 3104 | */ |
| 3105 | } |
| 3106 | __btf_array_show(btf, t, type_id, data, bits_offset, show); |
| 3107 | } |
| 3108 | |
| 3109 | static const struct btf_kind_operations array_ops = { |
| 3110 | .check_meta = btf_array_check_meta, |
| 3111 | .resolve = btf_array_resolve, |
| 3112 | .check_member = btf_array_check_member, |
| 3113 | .check_kflag_member = btf_generic_check_kflag_member, |
| 3114 | .log_details = btf_array_log, |
| 3115 | .show = btf_array_show, |
| 3116 | }; |
| 3117 | |
| 3118 | static int btf_struct_check_member(struct btf_verifier_env *env, |
| 3119 | const struct btf_type *struct_type, |
| 3120 | const struct btf_member *member, |
| 3121 | const struct btf_type *member_type) |
| 3122 | { |
| 3123 | u32 struct_bits_off = member->offset; |
| 3124 | u32 struct_size, bytes_offset; |
| 3125 | |
| 3126 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 3127 | btf_verifier_log_member(env, struct_type, member, |
| 3128 | "Member is not byte aligned"); |
| 3129 | return -EINVAL; |
| 3130 | } |
| 3131 | |
| 3132 | struct_size = struct_type->size; |
| 3133 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 3134 | if (struct_size - bytes_offset < member_type->size) { |
| 3135 | btf_verifier_log_member(env, struct_type, member, |
| 3136 | "Member exceeds struct_size"); |
| 3137 | return -EINVAL; |
| 3138 | } |
| 3139 | |
| 3140 | return 0; |
| 3141 | } |
| 3142 | |
| 3143 | static s32 btf_struct_check_meta(struct btf_verifier_env *env, |
| 3144 | const struct btf_type *t, |
| 3145 | u32 meta_left) |
| 3146 | { |
| 3147 | bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; |
| 3148 | const struct btf_member *member; |
| 3149 | u32 meta_needed, last_offset; |
| 3150 | struct btf *btf = env->btf; |
| 3151 | u32 struct_size = t->size; |
| 3152 | u32 offset; |
| 3153 | u16 i; |
| 3154 | |
| 3155 | meta_needed = btf_type_vlen(t) * sizeof(*member); |
| 3156 | if (meta_left < meta_needed) { |
| 3157 | btf_verifier_log_basic(env, t, |
| 3158 | "meta_left:%u meta_needed:%u", |
| 3159 | meta_left, meta_needed); |
| 3160 | return -EINVAL; |
| 3161 | } |
| 3162 | |
| 3163 | /* struct type either no name or a valid one */ |
| 3164 | if (t->name_off && |
| 3165 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 3166 | btf_verifier_log_type(env, t, "Invalid name"); |
| 3167 | return -EINVAL; |
| 3168 | } |
| 3169 | |
| 3170 | btf_verifier_log_type(env, t, NULL); |
| 3171 | |
| 3172 | last_offset = 0; |
| 3173 | for_each_member(i, t, member) { |
| 3174 | if (!btf_name_offset_valid(btf, member->name_off)) { |
| 3175 | btf_verifier_log_member(env, t, member, |
| 3176 | "Invalid member name_offset:%u", |
| 3177 | member->name_off); |
| 3178 | return -EINVAL; |
| 3179 | } |
| 3180 | |
| 3181 | /* struct member either no name or a valid one */ |
| 3182 | if (member->name_off && |
| 3183 | !btf_name_valid_identifier(btf, member->name_off)) { |
| 3184 | btf_verifier_log_member(env, t, member, "Invalid name"); |
| 3185 | return -EINVAL; |
| 3186 | } |
| 3187 | /* A member cannot be in type void */ |
| 3188 | if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { |
| 3189 | btf_verifier_log_member(env, t, member, |
| 3190 | "Invalid type_id"); |
| 3191 | return -EINVAL; |
| 3192 | } |
| 3193 | |
| 3194 | offset = __btf_member_bit_offset(t, member); |
| 3195 | if (is_union && offset) { |
| 3196 | btf_verifier_log_member(env, t, member, |
| 3197 | "Invalid member bits_offset"); |
| 3198 | return -EINVAL; |
| 3199 | } |
| 3200 | |
| 3201 | /* |
| 3202 | * ">" instead of ">=" because the last member could be |
| 3203 | * "char a[0];" |
| 3204 | */ |
| 3205 | if (last_offset > offset) { |
| 3206 | btf_verifier_log_member(env, t, member, |
| 3207 | "Invalid member bits_offset"); |
| 3208 | return -EINVAL; |
| 3209 | } |
| 3210 | |
| 3211 | if (BITS_ROUNDUP_BYTES(offset) > struct_size) { |
| 3212 | btf_verifier_log_member(env, t, member, |
| 3213 | "Member bits_offset exceeds its struct size"); |
| 3214 | return -EINVAL; |
| 3215 | } |
| 3216 | |
| 3217 | btf_verifier_log_member(env, t, member, NULL); |
| 3218 | last_offset = offset; |
| 3219 | } |
| 3220 | |
| 3221 | return meta_needed; |
| 3222 | } |
| 3223 | |
| 3224 | static int btf_struct_resolve(struct btf_verifier_env *env, |
| 3225 | const struct resolve_vertex *v) |
| 3226 | { |
| 3227 | const struct btf_member *member; |
| 3228 | int err; |
| 3229 | u16 i; |
| 3230 | |
| 3231 | /* Before continue resolving the next_member, |
| 3232 | * ensure the last member is indeed resolved to a |
| 3233 | * type with size info. |
| 3234 | */ |
| 3235 | if (v->next_member) { |
| 3236 | const struct btf_type *last_member_type; |
| 3237 | const struct btf_member *last_member; |
| 3238 | u32 last_member_type_id; |
| 3239 | |
| 3240 | last_member = btf_type_member(v->t) + v->next_member - 1; |
| 3241 | last_member_type_id = last_member->type; |
| 3242 | if (WARN_ON_ONCE(!env_type_is_resolved(env, |
| 3243 | last_member_type_id))) |
| 3244 | return -EINVAL; |
| 3245 | |
| 3246 | last_member_type = btf_type_by_id(env->btf, |
| 3247 | last_member_type_id); |
| 3248 | if (btf_type_kflag(v->t)) |
| 3249 | err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, |
| 3250 | last_member, |
| 3251 | last_member_type); |
| 3252 | else |
| 3253 | err = btf_type_ops(last_member_type)->check_member(env, v->t, |
| 3254 | last_member, |
| 3255 | last_member_type); |
| 3256 | if (err) |
| 3257 | return err; |
| 3258 | } |
| 3259 | |
| 3260 | for_each_member_from(i, v->next_member, v->t, member) { |
| 3261 | u32 member_type_id = member->type; |
| 3262 | const struct btf_type *member_type = btf_type_by_id(env->btf, |
| 3263 | member_type_id); |
| 3264 | |
| 3265 | if (btf_type_nosize_or_null(member_type) || |
| 3266 | btf_type_is_resolve_source_only(member_type)) { |
| 3267 | btf_verifier_log_member(env, v->t, member, |
| 3268 | "Invalid member"); |
| 3269 | return -EINVAL; |
| 3270 | } |
| 3271 | |
| 3272 | if (!env_type_is_resolve_sink(env, member_type) && |
| 3273 | !env_type_is_resolved(env, member_type_id)) { |
| 3274 | env_stack_set_next_member(env, i + 1); |
| 3275 | return env_stack_push(env, member_type, member_type_id); |
| 3276 | } |
| 3277 | |
| 3278 | if (btf_type_kflag(v->t)) |
| 3279 | err = btf_type_ops(member_type)->check_kflag_member(env, v->t, |
| 3280 | member, |
| 3281 | member_type); |
| 3282 | else |
| 3283 | err = btf_type_ops(member_type)->check_member(env, v->t, |
| 3284 | member, |
| 3285 | member_type); |
| 3286 | if (err) |
| 3287 | return err; |
| 3288 | } |
| 3289 | |
| 3290 | env_stack_pop_resolved(env, 0, 0); |
| 3291 | |
| 3292 | return 0; |
| 3293 | } |
| 3294 | |
| 3295 | static void btf_struct_log(struct btf_verifier_env *env, |
| 3296 | const struct btf_type *t) |
| 3297 | { |
| 3298 | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); |
| 3299 | } |
| 3300 | |
| 3301 | enum { |
| 3302 | BTF_FIELD_IGNORE = 0, |
| 3303 | BTF_FIELD_FOUND = 1, |
| 3304 | }; |
| 3305 | |
| 3306 | struct btf_field_info { |
| 3307 | enum btf_field_type type; |
| 3308 | u32 off; |
| 3309 | union { |
| 3310 | struct { |
| 3311 | u32 type_id; |
| 3312 | } kptr; |
| 3313 | struct { |
| 3314 | const char *node_name; |
| 3315 | u32 value_btf_id; |
| 3316 | } graph_root; |
| 3317 | }; |
| 3318 | }; |
| 3319 | |
| 3320 | static int btf_find_struct(const struct btf *btf, const struct btf_type *t, |
| 3321 | u32 off, int sz, enum btf_field_type field_type, |
| 3322 | struct btf_field_info *info) |
| 3323 | { |
| 3324 | if (!__btf_type_is_struct(t)) |
| 3325 | return BTF_FIELD_IGNORE; |
| 3326 | if (t->size != sz) |
| 3327 | return BTF_FIELD_IGNORE; |
| 3328 | info->type = field_type; |
| 3329 | info->off = off; |
| 3330 | return BTF_FIELD_FOUND; |
| 3331 | } |
| 3332 | |
| 3333 | static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, |
| 3334 | u32 off, int sz, struct btf_field_info *info, u32 field_mask) |
| 3335 | { |
| 3336 | enum btf_field_type type; |
| 3337 | const char *tag_value; |
| 3338 | bool is_type_tag; |
| 3339 | u32 res_id; |
| 3340 | |
| 3341 | /* Permit modifiers on the pointer itself */ |
| 3342 | if (btf_type_is_volatile(t)) |
| 3343 | t = btf_type_by_id(btf, t->type); |
| 3344 | /* For PTR, sz is always == 8 */ |
| 3345 | if (!btf_type_is_ptr(t)) |
| 3346 | return BTF_FIELD_IGNORE; |
| 3347 | t = btf_type_by_id(btf, t->type); |
| 3348 | is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); |
| 3349 | if (!is_type_tag) |
| 3350 | return BTF_FIELD_IGNORE; |
| 3351 | /* Reject extra tags */ |
| 3352 | if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) |
| 3353 | return -EINVAL; |
| 3354 | tag_value = __btf_name_by_offset(btf, t->name_off); |
| 3355 | if (!strcmp("kptr_untrusted", tag_value)) |
| 3356 | type = BPF_KPTR_UNREF; |
| 3357 | else if (!strcmp("kptr", tag_value)) |
| 3358 | type = BPF_KPTR_REF; |
| 3359 | else if (!strcmp("percpu_kptr", tag_value)) |
| 3360 | type = BPF_KPTR_PERCPU; |
| 3361 | else if (!strcmp("uptr", tag_value)) |
| 3362 | type = BPF_UPTR; |
| 3363 | else |
| 3364 | return -EINVAL; |
| 3365 | |
| 3366 | if (!(type & field_mask)) |
| 3367 | return BTF_FIELD_IGNORE; |
| 3368 | |
| 3369 | /* Get the base type */ |
| 3370 | t = btf_type_skip_modifiers(btf, t->type, &res_id); |
| 3371 | /* Only pointer to struct is allowed */ |
| 3372 | if (!__btf_type_is_struct(t)) |
| 3373 | return -EINVAL; |
| 3374 | |
| 3375 | info->type = type; |
| 3376 | info->off = off; |
| 3377 | info->kptr.type_id = res_id; |
| 3378 | return BTF_FIELD_FOUND; |
| 3379 | } |
| 3380 | |
| 3381 | int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, |
| 3382 | int comp_idx, const char *tag_key, int last_id) |
| 3383 | { |
| 3384 | int len = strlen(tag_key); |
| 3385 | int i, n; |
| 3386 | |
| 3387 | for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { |
| 3388 | const struct btf_type *t = btf_type_by_id(btf, i); |
| 3389 | |
| 3390 | if (!btf_type_is_decl_tag(t)) |
| 3391 | continue; |
| 3392 | if (pt != btf_type_by_id(btf, t->type)) |
| 3393 | continue; |
| 3394 | if (btf_type_decl_tag(t)->component_idx != comp_idx) |
| 3395 | continue; |
| 3396 | if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) |
| 3397 | continue; |
| 3398 | return i; |
| 3399 | } |
| 3400 | return -ENOENT; |
| 3401 | } |
| 3402 | |
| 3403 | const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, |
| 3404 | int comp_idx, const char *tag_key) |
| 3405 | { |
| 3406 | const char *value = NULL; |
| 3407 | const struct btf_type *t; |
| 3408 | int len, id; |
| 3409 | |
| 3410 | id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); |
| 3411 | if (id < 0) |
| 3412 | return ERR_PTR(id); |
| 3413 | |
| 3414 | t = btf_type_by_id(btf, id); |
| 3415 | len = strlen(tag_key); |
| 3416 | value = __btf_name_by_offset(btf, t->name_off) + len; |
| 3417 | |
| 3418 | /* Prevent duplicate entries for same type */ |
| 3419 | id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); |
| 3420 | if (id >= 0) |
| 3421 | return ERR_PTR(-EEXIST); |
| 3422 | |
| 3423 | return value; |
| 3424 | } |
| 3425 | |
| 3426 | static int |
| 3427 | btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, |
| 3428 | const struct btf_type *t, int comp_idx, u32 off, |
| 3429 | int sz, struct btf_field_info *info, |
| 3430 | enum btf_field_type head_type) |
| 3431 | { |
| 3432 | const char *node_field_name; |
| 3433 | const char *value_type; |
| 3434 | s32 id; |
| 3435 | |
| 3436 | if (!__btf_type_is_struct(t)) |
| 3437 | return BTF_FIELD_IGNORE; |
| 3438 | if (t->size != sz) |
| 3439 | return BTF_FIELD_IGNORE; |
| 3440 | value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); |
| 3441 | if (IS_ERR(value_type)) |
| 3442 | return -EINVAL; |
| 3443 | node_field_name = strstr(value_type, ":"); |
| 3444 | if (!node_field_name) |
| 3445 | return -EINVAL; |
| 3446 | value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); |
| 3447 | if (!value_type) |
| 3448 | return -ENOMEM; |
| 3449 | id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); |
| 3450 | kfree(value_type); |
| 3451 | if (id < 0) |
| 3452 | return id; |
| 3453 | node_field_name++; |
| 3454 | if (str_is_empty(node_field_name)) |
| 3455 | return -EINVAL; |
| 3456 | info->type = head_type; |
| 3457 | info->off = off; |
| 3458 | info->graph_root.value_btf_id = id; |
| 3459 | info->graph_root.node_name = node_field_name; |
| 3460 | return BTF_FIELD_FOUND; |
| 3461 | } |
| 3462 | |
| 3463 | #define field_mask_test_name(field_type, field_type_str) \ |
| 3464 | if (field_mask & field_type && !strcmp(name, field_type_str)) { \ |
| 3465 | type = field_type; \ |
| 3466 | goto end; \ |
| 3467 | } |
| 3468 | |
| 3469 | static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, |
| 3470 | u32 field_mask, u32 *seen_mask, |
| 3471 | int *align, int *sz) |
| 3472 | { |
| 3473 | int type = 0; |
| 3474 | const char *name = __btf_name_by_offset(btf, var_type->name_off); |
| 3475 | |
| 3476 | if (field_mask & BPF_SPIN_LOCK) { |
| 3477 | if (!strcmp(name, "bpf_spin_lock")) { |
| 3478 | if (*seen_mask & BPF_SPIN_LOCK) |
| 3479 | return -E2BIG; |
| 3480 | *seen_mask |= BPF_SPIN_LOCK; |
| 3481 | type = BPF_SPIN_LOCK; |
| 3482 | goto end; |
| 3483 | } |
| 3484 | } |
| 3485 | if (field_mask & BPF_RES_SPIN_LOCK) { |
| 3486 | if (!strcmp(name, "bpf_res_spin_lock")) { |
| 3487 | if (*seen_mask & BPF_RES_SPIN_LOCK) |
| 3488 | return -E2BIG; |
| 3489 | *seen_mask |= BPF_RES_SPIN_LOCK; |
| 3490 | type = BPF_RES_SPIN_LOCK; |
| 3491 | goto end; |
| 3492 | } |
| 3493 | } |
| 3494 | if (field_mask & BPF_TIMER) { |
| 3495 | if (!strcmp(name, "bpf_timer")) { |
| 3496 | if (*seen_mask & BPF_TIMER) |
| 3497 | return -E2BIG; |
| 3498 | *seen_mask |= BPF_TIMER; |
| 3499 | type = BPF_TIMER; |
| 3500 | goto end; |
| 3501 | } |
| 3502 | } |
| 3503 | if (field_mask & BPF_WORKQUEUE) { |
| 3504 | if (!strcmp(name, "bpf_wq")) { |
| 3505 | if (*seen_mask & BPF_WORKQUEUE) |
| 3506 | return -E2BIG; |
| 3507 | *seen_mask |= BPF_WORKQUEUE; |
| 3508 | type = BPF_WORKQUEUE; |
| 3509 | goto end; |
| 3510 | } |
| 3511 | } |
| 3512 | field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); |
| 3513 | field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); |
| 3514 | field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); |
| 3515 | field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); |
| 3516 | field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); |
| 3517 | |
| 3518 | /* Only return BPF_KPTR when all other types with matchable names fail */ |
| 3519 | if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { |
| 3520 | type = BPF_KPTR_REF; |
| 3521 | goto end; |
| 3522 | } |
| 3523 | return 0; |
| 3524 | end: |
| 3525 | *sz = btf_field_type_size(type); |
| 3526 | *align = btf_field_type_align(type); |
| 3527 | return type; |
| 3528 | } |
| 3529 | |
| 3530 | #undef field_mask_test_name |
| 3531 | |
| 3532 | /* Repeat a number of fields for a specified number of times. |
| 3533 | * |
| 3534 | * Copy the fields starting from the first field and repeat them for |
| 3535 | * repeat_cnt times. The fields are repeated by adding the offset of each |
| 3536 | * field with |
| 3537 | * (i + 1) * elem_size |
| 3538 | * where i is the repeat index and elem_size is the size of an element. |
| 3539 | */ |
| 3540 | static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, |
| 3541 | u32 field_cnt, u32 repeat_cnt, u32 elem_size) |
| 3542 | { |
| 3543 | u32 i, j; |
| 3544 | u32 cur; |
| 3545 | |
| 3546 | /* Ensure not repeating fields that should not be repeated. */ |
| 3547 | for (i = 0; i < field_cnt; i++) { |
| 3548 | switch (info[i].type) { |
| 3549 | case BPF_KPTR_UNREF: |
| 3550 | case BPF_KPTR_REF: |
| 3551 | case BPF_KPTR_PERCPU: |
| 3552 | case BPF_UPTR: |
| 3553 | case BPF_LIST_HEAD: |
| 3554 | case BPF_RB_ROOT: |
| 3555 | break; |
| 3556 | default: |
| 3557 | return -EINVAL; |
| 3558 | } |
| 3559 | } |
| 3560 | |
| 3561 | /* The type of struct size or variable size is u32, |
| 3562 | * so the multiplication will not overflow. |
| 3563 | */ |
| 3564 | if (field_cnt * (repeat_cnt + 1) > info_cnt) |
| 3565 | return -E2BIG; |
| 3566 | |
| 3567 | cur = field_cnt; |
| 3568 | for (i = 0; i < repeat_cnt; i++) { |
| 3569 | memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); |
| 3570 | for (j = 0; j < field_cnt; j++) |
| 3571 | info[cur++].off += (i + 1) * elem_size; |
| 3572 | } |
| 3573 | |
| 3574 | return 0; |
| 3575 | } |
| 3576 | |
| 3577 | static int btf_find_struct_field(const struct btf *btf, |
| 3578 | const struct btf_type *t, u32 field_mask, |
| 3579 | struct btf_field_info *info, int info_cnt, |
| 3580 | u32 level); |
| 3581 | |
| 3582 | /* Find special fields in the struct type of a field. |
| 3583 | * |
| 3584 | * This function is used to find fields of special types that is not a |
| 3585 | * global variable or a direct field of a struct type. It also handles the |
| 3586 | * repetition if it is the element type of an array. |
| 3587 | */ |
| 3588 | static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, |
| 3589 | u32 off, u32 nelems, |
| 3590 | u32 field_mask, struct btf_field_info *info, |
| 3591 | int info_cnt, u32 level) |
| 3592 | { |
| 3593 | int ret, err, i; |
| 3594 | |
| 3595 | level++; |
| 3596 | if (level >= MAX_RESOLVE_DEPTH) |
| 3597 | return -E2BIG; |
| 3598 | |
| 3599 | ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); |
| 3600 | |
| 3601 | if (ret <= 0) |
| 3602 | return ret; |
| 3603 | |
| 3604 | /* Shift the offsets of the nested struct fields to the offsets |
| 3605 | * related to the container. |
| 3606 | */ |
| 3607 | for (i = 0; i < ret; i++) |
| 3608 | info[i].off += off; |
| 3609 | |
| 3610 | if (nelems > 1) { |
| 3611 | err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); |
| 3612 | if (err == 0) |
| 3613 | ret *= nelems; |
| 3614 | else |
| 3615 | ret = err; |
| 3616 | } |
| 3617 | |
| 3618 | return ret; |
| 3619 | } |
| 3620 | |
| 3621 | static int btf_find_field_one(const struct btf *btf, |
| 3622 | const struct btf_type *var, |
| 3623 | const struct btf_type *var_type, |
| 3624 | int var_idx, |
| 3625 | u32 off, u32 expected_size, |
| 3626 | u32 field_mask, u32 *seen_mask, |
| 3627 | struct btf_field_info *info, int info_cnt, |
| 3628 | u32 level) |
| 3629 | { |
| 3630 | int ret, align, sz, field_type; |
| 3631 | struct btf_field_info tmp; |
| 3632 | const struct btf_array *array; |
| 3633 | u32 i, nelems = 1; |
| 3634 | |
| 3635 | /* Walk into array types to find the element type and the number of |
| 3636 | * elements in the (flattened) array. |
| 3637 | */ |
| 3638 | for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { |
| 3639 | array = btf_array(var_type); |
| 3640 | nelems *= array->nelems; |
| 3641 | var_type = btf_type_by_id(btf, array->type); |
| 3642 | } |
| 3643 | if (i == MAX_RESOLVE_DEPTH) |
| 3644 | return -E2BIG; |
| 3645 | if (nelems == 0) |
| 3646 | return 0; |
| 3647 | |
| 3648 | field_type = btf_get_field_type(btf, var_type, |
| 3649 | field_mask, seen_mask, &align, &sz); |
| 3650 | /* Look into variables of struct types */ |
| 3651 | if (!field_type && __btf_type_is_struct(var_type)) { |
| 3652 | sz = var_type->size; |
| 3653 | if (expected_size && expected_size != sz * nelems) |
| 3654 | return 0; |
| 3655 | ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, |
| 3656 | &info[0], info_cnt, level); |
| 3657 | return ret; |
| 3658 | } |
| 3659 | |
| 3660 | if (field_type == 0) |
| 3661 | return 0; |
| 3662 | if (field_type < 0) |
| 3663 | return field_type; |
| 3664 | |
| 3665 | if (expected_size && expected_size != sz * nelems) |
| 3666 | return 0; |
| 3667 | if (off % align) |
| 3668 | return 0; |
| 3669 | |
| 3670 | switch (field_type) { |
| 3671 | case BPF_SPIN_LOCK: |
| 3672 | case BPF_RES_SPIN_LOCK: |
| 3673 | case BPF_TIMER: |
| 3674 | case BPF_WORKQUEUE: |
| 3675 | case BPF_LIST_NODE: |
| 3676 | case BPF_RB_NODE: |
| 3677 | case BPF_REFCOUNT: |
| 3678 | ret = btf_find_struct(btf, var_type, off, sz, field_type, |
| 3679 | info_cnt ? &info[0] : &tmp); |
| 3680 | if (ret < 0) |
| 3681 | return ret; |
| 3682 | break; |
| 3683 | case BPF_KPTR_UNREF: |
| 3684 | case BPF_KPTR_REF: |
| 3685 | case BPF_KPTR_PERCPU: |
| 3686 | case BPF_UPTR: |
| 3687 | ret = btf_find_kptr(btf, var_type, off, sz, |
| 3688 | info_cnt ? &info[0] : &tmp, field_mask); |
| 3689 | if (ret < 0) |
| 3690 | return ret; |
| 3691 | break; |
| 3692 | case BPF_LIST_HEAD: |
| 3693 | case BPF_RB_ROOT: |
| 3694 | ret = btf_find_graph_root(btf, var, var_type, |
| 3695 | var_idx, off, sz, |
| 3696 | info_cnt ? &info[0] : &tmp, |
| 3697 | field_type); |
| 3698 | if (ret < 0) |
| 3699 | return ret; |
| 3700 | break; |
| 3701 | default: |
| 3702 | return -EFAULT; |
| 3703 | } |
| 3704 | |
| 3705 | if (ret == BTF_FIELD_IGNORE) |
| 3706 | return 0; |
| 3707 | if (!info_cnt) |
| 3708 | return -E2BIG; |
| 3709 | if (nelems > 1) { |
| 3710 | ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); |
| 3711 | if (ret < 0) |
| 3712 | return ret; |
| 3713 | } |
| 3714 | return nelems; |
| 3715 | } |
| 3716 | |
| 3717 | static int btf_find_struct_field(const struct btf *btf, |
| 3718 | const struct btf_type *t, u32 field_mask, |
| 3719 | struct btf_field_info *info, int info_cnt, |
| 3720 | u32 level) |
| 3721 | { |
| 3722 | int ret, idx = 0; |
| 3723 | const struct btf_member *member; |
| 3724 | u32 i, off, seen_mask = 0; |
| 3725 | |
| 3726 | for_each_member(i, t, member) { |
| 3727 | const struct btf_type *member_type = btf_type_by_id(btf, |
| 3728 | member->type); |
| 3729 | |
| 3730 | off = __btf_member_bit_offset(t, member); |
| 3731 | if (off % 8) |
| 3732 | /* valid C code cannot generate such BTF */ |
| 3733 | return -EINVAL; |
| 3734 | off /= 8; |
| 3735 | |
| 3736 | ret = btf_find_field_one(btf, t, member_type, i, |
| 3737 | off, 0, |
| 3738 | field_mask, &seen_mask, |
| 3739 | &info[idx], info_cnt - idx, level); |
| 3740 | if (ret < 0) |
| 3741 | return ret; |
| 3742 | idx += ret; |
| 3743 | } |
| 3744 | return idx; |
| 3745 | } |
| 3746 | |
| 3747 | static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, |
| 3748 | u32 field_mask, struct btf_field_info *info, |
| 3749 | int info_cnt, u32 level) |
| 3750 | { |
| 3751 | int ret, idx = 0; |
| 3752 | const struct btf_var_secinfo *vsi; |
| 3753 | u32 i, off, seen_mask = 0; |
| 3754 | |
| 3755 | for_each_vsi(i, t, vsi) { |
| 3756 | const struct btf_type *var = btf_type_by_id(btf, vsi->type); |
| 3757 | const struct btf_type *var_type = btf_type_by_id(btf, var->type); |
| 3758 | |
| 3759 | off = vsi->offset; |
| 3760 | ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, |
| 3761 | field_mask, &seen_mask, |
| 3762 | &info[idx], info_cnt - idx, |
| 3763 | level); |
| 3764 | if (ret < 0) |
| 3765 | return ret; |
| 3766 | idx += ret; |
| 3767 | } |
| 3768 | return idx; |
| 3769 | } |
| 3770 | |
| 3771 | static int btf_find_field(const struct btf *btf, const struct btf_type *t, |
| 3772 | u32 field_mask, struct btf_field_info *info, |
| 3773 | int info_cnt) |
| 3774 | { |
| 3775 | if (__btf_type_is_struct(t)) |
| 3776 | return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); |
| 3777 | else if (btf_type_is_datasec(t)) |
| 3778 | return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); |
| 3779 | return -EINVAL; |
| 3780 | } |
| 3781 | |
| 3782 | /* Callers have to ensure the life cycle of btf if it is program BTF */ |
| 3783 | static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, |
| 3784 | struct btf_field_info *info) |
| 3785 | { |
| 3786 | struct module *mod = NULL; |
| 3787 | const struct btf_type *t; |
| 3788 | /* If a matching btf type is found in kernel or module BTFs, kptr_ref |
| 3789 | * is that BTF, otherwise it's program BTF |
| 3790 | */ |
| 3791 | struct btf *kptr_btf; |
| 3792 | int ret; |
| 3793 | s32 id; |
| 3794 | |
| 3795 | /* Find type in map BTF, and use it to look up the matching type |
| 3796 | * in vmlinux or module BTFs, by name and kind. |
| 3797 | */ |
| 3798 | t = btf_type_by_id(btf, info->kptr.type_id); |
| 3799 | id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), |
| 3800 | &kptr_btf); |
| 3801 | if (id == -ENOENT) { |
| 3802 | /* btf_parse_kptr should only be called w/ btf = program BTF */ |
| 3803 | WARN_ON_ONCE(btf_is_kernel(btf)); |
| 3804 | |
| 3805 | /* Type exists only in program BTF. Assume that it's a MEM_ALLOC |
| 3806 | * kptr allocated via bpf_obj_new |
| 3807 | */ |
| 3808 | field->kptr.dtor = NULL; |
| 3809 | id = info->kptr.type_id; |
| 3810 | kptr_btf = (struct btf *)btf; |
| 3811 | goto found_dtor; |
| 3812 | } |
| 3813 | if (id < 0) |
| 3814 | return id; |
| 3815 | |
| 3816 | /* Find and stash the function pointer for the destruction function that |
| 3817 | * needs to be eventually invoked from the map free path. |
| 3818 | */ |
| 3819 | if (info->type == BPF_KPTR_REF) { |
| 3820 | const struct btf_type *dtor_func; |
| 3821 | const char *dtor_func_name; |
| 3822 | unsigned long addr; |
| 3823 | s32 dtor_btf_id; |
| 3824 | |
| 3825 | /* This call also serves as a whitelist of allowed objects that |
| 3826 | * can be used as a referenced pointer and be stored in a map at |
| 3827 | * the same time. |
| 3828 | */ |
| 3829 | dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); |
| 3830 | if (dtor_btf_id < 0) { |
| 3831 | ret = dtor_btf_id; |
| 3832 | goto end_btf; |
| 3833 | } |
| 3834 | |
| 3835 | dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); |
| 3836 | if (!dtor_func) { |
| 3837 | ret = -ENOENT; |
| 3838 | goto end_btf; |
| 3839 | } |
| 3840 | |
| 3841 | if (btf_is_module(kptr_btf)) { |
| 3842 | mod = btf_try_get_module(kptr_btf); |
| 3843 | if (!mod) { |
| 3844 | ret = -ENXIO; |
| 3845 | goto end_btf; |
| 3846 | } |
| 3847 | } |
| 3848 | |
| 3849 | /* We already verified dtor_func to be btf_type_is_func |
| 3850 | * in register_btf_id_dtor_kfuncs. |
| 3851 | */ |
| 3852 | dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); |
| 3853 | addr = kallsyms_lookup_name(dtor_func_name); |
| 3854 | if (!addr) { |
| 3855 | ret = -EINVAL; |
| 3856 | goto end_mod; |
| 3857 | } |
| 3858 | field->kptr.dtor = (void *)addr; |
| 3859 | } |
| 3860 | |
| 3861 | found_dtor: |
| 3862 | field->kptr.btf_id = id; |
| 3863 | field->kptr.btf = kptr_btf; |
| 3864 | field->kptr.module = mod; |
| 3865 | return 0; |
| 3866 | end_mod: |
| 3867 | module_put(mod); |
| 3868 | end_btf: |
| 3869 | btf_put(kptr_btf); |
| 3870 | return ret; |
| 3871 | } |
| 3872 | |
| 3873 | static int btf_parse_graph_root(const struct btf *btf, |
| 3874 | struct btf_field *field, |
| 3875 | struct btf_field_info *info, |
| 3876 | const char *node_type_name, |
| 3877 | size_t node_type_align) |
| 3878 | { |
| 3879 | const struct btf_type *t, *n = NULL; |
| 3880 | const struct btf_member *member; |
| 3881 | u32 offset; |
| 3882 | int i; |
| 3883 | |
| 3884 | t = btf_type_by_id(btf, info->graph_root.value_btf_id); |
| 3885 | /* We've already checked that value_btf_id is a struct type. We |
| 3886 | * just need to figure out the offset of the list_node, and |
| 3887 | * verify its type. |
| 3888 | */ |
| 3889 | for_each_member(i, t, member) { |
| 3890 | if (strcmp(info->graph_root.node_name, |
| 3891 | __btf_name_by_offset(btf, member->name_off))) |
| 3892 | continue; |
| 3893 | /* Invalid BTF, two members with same name */ |
| 3894 | if (n) |
| 3895 | return -EINVAL; |
| 3896 | n = btf_type_by_id(btf, member->type); |
| 3897 | if (!__btf_type_is_struct(n)) |
| 3898 | return -EINVAL; |
| 3899 | if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) |
| 3900 | return -EINVAL; |
| 3901 | offset = __btf_member_bit_offset(n, member); |
| 3902 | if (offset % 8) |
| 3903 | return -EINVAL; |
| 3904 | offset /= 8; |
| 3905 | if (offset % node_type_align) |
| 3906 | return -EINVAL; |
| 3907 | |
| 3908 | field->graph_root.btf = (struct btf *)btf; |
| 3909 | field->graph_root.value_btf_id = info->graph_root.value_btf_id; |
| 3910 | field->graph_root.node_offset = offset; |
| 3911 | } |
| 3912 | if (!n) |
| 3913 | return -ENOENT; |
| 3914 | return 0; |
| 3915 | } |
| 3916 | |
| 3917 | static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, |
| 3918 | struct btf_field_info *info) |
| 3919 | { |
| 3920 | return btf_parse_graph_root(btf, field, info, "bpf_list_node", |
| 3921 | __alignof__(struct bpf_list_node)); |
| 3922 | } |
| 3923 | |
| 3924 | static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, |
| 3925 | struct btf_field_info *info) |
| 3926 | { |
| 3927 | return btf_parse_graph_root(btf, field, info, "bpf_rb_node", |
| 3928 | __alignof__(struct bpf_rb_node)); |
| 3929 | } |
| 3930 | |
| 3931 | static int btf_field_cmp(const void *_a, const void *_b, const void *priv) |
| 3932 | { |
| 3933 | const struct btf_field *a = (const struct btf_field *)_a; |
| 3934 | const struct btf_field *b = (const struct btf_field *)_b; |
| 3935 | |
| 3936 | if (a->offset < b->offset) |
| 3937 | return -1; |
| 3938 | else if (a->offset > b->offset) |
| 3939 | return 1; |
| 3940 | return 0; |
| 3941 | } |
| 3942 | |
| 3943 | struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, |
| 3944 | u32 field_mask, u32 value_size) |
| 3945 | { |
| 3946 | struct btf_field_info info_arr[BTF_FIELDS_MAX]; |
| 3947 | u32 next_off = 0, field_type_size; |
| 3948 | struct btf_record *rec; |
| 3949 | int ret, i, cnt; |
| 3950 | |
| 3951 | ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); |
| 3952 | if (ret < 0) |
| 3953 | return ERR_PTR(ret); |
| 3954 | if (!ret) |
| 3955 | return NULL; |
| 3956 | |
| 3957 | cnt = ret; |
| 3958 | /* This needs to be kzalloc to zero out padding and unused fields, see |
| 3959 | * comment in btf_record_equal. |
| 3960 | */ |
| 3961 | rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL | __GFP_NOWARN); |
| 3962 | if (!rec) |
| 3963 | return ERR_PTR(-ENOMEM); |
| 3964 | |
| 3965 | rec->spin_lock_off = -EINVAL; |
| 3966 | rec->res_spin_lock_off = -EINVAL; |
| 3967 | rec->timer_off = -EINVAL; |
| 3968 | rec->wq_off = -EINVAL; |
| 3969 | rec->refcount_off = -EINVAL; |
| 3970 | for (i = 0; i < cnt; i++) { |
| 3971 | field_type_size = btf_field_type_size(info_arr[i].type); |
| 3972 | if (info_arr[i].off + field_type_size > value_size) { |
| 3973 | WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); |
| 3974 | ret = -EFAULT; |
| 3975 | goto end; |
| 3976 | } |
| 3977 | if (info_arr[i].off < next_off) { |
| 3978 | ret = -EEXIST; |
| 3979 | goto end; |
| 3980 | } |
| 3981 | next_off = info_arr[i].off + field_type_size; |
| 3982 | |
| 3983 | rec->field_mask |= info_arr[i].type; |
| 3984 | rec->fields[i].offset = info_arr[i].off; |
| 3985 | rec->fields[i].type = info_arr[i].type; |
| 3986 | rec->fields[i].size = field_type_size; |
| 3987 | |
| 3988 | switch (info_arr[i].type) { |
| 3989 | case BPF_SPIN_LOCK: |
| 3990 | WARN_ON_ONCE(rec->spin_lock_off >= 0); |
| 3991 | /* Cache offset for faster lookup at runtime */ |
| 3992 | rec->spin_lock_off = rec->fields[i].offset; |
| 3993 | break; |
| 3994 | case BPF_RES_SPIN_LOCK: |
| 3995 | WARN_ON_ONCE(rec->spin_lock_off >= 0); |
| 3996 | /* Cache offset for faster lookup at runtime */ |
| 3997 | rec->res_spin_lock_off = rec->fields[i].offset; |
| 3998 | break; |
| 3999 | case BPF_TIMER: |
| 4000 | WARN_ON_ONCE(rec->timer_off >= 0); |
| 4001 | /* Cache offset for faster lookup at runtime */ |
| 4002 | rec->timer_off = rec->fields[i].offset; |
| 4003 | break; |
| 4004 | case BPF_WORKQUEUE: |
| 4005 | WARN_ON_ONCE(rec->wq_off >= 0); |
| 4006 | /* Cache offset for faster lookup at runtime */ |
| 4007 | rec->wq_off = rec->fields[i].offset; |
| 4008 | break; |
| 4009 | case BPF_REFCOUNT: |
| 4010 | WARN_ON_ONCE(rec->refcount_off >= 0); |
| 4011 | /* Cache offset for faster lookup at runtime */ |
| 4012 | rec->refcount_off = rec->fields[i].offset; |
| 4013 | break; |
| 4014 | case BPF_KPTR_UNREF: |
| 4015 | case BPF_KPTR_REF: |
| 4016 | case BPF_KPTR_PERCPU: |
| 4017 | case BPF_UPTR: |
| 4018 | ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); |
| 4019 | if (ret < 0) |
| 4020 | goto end; |
| 4021 | break; |
| 4022 | case BPF_LIST_HEAD: |
| 4023 | ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); |
| 4024 | if (ret < 0) |
| 4025 | goto end; |
| 4026 | break; |
| 4027 | case BPF_RB_ROOT: |
| 4028 | ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); |
| 4029 | if (ret < 0) |
| 4030 | goto end; |
| 4031 | break; |
| 4032 | case BPF_LIST_NODE: |
| 4033 | case BPF_RB_NODE: |
| 4034 | break; |
| 4035 | default: |
| 4036 | ret = -EFAULT; |
| 4037 | goto end; |
| 4038 | } |
| 4039 | rec->cnt++; |
| 4040 | } |
| 4041 | |
| 4042 | if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { |
| 4043 | ret = -EINVAL; |
| 4044 | goto end; |
| 4045 | } |
| 4046 | |
| 4047 | /* bpf_{list_head, rb_node} require bpf_spin_lock */ |
| 4048 | if ((btf_record_has_field(rec, BPF_LIST_HEAD) || |
| 4049 | btf_record_has_field(rec, BPF_RB_ROOT)) && |
| 4050 | (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { |
| 4051 | ret = -EINVAL; |
| 4052 | goto end; |
| 4053 | } |
| 4054 | |
| 4055 | if (rec->refcount_off < 0 && |
| 4056 | btf_record_has_field(rec, BPF_LIST_NODE) && |
| 4057 | btf_record_has_field(rec, BPF_RB_NODE)) { |
| 4058 | ret = -EINVAL; |
| 4059 | goto end; |
| 4060 | } |
| 4061 | |
| 4062 | sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, |
| 4063 | NULL, rec); |
| 4064 | |
| 4065 | return rec; |
| 4066 | end: |
| 4067 | btf_record_free(rec); |
| 4068 | return ERR_PTR(ret); |
| 4069 | } |
| 4070 | |
| 4071 | int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) |
| 4072 | { |
| 4073 | int i; |
| 4074 | |
| 4075 | /* There are three types that signify ownership of some other type: |
| 4076 | * kptr_ref, bpf_list_head, bpf_rb_root. |
| 4077 | * kptr_ref only supports storing kernel types, which can't store |
| 4078 | * references to program allocated local types. |
| 4079 | * |
| 4080 | * Hence we only need to ensure that bpf_{list_head,rb_root} ownership |
| 4081 | * does not form cycles. |
| 4082 | */ |
| 4083 | if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) |
| 4084 | return 0; |
| 4085 | for (i = 0; i < rec->cnt; i++) { |
| 4086 | struct btf_struct_meta *meta; |
| 4087 | const struct btf_type *t; |
| 4088 | u32 btf_id; |
| 4089 | |
| 4090 | if (rec->fields[i].type == BPF_UPTR) { |
| 4091 | /* The uptr only supports pinning one page and cannot |
| 4092 | * point to a kernel struct |
| 4093 | */ |
| 4094 | if (btf_is_kernel(rec->fields[i].kptr.btf)) |
| 4095 | return -EINVAL; |
| 4096 | t = btf_type_by_id(rec->fields[i].kptr.btf, |
| 4097 | rec->fields[i].kptr.btf_id); |
| 4098 | if (!t->size) |
| 4099 | return -EINVAL; |
| 4100 | if (t->size > PAGE_SIZE) |
| 4101 | return -E2BIG; |
| 4102 | continue; |
| 4103 | } |
| 4104 | |
| 4105 | if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) |
| 4106 | continue; |
| 4107 | btf_id = rec->fields[i].graph_root.value_btf_id; |
| 4108 | meta = btf_find_struct_meta(btf, btf_id); |
| 4109 | if (!meta) |
| 4110 | return -EFAULT; |
| 4111 | rec->fields[i].graph_root.value_rec = meta->record; |
| 4112 | |
| 4113 | /* We need to set value_rec for all root types, but no need |
| 4114 | * to check ownership cycle for a type unless it's also a |
| 4115 | * node type. |
| 4116 | */ |
| 4117 | if (!(rec->field_mask & BPF_GRAPH_NODE)) |
| 4118 | continue; |
| 4119 | |
| 4120 | /* We need to ensure ownership acyclicity among all types. The |
| 4121 | * proper way to do it would be to topologically sort all BTF |
| 4122 | * IDs based on the ownership edges, since there can be multiple |
| 4123 | * bpf_{list_head,rb_node} in a type. Instead, we use the |
| 4124 | * following resaoning: |
| 4125 | * |
| 4126 | * - A type can only be owned by another type in user BTF if it |
| 4127 | * has a bpf_{list,rb}_node. Let's call these node types. |
| 4128 | * - A type can only _own_ another type in user BTF if it has a |
| 4129 | * bpf_{list_head,rb_root}. Let's call these root types. |
| 4130 | * |
| 4131 | * We ensure that if a type is both a root and node, its |
| 4132 | * element types cannot be root types. |
| 4133 | * |
| 4134 | * To ensure acyclicity: |
| 4135 | * |
| 4136 | * When A is an root type but not a node, its ownership |
| 4137 | * chain can be: |
| 4138 | * A -> B -> C |
| 4139 | * Where: |
| 4140 | * - A is an root, e.g. has bpf_rb_root. |
| 4141 | * - B is both a root and node, e.g. has bpf_rb_node and |
| 4142 | * bpf_list_head. |
| 4143 | * - C is only an root, e.g. has bpf_list_node |
| 4144 | * |
| 4145 | * When A is both a root and node, some other type already |
| 4146 | * owns it in the BTF domain, hence it can not own |
| 4147 | * another root type through any of the ownership edges. |
| 4148 | * A -> B |
| 4149 | * Where: |
| 4150 | * - A is both an root and node. |
| 4151 | * - B is only an node. |
| 4152 | */ |
| 4153 | if (meta->record->field_mask & BPF_GRAPH_ROOT) |
| 4154 | return -ELOOP; |
| 4155 | } |
| 4156 | return 0; |
| 4157 | } |
| 4158 | |
| 4159 | static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, |
| 4160 | u32 type_id, void *data, u8 bits_offset, |
| 4161 | struct btf_show *show) |
| 4162 | { |
| 4163 | const struct btf_member *member; |
| 4164 | void *safe_data; |
| 4165 | u32 i; |
| 4166 | |
| 4167 | safe_data = btf_show_start_struct_type(show, t, type_id, data); |
| 4168 | if (!safe_data) |
| 4169 | return; |
| 4170 | |
| 4171 | for_each_member(i, t, member) { |
| 4172 | const struct btf_type *member_type = btf_type_by_id(btf, |
| 4173 | member->type); |
| 4174 | const struct btf_kind_operations *ops; |
| 4175 | u32 member_offset, bitfield_size; |
| 4176 | u32 bytes_offset; |
| 4177 | u8 bits8_offset; |
| 4178 | |
| 4179 | btf_show_start_member(show, member); |
| 4180 | |
| 4181 | member_offset = __btf_member_bit_offset(t, member); |
| 4182 | bitfield_size = __btf_member_bitfield_size(t, member); |
| 4183 | bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); |
| 4184 | bits8_offset = BITS_PER_BYTE_MASKED(member_offset); |
| 4185 | if (bitfield_size) { |
| 4186 | safe_data = btf_show_start_type(show, member_type, |
| 4187 | member->type, |
| 4188 | data + bytes_offset); |
| 4189 | if (safe_data) |
| 4190 | btf_bitfield_show(safe_data, |
| 4191 | bits8_offset, |
| 4192 | bitfield_size, show); |
| 4193 | btf_show_end_type(show); |
| 4194 | } else { |
| 4195 | ops = btf_type_ops(member_type); |
| 4196 | ops->show(btf, member_type, member->type, |
| 4197 | data + bytes_offset, bits8_offset, show); |
| 4198 | } |
| 4199 | |
| 4200 | btf_show_end_member(show); |
| 4201 | } |
| 4202 | |
| 4203 | btf_show_end_struct_type(show); |
| 4204 | } |
| 4205 | |
| 4206 | static void btf_struct_show(const struct btf *btf, const struct btf_type *t, |
| 4207 | u32 type_id, void *data, u8 bits_offset, |
| 4208 | struct btf_show *show) |
| 4209 | { |
| 4210 | const struct btf_member *m = show->state.member; |
| 4211 | |
| 4212 | /* |
| 4213 | * First check if any members would be shown (are non-zero). |
| 4214 | * See comments above "struct btf_show" definition for more |
| 4215 | * details on how this works at a high-level. |
| 4216 | */ |
| 4217 | if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { |
| 4218 | if (!show->state.depth_check) { |
| 4219 | show->state.depth_check = show->state.depth + 1; |
| 4220 | show->state.depth_to_show = 0; |
| 4221 | } |
| 4222 | __btf_struct_show(btf, t, type_id, data, bits_offset, show); |
| 4223 | /* Restore saved member data here */ |
| 4224 | show->state.member = m; |
| 4225 | if (show->state.depth_check != show->state.depth + 1) |
| 4226 | return; |
| 4227 | show->state.depth_check = 0; |
| 4228 | |
| 4229 | if (show->state.depth_to_show <= show->state.depth) |
| 4230 | return; |
| 4231 | /* |
| 4232 | * Reaching here indicates we have recursed and found |
| 4233 | * non-zero child values. |
| 4234 | */ |
| 4235 | } |
| 4236 | |
| 4237 | __btf_struct_show(btf, t, type_id, data, bits_offset, show); |
| 4238 | } |
| 4239 | |
| 4240 | static const struct btf_kind_operations struct_ops = { |
| 4241 | .check_meta = btf_struct_check_meta, |
| 4242 | .resolve = btf_struct_resolve, |
| 4243 | .check_member = btf_struct_check_member, |
| 4244 | .check_kflag_member = btf_generic_check_kflag_member, |
| 4245 | .log_details = btf_struct_log, |
| 4246 | .show = btf_struct_show, |
| 4247 | }; |
| 4248 | |
| 4249 | static int btf_enum_check_member(struct btf_verifier_env *env, |
| 4250 | const struct btf_type *struct_type, |
| 4251 | const struct btf_member *member, |
| 4252 | const struct btf_type *member_type) |
| 4253 | { |
| 4254 | u32 struct_bits_off = member->offset; |
| 4255 | u32 struct_size, bytes_offset; |
| 4256 | |
| 4257 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 4258 | btf_verifier_log_member(env, struct_type, member, |
| 4259 | "Member is not byte aligned"); |
| 4260 | return -EINVAL; |
| 4261 | } |
| 4262 | |
| 4263 | struct_size = struct_type->size; |
| 4264 | bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); |
| 4265 | if (struct_size - bytes_offset < member_type->size) { |
| 4266 | btf_verifier_log_member(env, struct_type, member, |
| 4267 | "Member exceeds struct_size"); |
| 4268 | return -EINVAL; |
| 4269 | } |
| 4270 | |
| 4271 | return 0; |
| 4272 | } |
| 4273 | |
| 4274 | static int btf_enum_check_kflag_member(struct btf_verifier_env *env, |
| 4275 | const struct btf_type *struct_type, |
| 4276 | const struct btf_member *member, |
| 4277 | const struct btf_type *member_type) |
| 4278 | { |
| 4279 | u32 struct_bits_off, nr_bits, bytes_end, struct_size; |
| 4280 | u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; |
| 4281 | |
| 4282 | struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); |
| 4283 | nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); |
| 4284 | if (!nr_bits) { |
| 4285 | if (BITS_PER_BYTE_MASKED(struct_bits_off)) { |
| 4286 | btf_verifier_log_member(env, struct_type, member, |
| 4287 | "Member is not byte aligned"); |
| 4288 | return -EINVAL; |
| 4289 | } |
| 4290 | |
| 4291 | nr_bits = int_bitsize; |
| 4292 | } else if (nr_bits > int_bitsize) { |
| 4293 | btf_verifier_log_member(env, struct_type, member, |
| 4294 | "Invalid member bitfield_size"); |
| 4295 | return -EINVAL; |
| 4296 | } |
| 4297 | |
| 4298 | struct_size = struct_type->size; |
| 4299 | bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); |
| 4300 | if (struct_size < bytes_end) { |
| 4301 | btf_verifier_log_member(env, struct_type, member, |
| 4302 | "Member exceeds struct_size"); |
| 4303 | return -EINVAL; |
| 4304 | } |
| 4305 | |
| 4306 | return 0; |
| 4307 | } |
| 4308 | |
| 4309 | static s32 btf_enum_check_meta(struct btf_verifier_env *env, |
| 4310 | const struct btf_type *t, |
| 4311 | u32 meta_left) |
| 4312 | { |
| 4313 | const struct btf_enum *enums = btf_type_enum(t); |
| 4314 | struct btf *btf = env->btf; |
| 4315 | const char *fmt_str; |
| 4316 | u16 i, nr_enums; |
| 4317 | u32 meta_needed; |
| 4318 | |
| 4319 | nr_enums = btf_type_vlen(t); |
| 4320 | meta_needed = nr_enums * sizeof(*enums); |
| 4321 | |
| 4322 | if (meta_left < meta_needed) { |
| 4323 | btf_verifier_log_basic(env, t, |
| 4324 | "meta_left:%u meta_needed:%u", |
| 4325 | meta_left, meta_needed); |
| 4326 | return -EINVAL; |
| 4327 | } |
| 4328 | |
| 4329 | if (t->size > 8 || !is_power_of_2(t->size)) { |
| 4330 | btf_verifier_log_type(env, t, "Unexpected size"); |
| 4331 | return -EINVAL; |
| 4332 | } |
| 4333 | |
| 4334 | /* enum type either no name or a valid one */ |
| 4335 | if (t->name_off && |
| 4336 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 4337 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4338 | return -EINVAL; |
| 4339 | } |
| 4340 | |
| 4341 | btf_verifier_log_type(env, t, NULL); |
| 4342 | |
| 4343 | for (i = 0; i < nr_enums; i++) { |
| 4344 | if (!btf_name_offset_valid(btf, enums[i].name_off)) { |
| 4345 | btf_verifier_log(env, "\tInvalid name_offset:%u", |
| 4346 | enums[i].name_off); |
| 4347 | return -EINVAL; |
| 4348 | } |
| 4349 | |
| 4350 | /* enum member must have a valid name */ |
| 4351 | if (!enums[i].name_off || |
| 4352 | !btf_name_valid_identifier(btf, enums[i].name_off)) { |
| 4353 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4354 | return -EINVAL; |
| 4355 | } |
| 4356 | |
| 4357 | if (env->log.level == BPF_LOG_KERNEL) |
| 4358 | continue; |
| 4359 | fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; |
| 4360 | btf_verifier_log(env, fmt_str, |
| 4361 | __btf_name_by_offset(btf, enums[i].name_off), |
| 4362 | enums[i].val); |
| 4363 | } |
| 4364 | |
| 4365 | return meta_needed; |
| 4366 | } |
| 4367 | |
| 4368 | static void btf_enum_log(struct btf_verifier_env *env, |
| 4369 | const struct btf_type *t) |
| 4370 | { |
| 4371 | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); |
| 4372 | } |
| 4373 | |
| 4374 | static void btf_enum_show(const struct btf *btf, const struct btf_type *t, |
| 4375 | u32 type_id, void *data, u8 bits_offset, |
| 4376 | struct btf_show *show) |
| 4377 | { |
| 4378 | const struct btf_enum *enums = btf_type_enum(t); |
| 4379 | u32 i, nr_enums = btf_type_vlen(t); |
| 4380 | void *safe_data; |
| 4381 | int v; |
| 4382 | |
| 4383 | safe_data = btf_show_start_type(show, t, type_id, data); |
| 4384 | if (!safe_data) |
| 4385 | return; |
| 4386 | |
| 4387 | v = *(int *)safe_data; |
| 4388 | |
| 4389 | for (i = 0; i < nr_enums; i++) { |
| 4390 | if (v != enums[i].val) |
| 4391 | continue; |
| 4392 | |
| 4393 | btf_show_type_value(show, "%s", |
| 4394 | __btf_name_by_offset(btf, |
| 4395 | enums[i].name_off)); |
| 4396 | |
| 4397 | btf_show_end_type(show); |
| 4398 | return; |
| 4399 | } |
| 4400 | |
| 4401 | if (btf_type_kflag(t)) |
| 4402 | btf_show_type_value(show, "%d", v); |
| 4403 | else |
| 4404 | btf_show_type_value(show, "%u", v); |
| 4405 | btf_show_end_type(show); |
| 4406 | } |
| 4407 | |
| 4408 | static const struct btf_kind_operations enum_ops = { |
| 4409 | .check_meta = btf_enum_check_meta, |
| 4410 | .resolve = btf_df_resolve, |
| 4411 | .check_member = btf_enum_check_member, |
| 4412 | .check_kflag_member = btf_enum_check_kflag_member, |
| 4413 | .log_details = btf_enum_log, |
| 4414 | .show = btf_enum_show, |
| 4415 | }; |
| 4416 | |
| 4417 | static s32 btf_enum64_check_meta(struct btf_verifier_env *env, |
| 4418 | const struct btf_type *t, |
| 4419 | u32 meta_left) |
| 4420 | { |
| 4421 | const struct btf_enum64 *enums = btf_type_enum64(t); |
| 4422 | struct btf *btf = env->btf; |
| 4423 | const char *fmt_str; |
| 4424 | u16 i, nr_enums; |
| 4425 | u32 meta_needed; |
| 4426 | |
| 4427 | nr_enums = btf_type_vlen(t); |
| 4428 | meta_needed = nr_enums * sizeof(*enums); |
| 4429 | |
| 4430 | if (meta_left < meta_needed) { |
| 4431 | btf_verifier_log_basic(env, t, |
| 4432 | "meta_left:%u meta_needed:%u", |
| 4433 | meta_left, meta_needed); |
| 4434 | return -EINVAL; |
| 4435 | } |
| 4436 | |
| 4437 | if (t->size > 8 || !is_power_of_2(t->size)) { |
| 4438 | btf_verifier_log_type(env, t, "Unexpected size"); |
| 4439 | return -EINVAL; |
| 4440 | } |
| 4441 | |
| 4442 | /* enum type either no name or a valid one */ |
| 4443 | if (t->name_off && |
| 4444 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 4445 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4446 | return -EINVAL; |
| 4447 | } |
| 4448 | |
| 4449 | btf_verifier_log_type(env, t, NULL); |
| 4450 | |
| 4451 | for (i = 0; i < nr_enums; i++) { |
| 4452 | if (!btf_name_offset_valid(btf, enums[i].name_off)) { |
| 4453 | btf_verifier_log(env, "\tInvalid name_offset:%u", |
| 4454 | enums[i].name_off); |
| 4455 | return -EINVAL; |
| 4456 | } |
| 4457 | |
| 4458 | /* enum member must have a valid name */ |
| 4459 | if (!enums[i].name_off || |
| 4460 | !btf_name_valid_identifier(btf, enums[i].name_off)) { |
| 4461 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4462 | return -EINVAL; |
| 4463 | } |
| 4464 | |
| 4465 | if (env->log.level == BPF_LOG_KERNEL) |
| 4466 | continue; |
| 4467 | |
| 4468 | fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; |
| 4469 | btf_verifier_log(env, fmt_str, |
| 4470 | __btf_name_by_offset(btf, enums[i].name_off), |
| 4471 | btf_enum64_value(enums + i)); |
| 4472 | } |
| 4473 | |
| 4474 | return meta_needed; |
| 4475 | } |
| 4476 | |
| 4477 | static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, |
| 4478 | u32 type_id, void *data, u8 bits_offset, |
| 4479 | struct btf_show *show) |
| 4480 | { |
| 4481 | const struct btf_enum64 *enums = btf_type_enum64(t); |
| 4482 | u32 i, nr_enums = btf_type_vlen(t); |
| 4483 | void *safe_data; |
| 4484 | s64 v; |
| 4485 | |
| 4486 | safe_data = btf_show_start_type(show, t, type_id, data); |
| 4487 | if (!safe_data) |
| 4488 | return; |
| 4489 | |
| 4490 | v = *(u64 *)safe_data; |
| 4491 | |
| 4492 | for (i = 0; i < nr_enums; i++) { |
| 4493 | if (v != btf_enum64_value(enums + i)) |
| 4494 | continue; |
| 4495 | |
| 4496 | btf_show_type_value(show, "%s", |
| 4497 | __btf_name_by_offset(btf, |
| 4498 | enums[i].name_off)); |
| 4499 | |
| 4500 | btf_show_end_type(show); |
| 4501 | return; |
| 4502 | } |
| 4503 | |
| 4504 | if (btf_type_kflag(t)) |
| 4505 | btf_show_type_value(show, "%lld", v); |
| 4506 | else |
| 4507 | btf_show_type_value(show, "%llu", v); |
| 4508 | btf_show_end_type(show); |
| 4509 | } |
| 4510 | |
| 4511 | static const struct btf_kind_operations enum64_ops = { |
| 4512 | .check_meta = btf_enum64_check_meta, |
| 4513 | .resolve = btf_df_resolve, |
| 4514 | .check_member = btf_enum_check_member, |
| 4515 | .check_kflag_member = btf_enum_check_kflag_member, |
| 4516 | .log_details = btf_enum_log, |
| 4517 | .show = btf_enum64_show, |
| 4518 | }; |
| 4519 | |
| 4520 | static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, |
| 4521 | const struct btf_type *t, |
| 4522 | u32 meta_left) |
| 4523 | { |
| 4524 | u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); |
| 4525 | |
| 4526 | if (meta_left < meta_needed) { |
| 4527 | btf_verifier_log_basic(env, t, |
| 4528 | "meta_left:%u meta_needed:%u", |
| 4529 | meta_left, meta_needed); |
| 4530 | return -EINVAL; |
| 4531 | } |
| 4532 | |
| 4533 | if (t->name_off) { |
| 4534 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4535 | return -EINVAL; |
| 4536 | } |
| 4537 | |
| 4538 | if (btf_type_kflag(t)) { |
| 4539 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 4540 | return -EINVAL; |
| 4541 | } |
| 4542 | |
| 4543 | btf_verifier_log_type(env, t, NULL); |
| 4544 | |
| 4545 | return meta_needed; |
| 4546 | } |
| 4547 | |
| 4548 | static void btf_func_proto_log(struct btf_verifier_env *env, |
| 4549 | const struct btf_type *t) |
| 4550 | { |
| 4551 | const struct btf_param *args = (const struct btf_param *)(t + 1); |
| 4552 | u16 nr_args = btf_type_vlen(t), i; |
| 4553 | |
| 4554 | btf_verifier_log(env, "return=%u args=(", t->type); |
| 4555 | if (!nr_args) { |
| 4556 | btf_verifier_log(env, "void"); |
| 4557 | goto done; |
| 4558 | } |
| 4559 | |
| 4560 | if (nr_args == 1 && !args[0].type) { |
| 4561 | /* Only one vararg */ |
| 4562 | btf_verifier_log(env, "vararg"); |
| 4563 | goto done; |
| 4564 | } |
| 4565 | |
| 4566 | btf_verifier_log(env, "%u %s", args[0].type, |
| 4567 | __btf_name_by_offset(env->btf, |
| 4568 | args[0].name_off)); |
| 4569 | for (i = 1; i < nr_args - 1; i++) |
| 4570 | btf_verifier_log(env, ", %u %s", args[i].type, |
| 4571 | __btf_name_by_offset(env->btf, |
| 4572 | args[i].name_off)); |
| 4573 | |
| 4574 | if (nr_args > 1) { |
| 4575 | const struct btf_param *last_arg = &args[nr_args - 1]; |
| 4576 | |
| 4577 | if (last_arg->type) |
| 4578 | btf_verifier_log(env, ", %u %s", last_arg->type, |
| 4579 | __btf_name_by_offset(env->btf, |
| 4580 | last_arg->name_off)); |
| 4581 | else |
| 4582 | btf_verifier_log(env, ", vararg"); |
| 4583 | } |
| 4584 | |
| 4585 | done: |
| 4586 | btf_verifier_log(env, ")"); |
| 4587 | } |
| 4588 | |
| 4589 | static const struct btf_kind_operations func_proto_ops = { |
| 4590 | .check_meta = btf_func_proto_check_meta, |
| 4591 | .resolve = btf_df_resolve, |
| 4592 | /* |
| 4593 | * BTF_KIND_FUNC_PROTO cannot be directly referred by |
| 4594 | * a struct's member. |
| 4595 | * |
| 4596 | * It should be a function pointer instead. |
| 4597 | * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) |
| 4598 | * |
| 4599 | * Hence, there is no btf_func_check_member(). |
| 4600 | */ |
| 4601 | .check_member = btf_df_check_member, |
| 4602 | .check_kflag_member = btf_df_check_kflag_member, |
| 4603 | .log_details = btf_func_proto_log, |
| 4604 | .show = btf_df_show, |
| 4605 | }; |
| 4606 | |
| 4607 | static s32 btf_func_check_meta(struct btf_verifier_env *env, |
| 4608 | const struct btf_type *t, |
| 4609 | u32 meta_left) |
| 4610 | { |
| 4611 | if (!t->name_off || |
| 4612 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 4613 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4614 | return -EINVAL; |
| 4615 | } |
| 4616 | |
| 4617 | if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { |
| 4618 | btf_verifier_log_type(env, t, "Invalid func linkage"); |
| 4619 | return -EINVAL; |
| 4620 | } |
| 4621 | |
| 4622 | if (btf_type_kflag(t)) { |
| 4623 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 4624 | return -EINVAL; |
| 4625 | } |
| 4626 | |
| 4627 | btf_verifier_log_type(env, t, NULL); |
| 4628 | |
| 4629 | return 0; |
| 4630 | } |
| 4631 | |
| 4632 | static int btf_func_resolve(struct btf_verifier_env *env, |
| 4633 | const struct resolve_vertex *v) |
| 4634 | { |
| 4635 | const struct btf_type *t = v->t; |
| 4636 | u32 next_type_id = t->type; |
| 4637 | int err; |
| 4638 | |
| 4639 | err = btf_func_check(env, t); |
| 4640 | if (err) |
| 4641 | return err; |
| 4642 | |
| 4643 | env_stack_pop_resolved(env, next_type_id, 0); |
| 4644 | return 0; |
| 4645 | } |
| 4646 | |
| 4647 | static const struct btf_kind_operations func_ops = { |
| 4648 | .check_meta = btf_func_check_meta, |
| 4649 | .resolve = btf_func_resolve, |
| 4650 | .check_member = btf_df_check_member, |
| 4651 | .check_kflag_member = btf_df_check_kflag_member, |
| 4652 | .log_details = btf_ref_type_log, |
| 4653 | .show = btf_df_show, |
| 4654 | }; |
| 4655 | |
| 4656 | static s32 btf_var_check_meta(struct btf_verifier_env *env, |
| 4657 | const struct btf_type *t, |
| 4658 | u32 meta_left) |
| 4659 | { |
| 4660 | const struct btf_var *var; |
| 4661 | u32 meta_needed = sizeof(*var); |
| 4662 | |
| 4663 | if (meta_left < meta_needed) { |
| 4664 | btf_verifier_log_basic(env, t, |
| 4665 | "meta_left:%u meta_needed:%u", |
| 4666 | meta_left, meta_needed); |
| 4667 | return -EINVAL; |
| 4668 | } |
| 4669 | |
| 4670 | if (btf_type_vlen(t)) { |
| 4671 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 4672 | return -EINVAL; |
| 4673 | } |
| 4674 | |
| 4675 | if (btf_type_kflag(t)) { |
| 4676 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 4677 | return -EINVAL; |
| 4678 | } |
| 4679 | |
| 4680 | if (!t->name_off || |
| 4681 | !btf_name_valid_identifier(env->btf, t->name_off)) { |
| 4682 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4683 | return -EINVAL; |
| 4684 | } |
| 4685 | |
| 4686 | /* A var cannot be in type void */ |
| 4687 | if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { |
| 4688 | btf_verifier_log_type(env, t, "Invalid type_id"); |
| 4689 | return -EINVAL; |
| 4690 | } |
| 4691 | |
| 4692 | var = btf_type_var(t); |
| 4693 | if (var->linkage != BTF_VAR_STATIC && |
| 4694 | var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { |
| 4695 | btf_verifier_log_type(env, t, "Linkage not supported"); |
| 4696 | return -EINVAL; |
| 4697 | } |
| 4698 | |
| 4699 | btf_verifier_log_type(env, t, NULL); |
| 4700 | |
| 4701 | return meta_needed; |
| 4702 | } |
| 4703 | |
| 4704 | static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) |
| 4705 | { |
| 4706 | const struct btf_var *var = btf_type_var(t); |
| 4707 | |
| 4708 | btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); |
| 4709 | } |
| 4710 | |
| 4711 | static const struct btf_kind_operations var_ops = { |
| 4712 | .check_meta = btf_var_check_meta, |
| 4713 | .resolve = btf_var_resolve, |
| 4714 | .check_member = btf_df_check_member, |
| 4715 | .check_kflag_member = btf_df_check_kflag_member, |
| 4716 | .log_details = btf_var_log, |
| 4717 | .show = btf_var_show, |
| 4718 | }; |
| 4719 | |
| 4720 | static s32 btf_datasec_check_meta(struct btf_verifier_env *env, |
| 4721 | const struct btf_type *t, |
| 4722 | u32 meta_left) |
| 4723 | { |
| 4724 | const struct btf_var_secinfo *vsi; |
| 4725 | u64 last_vsi_end_off = 0, sum = 0; |
| 4726 | u32 i, meta_needed; |
| 4727 | |
| 4728 | meta_needed = btf_type_vlen(t) * sizeof(*vsi); |
| 4729 | if (meta_left < meta_needed) { |
| 4730 | btf_verifier_log_basic(env, t, |
| 4731 | "meta_left:%u meta_needed:%u", |
| 4732 | meta_left, meta_needed); |
| 4733 | return -EINVAL; |
| 4734 | } |
| 4735 | |
| 4736 | if (!t->size) { |
| 4737 | btf_verifier_log_type(env, t, "size == 0"); |
| 4738 | return -EINVAL; |
| 4739 | } |
| 4740 | |
| 4741 | if (btf_type_kflag(t)) { |
| 4742 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 4743 | return -EINVAL; |
| 4744 | } |
| 4745 | |
| 4746 | if (!t->name_off || |
| 4747 | !btf_name_valid_section(env->btf, t->name_off)) { |
| 4748 | btf_verifier_log_type(env, t, "Invalid name"); |
| 4749 | return -EINVAL; |
| 4750 | } |
| 4751 | |
| 4752 | btf_verifier_log_type(env, t, NULL); |
| 4753 | |
| 4754 | for_each_vsi(i, t, vsi) { |
| 4755 | /* A var cannot be in type void */ |
| 4756 | if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { |
| 4757 | btf_verifier_log_vsi(env, t, vsi, |
| 4758 | "Invalid type_id"); |
| 4759 | return -EINVAL; |
| 4760 | } |
| 4761 | |
| 4762 | if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { |
| 4763 | btf_verifier_log_vsi(env, t, vsi, |
| 4764 | "Invalid offset"); |
| 4765 | return -EINVAL; |
| 4766 | } |
| 4767 | |
| 4768 | if (!vsi->size || vsi->size > t->size) { |
| 4769 | btf_verifier_log_vsi(env, t, vsi, |
| 4770 | "Invalid size"); |
| 4771 | return -EINVAL; |
| 4772 | } |
| 4773 | |
| 4774 | last_vsi_end_off = vsi->offset + vsi->size; |
| 4775 | if (last_vsi_end_off > t->size) { |
| 4776 | btf_verifier_log_vsi(env, t, vsi, |
| 4777 | "Invalid offset+size"); |
| 4778 | return -EINVAL; |
| 4779 | } |
| 4780 | |
| 4781 | btf_verifier_log_vsi(env, t, vsi, NULL); |
| 4782 | sum += vsi->size; |
| 4783 | } |
| 4784 | |
| 4785 | if (t->size < sum) { |
| 4786 | btf_verifier_log_type(env, t, "Invalid btf_info size"); |
| 4787 | return -EINVAL; |
| 4788 | } |
| 4789 | |
| 4790 | return meta_needed; |
| 4791 | } |
| 4792 | |
| 4793 | static int btf_datasec_resolve(struct btf_verifier_env *env, |
| 4794 | const struct resolve_vertex *v) |
| 4795 | { |
| 4796 | const struct btf_var_secinfo *vsi; |
| 4797 | struct btf *btf = env->btf; |
| 4798 | u16 i; |
| 4799 | |
| 4800 | env->resolve_mode = RESOLVE_TBD; |
| 4801 | for_each_vsi_from(i, v->next_member, v->t, vsi) { |
| 4802 | u32 var_type_id = vsi->type, type_id, type_size = 0; |
| 4803 | const struct btf_type *var_type = btf_type_by_id(env->btf, |
| 4804 | var_type_id); |
| 4805 | if (!var_type || !btf_type_is_var(var_type)) { |
| 4806 | btf_verifier_log_vsi(env, v->t, vsi, |
| 4807 | "Not a VAR kind member"); |
| 4808 | return -EINVAL; |
| 4809 | } |
| 4810 | |
| 4811 | if (!env_type_is_resolve_sink(env, var_type) && |
| 4812 | !env_type_is_resolved(env, var_type_id)) { |
| 4813 | env_stack_set_next_member(env, i + 1); |
| 4814 | return env_stack_push(env, var_type, var_type_id); |
| 4815 | } |
| 4816 | |
| 4817 | type_id = var_type->type; |
| 4818 | if (!btf_type_id_size(btf, &type_id, &type_size)) { |
| 4819 | btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); |
| 4820 | return -EINVAL; |
| 4821 | } |
| 4822 | |
| 4823 | if (vsi->size < type_size) { |
| 4824 | btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); |
| 4825 | return -EINVAL; |
| 4826 | } |
| 4827 | } |
| 4828 | |
| 4829 | env_stack_pop_resolved(env, 0, 0); |
| 4830 | return 0; |
| 4831 | } |
| 4832 | |
| 4833 | static void btf_datasec_log(struct btf_verifier_env *env, |
| 4834 | const struct btf_type *t) |
| 4835 | { |
| 4836 | btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); |
| 4837 | } |
| 4838 | |
| 4839 | static void btf_datasec_show(const struct btf *btf, |
| 4840 | const struct btf_type *t, u32 type_id, |
| 4841 | void *data, u8 bits_offset, |
| 4842 | struct btf_show *show) |
| 4843 | { |
| 4844 | const struct btf_var_secinfo *vsi; |
| 4845 | const struct btf_type *var; |
| 4846 | u32 i; |
| 4847 | |
| 4848 | if (!btf_show_start_type(show, t, type_id, data)) |
| 4849 | return; |
| 4850 | |
| 4851 | btf_show_type_value(show, "section (\"%s\") = {", |
| 4852 | __btf_name_by_offset(btf, t->name_off)); |
| 4853 | for_each_vsi(i, t, vsi) { |
| 4854 | var = btf_type_by_id(btf, vsi->type); |
| 4855 | if (i) |
| 4856 | btf_show(show, ","); |
| 4857 | btf_type_ops(var)->show(btf, var, vsi->type, |
| 4858 | data + vsi->offset, bits_offset, show); |
| 4859 | } |
| 4860 | btf_show_end_type(show); |
| 4861 | } |
| 4862 | |
| 4863 | static const struct btf_kind_operations datasec_ops = { |
| 4864 | .check_meta = btf_datasec_check_meta, |
| 4865 | .resolve = btf_datasec_resolve, |
| 4866 | .check_member = btf_df_check_member, |
| 4867 | .check_kflag_member = btf_df_check_kflag_member, |
| 4868 | .log_details = btf_datasec_log, |
| 4869 | .show = btf_datasec_show, |
| 4870 | }; |
| 4871 | |
| 4872 | static s32 btf_float_check_meta(struct btf_verifier_env *env, |
| 4873 | const struct btf_type *t, |
| 4874 | u32 meta_left) |
| 4875 | { |
| 4876 | if (btf_type_vlen(t)) { |
| 4877 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 4878 | return -EINVAL; |
| 4879 | } |
| 4880 | |
| 4881 | if (btf_type_kflag(t)) { |
| 4882 | btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); |
| 4883 | return -EINVAL; |
| 4884 | } |
| 4885 | |
| 4886 | if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && |
| 4887 | t->size != 16) { |
| 4888 | btf_verifier_log_type(env, t, "Invalid type_size"); |
| 4889 | return -EINVAL; |
| 4890 | } |
| 4891 | |
| 4892 | btf_verifier_log_type(env, t, NULL); |
| 4893 | |
| 4894 | return 0; |
| 4895 | } |
| 4896 | |
| 4897 | static int btf_float_check_member(struct btf_verifier_env *env, |
| 4898 | const struct btf_type *struct_type, |
| 4899 | const struct btf_member *member, |
| 4900 | const struct btf_type *member_type) |
| 4901 | { |
| 4902 | u64 start_offset_bytes; |
| 4903 | u64 end_offset_bytes; |
| 4904 | u64 misalign_bits; |
| 4905 | u64 align_bytes; |
| 4906 | u64 align_bits; |
| 4907 | |
| 4908 | /* Different architectures have different alignment requirements, so |
| 4909 | * here we check only for the reasonable minimum. This way we ensure |
| 4910 | * that types after CO-RE can pass the kernel BTF verifier. |
| 4911 | */ |
| 4912 | align_bytes = min_t(u64, sizeof(void *), member_type->size); |
| 4913 | align_bits = align_bytes * BITS_PER_BYTE; |
| 4914 | div64_u64_rem(member->offset, align_bits, &misalign_bits); |
| 4915 | if (misalign_bits) { |
| 4916 | btf_verifier_log_member(env, struct_type, member, |
| 4917 | "Member is not properly aligned"); |
| 4918 | return -EINVAL; |
| 4919 | } |
| 4920 | |
| 4921 | start_offset_bytes = member->offset / BITS_PER_BYTE; |
| 4922 | end_offset_bytes = start_offset_bytes + member_type->size; |
| 4923 | if (end_offset_bytes > struct_type->size) { |
| 4924 | btf_verifier_log_member(env, struct_type, member, |
| 4925 | "Member exceeds struct_size"); |
| 4926 | return -EINVAL; |
| 4927 | } |
| 4928 | |
| 4929 | return 0; |
| 4930 | } |
| 4931 | |
| 4932 | static void btf_float_log(struct btf_verifier_env *env, |
| 4933 | const struct btf_type *t) |
| 4934 | { |
| 4935 | btf_verifier_log(env, "size=%u", t->size); |
| 4936 | } |
| 4937 | |
| 4938 | static const struct btf_kind_operations float_ops = { |
| 4939 | .check_meta = btf_float_check_meta, |
| 4940 | .resolve = btf_df_resolve, |
| 4941 | .check_member = btf_float_check_member, |
| 4942 | .check_kflag_member = btf_generic_check_kflag_member, |
| 4943 | .log_details = btf_float_log, |
| 4944 | .show = btf_df_show, |
| 4945 | }; |
| 4946 | |
| 4947 | static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, |
| 4948 | const struct btf_type *t, |
| 4949 | u32 meta_left) |
| 4950 | { |
| 4951 | const struct btf_decl_tag *tag; |
| 4952 | u32 meta_needed = sizeof(*tag); |
| 4953 | s32 component_idx; |
| 4954 | const char *value; |
| 4955 | |
| 4956 | if (meta_left < meta_needed) { |
| 4957 | btf_verifier_log_basic(env, t, |
| 4958 | "meta_left:%u meta_needed:%u", |
| 4959 | meta_left, meta_needed); |
| 4960 | return -EINVAL; |
| 4961 | } |
| 4962 | |
| 4963 | value = btf_name_by_offset(env->btf, t->name_off); |
| 4964 | if (!value || !value[0]) { |
| 4965 | btf_verifier_log_type(env, t, "Invalid value"); |
| 4966 | return -EINVAL; |
| 4967 | } |
| 4968 | |
| 4969 | if (btf_type_vlen(t)) { |
| 4970 | btf_verifier_log_type(env, t, "vlen != 0"); |
| 4971 | return -EINVAL; |
| 4972 | } |
| 4973 | |
| 4974 | component_idx = btf_type_decl_tag(t)->component_idx; |
| 4975 | if (component_idx < -1) { |
| 4976 | btf_verifier_log_type(env, t, "Invalid component_idx"); |
| 4977 | return -EINVAL; |
| 4978 | } |
| 4979 | |
| 4980 | btf_verifier_log_type(env, t, NULL); |
| 4981 | |
| 4982 | return meta_needed; |
| 4983 | } |
| 4984 | |
| 4985 | static int btf_decl_tag_resolve(struct btf_verifier_env *env, |
| 4986 | const struct resolve_vertex *v) |
| 4987 | { |
| 4988 | const struct btf_type *next_type; |
| 4989 | const struct btf_type *t = v->t; |
| 4990 | u32 next_type_id = t->type; |
| 4991 | struct btf *btf = env->btf; |
| 4992 | s32 component_idx; |
| 4993 | u32 vlen; |
| 4994 | |
| 4995 | next_type = btf_type_by_id(btf, next_type_id); |
| 4996 | if (!next_type || !btf_type_is_decl_tag_target(next_type)) { |
| 4997 | btf_verifier_log_type(env, v->t, "Invalid type_id"); |
| 4998 | return -EINVAL; |
| 4999 | } |
| 5000 | |
| 5001 | if (!env_type_is_resolve_sink(env, next_type) && |
| 5002 | !env_type_is_resolved(env, next_type_id)) |
| 5003 | return env_stack_push(env, next_type, next_type_id); |
| 5004 | |
| 5005 | component_idx = btf_type_decl_tag(t)->component_idx; |
| 5006 | if (component_idx != -1) { |
| 5007 | if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { |
| 5008 | btf_verifier_log_type(env, v->t, "Invalid component_idx"); |
| 5009 | return -EINVAL; |
| 5010 | } |
| 5011 | |
| 5012 | if (btf_type_is_struct(next_type)) { |
| 5013 | vlen = btf_type_vlen(next_type); |
| 5014 | } else { |
| 5015 | /* next_type should be a function */ |
| 5016 | next_type = btf_type_by_id(btf, next_type->type); |
| 5017 | vlen = btf_type_vlen(next_type); |
| 5018 | } |
| 5019 | |
| 5020 | if ((u32)component_idx >= vlen) { |
| 5021 | btf_verifier_log_type(env, v->t, "Invalid component_idx"); |
| 5022 | return -EINVAL; |
| 5023 | } |
| 5024 | } |
| 5025 | |
| 5026 | env_stack_pop_resolved(env, next_type_id, 0); |
| 5027 | |
| 5028 | return 0; |
| 5029 | } |
| 5030 | |
| 5031 | static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) |
| 5032 | { |
| 5033 | btf_verifier_log(env, "type=%u component_idx=%d", t->type, |
| 5034 | btf_type_decl_tag(t)->component_idx); |
| 5035 | } |
| 5036 | |
| 5037 | static const struct btf_kind_operations decl_tag_ops = { |
| 5038 | .check_meta = btf_decl_tag_check_meta, |
| 5039 | .resolve = btf_decl_tag_resolve, |
| 5040 | .check_member = btf_df_check_member, |
| 5041 | .check_kflag_member = btf_df_check_kflag_member, |
| 5042 | .log_details = btf_decl_tag_log, |
| 5043 | .show = btf_df_show, |
| 5044 | }; |
| 5045 | |
| 5046 | static int btf_func_proto_check(struct btf_verifier_env *env, |
| 5047 | const struct btf_type *t) |
| 5048 | { |
| 5049 | const struct btf_type *ret_type; |
| 5050 | const struct btf_param *args; |
| 5051 | const struct btf *btf; |
| 5052 | u16 nr_args, i; |
| 5053 | int err; |
| 5054 | |
| 5055 | btf = env->btf; |
| 5056 | args = (const struct btf_param *)(t + 1); |
| 5057 | nr_args = btf_type_vlen(t); |
| 5058 | |
| 5059 | /* Check func return type which could be "void" (t->type == 0) */ |
| 5060 | if (t->type) { |
| 5061 | u32 ret_type_id = t->type; |
| 5062 | |
| 5063 | ret_type = btf_type_by_id(btf, ret_type_id); |
| 5064 | if (!ret_type) { |
| 5065 | btf_verifier_log_type(env, t, "Invalid return type"); |
| 5066 | return -EINVAL; |
| 5067 | } |
| 5068 | |
| 5069 | if (btf_type_is_resolve_source_only(ret_type)) { |
| 5070 | btf_verifier_log_type(env, t, "Invalid return type"); |
| 5071 | return -EINVAL; |
| 5072 | } |
| 5073 | |
| 5074 | if (btf_type_needs_resolve(ret_type) && |
| 5075 | !env_type_is_resolved(env, ret_type_id)) { |
| 5076 | err = btf_resolve(env, ret_type, ret_type_id); |
| 5077 | if (err) |
| 5078 | return err; |
| 5079 | } |
| 5080 | |
| 5081 | /* Ensure the return type is a type that has a size */ |
| 5082 | if (!btf_type_id_size(btf, &ret_type_id, NULL)) { |
| 5083 | btf_verifier_log_type(env, t, "Invalid return type"); |
| 5084 | return -EINVAL; |
| 5085 | } |
| 5086 | } |
| 5087 | |
| 5088 | if (!nr_args) |
| 5089 | return 0; |
| 5090 | |
| 5091 | /* Last func arg type_id could be 0 if it is a vararg */ |
| 5092 | if (!args[nr_args - 1].type) { |
| 5093 | if (args[nr_args - 1].name_off) { |
| 5094 | btf_verifier_log_type(env, t, "Invalid arg#%u", |
| 5095 | nr_args); |
| 5096 | return -EINVAL; |
| 5097 | } |
| 5098 | nr_args--; |
| 5099 | } |
| 5100 | |
| 5101 | for (i = 0; i < nr_args; i++) { |
| 5102 | const struct btf_type *arg_type; |
| 5103 | u32 arg_type_id; |
| 5104 | |
| 5105 | arg_type_id = args[i].type; |
| 5106 | arg_type = btf_type_by_id(btf, arg_type_id); |
| 5107 | if (!arg_type) { |
| 5108 | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); |
| 5109 | return -EINVAL; |
| 5110 | } |
| 5111 | |
| 5112 | if (btf_type_is_resolve_source_only(arg_type)) { |
| 5113 | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); |
| 5114 | return -EINVAL; |
| 5115 | } |
| 5116 | |
| 5117 | if (args[i].name_off && |
| 5118 | (!btf_name_offset_valid(btf, args[i].name_off) || |
| 5119 | !btf_name_valid_identifier(btf, args[i].name_off))) { |
| 5120 | btf_verifier_log_type(env, t, |
| 5121 | "Invalid arg#%u", i + 1); |
| 5122 | return -EINVAL; |
| 5123 | } |
| 5124 | |
| 5125 | if (btf_type_needs_resolve(arg_type) && |
| 5126 | !env_type_is_resolved(env, arg_type_id)) { |
| 5127 | err = btf_resolve(env, arg_type, arg_type_id); |
| 5128 | if (err) |
| 5129 | return err; |
| 5130 | } |
| 5131 | |
| 5132 | if (!btf_type_id_size(btf, &arg_type_id, NULL)) { |
| 5133 | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); |
| 5134 | return -EINVAL; |
| 5135 | } |
| 5136 | } |
| 5137 | |
| 5138 | return 0; |
| 5139 | } |
| 5140 | |
| 5141 | static int btf_func_check(struct btf_verifier_env *env, |
| 5142 | const struct btf_type *t) |
| 5143 | { |
| 5144 | const struct btf_type *proto_type; |
| 5145 | const struct btf_param *args; |
| 5146 | const struct btf *btf; |
| 5147 | u16 nr_args, i; |
| 5148 | |
| 5149 | btf = env->btf; |
| 5150 | proto_type = btf_type_by_id(btf, t->type); |
| 5151 | |
| 5152 | if (!proto_type || !btf_type_is_func_proto(proto_type)) { |
| 5153 | btf_verifier_log_type(env, t, "Invalid type_id"); |
| 5154 | return -EINVAL; |
| 5155 | } |
| 5156 | |
| 5157 | args = (const struct btf_param *)(proto_type + 1); |
| 5158 | nr_args = btf_type_vlen(proto_type); |
| 5159 | for (i = 0; i < nr_args; i++) { |
| 5160 | if (!args[i].name_off && args[i].type) { |
| 5161 | btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); |
| 5162 | return -EINVAL; |
| 5163 | } |
| 5164 | } |
| 5165 | |
| 5166 | return 0; |
| 5167 | } |
| 5168 | |
| 5169 | static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { |
| 5170 | [BTF_KIND_INT] = &int_ops, |
| 5171 | [BTF_KIND_PTR] = &ptr_ops, |
| 5172 | [BTF_KIND_ARRAY] = &array_ops, |
| 5173 | [BTF_KIND_STRUCT] = &struct_ops, |
| 5174 | [BTF_KIND_UNION] = &struct_ops, |
| 5175 | [BTF_KIND_ENUM] = &enum_ops, |
| 5176 | [BTF_KIND_FWD] = &fwd_ops, |
| 5177 | [BTF_KIND_TYPEDEF] = &modifier_ops, |
| 5178 | [BTF_KIND_VOLATILE] = &modifier_ops, |
| 5179 | [BTF_KIND_CONST] = &modifier_ops, |
| 5180 | [BTF_KIND_RESTRICT] = &modifier_ops, |
| 5181 | [BTF_KIND_FUNC] = &func_ops, |
| 5182 | [BTF_KIND_FUNC_PROTO] = &func_proto_ops, |
| 5183 | [BTF_KIND_VAR] = &var_ops, |
| 5184 | [BTF_KIND_DATASEC] = &datasec_ops, |
| 5185 | [BTF_KIND_FLOAT] = &float_ops, |
| 5186 | [BTF_KIND_DECL_TAG] = &decl_tag_ops, |
| 5187 | [BTF_KIND_TYPE_TAG] = &modifier_ops, |
| 5188 | [BTF_KIND_ENUM64] = &enum64_ops, |
| 5189 | }; |
| 5190 | |
| 5191 | static s32 btf_check_meta(struct btf_verifier_env *env, |
| 5192 | const struct btf_type *t, |
| 5193 | u32 meta_left) |
| 5194 | { |
| 5195 | u32 saved_meta_left = meta_left; |
| 5196 | s32 var_meta_size; |
| 5197 | |
| 5198 | if (meta_left < sizeof(*t)) { |
| 5199 | btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", |
| 5200 | env->log_type_id, meta_left, sizeof(*t)); |
| 5201 | return -EINVAL; |
| 5202 | } |
| 5203 | meta_left -= sizeof(*t); |
| 5204 | |
| 5205 | if (t->info & ~BTF_INFO_MASK) { |
| 5206 | btf_verifier_log(env, "[%u] Invalid btf_info:%x", |
| 5207 | env->log_type_id, t->info); |
| 5208 | return -EINVAL; |
| 5209 | } |
| 5210 | |
| 5211 | if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || |
| 5212 | BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { |
| 5213 | btf_verifier_log(env, "[%u] Invalid kind:%u", |
| 5214 | env->log_type_id, BTF_INFO_KIND(t->info)); |
| 5215 | return -EINVAL; |
| 5216 | } |
| 5217 | |
| 5218 | if (!btf_name_offset_valid(env->btf, t->name_off)) { |
| 5219 | btf_verifier_log(env, "[%u] Invalid name_offset:%u", |
| 5220 | env->log_type_id, t->name_off); |
| 5221 | return -EINVAL; |
| 5222 | } |
| 5223 | |
| 5224 | var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); |
| 5225 | if (var_meta_size < 0) |
| 5226 | return var_meta_size; |
| 5227 | |
| 5228 | meta_left -= var_meta_size; |
| 5229 | |
| 5230 | return saved_meta_left - meta_left; |
| 5231 | } |
| 5232 | |
| 5233 | static int btf_check_all_metas(struct btf_verifier_env *env) |
| 5234 | { |
| 5235 | struct btf *btf = env->btf; |
| 5236 | struct btf_header *hdr; |
| 5237 | void *cur, *end; |
| 5238 | |
| 5239 | hdr = &btf->hdr; |
| 5240 | cur = btf->nohdr_data + hdr->type_off; |
| 5241 | end = cur + hdr->type_len; |
| 5242 | |
| 5243 | env->log_type_id = btf->base_btf ? btf->start_id : 1; |
| 5244 | while (cur < end) { |
| 5245 | struct btf_type *t = cur; |
| 5246 | s32 meta_size; |
| 5247 | |
| 5248 | meta_size = btf_check_meta(env, t, end - cur); |
| 5249 | if (meta_size < 0) |
| 5250 | return meta_size; |
| 5251 | |
| 5252 | btf_add_type(env, t); |
| 5253 | cur += meta_size; |
| 5254 | env->log_type_id++; |
| 5255 | } |
| 5256 | |
| 5257 | return 0; |
| 5258 | } |
| 5259 | |
| 5260 | static bool btf_resolve_valid(struct btf_verifier_env *env, |
| 5261 | const struct btf_type *t, |
| 5262 | u32 type_id) |
| 5263 | { |
| 5264 | struct btf *btf = env->btf; |
| 5265 | |
| 5266 | if (!env_type_is_resolved(env, type_id)) |
| 5267 | return false; |
| 5268 | |
| 5269 | if (btf_type_is_struct(t) || btf_type_is_datasec(t)) |
| 5270 | return !btf_resolved_type_id(btf, type_id) && |
| 5271 | !btf_resolved_type_size(btf, type_id); |
| 5272 | |
| 5273 | if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) |
| 5274 | return btf_resolved_type_id(btf, type_id) && |
| 5275 | !btf_resolved_type_size(btf, type_id); |
| 5276 | |
| 5277 | if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || |
| 5278 | btf_type_is_var(t)) { |
| 5279 | t = btf_type_id_resolve(btf, &type_id); |
| 5280 | return t && |
| 5281 | !btf_type_is_modifier(t) && |
| 5282 | !btf_type_is_var(t) && |
| 5283 | !btf_type_is_datasec(t); |
| 5284 | } |
| 5285 | |
| 5286 | if (btf_type_is_array(t)) { |
| 5287 | const struct btf_array *array = btf_type_array(t); |
| 5288 | const struct btf_type *elem_type; |
| 5289 | u32 elem_type_id = array->type; |
| 5290 | u32 elem_size; |
| 5291 | |
| 5292 | elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); |
| 5293 | return elem_type && !btf_type_is_modifier(elem_type) && |
| 5294 | (array->nelems * elem_size == |
| 5295 | btf_resolved_type_size(btf, type_id)); |
| 5296 | } |
| 5297 | |
| 5298 | return false; |
| 5299 | } |
| 5300 | |
| 5301 | static int btf_resolve(struct btf_verifier_env *env, |
| 5302 | const struct btf_type *t, u32 type_id) |
| 5303 | { |
| 5304 | u32 save_log_type_id = env->log_type_id; |
| 5305 | const struct resolve_vertex *v; |
| 5306 | int err = 0; |
| 5307 | |
| 5308 | env->resolve_mode = RESOLVE_TBD; |
| 5309 | env_stack_push(env, t, type_id); |
| 5310 | while (!err && (v = env_stack_peak(env))) { |
| 5311 | env->log_type_id = v->type_id; |
| 5312 | err = btf_type_ops(v->t)->resolve(env, v); |
| 5313 | } |
| 5314 | |
| 5315 | env->log_type_id = type_id; |
| 5316 | if (err == -E2BIG) { |
| 5317 | btf_verifier_log_type(env, t, |
| 5318 | "Exceeded max resolving depth:%u", |
| 5319 | MAX_RESOLVE_DEPTH); |
| 5320 | } else if (err == -EEXIST) { |
| 5321 | btf_verifier_log_type(env, t, "Loop detected"); |
| 5322 | } |
| 5323 | |
| 5324 | /* Final sanity check */ |
| 5325 | if (!err && !btf_resolve_valid(env, t, type_id)) { |
| 5326 | btf_verifier_log_type(env, t, "Invalid resolve state"); |
| 5327 | err = -EINVAL; |
| 5328 | } |
| 5329 | |
| 5330 | env->log_type_id = save_log_type_id; |
| 5331 | return err; |
| 5332 | } |
| 5333 | |
| 5334 | static int btf_check_all_types(struct btf_verifier_env *env) |
| 5335 | { |
| 5336 | struct btf *btf = env->btf; |
| 5337 | const struct btf_type *t; |
| 5338 | u32 type_id, i; |
| 5339 | int err; |
| 5340 | |
| 5341 | err = env_resolve_init(env); |
| 5342 | if (err) |
| 5343 | return err; |
| 5344 | |
| 5345 | env->phase++; |
| 5346 | for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { |
| 5347 | type_id = btf->start_id + i; |
| 5348 | t = btf_type_by_id(btf, type_id); |
| 5349 | |
| 5350 | env->log_type_id = type_id; |
| 5351 | if (btf_type_needs_resolve(t) && |
| 5352 | !env_type_is_resolved(env, type_id)) { |
| 5353 | err = btf_resolve(env, t, type_id); |
| 5354 | if (err) |
| 5355 | return err; |
| 5356 | } |
| 5357 | |
| 5358 | if (btf_type_is_func_proto(t)) { |
| 5359 | err = btf_func_proto_check(env, t); |
| 5360 | if (err) |
| 5361 | return err; |
| 5362 | } |
| 5363 | } |
| 5364 | |
| 5365 | return 0; |
| 5366 | } |
| 5367 | |
| 5368 | static int btf_parse_type_sec(struct btf_verifier_env *env) |
| 5369 | { |
| 5370 | const struct btf_header *hdr = &env->btf->hdr; |
| 5371 | int err; |
| 5372 | |
| 5373 | /* Type section must align to 4 bytes */ |
| 5374 | if (hdr->type_off & (sizeof(u32) - 1)) { |
| 5375 | btf_verifier_log(env, "Unaligned type_off"); |
| 5376 | return -EINVAL; |
| 5377 | } |
| 5378 | |
| 5379 | if (!env->btf->base_btf && !hdr->type_len) { |
| 5380 | btf_verifier_log(env, "No type found"); |
| 5381 | return -EINVAL; |
| 5382 | } |
| 5383 | |
| 5384 | err = btf_check_all_metas(env); |
| 5385 | if (err) |
| 5386 | return err; |
| 5387 | |
| 5388 | return btf_check_all_types(env); |
| 5389 | } |
| 5390 | |
| 5391 | static int btf_parse_str_sec(struct btf_verifier_env *env) |
| 5392 | { |
| 5393 | const struct btf_header *hdr; |
| 5394 | struct btf *btf = env->btf; |
| 5395 | const char *start, *end; |
| 5396 | |
| 5397 | hdr = &btf->hdr; |
| 5398 | start = btf->nohdr_data + hdr->str_off; |
| 5399 | end = start + hdr->str_len; |
| 5400 | |
| 5401 | if (end != btf->data + btf->data_size) { |
| 5402 | btf_verifier_log(env, "String section is not at the end"); |
| 5403 | return -EINVAL; |
| 5404 | } |
| 5405 | |
| 5406 | btf->strings = start; |
| 5407 | |
| 5408 | if (btf->base_btf && !hdr->str_len) |
| 5409 | return 0; |
| 5410 | if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { |
| 5411 | btf_verifier_log(env, "Invalid string section"); |
| 5412 | return -EINVAL; |
| 5413 | } |
| 5414 | if (!btf->base_btf && start[0]) { |
| 5415 | btf_verifier_log(env, "Invalid string section"); |
| 5416 | return -EINVAL; |
| 5417 | } |
| 5418 | |
| 5419 | return 0; |
| 5420 | } |
| 5421 | |
| 5422 | static const size_t btf_sec_info_offset[] = { |
| 5423 | offsetof(struct btf_header, type_off), |
| 5424 | offsetof(struct btf_header, str_off), |
| 5425 | }; |
| 5426 | |
| 5427 | static int btf_sec_info_cmp(const void *a, const void *b) |
| 5428 | { |
| 5429 | const struct btf_sec_info *x = a; |
| 5430 | const struct btf_sec_info *y = b; |
| 5431 | |
| 5432 | return (int)(x->off - y->off) ? : (int)(x->len - y->len); |
| 5433 | } |
| 5434 | |
| 5435 | static int btf_check_sec_info(struct btf_verifier_env *env, |
| 5436 | u32 btf_data_size) |
| 5437 | { |
| 5438 | struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; |
| 5439 | u32 total, expected_total, i; |
| 5440 | const struct btf_header *hdr; |
| 5441 | const struct btf *btf; |
| 5442 | |
| 5443 | btf = env->btf; |
| 5444 | hdr = &btf->hdr; |
| 5445 | |
| 5446 | /* Populate the secs from hdr */ |
| 5447 | for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) |
| 5448 | secs[i] = *(struct btf_sec_info *)((void *)hdr + |
| 5449 | btf_sec_info_offset[i]); |
| 5450 | |
| 5451 | sort(secs, ARRAY_SIZE(btf_sec_info_offset), |
| 5452 | sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); |
| 5453 | |
| 5454 | /* Check for gaps and overlap among sections */ |
| 5455 | total = 0; |
| 5456 | expected_total = btf_data_size - hdr->hdr_len; |
| 5457 | for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { |
| 5458 | if (expected_total < secs[i].off) { |
| 5459 | btf_verifier_log(env, "Invalid section offset"); |
| 5460 | return -EINVAL; |
| 5461 | } |
| 5462 | if (total < secs[i].off) { |
| 5463 | /* gap */ |
| 5464 | btf_verifier_log(env, "Unsupported section found"); |
| 5465 | return -EINVAL; |
| 5466 | } |
| 5467 | if (total > secs[i].off) { |
| 5468 | btf_verifier_log(env, "Section overlap found"); |
| 5469 | return -EINVAL; |
| 5470 | } |
| 5471 | if (expected_total - total < secs[i].len) { |
| 5472 | btf_verifier_log(env, |
| 5473 | "Total section length too long"); |
| 5474 | return -EINVAL; |
| 5475 | } |
| 5476 | total += secs[i].len; |
| 5477 | } |
| 5478 | |
| 5479 | /* There is data other than hdr and known sections */ |
| 5480 | if (expected_total != total) { |
| 5481 | btf_verifier_log(env, "Unsupported section found"); |
| 5482 | return -EINVAL; |
| 5483 | } |
| 5484 | |
| 5485 | return 0; |
| 5486 | } |
| 5487 | |
| 5488 | static int btf_parse_hdr(struct btf_verifier_env *env) |
| 5489 | { |
| 5490 | u32 hdr_len, hdr_copy, btf_data_size; |
| 5491 | const struct btf_header *hdr; |
| 5492 | struct btf *btf; |
| 5493 | |
| 5494 | btf = env->btf; |
| 5495 | btf_data_size = btf->data_size; |
| 5496 | |
| 5497 | if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { |
| 5498 | btf_verifier_log(env, "hdr_len not found"); |
| 5499 | return -EINVAL; |
| 5500 | } |
| 5501 | |
| 5502 | hdr = btf->data; |
| 5503 | hdr_len = hdr->hdr_len; |
| 5504 | if (btf_data_size < hdr_len) { |
| 5505 | btf_verifier_log(env, "btf_header not found"); |
| 5506 | return -EINVAL; |
| 5507 | } |
| 5508 | |
| 5509 | /* Ensure the unsupported header fields are zero */ |
| 5510 | if (hdr_len > sizeof(btf->hdr)) { |
| 5511 | u8 *expected_zero = btf->data + sizeof(btf->hdr); |
| 5512 | u8 *end = btf->data + hdr_len; |
| 5513 | |
| 5514 | for (; expected_zero < end; expected_zero++) { |
| 5515 | if (*expected_zero) { |
| 5516 | btf_verifier_log(env, "Unsupported btf_header"); |
| 5517 | return -E2BIG; |
| 5518 | } |
| 5519 | } |
| 5520 | } |
| 5521 | |
| 5522 | hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); |
| 5523 | memcpy(&btf->hdr, btf->data, hdr_copy); |
| 5524 | |
| 5525 | hdr = &btf->hdr; |
| 5526 | |
| 5527 | btf_verifier_log_hdr(env, btf_data_size); |
| 5528 | |
| 5529 | if (hdr->magic != BTF_MAGIC) { |
| 5530 | btf_verifier_log(env, "Invalid magic"); |
| 5531 | return -EINVAL; |
| 5532 | } |
| 5533 | |
| 5534 | if (hdr->version != BTF_VERSION) { |
| 5535 | btf_verifier_log(env, "Unsupported version"); |
| 5536 | return -ENOTSUPP; |
| 5537 | } |
| 5538 | |
| 5539 | if (hdr->flags) { |
| 5540 | btf_verifier_log(env, "Unsupported flags"); |
| 5541 | return -ENOTSUPP; |
| 5542 | } |
| 5543 | |
| 5544 | if (!btf->base_btf && btf_data_size == hdr->hdr_len) { |
| 5545 | btf_verifier_log(env, "No data"); |
| 5546 | return -EINVAL; |
| 5547 | } |
| 5548 | |
| 5549 | return btf_check_sec_info(env, btf_data_size); |
| 5550 | } |
| 5551 | |
| 5552 | static const char *alloc_obj_fields[] = { |
| 5553 | "bpf_spin_lock", |
| 5554 | "bpf_list_head", |
| 5555 | "bpf_list_node", |
| 5556 | "bpf_rb_root", |
| 5557 | "bpf_rb_node", |
| 5558 | "bpf_refcount", |
| 5559 | }; |
| 5560 | |
| 5561 | static struct btf_struct_metas * |
| 5562 | btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) |
| 5563 | { |
| 5564 | struct btf_struct_metas *tab = NULL; |
| 5565 | struct btf_id_set *aof; |
| 5566 | int i, n, id, ret; |
| 5567 | |
| 5568 | BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); |
| 5569 | BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); |
| 5570 | |
| 5571 | aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); |
| 5572 | if (!aof) |
| 5573 | return ERR_PTR(-ENOMEM); |
| 5574 | aof->cnt = 0; |
| 5575 | |
| 5576 | for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { |
| 5577 | /* Try to find whether this special type exists in user BTF, and |
| 5578 | * if so remember its ID so we can easily find it among members |
| 5579 | * of structs that we iterate in the next loop. |
| 5580 | */ |
| 5581 | struct btf_id_set *new_aof; |
| 5582 | |
| 5583 | id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); |
| 5584 | if (id < 0) |
| 5585 | continue; |
| 5586 | |
| 5587 | new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), |
| 5588 | GFP_KERNEL | __GFP_NOWARN); |
| 5589 | if (!new_aof) { |
| 5590 | ret = -ENOMEM; |
| 5591 | goto free_aof; |
| 5592 | } |
| 5593 | aof = new_aof; |
| 5594 | aof->ids[aof->cnt++] = id; |
| 5595 | } |
| 5596 | |
| 5597 | n = btf_nr_types(btf); |
| 5598 | for (i = 1; i < n; i++) { |
| 5599 | /* Try to find if there are kptrs in user BTF and remember their ID */ |
| 5600 | struct btf_id_set *new_aof; |
| 5601 | struct btf_field_info tmp; |
| 5602 | const struct btf_type *t; |
| 5603 | |
| 5604 | t = btf_type_by_id(btf, i); |
| 5605 | if (!t) { |
| 5606 | ret = -EINVAL; |
| 5607 | goto free_aof; |
| 5608 | } |
| 5609 | |
| 5610 | ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); |
| 5611 | if (ret != BTF_FIELD_FOUND) |
| 5612 | continue; |
| 5613 | |
| 5614 | new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), |
| 5615 | GFP_KERNEL | __GFP_NOWARN); |
| 5616 | if (!new_aof) { |
| 5617 | ret = -ENOMEM; |
| 5618 | goto free_aof; |
| 5619 | } |
| 5620 | aof = new_aof; |
| 5621 | aof->ids[aof->cnt++] = i; |
| 5622 | } |
| 5623 | |
| 5624 | if (!aof->cnt) { |
| 5625 | kfree(aof); |
| 5626 | return NULL; |
| 5627 | } |
| 5628 | sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); |
| 5629 | |
| 5630 | for (i = 1; i < n; i++) { |
| 5631 | struct btf_struct_metas *new_tab; |
| 5632 | const struct btf_member *member; |
| 5633 | struct btf_struct_meta *type; |
| 5634 | struct btf_record *record; |
| 5635 | const struct btf_type *t; |
| 5636 | int j, tab_cnt; |
| 5637 | |
| 5638 | t = btf_type_by_id(btf, i); |
| 5639 | if (!__btf_type_is_struct(t)) |
| 5640 | continue; |
| 5641 | |
| 5642 | cond_resched(); |
| 5643 | |
| 5644 | for_each_member(j, t, member) { |
| 5645 | if (btf_id_set_contains(aof, member->type)) |
| 5646 | goto parse; |
| 5647 | } |
| 5648 | continue; |
| 5649 | parse: |
| 5650 | tab_cnt = tab ? tab->cnt : 0; |
| 5651 | new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1), |
| 5652 | GFP_KERNEL | __GFP_NOWARN); |
| 5653 | if (!new_tab) { |
| 5654 | ret = -ENOMEM; |
| 5655 | goto free; |
| 5656 | } |
| 5657 | if (!tab) |
| 5658 | new_tab->cnt = 0; |
| 5659 | tab = new_tab; |
| 5660 | |
| 5661 | type = &tab->types[tab->cnt]; |
| 5662 | type->btf_id = i; |
| 5663 | record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | |
| 5664 | BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | |
| 5665 | BPF_KPTR, t->size); |
| 5666 | /* The record cannot be unset, treat it as an error if so */ |
| 5667 | if (IS_ERR_OR_NULL(record)) { |
| 5668 | ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; |
| 5669 | goto free; |
| 5670 | } |
| 5671 | type->record = record; |
| 5672 | tab->cnt++; |
| 5673 | } |
| 5674 | kfree(aof); |
| 5675 | return tab; |
| 5676 | free: |
| 5677 | btf_struct_metas_free(tab); |
| 5678 | free_aof: |
| 5679 | kfree(aof); |
| 5680 | return ERR_PTR(ret); |
| 5681 | } |
| 5682 | |
| 5683 | struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) |
| 5684 | { |
| 5685 | struct btf_struct_metas *tab; |
| 5686 | |
| 5687 | BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); |
| 5688 | tab = btf->struct_meta_tab; |
| 5689 | if (!tab) |
| 5690 | return NULL; |
| 5691 | return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); |
| 5692 | } |
| 5693 | |
| 5694 | static int btf_check_type_tags(struct btf_verifier_env *env, |
| 5695 | struct btf *btf, int start_id) |
| 5696 | { |
| 5697 | int i, n, good_id = start_id - 1; |
| 5698 | bool in_tags; |
| 5699 | |
| 5700 | n = btf_nr_types(btf); |
| 5701 | for (i = start_id; i < n; i++) { |
| 5702 | const struct btf_type *t; |
| 5703 | int chain_limit = 32; |
| 5704 | u32 cur_id = i; |
| 5705 | |
| 5706 | t = btf_type_by_id(btf, i); |
| 5707 | if (!t) |
| 5708 | return -EINVAL; |
| 5709 | if (!btf_type_is_modifier(t)) |
| 5710 | continue; |
| 5711 | |
| 5712 | cond_resched(); |
| 5713 | |
| 5714 | in_tags = btf_type_is_type_tag(t); |
| 5715 | while (btf_type_is_modifier(t)) { |
| 5716 | if (!chain_limit--) { |
| 5717 | btf_verifier_log(env, "Max chain length or cycle detected"); |
| 5718 | return -ELOOP; |
| 5719 | } |
| 5720 | if (btf_type_is_type_tag(t)) { |
| 5721 | if (!in_tags) { |
| 5722 | btf_verifier_log(env, "Type tags don't precede modifiers"); |
| 5723 | return -EINVAL; |
| 5724 | } |
| 5725 | } else if (in_tags) { |
| 5726 | in_tags = false; |
| 5727 | } |
| 5728 | if (cur_id <= good_id) |
| 5729 | break; |
| 5730 | /* Move to next type */ |
| 5731 | cur_id = t->type; |
| 5732 | t = btf_type_by_id(btf, cur_id); |
| 5733 | if (!t) |
| 5734 | return -EINVAL; |
| 5735 | } |
| 5736 | good_id = i; |
| 5737 | } |
| 5738 | return 0; |
| 5739 | } |
| 5740 | |
| 5741 | static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) |
| 5742 | { |
| 5743 | u32 log_true_size; |
| 5744 | int err; |
| 5745 | |
| 5746 | err = bpf_vlog_finalize(log, &log_true_size); |
| 5747 | |
| 5748 | if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && |
| 5749 | copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), |
| 5750 | &log_true_size, sizeof(log_true_size))) |
| 5751 | err = -EFAULT; |
| 5752 | |
| 5753 | return err; |
| 5754 | } |
| 5755 | |
| 5756 | static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) |
| 5757 | { |
| 5758 | bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); |
| 5759 | char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); |
| 5760 | struct btf_struct_metas *struct_meta_tab; |
| 5761 | struct btf_verifier_env *env = NULL; |
| 5762 | struct btf *btf = NULL; |
| 5763 | u8 *data; |
| 5764 | int err, ret; |
| 5765 | |
| 5766 | if (attr->btf_size > BTF_MAX_SIZE) |
| 5767 | return ERR_PTR(-E2BIG); |
| 5768 | |
| 5769 | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); |
| 5770 | if (!env) |
| 5771 | return ERR_PTR(-ENOMEM); |
| 5772 | |
| 5773 | /* user could have requested verbose verifier output |
| 5774 | * and supplied buffer to store the verification trace |
| 5775 | */ |
| 5776 | err = bpf_vlog_init(&env->log, attr->btf_log_level, |
| 5777 | log_ubuf, attr->btf_log_size); |
| 5778 | if (err) |
| 5779 | goto errout_free; |
| 5780 | |
| 5781 | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); |
| 5782 | if (!btf) { |
| 5783 | err = -ENOMEM; |
| 5784 | goto errout; |
| 5785 | } |
| 5786 | env->btf = btf; |
| 5787 | |
| 5788 | data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); |
| 5789 | if (!data) { |
| 5790 | err = -ENOMEM; |
| 5791 | goto errout; |
| 5792 | } |
| 5793 | |
| 5794 | btf->data = data; |
| 5795 | btf->data_size = attr->btf_size; |
| 5796 | |
| 5797 | if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { |
| 5798 | err = -EFAULT; |
| 5799 | goto errout; |
| 5800 | } |
| 5801 | |
| 5802 | err = btf_parse_hdr(env); |
| 5803 | if (err) |
| 5804 | goto errout; |
| 5805 | |
| 5806 | btf->nohdr_data = btf->data + btf->hdr.hdr_len; |
| 5807 | |
| 5808 | err = btf_parse_str_sec(env); |
| 5809 | if (err) |
| 5810 | goto errout; |
| 5811 | |
| 5812 | err = btf_parse_type_sec(env); |
| 5813 | if (err) |
| 5814 | goto errout; |
| 5815 | |
| 5816 | err = btf_check_type_tags(env, btf, 1); |
| 5817 | if (err) |
| 5818 | goto errout; |
| 5819 | |
| 5820 | struct_meta_tab = btf_parse_struct_metas(&env->log, btf); |
| 5821 | if (IS_ERR(struct_meta_tab)) { |
| 5822 | err = PTR_ERR(struct_meta_tab); |
| 5823 | goto errout; |
| 5824 | } |
| 5825 | btf->struct_meta_tab = struct_meta_tab; |
| 5826 | |
| 5827 | if (struct_meta_tab) { |
| 5828 | int i; |
| 5829 | |
| 5830 | for (i = 0; i < struct_meta_tab->cnt; i++) { |
| 5831 | err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); |
| 5832 | if (err < 0) |
| 5833 | goto errout_meta; |
| 5834 | } |
| 5835 | } |
| 5836 | |
| 5837 | err = finalize_log(&env->log, uattr, uattr_size); |
| 5838 | if (err) |
| 5839 | goto errout_free; |
| 5840 | |
| 5841 | btf_verifier_env_free(env); |
| 5842 | refcount_set(&btf->refcnt, 1); |
| 5843 | return btf; |
| 5844 | |
| 5845 | errout_meta: |
| 5846 | btf_free_struct_meta_tab(btf); |
| 5847 | errout: |
| 5848 | /* overwrite err with -ENOSPC or -EFAULT */ |
| 5849 | ret = finalize_log(&env->log, uattr, uattr_size); |
| 5850 | if (ret) |
| 5851 | err = ret; |
| 5852 | errout_free: |
| 5853 | btf_verifier_env_free(env); |
| 5854 | if (btf) |
| 5855 | btf_free(btf); |
| 5856 | return ERR_PTR(err); |
| 5857 | } |
| 5858 | |
| 5859 | extern char __start_BTF[]; |
| 5860 | extern char __stop_BTF[]; |
| 5861 | extern struct btf *btf_vmlinux; |
| 5862 | |
| 5863 | #define BPF_MAP_TYPE(_id, _ops) |
| 5864 | #define BPF_LINK_TYPE(_id, _name) |
| 5865 | static union { |
| 5866 | struct bpf_ctx_convert { |
| 5867 | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
| 5868 | prog_ctx_type _id##_prog; \ |
| 5869 | kern_ctx_type _id##_kern; |
| 5870 | #include <linux/bpf_types.h> |
| 5871 | #undef BPF_PROG_TYPE |
| 5872 | } *__t; |
| 5873 | /* 't' is written once under lock. Read many times. */ |
| 5874 | const struct btf_type *t; |
| 5875 | } bpf_ctx_convert; |
| 5876 | enum { |
| 5877 | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
| 5878 | __ctx_convert##_id, |
| 5879 | #include <linux/bpf_types.h> |
| 5880 | #undef BPF_PROG_TYPE |
| 5881 | __ctx_convert_unused, /* to avoid empty enum in extreme .config */ |
| 5882 | }; |
| 5883 | static u8 bpf_ctx_convert_map[] = { |
| 5884 | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
| 5885 | [_id] = __ctx_convert##_id, |
| 5886 | #include <linux/bpf_types.h> |
| 5887 | #undef BPF_PROG_TYPE |
| 5888 | 0, /* avoid empty array */ |
| 5889 | }; |
| 5890 | #undef BPF_MAP_TYPE |
| 5891 | #undef BPF_LINK_TYPE |
| 5892 | |
| 5893 | static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) |
| 5894 | { |
| 5895 | const struct btf_type *conv_struct; |
| 5896 | const struct btf_member *ctx_type; |
| 5897 | |
| 5898 | conv_struct = bpf_ctx_convert.t; |
| 5899 | if (!conv_struct) |
| 5900 | return NULL; |
| 5901 | /* prog_type is valid bpf program type. No need for bounds check. */ |
| 5902 | ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; |
| 5903 | /* ctx_type is a pointer to prog_ctx_type in vmlinux. |
| 5904 | * Like 'struct __sk_buff' |
| 5905 | */ |
| 5906 | return btf_type_by_id(btf_vmlinux, ctx_type->type); |
| 5907 | } |
| 5908 | |
| 5909 | static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) |
| 5910 | { |
| 5911 | const struct btf_type *conv_struct; |
| 5912 | const struct btf_member *ctx_type; |
| 5913 | |
| 5914 | conv_struct = bpf_ctx_convert.t; |
| 5915 | if (!conv_struct) |
| 5916 | return -EFAULT; |
| 5917 | /* prog_type is valid bpf program type. No need for bounds check. */ |
| 5918 | ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; |
| 5919 | /* ctx_type is a pointer to prog_ctx_type in vmlinux. |
| 5920 | * Like 'struct sk_buff' |
| 5921 | */ |
| 5922 | return ctx_type->type; |
| 5923 | } |
| 5924 | |
| 5925 | bool btf_is_projection_of(const char *pname, const char *tname) |
| 5926 | { |
| 5927 | if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) |
| 5928 | return true; |
| 5929 | if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) |
| 5930 | return true; |
| 5931 | return false; |
| 5932 | } |
| 5933 | |
| 5934 | bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, |
| 5935 | const struct btf_type *t, enum bpf_prog_type prog_type, |
| 5936 | int arg) |
| 5937 | { |
| 5938 | const struct btf_type *ctx_type; |
| 5939 | const char *tname, *ctx_tname; |
| 5940 | |
| 5941 | t = btf_type_by_id(btf, t->type); |
| 5942 | |
| 5943 | /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to |
| 5944 | * check before we skip all the typedef below. |
| 5945 | */ |
| 5946 | if (prog_type == BPF_PROG_TYPE_KPROBE) { |
| 5947 | while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) |
| 5948 | t = btf_type_by_id(btf, t->type); |
| 5949 | |
| 5950 | if (btf_type_is_typedef(t)) { |
| 5951 | tname = btf_name_by_offset(btf, t->name_off); |
| 5952 | if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) |
| 5953 | return true; |
| 5954 | } |
| 5955 | } |
| 5956 | |
| 5957 | while (btf_type_is_modifier(t)) |
| 5958 | t = btf_type_by_id(btf, t->type); |
| 5959 | if (!btf_type_is_struct(t)) { |
| 5960 | /* Only pointer to struct is supported for now. |
| 5961 | * That means that BPF_PROG_TYPE_TRACEPOINT with BTF |
| 5962 | * is not supported yet. |
| 5963 | * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. |
| 5964 | */ |
| 5965 | return false; |
| 5966 | } |
| 5967 | tname = btf_name_by_offset(btf, t->name_off); |
| 5968 | if (!tname) { |
| 5969 | bpf_log(log, "arg#%d struct doesn't have a name\n", arg); |
| 5970 | return false; |
| 5971 | } |
| 5972 | |
| 5973 | ctx_type = find_canonical_prog_ctx_type(prog_type); |
| 5974 | if (!ctx_type) { |
| 5975 | bpf_log(log, "btf_vmlinux is malformed\n"); |
| 5976 | /* should not happen */ |
| 5977 | return false; |
| 5978 | } |
| 5979 | again: |
| 5980 | ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); |
| 5981 | if (!ctx_tname) { |
| 5982 | /* should not happen */ |
| 5983 | bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); |
| 5984 | return false; |
| 5985 | } |
| 5986 | /* program types without named context types work only with arg:ctx tag */ |
| 5987 | if (ctx_tname[0] == '\0') |
| 5988 | return false; |
| 5989 | /* only compare that prog's ctx type name is the same as |
| 5990 | * kernel expects. No need to compare field by field. |
| 5991 | * It's ok for bpf prog to do: |
| 5992 | * struct __sk_buff {}; |
| 5993 | * int socket_filter_bpf_prog(struct __sk_buff *skb) |
| 5994 | * { // no fields of skb are ever used } |
| 5995 | */ |
| 5996 | if (btf_is_projection_of(ctx_tname, tname)) |
| 5997 | return true; |
| 5998 | if (strcmp(ctx_tname, tname)) { |
| 5999 | /* bpf_user_pt_regs_t is a typedef, so resolve it to |
| 6000 | * underlying struct and check name again |
| 6001 | */ |
| 6002 | if (!btf_type_is_modifier(ctx_type)) |
| 6003 | return false; |
| 6004 | while (btf_type_is_modifier(ctx_type)) |
| 6005 | ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); |
| 6006 | goto again; |
| 6007 | } |
| 6008 | return true; |
| 6009 | } |
| 6010 | |
| 6011 | /* forward declarations for arch-specific underlying types of |
| 6012 | * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef |
| 6013 | * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still |
| 6014 | * works correctly with __builtin_types_compatible_p() on respective |
| 6015 | * architectures |
| 6016 | */ |
| 6017 | struct user_regs_struct; |
| 6018 | struct user_pt_regs; |
| 6019 | |
| 6020 | static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, |
| 6021 | const struct btf_type *t, int arg, |
| 6022 | enum bpf_prog_type prog_type, |
| 6023 | enum bpf_attach_type attach_type) |
| 6024 | { |
| 6025 | const struct btf_type *ctx_type; |
| 6026 | const char *tname, *ctx_tname; |
| 6027 | |
| 6028 | if (!btf_is_ptr(t)) { |
| 6029 | bpf_log(log, "arg#%d type isn't a pointer\n", arg); |
| 6030 | return -EINVAL; |
| 6031 | } |
| 6032 | t = btf_type_by_id(btf, t->type); |
| 6033 | |
| 6034 | /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ |
| 6035 | if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { |
| 6036 | while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) |
| 6037 | t = btf_type_by_id(btf, t->type); |
| 6038 | |
| 6039 | if (btf_type_is_typedef(t)) { |
| 6040 | tname = btf_name_by_offset(btf, t->name_off); |
| 6041 | if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) |
| 6042 | return 0; |
| 6043 | } |
| 6044 | } |
| 6045 | |
| 6046 | /* all other program types don't use typedefs for context type */ |
| 6047 | while (btf_type_is_modifier(t)) |
| 6048 | t = btf_type_by_id(btf, t->type); |
| 6049 | |
| 6050 | /* `void *ctx __arg_ctx` is always valid */ |
| 6051 | if (btf_type_is_void(t)) |
| 6052 | return 0; |
| 6053 | |
| 6054 | tname = btf_name_by_offset(btf, t->name_off); |
| 6055 | if (str_is_empty(tname)) { |
| 6056 | bpf_log(log, "arg#%d type doesn't have a name\n", arg); |
| 6057 | return -EINVAL; |
| 6058 | } |
| 6059 | |
| 6060 | /* special cases */ |
| 6061 | switch (prog_type) { |
| 6062 | case BPF_PROG_TYPE_KPROBE: |
| 6063 | if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) |
| 6064 | return 0; |
| 6065 | break; |
| 6066 | case BPF_PROG_TYPE_PERF_EVENT: |
| 6067 | if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && |
| 6068 | __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) |
| 6069 | return 0; |
| 6070 | if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && |
| 6071 | __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) |
| 6072 | return 0; |
| 6073 | if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && |
| 6074 | __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) |
| 6075 | return 0; |
| 6076 | break; |
| 6077 | case BPF_PROG_TYPE_RAW_TRACEPOINT: |
| 6078 | case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: |
| 6079 | /* allow u64* as ctx */ |
| 6080 | if (btf_is_int(t) && t->size == 8) |
| 6081 | return 0; |
| 6082 | break; |
| 6083 | case BPF_PROG_TYPE_TRACING: |
| 6084 | switch (attach_type) { |
| 6085 | case BPF_TRACE_RAW_TP: |
| 6086 | /* tp_btf program is TRACING, so need special case here */ |
| 6087 | if (__btf_type_is_struct(t) && |
| 6088 | strcmp(tname, "bpf_raw_tracepoint_args") == 0) |
| 6089 | return 0; |
| 6090 | /* allow u64* as ctx */ |
| 6091 | if (btf_is_int(t) && t->size == 8) |
| 6092 | return 0; |
| 6093 | break; |
| 6094 | case BPF_TRACE_ITER: |
| 6095 | /* allow struct bpf_iter__xxx types only */ |
| 6096 | if (__btf_type_is_struct(t) && |
| 6097 | strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) |
| 6098 | return 0; |
| 6099 | break; |
| 6100 | case BPF_TRACE_FENTRY: |
| 6101 | case BPF_TRACE_FEXIT: |
| 6102 | case BPF_MODIFY_RETURN: |
| 6103 | /* allow u64* as ctx */ |
| 6104 | if (btf_is_int(t) && t->size == 8) |
| 6105 | return 0; |
| 6106 | break; |
| 6107 | default: |
| 6108 | break; |
| 6109 | } |
| 6110 | break; |
| 6111 | case BPF_PROG_TYPE_LSM: |
| 6112 | case BPF_PROG_TYPE_STRUCT_OPS: |
| 6113 | /* allow u64* as ctx */ |
| 6114 | if (btf_is_int(t) && t->size == 8) |
| 6115 | return 0; |
| 6116 | break; |
| 6117 | case BPF_PROG_TYPE_TRACEPOINT: |
| 6118 | case BPF_PROG_TYPE_SYSCALL: |
| 6119 | case BPF_PROG_TYPE_EXT: |
| 6120 | return 0; /* anything goes */ |
| 6121 | default: |
| 6122 | break; |
| 6123 | } |
| 6124 | |
| 6125 | ctx_type = find_canonical_prog_ctx_type(prog_type); |
| 6126 | if (!ctx_type) { |
| 6127 | /* should not happen */ |
| 6128 | bpf_log(log, "btf_vmlinux is malformed\n"); |
| 6129 | return -EINVAL; |
| 6130 | } |
| 6131 | |
| 6132 | /* resolve typedefs and check that underlying structs are matching as well */ |
| 6133 | while (btf_type_is_modifier(ctx_type)) |
| 6134 | ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); |
| 6135 | |
| 6136 | /* if program type doesn't have distinctly named struct type for |
| 6137 | * context, then __arg_ctx argument can only be `void *`, which we |
| 6138 | * already checked above |
| 6139 | */ |
| 6140 | if (!__btf_type_is_struct(ctx_type)) { |
| 6141 | bpf_log(log, "arg#%d should be void pointer\n", arg); |
| 6142 | return -EINVAL; |
| 6143 | } |
| 6144 | |
| 6145 | ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); |
| 6146 | if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { |
| 6147 | bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); |
| 6148 | return -EINVAL; |
| 6149 | } |
| 6150 | |
| 6151 | return 0; |
| 6152 | } |
| 6153 | |
| 6154 | static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, |
| 6155 | struct btf *btf, |
| 6156 | const struct btf_type *t, |
| 6157 | enum bpf_prog_type prog_type, |
| 6158 | int arg) |
| 6159 | { |
| 6160 | if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) |
| 6161 | return -ENOENT; |
| 6162 | return find_kern_ctx_type_id(prog_type); |
| 6163 | } |
| 6164 | |
| 6165 | int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) |
| 6166 | { |
| 6167 | const struct btf_member *kctx_member; |
| 6168 | const struct btf_type *conv_struct; |
| 6169 | const struct btf_type *kctx_type; |
| 6170 | u32 kctx_type_id; |
| 6171 | |
| 6172 | conv_struct = bpf_ctx_convert.t; |
| 6173 | /* get member for kernel ctx type */ |
| 6174 | kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; |
| 6175 | kctx_type_id = kctx_member->type; |
| 6176 | kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); |
| 6177 | if (!btf_type_is_struct(kctx_type)) { |
| 6178 | bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); |
| 6179 | return -EINVAL; |
| 6180 | } |
| 6181 | |
| 6182 | return kctx_type_id; |
| 6183 | } |
| 6184 | |
| 6185 | BTF_ID_LIST(bpf_ctx_convert_btf_id) |
| 6186 | BTF_ID(struct, bpf_ctx_convert) |
| 6187 | |
| 6188 | static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, |
| 6189 | void *data, unsigned int data_size) |
| 6190 | { |
| 6191 | struct btf *btf = NULL; |
| 6192 | int err; |
| 6193 | |
| 6194 | if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) |
| 6195 | return ERR_PTR(-ENOENT); |
| 6196 | |
| 6197 | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); |
| 6198 | if (!btf) { |
| 6199 | err = -ENOMEM; |
| 6200 | goto errout; |
| 6201 | } |
| 6202 | env->btf = btf; |
| 6203 | |
| 6204 | btf->data = data; |
| 6205 | btf->data_size = data_size; |
| 6206 | btf->kernel_btf = true; |
| 6207 | snprintf(btf->name, sizeof(btf->name), "%s", name); |
| 6208 | |
| 6209 | err = btf_parse_hdr(env); |
| 6210 | if (err) |
| 6211 | goto errout; |
| 6212 | |
| 6213 | btf->nohdr_data = btf->data + btf->hdr.hdr_len; |
| 6214 | |
| 6215 | err = btf_parse_str_sec(env); |
| 6216 | if (err) |
| 6217 | goto errout; |
| 6218 | |
| 6219 | err = btf_check_all_metas(env); |
| 6220 | if (err) |
| 6221 | goto errout; |
| 6222 | |
| 6223 | err = btf_check_type_tags(env, btf, 1); |
| 6224 | if (err) |
| 6225 | goto errout; |
| 6226 | |
| 6227 | refcount_set(&btf->refcnt, 1); |
| 6228 | |
| 6229 | return btf; |
| 6230 | |
| 6231 | errout: |
| 6232 | if (btf) { |
| 6233 | kvfree(btf->types); |
| 6234 | kfree(btf); |
| 6235 | } |
| 6236 | return ERR_PTR(err); |
| 6237 | } |
| 6238 | |
| 6239 | struct btf *btf_parse_vmlinux(void) |
| 6240 | { |
| 6241 | struct btf_verifier_env *env = NULL; |
| 6242 | struct bpf_verifier_log *log; |
| 6243 | struct btf *btf; |
| 6244 | int err; |
| 6245 | |
| 6246 | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); |
| 6247 | if (!env) |
| 6248 | return ERR_PTR(-ENOMEM); |
| 6249 | |
| 6250 | log = &env->log; |
| 6251 | log->level = BPF_LOG_KERNEL; |
| 6252 | btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); |
| 6253 | if (IS_ERR(btf)) |
| 6254 | goto err_out; |
| 6255 | |
| 6256 | /* btf_parse_vmlinux() runs under bpf_verifier_lock */ |
| 6257 | bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); |
| 6258 | err = btf_alloc_id(btf); |
| 6259 | if (err) { |
| 6260 | btf_free(btf); |
| 6261 | btf = ERR_PTR(err); |
| 6262 | } |
| 6263 | err_out: |
| 6264 | btf_verifier_env_free(env); |
| 6265 | return btf; |
| 6266 | } |
| 6267 | |
| 6268 | /* If .BTF_ids section was created with distilled base BTF, both base and |
| 6269 | * split BTF ids will need to be mapped to actual base/split ids for |
| 6270 | * BTF now that it has been relocated. |
| 6271 | */ |
| 6272 | static __u32 btf_relocate_id(const struct btf *btf, __u32 id) |
| 6273 | { |
| 6274 | if (!btf->base_btf || !btf->base_id_map) |
| 6275 | return id; |
| 6276 | return btf->base_id_map[id]; |
| 6277 | } |
| 6278 | |
| 6279 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 6280 | |
| 6281 | static struct btf *btf_parse_module(const char *module_name, const void *data, |
| 6282 | unsigned int data_size, void *base_data, |
| 6283 | unsigned int base_data_size) |
| 6284 | { |
| 6285 | struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; |
| 6286 | struct btf_verifier_env *env = NULL; |
| 6287 | struct bpf_verifier_log *log; |
| 6288 | int err = 0; |
| 6289 | |
| 6290 | vmlinux_btf = bpf_get_btf_vmlinux(); |
| 6291 | if (IS_ERR(vmlinux_btf)) |
| 6292 | return vmlinux_btf; |
| 6293 | if (!vmlinux_btf) |
| 6294 | return ERR_PTR(-EINVAL); |
| 6295 | |
| 6296 | env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); |
| 6297 | if (!env) |
| 6298 | return ERR_PTR(-ENOMEM); |
| 6299 | |
| 6300 | log = &env->log; |
| 6301 | log->level = BPF_LOG_KERNEL; |
| 6302 | |
| 6303 | if (base_data) { |
| 6304 | base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); |
| 6305 | if (IS_ERR(base_btf)) { |
| 6306 | err = PTR_ERR(base_btf); |
| 6307 | goto errout; |
| 6308 | } |
| 6309 | } else { |
| 6310 | base_btf = vmlinux_btf; |
| 6311 | } |
| 6312 | |
| 6313 | btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); |
| 6314 | if (!btf) { |
| 6315 | err = -ENOMEM; |
| 6316 | goto errout; |
| 6317 | } |
| 6318 | env->btf = btf; |
| 6319 | |
| 6320 | btf->base_btf = base_btf; |
| 6321 | btf->start_id = base_btf->nr_types; |
| 6322 | btf->start_str_off = base_btf->hdr.str_len; |
| 6323 | btf->kernel_btf = true; |
| 6324 | snprintf(btf->name, sizeof(btf->name), "%s", module_name); |
| 6325 | |
| 6326 | btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); |
| 6327 | if (!btf->data) { |
| 6328 | err = -ENOMEM; |
| 6329 | goto errout; |
| 6330 | } |
| 6331 | btf->data_size = data_size; |
| 6332 | |
| 6333 | err = btf_parse_hdr(env); |
| 6334 | if (err) |
| 6335 | goto errout; |
| 6336 | |
| 6337 | btf->nohdr_data = btf->data + btf->hdr.hdr_len; |
| 6338 | |
| 6339 | err = btf_parse_str_sec(env); |
| 6340 | if (err) |
| 6341 | goto errout; |
| 6342 | |
| 6343 | err = btf_check_all_metas(env); |
| 6344 | if (err) |
| 6345 | goto errout; |
| 6346 | |
| 6347 | err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); |
| 6348 | if (err) |
| 6349 | goto errout; |
| 6350 | |
| 6351 | if (base_btf != vmlinux_btf) { |
| 6352 | err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); |
| 6353 | if (err) |
| 6354 | goto errout; |
| 6355 | btf_free(base_btf); |
| 6356 | base_btf = vmlinux_btf; |
| 6357 | } |
| 6358 | |
| 6359 | btf_verifier_env_free(env); |
| 6360 | refcount_set(&btf->refcnt, 1); |
| 6361 | return btf; |
| 6362 | |
| 6363 | errout: |
| 6364 | btf_verifier_env_free(env); |
| 6365 | if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) |
| 6366 | btf_free(base_btf); |
| 6367 | if (btf) { |
| 6368 | kvfree(btf->data); |
| 6369 | kvfree(btf->types); |
| 6370 | kfree(btf); |
| 6371 | } |
| 6372 | return ERR_PTR(err); |
| 6373 | } |
| 6374 | |
| 6375 | #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ |
| 6376 | |
| 6377 | struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) |
| 6378 | { |
| 6379 | struct bpf_prog *tgt_prog = prog->aux->dst_prog; |
| 6380 | |
| 6381 | if (tgt_prog) |
| 6382 | return tgt_prog->aux->btf; |
| 6383 | else |
| 6384 | return prog->aux->attach_btf; |
| 6385 | } |
| 6386 | |
| 6387 | static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t) |
| 6388 | { |
| 6389 | /* skip modifiers */ |
| 6390 | t = btf_type_skip_modifiers(btf, t->type, NULL); |
| 6391 | return btf_type_is_void(t) || btf_type_is_int(t); |
| 6392 | } |
| 6393 | |
| 6394 | u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, |
| 6395 | int off) |
| 6396 | { |
| 6397 | const struct btf_param *args; |
| 6398 | const struct btf_type *t; |
| 6399 | u32 offset = 0, nr_args; |
| 6400 | int i; |
| 6401 | |
| 6402 | if (!func_proto) |
| 6403 | return off / 8; |
| 6404 | |
| 6405 | nr_args = btf_type_vlen(func_proto); |
| 6406 | args = (const struct btf_param *)(func_proto + 1); |
| 6407 | for (i = 0; i < nr_args; i++) { |
| 6408 | t = btf_type_skip_modifiers(btf, args[i].type, NULL); |
| 6409 | offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); |
| 6410 | if (off < offset) |
| 6411 | return i; |
| 6412 | } |
| 6413 | |
| 6414 | t = btf_type_skip_modifiers(btf, func_proto->type, NULL); |
| 6415 | offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); |
| 6416 | if (off < offset) |
| 6417 | return nr_args; |
| 6418 | |
| 6419 | return nr_args + 1; |
| 6420 | } |
| 6421 | |
| 6422 | static bool prog_args_trusted(const struct bpf_prog *prog) |
| 6423 | { |
| 6424 | enum bpf_attach_type atype = prog->expected_attach_type; |
| 6425 | |
| 6426 | switch (prog->type) { |
| 6427 | case BPF_PROG_TYPE_TRACING: |
| 6428 | return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; |
| 6429 | case BPF_PROG_TYPE_LSM: |
| 6430 | return bpf_lsm_is_trusted(prog); |
| 6431 | case BPF_PROG_TYPE_STRUCT_OPS: |
| 6432 | return true; |
| 6433 | default: |
| 6434 | return false; |
| 6435 | } |
| 6436 | } |
| 6437 | |
| 6438 | int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, |
| 6439 | u32 arg_no) |
| 6440 | { |
| 6441 | const struct btf_param *args; |
| 6442 | const struct btf_type *t; |
| 6443 | int off = 0, i; |
| 6444 | u32 sz; |
| 6445 | |
| 6446 | args = btf_params(func_proto); |
| 6447 | for (i = 0; i < arg_no; i++) { |
| 6448 | t = btf_type_by_id(btf, args[i].type); |
| 6449 | t = btf_resolve_size(btf, t, &sz); |
| 6450 | if (IS_ERR(t)) |
| 6451 | return PTR_ERR(t); |
| 6452 | off += roundup(sz, 8); |
| 6453 | } |
| 6454 | |
| 6455 | return off; |
| 6456 | } |
| 6457 | |
| 6458 | struct bpf_raw_tp_null_args { |
| 6459 | const char *func; |
| 6460 | u64 mask; |
| 6461 | }; |
| 6462 | |
| 6463 | static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { |
| 6464 | /* sched */ |
| 6465 | { "sched_pi_setprio", 0x10 }, |
| 6466 | /* ... from sched_numa_pair_template event class */ |
| 6467 | { "sched_stick_numa", 0x100 }, |
| 6468 | { "sched_swap_numa", 0x100 }, |
| 6469 | /* afs */ |
| 6470 | { "afs_make_fs_call", 0x10 }, |
| 6471 | { "afs_make_fs_calli", 0x10 }, |
| 6472 | { "afs_make_fs_call1", 0x10 }, |
| 6473 | { "afs_make_fs_call2", 0x10 }, |
| 6474 | { "afs_protocol_error", 0x1 }, |
| 6475 | { "afs_flock_ev", 0x10 }, |
| 6476 | /* cachefiles */ |
| 6477 | { "cachefiles_lookup", 0x1 | 0x200 }, |
| 6478 | { "cachefiles_unlink", 0x1 }, |
| 6479 | { "cachefiles_rename", 0x1 }, |
| 6480 | { "cachefiles_prep_read", 0x1 }, |
| 6481 | { "cachefiles_mark_active", 0x1 }, |
| 6482 | { "cachefiles_mark_failed", 0x1 }, |
| 6483 | { "cachefiles_mark_inactive", 0x1 }, |
| 6484 | { "cachefiles_vfs_error", 0x1 }, |
| 6485 | { "cachefiles_io_error", 0x1 }, |
| 6486 | { "cachefiles_ondemand_open", 0x1 }, |
| 6487 | { "cachefiles_ondemand_copen", 0x1 }, |
| 6488 | { "cachefiles_ondemand_close", 0x1 }, |
| 6489 | { "cachefiles_ondemand_read", 0x1 }, |
| 6490 | { "cachefiles_ondemand_cread", 0x1 }, |
| 6491 | { "cachefiles_ondemand_fd_write", 0x1 }, |
| 6492 | { "cachefiles_ondemand_fd_release", 0x1 }, |
| 6493 | /* ext4, from ext4__mballoc event class */ |
| 6494 | { "ext4_mballoc_discard", 0x10 }, |
| 6495 | { "ext4_mballoc_free", 0x10 }, |
| 6496 | /* fib */ |
| 6497 | { "fib_table_lookup", 0x100 }, |
| 6498 | /* filelock */ |
| 6499 | /* ... from filelock_lock event class */ |
| 6500 | { "posix_lock_inode", 0x10 }, |
| 6501 | { "fcntl_setlk", 0x10 }, |
| 6502 | { "locks_remove_posix", 0x10 }, |
| 6503 | { "flock_lock_inode", 0x10 }, |
| 6504 | /* ... from filelock_lease event class */ |
| 6505 | { "break_lease_noblock", 0x10 }, |
| 6506 | { "break_lease_block", 0x10 }, |
| 6507 | { "break_lease_unblock", 0x10 }, |
| 6508 | { "generic_delete_lease", 0x10 }, |
| 6509 | { "time_out_leases", 0x10 }, |
| 6510 | /* host1x */ |
| 6511 | { "host1x_cdma_push_gather", 0x10000 }, |
| 6512 | /* huge_memory */ |
| 6513 | { "mm_khugepaged_scan_pmd", 0x10 }, |
| 6514 | { "mm_collapse_huge_page_isolate", 0x1 }, |
| 6515 | { "mm_khugepaged_scan_file", 0x10 }, |
| 6516 | { "mm_khugepaged_collapse_file", 0x10 }, |
| 6517 | /* kmem */ |
| 6518 | { "mm_page_alloc", 0x1 }, |
| 6519 | { "mm_page_pcpu_drain", 0x1 }, |
| 6520 | /* .. from mm_page event class */ |
| 6521 | { "mm_page_alloc_zone_locked", 0x1 }, |
| 6522 | /* netfs */ |
| 6523 | { "netfs_failure", 0x10 }, |
| 6524 | /* power */ |
| 6525 | { "device_pm_callback_start", 0x10 }, |
| 6526 | /* qdisc */ |
| 6527 | { "qdisc_dequeue", 0x1000 }, |
| 6528 | /* rxrpc */ |
| 6529 | { "rxrpc_recvdata", 0x1 }, |
| 6530 | { "rxrpc_resend", 0x10 }, |
| 6531 | { "rxrpc_tq", 0x10 }, |
| 6532 | { "rxrpc_client", 0x1 }, |
| 6533 | /* skb */ |
| 6534 | {"kfree_skb", 0x1000}, |
| 6535 | /* sunrpc */ |
| 6536 | { "xs_stream_read_data", 0x1 }, |
| 6537 | /* ... from xprt_cong_event event class */ |
| 6538 | { "xprt_reserve_cong", 0x10 }, |
| 6539 | { "xprt_release_cong", 0x10 }, |
| 6540 | { "xprt_get_cong", 0x10 }, |
| 6541 | { "xprt_put_cong", 0x10 }, |
| 6542 | /* tcp */ |
| 6543 | { "tcp_send_reset", 0x11 }, |
| 6544 | { "tcp_sendmsg_locked", 0x100 }, |
| 6545 | /* tegra_apb_dma */ |
| 6546 | { "tegra_dma_tx_status", 0x100 }, |
| 6547 | /* timer_migration */ |
| 6548 | { "tmigr_update_events", 0x1 }, |
| 6549 | /* writeback, from writeback_folio_template event class */ |
| 6550 | { "writeback_dirty_folio", 0x10 }, |
| 6551 | { "folio_wait_writeback", 0x10 }, |
| 6552 | /* rdma */ |
| 6553 | { "mr_integ_alloc", 0x2000 }, |
| 6554 | /* bpf_testmod */ |
| 6555 | { "bpf_testmod_test_read", 0x0 }, |
| 6556 | /* amdgpu */ |
| 6557 | { "amdgpu_vm_bo_map", 0x1 }, |
| 6558 | { "amdgpu_vm_bo_unmap", 0x1 }, |
| 6559 | /* netfs */ |
| 6560 | { "netfs_folioq", 0x1 }, |
| 6561 | /* xfs from xfs_defer_pending_class */ |
| 6562 | { "xfs_defer_create_intent", 0x1 }, |
| 6563 | { "xfs_defer_cancel_list", 0x1 }, |
| 6564 | { "xfs_defer_pending_finish", 0x1 }, |
| 6565 | { "xfs_defer_pending_abort", 0x1 }, |
| 6566 | { "xfs_defer_relog_intent", 0x1 }, |
| 6567 | { "xfs_defer_isolate_paused", 0x1 }, |
| 6568 | { "xfs_defer_item_pause", 0x1 }, |
| 6569 | { "xfs_defer_item_unpause", 0x1 }, |
| 6570 | /* xfs from xfs_defer_pending_item_class */ |
| 6571 | { "xfs_defer_add_item", 0x1 }, |
| 6572 | { "xfs_defer_cancel_item", 0x1 }, |
| 6573 | { "xfs_defer_finish_item", 0x1 }, |
| 6574 | /* xfs from xfs_icwalk_class */ |
| 6575 | { "xfs_ioc_free_eofblocks", 0x10 }, |
| 6576 | { "xfs_blockgc_free_space", 0x10 }, |
| 6577 | /* xfs from xfs_btree_cur_class */ |
| 6578 | { "xfs_btree_updkeys", 0x100 }, |
| 6579 | { "xfs_btree_overlapped_query_range", 0x100 }, |
| 6580 | /* xfs from xfs_imap_class*/ |
| 6581 | { "xfs_map_blocks_found", 0x10000 }, |
| 6582 | { "xfs_map_blocks_alloc", 0x10000 }, |
| 6583 | { "xfs_iomap_alloc", 0x1000 }, |
| 6584 | { "xfs_iomap_found", 0x1000 }, |
| 6585 | /* xfs from xfs_fs_class */ |
| 6586 | { "xfs_inodegc_flush", 0x1 }, |
| 6587 | { "xfs_inodegc_push", 0x1 }, |
| 6588 | { "xfs_inodegc_start", 0x1 }, |
| 6589 | { "xfs_inodegc_stop", 0x1 }, |
| 6590 | { "xfs_inodegc_queue", 0x1 }, |
| 6591 | { "xfs_inodegc_throttle", 0x1 }, |
| 6592 | { "xfs_fs_sync_fs", 0x1 }, |
| 6593 | { "xfs_blockgc_start", 0x1 }, |
| 6594 | { "xfs_blockgc_stop", 0x1 }, |
| 6595 | { "xfs_blockgc_worker", 0x1 }, |
| 6596 | { "xfs_blockgc_flush_all", 0x1 }, |
| 6597 | /* xfs_scrub */ |
| 6598 | { "xchk_nlinks_live_update", 0x10 }, |
| 6599 | /* xfs_scrub from xchk_metapath_class */ |
| 6600 | { "xchk_metapath_lookup", 0x100 }, |
| 6601 | /* nfsd */ |
| 6602 | { "nfsd_dirent", 0x1 }, |
| 6603 | { "nfsd_file_acquire", 0x1001 }, |
| 6604 | { "nfsd_file_insert_err", 0x1 }, |
| 6605 | { "nfsd_file_cons_err", 0x1 }, |
| 6606 | /* nfs4 */ |
| 6607 | { "nfs4_setup_sequence", 0x1 }, |
| 6608 | { "pnfs_update_layout", 0x10000 }, |
| 6609 | { "nfs4_inode_callback_event", 0x200 }, |
| 6610 | { "nfs4_inode_stateid_callback_event", 0x200 }, |
| 6611 | /* nfs from pnfs_layout_event */ |
| 6612 | { "pnfs_mds_fallback_pg_init_read", 0x10000 }, |
| 6613 | { "pnfs_mds_fallback_pg_init_write", 0x10000 }, |
| 6614 | { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, |
| 6615 | { "pnfs_mds_fallback_read_done", 0x10000 }, |
| 6616 | { "pnfs_mds_fallback_write_done", 0x10000 }, |
| 6617 | { "pnfs_mds_fallback_read_pagelist", 0x10000 }, |
| 6618 | { "pnfs_mds_fallback_write_pagelist", 0x10000 }, |
| 6619 | /* coda */ |
| 6620 | { "coda_dec_pic_run", 0x10 }, |
| 6621 | { "coda_dec_pic_done", 0x10 }, |
| 6622 | /* cfg80211 */ |
| 6623 | { "cfg80211_scan_done", 0x11 }, |
| 6624 | { "rdev_set_coalesce", 0x10 }, |
| 6625 | { "cfg80211_report_wowlan_wakeup", 0x100 }, |
| 6626 | { "cfg80211_inform_bss_frame", 0x100 }, |
| 6627 | { "cfg80211_michael_mic_failure", 0x10000 }, |
| 6628 | /* cfg80211 from wiphy_work_event */ |
| 6629 | { "wiphy_work_queue", 0x10 }, |
| 6630 | { "wiphy_work_run", 0x10 }, |
| 6631 | { "wiphy_work_cancel", 0x10 }, |
| 6632 | { "wiphy_work_flush", 0x10 }, |
| 6633 | /* hugetlbfs */ |
| 6634 | { "hugetlbfs_alloc_inode", 0x10 }, |
| 6635 | /* spufs */ |
| 6636 | { "spufs_context", 0x10 }, |
| 6637 | /* kvm_hv */ |
| 6638 | { "kvm_page_fault_enter", 0x100 }, |
| 6639 | /* dpu */ |
| 6640 | { "dpu_crtc_setup_mixer", 0x100 }, |
| 6641 | /* binder */ |
| 6642 | { "binder_transaction", 0x100 }, |
| 6643 | /* bcachefs */ |
| 6644 | { "btree_path_free", 0x100 }, |
| 6645 | /* hfi1_tx */ |
| 6646 | { "hfi1_sdma_progress", 0x1000 }, |
| 6647 | /* iptfs */ |
| 6648 | { "iptfs_ingress_postq_event", 0x1000 }, |
| 6649 | /* neigh */ |
| 6650 | { "neigh_update", 0x10 }, |
| 6651 | /* snd_firewire_lib */ |
| 6652 | { "amdtp_packet", 0x100 }, |
| 6653 | }; |
| 6654 | |
| 6655 | bool btf_ctx_access(int off, int size, enum bpf_access_type type, |
| 6656 | const struct bpf_prog *prog, |
| 6657 | struct bpf_insn_access_aux *info) |
| 6658 | { |
| 6659 | const struct btf_type *t = prog->aux->attach_func_proto; |
| 6660 | struct bpf_prog *tgt_prog = prog->aux->dst_prog; |
| 6661 | struct btf *btf = bpf_prog_get_target_btf(prog); |
| 6662 | const char *tname = prog->aux->attach_func_name; |
| 6663 | struct bpf_verifier_log *log = info->log; |
| 6664 | const struct btf_param *args; |
| 6665 | bool ptr_err_raw_tp = false; |
| 6666 | const char *tag_value; |
| 6667 | u32 nr_args, arg; |
| 6668 | int i, ret; |
| 6669 | |
| 6670 | if (off % 8) { |
| 6671 | bpf_log(log, "func '%s' offset %d is not multiple of 8\n", |
| 6672 | tname, off); |
| 6673 | return false; |
| 6674 | } |
| 6675 | arg = btf_ctx_arg_idx(btf, t, off); |
| 6676 | args = (const struct btf_param *)(t + 1); |
| 6677 | /* if (t == NULL) Fall back to default BPF prog with |
| 6678 | * MAX_BPF_FUNC_REG_ARGS u64 arguments. |
| 6679 | */ |
| 6680 | nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; |
| 6681 | if (prog->aux->attach_btf_trace) { |
| 6682 | /* skip first 'void *__data' argument in btf_trace_##name typedef */ |
| 6683 | args++; |
| 6684 | nr_args--; |
| 6685 | } |
| 6686 | |
| 6687 | if (arg > nr_args) { |
| 6688 | bpf_log(log, "func '%s' doesn't have %d-th argument\n", |
| 6689 | tname, arg + 1); |
| 6690 | return false; |
| 6691 | } |
| 6692 | |
| 6693 | if (arg == nr_args) { |
| 6694 | switch (prog->expected_attach_type) { |
| 6695 | case BPF_LSM_MAC: |
| 6696 | /* mark we are accessing the return value */ |
| 6697 | info->is_retval = true; |
| 6698 | fallthrough; |
| 6699 | case BPF_LSM_CGROUP: |
| 6700 | case BPF_TRACE_FEXIT: |
| 6701 | /* When LSM programs are attached to void LSM hooks |
| 6702 | * they use FEXIT trampolines and when attached to |
| 6703 | * int LSM hooks, they use MODIFY_RETURN trampolines. |
| 6704 | * |
| 6705 | * While the LSM programs are BPF_MODIFY_RETURN-like |
| 6706 | * the check: |
| 6707 | * |
| 6708 | * if (ret_type != 'int') |
| 6709 | * return -EINVAL; |
| 6710 | * |
| 6711 | * is _not_ done here. This is still safe as LSM hooks |
| 6712 | * have only void and int return types. |
| 6713 | */ |
| 6714 | if (!t) |
| 6715 | return true; |
| 6716 | t = btf_type_by_id(btf, t->type); |
| 6717 | break; |
| 6718 | case BPF_MODIFY_RETURN: |
| 6719 | /* For now the BPF_MODIFY_RETURN can only be attached to |
| 6720 | * functions that return an int. |
| 6721 | */ |
| 6722 | if (!t) |
| 6723 | return false; |
| 6724 | |
| 6725 | t = btf_type_skip_modifiers(btf, t->type, NULL); |
| 6726 | if (!btf_type_is_small_int(t)) { |
| 6727 | bpf_log(log, |
| 6728 | "ret type %s not allowed for fmod_ret\n", |
| 6729 | btf_type_str(t)); |
| 6730 | return false; |
| 6731 | } |
| 6732 | break; |
| 6733 | default: |
| 6734 | bpf_log(log, "func '%s' doesn't have %d-th argument\n", |
| 6735 | tname, arg + 1); |
| 6736 | return false; |
| 6737 | } |
| 6738 | } else { |
| 6739 | if (!t) |
| 6740 | /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ |
| 6741 | return true; |
| 6742 | t = btf_type_by_id(btf, args[arg].type); |
| 6743 | } |
| 6744 | |
| 6745 | /* skip modifiers */ |
| 6746 | while (btf_type_is_modifier(t)) |
| 6747 | t = btf_type_by_id(btf, t->type); |
| 6748 | if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) |
| 6749 | /* accessing a scalar */ |
| 6750 | return true; |
| 6751 | if (!btf_type_is_ptr(t)) { |
| 6752 | bpf_log(log, |
| 6753 | "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", |
| 6754 | tname, arg, |
| 6755 | __btf_name_by_offset(btf, t->name_off), |
| 6756 | btf_type_str(t)); |
| 6757 | return false; |
| 6758 | } |
| 6759 | |
| 6760 | if (size != sizeof(u64)) { |
| 6761 | bpf_log(log, "func '%s' size %d must be 8\n", |
| 6762 | tname, size); |
| 6763 | return false; |
| 6764 | } |
| 6765 | |
| 6766 | /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ |
| 6767 | for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { |
| 6768 | const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; |
| 6769 | u32 type, flag; |
| 6770 | |
| 6771 | type = base_type(ctx_arg_info->reg_type); |
| 6772 | flag = type_flag(ctx_arg_info->reg_type); |
| 6773 | if (ctx_arg_info->offset == off && type == PTR_TO_BUF && |
| 6774 | (flag & PTR_MAYBE_NULL)) { |
| 6775 | info->reg_type = ctx_arg_info->reg_type; |
| 6776 | return true; |
| 6777 | } |
| 6778 | } |
| 6779 | |
| 6780 | /* |
| 6781 | * If it's a pointer to void, it's the same as scalar from the verifier |
| 6782 | * safety POV. Either way, no futher pointer walking is allowed. |
| 6783 | */ |
| 6784 | if (is_void_or_int_ptr(btf, t)) |
| 6785 | return true; |
| 6786 | |
| 6787 | /* this is a pointer to another type */ |
| 6788 | for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { |
| 6789 | const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; |
| 6790 | |
| 6791 | if (ctx_arg_info->offset == off) { |
| 6792 | if (!ctx_arg_info->btf_id) { |
| 6793 | bpf_log(log,"invalid btf_id for context argument offset %u\n", off); |
| 6794 | return false; |
| 6795 | } |
| 6796 | |
| 6797 | info->reg_type = ctx_arg_info->reg_type; |
| 6798 | info->btf = ctx_arg_info->btf ? : btf_vmlinux; |
| 6799 | info->btf_id = ctx_arg_info->btf_id; |
| 6800 | info->ref_obj_id = ctx_arg_info->ref_obj_id; |
| 6801 | return true; |
| 6802 | } |
| 6803 | } |
| 6804 | |
| 6805 | info->reg_type = PTR_TO_BTF_ID; |
| 6806 | if (prog_args_trusted(prog)) |
| 6807 | info->reg_type |= PTR_TRUSTED; |
| 6808 | |
| 6809 | if (btf_param_match_suffix(btf, &args[arg], "__nullable")) |
| 6810 | info->reg_type |= PTR_MAYBE_NULL; |
| 6811 | |
| 6812 | if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { |
| 6813 | struct btf *btf = prog->aux->attach_btf; |
| 6814 | const struct btf_type *t; |
| 6815 | const char *tname; |
| 6816 | |
| 6817 | /* BTF lookups cannot fail, return false on error */ |
| 6818 | t = btf_type_by_id(btf, prog->aux->attach_btf_id); |
| 6819 | if (!t) |
| 6820 | return false; |
| 6821 | tname = btf_name_by_offset(btf, t->name_off); |
| 6822 | if (!tname) |
| 6823 | return false; |
| 6824 | /* Checked by bpf_check_attach_target */ |
| 6825 | tname += sizeof("btf_trace_") - 1; |
| 6826 | for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { |
| 6827 | /* Is this a func with potential NULL args? */ |
| 6828 | if (strcmp(tname, raw_tp_null_args[i].func)) |
| 6829 | continue; |
| 6830 | if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4))) |
| 6831 | info->reg_type |= PTR_MAYBE_NULL; |
| 6832 | /* Is the current arg IS_ERR? */ |
| 6833 | if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4))) |
| 6834 | ptr_err_raw_tp = true; |
| 6835 | break; |
| 6836 | } |
| 6837 | /* If we don't know NULL-ness specification and the tracepoint |
| 6838 | * is coming from a loadable module, be conservative and mark |
| 6839 | * argument as PTR_MAYBE_NULL. |
| 6840 | */ |
| 6841 | if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) |
| 6842 | info->reg_type |= PTR_MAYBE_NULL; |
| 6843 | } |
| 6844 | |
| 6845 | if (tgt_prog) { |
| 6846 | enum bpf_prog_type tgt_type; |
| 6847 | |
| 6848 | if (tgt_prog->type == BPF_PROG_TYPE_EXT) |
| 6849 | tgt_type = tgt_prog->aux->saved_dst_prog_type; |
| 6850 | else |
| 6851 | tgt_type = tgt_prog->type; |
| 6852 | |
| 6853 | ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); |
| 6854 | if (ret > 0) { |
| 6855 | info->btf = btf_vmlinux; |
| 6856 | info->btf_id = ret; |
| 6857 | return true; |
| 6858 | } else { |
| 6859 | return false; |
| 6860 | } |
| 6861 | } |
| 6862 | |
| 6863 | info->btf = btf; |
| 6864 | info->btf_id = t->type; |
| 6865 | t = btf_type_by_id(btf, t->type); |
| 6866 | |
| 6867 | if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { |
| 6868 | tag_value = __btf_name_by_offset(btf, t->name_off); |
| 6869 | if (strcmp(tag_value, "user") == 0) |
| 6870 | info->reg_type |= MEM_USER; |
| 6871 | if (strcmp(tag_value, "percpu") == 0) |
| 6872 | info->reg_type |= MEM_PERCPU; |
| 6873 | } |
| 6874 | |
| 6875 | /* skip modifiers */ |
| 6876 | while (btf_type_is_modifier(t)) { |
| 6877 | info->btf_id = t->type; |
| 6878 | t = btf_type_by_id(btf, t->type); |
| 6879 | } |
| 6880 | if (!btf_type_is_struct(t)) { |
| 6881 | bpf_log(log, |
| 6882 | "func '%s' arg%d type %s is not a struct\n", |
| 6883 | tname, arg, btf_type_str(t)); |
| 6884 | return false; |
| 6885 | } |
| 6886 | bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", |
| 6887 | tname, arg, info->btf_id, btf_type_str(t), |
| 6888 | __btf_name_by_offset(btf, t->name_off)); |
| 6889 | |
| 6890 | /* Perform all checks on the validity of type for this argument, but if |
| 6891 | * we know it can be IS_ERR at runtime, scrub pointer type and mark as |
| 6892 | * scalar. |
| 6893 | */ |
| 6894 | if (ptr_err_raw_tp) { |
| 6895 | bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); |
| 6896 | info->reg_type = SCALAR_VALUE; |
| 6897 | } |
| 6898 | return true; |
| 6899 | } |
| 6900 | EXPORT_SYMBOL_GPL(btf_ctx_access); |
| 6901 | |
| 6902 | enum bpf_struct_walk_result { |
| 6903 | /* < 0 error */ |
| 6904 | WALK_SCALAR = 0, |
| 6905 | WALK_PTR, |
| 6906 | WALK_STRUCT, |
| 6907 | }; |
| 6908 | |
| 6909 | static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, |
| 6910 | const struct btf_type *t, int off, int size, |
| 6911 | u32 *next_btf_id, enum bpf_type_flag *flag, |
| 6912 | const char **field_name) |
| 6913 | { |
| 6914 | u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; |
| 6915 | const struct btf_type *mtype, *elem_type = NULL; |
| 6916 | const struct btf_member *member; |
| 6917 | const char *tname, *mname, *tag_value; |
| 6918 | u32 vlen, elem_id, mid; |
| 6919 | |
| 6920 | again: |
| 6921 | if (btf_type_is_modifier(t)) |
| 6922 | t = btf_type_skip_modifiers(btf, t->type, NULL); |
| 6923 | tname = __btf_name_by_offset(btf, t->name_off); |
| 6924 | if (!btf_type_is_struct(t)) { |
| 6925 | bpf_log(log, "Type '%s' is not a struct\n", tname); |
| 6926 | return -EINVAL; |
| 6927 | } |
| 6928 | |
| 6929 | vlen = btf_type_vlen(t); |
| 6930 | if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) |
| 6931 | /* |
| 6932 | * walking unions yields untrusted pointers |
| 6933 | * with exception of __bpf_md_ptr and other |
| 6934 | * unions with a single member |
| 6935 | */ |
| 6936 | *flag |= PTR_UNTRUSTED; |
| 6937 | |
| 6938 | if (off + size > t->size) { |
| 6939 | /* If the last element is a variable size array, we may |
| 6940 | * need to relax the rule. |
| 6941 | */ |
| 6942 | struct btf_array *array_elem; |
| 6943 | |
| 6944 | if (vlen == 0) |
| 6945 | goto error; |
| 6946 | |
| 6947 | member = btf_type_member(t) + vlen - 1; |
| 6948 | mtype = btf_type_skip_modifiers(btf, member->type, |
| 6949 | NULL); |
| 6950 | if (!btf_type_is_array(mtype)) |
| 6951 | goto error; |
| 6952 | |
| 6953 | array_elem = (struct btf_array *)(mtype + 1); |
| 6954 | if (array_elem->nelems != 0) |
| 6955 | goto error; |
| 6956 | |
| 6957 | moff = __btf_member_bit_offset(t, member) / 8; |
| 6958 | if (off < moff) |
| 6959 | goto error; |
| 6960 | |
| 6961 | /* allow structure and integer */ |
| 6962 | t = btf_type_skip_modifiers(btf, array_elem->type, |
| 6963 | NULL); |
| 6964 | |
| 6965 | if (btf_type_is_int(t)) |
| 6966 | return WALK_SCALAR; |
| 6967 | |
| 6968 | if (!btf_type_is_struct(t)) |
| 6969 | goto error; |
| 6970 | |
| 6971 | off = (off - moff) % t->size; |
| 6972 | goto again; |
| 6973 | |
| 6974 | error: |
| 6975 | bpf_log(log, "access beyond struct %s at off %u size %u\n", |
| 6976 | tname, off, size); |
| 6977 | return -EACCES; |
| 6978 | } |
| 6979 | |
| 6980 | for_each_member(i, t, member) { |
| 6981 | /* offset of the field in bytes */ |
| 6982 | moff = __btf_member_bit_offset(t, member) / 8; |
| 6983 | if (off + size <= moff) |
| 6984 | /* won't find anything, field is already too far */ |
| 6985 | break; |
| 6986 | |
| 6987 | if (__btf_member_bitfield_size(t, member)) { |
| 6988 | u32 end_bit = __btf_member_bit_offset(t, member) + |
| 6989 | __btf_member_bitfield_size(t, member); |
| 6990 | |
| 6991 | /* off <= moff instead of off == moff because clang |
| 6992 | * does not generate a BTF member for anonymous |
| 6993 | * bitfield like the ":16" here: |
| 6994 | * struct { |
| 6995 | * int :16; |
| 6996 | * int x:8; |
| 6997 | * }; |
| 6998 | */ |
| 6999 | if (off <= moff && |
| 7000 | BITS_ROUNDUP_BYTES(end_bit) <= off + size) |
| 7001 | return WALK_SCALAR; |
| 7002 | |
| 7003 | /* off may be accessing a following member |
| 7004 | * |
| 7005 | * or |
| 7006 | * |
| 7007 | * Doing partial access at either end of this |
| 7008 | * bitfield. Continue on this case also to |
| 7009 | * treat it as not accessing this bitfield |
| 7010 | * and eventually error out as field not |
| 7011 | * found to keep it simple. |
| 7012 | * It could be relaxed if there was a legit |
| 7013 | * partial access case later. |
| 7014 | */ |
| 7015 | continue; |
| 7016 | } |
| 7017 | |
| 7018 | /* In case of "off" is pointing to holes of a struct */ |
| 7019 | if (off < moff) |
| 7020 | break; |
| 7021 | |
| 7022 | /* type of the field */ |
| 7023 | mid = member->type; |
| 7024 | mtype = btf_type_by_id(btf, member->type); |
| 7025 | mname = __btf_name_by_offset(btf, member->name_off); |
| 7026 | |
| 7027 | mtype = __btf_resolve_size(btf, mtype, &msize, |
| 7028 | &elem_type, &elem_id, &total_nelems, |
| 7029 | &mid); |
| 7030 | if (IS_ERR(mtype)) { |
| 7031 | bpf_log(log, "field %s doesn't have size\n", mname); |
| 7032 | return -EFAULT; |
| 7033 | } |
| 7034 | |
| 7035 | mtrue_end = moff + msize; |
| 7036 | if (off >= mtrue_end) |
| 7037 | /* no overlap with member, keep iterating */ |
| 7038 | continue; |
| 7039 | |
| 7040 | if (btf_type_is_array(mtype)) { |
| 7041 | u32 elem_idx; |
| 7042 | |
| 7043 | /* __btf_resolve_size() above helps to |
| 7044 | * linearize a multi-dimensional array. |
| 7045 | * |
| 7046 | * The logic here is treating an array |
| 7047 | * in a struct as the following way: |
| 7048 | * |
| 7049 | * struct outer { |
| 7050 | * struct inner array[2][2]; |
| 7051 | * }; |
| 7052 | * |
| 7053 | * looks like: |
| 7054 | * |
| 7055 | * struct outer { |
| 7056 | * struct inner array_elem0; |
| 7057 | * struct inner array_elem1; |
| 7058 | * struct inner array_elem2; |
| 7059 | * struct inner array_elem3; |
| 7060 | * }; |
| 7061 | * |
| 7062 | * When accessing outer->array[1][0], it moves |
| 7063 | * moff to "array_elem2", set mtype to |
| 7064 | * "struct inner", and msize also becomes |
| 7065 | * sizeof(struct inner). Then most of the |
| 7066 | * remaining logic will fall through without |
| 7067 | * caring the current member is an array or |
| 7068 | * not. |
| 7069 | * |
| 7070 | * Unlike mtype/msize/moff, mtrue_end does not |
| 7071 | * change. The naming difference ("_true") tells |
| 7072 | * that it is not always corresponding to |
| 7073 | * the current mtype/msize/moff. |
| 7074 | * It is the true end of the current |
| 7075 | * member (i.e. array in this case). That |
| 7076 | * will allow an int array to be accessed like |
| 7077 | * a scratch space, |
| 7078 | * i.e. allow access beyond the size of |
| 7079 | * the array's element as long as it is |
| 7080 | * within the mtrue_end boundary. |
| 7081 | */ |
| 7082 | |
| 7083 | /* skip empty array */ |
| 7084 | if (moff == mtrue_end) |
| 7085 | continue; |
| 7086 | |
| 7087 | msize /= total_nelems; |
| 7088 | elem_idx = (off - moff) / msize; |
| 7089 | moff += elem_idx * msize; |
| 7090 | mtype = elem_type; |
| 7091 | mid = elem_id; |
| 7092 | } |
| 7093 | |
| 7094 | /* the 'off' we're looking for is either equal to start |
| 7095 | * of this field or inside of this struct |
| 7096 | */ |
| 7097 | if (btf_type_is_struct(mtype)) { |
| 7098 | /* our field must be inside that union or struct */ |
| 7099 | t = mtype; |
| 7100 | |
| 7101 | /* return if the offset matches the member offset */ |
| 7102 | if (off == moff) { |
| 7103 | *next_btf_id = mid; |
| 7104 | return WALK_STRUCT; |
| 7105 | } |
| 7106 | |
| 7107 | /* adjust offset we're looking for */ |
| 7108 | off -= moff; |
| 7109 | goto again; |
| 7110 | } |
| 7111 | |
| 7112 | if (btf_type_is_ptr(mtype)) { |
| 7113 | const struct btf_type *stype, *t; |
| 7114 | enum bpf_type_flag tmp_flag = 0; |
| 7115 | u32 id; |
| 7116 | |
| 7117 | if (msize != size || off != moff) { |
| 7118 | bpf_log(log, |
| 7119 | "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", |
| 7120 | mname, moff, tname, off, size); |
| 7121 | return -EACCES; |
| 7122 | } |
| 7123 | |
| 7124 | /* check type tag */ |
| 7125 | t = btf_type_by_id(btf, mtype->type); |
| 7126 | if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { |
| 7127 | tag_value = __btf_name_by_offset(btf, t->name_off); |
| 7128 | /* check __user tag */ |
| 7129 | if (strcmp(tag_value, "user") == 0) |
| 7130 | tmp_flag = MEM_USER; |
| 7131 | /* check __percpu tag */ |
| 7132 | if (strcmp(tag_value, "percpu") == 0) |
| 7133 | tmp_flag = MEM_PERCPU; |
| 7134 | /* check __rcu tag */ |
| 7135 | if (strcmp(tag_value, "rcu") == 0) |
| 7136 | tmp_flag = MEM_RCU; |
| 7137 | } |
| 7138 | |
| 7139 | stype = btf_type_skip_modifiers(btf, mtype->type, &id); |
| 7140 | if (btf_type_is_struct(stype)) { |
| 7141 | *next_btf_id = id; |
| 7142 | *flag |= tmp_flag; |
| 7143 | if (field_name) |
| 7144 | *field_name = mname; |
| 7145 | return WALK_PTR; |
| 7146 | } |
| 7147 | } |
| 7148 | |
| 7149 | /* Allow more flexible access within an int as long as |
| 7150 | * it is within mtrue_end. |
| 7151 | * Since mtrue_end could be the end of an array, |
| 7152 | * that also allows using an array of int as a scratch |
| 7153 | * space. e.g. skb->cb[]. |
| 7154 | */ |
| 7155 | if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { |
| 7156 | bpf_log(log, |
| 7157 | "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", |
| 7158 | mname, mtrue_end, tname, off, size); |
| 7159 | return -EACCES; |
| 7160 | } |
| 7161 | |
| 7162 | return WALK_SCALAR; |
| 7163 | } |
| 7164 | bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); |
| 7165 | return -EINVAL; |
| 7166 | } |
| 7167 | |
| 7168 | int btf_struct_access(struct bpf_verifier_log *log, |
| 7169 | const struct bpf_reg_state *reg, |
| 7170 | int off, int size, enum bpf_access_type atype __maybe_unused, |
| 7171 | u32 *next_btf_id, enum bpf_type_flag *flag, |
| 7172 | const char **field_name) |
| 7173 | { |
| 7174 | const struct btf *btf = reg->btf; |
| 7175 | enum bpf_type_flag tmp_flag = 0; |
| 7176 | const struct btf_type *t; |
| 7177 | u32 id = reg->btf_id; |
| 7178 | int err; |
| 7179 | |
| 7180 | while (type_is_alloc(reg->type)) { |
| 7181 | struct btf_struct_meta *meta; |
| 7182 | struct btf_record *rec; |
| 7183 | int i; |
| 7184 | |
| 7185 | meta = btf_find_struct_meta(btf, id); |
| 7186 | if (!meta) |
| 7187 | break; |
| 7188 | rec = meta->record; |
| 7189 | for (i = 0; i < rec->cnt; i++) { |
| 7190 | struct btf_field *field = &rec->fields[i]; |
| 7191 | u32 offset = field->offset; |
| 7192 | if (off < offset + field->size && offset < off + size) { |
| 7193 | bpf_log(log, |
| 7194 | "direct access to %s is disallowed\n", |
| 7195 | btf_field_type_name(field->type)); |
| 7196 | return -EACCES; |
| 7197 | } |
| 7198 | } |
| 7199 | break; |
| 7200 | } |
| 7201 | |
| 7202 | t = btf_type_by_id(btf, id); |
| 7203 | do { |
| 7204 | err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); |
| 7205 | |
| 7206 | switch (err) { |
| 7207 | case WALK_PTR: |
| 7208 | /* For local types, the destination register cannot |
| 7209 | * become a pointer again. |
| 7210 | */ |
| 7211 | if (type_is_alloc(reg->type)) |
| 7212 | return SCALAR_VALUE; |
| 7213 | /* If we found the pointer or scalar on t+off, |
| 7214 | * we're done. |
| 7215 | */ |
| 7216 | *next_btf_id = id; |
| 7217 | *flag = tmp_flag; |
| 7218 | return PTR_TO_BTF_ID; |
| 7219 | case WALK_SCALAR: |
| 7220 | return SCALAR_VALUE; |
| 7221 | case WALK_STRUCT: |
| 7222 | /* We found nested struct, so continue the search |
| 7223 | * by diving in it. At this point the offset is |
| 7224 | * aligned with the new type, so set it to 0. |
| 7225 | */ |
| 7226 | t = btf_type_by_id(btf, id); |
| 7227 | off = 0; |
| 7228 | break; |
| 7229 | default: |
| 7230 | /* It's either error or unknown return value.. |
| 7231 | * scream and leave. |
| 7232 | */ |
| 7233 | if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) |
| 7234 | return -EINVAL; |
| 7235 | return err; |
| 7236 | } |
| 7237 | } while (t); |
| 7238 | |
| 7239 | return -EINVAL; |
| 7240 | } |
| 7241 | |
| 7242 | /* Check that two BTF types, each specified as an BTF object + id, are exactly |
| 7243 | * the same. Trivial ID check is not enough due to module BTFs, because we can |
| 7244 | * end up with two different module BTFs, but IDs point to the common type in |
| 7245 | * vmlinux BTF. |
| 7246 | */ |
| 7247 | bool btf_types_are_same(const struct btf *btf1, u32 id1, |
| 7248 | const struct btf *btf2, u32 id2) |
| 7249 | { |
| 7250 | if (id1 != id2) |
| 7251 | return false; |
| 7252 | if (btf1 == btf2) |
| 7253 | return true; |
| 7254 | return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); |
| 7255 | } |
| 7256 | |
| 7257 | bool btf_struct_ids_match(struct bpf_verifier_log *log, |
| 7258 | const struct btf *btf, u32 id, int off, |
| 7259 | const struct btf *need_btf, u32 need_type_id, |
| 7260 | bool strict) |
| 7261 | { |
| 7262 | const struct btf_type *type; |
| 7263 | enum bpf_type_flag flag = 0; |
| 7264 | int err; |
| 7265 | |
| 7266 | /* Are we already done? */ |
| 7267 | if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) |
| 7268 | return true; |
| 7269 | /* In case of strict type match, we do not walk struct, the top level |
| 7270 | * type match must succeed. When strict is true, off should have already |
| 7271 | * been 0. |
| 7272 | */ |
| 7273 | if (strict) |
| 7274 | return false; |
| 7275 | again: |
| 7276 | type = btf_type_by_id(btf, id); |
| 7277 | if (!type) |
| 7278 | return false; |
| 7279 | err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); |
| 7280 | if (err != WALK_STRUCT) |
| 7281 | return false; |
| 7282 | |
| 7283 | /* We found nested struct object. If it matches |
| 7284 | * the requested ID, we're done. Otherwise let's |
| 7285 | * continue the search with offset 0 in the new |
| 7286 | * type. |
| 7287 | */ |
| 7288 | if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { |
| 7289 | off = 0; |
| 7290 | goto again; |
| 7291 | } |
| 7292 | |
| 7293 | return true; |
| 7294 | } |
| 7295 | |
| 7296 | static int __get_type_size(struct btf *btf, u32 btf_id, |
| 7297 | const struct btf_type **ret_type) |
| 7298 | { |
| 7299 | const struct btf_type *t; |
| 7300 | |
| 7301 | *ret_type = btf_type_by_id(btf, 0); |
| 7302 | if (!btf_id) |
| 7303 | /* void */ |
| 7304 | return 0; |
| 7305 | t = btf_type_by_id(btf, btf_id); |
| 7306 | while (t && btf_type_is_modifier(t)) |
| 7307 | t = btf_type_by_id(btf, t->type); |
| 7308 | if (!t) |
| 7309 | return -EINVAL; |
| 7310 | *ret_type = t; |
| 7311 | if (btf_type_is_ptr(t)) |
| 7312 | /* kernel size of pointer. Not BPF's size of pointer*/ |
| 7313 | return sizeof(void *); |
| 7314 | if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) |
| 7315 | return t->size; |
| 7316 | return -EINVAL; |
| 7317 | } |
| 7318 | |
| 7319 | static u8 __get_type_fmodel_flags(const struct btf_type *t) |
| 7320 | { |
| 7321 | u8 flags = 0; |
| 7322 | |
| 7323 | if (__btf_type_is_struct(t)) |
| 7324 | flags |= BTF_FMODEL_STRUCT_ARG; |
| 7325 | if (btf_type_is_signed_int(t)) |
| 7326 | flags |= BTF_FMODEL_SIGNED_ARG; |
| 7327 | |
| 7328 | return flags; |
| 7329 | } |
| 7330 | |
| 7331 | int btf_distill_func_proto(struct bpf_verifier_log *log, |
| 7332 | struct btf *btf, |
| 7333 | const struct btf_type *func, |
| 7334 | const char *tname, |
| 7335 | struct btf_func_model *m) |
| 7336 | { |
| 7337 | const struct btf_param *args; |
| 7338 | const struct btf_type *t; |
| 7339 | u32 i, nargs; |
| 7340 | int ret; |
| 7341 | |
| 7342 | if (!func) { |
| 7343 | /* BTF function prototype doesn't match the verifier types. |
| 7344 | * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. |
| 7345 | */ |
| 7346 | for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { |
| 7347 | m->arg_size[i] = 8; |
| 7348 | m->arg_flags[i] = 0; |
| 7349 | } |
| 7350 | m->ret_size = 8; |
| 7351 | m->ret_flags = 0; |
| 7352 | m->nr_args = MAX_BPF_FUNC_REG_ARGS; |
| 7353 | return 0; |
| 7354 | } |
| 7355 | args = (const struct btf_param *)(func + 1); |
| 7356 | nargs = btf_type_vlen(func); |
| 7357 | if (nargs > MAX_BPF_FUNC_ARGS) { |
| 7358 | bpf_log(log, |
| 7359 | "The function %s has %d arguments. Too many.\n", |
| 7360 | tname, nargs); |
| 7361 | return -EINVAL; |
| 7362 | } |
| 7363 | ret = __get_type_size(btf, func->type, &t); |
| 7364 | if (ret < 0 || __btf_type_is_struct(t)) { |
| 7365 | bpf_log(log, |
| 7366 | "The function %s return type %s is unsupported.\n", |
| 7367 | tname, btf_type_str(t)); |
| 7368 | return -EINVAL; |
| 7369 | } |
| 7370 | m->ret_size = ret; |
| 7371 | m->ret_flags = __get_type_fmodel_flags(t); |
| 7372 | |
| 7373 | for (i = 0; i < nargs; i++) { |
| 7374 | if (i == nargs - 1 && args[i].type == 0) { |
| 7375 | bpf_log(log, |
| 7376 | "The function %s with variable args is unsupported.\n", |
| 7377 | tname); |
| 7378 | return -EINVAL; |
| 7379 | } |
| 7380 | ret = __get_type_size(btf, args[i].type, &t); |
| 7381 | |
| 7382 | /* No support of struct argument size greater than 16 bytes */ |
| 7383 | if (ret < 0 || ret > 16) { |
| 7384 | bpf_log(log, |
| 7385 | "The function %s arg%d type %s is unsupported.\n", |
| 7386 | tname, i, btf_type_str(t)); |
| 7387 | return -EINVAL; |
| 7388 | } |
| 7389 | if (ret == 0) { |
| 7390 | bpf_log(log, |
| 7391 | "The function %s has malformed void argument.\n", |
| 7392 | tname); |
| 7393 | return -EINVAL; |
| 7394 | } |
| 7395 | m->arg_size[i] = ret; |
| 7396 | m->arg_flags[i] = __get_type_fmodel_flags(t); |
| 7397 | } |
| 7398 | m->nr_args = nargs; |
| 7399 | return 0; |
| 7400 | } |
| 7401 | |
| 7402 | /* Compare BTFs of two functions assuming only scalars and pointers to context. |
| 7403 | * t1 points to BTF_KIND_FUNC in btf1 |
| 7404 | * t2 points to BTF_KIND_FUNC in btf2 |
| 7405 | * Returns: |
| 7406 | * EINVAL - function prototype mismatch |
| 7407 | * EFAULT - verifier bug |
| 7408 | * 0 - 99% match. The last 1% is validated by the verifier. |
| 7409 | */ |
| 7410 | static int btf_check_func_type_match(struct bpf_verifier_log *log, |
| 7411 | struct btf *btf1, const struct btf_type *t1, |
| 7412 | struct btf *btf2, const struct btf_type *t2) |
| 7413 | { |
| 7414 | const struct btf_param *args1, *args2; |
| 7415 | const char *fn1, *fn2, *s1, *s2; |
| 7416 | u32 nargs1, nargs2, i; |
| 7417 | |
| 7418 | fn1 = btf_name_by_offset(btf1, t1->name_off); |
| 7419 | fn2 = btf_name_by_offset(btf2, t2->name_off); |
| 7420 | |
| 7421 | if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { |
| 7422 | bpf_log(log, "%s() is not a global function\n", fn1); |
| 7423 | return -EINVAL; |
| 7424 | } |
| 7425 | if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { |
| 7426 | bpf_log(log, "%s() is not a global function\n", fn2); |
| 7427 | return -EINVAL; |
| 7428 | } |
| 7429 | |
| 7430 | t1 = btf_type_by_id(btf1, t1->type); |
| 7431 | if (!t1 || !btf_type_is_func_proto(t1)) |
| 7432 | return -EFAULT; |
| 7433 | t2 = btf_type_by_id(btf2, t2->type); |
| 7434 | if (!t2 || !btf_type_is_func_proto(t2)) |
| 7435 | return -EFAULT; |
| 7436 | |
| 7437 | args1 = (const struct btf_param *)(t1 + 1); |
| 7438 | nargs1 = btf_type_vlen(t1); |
| 7439 | args2 = (const struct btf_param *)(t2 + 1); |
| 7440 | nargs2 = btf_type_vlen(t2); |
| 7441 | |
| 7442 | if (nargs1 != nargs2) { |
| 7443 | bpf_log(log, "%s() has %d args while %s() has %d args\n", |
| 7444 | fn1, nargs1, fn2, nargs2); |
| 7445 | return -EINVAL; |
| 7446 | } |
| 7447 | |
| 7448 | t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); |
| 7449 | t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); |
| 7450 | if (t1->info != t2->info) { |
| 7451 | bpf_log(log, |
| 7452 | "Return type %s of %s() doesn't match type %s of %s()\n", |
| 7453 | btf_type_str(t1), fn1, |
| 7454 | btf_type_str(t2), fn2); |
| 7455 | return -EINVAL; |
| 7456 | } |
| 7457 | |
| 7458 | for (i = 0; i < nargs1; i++) { |
| 7459 | t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); |
| 7460 | t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); |
| 7461 | |
| 7462 | if (t1->info != t2->info) { |
| 7463 | bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", |
| 7464 | i, fn1, btf_type_str(t1), |
| 7465 | fn2, btf_type_str(t2)); |
| 7466 | return -EINVAL; |
| 7467 | } |
| 7468 | if (btf_type_has_size(t1) && t1->size != t2->size) { |
| 7469 | bpf_log(log, |
| 7470 | "arg%d in %s() has size %d while %s() has %d\n", |
| 7471 | i, fn1, t1->size, |
| 7472 | fn2, t2->size); |
| 7473 | return -EINVAL; |
| 7474 | } |
| 7475 | |
| 7476 | /* global functions are validated with scalars and pointers |
| 7477 | * to context only. And only global functions can be replaced. |
| 7478 | * Hence type check only those types. |
| 7479 | */ |
| 7480 | if (btf_type_is_int(t1) || btf_is_any_enum(t1)) |
| 7481 | continue; |
| 7482 | if (!btf_type_is_ptr(t1)) { |
| 7483 | bpf_log(log, |
| 7484 | "arg%d in %s() has unrecognized type\n", |
| 7485 | i, fn1); |
| 7486 | return -EINVAL; |
| 7487 | } |
| 7488 | t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); |
| 7489 | t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); |
| 7490 | if (!btf_type_is_struct(t1)) { |
| 7491 | bpf_log(log, |
| 7492 | "arg%d in %s() is not a pointer to context\n", |
| 7493 | i, fn1); |
| 7494 | return -EINVAL; |
| 7495 | } |
| 7496 | if (!btf_type_is_struct(t2)) { |
| 7497 | bpf_log(log, |
| 7498 | "arg%d in %s() is not a pointer to context\n", |
| 7499 | i, fn2); |
| 7500 | return -EINVAL; |
| 7501 | } |
| 7502 | /* This is an optional check to make program writing easier. |
| 7503 | * Compare names of structs and report an error to the user. |
| 7504 | * btf_prepare_func_args() already checked that t2 struct |
| 7505 | * is a context type. btf_prepare_func_args() will check |
| 7506 | * later that t1 struct is a context type as well. |
| 7507 | */ |
| 7508 | s1 = btf_name_by_offset(btf1, t1->name_off); |
| 7509 | s2 = btf_name_by_offset(btf2, t2->name_off); |
| 7510 | if (strcmp(s1, s2)) { |
| 7511 | bpf_log(log, |
| 7512 | "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", |
| 7513 | i, fn1, s1, fn2, s2); |
| 7514 | return -EINVAL; |
| 7515 | } |
| 7516 | } |
| 7517 | return 0; |
| 7518 | } |
| 7519 | |
| 7520 | /* Compare BTFs of given program with BTF of target program */ |
| 7521 | int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, |
| 7522 | struct btf *btf2, const struct btf_type *t2) |
| 7523 | { |
| 7524 | struct btf *btf1 = prog->aux->btf; |
| 7525 | const struct btf_type *t1; |
| 7526 | u32 btf_id = 0; |
| 7527 | |
| 7528 | if (!prog->aux->func_info) { |
| 7529 | bpf_log(log, "Program extension requires BTF\n"); |
| 7530 | return -EINVAL; |
| 7531 | } |
| 7532 | |
| 7533 | btf_id = prog->aux->func_info[0].type_id; |
| 7534 | if (!btf_id) |
| 7535 | return -EFAULT; |
| 7536 | |
| 7537 | t1 = btf_type_by_id(btf1, btf_id); |
| 7538 | if (!t1 || !btf_type_is_func(t1)) |
| 7539 | return -EFAULT; |
| 7540 | |
| 7541 | return btf_check_func_type_match(log, btf1, t1, btf2, t2); |
| 7542 | } |
| 7543 | |
| 7544 | static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) |
| 7545 | { |
| 7546 | const char *name; |
| 7547 | |
| 7548 | t = btf_type_by_id(btf, t->type); /* skip PTR */ |
| 7549 | |
| 7550 | while (btf_type_is_modifier(t)) |
| 7551 | t = btf_type_by_id(btf, t->type); |
| 7552 | |
| 7553 | /* allow either struct or struct forward declaration */ |
| 7554 | if (btf_type_is_struct(t) || |
| 7555 | (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { |
| 7556 | name = btf_str_by_offset(btf, t->name_off); |
| 7557 | return name && strcmp(name, "bpf_dynptr") == 0; |
| 7558 | } |
| 7559 | |
| 7560 | return false; |
| 7561 | } |
| 7562 | |
| 7563 | struct bpf_cand_cache { |
| 7564 | const char *name; |
| 7565 | u32 name_len; |
| 7566 | u16 kind; |
| 7567 | u16 cnt; |
| 7568 | struct { |
| 7569 | const struct btf *btf; |
| 7570 | u32 id; |
| 7571 | } cands[]; |
| 7572 | }; |
| 7573 | |
| 7574 | static DEFINE_MUTEX(cand_cache_mutex); |
| 7575 | |
| 7576 | static struct bpf_cand_cache * |
| 7577 | bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); |
| 7578 | |
| 7579 | static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, |
| 7580 | const struct btf *btf, const struct btf_type *t) |
| 7581 | { |
| 7582 | struct bpf_cand_cache *cc; |
| 7583 | struct bpf_core_ctx ctx = { |
| 7584 | .btf = btf, |
| 7585 | .log = log, |
| 7586 | }; |
| 7587 | u32 kern_type_id, type_id; |
| 7588 | int err = 0; |
| 7589 | |
| 7590 | /* skip PTR and modifiers */ |
| 7591 | type_id = t->type; |
| 7592 | t = btf_type_by_id(btf, t->type); |
| 7593 | while (btf_type_is_modifier(t)) { |
| 7594 | type_id = t->type; |
| 7595 | t = btf_type_by_id(btf, t->type); |
| 7596 | } |
| 7597 | |
| 7598 | mutex_lock(&cand_cache_mutex); |
| 7599 | cc = bpf_core_find_cands(&ctx, type_id); |
| 7600 | if (IS_ERR(cc)) { |
| 7601 | err = PTR_ERR(cc); |
| 7602 | bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", |
| 7603 | arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), |
| 7604 | err); |
| 7605 | goto cand_cache_unlock; |
| 7606 | } |
| 7607 | if (cc->cnt != 1) { |
| 7608 | bpf_log(log, "arg#%d reference type('%s %s') %s\n", |
| 7609 | arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), |
| 7610 | cc->cnt == 0 ? "has no matches" : "is ambiguous"); |
| 7611 | err = cc->cnt == 0 ? -ENOENT : -ESRCH; |
| 7612 | goto cand_cache_unlock; |
| 7613 | } |
| 7614 | if (btf_is_module(cc->cands[0].btf)) { |
| 7615 | bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", |
| 7616 | arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); |
| 7617 | err = -EOPNOTSUPP; |
| 7618 | goto cand_cache_unlock; |
| 7619 | } |
| 7620 | kern_type_id = cc->cands[0].id; |
| 7621 | |
| 7622 | cand_cache_unlock: |
| 7623 | mutex_unlock(&cand_cache_mutex); |
| 7624 | if (err) |
| 7625 | return err; |
| 7626 | |
| 7627 | return kern_type_id; |
| 7628 | } |
| 7629 | |
| 7630 | enum btf_arg_tag { |
| 7631 | ARG_TAG_CTX = BIT_ULL(0), |
| 7632 | ARG_TAG_NONNULL = BIT_ULL(1), |
| 7633 | ARG_TAG_TRUSTED = BIT_ULL(2), |
| 7634 | ARG_TAG_NULLABLE = BIT_ULL(3), |
| 7635 | ARG_TAG_ARENA = BIT_ULL(4), |
| 7636 | }; |
| 7637 | |
| 7638 | /* Process BTF of a function to produce high-level expectation of function |
| 7639 | * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information |
| 7640 | * is cached in subprog info for reuse. |
| 7641 | * Returns: |
| 7642 | * EFAULT - there is a verifier bug. Abort verification. |
| 7643 | * EINVAL - cannot convert BTF. |
| 7644 | * 0 - Successfully processed BTF and constructed argument expectations. |
| 7645 | */ |
| 7646 | int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) |
| 7647 | { |
| 7648 | bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; |
| 7649 | struct bpf_subprog_info *sub = subprog_info(env, subprog); |
| 7650 | struct bpf_verifier_log *log = &env->log; |
| 7651 | struct bpf_prog *prog = env->prog; |
| 7652 | enum bpf_prog_type prog_type = prog->type; |
| 7653 | struct btf *btf = prog->aux->btf; |
| 7654 | const struct btf_param *args; |
| 7655 | const struct btf_type *t, *ref_t, *fn_t; |
| 7656 | u32 i, nargs, btf_id; |
| 7657 | const char *tname; |
| 7658 | |
| 7659 | if (sub->args_cached) |
| 7660 | return 0; |
| 7661 | |
| 7662 | if (!prog->aux->func_info) { |
| 7663 | verifier_bug(env, "func_info undefined"); |
| 7664 | return -EFAULT; |
| 7665 | } |
| 7666 | |
| 7667 | btf_id = prog->aux->func_info[subprog].type_id; |
| 7668 | if (!btf_id) { |
| 7669 | if (!is_global) /* not fatal for static funcs */ |
| 7670 | return -EINVAL; |
| 7671 | bpf_log(log, "Global functions need valid BTF\n"); |
| 7672 | return -EFAULT; |
| 7673 | } |
| 7674 | |
| 7675 | fn_t = btf_type_by_id(btf, btf_id); |
| 7676 | if (!fn_t || !btf_type_is_func(fn_t)) { |
| 7677 | /* These checks were already done by the verifier while loading |
| 7678 | * struct bpf_func_info |
| 7679 | */ |
| 7680 | bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", |
| 7681 | subprog); |
| 7682 | return -EFAULT; |
| 7683 | } |
| 7684 | tname = btf_name_by_offset(btf, fn_t->name_off); |
| 7685 | |
| 7686 | if (prog->aux->func_info_aux[subprog].unreliable) { |
| 7687 | verifier_bug(env, "unreliable BTF for function %s()", tname); |
| 7688 | return -EFAULT; |
| 7689 | } |
| 7690 | if (prog_type == BPF_PROG_TYPE_EXT) |
| 7691 | prog_type = prog->aux->dst_prog->type; |
| 7692 | |
| 7693 | t = btf_type_by_id(btf, fn_t->type); |
| 7694 | if (!t || !btf_type_is_func_proto(t)) { |
| 7695 | bpf_log(log, "Invalid type of function %s()\n", tname); |
| 7696 | return -EFAULT; |
| 7697 | } |
| 7698 | args = (const struct btf_param *)(t + 1); |
| 7699 | nargs = btf_type_vlen(t); |
| 7700 | if (nargs > MAX_BPF_FUNC_REG_ARGS) { |
| 7701 | if (!is_global) |
| 7702 | return -EINVAL; |
| 7703 | bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", |
| 7704 | tname, nargs, MAX_BPF_FUNC_REG_ARGS); |
| 7705 | return -EINVAL; |
| 7706 | } |
| 7707 | /* check that function returns int, exception cb also requires this */ |
| 7708 | t = btf_type_by_id(btf, t->type); |
| 7709 | while (btf_type_is_modifier(t)) |
| 7710 | t = btf_type_by_id(btf, t->type); |
| 7711 | if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { |
| 7712 | if (!is_global) |
| 7713 | return -EINVAL; |
| 7714 | bpf_log(log, |
| 7715 | "Global function %s() doesn't return scalar. Only those are supported.\n", |
| 7716 | tname); |
| 7717 | return -EINVAL; |
| 7718 | } |
| 7719 | /* Convert BTF function arguments into verifier types. |
| 7720 | * Only PTR_TO_CTX and SCALAR are supported atm. |
| 7721 | */ |
| 7722 | for (i = 0; i < nargs; i++) { |
| 7723 | u32 tags = 0; |
| 7724 | int id = 0; |
| 7725 | |
| 7726 | /* 'arg:<tag>' decl_tag takes precedence over derivation of |
| 7727 | * register type from BTF type itself |
| 7728 | */ |
| 7729 | while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { |
| 7730 | const struct btf_type *tag_t = btf_type_by_id(btf, id); |
| 7731 | const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; |
| 7732 | |
| 7733 | /* disallow arg tags in static subprogs */ |
| 7734 | if (!is_global) { |
| 7735 | bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); |
| 7736 | return -EOPNOTSUPP; |
| 7737 | } |
| 7738 | |
| 7739 | if (strcmp(tag, "ctx") == 0) { |
| 7740 | tags |= ARG_TAG_CTX; |
| 7741 | } else if (strcmp(tag, "trusted") == 0) { |
| 7742 | tags |= ARG_TAG_TRUSTED; |
| 7743 | } else if (strcmp(tag, "nonnull") == 0) { |
| 7744 | tags |= ARG_TAG_NONNULL; |
| 7745 | } else if (strcmp(tag, "nullable") == 0) { |
| 7746 | tags |= ARG_TAG_NULLABLE; |
| 7747 | } else if (strcmp(tag, "arena") == 0) { |
| 7748 | tags |= ARG_TAG_ARENA; |
| 7749 | } else { |
| 7750 | bpf_log(log, "arg#%d has unsupported set of tags\n", i); |
| 7751 | return -EOPNOTSUPP; |
| 7752 | } |
| 7753 | } |
| 7754 | if (id != -ENOENT) { |
| 7755 | bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); |
| 7756 | return id; |
| 7757 | } |
| 7758 | |
| 7759 | t = btf_type_by_id(btf, args[i].type); |
| 7760 | while (btf_type_is_modifier(t)) |
| 7761 | t = btf_type_by_id(btf, t->type); |
| 7762 | if (!btf_type_is_ptr(t)) |
| 7763 | goto skip_pointer; |
| 7764 | |
| 7765 | if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { |
| 7766 | if (tags & ~ARG_TAG_CTX) { |
| 7767 | bpf_log(log, "arg#%d has invalid combination of tags\n", i); |
| 7768 | return -EINVAL; |
| 7769 | } |
| 7770 | if ((tags & ARG_TAG_CTX) && |
| 7771 | btf_validate_prog_ctx_type(log, btf, t, i, prog_type, |
| 7772 | prog->expected_attach_type)) |
| 7773 | return -EINVAL; |
| 7774 | sub->args[i].arg_type = ARG_PTR_TO_CTX; |
| 7775 | continue; |
| 7776 | } |
| 7777 | if (btf_is_dynptr_ptr(btf, t)) { |
| 7778 | if (tags) { |
| 7779 | bpf_log(log, "arg#%d has invalid combination of tags\n", i); |
| 7780 | return -EINVAL; |
| 7781 | } |
| 7782 | sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; |
| 7783 | continue; |
| 7784 | } |
| 7785 | if (tags & ARG_TAG_TRUSTED) { |
| 7786 | int kern_type_id; |
| 7787 | |
| 7788 | if (tags & ARG_TAG_NONNULL) { |
| 7789 | bpf_log(log, "arg#%d has invalid combination of tags\n", i); |
| 7790 | return -EINVAL; |
| 7791 | } |
| 7792 | |
| 7793 | kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); |
| 7794 | if (kern_type_id < 0) |
| 7795 | return kern_type_id; |
| 7796 | |
| 7797 | sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; |
| 7798 | if (tags & ARG_TAG_NULLABLE) |
| 7799 | sub->args[i].arg_type |= PTR_MAYBE_NULL; |
| 7800 | sub->args[i].btf_id = kern_type_id; |
| 7801 | continue; |
| 7802 | } |
| 7803 | if (tags & ARG_TAG_ARENA) { |
| 7804 | if (tags & ~ARG_TAG_ARENA) { |
| 7805 | bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); |
| 7806 | return -EINVAL; |
| 7807 | } |
| 7808 | sub->args[i].arg_type = ARG_PTR_TO_ARENA; |
| 7809 | continue; |
| 7810 | } |
| 7811 | if (is_global) { /* generic user data pointer */ |
| 7812 | u32 mem_size; |
| 7813 | |
| 7814 | if (tags & ARG_TAG_NULLABLE) { |
| 7815 | bpf_log(log, "arg#%d has invalid combination of tags\n", i); |
| 7816 | return -EINVAL; |
| 7817 | } |
| 7818 | |
| 7819 | t = btf_type_skip_modifiers(btf, t->type, NULL); |
| 7820 | ref_t = btf_resolve_size(btf, t, &mem_size); |
| 7821 | if (IS_ERR(ref_t)) { |
| 7822 | bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", |
| 7823 | i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), |
| 7824 | PTR_ERR(ref_t)); |
| 7825 | return -EINVAL; |
| 7826 | } |
| 7827 | |
| 7828 | sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; |
| 7829 | if (tags & ARG_TAG_NONNULL) |
| 7830 | sub->args[i].arg_type &= ~PTR_MAYBE_NULL; |
| 7831 | sub->args[i].mem_size = mem_size; |
| 7832 | continue; |
| 7833 | } |
| 7834 | |
| 7835 | skip_pointer: |
| 7836 | if (tags) { |
| 7837 | bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); |
| 7838 | return -EINVAL; |
| 7839 | } |
| 7840 | if (btf_type_is_int(t) || btf_is_any_enum(t)) { |
| 7841 | sub->args[i].arg_type = ARG_ANYTHING; |
| 7842 | continue; |
| 7843 | } |
| 7844 | if (!is_global) |
| 7845 | return -EINVAL; |
| 7846 | bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", |
| 7847 | i, btf_type_str(t), tname); |
| 7848 | return -EINVAL; |
| 7849 | } |
| 7850 | |
| 7851 | sub->arg_cnt = nargs; |
| 7852 | sub->args_cached = true; |
| 7853 | |
| 7854 | return 0; |
| 7855 | } |
| 7856 | |
| 7857 | static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, |
| 7858 | struct btf_show *show) |
| 7859 | { |
| 7860 | const struct btf_type *t = btf_type_by_id(btf, type_id); |
| 7861 | |
| 7862 | show->btf = btf; |
| 7863 | memset(&show->state, 0, sizeof(show->state)); |
| 7864 | memset(&show->obj, 0, sizeof(show->obj)); |
| 7865 | |
| 7866 | btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); |
| 7867 | } |
| 7868 | |
| 7869 | __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, |
| 7870 | va_list args) |
| 7871 | { |
| 7872 | seq_vprintf((struct seq_file *)show->target, fmt, args); |
| 7873 | } |
| 7874 | |
| 7875 | int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, |
| 7876 | void *obj, struct seq_file *m, u64 flags) |
| 7877 | { |
| 7878 | struct btf_show sseq; |
| 7879 | |
| 7880 | sseq.target = m; |
| 7881 | sseq.showfn = btf_seq_show; |
| 7882 | sseq.flags = flags; |
| 7883 | |
| 7884 | btf_type_show(btf, type_id, obj, &sseq); |
| 7885 | |
| 7886 | return sseq.state.status; |
| 7887 | } |
| 7888 | |
| 7889 | void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, |
| 7890 | struct seq_file *m) |
| 7891 | { |
| 7892 | (void) btf_type_seq_show_flags(btf, type_id, obj, m, |
| 7893 | BTF_SHOW_NONAME | BTF_SHOW_COMPACT | |
| 7894 | BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); |
| 7895 | } |
| 7896 | |
| 7897 | struct btf_show_snprintf { |
| 7898 | struct btf_show show; |
| 7899 | int len_left; /* space left in string */ |
| 7900 | int len; /* length we would have written */ |
| 7901 | }; |
| 7902 | |
| 7903 | __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, |
| 7904 | va_list args) |
| 7905 | { |
| 7906 | struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; |
| 7907 | int len; |
| 7908 | |
| 7909 | len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); |
| 7910 | |
| 7911 | if (len < 0) { |
| 7912 | ssnprintf->len_left = 0; |
| 7913 | ssnprintf->len = len; |
| 7914 | } else if (len >= ssnprintf->len_left) { |
| 7915 | /* no space, drive on to get length we would have written */ |
| 7916 | ssnprintf->len_left = 0; |
| 7917 | ssnprintf->len += len; |
| 7918 | } else { |
| 7919 | ssnprintf->len_left -= len; |
| 7920 | ssnprintf->len += len; |
| 7921 | show->target += len; |
| 7922 | } |
| 7923 | } |
| 7924 | |
| 7925 | int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, |
| 7926 | char *buf, int len, u64 flags) |
| 7927 | { |
| 7928 | struct btf_show_snprintf ssnprintf; |
| 7929 | |
| 7930 | ssnprintf.show.target = buf; |
| 7931 | ssnprintf.show.flags = flags; |
| 7932 | ssnprintf.show.showfn = btf_snprintf_show; |
| 7933 | ssnprintf.len_left = len; |
| 7934 | ssnprintf.len = 0; |
| 7935 | |
| 7936 | btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); |
| 7937 | |
| 7938 | /* If we encountered an error, return it. */ |
| 7939 | if (ssnprintf.show.state.status) |
| 7940 | return ssnprintf.show.state.status; |
| 7941 | |
| 7942 | /* Otherwise return length we would have written */ |
| 7943 | return ssnprintf.len; |
| 7944 | } |
| 7945 | |
| 7946 | #ifdef CONFIG_PROC_FS |
| 7947 | static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) |
| 7948 | { |
| 7949 | const struct btf *btf = filp->private_data; |
| 7950 | |
| 7951 | seq_printf(m, "btf_id:\t%u\n", btf->id); |
| 7952 | } |
| 7953 | #endif |
| 7954 | |
| 7955 | static int btf_release(struct inode *inode, struct file *filp) |
| 7956 | { |
| 7957 | btf_put(filp->private_data); |
| 7958 | return 0; |
| 7959 | } |
| 7960 | |
| 7961 | const struct file_operations btf_fops = { |
| 7962 | #ifdef CONFIG_PROC_FS |
| 7963 | .show_fdinfo = bpf_btf_show_fdinfo, |
| 7964 | #endif |
| 7965 | .release = btf_release, |
| 7966 | }; |
| 7967 | |
| 7968 | static int __btf_new_fd(struct btf *btf) |
| 7969 | { |
| 7970 | return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); |
| 7971 | } |
| 7972 | |
| 7973 | int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) |
| 7974 | { |
| 7975 | struct btf *btf; |
| 7976 | int ret; |
| 7977 | |
| 7978 | btf = btf_parse(attr, uattr, uattr_size); |
| 7979 | if (IS_ERR(btf)) |
| 7980 | return PTR_ERR(btf); |
| 7981 | |
| 7982 | ret = btf_alloc_id(btf); |
| 7983 | if (ret) { |
| 7984 | btf_free(btf); |
| 7985 | return ret; |
| 7986 | } |
| 7987 | |
| 7988 | /* |
| 7989 | * The BTF ID is published to the userspace. |
| 7990 | * All BTF free must go through call_rcu() from |
| 7991 | * now on (i.e. free by calling btf_put()). |
| 7992 | */ |
| 7993 | |
| 7994 | ret = __btf_new_fd(btf); |
| 7995 | if (ret < 0) |
| 7996 | btf_put(btf); |
| 7997 | |
| 7998 | return ret; |
| 7999 | } |
| 8000 | |
| 8001 | struct btf *btf_get_by_fd(int fd) |
| 8002 | { |
| 8003 | struct btf *btf; |
| 8004 | CLASS(fd, f)(fd); |
| 8005 | |
| 8006 | btf = __btf_get_by_fd(f); |
| 8007 | if (!IS_ERR(btf)) |
| 8008 | refcount_inc(&btf->refcnt); |
| 8009 | |
| 8010 | return btf; |
| 8011 | } |
| 8012 | |
| 8013 | int btf_get_info_by_fd(const struct btf *btf, |
| 8014 | const union bpf_attr *attr, |
| 8015 | union bpf_attr __user *uattr) |
| 8016 | { |
| 8017 | struct bpf_btf_info __user *uinfo; |
| 8018 | struct bpf_btf_info info; |
| 8019 | u32 info_copy, btf_copy; |
| 8020 | void __user *ubtf; |
| 8021 | char __user *uname; |
| 8022 | u32 uinfo_len, uname_len, name_len; |
| 8023 | int ret = 0; |
| 8024 | |
| 8025 | uinfo = u64_to_user_ptr(attr->info.info); |
| 8026 | uinfo_len = attr->info.info_len; |
| 8027 | |
| 8028 | info_copy = min_t(u32, uinfo_len, sizeof(info)); |
| 8029 | memset(&info, 0, sizeof(info)); |
| 8030 | if (copy_from_user(&info, uinfo, info_copy)) |
| 8031 | return -EFAULT; |
| 8032 | |
| 8033 | info.id = btf->id; |
| 8034 | ubtf = u64_to_user_ptr(info.btf); |
| 8035 | btf_copy = min_t(u32, btf->data_size, info.btf_size); |
| 8036 | if (copy_to_user(ubtf, btf->data, btf_copy)) |
| 8037 | return -EFAULT; |
| 8038 | info.btf_size = btf->data_size; |
| 8039 | |
| 8040 | info.kernel_btf = btf->kernel_btf; |
| 8041 | |
| 8042 | uname = u64_to_user_ptr(info.name); |
| 8043 | uname_len = info.name_len; |
| 8044 | if (!uname ^ !uname_len) |
| 8045 | return -EINVAL; |
| 8046 | |
| 8047 | name_len = strlen(btf->name); |
| 8048 | info.name_len = name_len; |
| 8049 | |
| 8050 | if (uname) { |
| 8051 | if (uname_len >= name_len + 1) { |
| 8052 | if (copy_to_user(uname, btf->name, name_len + 1)) |
| 8053 | return -EFAULT; |
| 8054 | } else { |
| 8055 | char zero = '\0'; |
| 8056 | |
| 8057 | if (copy_to_user(uname, btf->name, uname_len - 1)) |
| 8058 | return -EFAULT; |
| 8059 | if (put_user(zero, uname + uname_len - 1)) |
| 8060 | return -EFAULT; |
| 8061 | /* let user-space know about too short buffer */ |
| 8062 | ret = -ENOSPC; |
| 8063 | } |
| 8064 | } |
| 8065 | |
| 8066 | if (copy_to_user(uinfo, &info, info_copy) || |
| 8067 | put_user(info_copy, &uattr->info.info_len)) |
| 8068 | return -EFAULT; |
| 8069 | |
| 8070 | return ret; |
| 8071 | } |
| 8072 | |
| 8073 | int btf_get_fd_by_id(u32 id) |
| 8074 | { |
| 8075 | struct btf *btf; |
| 8076 | int fd; |
| 8077 | |
| 8078 | rcu_read_lock(); |
| 8079 | btf = idr_find(&btf_idr, id); |
| 8080 | if (!btf || !refcount_inc_not_zero(&btf->refcnt)) |
| 8081 | btf = ERR_PTR(-ENOENT); |
| 8082 | rcu_read_unlock(); |
| 8083 | |
| 8084 | if (IS_ERR(btf)) |
| 8085 | return PTR_ERR(btf); |
| 8086 | |
| 8087 | fd = __btf_new_fd(btf); |
| 8088 | if (fd < 0) |
| 8089 | btf_put(btf); |
| 8090 | |
| 8091 | return fd; |
| 8092 | } |
| 8093 | |
| 8094 | u32 btf_obj_id(const struct btf *btf) |
| 8095 | { |
| 8096 | return btf->id; |
| 8097 | } |
| 8098 | |
| 8099 | bool btf_is_kernel(const struct btf *btf) |
| 8100 | { |
| 8101 | return btf->kernel_btf; |
| 8102 | } |
| 8103 | |
| 8104 | bool btf_is_module(const struct btf *btf) |
| 8105 | { |
| 8106 | return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; |
| 8107 | } |
| 8108 | |
| 8109 | enum { |
| 8110 | BTF_MODULE_F_LIVE = (1 << 0), |
| 8111 | }; |
| 8112 | |
| 8113 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 8114 | struct btf_module { |
| 8115 | struct list_head list; |
| 8116 | struct module *module; |
| 8117 | struct btf *btf; |
| 8118 | struct bin_attribute *sysfs_attr; |
| 8119 | int flags; |
| 8120 | }; |
| 8121 | |
| 8122 | static LIST_HEAD(btf_modules); |
| 8123 | static DEFINE_MUTEX(btf_module_mutex); |
| 8124 | |
| 8125 | static void purge_cand_cache(struct btf *btf); |
| 8126 | |
| 8127 | static int btf_module_notify(struct notifier_block *nb, unsigned long op, |
| 8128 | void *module) |
| 8129 | { |
| 8130 | struct btf_module *btf_mod, *tmp; |
| 8131 | struct module *mod = module; |
| 8132 | struct btf *btf; |
| 8133 | int err = 0; |
| 8134 | |
| 8135 | if (mod->btf_data_size == 0 || |
| 8136 | (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && |
| 8137 | op != MODULE_STATE_GOING)) |
| 8138 | goto out; |
| 8139 | |
| 8140 | switch (op) { |
| 8141 | case MODULE_STATE_COMING: |
| 8142 | btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); |
| 8143 | if (!btf_mod) { |
| 8144 | err = -ENOMEM; |
| 8145 | goto out; |
| 8146 | } |
| 8147 | btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, |
| 8148 | mod->btf_base_data, mod->btf_base_data_size); |
| 8149 | if (IS_ERR(btf)) { |
| 8150 | kfree(btf_mod); |
| 8151 | if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { |
| 8152 | pr_warn("failed to validate module [%s] BTF: %ld\n", |
| 8153 | mod->name, PTR_ERR(btf)); |
| 8154 | err = PTR_ERR(btf); |
| 8155 | } else { |
| 8156 | pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); |
| 8157 | } |
| 8158 | goto out; |
| 8159 | } |
| 8160 | err = btf_alloc_id(btf); |
| 8161 | if (err) { |
| 8162 | btf_free(btf); |
| 8163 | kfree(btf_mod); |
| 8164 | goto out; |
| 8165 | } |
| 8166 | |
| 8167 | purge_cand_cache(NULL); |
| 8168 | mutex_lock(&btf_module_mutex); |
| 8169 | btf_mod->module = module; |
| 8170 | btf_mod->btf = btf; |
| 8171 | list_add(&btf_mod->list, &btf_modules); |
| 8172 | mutex_unlock(&btf_module_mutex); |
| 8173 | |
| 8174 | if (IS_ENABLED(CONFIG_SYSFS)) { |
| 8175 | struct bin_attribute *attr; |
| 8176 | |
| 8177 | attr = kzalloc(sizeof(*attr), GFP_KERNEL); |
| 8178 | if (!attr) |
| 8179 | goto out; |
| 8180 | |
| 8181 | sysfs_bin_attr_init(attr); |
| 8182 | attr->attr.name = btf->name; |
| 8183 | attr->attr.mode = 0444; |
| 8184 | attr->size = btf->data_size; |
| 8185 | attr->private = btf->data; |
| 8186 | attr->read_new = sysfs_bin_attr_simple_read; |
| 8187 | |
| 8188 | err = sysfs_create_bin_file(btf_kobj, attr); |
| 8189 | if (err) { |
| 8190 | pr_warn("failed to register module [%s] BTF in sysfs: %d\n", |
| 8191 | mod->name, err); |
| 8192 | kfree(attr); |
| 8193 | err = 0; |
| 8194 | goto out; |
| 8195 | } |
| 8196 | |
| 8197 | btf_mod->sysfs_attr = attr; |
| 8198 | } |
| 8199 | |
| 8200 | break; |
| 8201 | case MODULE_STATE_LIVE: |
| 8202 | mutex_lock(&btf_module_mutex); |
| 8203 | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { |
| 8204 | if (btf_mod->module != module) |
| 8205 | continue; |
| 8206 | |
| 8207 | btf_mod->flags |= BTF_MODULE_F_LIVE; |
| 8208 | break; |
| 8209 | } |
| 8210 | mutex_unlock(&btf_module_mutex); |
| 8211 | break; |
| 8212 | case MODULE_STATE_GOING: |
| 8213 | mutex_lock(&btf_module_mutex); |
| 8214 | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { |
| 8215 | if (btf_mod->module != module) |
| 8216 | continue; |
| 8217 | |
| 8218 | list_del(&btf_mod->list); |
| 8219 | if (btf_mod->sysfs_attr) |
| 8220 | sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); |
| 8221 | purge_cand_cache(btf_mod->btf); |
| 8222 | btf_put(btf_mod->btf); |
| 8223 | kfree(btf_mod->sysfs_attr); |
| 8224 | kfree(btf_mod); |
| 8225 | break; |
| 8226 | } |
| 8227 | mutex_unlock(&btf_module_mutex); |
| 8228 | break; |
| 8229 | } |
| 8230 | out: |
| 8231 | return notifier_from_errno(err); |
| 8232 | } |
| 8233 | |
| 8234 | static struct notifier_block btf_module_nb = { |
| 8235 | .notifier_call = btf_module_notify, |
| 8236 | }; |
| 8237 | |
| 8238 | static int __init btf_module_init(void) |
| 8239 | { |
| 8240 | register_module_notifier(&btf_module_nb); |
| 8241 | return 0; |
| 8242 | } |
| 8243 | |
| 8244 | fs_initcall(btf_module_init); |
| 8245 | #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ |
| 8246 | |
| 8247 | struct module *btf_try_get_module(const struct btf *btf) |
| 8248 | { |
| 8249 | struct module *res = NULL; |
| 8250 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 8251 | struct btf_module *btf_mod, *tmp; |
| 8252 | |
| 8253 | mutex_lock(&btf_module_mutex); |
| 8254 | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { |
| 8255 | if (btf_mod->btf != btf) |
| 8256 | continue; |
| 8257 | |
| 8258 | /* We must only consider module whose __init routine has |
| 8259 | * finished, hence we must check for BTF_MODULE_F_LIVE flag, |
| 8260 | * which is set from the notifier callback for |
| 8261 | * MODULE_STATE_LIVE. |
| 8262 | */ |
| 8263 | if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) |
| 8264 | res = btf_mod->module; |
| 8265 | |
| 8266 | break; |
| 8267 | } |
| 8268 | mutex_unlock(&btf_module_mutex); |
| 8269 | #endif |
| 8270 | |
| 8271 | return res; |
| 8272 | } |
| 8273 | |
| 8274 | /* Returns struct btf corresponding to the struct module. |
| 8275 | * This function can return NULL or ERR_PTR. |
| 8276 | */ |
| 8277 | static struct btf *btf_get_module_btf(const struct module *module) |
| 8278 | { |
| 8279 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 8280 | struct btf_module *btf_mod, *tmp; |
| 8281 | #endif |
| 8282 | struct btf *btf = NULL; |
| 8283 | |
| 8284 | if (!module) { |
| 8285 | btf = bpf_get_btf_vmlinux(); |
| 8286 | if (!IS_ERR_OR_NULL(btf)) |
| 8287 | btf_get(btf); |
| 8288 | return btf; |
| 8289 | } |
| 8290 | |
| 8291 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 8292 | mutex_lock(&btf_module_mutex); |
| 8293 | list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { |
| 8294 | if (btf_mod->module != module) |
| 8295 | continue; |
| 8296 | |
| 8297 | btf_get(btf_mod->btf); |
| 8298 | btf = btf_mod->btf; |
| 8299 | break; |
| 8300 | } |
| 8301 | mutex_unlock(&btf_module_mutex); |
| 8302 | #endif |
| 8303 | |
| 8304 | return btf; |
| 8305 | } |
| 8306 | |
| 8307 | static int check_btf_kconfigs(const struct module *module, const char *feature) |
| 8308 | { |
| 8309 | if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { |
| 8310 | pr_err("missing vmlinux BTF, cannot register %s\n", feature); |
| 8311 | return -ENOENT; |
| 8312 | } |
| 8313 | if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) |
| 8314 | pr_warn("missing module BTF, cannot register %s\n", feature); |
| 8315 | return 0; |
| 8316 | } |
| 8317 | |
| 8318 | BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) |
| 8319 | { |
| 8320 | struct btf *btf = NULL; |
| 8321 | int btf_obj_fd = 0; |
| 8322 | long ret; |
| 8323 | |
| 8324 | if (flags) |
| 8325 | return -EINVAL; |
| 8326 | |
| 8327 | if (name_sz <= 1 || name[name_sz - 1]) |
| 8328 | return -EINVAL; |
| 8329 | |
| 8330 | ret = bpf_find_btf_id(name, kind, &btf); |
| 8331 | if (ret > 0 && btf_is_module(btf)) { |
| 8332 | btf_obj_fd = __btf_new_fd(btf); |
| 8333 | if (btf_obj_fd < 0) { |
| 8334 | btf_put(btf); |
| 8335 | return btf_obj_fd; |
| 8336 | } |
| 8337 | return ret | (((u64)btf_obj_fd) << 32); |
| 8338 | } |
| 8339 | if (ret > 0) |
| 8340 | btf_put(btf); |
| 8341 | return ret; |
| 8342 | } |
| 8343 | |
| 8344 | const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { |
| 8345 | .func = bpf_btf_find_by_name_kind, |
| 8346 | .gpl_only = false, |
| 8347 | .ret_type = RET_INTEGER, |
| 8348 | .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, |
| 8349 | .arg2_type = ARG_CONST_SIZE, |
| 8350 | .arg3_type = ARG_ANYTHING, |
| 8351 | .arg4_type = ARG_ANYTHING, |
| 8352 | }; |
| 8353 | |
| 8354 | BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) |
| 8355 | #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) |
| 8356 | BTF_TRACING_TYPE_xxx |
| 8357 | #undef BTF_TRACING_TYPE |
| 8358 | |
| 8359 | /* Validate well-formedness of iter argument type. |
| 8360 | * On success, return positive BTF ID of iter state's STRUCT type. |
| 8361 | * On error, negative error is returned. |
| 8362 | */ |
| 8363 | int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) |
| 8364 | { |
| 8365 | const struct btf_param *arg; |
| 8366 | const struct btf_type *t; |
| 8367 | const char *name; |
| 8368 | int btf_id; |
| 8369 | |
| 8370 | if (btf_type_vlen(func) <= arg_idx) |
| 8371 | return -EINVAL; |
| 8372 | |
| 8373 | arg = &btf_params(func)[arg_idx]; |
| 8374 | t = btf_type_skip_modifiers(btf, arg->type, NULL); |
| 8375 | if (!t || !btf_type_is_ptr(t)) |
| 8376 | return -EINVAL; |
| 8377 | t = btf_type_skip_modifiers(btf, t->type, &btf_id); |
| 8378 | if (!t || !__btf_type_is_struct(t)) |
| 8379 | return -EINVAL; |
| 8380 | |
| 8381 | name = btf_name_by_offset(btf, t->name_off); |
| 8382 | if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) |
| 8383 | return -EINVAL; |
| 8384 | |
| 8385 | return btf_id; |
| 8386 | } |
| 8387 | |
| 8388 | static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, |
| 8389 | const struct btf_type *func, u32 func_flags) |
| 8390 | { |
| 8391 | u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); |
| 8392 | const char *sfx, *iter_name; |
| 8393 | const struct btf_type *t; |
| 8394 | char exp_name[128]; |
| 8395 | u32 nr_args; |
| 8396 | int btf_id; |
| 8397 | |
| 8398 | /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ |
| 8399 | if (!flags || (flags & (flags - 1))) |
| 8400 | return -EINVAL; |
| 8401 | |
| 8402 | /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ |
| 8403 | nr_args = btf_type_vlen(func); |
| 8404 | if (nr_args < 1) |
| 8405 | return -EINVAL; |
| 8406 | |
| 8407 | btf_id = btf_check_iter_arg(btf, func, 0); |
| 8408 | if (btf_id < 0) |
| 8409 | return btf_id; |
| 8410 | |
| 8411 | /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to |
| 8412 | * fit nicely in stack slots |
| 8413 | */ |
| 8414 | t = btf_type_by_id(btf, btf_id); |
| 8415 | if (t->size == 0 || (t->size % 8)) |
| 8416 | return -EINVAL; |
| 8417 | |
| 8418 | /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) |
| 8419 | * naming pattern |
| 8420 | */ |
| 8421 | iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; |
| 8422 | if (flags & KF_ITER_NEW) |
| 8423 | sfx = "new"; |
| 8424 | else if (flags & KF_ITER_NEXT) |
| 8425 | sfx = "next"; |
| 8426 | else /* (flags & KF_ITER_DESTROY) */ |
| 8427 | sfx = "destroy"; |
| 8428 | |
| 8429 | snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); |
| 8430 | if (strcmp(func_name, exp_name)) |
| 8431 | return -EINVAL; |
| 8432 | |
| 8433 | /* only iter constructor should have extra arguments */ |
| 8434 | if (!(flags & KF_ITER_NEW) && nr_args != 1) |
| 8435 | return -EINVAL; |
| 8436 | |
| 8437 | if (flags & KF_ITER_NEXT) { |
| 8438 | /* bpf_iter_<type>_next() should return pointer */ |
| 8439 | t = btf_type_skip_modifiers(btf, func->type, NULL); |
| 8440 | if (!t || !btf_type_is_ptr(t)) |
| 8441 | return -EINVAL; |
| 8442 | } |
| 8443 | |
| 8444 | if (flags & KF_ITER_DESTROY) { |
| 8445 | /* bpf_iter_<type>_destroy() should return void */ |
| 8446 | t = btf_type_by_id(btf, func->type); |
| 8447 | if (!t || !btf_type_is_void(t)) |
| 8448 | return -EINVAL; |
| 8449 | } |
| 8450 | |
| 8451 | return 0; |
| 8452 | } |
| 8453 | |
| 8454 | static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) |
| 8455 | { |
| 8456 | const struct btf_type *func; |
| 8457 | const char *func_name; |
| 8458 | int err; |
| 8459 | |
| 8460 | /* any kfunc should be FUNC -> FUNC_PROTO */ |
| 8461 | func = btf_type_by_id(btf, func_id); |
| 8462 | if (!func || !btf_type_is_func(func)) |
| 8463 | return -EINVAL; |
| 8464 | |
| 8465 | /* sanity check kfunc name */ |
| 8466 | func_name = btf_name_by_offset(btf, func->name_off); |
| 8467 | if (!func_name || !func_name[0]) |
| 8468 | return -EINVAL; |
| 8469 | |
| 8470 | func = btf_type_by_id(btf, func->type); |
| 8471 | if (!func || !btf_type_is_func_proto(func)) |
| 8472 | return -EINVAL; |
| 8473 | |
| 8474 | if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { |
| 8475 | err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); |
| 8476 | if (err) |
| 8477 | return err; |
| 8478 | } |
| 8479 | |
| 8480 | return 0; |
| 8481 | } |
| 8482 | |
| 8483 | /* Kernel Function (kfunc) BTF ID set registration API */ |
| 8484 | |
| 8485 | static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, |
| 8486 | const struct btf_kfunc_id_set *kset) |
| 8487 | { |
| 8488 | struct btf_kfunc_hook_filter *hook_filter; |
| 8489 | struct btf_id_set8 *add_set = kset->set; |
| 8490 | bool vmlinux_set = !btf_is_module(btf); |
| 8491 | bool add_filter = !!kset->filter; |
| 8492 | struct btf_kfunc_set_tab *tab; |
| 8493 | struct btf_id_set8 *set; |
| 8494 | u32 set_cnt, i; |
| 8495 | int ret; |
| 8496 | |
| 8497 | if (hook >= BTF_KFUNC_HOOK_MAX) { |
| 8498 | ret = -EINVAL; |
| 8499 | goto end; |
| 8500 | } |
| 8501 | |
| 8502 | if (!add_set->cnt) |
| 8503 | return 0; |
| 8504 | |
| 8505 | tab = btf->kfunc_set_tab; |
| 8506 | |
| 8507 | if (tab && add_filter) { |
| 8508 | u32 i; |
| 8509 | |
| 8510 | hook_filter = &tab->hook_filters[hook]; |
| 8511 | for (i = 0; i < hook_filter->nr_filters; i++) { |
| 8512 | if (hook_filter->filters[i] == kset->filter) { |
| 8513 | add_filter = false; |
| 8514 | break; |
| 8515 | } |
| 8516 | } |
| 8517 | |
| 8518 | if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { |
| 8519 | ret = -E2BIG; |
| 8520 | goto end; |
| 8521 | } |
| 8522 | } |
| 8523 | |
| 8524 | if (!tab) { |
| 8525 | tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); |
| 8526 | if (!tab) |
| 8527 | return -ENOMEM; |
| 8528 | btf->kfunc_set_tab = tab; |
| 8529 | } |
| 8530 | |
| 8531 | set = tab->sets[hook]; |
| 8532 | /* Warn when register_btf_kfunc_id_set is called twice for the same hook |
| 8533 | * for module sets. |
| 8534 | */ |
| 8535 | if (WARN_ON_ONCE(set && !vmlinux_set)) { |
| 8536 | ret = -EINVAL; |
| 8537 | goto end; |
| 8538 | } |
| 8539 | |
| 8540 | /* In case of vmlinux sets, there may be more than one set being |
| 8541 | * registered per hook. To create a unified set, we allocate a new set |
| 8542 | * and concatenate all individual sets being registered. While each set |
| 8543 | * is individually sorted, they may become unsorted when concatenated, |
| 8544 | * hence re-sorting the final set again is required to make binary |
| 8545 | * searching the set using btf_id_set8_contains function work. |
| 8546 | * |
| 8547 | * For module sets, we need to allocate as we may need to relocate |
| 8548 | * BTF ids. |
| 8549 | */ |
| 8550 | set_cnt = set ? set->cnt : 0; |
| 8551 | |
| 8552 | if (set_cnt > U32_MAX - add_set->cnt) { |
| 8553 | ret = -EOVERFLOW; |
| 8554 | goto end; |
| 8555 | } |
| 8556 | |
| 8557 | if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { |
| 8558 | ret = -E2BIG; |
| 8559 | goto end; |
| 8560 | } |
| 8561 | |
| 8562 | /* Grow set */ |
| 8563 | set = krealloc(tab->sets[hook], |
| 8564 | struct_size(set, pairs, set_cnt + add_set->cnt), |
| 8565 | GFP_KERNEL | __GFP_NOWARN); |
| 8566 | if (!set) { |
| 8567 | ret = -ENOMEM; |
| 8568 | goto end; |
| 8569 | } |
| 8570 | |
| 8571 | /* For newly allocated set, initialize set->cnt to 0 */ |
| 8572 | if (!tab->sets[hook]) |
| 8573 | set->cnt = 0; |
| 8574 | tab->sets[hook] = set; |
| 8575 | |
| 8576 | /* Concatenate the two sets */ |
| 8577 | memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); |
| 8578 | /* Now that the set is copied, update with relocated BTF ids */ |
| 8579 | for (i = set->cnt; i < set->cnt + add_set->cnt; i++) |
| 8580 | set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); |
| 8581 | |
| 8582 | set->cnt += add_set->cnt; |
| 8583 | |
| 8584 | sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); |
| 8585 | |
| 8586 | if (add_filter) { |
| 8587 | hook_filter = &tab->hook_filters[hook]; |
| 8588 | hook_filter->filters[hook_filter->nr_filters++] = kset->filter; |
| 8589 | } |
| 8590 | return 0; |
| 8591 | end: |
| 8592 | btf_free_kfunc_set_tab(btf); |
| 8593 | return ret; |
| 8594 | } |
| 8595 | |
| 8596 | static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, |
| 8597 | enum btf_kfunc_hook hook, |
| 8598 | u32 kfunc_btf_id, |
| 8599 | const struct bpf_prog *prog) |
| 8600 | { |
| 8601 | struct btf_kfunc_hook_filter *hook_filter; |
| 8602 | struct btf_id_set8 *set; |
| 8603 | u32 *id, i; |
| 8604 | |
| 8605 | if (hook >= BTF_KFUNC_HOOK_MAX) |
| 8606 | return NULL; |
| 8607 | if (!btf->kfunc_set_tab) |
| 8608 | return NULL; |
| 8609 | hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; |
| 8610 | for (i = 0; i < hook_filter->nr_filters; i++) { |
| 8611 | if (hook_filter->filters[i](prog, kfunc_btf_id)) |
| 8612 | return NULL; |
| 8613 | } |
| 8614 | set = btf->kfunc_set_tab->sets[hook]; |
| 8615 | if (!set) |
| 8616 | return NULL; |
| 8617 | id = btf_id_set8_contains(set, kfunc_btf_id); |
| 8618 | if (!id) |
| 8619 | return NULL; |
| 8620 | /* The flags for BTF ID are located next to it */ |
| 8621 | return id + 1; |
| 8622 | } |
| 8623 | |
| 8624 | static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) |
| 8625 | { |
| 8626 | switch (prog_type) { |
| 8627 | case BPF_PROG_TYPE_UNSPEC: |
| 8628 | return BTF_KFUNC_HOOK_COMMON; |
| 8629 | case BPF_PROG_TYPE_XDP: |
| 8630 | return BTF_KFUNC_HOOK_XDP; |
| 8631 | case BPF_PROG_TYPE_SCHED_CLS: |
| 8632 | return BTF_KFUNC_HOOK_TC; |
| 8633 | case BPF_PROG_TYPE_STRUCT_OPS: |
| 8634 | return BTF_KFUNC_HOOK_STRUCT_OPS; |
| 8635 | case BPF_PROG_TYPE_TRACING: |
| 8636 | case BPF_PROG_TYPE_TRACEPOINT: |
| 8637 | case BPF_PROG_TYPE_PERF_EVENT: |
| 8638 | case BPF_PROG_TYPE_LSM: |
| 8639 | return BTF_KFUNC_HOOK_TRACING; |
| 8640 | case BPF_PROG_TYPE_SYSCALL: |
| 8641 | return BTF_KFUNC_HOOK_SYSCALL; |
| 8642 | case BPF_PROG_TYPE_CGROUP_SKB: |
| 8643 | case BPF_PROG_TYPE_CGROUP_SOCK: |
| 8644 | case BPF_PROG_TYPE_CGROUP_DEVICE: |
| 8645 | case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: |
| 8646 | case BPF_PROG_TYPE_CGROUP_SOCKOPT: |
| 8647 | case BPF_PROG_TYPE_CGROUP_SYSCTL: |
| 8648 | case BPF_PROG_TYPE_SOCK_OPS: |
| 8649 | return BTF_KFUNC_HOOK_CGROUP; |
| 8650 | case BPF_PROG_TYPE_SCHED_ACT: |
| 8651 | return BTF_KFUNC_HOOK_SCHED_ACT; |
| 8652 | case BPF_PROG_TYPE_SK_SKB: |
| 8653 | return BTF_KFUNC_HOOK_SK_SKB; |
| 8654 | case BPF_PROG_TYPE_SOCKET_FILTER: |
| 8655 | return BTF_KFUNC_HOOK_SOCKET_FILTER; |
| 8656 | case BPF_PROG_TYPE_LWT_OUT: |
| 8657 | case BPF_PROG_TYPE_LWT_IN: |
| 8658 | case BPF_PROG_TYPE_LWT_XMIT: |
| 8659 | case BPF_PROG_TYPE_LWT_SEG6LOCAL: |
| 8660 | return BTF_KFUNC_HOOK_LWT; |
| 8661 | case BPF_PROG_TYPE_NETFILTER: |
| 8662 | return BTF_KFUNC_HOOK_NETFILTER; |
| 8663 | case BPF_PROG_TYPE_KPROBE: |
| 8664 | return BTF_KFUNC_HOOK_KPROBE; |
| 8665 | default: |
| 8666 | return BTF_KFUNC_HOOK_MAX; |
| 8667 | } |
| 8668 | } |
| 8669 | |
| 8670 | /* Caution: |
| 8671 | * Reference to the module (obtained using btf_try_get_module) corresponding to |
| 8672 | * the struct btf *MUST* be held when calling this function from verifier |
| 8673 | * context. This is usually true as we stash references in prog's kfunc_btf_tab; |
| 8674 | * keeping the reference for the duration of the call provides the necessary |
| 8675 | * protection for looking up a well-formed btf->kfunc_set_tab. |
| 8676 | */ |
| 8677 | u32 *btf_kfunc_id_set_contains(const struct btf *btf, |
| 8678 | u32 kfunc_btf_id, |
| 8679 | const struct bpf_prog *prog) |
| 8680 | { |
| 8681 | enum bpf_prog_type prog_type = resolve_prog_type(prog); |
| 8682 | enum btf_kfunc_hook hook; |
| 8683 | u32 *kfunc_flags; |
| 8684 | |
| 8685 | kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); |
| 8686 | if (kfunc_flags) |
| 8687 | return kfunc_flags; |
| 8688 | |
| 8689 | hook = bpf_prog_type_to_kfunc_hook(prog_type); |
| 8690 | return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); |
| 8691 | } |
| 8692 | |
| 8693 | u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, |
| 8694 | const struct bpf_prog *prog) |
| 8695 | { |
| 8696 | return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); |
| 8697 | } |
| 8698 | |
| 8699 | static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, |
| 8700 | const struct btf_kfunc_id_set *kset) |
| 8701 | { |
| 8702 | struct btf *btf; |
| 8703 | int ret, i; |
| 8704 | |
| 8705 | btf = btf_get_module_btf(kset->owner); |
| 8706 | if (!btf) |
| 8707 | return check_btf_kconfigs(kset->owner, "kfunc"); |
| 8708 | if (IS_ERR(btf)) |
| 8709 | return PTR_ERR(btf); |
| 8710 | |
| 8711 | for (i = 0; i < kset->set->cnt; i++) { |
| 8712 | ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), |
| 8713 | kset->set->pairs[i].flags); |
| 8714 | if (ret) |
| 8715 | goto err_out; |
| 8716 | } |
| 8717 | |
| 8718 | ret = btf_populate_kfunc_set(btf, hook, kset); |
| 8719 | |
| 8720 | err_out: |
| 8721 | btf_put(btf); |
| 8722 | return ret; |
| 8723 | } |
| 8724 | |
| 8725 | /* This function must be invoked only from initcalls/module init functions */ |
| 8726 | int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, |
| 8727 | const struct btf_kfunc_id_set *kset) |
| 8728 | { |
| 8729 | enum btf_kfunc_hook hook; |
| 8730 | |
| 8731 | /* All kfuncs need to be tagged as such in BTF. |
| 8732 | * WARN() for initcall registrations that do not check errors. |
| 8733 | */ |
| 8734 | if (!(kset->set->flags & BTF_SET8_KFUNCS)) { |
| 8735 | WARN_ON(!kset->owner); |
| 8736 | return -EINVAL; |
| 8737 | } |
| 8738 | |
| 8739 | hook = bpf_prog_type_to_kfunc_hook(prog_type); |
| 8740 | return __register_btf_kfunc_id_set(hook, kset); |
| 8741 | } |
| 8742 | EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); |
| 8743 | |
| 8744 | /* This function must be invoked only from initcalls/module init functions */ |
| 8745 | int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) |
| 8746 | { |
| 8747 | return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); |
| 8748 | } |
| 8749 | EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); |
| 8750 | |
| 8751 | s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) |
| 8752 | { |
| 8753 | struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; |
| 8754 | struct btf_id_dtor_kfunc *dtor; |
| 8755 | |
| 8756 | if (!tab) |
| 8757 | return -ENOENT; |
| 8758 | /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need |
| 8759 | * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. |
| 8760 | */ |
| 8761 | BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); |
| 8762 | dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); |
| 8763 | if (!dtor) |
| 8764 | return -ENOENT; |
| 8765 | return dtor->kfunc_btf_id; |
| 8766 | } |
| 8767 | |
| 8768 | static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) |
| 8769 | { |
| 8770 | const struct btf_type *dtor_func, *dtor_func_proto, *t; |
| 8771 | const struct btf_param *args; |
| 8772 | s32 dtor_btf_id; |
| 8773 | u32 nr_args, i; |
| 8774 | |
| 8775 | for (i = 0; i < cnt; i++) { |
| 8776 | dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); |
| 8777 | |
| 8778 | dtor_func = btf_type_by_id(btf, dtor_btf_id); |
| 8779 | if (!dtor_func || !btf_type_is_func(dtor_func)) |
| 8780 | return -EINVAL; |
| 8781 | |
| 8782 | dtor_func_proto = btf_type_by_id(btf, dtor_func->type); |
| 8783 | if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) |
| 8784 | return -EINVAL; |
| 8785 | |
| 8786 | /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ |
| 8787 | t = btf_type_by_id(btf, dtor_func_proto->type); |
| 8788 | if (!t || !btf_type_is_void(t)) |
| 8789 | return -EINVAL; |
| 8790 | |
| 8791 | nr_args = btf_type_vlen(dtor_func_proto); |
| 8792 | if (nr_args != 1) |
| 8793 | return -EINVAL; |
| 8794 | args = btf_params(dtor_func_proto); |
| 8795 | t = btf_type_by_id(btf, args[0].type); |
| 8796 | /* Allow any pointer type, as width on targets Linux supports |
| 8797 | * will be same for all pointer types (i.e. sizeof(void *)) |
| 8798 | */ |
| 8799 | if (!t || !btf_type_is_ptr(t)) |
| 8800 | return -EINVAL; |
| 8801 | } |
| 8802 | return 0; |
| 8803 | } |
| 8804 | |
| 8805 | /* This function must be invoked only from initcalls/module init functions */ |
| 8806 | int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, |
| 8807 | struct module *owner) |
| 8808 | { |
| 8809 | struct btf_id_dtor_kfunc_tab *tab; |
| 8810 | struct btf *btf; |
| 8811 | u32 tab_cnt, i; |
| 8812 | int ret; |
| 8813 | |
| 8814 | btf = btf_get_module_btf(owner); |
| 8815 | if (!btf) |
| 8816 | return check_btf_kconfigs(owner, "dtor kfuncs"); |
| 8817 | if (IS_ERR(btf)) |
| 8818 | return PTR_ERR(btf); |
| 8819 | |
| 8820 | if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { |
| 8821 | pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); |
| 8822 | ret = -E2BIG; |
| 8823 | goto end; |
| 8824 | } |
| 8825 | |
| 8826 | /* Ensure that the prototype of dtor kfuncs being registered is sane */ |
| 8827 | ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); |
| 8828 | if (ret < 0) |
| 8829 | goto end; |
| 8830 | |
| 8831 | tab = btf->dtor_kfunc_tab; |
| 8832 | /* Only one call allowed for modules */ |
| 8833 | if (WARN_ON_ONCE(tab && btf_is_module(btf))) { |
| 8834 | ret = -EINVAL; |
| 8835 | goto end; |
| 8836 | } |
| 8837 | |
| 8838 | tab_cnt = tab ? tab->cnt : 0; |
| 8839 | if (tab_cnt > U32_MAX - add_cnt) { |
| 8840 | ret = -EOVERFLOW; |
| 8841 | goto end; |
| 8842 | } |
| 8843 | if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { |
| 8844 | pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); |
| 8845 | ret = -E2BIG; |
| 8846 | goto end; |
| 8847 | } |
| 8848 | |
| 8849 | tab = krealloc(btf->dtor_kfunc_tab, |
| 8850 | struct_size(tab, dtors, tab_cnt + add_cnt), |
| 8851 | GFP_KERNEL | __GFP_NOWARN); |
| 8852 | if (!tab) { |
| 8853 | ret = -ENOMEM; |
| 8854 | goto end; |
| 8855 | } |
| 8856 | |
| 8857 | if (!btf->dtor_kfunc_tab) |
| 8858 | tab->cnt = 0; |
| 8859 | btf->dtor_kfunc_tab = tab; |
| 8860 | |
| 8861 | memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); |
| 8862 | |
| 8863 | /* remap BTF ids based on BTF relocation (if any) */ |
| 8864 | for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { |
| 8865 | tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); |
| 8866 | tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); |
| 8867 | } |
| 8868 | |
| 8869 | tab->cnt += add_cnt; |
| 8870 | |
| 8871 | sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); |
| 8872 | |
| 8873 | end: |
| 8874 | if (ret) |
| 8875 | btf_free_dtor_kfunc_tab(btf); |
| 8876 | btf_put(btf); |
| 8877 | return ret; |
| 8878 | } |
| 8879 | EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); |
| 8880 | |
| 8881 | #define MAX_TYPES_ARE_COMPAT_DEPTH 2 |
| 8882 | |
| 8883 | /* Check local and target types for compatibility. This check is used for |
| 8884 | * type-based CO-RE relocations and follow slightly different rules than |
| 8885 | * field-based relocations. This function assumes that root types were already |
| 8886 | * checked for name match. Beyond that initial root-level name check, names |
| 8887 | * are completely ignored. Compatibility rules are as follows: |
| 8888 | * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but |
| 8889 | * kind should match for local and target types (i.e., STRUCT is not |
| 8890 | * compatible with UNION); |
| 8891 | * - for ENUMs/ENUM64s, the size is ignored; |
| 8892 | * - for INT, size and signedness are ignored; |
| 8893 | * - for ARRAY, dimensionality is ignored, element types are checked for |
| 8894 | * compatibility recursively; |
| 8895 | * - CONST/VOLATILE/RESTRICT modifiers are ignored; |
| 8896 | * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; |
| 8897 | * - FUNC_PROTOs are compatible if they have compatible signature: same |
| 8898 | * number of input args and compatible return and argument types. |
| 8899 | * These rules are not set in stone and probably will be adjusted as we get |
| 8900 | * more experience with using BPF CO-RE relocations. |
| 8901 | */ |
| 8902 | int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, |
| 8903 | const struct btf *targ_btf, __u32 targ_id) |
| 8904 | { |
| 8905 | return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, |
| 8906 | MAX_TYPES_ARE_COMPAT_DEPTH); |
| 8907 | } |
| 8908 | |
| 8909 | #define MAX_TYPES_MATCH_DEPTH 2 |
| 8910 | |
| 8911 | int bpf_core_types_match(const struct btf *local_btf, u32 local_id, |
| 8912 | const struct btf *targ_btf, u32 targ_id) |
| 8913 | { |
| 8914 | return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, |
| 8915 | MAX_TYPES_MATCH_DEPTH); |
| 8916 | } |
| 8917 | |
| 8918 | static bool bpf_core_is_flavor_sep(const char *s) |
| 8919 | { |
| 8920 | /* check X___Y name pattern, where X and Y are not underscores */ |
| 8921 | return s[0] != '_' && /* X */ |
| 8922 | s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ |
| 8923 | s[4] != '_'; /* Y */ |
| 8924 | } |
| 8925 | |
| 8926 | size_t bpf_core_essential_name_len(const char *name) |
| 8927 | { |
| 8928 | size_t n = strlen(name); |
| 8929 | int i; |
| 8930 | |
| 8931 | for (i = n - 5; i >= 0; i--) { |
| 8932 | if (bpf_core_is_flavor_sep(name + i)) |
| 8933 | return i + 1; |
| 8934 | } |
| 8935 | return n; |
| 8936 | } |
| 8937 | |
| 8938 | static void bpf_free_cands(struct bpf_cand_cache *cands) |
| 8939 | { |
| 8940 | if (!cands->cnt) |
| 8941 | /* empty candidate array was allocated on stack */ |
| 8942 | return; |
| 8943 | kfree(cands); |
| 8944 | } |
| 8945 | |
| 8946 | static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) |
| 8947 | { |
| 8948 | kfree(cands->name); |
| 8949 | kfree(cands); |
| 8950 | } |
| 8951 | |
| 8952 | #define VMLINUX_CAND_CACHE_SIZE 31 |
| 8953 | static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; |
| 8954 | |
| 8955 | #define MODULE_CAND_CACHE_SIZE 31 |
| 8956 | static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; |
| 8957 | |
| 8958 | static void __print_cand_cache(struct bpf_verifier_log *log, |
| 8959 | struct bpf_cand_cache **cache, |
| 8960 | int cache_size) |
| 8961 | { |
| 8962 | struct bpf_cand_cache *cc; |
| 8963 | int i, j; |
| 8964 | |
| 8965 | for (i = 0; i < cache_size; i++) { |
| 8966 | cc = cache[i]; |
| 8967 | if (!cc) |
| 8968 | continue; |
| 8969 | bpf_log(log, "[%d]%s(", i, cc->name); |
| 8970 | for (j = 0; j < cc->cnt; j++) { |
| 8971 | bpf_log(log, "%d", cc->cands[j].id); |
| 8972 | if (j < cc->cnt - 1) |
| 8973 | bpf_log(log, " "); |
| 8974 | } |
| 8975 | bpf_log(log, "), "); |
| 8976 | } |
| 8977 | } |
| 8978 | |
| 8979 | static void print_cand_cache(struct bpf_verifier_log *log) |
| 8980 | { |
| 8981 | mutex_lock(&cand_cache_mutex); |
| 8982 | bpf_log(log, "vmlinux_cand_cache:"); |
| 8983 | __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); |
| 8984 | bpf_log(log, "\nmodule_cand_cache:"); |
| 8985 | __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); |
| 8986 | bpf_log(log, "\n"); |
| 8987 | mutex_unlock(&cand_cache_mutex); |
| 8988 | } |
| 8989 | |
| 8990 | static u32 hash_cands(struct bpf_cand_cache *cands) |
| 8991 | { |
| 8992 | return jhash(cands->name, cands->name_len, 0); |
| 8993 | } |
| 8994 | |
| 8995 | static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, |
| 8996 | struct bpf_cand_cache **cache, |
| 8997 | int cache_size) |
| 8998 | { |
| 8999 | struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; |
| 9000 | |
| 9001 | if (cc && cc->name_len == cands->name_len && |
| 9002 | !strncmp(cc->name, cands->name, cands->name_len)) |
| 9003 | return cc; |
| 9004 | return NULL; |
| 9005 | } |
| 9006 | |
| 9007 | static size_t sizeof_cands(int cnt) |
| 9008 | { |
| 9009 | return offsetof(struct bpf_cand_cache, cands[cnt]); |
| 9010 | } |
| 9011 | |
| 9012 | static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, |
| 9013 | struct bpf_cand_cache **cache, |
| 9014 | int cache_size) |
| 9015 | { |
| 9016 | struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; |
| 9017 | |
| 9018 | if (*cc) { |
| 9019 | bpf_free_cands_from_cache(*cc); |
| 9020 | *cc = NULL; |
| 9021 | } |
| 9022 | new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); |
| 9023 | if (!new_cands) { |
| 9024 | bpf_free_cands(cands); |
| 9025 | return ERR_PTR(-ENOMEM); |
| 9026 | } |
| 9027 | /* strdup the name, since it will stay in cache. |
| 9028 | * the cands->name points to strings in prog's BTF and the prog can be unloaded. |
| 9029 | */ |
| 9030 | new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); |
| 9031 | bpf_free_cands(cands); |
| 9032 | if (!new_cands->name) { |
| 9033 | kfree(new_cands); |
| 9034 | return ERR_PTR(-ENOMEM); |
| 9035 | } |
| 9036 | *cc = new_cands; |
| 9037 | return new_cands; |
| 9038 | } |
| 9039 | |
| 9040 | #ifdef CONFIG_DEBUG_INFO_BTF_MODULES |
| 9041 | static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, |
| 9042 | int cache_size) |
| 9043 | { |
| 9044 | struct bpf_cand_cache *cc; |
| 9045 | int i, j; |
| 9046 | |
| 9047 | for (i = 0; i < cache_size; i++) { |
| 9048 | cc = cache[i]; |
| 9049 | if (!cc) |
| 9050 | continue; |
| 9051 | if (!btf) { |
| 9052 | /* when new module is loaded purge all of module_cand_cache, |
| 9053 | * since new module might have candidates with the name |
| 9054 | * that matches cached cands. |
| 9055 | */ |
| 9056 | bpf_free_cands_from_cache(cc); |
| 9057 | cache[i] = NULL; |
| 9058 | continue; |
| 9059 | } |
| 9060 | /* when module is unloaded purge cache entries |
| 9061 | * that match module's btf |
| 9062 | */ |
| 9063 | for (j = 0; j < cc->cnt; j++) |
| 9064 | if (cc->cands[j].btf == btf) { |
| 9065 | bpf_free_cands_from_cache(cc); |
| 9066 | cache[i] = NULL; |
| 9067 | break; |
| 9068 | } |
| 9069 | } |
| 9070 | |
| 9071 | } |
| 9072 | |
| 9073 | static void purge_cand_cache(struct btf *btf) |
| 9074 | { |
| 9075 | mutex_lock(&cand_cache_mutex); |
| 9076 | __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); |
| 9077 | mutex_unlock(&cand_cache_mutex); |
| 9078 | } |
| 9079 | #endif |
| 9080 | |
| 9081 | static struct bpf_cand_cache * |
| 9082 | bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, |
| 9083 | int targ_start_id) |
| 9084 | { |
| 9085 | struct bpf_cand_cache *new_cands; |
| 9086 | const struct btf_type *t; |
| 9087 | const char *targ_name; |
| 9088 | size_t targ_essent_len; |
| 9089 | int n, i; |
| 9090 | |
| 9091 | n = btf_nr_types(targ_btf); |
| 9092 | for (i = targ_start_id; i < n; i++) { |
| 9093 | t = btf_type_by_id(targ_btf, i); |
| 9094 | if (btf_kind(t) != cands->kind) |
| 9095 | continue; |
| 9096 | |
| 9097 | targ_name = btf_name_by_offset(targ_btf, t->name_off); |
| 9098 | if (!targ_name) |
| 9099 | continue; |
| 9100 | |
| 9101 | /* the resched point is before strncmp to make sure that search |
| 9102 | * for non-existing name will have a chance to schedule(). |
| 9103 | */ |
| 9104 | cond_resched(); |
| 9105 | |
| 9106 | if (strncmp(cands->name, targ_name, cands->name_len) != 0) |
| 9107 | continue; |
| 9108 | |
| 9109 | targ_essent_len = bpf_core_essential_name_len(targ_name); |
| 9110 | if (targ_essent_len != cands->name_len) |
| 9111 | continue; |
| 9112 | |
| 9113 | /* most of the time there is only one candidate for a given kind+name pair */ |
| 9114 | new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); |
| 9115 | if (!new_cands) { |
| 9116 | bpf_free_cands(cands); |
| 9117 | return ERR_PTR(-ENOMEM); |
| 9118 | } |
| 9119 | |
| 9120 | memcpy(new_cands, cands, sizeof_cands(cands->cnt)); |
| 9121 | bpf_free_cands(cands); |
| 9122 | cands = new_cands; |
| 9123 | cands->cands[cands->cnt].btf = targ_btf; |
| 9124 | cands->cands[cands->cnt].id = i; |
| 9125 | cands->cnt++; |
| 9126 | } |
| 9127 | return cands; |
| 9128 | } |
| 9129 | |
| 9130 | static struct bpf_cand_cache * |
| 9131 | bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) |
| 9132 | { |
| 9133 | struct bpf_cand_cache *cands, *cc, local_cand = {}; |
| 9134 | const struct btf *local_btf = ctx->btf; |
| 9135 | const struct btf_type *local_type; |
| 9136 | const struct btf *main_btf; |
| 9137 | size_t local_essent_len; |
| 9138 | struct btf *mod_btf; |
| 9139 | const char *name; |
| 9140 | int id; |
| 9141 | |
| 9142 | main_btf = bpf_get_btf_vmlinux(); |
| 9143 | if (IS_ERR(main_btf)) |
| 9144 | return ERR_CAST(main_btf); |
| 9145 | if (!main_btf) |
| 9146 | return ERR_PTR(-EINVAL); |
| 9147 | |
| 9148 | local_type = btf_type_by_id(local_btf, local_type_id); |
| 9149 | if (!local_type) |
| 9150 | return ERR_PTR(-EINVAL); |
| 9151 | |
| 9152 | name = btf_name_by_offset(local_btf, local_type->name_off); |
| 9153 | if (str_is_empty(name)) |
| 9154 | return ERR_PTR(-EINVAL); |
| 9155 | local_essent_len = bpf_core_essential_name_len(name); |
| 9156 | |
| 9157 | cands = &local_cand; |
| 9158 | cands->name = name; |
| 9159 | cands->kind = btf_kind(local_type); |
| 9160 | cands->name_len = local_essent_len; |
| 9161 | |
| 9162 | cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); |
| 9163 | /* cands is a pointer to stack here */ |
| 9164 | if (cc) { |
| 9165 | if (cc->cnt) |
| 9166 | return cc; |
| 9167 | goto check_modules; |
| 9168 | } |
| 9169 | |
| 9170 | /* Attempt to find target candidates in vmlinux BTF first */ |
| 9171 | cands = bpf_core_add_cands(cands, main_btf, 1); |
| 9172 | if (IS_ERR(cands)) |
| 9173 | return ERR_CAST(cands); |
| 9174 | |
| 9175 | /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ |
| 9176 | |
| 9177 | /* populate cache even when cands->cnt == 0 */ |
| 9178 | cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); |
| 9179 | if (IS_ERR(cc)) |
| 9180 | return ERR_CAST(cc); |
| 9181 | |
| 9182 | /* if vmlinux BTF has any candidate, don't go for module BTFs */ |
| 9183 | if (cc->cnt) |
| 9184 | return cc; |
| 9185 | |
| 9186 | check_modules: |
| 9187 | /* cands is a pointer to stack here and cands->cnt == 0 */ |
| 9188 | cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); |
| 9189 | if (cc) |
| 9190 | /* if cache has it return it even if cc->cnt == 0 */ |
| 9191 | return cc; |
| 9192 | |
| 9193 | /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ |
| 9194 | spin_lock_bh(&btf_idr_lock); |
| 9195 | idr_for_each_entry(&btf_idr, mod_btf, id) { |
| 9196 | if (!btf_is_module(mod_btf)) |
| 9197 | continue; |
| 9198 | /* linear search could be slow hence unlock/lock |
| 9199 | * the IDR to avoiding holding it for too long |
| 9200 | */ |
| 9201 | btf_get(mod_btf); |
| 9202 | spin_unlock_bh(&btf_idr_lock); |
| 9203 | cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); |
| 9204 | btf_put(mod_btf); |
| 9205 | if (IS_ERR(cands)) |
| 9206 | return ERR_CAST(cands); |
| 9207 | spin_lock_bh(&btf_idr_lock); |
| 9208 | } |
| 9209 | spin_unlock_bh(&btf_idr_lock); |
| 9210 | /* cands is a pointer to kmalloced memory here if cands->cnt > 0 |
| 9211 | * or pointer to stack if cands->cnd == 0. |
| 9212 | * Copy it into the cache even when cands->cnt == 0 and |
| 9213 | * return the result. |
| 9214 | */ |
| 9215 | return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); |
| 9216 | } |
| 9217 | |
| 9218 | int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, |
| 9219 | int relo_idx, void *insn) |
| 9220 | { |
| 9221 | bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; |
| 9222 | struct bpf_core_cand_list cands = {}; |
| 9223 | struct bpf_core_relo_res targ_res; |
| 9224 | struct bpf_core_spec *specs; |
| 9225 | const struct btf_type *type; |
| 9226 | int err; |
| 9227 | |
| 9228 | /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" |
| 9229 | * into arrays of btf_ids of struct fields and array indices. |
| 9230 | */ |
| 9231 | specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); |
| 9232 | if (!specs) |
| 9233 | return -ENOMEM; |
| 9234 | |
| 9235 | type = btf_type_by_id(ctx->btf, relo->type_id); |
| 9236 | if (!type) { |
| 9237 | bpf_log(ctx->log, "relo #%u: bad type id %u\n", |
| 9238 | relo_idx, relo->type_id); |
| 9239 | kfree(specs); |
| 9240 | return -EINVAL; |
| 9241 | } |
| 9242 | |
| 9243 | if (need_cands) { |
| 9244 | struct bpf_cand_cache *cc; |
| 9245 | int i; |
| 9246 | |
| 9247 | mutex_lock(&cand_cache_mutex); |
| 9248 | cc = bpf_core_find_cands(ctx, relo->type_id); |
| 9249 | if (IS_ERR(cc)) { |
| 9250 | bpf_log(ctx->log, "target candidate search failed for %d\n", |
| 9251 | relo->type_id); |
| 9252 | err = PTR_ERR(cc); |
| 9253 | goto out; |
| 9254 | } |
| 9255 | if (cc->cnt) { |
| 9256 | cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); |
| 9257 | if (!cands.cands) { |
| 9258 | err = -ENOMEM; |
| 9259 | goto out; |
| 9260 | } |
| 9261 | } |
| 9262 | for (i = 0; i < cc->cnt; i++) { |
| 9263 | bpf_log(ctx->log, |
| 9264 | "CO-RE relocating %s %s: found target candidate [%d]\n", |
| 9265 | btf_kind_str[cc->kind], cc->name, cc->cands[i].id); |
| 9266 | cands.cands[i].btf = cc->cands[i].btf; |
| 9267 | cands.cands[i].id = cc->cands[i].id; |
| 9268 | } |
| 9269 | cands.len = cc->cnt; |
| 9270 | /* cand_cache_mutex needs to span the cache lookup and |
| 9271 | * copy of btf pointer into bpf_core_cand_list, |
| 9272 | * since module can be unloaded while bpf_core_calc_relo_insn |
| 9273 | * is working with module's btf. |
| 9274 | */ |
| 9275 | } |
| 9276 | |
| 9277 | err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, |
| 9278 | &targ_res); |
| 9279 | if (err) |
| 9280 | goto out; |
| 9281 | |
| 9282 | err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, |
| 9283 | &targ_res); |
| 9284 | |
| 9285 | out: |
| 9286 | kfree(specs); |
| 9287 | if (need_cands) { |
| 9288 | kfree(cands.cands); |
| 9289 | mutex_unlock(&cand_cache_mutex); |
| 9290 | if (ctx->log->level & BPF_LOG_LEVEL2) |
| 9291 | print_cand_cache(ctx->log); |
| 9292 | } |
| 9293 | return err; |
| 9294 | } |
| 9295 | |
| 9296 | bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, |
| 9297 | const struct bpf_reg_state *reg, |
| 9298 | const char *field_name, u32 btf_id, const char *suffix) |
| 9299 | { |
| 9300 | struct btf *btf = reg->btf; |
| 9301 | const struct btf_type *walk_type, *safe_type; |
| 9302 | const char *tname; |
| 9303 | char safe_tname[64]; |
| 9304 | long ret, safe_id; |
| 9305 | const struct btf_member *member; |
| 9306 | u32 i; |
| 9307 | |
| 9308 | walk_type = btf_type_by_id(btf, reg->btf_id); |
| 9309 | if (!walk_type) |
| 9310 | return false; |
| 9311 | |
| 9312 | tname = btf_name_by_offset(btf, walk_type->name_off); |
| 9313 | |
| 9314 | ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); |
| 9315 | if (ret >= sizeof(safe_tname)) |
| 9316 | return false; |
| 9317 | |
| 9318 | safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); |
| 9319 | if (safe_id < 0) |
| 9320 | return false; |
| 9321 | |
| 9322 | safe_type = btf_type_by_id(btf, safe_id); |
| 9323 | if (!safe_type) |
| 9324 | return false; |
| 9325 | |
| 9326 | for_each_member(i, safe_type, member) { |
| 9327 | const char *m_name = __btf_name_by_offset(btf, member->name_off); |
| 9328 | const struct btf_type *mtype = btf_type_by_id(btf, member->type); |
| 9329 | u32 id; |
| 9330 | |
| 9331 | if (!btf_type_is_ptr(mtype)) |
| 9332 | continue; |
| 9333 | |
| 9334 | btf_type_skip_modifiers(btf, mtype->type, &id); |
| 9335 | /* If we match on both type and name, the field is considered trusted. */ |
| 9336 | if (btf_id == id && !strcmp(field_name, m_name)) |
| 9337 | return true; |
| 9338 | } |
| 9339 | |
| 9340 | return false; |
| 9341 | } |
| 9342 | |
| 9343 | bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, |
| 9344 | const struct btf *reg_btf, u32 reg_id, |
| 9345 | const struct btf *arg_btf, u32 arg_id) |
| 9346 | { |
| 9347 | const char *reg_name, *arg_name, *search_needle; |
| 9348 | const struct btf_type *reg_type, *arg_type; |
| 9349 | int reg_len, arg_len, cmp_len; |
| 9350 | size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); |
| 9351 | |
| 9352 | reg_type = btf_type_by_id(reg_btf, reg_id); |
| 9353 | if (!reg_type) |
| 9354 | return false; |
| 9355 | |
| 9356 | arg_type = btf_type_by_id(arg_btf, arg_id); |
| 9357 | if (!arg_type) |
| 9358 | return false; |
| 9359 | |
| 9360 | reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); |
| 9361 | arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); |
| 9362 | |
| 9363 | reg_len = strlen(reg_name); |
| 9364 | arg_len = strlen(arg_name); |
| 9365 | |
| 9366 | /* Exactly one of the two type names may be suffixed with ___init, so |
| 9367 | * if the strings are the same size, they can't possibly be no-cast |
| 9368 | * aliases of one another. If you have two of the same type names, e.g. |
| 9369 | * they're both nf_conn___init, it would be improper to return true |
| 9370 | * because they are _not_ no-cast aliases, they are the same type. |
| 9371 | */ |
| 9372 | if (reg_len == arg_len) |
| 9373 | return false; |
| 9374 | |
| 9375 | /* Either of the two names must be the other name, suffixed with ___init. */ |
| 9376 | if ((reg_len != arg_len + pattern_len) && |
| 9377 | (arg_len != reg_len + pattern_len)) |
| 9378 | return false; |
| 9379 | |
| 9380 | if (reg_len < arg_len) { |
| 9381 | search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); |
| 9382 | cmp_len = reg_len; |
| 9383 | } else { |
| 9384 | search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); |
| 9385 | cmp_len = arg_len; |
| 9386 | } |
| 9387 | |
| 9388 | if (!search_needle) |
| 9389 | return false; |
| 9390 | |
| 9391 | /* ___init suffix must come at the end of the name */ |
| 9392 | if (*(search_needle + pattern_len) != '\0') |
| 9393 | return false; |
| 9394 | |
| 9395 | return !strncmp(reg_name, arg_name, cmp_len); |
| 9396 | } |
| 9397 | |
| 9398 | #ifdef CONFIG_BPF_JIT |
| 9399 | static int |
| 9400 | btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, |
| 9401 | struct bpf_verifier_log *log) |
| 9402 | { |
| 9403 | struct btf_struct_ops_tab *tab, *new_tab; |
| 9404 | int i, err; |
| 9405 | |
| 9406 | tab = btf->struct_ops_tab; |
| 9407 | if (!tab) { |
| 9408 | tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL); |
| 9409 | if (!tab) |
| 9410 | return -ENOMEM; |
| 9411 | tab->capacity = 4; |
| 9412 | btf->struct_ops_tab = tab; |
| 9413 | } |
| 9414 | |
| 9415 | for (i = 0; i < tab->cnt; i++) |
| 9416 | if (tab->ops[i].st_ops == st_ops) |
| 9417 | return -EEXIST; |
| 9418 | |
| 9419 | if (tab->cnt == tab->capacity) { |
| 9420 | new_tab = krealloc(tab, |
| 9421 | struct_size(tab, ops, tab->capacity * 2), |
| 9422 | GFP_KERNEL); |
| 9423 | if (!new_tab) |
| 9424 | return -ENOMEM; |
| 9425 | tab = new_tab; |
| 9426 | tab->capacity *= 2; |
| 9427 | btf->struct_ops_tab = tab; |
| 9428 | } |
| 9429 | |
| 9430 | tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; |
| 9431 | |
| 9432 | err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); |
| 9433 | if (err) |
| 9434 | return err; |
| 9435 | |
| 9436 | btf->struct_ops_tab->cnt++; |
| 9437 | |
| 9438 | return 0; |
| 9439 | } |
| 9440 | |
| 9441 | const struct bpf_struct_ops_desc * |
| 9442 | bpf_struct_ops_find_value(struct btf *btf, u32 value_id) |
| 9443 | { |
| 9444 | const struct bpf_struct_ops_desc *st_ops_list; |
| 9445 | unsigned int i; |
| 9446 | u32 cnt; |
| 9447 | |
| 9448 | if (!value_id) |
| 9449 | return NULL; |
| 9450 | if (!btf->struct_ops_tab) |
| 9451 | return NULL; |
| 9452 | |
| 9453 | cnt = btf->struct_ops_tab->cnt; |
| 9454 | st_ops_list = btf->struct_ops_tab->ops; |
| 9455 | for (i = 0; i < cnt; i++) { |
| 9456 | if (st_ops_list[i].value_id == value_id) |
| 9457 | return &st_ops_list[i]; |
| 9458 | } |
| 9459 | |
| 9460 | return NULL; |
| 9461 | } |
| 9462 | |
| 9463 | const struct bpf_struct_ops_desc * |
| 9464 | bpf_struct_ops_find(struct btf *btf, u32 type_id) |
| 9465 | { |
| 9466 | const struct bpf_struct_ops_desc *st_ops_list; |
| 9467 | unsigned int i; |
| 9468 | u32 cnt; |
| 9469 | |
| 9470 | if (!type_id) |
| 9471 | return NULL; |
| 9472 | if (!btf->struct_ops_tab) |
| 9473 | return NULL; |
| 9474 | |
| 9475 | cnt = btf->struct_ops_tab->cnt; |
| 9476 | st_ops_list = btf->struct_ops_tab->ops; |
| 9477 | for (i = 0; i < cnt; i++) { |
| 9478 | if (st_ops_list[i].type_id == type_id) |
| 9479 | return &st_ops_list[i]; |
| 9480 | } |
| 9481 | |
| 9482 | return NULL; |
| 9483 | } |
| 9484 | |
| 9485 | int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) |
| 9486 | { |
| 9487 | struct bpf_verifier_log *log; |
| 9488 | struct btf *btf; |
| 9489 | int err = 0; |
| 9490 | |
| 9491 | btf = btf_get_module_btf(st_ops->owner); |
| 9492 | if (!btf) |
| 9493 | return check_btf_kconfigs(st_ops->owner, "struct_ops"); |
| 9494 | if (IS_ERR(btf)) |
| 9495 | return PTR_ERR(btf); |
| 9496 | |
| 9497 | log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); |
| 9498 | if (!log) { |
| 9499 | err = -ENOMEM; |
| 9500 | goto errout; |
| 9501 | } |
| 9502 | |
| 9503 | log->level = BPF_LOG_KERNEL; |
| 9504 | |
| 9505 | err = btf_add_struct_ops(btf, st_ops, log); |
| 9506 | |
| 9507 | errout: |
| 9508 | kfree(log); |
| 9509 | btf_put(btf); |
| 9510 | |
| 9511 | return err; |
| 9512 | } |
| 9513 | EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); |
| 9514 | #endif |
| 9515 | |
| 9516 | bool btf_param_match_suffix(const struct btf *btf, |
| 9517 | const struct btf_param *arg, |
| 9518 | const char *suffix) |
| 9519 | { |
| 9520 | int suffix_len = strlen(suffix), len; |
| 9521 | const char *param_name; |
| 9522 | |
| 9523 | /* In the future, this can be ported to use BTF tagging */ |
| 9524 | param_name = btf_name_by_offset(btf, arg->name_off); |
| 9525 | if (str_is_empty(param_name)) |
| 9526 | return false; |
| 9527 | len = strlen(param_name); |
| 9528 | if (len <= suffix_len) |
| 9529 | return false; |
| 9530 | param_name += len - suffix_len; |
| 9531 | return !strncmp(param_name, suffix, suffix_len); |
| 9532 | } |