signal: Restore the stop PTRACE_EVENT_EXIT
[linux-2.6-block.git] / kernel / audit_tree.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2#include "audit.h"
3#include <linux/fsnotify_backend.h>
4#include <linux/namei.h>
5#include <linux/mount.h>
6#include <linux/kthread.h>
7#include <linux/refcount.h>
8#include <linux/slab.h>
9
10struct audit_tree;
11struct audit_chunk;
12
13struct audit_tree {
14 refcount_t count;
15 int goner;
16 struct audit_chunk *root;
17 struct list_head chunks;
18 struct list_head rules;
19 struct list_head list;
20 struct list_head same_root;
21 struct rcu_head head;
22 char pathname[];
23};
24
25struct audit_chunk {
26 struct list_head hash;
27 unsigned long key;
28 struct fsnotify_mark *mark;
29 struct list_head trees; /* with root here */
30 int count;
31 atomic_long_t refs;
32 struct rcu_head head;
33 struct node {
34 struct list_head list;
35 struct audit_tree *owner;
36 unsigned index; /* index; upper bit indicates 'will prune' */
37 } owners[];
38};
39
40struct audit_tree_mark {
41 struct fsnotify_mark mark;
42 struct audit_chunk *chunk;
43};
44
45static LIST_HEAD(tree_list);
46static LIST_HEAD(prune_list);
47static struct task_struct *prune_thread;
48
49/*
50 * One struct chunk is attached to each inode of interest through
51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52 * untagging, the mark is stable as long as there is chunk attached. The
53 * association between mark and chunk is protected by hash_lock and
54 * audit_tree_group->mark_mutex. Thus as long as we hold
55 * audit_tree_group->mark_mutex and check that the mark is alive by
56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57 * the current chunk.
58 *
59 * Rules have pointer to struct audit_tree.
60 * Rules have struct list_head rlist forming a list of rules over
61 * the same tree.
62 * References to struct chunk are collected at audit_inode{,_child}()
63 * time and used in AUDIT_TREE rule matching.
64 * These references are dropped at the same time we are calling
65 * audit_free_names(), etc.
66 *
67 * Cyclic lists galore:
68 * tree.chunks anchors chunk.owners[].list hash_lock
69 * tree.rules anchors rule.rlist audit_filter_mutex
70 * chunk.trees anchors tree.same_root hash_lock
71 * chunk.hash is a hash with middle bits of watch.inode as
72 * a hash function. RCU, hash_lock
73 *
74 * tree is refcounted; one reference for "some rules on rules_list refer to
75 * it", one for each chunk with pointer to it.
76 *
77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78 * one chunk reference. This reference is dropped either when a mark is going
79 * to be freed (corresponding inode goes away) or when chunk attached to the
80 * mark gets replaced. This reference must be dropped using
81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82 * grace period as it protects RCU readers of the hash table.
83 *
84 * node.index allows to get from node.list to containing chunk.
85 * MSB of that sucker is stolen to mark taggings that we might have to
86 * revert - several operations have very unpleasant cleanup logics and
87 * that makes a difference. Some.
88 */
89
90static struct fsnotify_group *audit_tree_group;
91static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
92
93static struct audit_tree *alloc_tree(const char *s)
94{
95 struct audit_tree *tree;
96
97 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
98 if (tree) {
99 refcount_set(&tree->count, 1);
100 tree->goner = 0;
101 INIT_LIST_HEAD(&tree->chunks);
102 INIT_LIST_HEAD(&tree->rules);
103 INIT_LIST_HEAD(&tree->list);
104 INIT_LIST_HEAD(&tree->same_root);
105 tree->root = NULL;
106 strcpy(tree->pathname, s);
107 }
108 return tree;
109}
110
111static inline void get_tree(struct audit_tree *tree)
112{
113 refcount_inc(&tree->count);
114}
115
116static inline void put_tree(struct audit_tree *tree)
117{
118 if (refcount_dec_and_test(&tree->count))
119 kfree_rcu(tree, head);
120}
121
122/* to avoid bringing the entire thing in audit.h */
123const char *audit_tree_path(struct audit_tree *tree)
124{
125 return tree->pathname;
126}
127
128static void free_chunk(struct audit_chunk *chunk)
129{
130 int i;
131
132 for (i = 0; i < chunk->count; i++) {
133 if (chunk->owners[i].owner)
134 put_tree(chunk->owners[i].owner);
135 }
136 kfree(chunk);
137}
138
139void audit_put_chunk(struct audit_chunk *chunk)
140{
141 if (atomic_long_dec_and_test(&chunk->refs))
142 free_chunk(chunk);
143}
144
145static void __put_chunk(struct rcu_head *rcu)
146{
147 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148 audit_put_chunk(chunk);
149}
150
151/*
152 * Drop reference to the chunk that was held by the mark. This is the reference
153 * that gets dropped after we've removed the chunk from the hash table and we
154 * use it to make sure chunk cannot be freed before RCU grace period expires.
155 */
156static void audit_mark_put_chunk(struct audit_chunk *chunk)
157{
158 call_rcu(&chunk->head, __put_chunk);
159}
160
161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162{
163 return container_of(mark, struct audit_tree_mark, mark);
164}
165
166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167{
168 return audit_mark(mark)->chunk;
169}
170
171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172{
173 kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174}
175
176static struct fsnotify_mark *alloc_mark(void)
177{
178 struct audit_tree_mark *amark;
179
180 amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181 if (!amark)
182 return NULL;
183 fsnotify_init_mark(&amark->mark, audit_tree_group);
184 amark->mark.mask = FS_IN_IGNORED;
185 return &amark->mark;
186}
187
188static struct audit_chunk *alloc_chunk(int count)
189{
190 struct audit_chunk *chunk;
191 size_t size;
192 int i;
193
194 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
195 chunk = kzalloc(size, GFP_KERNEL);
196 if (!chunk)
197 return NULL;
198
199 INIT_LIST_HEAD(&chunk->hash);
200 INIT_LIST_HEAD(&chunk->trees);
201 chunk->count = count;
202 atomic_long_set(&chunk->refs, 1);
203 for (i = 0; i < count; i++) {
204 INIT_LIST_HEAD(&chunk->owners[i].list);
205 chunk->owners[i].index = i;
206 }
207 return chunk;
208}
209
210enum {HASH_SIZE = 128};
211static struct list_head chunk_hash_heads[HASH_SIZE];
212static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
213
214/* Function to return search key in our hash from inode. */
215static unsigned long inode_to_key(const struct inode *inode)
216{
217 /* Use address pointed to by connector->obj as the key */
218 return (unsigned long)&inode->i_fsnotify_marks;
219}
220
221static inline struct list_head *chunk_hash(unsigned long key)
222{
223 unsigned long n = key / L1_CACHE_BYTES;
224 return chunk_hash_heads + n % HASH_SIZE;
225}
226
227/* hash_lock & mark->group->mark_mutex is held by caller */
228static void insert_hash(struct audit_chunk *chunk)
229{
230 struct list_head *list;
231
232 /*
233 * Make sure chunk is fully initialized before making it visible in the
234 * hash. Pairs with a data dependency barrier in READ_ONCE() in
235 * audit_tree_lookup().
236 */
237 smp_wmb();
238 WARN_ON_ONCE(!chunk->key);
239 list = chunk_hash(chunk->key);
240 list_add_rcu(&chunk->hash, list);
241}
242
243/* called under rcu_read_lock */
244struct audit_chunk *audit_tree_lookup(const struct inode *inode)
245{
246 unsigned long key = inode_to_key(inode);
247 struct list_head *list = chunk_hash(key);
248 struct audit_chunk *p;
249
250 list_for_each_entry_rcu(p, list, hash) {
251 /*
252 * We use a data dependency barrier in READ_ONCE() to make sure
253 * the chunk we see is fully initialized.
254 */
255 if (READ_ONCE(p->key) == key) {
256 atomic_long_inc(&p->refs);
257 return p;
258 }
259 }
260 return NULL;
261}
262
263bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
264{
265 int n;
266 for (n = 0; n < chunk->count; n++)
267 if (chunk->owners[n].owner == tree)
268 return true;
269 return false;
270}
271
272/* tagging and untagging inodes with trees */
273
274static struct audit_chunk *find_chunk(struct node *p)
275{
276 int index = p->index & ~(1U<<31);
277 p -= index;
278 return container_of(p, struct audit_chunk, owners[0]);
279}
280
281static void replace_mark_chunk(struct fsnotify_mark *mark,
282 struct audit_chunk *chunk)
283{
284 struct audit_chunk *old;
285
286 assert_spin_locked(&hash_lock);
287 old = mark_chunk(mark);
288 audit_mark(mark)->chunk = chunk;
289 if (chunk)
290 chunk->mark = mark;
291 if (old)
292 old->mark = NULL;
293}
294
295static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
296{
297 struct audit_tree *owner;
298 int i, j;
299
300 new->key = old->key;
301 list_splice_init(&old->trees, &new->trees);
302 list_for_each_entry(owner, &new->trees, same_root)
303 owner->root = new;
304 for (i = j = 0; j < old->count; i++, j++) {
305 if (!old->owners[j].owner) {
306 i--;
307 continue;
308 }
309 owner = old->owners[j].owner;
310 new->owners[i].owner = owner;
311 new->owners[i].index = old->owners[j].index - j + i;
312 if (!owner) /* result of earlier fallback */
313 continue;
314 get_tree(owner);
315 list_replace_init(&old->owners[j].list, &new->owners[i].list);
316 }
317 replace_mark_chunk(old->mark, new);
318 /*
319 * Make sure chunk is fully initialized before making it visible in the
320 * hash. Pairs with a data dependency barrier in READ_ONCE() in
321 * audit_tree_lookup().
322 */
323 smp_wmb();
324 list_replace_rcu(&old->hash, &new->hash);
325}
326
327static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
328{
329 struct audit_tree *owner = p->owner;
330
331 if (owner->root == chunk) {
332 list_del_init(&owner->same_root);
333 owner->root = NULL;
334 }
335 list_del_init(&p->list);
336 p->owner = NULL;
337 put_tree(owner);
338}
339
340static int chunk_count_trees(struct audit_chunk *chunk)
341{
342 int i;
343 int ret = 0;
344
345 for (i = 0; i < chunk->count; i++)
346 if (chunk->owners[i].owner)
347 ret++;
348 return ret;
349}
350
351static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
352{
353 struct audit_chunk *new;
354 int size;
355
356 mutex_lock(&audit_tree_group->mark_mutex);
357 /*
358 * mark_mutex stabilizes chunk attached to the mark so we can check
359 * whether it didn't change while we've dropped hash_lock.
360 */
361 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
362 mark_chunk(mark) != chunk)
363 goto out_mutex;
364
365 size = chunk_count_trees(chunk);
366 if (!size) {
367 spin_lock(&hash_lock);
368 list_del_init(&chunk->trees);
369 list_del_rcu(&chunk->hash);
370 replace_mark_chunk(mark, NULL);
371 spin_unlock(&hash_lock);
372 fsnotify_detach_mark(mark);
373 mutex_unlock(&audit_tree_group->mark_mutex);
374 audit_mark_put_chunk(chunk);
375 fsnotify_free_mark(mark);
376 return;
377 }
378
379 new = alloc_chunk(size);
380 if (!new)
381 goto out_mutex;
382
383 spin_lock(&hash_lock);
384 /*
385 * This has to go last when updating chunk as once replace_chunk() is
386 * called, new RCU readers can see the new chunk.
387 */
388 replace_chunk(new, chunk);
389 spin_unlock(&hash_lock);
390 mutex_unlock(&audit_tree_group->mark_mutex);
391 audit_mark_put_chunk(chunk);
392 return;
393
394out_mutex:
395 mutex_unlock(&audit_tree_group->mark_mutex);
396}
397
398/* Call with group->mark_mutex held, releases it */
399static int create_chunk(struct inode *inode, struct audit_tree *tree)
400{
401 struct fsnotify_mark *mark;
402 struct audit_chunk *chunk = alloc_chunk(1);
403
404 if (!chunk) {
405 mutex_unlock(&audit_tree_group->mark_mutex);
406 return -ENOMEM;
407 }
408
409 mark = alloc_mark();
410 if (!mark) {
411 mutex_unlock(&audit_tree_group->mark_mutex);
412 kfree(chunk);
413 return -ENOMEM;
414 }
415
416 if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
417 mutex_unlock(&audit_tree_group->mark_mutex);
418 fsnotify_put_mark(mark);
419 kfree(chunk);
420 return -ENOSPC;
421 }
422
423 spin_lock(&hash_lock);
424 if (tree->goner) {
425 spin_unlock(&hash_lock);
426 fsnotify_detach_mark(mark);
427 mutex_unlock(&audit_tree_group->mark_mutex);
428 fsnotify_free_mark(mark);
429 fsnotify_put_mark(mark);
430 kfree(chunk);
431 return 0;
432 }
433 replace_mark_chunk(mark, chunk);
434 chunk->owners[0].index = (1U << 31);
435 chunk->owners[0].owner = tree;
436 get_tree(tree);
437 list_add(&chunk->owners[0].list, &tree->chunks);
438 if (!tree->root) {
439 tree->root = chunk;
440 list_add(&tree->same_root, &chunk->trees);
441 }
442 chunk->key = inode_to_key(inode);
443 /*
444 * Inserting into the hash table has to go last as once we do that RCU
445 * readers can see the chunk.
446 */
447 insert_hash(chunk);
448 spin_unlock(&hash_lock);
449 mutex_unlock(&audit_tree_group->mark_mutex);
450 /*
451 * Drop our initial reference. When mark we point to is getting freed,
452 * we get notification through ->freeing_mark callback and cleanup
453 * chunk pointing to this mark.
454 */
455 fsnotify_put_mark(mark);
456 return 0;
457}
458
459/* the first tagged inode becomes root of tree */
460static int tag_chunk(struct inode *inode, struct audit_tree *tree)
461{
462 struct fsnotify_mark *mark;
463 struct audit_chunk *chunk, *old;
464 struct node *p;
465 int n;
466
467 mutex_lock(&audit_tree_group->mark_mutex);
468 mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
469 if (!mark)
470 return create_chunk(inode, tree);
471
472 /*
473 * Found mark is guaranteed to be attached and mark_mutex protects mark
474 * from getting detached and thus it makes sure there is chunk attached
475 * to the mark.
476 */
477 /* are we already there? */
478 spin_lock(&hash_lock);
479 old = mark_chunk(mark);
480 for (n = 0; n < old->count; n++) {
481 if (old->owners[n].owner == tree) {
482 spin_unlock(&hash_lock);
483 mutex_unlock(&audit_tree_group->mark_mutex);
484 fsnotify_put_mark(mark);
485 return 0;
486 }
487 }
488 spin_unlock(&hash_lock);
489
490 chunk = alloc_chunk(old->count + 1);
491 if (!chunk) {
492 mutex_unlock(&audit_tree_group->mark_mutex);
493 fsnotify_put_mark(mark);
494 return -ENOMEM;
495 }
496
497 spin_lock(&hash_lock);
498 if (tree->goner) {
499 spin_unlock(&hash_lock);
500 mutex_unlock(&audit_tree_group->mark_mutex);
501 fsnotify_put_mark(mark);
502 kfree(chunk);
503 return 0;
504 }
505 p = &chunk->owners[chunk->count - 1];
506 p->index = (chunk->count - 1) | (1U<<31);
507 p->owner = tree;
508 get_tree(tree);
509 list_add(&p->list, &tree->chunks);
510 if (!tree->root) {
511 tree->root = chunk;
512 list_add(&tree->same_root, &chunk->trees);
513 }
514 /*
515 * This has to go last when updating chunk as once replace_chunk() is
516 * called, new RCU readers can see the new chunk.
517 */
518 replace_chunk(chunk, old);
519 spin_unlock(&hash_lock);
520 mutex_unlock(&audit_tree_group->mark_mutex);
521 fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
522 audit_mark_put_chunk(old);
523
524 return 0;
525}
526
527static void audit_tree_log_remove_rule(struct audit_krule *rule)
528{
529 struct audit_buffer *ab;
530
531 if (!audit_enabled)
532 return;
533 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
534 if (unlikely(!ab))
535 return;
536 audit_log_format(ab, "op=remove_rule dir=");
537 audit_log_untrustedstring(ab, rule->tree->pathname);
538 audit_log_key(ab, rule->filterkey);
539 audit_log_format(ab, " list=%d res=1", rule->listnr);
540 audit_log_end(ab);
541}
542
543static void kill_rules(struct audit_tree *tree)
544{
545 struct audit_krule *rule, *next;
546 struct audit_entry *entry;
547
548 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
549 entry = container_of(rule, struct audit_entry, rule);
550
551 list_del_init(&rule->rlist);
552 if (rule->tree) {
553 /* not a half-baked one */
554 audit_tree_log_remove_rule(rule);
555 if (entry->rule.exe)
556 audit_remove_mark(entry->rule.exe);
557 rule->tree = NULL;
558 list_del_rcu(&entry->list);
559 list_del(&entry->rule.list);
560 call_rcu(&entry->rcu, audit_free_rule_rcu);
561 }
562 }
563}
564
565/*
566 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
567 * chunks. The function expects tagged chunks are all at the beginning of the
568 * chunks list.
569 */
570static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
571{
572 spin_lock(&hash_lock);
573 while (!list_empty(&victim->chunks)) {
574 struct node *p;
575 struct audit_chunk *chunk;
576 struct fsnotify_mark *mark;
577
578 p = list_first_entry(&victim->chunks, struct node, list);
579 /* have we run out of marked? */
580 if (tagged && !(p->index & (1U<<31)))
581 break;
582 chunk = find_chunk(p);
583 mark = chunk->mark;
584 remove_chunk_node(chunk, p);
585 /* Racing with audit_tree_freeing_mark()? */
586 if (!mark)
587 continue;
588 fsnotify_get_mark(mark);
589 spin_unlock(&hash_lock);
590
591 untag_chunk(chunk, mark);
592 fsnotify_put_mark(mark);
593
594 spin_lock(&hash_lock);
595 }
596 spin_unlock(&hash_lock);
597 put_tree(victim);
598}
599
600/*
601 * finish killing struct audit_tree
602 */
603static void prune_one(struct audit_tree *victim)
604{
605 prune_tree_chunks(victim, false);
606}
607
608/* trim the uncommitted chunks from tree */
609
610static void trim_marked(struct audit_tree *tree)
611{
612 struct list_head *p, *q;
613 spin_lock(&hash_lock);
614 if (tree->goner) {
615 spin_unlock(&hash_lock);
616 return;
617 }
618 /* reorder */
619 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
620 struct node *node = list_entry(p, struct node, list);
621 q = p->next;
622 if (node->index & (1U<<31)) {
623 list_del_init(p);
624 list_add(p, &tree->chunks);
625 }
626 }
627 spin_unlock(&hash_lock);
628
629 prune_tree_chunks(tree, true);
630
631 spin_lock(&hash_lock);
632 if (!tree->root && !tree->goner) {
633 tree->goner = 1;
634 spin_unlock(&hash_lock);
635 mutex_lock(&audit_filter_mutex);
636 kill_rules(tree);
637 list_del_init(&tree->list);
638 mutex_unlock(&audit_filter_mutex);
639 prune_one(tree);
640 } else {
641 spin_unlock(&hash_lock);
642 }
643}
644
645static void audit_schedule_prune(void);
646
647/* called with audit_filter_mutex */
648int audit_remove_tree_rule(struct audit_krule *rule)
649{
650 struct audit_tree *tree;
651 tree = rule->tree;
652 if (tree) {
653 spin_lock(&hash_lock);
654 list_del_init(&rule->rlist);
655 if (list_empty(&tree->rules) && !tree->goner) {
656 tree->root = NULL;
657 list_del_init(&tree->same_root);
658 tree->goner = 1;
659 list_move(&tree->list, &prune_list);
660 rule->tree = NULL;
661 spin_unlock(&hash_lock);
662 audit_schedule_prune();
663 return 1;
664 }
665 rule->tree = NULL;
666 spin_unlock(&hash_lock);
667 return 1;
668 }
669 return 0;
670}
671
672static int compare_root(struct vfsmount *mnt, void *arg)
673{
674 return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
675 (unsigned long)arg;
676}
677
678void audit_trim_trees(void)
679{
680 struct list_head cursor;
681
682 mutex_lock(&audit_filter_mutex);
683 list_add(&cursor, &tree_list);
684 while (cursor.next != &tree_list) {
685 struct audit_tree *tree;
686 struct path path;
687 struct vfsmount *root_mnt;
688 struct node *node;
689 int err;
690
691 tree = container_of(cursor.next, struct audit_tree, list);
692 get_tree(tree);
693 list_del(&cursor);
694 list_add(&cursor, &tree->list);
695 mutex_unlock(&audit_filter_mutex);
696
697 err = kern_path(tree->pathname, 0, &path);
698 if (err)
699 goto skip_it;
700
701 root_mnt = collect_mounts(&path);
702 path_put(&path);
703 if (IS_ERR(root_mnt))
704 goto skip_it;
705
706 spin_lock(&hash_lock);
707 list_for_each_entry(node, &tree->chunks, list) {
708 struct audit_chunk *chunk = find_chunk(node);
709 /* this could be NULL if the watch is dying else where... */
710 node->index |= 1U<<31;
711 if (iterate_mounts(compare_root,
712 (void *)(chunk->key),
713 root_mnt))
714 node->index &= ~(1U<<31);
715 }
716 spin_unlock(&hash_lock);
717 trim_marked(tree);
718 drop_collected_mounts(root_mnt);
719skip_it:
720 put_tree(tree);
721 mutex_lock(&audit_filter_mutex);
722 }
723 list_del(&cursor);
724 mutex_unlock(&audit_filter_mutex);
725}
726
727int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
728{
729
730 if (pathname[0] != '/' ||
731 rule->listnr != AUDIT_FILTER_EXIT ||
732 op != Audit_equal ||
733 rule->inode_f || rule->watch || rule->tree)
734 return -EINVAL;
735 rule->tree = alloc_tree(pathname);
736 if (!rule->tree)
737 return -ENOMEM;
738 return 0;
739}
740
741void audit_put_tree(struct audit_tree *tree)
742{
743 put_tree(tree);
744}
745
746static int tag_mount(struct vfsmount *mnt, void *arg)
747{
748 return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
749}
750
751/*
752 * That gets run when evict_chunk() ends up needing to kill audit_tree.
753 * Runs from a separate thread.
754 */
755static int prune_tree_thread(void *unused)
756{
757 for (;;) {
758 if (list_empty(&prune_list)) {
759 set_current_state(TASK_INTERRUPTIBLE);
760 schedule();
761 }
762
763 audit_ctl_lock();
764 mutex_lock(&audit_filter_mutex);
765
766 while (!list_empty(&prune_list)) {
767 struct audit_tree *victim;
768
769 victim = list_entry(prune_list.next,
770 struct audit_tree, list);
771 list_del_init(&victim->list);
772
773 mutex_unlock(&audit_filter_mutex);
774
775 prune_one(victim);
776
777 mutex_lock(&audit_filter_mutex);
778 }
779
780 mutex_unlock(&audit_filter_mutex);
781 audit_ctl_unlock();
782 }
783 return 0;
784}
785
786static int audit_launch_prune(void)
787{
788 if (prune_thread)
789 return 0;
790 prune_thread = kthread_run(prune_tree_thread, NULL,
791 "audit_prune_tree");
792 if (IS_ERR(prune_thread)) {
793 pr_err("cannot start thread audit_prune_tree");
794 prune_thread = NULL;
795 return -ENOMEM;
796 }
797 return 0;
798}
799
800/* called with audit_filter_mutex */
801int audit_add_tree_rule(struct audit_krule *rule)
802{
803 struct audit_tree *seed = rule->tree, *tree;
804 struct path path;
805 struct vfsmount *mnt;
806 int err;
807
808 rule->tree = NULL;
809 list_for_each_entry(tree, &tree_list, list) {
810 if (!strcmp(seed->pathname, tree->pathname)) {
811 put_tree(seed);
812 rule->tree = tree;
813 list_add(&rule->rlist, &tree->rules);
814 return 0;
815 }
816 }
817 tree = seed;
818 list_add(&tree->list, &tree_list);
819 list_add(&rule->rlist, &tree->rules);
820 /* do not set rule->tree yet */
821 mutex_unlock(&audit_filter_mutex);
822
823 if (unlikely(!prune_thread)) {
824 err = audit_launch_prune();
825 if (err)
826 goto Err;
827 }
828
829 err = kern_path(tree->pathname, 0, &path);
830 if (err)
831 goto Err;
832 mnt = collect_mounts(&path);
833 path_put(&path);
834 if (IS_ERR(mnt)) {
835 err = PTR_ERR(mnt);
836 goto Err;
837 }
838
839 get_tree(tree);
840 err = iterate_mounts(tag_mount, tree, mnt);
841 drop_collected_mounts(mnt);
842
843 if (!err) {
844 struct node *node;
845 spin_lock(&hash_lock);
846 list_for_each_entry(node, &tree->chunks, list)
847 node->index &= ~(1U<<31);
848 spin_unlock(&hash_lock);
849 } else {
850 trim_marked(tree);
851 goto Err;
852 }
853
854 mutex_lock(&audit_filter_mutex);
855 if (list_empty(&rule->rlist)) {
856 put_tree(tree);
857 return -ENOENT;
858 }
859 rule->tree = tree;
860 put_tree(tree);
861
862 return 0;
863Err:
864 mutex_lock(&audit_filter_mutex);
865 list_del_init(&tree->list);
866 list_del_init(&tree->rules);
867 put_tree(tree);
868 return err;
869}
870
871int audit_tag_tree(char *old, char *new)
872{
873 struct list_head cursor, barrier;
874 int failed = 0;
875 struct path path1, path2;
876 struct vfsmount *tagged;
877 int err;
878
879 err = kern_path(new, 0, &path2);
880 if (err)
881 return err;
882 tagged = collect_mounts(&path2);
883 path_put(&path2);
884 if (IS_ERR(tagged))
885 return PTR_ERR(tagged);
886
887 err = kern_path(old, 0, &path1);
888 if (err) {
889 drop_collected_mounts(tagged);
890 return err;
891 }
892
893 mutex_lock(&audit_filter_mutex);
894 list_add(&barrier, &tree_list);
895 list_add(&cursor, &barrier);
896
897 while (cursor.next != &tree_list) {
898 struct audit_tree *tree;
899 int good_one = 0;
900
901 tree = container_of(cursor.next, struct audit_tree, list);
902 get_tree(tree);
903 list_del(&cursor);
904 list_add(&cursor, &tree->list);
905 mutex_unlock(&audit_filter_mutex);
906
907 err = kern_path(tree->pathname, 0, &path2);
908 if (!err) {
909 good_one = path_is_under(&path1, &path2);
910 path_put(&path2);
911 }
912
913 if (!good_one) {
914 put_tree(tree);
915 mutex_lock(&audit_filter_mutex);
916 continue;
917 }
918
919 failed = iterate_mounts(tag_mount, tree, tagged);
920 if (failed) {
921 put_tree(tree);
922 mutex_lock(&audit_filter_mutex);
923 break;
924 }
925
926 mutex_lock(&audit_filter_mutex);
927 spin_lock(&hash_lock);
928 if (!tree->goner) {
929 list_del(&tree->list);
930 list_add(&tree->list, &tree_list);
931 }
932 spin_unlock(&hash_lock);
933 put_tree(tree);
934 }
935
936 while (barrier.prev != &tree_list) {
937 struct audit_tree *tree;
938
939 tree = container_of(barrier.prev, struct audit_tree, list);
940 get_tree(tree);
941 list_del(&tree->list);
942 list_add(&tree->list, &barrier);
943 mutex_unlock(&audit_filter_mutex);
944
945 if (!failed) {
946 struct node *node;
947 spin_lock(&hash_lock);
948 list_for_each_entry(node, &tree->chunks, list)
949 node->index &= ~(1U<<31);
950 spin_unlock(&hash_lock);
951 } else {
952 trim_marked(tree);
953 }
954
955 put_tree(tree);
956 mutex_lock(&audit_filter_mutex);
957 }
958 list_del(&barrier);
959 list_del(&cursor);
960 mutex_unlock(&audit_filter_mutex);
961 path_put(&path1);
962 drop_collected_mounts(tagged);
963 return failed;
964}
965
966
967static void audit_schedule_prune(void)
968{
969 wake_up_process(prune_thread);
970}
971
972/*
973 * ... and that one is done if evict_chunk() decides to delay until the end
974 * of syscall. Runs synchronously.
975 */
976void audit_kill_trees(struct list_head *list)
977{
978 audit_ctl_lock();
979 mutex_lock(&audit_filter_mutex);
980
981 while (!list_empty(list)) {
982 struct audit_tree *victim;
983
984 victim = list_entry(list->next, struct audit_tree, list);
985 kill_rules(victim);
986 list_del_init(&victim->list);
987
988 mutex_unlock(&audit_filter_mutex);
989
990 prune_one(victim);
991
992 mutex_lock(&audit_filter_mutex);
993 }
994
995 mutex_unlock(&audit_filter_mutex);
996 audit_ctl_unlock();
997}
998
999/*
1000 * Here comes the stuff asynchronous to auditctl operations
1001 */
1002
1003static void evict_chunk(struct audit_chunk *chunk)
1004{
1005 struct audit_tree *owner;
1006 struct list_head *postponed = audit_killed_trees();
1007 int need_prune = 0;
1008 int n;
1009
1010 mutex_lock(&audit_filter_mutex);
1011 spin_lock(&hash_lock);
1012 while (!list_empty(&chunk->trees)) {
1013 owner = list_entry(chunk->trees.next,
1014 struct audit_tree, same_root);
1015 owner->goner = 1;
1016 owner->root = NULL;
1017 list_del_init(&owner->same_root);
1018 spin_unlock(&hash_lock);
1019 if (!postponed) {
1020 kill_rules(owner);
1021 list_move(&owner->list, &prune_list);
1022 need_prune = 1;
1023 } else {
1024 list_move(&owner->list, postponed);
1025 }
1026 spin_lock(&hash_lock);
1027 }
1028 list_del_rcu(&chunk->hash);
1029 for (n = 0; n < chunk->count; n++)
1030 list_del_init(&chunk->owners[n].list);
1031 spin_unlock(&hash_lock);
1032 mutex_unlock(&audit_filter_mutex);
1033 if (need_prune)
1034 audit_schedule_prune();
1035}
1036
1037static int audit_tree_handle_event(struct fsnotify_group *group,
1038 struct inode *to_tell,
1039 u32 mask, const void *data, int data_type,
1040 const unsigned char *file_name, u32 cookie,
1041 struct fsnotify_iter_info *iter_info)
1042{
1043 return 0;
1044}
1045
1046static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1047 struct fsnotify_group *group)
1048{
1049 struct audit_chunk *chunk;
1050
1051 mutex_lock(&mark->group->mark_mutex);
1052 spin_lock(&hash_lock);
1053 chunk = mark_chunk(mark);
1054 replace_mark_chunk(mark, NULL);
1055 spin_unlock(&hash_lock);
1056 mutex_unlock(&mark->group->mark_mutex);
1057 if (chunk) {
1058 evict_chunk(chunk);
1059 audit_mark_put_chunk(chunk);
1060 }
1061
1062 /*
1063 * We are guaranteed to have at least one reference to the mark from
1064 * either the inode or the caller of fsnotify_destroy_mark().
1065 */
1066 BUG_ON(refcount_read(&mark->refcnt) < 1);
1067}
1068
1069static const struct fsnotify_ops audit_tree_ops = {
1070 .handle_event = audit_tree_handle_event,
1071 .freeing_mark = audit_tree_freeing_mark,
1072 .free_mark = audit_tree_destroy_watch,
1073};
1074
1075static int __init audit_tree_init(void)
1076{
1077 int i;
1078
1079 audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1080
1081 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1082 if (IS_ERR(audit_tree_group))
1083 audit_panic("cannot initialize fsnotify group for rectree watches");
1084
1085 for (i = 0; i < HASH_SIZE; i++)
1086 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1087
1088 return 0;
1089}
1090__initcall(audit_tree_init);