Merge tag 'dmaengine-fix-4.2-rc5' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-block.git] / kernel / auditsc.c
... / ...
CommitLineData
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/tty.h>
67#include <linux/binfmts.h>
68#include <linux/highmem.h>
69#include <linux/syscalls.h>
70#include <asm/syscall.h>
71#include <linux/capability.h>
72#include <linux/fs_struct.h>
73#include <linux/compat.h>
74#include <linux/ctype.h>
75#include <linux/string.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits) */
86#define MAX_EXECVE_AUDIT_LEN 7500
87
88/* max length to print of cmdline/proctitle value during audit */
89#define MAX_PROCTITLE_AUDIT_LEN 128
90
91/* number of audit rules */
92int audit_n_rules;
93
94/* determines whether we collect data for signals sent */
95int audit_signals;
96
97struct audit_aux_data {
98 struct audit_aux_data *next;
99 int type;
100};
101
102#define AUDIT_AUX_IPCPERM 0
103
104/* Number of target pids per aux struct. */
105#define AUDIT_AUX_PIDS 16
106
107struct audit_aux_data_pids {
108 struct audit_aux_data d;
109 pid_t target_pid[AUDIT_AUX_PIDS];
110 kuid_t target_auid[AUDIT_AUX_PIDS];
111 kuid_t target_uid[AUDIT_AUX_PIDS];
112 unsigned int target_sessionid[AUDIT_AUX_PIDS];
113 u32 target_sid[AUDIT_AUX_PIDS];
114 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 int pid_count;
116};
117
118struct audit_aux_data_bprm_fcaps {
119 struct audit_aux_data d;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 struct audit_cap_data old_pcap;
123 struct audit_cap_data new_pcap;
124};
125
126struct audit_tree_refs {
127 struct audit_tree_refs *next;
128 struct audit_chunk *c[31];
129};
130
131static int audit_match_perm(struct audit_context *ctx, int mask)
132{
133 unsigned n;
134 if (unlikely(!ctx))
135 return 0;
136 n = ctx->major;
137
138 switch (audit_classify_syscall(ctx->arch, n)) {
139 case 0: /* native */
140 if ((mask & AUDIT_PERM_WRITE) &&
141 audit_match_class(AUDIT_CLASS_WRITE, n))
142 return 1;
143 if ((mask & AUDIT_PERM_READ) &&
144 audit_match_class(AUDIT_CLASS_READ, n))
145 return 1;
146 if ((mask & AUDIT_PERM_ATTR) &&
147 audit_match_class(AUDIT_CLASS_CHATTR, n))
148 return 1;
149 return 0;
150 case 1: /* 32bit on biarch */
151 if ((mask & AUDIT_PERM_WRITE) &&
152 audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 return 1;
154 if ((mask & AUDIT_PERM_READ) &&
155 audit_match_class(AUDIT_CLASS_READ_32, n))
156 return 1;
157 if ((mask & AUDIT_PERM_ATTR) &&
158 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 return 1;
160 return 0;
161 case 2: /* open */
162 return mask & ACC_MODE(ctx->argv[1]);
163 case 3: /* openat */
164 return mask & ACC_MODE(ctx->argv[2]);
165 case 4: /* socketcall */
166 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 case 5: /* execve */
168 return mask & AUDIT_PERM_EXEC;
169 default:
170 return 0;
171 }
172}
173
174static int audit_match_filetype(struct audit_context *ctx, int val)
175{
176 struct audit_names *n;
177 umode_t mode = (umode_t)val;
178
179 if (unlikely(!ctx))
180 return 0;
181
182 list_for_each_entry(n, &ctx->names_list, list) {
183 if ((n->ino != -1) &&
184 ((n->mode & S_IFMT) == mode))
185 return 1;
186 }
187
188 return 0;
189}
190
191/*
192 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193 * ->first_trees points to its beginning, ->trees - to the current end of data.
194 * ->tree_count is the number of free entries in array pointed to by ->trees.
195 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
197 * it's going to remain 1-element for almost any setup) until we free context itself.
198 * References in it _are_ dropped - at the same time we free/drop aux stuff.
199 */
200
201#ifdef CONFIG_AUDIT_TREE
202static void audit_set_auditable(struct audit_context *ctx)
203{
204 if (!ctx->prio) {
205 ctx->prio = 1;
206 ctx->current_state = AUDIT_RECORD_CONTEXT;
207 }
208}
209
210static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211{
212 struct audit_tree_refs *p = ctx->trees;
213 int left = ctx->tree_count;
214 if (likely(left)) {
215 p->c[--left] = chunk;
216 ctx->tree_count = left;
217 return 1;
218 }
219 if (!p)
220 return 0;
221 p = p->next;
222 if (p) {
223 p->c[30] = chunk;
224 ctx->trees = p;
225 ctx->tree_count = 30;
226 return 1;
227 }
228 return 0;
229}
230
231static int grow_tree_refs(struct audit_context *ctx)
232{
233 struct audit_tree_refs *p = ctx->trees;
234 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 if (!ctx->trees) {
236 ctx->trees = p;
237 return 0;
238 }
239 if (p)
240 p->next = ctx->trees;
241 else
242 ctx->first_trees = ctx->trees;
243 ctx->tree_count = 31;
244 return 1;
245}
246#endif
247
248static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250{
251#ifdef CONFIG_AUDIT_TREE
252 struct audit_tree_refs *q;
253 int n;
254 if (!p) {
255 /* we started with empty chain */
256 p = ctx->first_trees;
257 count = 31;
258 /* if the very first allocation has failed, nothing to do */
259 if (!p)
260 return;
261 }
262 n = count;
263 for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 while (n--) {
265 audit_put_chunk(q->c[n]);
266 q->c[n] = NULL;
267 }
268 }
269 while (n-- > ctx->tree_count) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 ctx->trees = p;
274 ctx->tree_count = count;
275#endif
276}
277
278static void free_tree_refs(struct audit_context *ctx)
279{
280 struct audit_tree_refs *p, *q;
281 for (p = ctx->first_trees; p; p = q) {
282 q = p->next;
283 kfree(p);
284 }
285}
286
287static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288{
289#ifdef CONFIG_AUDIT_TREE
290 struct audit_tree_refs *p;
291 int n;
292 if (!tree)
293 return 0;
294 /* full ones */
295 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 for (n = 0; n < 31; n++)
297 if (audit_tree_match(p->c[n], tree))
298 return 1;
299 }
300 /* partial */
301 if (p) {
302 for (n = ctx->tree_count; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306#endif
307 return 0;
308}
309
310static int audit_compare_uid(kuid_t uid,
311 struct audit_names *name,
312 struct audit_field *f,
313 struct audit_context *ctx)
314{
315 struct audit_names *n;
316 int rc;
317
318 if (name) {
319 rc = audit_uid_comparator(uid, f->op, name->uid);
320 if (rc)
321 return rc;
322 }
323
324 if (ctx) {
325 list_for_each_entry(n, &ctx->names_list, list) {
326 rc = audit_uid_comparator(uid, f->op, n->uid);
327 if (rc)
328 return rc;
329 }
330 }
331 return 0;
332}
333
334static int audit_compare_gid(kgid_t gid,
335 struct audit_names *name,
336 struct audit_field *f,
337 struct audit_context *ctx)
338{
339 struct audit_names *n;
340 int rc;
341
342 if (name) {
343 rc = audit_gid_comparator(gid, f->op, name->gid);
344 if (rc)
345 return rc;
346 }
347
348 if (ctx) {
349 list_for_each_entry(n, &ctx->names_list, list) {
350 rc = audit_gid_comparator(gid, f->op, n->gid);
351 if (rc)
352 return rc;
353 }
354 }
355 return 0;
356}
357
358static int audit_field_compare(struct task_struct *tsk,
359 const struct cred *cred,
360 struct audit_field *f,
361 struct audit_context *ctx,
362 struct audit_names *name)
363{
364 switch (f->val) {
365 /* process to file object comparisons */
366 case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 return audit_compare_uid(cred->uid, name, f, ctx);
368 case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 return audit_compare_gid(cred->gid, name, f, ctx);
370 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 return audit_compare_uid(cred->euid, name, f, ctx);
372 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 return audit_compare_gid(cred->egid, name, f, ctx);
374 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->suid, name, f, ctx);
378 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->sgid, name, f, ctx);
380 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 return audit_compare_uid(cred->fsuid, name, f, ctx);
382 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 return audit_compare_gid(cred->fsgid, name, f, ctx);
384 /* uid comparisons */
385 case AUDIT_COMPARE_UID_TO_AUID:
386 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 case AUDIT_COMPARE_UID_TO_EUID:
388 return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 case AUDIT_COMPARE_UID_TO_SUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 case AUDIT_COMPARE_UID_TO_FSUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 /* auid comparisons */
394 case AUDIT_COMPARE_AUID_TO_EUID:
395 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 case AUDIT_COMPARE_AUID_TO_SUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 case AUDIT_COMPARE_AUID_TO_FSUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428}
429
430/* Determine if any context name data matches a rule's watch data */
431/* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444{
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448
449 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450
451 for (i = 0; i < rule->field_count; i++) {
452 struct audit_field *f = &rule->fields[i];
453 struct audit_names *n;
454 int result = 0;
455 pid_t pid;
456
457 switch (f->type) {
458 case AUDIT_PID:
459 pid = task_pid_nr(tsk);
460 result = audit_comparator(pid, f->op, f->val);
461 break;
462 case AUDIT_PPID:
463 if (ctx) {
464 if (!ctx->ppid)
465 ctx->ppid = task_ppid_nr(tsk);
466 result = audit_comparator(ctx->ppid, f->op, f->val);
467 }
468 break;
469 case AUDIT_UID:
470 result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 break;
472 case AUDIT_EUID:
473 result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 break;
475 case AUDIT_SUID:
476 result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 break;
478 case AUDIT_FSUID:
479 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 break;
481 case AUDIT_GID:
482 result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 if (f->op == Audit_equal) {
484 if (!result)
485 result = in_group_p(f->gid);
486 } else if (f->op == Audit_not_equal) {
487 if (result)
488 result = !in_group_p(f->gid);
489 }
490 break;
491 case AUDIT_EGID:
492 result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_egroup_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_egroup_p(f->gid);
499 }
500 break;
501 case AUDIT_SGID:
502 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 break;
504 case AUDIT_FSGID:
505 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 break;
507 case AUDIT_PERS:
508 result = audit_comparator(tsk->personality, f->op, f->val);
509 break;
510 case AUDIT_ARCH:
511 if (ctx)
512 result = audit_comparator(ctx->arch, f->op, f->val);
513 break;
514
515 case AUDIT_EXIT:
516 if (ctx && ctx->return_valid)
517 result = audit_comparator(ctx->return_code, f->op, f->val);
518 break;
519 case AUDIT_SUCCESS:
520 if (ctx && ctx->return_valid) {
521 if (f->val)
522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 else
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525 }
526 break;
527 case AUDIT_DEVMAJOR:
528 if (name) {
529 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 ++result;
532 } else if (ctx) {
533 list_for_each_entry(n, &ctx->names_list, list) {
534 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 ++result;
537 break;
538 }
539 }
540 }
541 break;
542 case AUDIT_DEVMINOR:
543 if (name) {
544 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 audit_comparator(MINOR(name->rdev), f->op, f->val))
546 ++result;
547 } else if (ctx) {
548 list_for_each_entry(n, &ctx->names_list, list) {
549 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 ++result;
552 break;
553 }
554 }
555 }
556 break;
557 case AUDIT_INODE:
558 if (name)
559 result = audit_comparator(name->ino, f->op, f->val);
560 else if (ctx) {
561 list_for_each_entry(n, &ctx->names_list, list) {
562 if (audit_comparator(n->ino, f->op, f->val)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
569 case AUDIT_OBJ_UID:
570 if (name) {
571 result = audit_uid_comparator(name->uid, f->op, f->uid);
572 } else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_OBJ_GID:
582 if (name) {
583 result = audit_gid_comparator(name->gid, f->op, f->gid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_WATCH:
594 if (name)
595 result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 break;
597 case AUDIT_DIR:
598 if (ctx)
599 result = match_tree_refs(ctx, rule->tree);
600 break;
601 case AUDIT_LOGINUID:
602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
603 break;
604 case AUDIT_LOGINUID_SET:
605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
606 break;
607 case AUDIT_SUBJ_USER:
608 case AUDIT_SUBJ_ROLE:
609 case AUDIT_SUBJ_TYPE:
610 case AUDIT_SUBJ_SEN:
611 case AUDIT_SUBJ_CLR:
612 /* NOTE: this may return negative values indicating
613 a temporary error. We simply treat this as a
614 match for now to avoid losing information that
615 may be wanted. An error message will also be
616 logged upon error */
617 if (f->lsm_rule) {
618 if (need_sid) {
619 security_task_getsecid(tsk, &sid);
620 need_sid = 0;
621 }
622 result = security_audit_rule_match(sid, f->type,
623 f->op,
624 f->lsm_rule,
625 ctx);
626 }
627 break;
628 case AUDIT_OBJ_USER:
629 case AUDIT_OBJ_ROLE:
630 case AUDIT_OBJ_TYPE:
631 case AUDIT_OBJ_LEV_LOW:
632 case AUDIT_OBJ_LEV_HIGH:
633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
634 also applies here */
635 if (f->lsm_rule) {
636 /* Find files that match */
637 if (name) {
638 result = security_audit_rule_match(
639 name->osid, f->type, f->op,
640 f->lsm_rule, ctx);
641 } else if (ctx) {
642 list_for_each_entry(n, &ctx->names_list, list) {
643 if (security_audit_rule_match(n->osid, f->type,
644 f->op, f->lsm_rule,
645 ctx)) {
646 ++result;
647 break;
648 }
649 }
650 }
651 /* Find ipc objects that match */
652 if (!ctx || ctx->type != AUDIT_IPC)
653 break;
654 if (security_audit_rule_match(ctx->ipc.osid,
655 f->type, f->op,
656 f->lsm_rule, ctx))
657 ++result;
658 }
659 break;
660 case AUDIT_ARG0:
661 case AUDIT_ARG1:
662 case AUDIT_ARG2:
663 case AUDIT_ARG3:
664 if (ctx)
665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
666 break;
667 case AUDIT_FILTERKEY:
668 /* ignore this field for filtering */
669 result = 1;
670 break;
671 case AUDIT_PERM:
672 result = audit_match_perm(ctx, f->val);
673 break;
674 case AUDIT_FILETYPE:
675 result = audit_match_filetype(ctx, f->val);
676 break;
677 case AUDIT_FIELD_COMPARE:
678 result = audit_field_compare(tsk, cred, f, ctx, name);
679 break;
680 }
681 if (!result)
682 return 0;
683 }
684
685 if (ctx) {
686 if (rule->prio <= ctx->prio)
687 return 0;
688 if (rule->filterkey) {
689 kfree(ctx->filterkey);
690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 }
692 ctx->prio = rule->prio;
693 }
694 switch (rule->action) {
695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
697 }
698 return 1;
699}
700
701/* At process creation time, we can determine if system-call auditing is
702 * completely disabled for this task. Since we only have the task
703 * structure at this point, we can only check uid and gid.
704 */
705static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706{
707 struct audit_entry *e;
708 enum audit_state state;
709
710 rcu_read_lock();
711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
713 &state, true)) {
714 if (state == AUDIT_RECORD_CONTEXT)
715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
716 rcu_read_unlock();
717 return state;
718 }
719 }
720 rcu_read_unlock();
721 return AUDIT_BUILD_CONTEXT;
722}
723
724static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725{
726 int word, bit;
727
728 if (val > 0xffffffff)
729 return false;
730
731 word = AUDIT_WORD(val);
732 if (word >= AUDIT_BITMASK_SIZE)
733 return false;
734
735 bit = AUDIT_BIT(val);
736
737 return rule->mask[word] & bit;
738}
739
740/* At syscall entry and exit time, this filter is called if the
741 * audit_state is not low enough that auditing cannot take place, but is
742 * also not high enough that we already know we have to write an audit
743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744 */
745static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 struct audit_context *ctx,
747 struct list_head *list)
748{
749 struct audit_entry *e;
750 enum audit_state state;
751
752 if (audit_pid && tsk->tgid == audit_pid)
753 return AUDIT_DISABLED;
754
755 rcu_read_lock();
756 if (!list_empty(list)) {
757 list_for_each_entry_rcu(e, list, list) {
758 if (audit_in_mask(&e->rule, ctx->major) &&
759 audit_filter_rules(tsk, &e->rule, ctx, NULL,
760 &state, false)) {
761 rcu_read_unlock();
762 ctx->current_state = state;
763 return state;
764 }
765 }
766 }
767 rcu_read_unlock();
768 return AUDIT_BUILD_CONTEXT;
769}
770
771/*
772 * Given an audit_name check the inode hash table to see if they match.
773 * Called holding the rcu read lock to protect the use of audit_inode_hash
774 */
775static int audit_filter_inode_name(struct task_struct *tsk,
776 struct audit_names *n,
777 struct audit_context *ctx) {
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
782
783 if (list_empty(list))
784 return 0;
785
786 list_for_each_entry_rcu(e, list, list) {
787 if (audit_in_mask(&e->rule, ctx->major) &&
788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 ctx->current_state = state;
790 return 1;
791 }
792 }
793
794 return 0;
795}
796
797/* At syscall exit time, this filter is called if any audit_names have been
798 * collected during syscall processing. We only check rules in sublists at hash
799 * buckets applicable to the inode numbers in audit_names.
800 * Regarding audit_state, same rules apply as for audit_filter_syscall().
801 */
802void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803{
804 struct audit_names *n;
805
806 if (audit_pid && tsk->tgid == audit_pid)
807 return;
808
809 rcu_read_lock();
810
811 list_for_each_entry(n, &ctx->names_list, list) {
812 if (audit_filter_inode_name(tsk, n, ctx))
813 break;
814 }
815 rcu_read_unlock();
816}
817
818/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819static inline struct audit_context *audit_take_context(struct task_struct *tsk,
820 int return_valid,
821 long return_code)
822{
823 struct audit_context *context = tsk->audit_context;
824
825 if (!context)
826 return NULL;
827 context->return_valid = return_valid;
828
829 /*
830 * we need to fix up the return code in the audit logs if the actual
831 * return codes are later going to be fixed up by the arch specific
832 * signal handlers
833 *
834 * This is actually a test for:
835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
837 *
838 * but is faster than a bunch of ||
839 */
840 if (unlikely(return_code <= -ERESTARTSYS) &&
841 (return_code >= -ERESTART_RESTARTBLOCK) &&
842 (return_code != -ENOIOCTLCMD))
843 context->return_code = -EINTR;
844 else
845 context->return_code = return_code;
846
847 if (context->in_syscall && !context->dummy) {
848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 audit_filter_inodes(tsk, context);
850 }
851
852 tsk->audit_context = NULL;
853 return context;
854}
855
856static inline void audit_proctitle_free(struct audit_context *context)
857{
858 kfree(context->proctitle.value);
859 context->proctitle.value = NULL;
860 context->proctitle.len = 0;
861}
862
863static inline void audit_free_names(struct audit_context *context)
864{
865 struct audit_names *n, *next;
866
867 list_for_each_entry_safe(n, next, &context->names_list, list) {
868 list_del(&n->list);
869 if (n->name)
870 putname(n->name);
871 if (n->should_free)
872 kfree(n);
873 }
874 context->name_count = 0;
875 path_put(&context->pwd);
876 context->pwd.dentry = NULL;
877 context->pwd.mnt = NULL;
878}
879
880static inline void audit_free_aux(struct audit_context *context)
881{
882 struct audit_aux_data *aux;
883
884 while ((aux = context->aux)) {
885 context->aux = aux->next;
886 kfree(aux);
887 }
888 while ((aux = context->aux_pids)) {
889 context->aux_pids = aux->next;
890 kfree(aux);
891 }
892}
893
894static inline struct audit_context *audit_alloc_context(enum audit_state state)
895{
896 struct audit_context *context;
897
898 context = kzalloc(sizeof(*context), GFP_KERNEL);
899 if (!context)
900 return NULL;
901 context->state = state;
902 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
903 INIT_LIST_HEAD(&context->killed_trees);
904 INIT_LIST_HEAD(&context->names_list);
905 return context;
906}
907
908/**
909 * audit_alloc - allocate an audit context block for a task
910 * @tsk: task
911 *
912 * Filter on the task information and allocate a per-task audit context
913 * if necessary. Doing so turns on system call auditing for the
914 * specified task. This is called from copy_process, so no lock is
915 * needed.
916 */
917int audit_alloc(struct task_struct *tsk)
918{
919 struct audit_context *context;
920 enum audit_state state;
921 char *key = NULL;
922
923 if (likely(!audit_ever_enabled))
924 return 0; /* Return if not auditing. */
925
926 state = audit_filter_task(tsk, &key);
927 if (state == AUDIT_DISABLED) {
928 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
929 return 0;
930 }
931
932 if (!(context = audit_alloc_context(state))) {
933 kfree(key);
934 audit_log_lost("out of memory in audit_alloc");
935 return -ENOMEM;
936 }
937 context->filterkey = key;
938
939 tsk->audit_context = context;
940 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
941 return 0;
942}
943
944static inline void audit_free_context(struct audit_context *context)
945{
946 audit_free_names(context);
947 unroll_tree_refs(context, NULL, 0);
948 free_tree_refs(context);
949 audit_free_aux(context);
950 kfree(context->filterkey);
951 kfree(context->sockaddr);
952 audit_proctitle_free(context);
953 kfree(context);
954}
955
956static int audit_log_pid_context(struct audit_context *context, pid_t pid,
957 kuid_t auid, kuid_t uid, unsigned int sessionid,
958 u32 sid, char *comm)
959{
960 struct audit_buffer *ab;
961 char *ctx = NULL;
962 u32 len;
963 int rc = 0;
964
965 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
966 if (!ab)
967 return rc;
968
969 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
970 from_kuid(&init_user_ns, auid),
971 from_kuid(&init_user_ns, uid), sessionid);
972 if (sid) {
973 if (security_secid_to_secctx(sid, &ctx, &len)) {
974 audit_log_format(ab, " obj=(none)");
975 rc = 1;
976 } else {
977 audit_log_format(ab, " obj=%s", ctx);
978 security_release_secctx(ctx, len);
979 }
980 }
981 audit_log_format(ab, " ocomm=");
982 audit_log_untrustedstring(ab, comm);
983 audit_log_end(ab);
984
985 return rc;
986}
987
988/*
989 * to_send and len_sent accounting are very loose estimates. We aren't
990 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991 * within about 500 bytes (next page boundary)
992 *
993 * why snprintf? an int is up to 12 digits long. if we just assumed when
994 * logging that a[%d]= was going to be 16 characters long we would be wasting
995 * space in every audit message. In one 7500 byte message we can log up to
996 * about 1000 min size arguments. That comes down to about 50% waste of space
997 * if we didn't do the snprintf to find out how long arg_num_len was.
998 */
999static int audit_log_single_execve_arg(struct audit_context *context,
1000 struct audit_buffer **ab,
1001 int arg_num,
1002 size_t *len_sent,
1003 const char __user *p,
1004 char *buf)
1005{
1006 char arg_num_len_buf[12];
1007 const char __user *tmp_p = p;
1008 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1009 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1010 size_t len, len_left, to_send;
1011 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1012 unsigned int i, has_cntl = 0, too_long = 0;
1013 int ret;
1014
1015 /* strnlen_user includes the null we don't want to send */
1016 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1017
1018 /*
1019 * We just created this mm, if we can't find the strings
1020 * we just copied into it something is _very_ wrong. Similar
1021 * for strings that are too long, we should not have created
1022 * any.
1023 */
1024 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
1025 send_sig(SIGKILL, current, 0);
1026 return -1;
1027 }
1028
1029 /* walk the whole argument looking for non-ascii chars */
1030 do {
1031 if (len_left > MAX_EXECVE_AUDIT_LEN)
1032 to_send = MAX_EXECVE_AUDIT_LEN;
1033 else
1034 to_send = len_left;
1035 ret = copy_from_user(buf, tmp_p, to_send);
1036 /*
1037 * There is no reason for this copy to be short. We just
1038 * copied them here, and the mm hasn't been exposed to user-
1039 * space yet.
1040 */
1041 if (ret) {
1042 WARN_ON(1);
1043 send_sig(SIGKILL, current, 0);
1044 return -1;
1045 }
1046 buf[to_send] = '\0';
1047 has_cntl = audit_string_contains_control(buf, to_send);
1048 if (has_cntl) {
1049 /*
1050 * hex messages get logged as 2 bytes, so we can only
1051 * send half as much in each message
1052 */
1053 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1054 break;
1055 }
1056 len_left -= to_send;
1057 tmp_p += to_send;
1058 } while (len_left > 0);
1059
1060 len_left = len;
1061
1062 if (len > max_execve_audit_len)
1063 too_long = 1;
1064
1065 /* rewalk the argument actually logging the message */
1066 for (i = 0; len_left > 0; i++) {
1067 int room_left;
1068
1069 if (len_left > max_execve_audit_len)
1070 to_send = max_execve_audit_len;
1071 else
1072 to_send = len_left;
1073
1074 /* do we have space left to send this argument in this ab? */
1075 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1076 if (has_cntl)
1077 room_left -= (to_send * 2);
1078 else
1079 room_left -= to_send;
1080 if (room_left < 0) {
1081 *len_sent = 0;
1082 audit_log_end(*ab);
1083 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1084 if (!*ab)
1085 return 0;
1086 }
1087
1088 /*
1089 * first record needs to say how long the original string was
1090 * so we can be sure nothing was lost.
1091 */
1092 if ((i == 0) && (too_long))
1093 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1094 has_cntl ? 2*len : len);
1095
1096 /*
1097 * normally arguments are small enough to fit and we already
1098 * filled buf above when we checked for control characters
1099 * so don't bother with another copy_from_user
1100 */
1101 if (len >= max_execve_audit_len)
1102 ret = copy_from_user(buf, p, to_send);
1103 else
1104 ret = 0;
1105 if (ret) {
1106 WARN_ON(1);
1107 send_sig(SIGKILL, current, 0);
1108 return -1;
1109 }
1110 buf[to_send] = '\0';
1111
1112 /* actually log it */
1113 audit_log_format(*ab, " a%d", arg_num);
1114 if (too_long)
1115 audit_log_format(*ab, "[%d]", i);
1116 audit_log_format(*ab, "=");
1117 if (has_cntl)
1118 audit_log_n_hex(*ab, buf, to_send);
1119 else
1120 audit_log_string(*ab, buf);
1121
1122 p += to_send;
1123 len_left -= to_send;
1124 *len_sent += arg_num_len;
1125 if (has_cntl)
1126 *len_sent += to_send * 2;
1127 else
1128 *len_sent += to_send;
1129 }
1130 /* include the null we didn't log */
1131 return len + 1;
1132}
1133
1134static void audit_log_execve_info(struct audit_context *context,
1135 struct audit_buffer **ab)
1136{
1137 int i, len;
1138 size_t len_sent = 0;
1139 const char __user *p;
1140 char *buf;
1141
1142 p = (const char __user *)current->mm->arg_start;
1143
1144 audit_log_format(*ab, "argc=%d", context->execve.argc);
1145
1146 /*
1147 * we need some kernel buffer to hold the userspace args. Just
1148 * allocate one big one rather than allocating one of the right size
1149 * for every single argument inside audit_log_single_execve_arg()
1150 * should be <8k allocation so should be pretty safe.
1151 */
1152 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1153 if (!buf) {
1154 audit_panic("out of memory for argv string");
1155 return;
1156 }
1157
1158 for (i = 0; i < context->execve.argc; i++) {
1159 len = audit_log_single_execve_arg(context, ab, i,
1160 &len_sent, p, buf);
1161 if (len <= 0)
1162 break;
1163 p += len;
1164 }
1165 kfree(buf);
1166}
1167
1168static void show_special(struct audit_context *context, int *call_panic)
1169{
1170 struct audit_buffer *ab;
1171 int i;
1172
1173 ab = audit_log_start(context, GFP_KERNEL, context->type);
1174 if (!ab)
1175 return;
1176
1177 switch (context->type) {
1178 case AUDIT_SOCKETCALL: {
1179 int nargs = context->socketcall.nargs;
1180 audit_log_format(ab, "nargs=%d", nargs);
1181 for (i = 0; i < nargs; i++)
1182 audit_log_format(ab, " a%d=%lx", i,
1183 context->socketcall.args[i]);
1184 break; }
1185 case AUDIT_IPC: {
1186 u32 osid = context->ipc.osid;
1187
1188 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1189 from_kuid(&init_user_ns, context->ipc.uid),
1190 from_kgid(&init_user_ns, context->ipc.gid),
1191 context->ipc.mode);
1192 if (osid) {
1193 char *ctx = NULL;
1194 u32 len;
1195 if (security_secid_to_secctx(osid, &ctx, &len)) {
1196 audit_log_format(ab, " osid=%u", osid);
1197 *call_panic = 1;
1198 } else {
1199 audit_log_format(ab, " obj=%s", ctx);
1200 security_release_secctx(ctx, len);
1201 }
1202 }
1203 if (context->ipc.has_perm) {
1204 audit_log_end(ab);
1205 ab = audit_log_start(context, GFP_KERNEL,
1206 AUDIT_IPC_SET_PERM);
1207 if (unlikely(!ab))
1208 return;
1209 audit_log_format(ab,
1210 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1211 context->ipc.qbytes,
1212 context->ipc.perm_uid,
1213 context->ipc.perm_gid,
1214 context->ipc.perm_mode);
1215 }
1216 break; }
1217 case AUDIT_MQ_OPEN: {
1218 audit_log_format(ab,
1219 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1220 "mq_msgsize=%ld mq_curmsgs=%ld",
1221 context->mq_open.oflag, context->mq_open.mode,
1222 context->mq_open.attr.mq_flags,
1223 context->mq_open.attr.mq_maxmsg,
1224 context->mq_open.attr.mq_msgsize,
1225 context->mq_open.attr.mq_curmsgs);
1226 break; }
1227 case AUDIT_MQ_SENDRECV: {
1228 audit_log_format(ab,
1229 "mqdes=%d msg_len=%zd msg_prio=%u "
1230 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1231 context->mq_sendrecv.mqdes,
1232 context->mq_sendrecv.msg_len,
1233 context->mq_sendrecv.msg_prio,
1234 context->mq_sendrecv.abs_timeout.tv_sec,
1235 context->mq_sendrecv.abs_timeout.tv_nsec);
1236 break; }
1237 case AUDIT_MQ_NOTIFY: {
1238 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1239 context->mq_notify.mqdes,
1240 context->mq_notify.sigev_signo);
1241 break; }
1242 case AUDIT_MQ_GETSETATTR: {
1243 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1244 audit_log_format(ab,
1245 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1246 "mq_curmsgs=%ld ",
1247 context->mq_getsetattr.mqdes,
1248 attr->mq_flags, attr->mq_maxmsg,
1249 attr->mq_msgsize, attr->mq_curmsgs);
1250 break; }
1251 case AUDIT_CAPSET: {
1252 audit_log_format(ab, "pid=%d", context->capset.pid);
1253 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1254 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1255 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1256 break; }
1257 case AUDIT_MMAP: {
1258 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1259 context->mmap.flags);
1260 break; }
1261 case AUDIT_EXECVE: {
1262 audit_log_execve_info(context, &ab);
1263 break; }
1264 }
1265 audit_log_end(ab);
1266}
1267
1268static inline int audit_proctitle_rtrim(char *proctitle, int len)
1269{
1270 char *end = proctitle + len - 1;
1271 while (end > proctitle && !isprint(*end))
1272 end--;
1273
1274 /* catch the case where proctitle is only 1 non-print character */
1275 len = end - proctitle + 1;
1276 len -= isprint(proctitle[len-1]) == 0;
1277 return len;
1278}
1279
1280static void audit_log_proctitle(struct task_struct *tsk,
1281 struct audit_context *context)
1282{
1283 int res;
1284 char *buf;
1285 char *msg = "(null)";
1286 int len = strlen(msg);
1287 struct audit_buffer *ab;
1288
1289 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1290 if (!ab)
1291 return; /* audit_panic or being filtered */
1292
1293 audit_log_format(ab, "proctitle=");
1294
1295 /* Not cached */
1296 if (!context->proctitle.value) {
1297 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1298 if (!buf)
1299 goto out;
1300 /* Historically called this from procfs naming */
1301 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1302 if (res == 0) {
1303 kfree(buf);
1304 goto out;
1305 }
1306 res = audit_proctitle_rtrim(buf, res);
1307 if (res == 0) {
1308 kfree(buf);
1309 goto out;
1310 }
1311 context->proctitle.value = buf;
1312 context->proctitle.len = res;
1313 }
1314 msg = context->proctitle.value;
1315 len = context->proctitle.len;
1316out:
1317 audit_log_n_untrustedstring(ab, msg, len);
1318 audit_log_end(ab);
1319}
1320
1321static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1322{
1323 int i, call_panic = 0;
1324 struct audit_buffer *ab;
1325 struct audit_aux_data *aux;
1326 struct audit_names *n;
1327
1328 /* tsk == current */
1329 context->personality = tsk->personality;
1330
1331 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1332 if (!ab)
1333 return; /* audit_panic has been called */
1334 audit_log_format(ab, "arch=%x syscall=%d",
1335 context->arch, context->major);
1336 if (context->personality != PER_LINUX)
1337 audit_log_format(ab, " per=%lx", context->personality);
1338 if (context->return_valid)
1339 audit_log_format(ab, " success=%s exit=%ld",
1340 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1341 context->return_code);
1342
1343 audit_log_format(ab,
1344 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1345 context->argv[0],
1346 context->argv[1],
1347 context->argv[2],
1348 context->argv[3],
1349 context->name_count);
1350
1351 audit_log_task_info(ab, tsk);
1352 audit_log_key(ab, context->filterkey);
1353 audit_log_end(ab);
1354
1355 for (aux = context->aux; aux; aux = aux->next) {
1356
1357 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1358 if (!ab)
1359 continue; /* audit_panic has been called */
1360
1361 switch (aux->type) {
1362
1363 case AUDIT_BPRM_FCAPS: {
1364 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1365 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1366 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1367 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1368 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1369 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1370 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1371 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1372 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1373 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1374 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1375 break; }
1376
1377 }
1378 audit_log_end(ab);
1379 }
1380
1381 if (context->type)
1382 show_special(context, &call_panic);
1383
1384 if (context->fds[0] >= 0) {
1385 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1386 if (ab) {
1387 audit_log_format(ab, "fd0=%d fd1=%d",
1388 context->fds[0], context->fds[1]);
1389 audit_log_end(ab);
1390 }
1391 }
1392
1393 if (context->sockaddr_len) {
1394 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1395 if (ab) {
1396 audit_log_format(ab, "saddr=");
1397 audit_log_n_hex(ab, (void *)context->sockaddr,
1398 context->sockaddr_len);
1399 audit_log_end(ab);
1400 }
1401 }
1402
1403 for (aux = context->aux_pids; aux; aux = aux->next) {
1404 struct audit_aux_data_pids *axs = (void *)aux;
1405
1406 for (i = 0; i < axs->pid_count; i++)
1407 if (audit_log_pid_context(context, axs->target_pid[i],
1408 axs->target_auid[i],
1409 axs->target_uid[i],
1410 axs->target_sessionid[i],
1411 axs->target_sid[i],
1412 axs->target_comm[i]))
1413 call_panic = 1;
1414 }
1415
1416 if (context->target_pid &&
1417 audit_log_pid_context(context, context->target_pid,
1418 context->target_auid, context->target_uid,
1419 context->target_sessionid,
1420 context->target_sid, context->target_comm))
1421 call_panic = 1;
1422
1423 if (context->pwd.dentry && context->pwd.mnt) {
1424 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1425 if (ab) {
1426 audit_log_d_path(ab, " cwd=", &context->pwd);
1427 audit_log_end(ab);
1428 }
1429 }
1430
1431 i = 0;
1432 list_for_each_entry(n, &context->names_list, list) {
1433 if (n->hidden)
1434 continue;
1435 audit_log_name(context, n, NULL, i++, &call_panic);
1436 }
1437
1438 audit_log_proctitle(tsk, context);
1439
1440 /* Send end of event record to help user space know we are finished */
1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1442 if (ab)
1443 audit_log_end(ab);
1444 if (call_panic)
1445 audit_panic("error converting sid to string");
1446}
1447
1448/**
1449 * audit_free - free a per-task audit context
1450 * @tsk: task whose audit context block to free
1451 *
1452 * Called from copy_process and do_exit
1453 */
1454void __audit_free(struct task_struct *tsk)
1455{
1456 struct audit_context *context;
1457
1458 context = audit_take_context(tsk, 0, 0);
1459 if (!context)
1460 return;
1461
1462 /* Check for system calls that do not go through the exit
1463 * function (e.g., exit_group), then free context block.
1464 * We use GFP_ATOMIC here because we might be doing this
1465 * in the context of the idle thread */
1466 /* that can happen only if we are called from do_exit() */
1467 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1468 audit_log_exit(context, tsk);
1469 if (!list_empty(&context->killed_trees))
1470 audit_kill_trees(&context->killed_trees);
1471
1472 audit_free_context(context);
1473}
1474
1475/**
1476 * audit_syscall_entry - fill in an audit record at syscall entry
1477 * @major: major syscall type (function)
1478 * @a1: additional syscall register 1
1479 * @a2: additional syscall register 2
1480 * @a3: additional syscall register 3
1481 * @a4: additional syscall register 4
1482 *
1483 * Fill in audit context at syscall entry. This only happens if the
1484 * audit context was created when the task was created and the state or
1485 * filters demand the audit context be built. If the state from the
1486 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1487 * then the record will be written at syscall exit time (otherwise, it
1488 * will only be written if another part of the kernel requests that it
1489 * be written).
1490 */
1491void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1492 unsigned long a3, unsigned long a4)
1493{
1494 struct task_struct *tsk = current;
1495 struct audit_context *context = tsk->audit_context;
1496 enum audit_state state;
1497
1498 if (!context)
1499 return;
1500
1501 BUG_ON(context->in_syscall || context->name_count);
1502
1503 if (!audit_enabled)
1504 return;
1505
1506 context->arch = syscall_get_arch();
1507 context->major = major;
1508 context->argv[0] = a1;
1509 context->argv[1] = a2;
1510 context->argv[2] = a3;
1511 context->argv[3] = a4;
1512
1513 state = context->state;
1514 context->dummy = !audit_n_rules;
1515 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1516 context->prio = 0;
1517 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1518 }
1519 if (state == AUDIT_DISABLED)
1520 return;
1521
1522 context->serial = 0;
1523 context->ctime = CURRENT_TIME;
1524 context->in_syscall = 1;
1525 context->current_state = state;
1526 context->ppid = 0;
1527}
1528
1529/**
1530 * audit_syscall_exit - deallocate audit context after a system call
1531 * @success: success value of the syscall
1532 * @return_code: return value of the syscall
1533 *
1534 * Tear down after system call. If the audit context has been marked as
1535 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1536 * filtering, or because some other part of the kernel wrote an audit
1537 * message), then write out the syscall information. In call cases,
1538 * free the names stored from getname().
1539 */
1540void __audit_syscall_exit(int success, long return_code)
1541{
1542 struct task_struct *tsk = current;
1543 struct audit_context *context;
1544
1545 if (success)
1546 success = AUDITSC_SUCCESS;
1547 else
1548 success = AUDITSC_FAILURE;
1549
1550 context = audit_take_context(tsk, success, return_code);
1551 if (!context)
1552 return;
1553
1554 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1555 audit_log_exit(context, tsk);
1556
1557 context->in_syscall = 0;
1558 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1559
1560 if (!list_empty(&context->killed_trees))
1561 audit_kill_trees(&context->killed_trees);
1562
1563 audit_free_names(context);
1564 unroll_tree_refs(context, NULL, 0);
1565 audit_free_aux(context);
1566 context->aux = NULL;
1567 context->aux_pids = NULL;
1568 context->target_pid = 0;
1569 context->target_sid = 0;
1570 context->sockaddr_len = 0;
1571 context->type = 0;
1572 context->fds[0] = -1;
1573 if (context->state != AUDIT_RECORD_CONTEXT) {
1574 kfree(context->filterkey);
1575 context->filterkey = NULL;
1576 }
1577 tsk->audit_context = context;
1578}
1579
1580static inline void handle_one(const struct inode *inode)
1581{
1582#ifdef CONFIG_AUDIT_TREE
1583 struct audit_context *context;
1584 struct audit_tree_refs *p;
1585 struct audit_chunk *chunk;
1586 int count;
1587 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1588 return;
1589 context = current->audit_context;
1590 p = context->trees;
1591 count = context->tree_count;
1592 rcu_read_lock();
1593 chunk = audit_tree_lookup(inode);
1594 rcu_read_unlock();
1595 if (!chunk)
1596 return;
1597 if (likely(put_tree_ref(context, chunk)))
1598 return;
1599 if (unlikely(!grow_tree_refs(context))) {
1600 pr_warn("out of memory, audit has lost a tree reference\n");
1601 audit_set_auditable(context);
1602 audit_put_chunk(chunk);
1603 unroll_tree_refs(context, p, count);
1604 return;
1605 }
1606 put_tree_ref(context, chunk);
1607#endif
1608}
1609
1610static void handle_path(const struct dentry *dentry)
1611{
1612#ifdef CONFIG_AUDIT_TREE
1613 struct audit_context *context;
1614 struct audit_tree_refs *p;
1615 const struct dentry *d, *parent;
1616 struct audit_chunk *drop;
1617 unsigned long seq;
1618 int count;
1619
1620 context = current->audit_context;
1621 p = context->trees;
1622 count = context->tree_count;
1623retry:
1624 drop = NULL;
1625 d = dentry;
1626 rcu_read_lock();
1627 seq = read_seqbegin(&rename_lock);
1628 for(;;) {
1629 struct inode *inode = d_backing_inode(d);
1630 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1631 struct audit_chunk *chunk;
1632 chunk = audit_tree_lookup(inode);
1633 if (chunk) {
1634 if (unlikely(!put_tree_ref(context, chunk))) {
1635 drop = chunk;
1636 break;
1637 }
1638 }
1639 }
1640 parent = d->d_parent;
1641 if (parent == d)
1642 break;
1643 d = parent;
1644 }
1645 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1646 rcu_read_unlock();
1647 if (!drop) {
1648 /* just a race with rename */
1649 unroll_tree_refs(context, p, count);
1650 goto retry;
1651 }
1652 audit_put_chunk(drop);
1653 if (grow_tree_refs(context)) {
1654 /* OK, got more space */
1655 unroll_tree_refs(context, p, count);
1656 goto retry;
1657 }
1658 /* too bad */
1659 pr_warn("out of memory, audit has lost a tree reference\n");
1660 unroll_tree_refs(context, p, count);
1661 audit_set_auditable(context);
1662 return;
1663 }
1664 rcu_read_unlock();
1665#endif
1666}
1667
1668static struct audit_names *audit_alloc_name(struct audit_context *context,
1669 unsigned char type)
1670{
1671 struct audit_names *aname;
1672
1673 if (context->name_count < AUDIT_NAMES) {
1674 aname = &context->preallocated_names[context->name_count];
1675 memset(aname, 0, sizeof(*aname));
1676 } else {
1677 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1678 if (!aname)
1679 return NULL;
1680 aname->should_free = true;
1681 }
1682
1683 aname->ino = (unsigned long)-1;
1684 aname->type = type;
1685 list_add_tail(&aname->list, &context->names_list);
1686
1687 context->name_count++;
1688 return aname;
1689}
1690
1691/**
1692 * audit_reusename - fill out filename with info from existing entry
1693 * @uptr: userland ptr to pathname
1694 *
1695 * Search the audit_names list for the current audit context. If there is an
1696 * existing entry with a matching "uptr" then return the filename
1697 * associated with that audit_name. If not, return NULL.
1698 */
1699struct filename *
1700__audit_reusename(const __user char *uptr)
1701{
1702 struct audit_context *context = current->audit_context;
1703 struct audit_names *n;
1704
1705 list_for_each_entry(n, &context->names_list, list) {
1706 if (!n->name)
1707 continue;
1708 if (n->name->uptr == uptr) {
1709 n->name->refcnt++;
1710 return n->name;
1711 }
1712 }
1713 return NULL;
1714}
1715
1716/**
1717 * audit_getname - add a name to the list
1718 * @name: name to add
1719 *
1720 * Add a name to the list of audit names for this context.
1721 * Called from fs/namei.c:getname().
1722 */
1723void __audit_getname(struct filename *name)
1724{
1725 struct audit_context *context = current->audit_context;
1726 struct audit_names *n;
1727
1728 if (!context->in_syscall)
1729 return;
1730
1731 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1732 if (!n)
1733 return;
1734
1735 n->name = name;
1736 n->name_len = AUDIT_NAME_FULL;
1737 name->aname = n;
1738 name->refcnt++;
1739
1740 if (!context->pwd.dentry)
1741 get_fs_pwd(current->fs, &context->pwd);
1742}
1743
1744/**
1745 * __audit_inode - store the inode and device from a lookup
1746 * @name: name being audited
1747 * @dentry: dentry being audited
1748 * @flags: attributes for this particular entry
1749 */
1750void __audit_inode(struct filename *name, const struct dentry *dentry,
1751 unsigned int flags)
1752{
1753 struct audit_context *context = current->audit_context;
1754 const struct inode *inode = d_backing_inode(dentry);
1755 struct audit_names *n;
1756 bool parent = flags & AUDIT_INODE_PARENT;
1757
1758 if (!context->in_syscall)
1759 return;
1760
1761 if (!name)
1762 goto out_alloc;
1763
1764 /*
1765 * If we have a pointer to an audit_names entry already, then we can
1766 * just use it directly if the type is correct.
1767 */
1768 n = name->aname;
1769 if (n) {
1770 if (parent) {
1771 if (n->type == AUDIT_TYPE_PARENT ||
1772 n->type == AUDIT_TYPE_UNKNOWN)
1773 goto out;
1774 } else {
1775 if (n->type != AUDIT_TYPE_PARENT)
1776 goto out;
1777 }
1778 }
1779
1780 list_for_each_entry_reverse(n, &context->names_list, list) {
1781 if (n->ino) {
1782 /* valid inode number, use that for the comparison */
1783 if (n->ino != inode->i_ino ||
1784 n->dev != inode->i_sb->s_dev)
1785 continue;
1786 } else if (n->name) {
1787 /* inode number has not been set, check the name */
1788 if (strcmp(n->name->name, name->name))
1789 continue;
1790 } else
1791 /* no inode and no name (?!) ... this is odd ... */
1792 continue;
1793
1794 /* match the correct record type */
1795 if (parent) {
1796 if (n->type == AUDIT_TYPE_PARENT ||
1797 n->type == AUDIT_TYPE_UNKNOWN)
1798 goto out;
1799 } else {
1800 if (n->type != AUDIT_TYPE_PARENT)
1801 goto out;
1802 }
1803 }
1804
1805out_alloc:
1806 /* unable to find an entry with both a matching name and type */
1807 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1808 if (!n)
1809 return;
1810 if (name) {
1811 n->name = name;
1812 name->refcnt++;
1813 }
1814
1815out:
1816 if (parent) {
1817 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1818 n->type = AUDIT_TYPE_PARENT;
1819 if (flags & AUDIT_INODE_HIDDEN)
1820 n->hidden = true;
1821 } else {
1822 n->name_len = AUDIT_NAME_FULL;
1823 n->type = AUDIT_TYPE_NORMAL;
1824 }
1825 handle_path(dentry);
1826 audit_copy_inode(n, dentry, inode);
1827}
1828
1829void __audit_file(const struct file *file)
1830{
1831 __audit_inode(NULL, file->f_path.dentry, 0);
1832}
1833
1834/**
1835 * __audit_inode_child - collect inode info for created/removed objects
1836 * @parent: inode of dentry parent
1837 * @dentry: dentry being audited
1838 * @type: AUDIT_TYPE_* value that we're looking for
1839 *
1840 * For syscalls that create or remove filesystem objects, audit_inode
1841 * can only collect information for the filesystem object's parent.
1842 * This call updates the audit context with the child's information.
1843 * Syscalls that create a new filesystem object must be hooked after
1844 * the object is created. Syscalls that remove a filesystem object
1845 * must be hooked prior, in order to capture the target inode during
1846 * unsuccessful attempts.
1847 */
1848void __audit_inode_child(const struct inode *parent,
1849 const struct dentry *dentry,
1850 const unsigned char type)
1851{
1852 struct audit_context *context = current->audit_context;
1853 const struct inode *inode = d_backing_inode(dentry);
1854 const char *dname = dentry->d_name.name;
1855 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1856
1857 if (!context->in_syscall)
1858 return;
1859
1860 if (inode)
1861 handle_one(inode);
1862
1863 /* look for a parent entry first */
1864 list_for_each_entry(n, &context->names_list, list) {
1865 if (!n->name ||
1866 (n->type != AUDIT_TYPE_PARENT &&
1867 n->type != AUDIT_TYPE_UNKNOWN))
1868 continue;
1869
1870 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1871 !audit_compare_dname_path(dname,
1872 n->name->name, n->name_len)) {
1873 if (n->type == AUDIT_TYPE_UNKNOWN)
1874 n->type = AUDIT_TYPE_PARENT;
1875 found_parent = n;
1876 break;
1877 }
1878 }
1879
1880 /* is there a matching child entry? */
1881 list_for_each_entry(n, &context->names_list, list) {
1882 /* can only match entries that have a name */
1883 if (!n->name ||
1884 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1885 continue;
1886
1887 if (!strcmp(dname, n->name->name) ||
1888 !audit_compare_dname_path(dname, n->name->name,
1889 found_parent ?
1890 found_parent->name_len :
1891 AUDIT_NAME_FULL)) {
1892 if (n->type == AUDIT_TYPE_UNKNOWN)
1893 n->type = type;
1894 found_child = n;
1895 break;
1896 }
1897 }
1898
1899 if (!found_parent) {
1900 /* create a new, "anonymous" parent record */
1901 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1902 if (!n)
1903 return;
1904 audit_copy_inode(n, NULL, parent);
1905 }
1906
1907 if (!found_child) {
1908 found_child = audit_alloc_name(context, type);
1909 if (!found_child)
1910 return;
1911
1912 /* Re-use the name belonging to the slot for a matching parent
1913 * directory. All names for this context are relinquished in
1914 * audit_free_names() */
1915 if (found_parent) {
1916 found_child->name = found_parent->name;
1917 found_child->name_len = AUDIT_NAME_FULL;
1918 found_child->name->refcnt++;
1919 }
1920 }
1921
1922 if (inode)
1923 audit_copy_inode(found_child, dentry, inode);
1924 else
1925 found_child->ino = (unsigned long)-1;
1926}
1927EXPORT_SYMBOL_GPL(__audit_inode_child);
1928
1929/**
1930 * auditsc_get_stamp - get local copies of audit_context values
1931 * @ctx: audit_context for the task
1932 * @t: timespec to store time recorded in the audit_context
1933 * @serial: serial value that is recorded in the audit_context
1934 *
1935 * Also sets the context as auditable.
1936 */
1937int auditsc_get_stamp(struct audit_context *ctx,
1938 struct timespec *t, unsigned int *serial)
1939{
1940 if (!ctx->in_syscall)
1941 return 0;
1942 if (!ctx->serial)
1943 ctx->serial = audit_serial();
1944 t->tv_sec = ctx->ctime.tv_sec;
1945 t->tv_nsec = ctx->ctime.tv_nsec;
1946 *serial = ctx->serial;
1947 if (!ctx->prio) {
1948 ctx->prio = 1;
1949 ctx->current_state = AUDIT_RECORD_CONTEXT;
1950 }
1951 return 1;
1952}
1953
1954/* global counter which is incremented every time something logs in */
1955static atomic_t session_id = ATOMIC_INIT(0);
1956
1957static int audit_set_loginuid_perm(kuid_t loginuid)
1958{
1959 /* if we are unset, we don't need privs */
1960 if (!audit_loginuid_set(current))
1961 return 0;
1962 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1963 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1964 return -EPERM;
1965 /* it is set, you need permission */
1966 if (!capable(CAP_AUDIT_CONTROL))
1967 return -EPERM;
1968 /* reject if this is not an unset and we don't allow that */
1969 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1970 return -EPERM;
1971 return 0;
1972}
1973
1974static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1975 unsigned int oldsessionid, unsigned int sessionid,
1976 int rc)
1977{
1978 struct audit_buffer *ab;
1979 uid_t uid, oldloginuid, loginuid;
1980
1981 if (!audit_enabled)
1982 return;
1983
1984 uid = from_kuid(&init_user_ns, task_uid(current));
1985 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1986 loginuid = from_kuid(&init_user_ns, kloginuid),
1987
1988 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1989 if (!ab)
1990 return;
1991 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1992 audit_log_task_context(ab);
1993 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1994 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1995 audit_log_end(ab);
1996}
1997
1998/**
1999 * audit_set_loginuid - set current task's audit_context loginuid
2000 * @loginuid: loginuid value
2001 *
2002 * Returns 0.
2003 *
2004 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2005 */
2006int audit_set_loginuid(kuid_t loginuid)
2007{
2008 struct task_struct *task = current;
2009 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2010 kuid_t oldloginuid;
2011 int rc;
2012
2013 oldloginuid = audit_get_loginuid(current);
2014 oldsessionid = audit_get_sessionid(current);
2015
2016 rc = audit_set_loginuid_perm(loginuid);
2017 if (rc)
2018 goto out;
2019
2020 /* are we setting or clearing? */
2021 if (uid_valid(loginuid))
2022 sessionid = (unsigned int)atomic_inc_return(&session_id);
2023
2024 task->sessionid = sessionid;
2025 task->loginuid = loginuid;
2026out:
2027 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2028 return rc;
2029}
2030
2031/**
2032 * __audit_mq_open - record audit data for a POSIX MQ open
2033 * @oflag: open flag
2034 * @mode: mode bits
2035 * @attr: queue attributes
2036 *
2037 */
2038void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2039{
2040 struct audit_context *context = current->audit_context;
2041
2042 if (attr)
2043 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2044 else
2045 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2046
2047 context->mq_open.oflag = oflag;
2048 context->mq_open.mode = mode;
2049
2050 context->type = AUDIT_MQ_OPEN;
2051}
2052
2053/**
2054 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2055 * @mqdes: MQ descriptor
2056 * @msg_len: Message length
2057 * @msg_prio: Message priority
2058 * @abs_timeout: Message timeout in absolute time
2059 *
2060 */
2061void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2062 const struct timespec *abs_timeout)
2063{
2064 struct audit_context *context = current->audit_context;
2065 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2066
2067 if (abs_timeout)
2068 memcpy(p, abs_timeout, sizeof(struct timespec));
2069 else
2070 memset(p, 0, sizeof(struct timespec));
2071
2072 context->mq_sendrecv.mqdes = mqdes;
2073 context->mq_sendrecv.msg_len = msg_len;
2074 context->mq_sendrecv.msg_prio = msg_prio;
2075
2076 context->type = AUDIT_MQ_SENDRECV;
2077}
2078
2079/**
2080 * __audit_mq_notify - record audit data for a POSIX MQ notify
2081 * @mqdes: MQ descriptor
2082 * @notification: Notification event
2083 *
2084 */
2085
2086void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2087{
2088 struct audit_context *context = current->audit_context;
2089
2090 if (notification)
2091 context->mq_notify.sigev_signo = notification->sigev_signo;
2092 else
2093 context->mq_notify.sigev_signo = 0;
2094
2095 context->mq_notify.mqdes = mqdes;
2096 context->type = AUDIT_MQ_NOTIFY;
2097}
2098
2099/**
2100 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2101 * @mqdes: MQ descriptor
2102 * @mqstat: MQ flags
2103 *
2104 */
2105void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2106{
2107 struct audit_context *context = current->audit_context;
2108 context->mq_getsetattr.mqdes = mqdes;
2109 context->mq_getsetattr.mqstat = *mqstat;
2110 context->type = AUDIT_MQ_GETSETATTR;
2111}
2112
2113/**
2114 * audit_ipc_obj - record audit data for ipc object
2115 * @ipcp: ipc permissions
2116 *
2117 */
2118void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2119{
2120 struct audit_context *context = current->audit_context;
2121 context->ipc.uid = ipcp->uid;
2122 context->ipc.gid = ipcp->gid;
2123 context->ipc.mode = ipcp->mode;
2124 context->ipc.has_perm = 0;
2125 security_ipc_getsecid(ipcp, &context->ipc.osid);
2126 context->type = AUDIT_IPC;
2127}
2128
2129/**
2130 * audit_ipc_set_perm - record audit data for new ipc permissions
2131 * @qbytes: msgq bytes
2132 * @uid: msgq user id
2133 * @gid: msgq group id
2134 * @mode: msgq mode (permissions)
2135 *
2136 * Called only after audit_ipc_obj().
2137 */
2138void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2139{
2140 struct audit_context *context = current->audit_context;
2141
2142 context->ipc.qbytes = qbytes;
2143 context->ipc.perm_uid = uid;
2144 context->ipc.perm_gid = gid;
2145 context->ipc.perm_mode = mode;
2146 context->ipc.has_perm = 1;
2147}
2148
2149void __audit_bprm(struct linux_binprm *bprm)
2150{
2151 struct audit_context *context = current->audit_context;
2152
2153 context->type = AUDIT_EXECVE;
2154 context->execve.argc = bprm->argc;
2155}
2156
2157
2158/**
2159 * audit_socketcall - record audit data for sys_socketcall
2160 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2161 * @args: args array
2162 *
2163 */
2164int __audit_socketcall(int nargs, unsigned long *args)
2165{
2166 struct audit_context *context = current->audit_context;
2167
2168 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2169 return -EINVAL;
2170 context->type = AUDIT_SOCKETCALL;
2171 context->socketcall.nargs = nargs;
2172 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2173 return 0;
2174}
2175
2176/**
2177 * __audit_fd_pair - record audit data for pipe and socketpair
2178 * @fd1: the first file descriptor
2179 * @fd2: the second file descriptor
2180 *
2181 */
2182void __audit_fd_pair(int fd1, int fd2)
2183{
2184 struct audit_context *context = current->audit_context;
2185 context->fds[0] = fd1;
2186 context->fds[1] = fd2;
2187}
2188
2189/**
2190 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2191 * @len: data length in user space
2192 * @a: data address in kernel space
2193 *
2194 * Returns 0 for success or NULL context or < 0 on error.
2195 */
2196int __audit_sockaddr(int len, void *a)
2197{
2198 struct audit_context *context = current->audit_context;
2199
2200 if (!context->sockaddr) {
2201 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2202 if (!p)
2203 return -ENOMEM;
2204 context->sockaddr = p;
2205 }
2206
2207 context->sockaddr_len = len;
2208 memcpy(context->sockaddr, a, len);
2209 return 0;
2210}
2211
2212void __audit_ptrace(struct task_struct *t)
2213{
2214 struct audit_context *context = current->audit_context;
2215
2216 context->target_pid = task_pid_nr(t);
2217 context->target_auid = audit_get_loginuid(t);
2218 context->target_uid = task_uid(t);
2219 context->target_sessionid = audit_get_sessionid(t);
2220 security_task_getsecid(t, &context->target_sid);
2221 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2222}
2223
2224/**
2225 * audit_signal_info - record signal info for shutting down audit subsystem
2226 * @sig: signal value
2227 * @t: task being signaled
2228 *
2229 * If the audit subsystem is being terminated, record the task (pid)
2230 * and uid that is doing that.
2231 */
2232int __audit_signal_info(int sig, struct task_struct *t)
2233{
2234 struct audit_aux_data_pids *axp;
2235 struct task_struct *tsk = current;
2236 struct audit_context *ctx = tsk->audit_context;
2237 kuid_t uid = current_uid(), t_uid = task_uid(t);
2238
2239 if (audit_pid && t->tgid == audit_pid) {
2240 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2241 audit_sig_pid = task_pid_nr(tsk);
2242 if (uid_valid(tsk->loginuid))
2243 audit_sig_uid = tsk->loginuid;
2244 else
2245 audit_sig_uid = uid;
2246 security_task_getsecid(tsk, &audit_sig_sid);
2247 }
2248 if (!audit_signals || audit_dummy_context())
2249 return 0;
2250 }
2251
2252 /* optimize the common case by putting first signal recipient directly
2253 * in audit_context */
2254 if (!ctx->target_pid) {
2255 ctx->target_pid = task_tgid_nr(t);
2256 ctx->target_auid = audit_get_loginuid(t);
2257 ctx->target_uid = t_uid;
2258 ctx->target_sessionid = audit_get_sessionid(t);
2259 security_task_getsecid(t, &ctx->target_sid);
2260 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2261 return 0;
2262 }
2263
2264 axp = (void *)ctx->aux_pids;
2265 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2266 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2267 if (!axp)
2268 return -ENOMEM;
2269
2270 axp->d.type = AUDIT_OBJ_PID;
2271 axp->d.next = ctx->aux_pids;
2272 ctx->aux_pids = (void *)axp;
2273 }
2274 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2275
2276 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2277 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2278 axp->target_uid[axp->pid_count] = t_uid;
2279 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2280 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2281 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2282 axp->pid_count++;
2283
2284 return 0;
2285}
2286
2287/**
2288 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2289 * @bprm: pointer to the bprm being processed
2290 * @new: the proposed new credentials
2291 * @old: the old credentials
2292 *
2293 * Simply check if the proc already has the caps given by the file and if not
2294 * store the priv escalation info for later auditing at the end of the syscall
2295 *
2296 * -Eric
2297 */
2298int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2299 const struct cred *new, const struct cred *old)
2300{
2301 struct audit_aux_data_bprm_fcaps *ax;
2302 struct audit_context *context = current->audit_context;
2303 struct cpu_vfs_cap_data vcaps;
2304
2305 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2306 if (!ax)
2307 return -ENOMEM;
2308
2309 ax->d.type = AUDIT_BPRM_FCAPS;
2310 ax->d.next = context->aux;
2311 context->aux = (void *)ax;
2312
2313 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2314
2315 ax->fcap.permitted = vcaps.permitted;
2316 ax->fcap.inheritable = vcaps.inheritable;
2317 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2318 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2319
2320 ax->old_pcap.permitted = old->cap_permitted;
2321 ax->old_pcap.inheritable = old->cap_inheritable;
2322 ax->old_pcap.effective = old->cap_effective;
2323
2324 ax->new_pcap.permitted = new->cap_permitted;
2325 ax->new_pcap.inheritable = new->cap_inheritable;
2326 ax->new_pcap.effective = new->cap_effective;
2327 return 0;
2328}
2329
2330/**
2331 * __audit_log_capset - store information about the arguments to the capset syscall
2332 * @new: the new credentials
2333 * @old: the old (current) credentials
2334 *
2335 * Record the arguments userspace sent to sys_capset for later printing by the
2336 * audit system if applicable
2337 */
2338void __audit_log_capset(const struct cred *new, const struct cred *old)
2339{
2340 struct audit_context *context = current->audit_context;
2341 context->capset.pid = task_pid_nr(current);
2342 context->capset.cap.effective = new->cap_effective;
2343 context->capset.cap.inheritable = new->cap_effective;
2344 context->capset.cap.permitted = new->cap_permitted;
2345 context->type = AUDIT_CAPSET;
2346}
2347
2348void __audit_mmap_fd(int fd, int flags)
2349{
2350 struct audit_context *context = current->audit_context;
2351 context->mmap.fd = fd;
2352 context->mmap.flags = flags;
2353 context->type = AUDIT_MMAP;
2354}
2355
2356static void audit_log_task(struct audit_buffer *ab)
2357{
2358 kuid_t auid, uid;
2359 kgid_t gid;
2360 unsigned int sessionid;
2361 char comm[sizeof(current->comm)];
2362
2363 auid = audit_get_loginuid(current);
2364 sessionid = audit_get_sessionid(current);
2365 current_uid_gid(&uid, &gid);
2366
2367 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2368 from_kuid(&init_user_ns, auid),
2369 from_kuid(&init_user_ns, uid),
2370 from_kgid(&init_user_ns, gid),
2371 sessionid);
2372 audit_log_task_context(ab);
2373 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2374 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2375 audit_log_d_path_exe(ab, current->mm);
2376}
2377
2378/**
2379 * audit_core_dumps - record information about processes that end abnormally
2380 * @signr: signal value
2381 *
2382 * If a process ends with a core dump, something fishy is going on and we
2383 * should record the event for investigation.
2384 */
2385void audit_core_dumps(long signr)
2386{
2387 struct audit_buffer *ab;
2388
2389 if (!audit_enabled)
2390 return;
2391
2392 if (signr == SIGQUIT) /* don't care for those */
2393 return;
2394
2395 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2396 if (unlikely(!ab))
2397 return;
2398 audit_log_task(ab);
2399 audit_log_format(ab, " sig=%ld", signr);
2400 audit_log_end(ab);
2401}
2402
2403void __audit_seccomp(unsigned long syscall, long signr, int code)
2404{
2405 struct audit_buffer *ab;
2406
2407 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2408 if (unlikely(!ab))
2409 return;
2410 audit_log_task(ab);
2411 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2412 signr, syscall_get_arch(), syscall, is_compat_task(),
2413 KSTK_EIP(current), code);
2414 audit_log_end(ab);
2415}
2416
2417struct list_head *audit_killed_trees(void)
2418{
2419 struct audit_context *ctx = current->audit_context;
2420 if (likely(!ctx || !ctx->in_syscall))
2421 return NULL;
2422 return &ctx->killed_trees;
2423}