audit: rework AUDIT_TTY_SET to only grab spin_lock once
[linux-2.6-block.git] / kernel / audit.c
... / ...
CommitLineData
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#include <linux/init.h>
45#include <asm/types.h>
46#include <linux/atomic.h>
47#include <linux/mm.h>
48#include <linux/export.h>
49#include <linux/slab.h>
50#include <linux/err.h>
51#include <linux/kthread.h>
52#include <linux/kernel.h>
53#include <linux/syscalls.h>
54
55#include <linux/audit.h>
56
57#include <net/sock.h>
58#include <net/netlink.h>
59#include <linux/skbuff.h>
60#ifdef CONFIG_SECURITY
61#include <linux/security.h>
62#endif
63#include <linux/freezer.h>
64#include <linux/tty.h>
65#include <linux/pid_namespace.h>
66#include <net/netns/generic.h>
67
68#include "audit.h"
69
70/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72#define AUDIT_DISABLED -1
73#define AUDIT_UNINITIALIZED 0
74#define AUDIT_INITIALIZED 1
75static int audit_initialized;
76
77#define AUDIT_OFF 0
78#define AUDIT_ON 1
79#define AUDIT_LOCKED 2
80int audit_enabled;
81int audit_ever_enabled;
82
83EXPORT_SYMBOL_GPL(audit_enabled);
84
85/* Default state when kernel boots without any parameters. */
86static int audit_default;
87
88/* If auditing cannot proceed, audit_failure selects what happens. */
89static int audit_failure = AUDIT_FAIL_PRINTK;
90
91/*
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
95 */
96int audit_pid;
97static __u32 audit_nlk_portid;
98
99/* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102static int audit_rate_limit;
103
104/* Number of outstanding audit_buffers allowed.
105 * When set to zero, this means unlimited. */
106static int audit_backlog_limit = 64;
107#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
108static int audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
109static int audit_backlog_wait_overflow = 0;
110
111/* The identity of the user shutting down the audit system. */
112kuid_t audit_sig_uid = INVALID_UID;
113pid_t audit_sig_pid = -1;
114u32 audit_sig_sid = 0;
115
116/* Records can be lost in several ways:
117 0) [suppressed in audit_alloc]
118 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
119 2) out of memory in audit_log_move [alloc_skb]
120 3) suppressed due to audit_rate_limit
121 4) suppressed due to audit_backlog_limit
122*/
123static atomic_t audit_lost = ATOMIC_INIT(0);
124
125/* The netlink socket. */
126static struct sock *audit_sock;
127int audit_net_id;
128
129/* Hash for inode-based rules */
130struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
131
132/* The audit_freelist is a list of pre-allocated audit buffers (if more
133 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
134 * being placed on the freelist). */
135static DEFINE_SPINLOCK(audit_freelist_lock);
136static int audit_freelist_count;
137static LIST_HEAD(audit_freelist);
138
139static struct sk_buff_head audit_skb_queue;
140/* queue of skbs to send to auditd when/if it comes back */
141static struct sk_buff_head audit_skb_hold_queue;
142static struct task_struct *kauditd_task;
143static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
144static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
145
146static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
147 .mask = -1,
148 .features = 0,
149 .lock = 0,};
150
151static char *audit_feature_names[2] = {
152 "only_unset_loginuid",
153 "loginuid_immutable",
154};
155
156
157/* Serialize requests from userspace. */
158DEFINE_MUTEX(audit_cmd_mutex);
159
160/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
161 * audit records. Since printk uses a 1024 byte buffer, this buffer
162 * should be at least that large. */
163#define AUDIT_BUFSIZ 1024
164
165/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
166 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
167#define AUDIT_MAXFREE (2*NR_CPUS)
168
169/* The audit_buffer is used when formatting an audit record. The caller
170 * locks briefly to get the record off the freelist or to allocate the
171 * buffer, and locks briefly to send the buffer to the netlink layer or
172 * to place it on a transmit queue. Multiple audit_buffers can be in
173 * use simultaneously. */
174struct audit_buffer {
175 struct list_head list;
176 struct sk_buff *skb; /* formatted skb ready to send */
177 struct audit_context *ctx; /* NULL or associated context */
178 gfp_t gfp_mask;
179};
180
181struct audit_reply {
182 __u32 portid;
183 pid_t pid;
184 struct sk_buff *skb;
185};
186
187static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
188{
189 if (ab) {
190 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
191 nlh->nlmsg_pid = portid;
192 }
193}
194
195void audit_panic(const char *message)
196{
197 switch (audit_failure)
198 {
199 case AUDIT_FAIL_SILENT:
200 break;
201 case AUDIT_FAIL_PRINTK:
202 if (printk_ratelimit())
203 printk(KERN_ERR "audit: %s\n", message);
204 break;
205 case AUDIT_FAIL_PANIC:
206 /* test audit_pid since printk is always losey, why bother? */
207 if (audit_pid)
208 panic("audit: %s\n", message);
209 break;
210 }
211}
212
213static inline int audit_rate_check(void)
214{
215 static unsigned long last_check = 0;
216 static int messages = 0;
217 static DEFINE_SPINLOCK(lock);
218 unsigned long flags;
219 unsigned long now;
220 unsigned long elapsed;
221 int retval = 0;
222
223 if (!audit_rate_limit) return 1;
224
225 spin_lock_irqsave(&lock, flags);
226 if (++messages < audit_rate_limit) {
227 retval = 1;
228 } else {
229 now = jiffies;
230 elapsed = now - last_check;
231 if (elapsed > HZ) {
232 last_check = now;
233 messages = 0;
234 retval = 1;
235 }
236 }
237 spin_unlock_irqrestore(&lock, flags);
238
239 return retval;
240}
241
242/**
243 * audit_log_lost - conditionally log lost audit message event
244 * @message: the message stating reason for lost audit message
245 *
246 * Emit at least 1 message per second, even if audit_rate_check is
247 * throttling.
248 * Always increment the lost messages counter.
249*/
250void audit_log_lost(const char *message)
251{
252 static unsigned long last_msg = 0;
253 static DEFINE_SPINLOCK(lock);
254 unsigned long flags;
255 unsigned long now;
256 int print;
257
258 atomic_inc(&audit_lost);
259
260 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
261
262 if (!print) {
263 spin_lock_irqsave(&lock, flags);
264 now = jiffies;
265 if (now - last_msg > HZ) {
266 print = 1;
267 last_msg = now;
268 }
269 spin_unlock_irqrestore(&lock, flags);
270 }
271
272 if (print) {
273 if (printk_ratelimit())
274 printk(KERN_WARNING
275 "audit: audit_lost=%d audit_rate_limit=%d "
276 "audit_backlog_limit=%d\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282}
283
284static int audit_log_config_change(char *function_name, int new, int old,
285 int allow_changes)
286{
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301}
302
303static int audit_do_config_change(char *function_name, int *to_change, int new)
304{
305 int allow_changes, rc = 0, old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326}
327
328static int audit_set_rate_limit(int limit)
329{
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331}
332
333static int audit_set_backlog_limit(int limit)
334{
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336}
337
338static int audit_set_backlog_wait_time(int timeout)
339{
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
342}
343
344static int audit_set_enabled(int state)
345{
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355}
356
357static int audit_set_failure(int state)
358{
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365}
366
367/*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376static void audit_hold_skb(struct sk_buff *skb)
377{
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384}
385
386/*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390static void audit_printk_skb(struct sk_buff *skb)
391{
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded\n");
400 }
401
402 audit_hold_skb(skb);
403}
404
405static void kauditd_send_skb(struct sk_buff *skb)
406{
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared\n");
416 audit_pid = 0;
417 audit_sock = NULL;
418 }
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
424}
425
426/*
427 * flush_hold_queue - empty the hold queue if auditd appears
428 *
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
434 *
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
440 */
441static void flush_hold_queue(void)
442{
443 struct sk_buff *skb;
444
445 if (!audit_default || !audit_pid)
446 return;
447
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
451
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
455 }
456
457 /*
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
460 */
461 if (skb)
462 consume_skb(skb);
463}
464
465static int kauditd_thread(void *dummy)
466{
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
471
472 flush_hold_queue();
473
474 skb = skb_dequeue(&audit_skb_queue);
475
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
484 }
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
487
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
491 }
492
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
495 }
496 return 0;
497}
498
499int audit_send_list(void *_dest)
500{
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = get_net_ns_by_pid(dest->pid);
504 struct audit_net *aunet = net_generic(net, audit_net_id);
505
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
509
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
512
513 kfree(dest);
514
515 return 0;
516}
517
518struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
519 int multi, const void *payload, int size)
520{
521 struct sk_buff *skb;
522 struct nlmsghdr *nlh;
523 void *data;
524 int flags = multi ? NLM_F_MULTI : 0;
525 int t = done ? NLMSG_DONE : type;
526
527 skb = nlmsg_new(size, GFP_KERNEL);
528 if (!skb)
529 return NULL;
530
531 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
532 if (!nlh)
533 goto out_kfree_skb;
534 data = nlmsg_data(nlh);
535 memcpy(data, payload, size);
536 return skb;
537
538out_kfree_skb:
539 kfree_skb(skb);
540 return NULL;
541}
542
543static int audit_send_reply_thread(void *arg)
544{
545 struct audit_reply *reply = (struct audit_reply *)arg;
546 struct net *net = get_net_ns_by_pid(reply->pid);
547 struct audit_net *aunet = net_generic(net, audit_net_id);
548
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
551
552 /* Ignore failure. It'll only happen if the sender goes away,
553 because our timeout is set to infinite. */
554 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
555 kfree(reply);
556 return 0;
557}
558/**
559 * audit_send_reply - send an audit reply message via netlink
560 * @portid: netlink port to which to send reply
561 * @seq: sequence number
562 * @type: audit message type
563 * @done: done (last) flag
564 * @multi: multi-part message flag
565 * @payload: payload data
566 * @size: payload size
567 *
568 * Allocates an skb, builds the netlink message, and sends it to the port id.
569 * No failure notifications.
570 */
571static void audit_send_reply(__u32 portid, int seq, int type, int done,
572 int multi, const void *payload, int size)
573{
574 struct sk_buff *skb;
575 struct task_struct *tsk;
576 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
577 GFP_KERNEL);
578
579 if (!reply)
580 return;
581
582 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
583 if (!skb)
584 goto out;
585
586 reply->portid = portid;
587 reply->pid = task_pid_vnr(current);
588 reply->skb = skb;
589
590 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
591 if (!IS_ERR(tsk))
592 return;
593 kfree_skb(skb);
594out:
595 kfree(reply);
596}
597
598/*
599 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
600 * control messages.
601 */
602static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
603{
604 int err = 0;
605
606 /* Only support the initial namespaces for now. */
607 if ((current_user_ns() != &init_user_ns) ||
608 (task_active_pid_ns(current) != &init_pid_ns))
609 return -EPERM;
610
611 switch (msg_type) {
612 case AUDIT_LIST:
613 case AUDIT_ADD:
614 case AUDIT_DEL:
615 return -EOPNOTSUPP;
616 case AUDIT_GET:
617 case AUDIT_SET:
618 case AUDIT_GET_FEATURE:
619 case AUDIT_SET_FEATURE:
620 case AUDIT_LIST_RULES:
621 case AUDIT_ADD_RULE:
622 case AUDIT_DEL_RULE:
623 case AUDIT_SIGNAL_INFO:
624 case AUDIT_TTY_GET:
625 case AUDIT_TTY_SET:
626 case AUDIT_TRIM:
627 case AUDIT_MAKE_EQUIV:
628 if (!capable(CAP_AUDIT_CONTROL))
629 err = -EPERM;
630 break;
631 case AUDIT_USER:
632 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
633 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
634 if (!capable(CAP_AUDIT_WRITE))
635 err = -EPERM;
636 break;
637 default: /* bad msg */
638 err = -EINVAL;
639 }
640
641 return err;
642}
643
644static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
645{
646 int rc = 0;
647 uid_t uid = from_kuid(&init_user_ns, current_uid());
648
649 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
650 *ab = NULL;
651 return rc;
652 }
653
654 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
655 if (unlikely(!*ab))
656 return rc;
657 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
658 audit_log_session_info(*ab);
659 audit_log_task_context(*ab);
660
661 return rc;
662}
663
664int is_audit_feature_set(int i)
665{
666 return af.features & AUDIT_FEATURE_TO_MASK(i);
667}
668
669
670static int audit_get_feature(struct sk_buff *skb)
671{
672 u32 seq;
673
674 seq = nlmsg_hdr(skb)->nlmsg_seq;
675
676 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
677 &af, sizeof(af));
678
679 return 0;
680}
681
682static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
683 u32 old_lock, u32 new_lock, int res)
684{
685 struct audit_buffer *ab;
686
687 if (audit_enabled == AUDIT_OFF)
688 return;
689
690 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
691 audit_log_task_info(ab, current);
692 audit_log_format(ab, "feature=%s old=%d new=%d old_lock=%d new_lock=%d res=%d",
693 audit_feature_names[which], !!old_feature, !!new_feature,
694 !!old_lock, !!new_lock, res);
695 audit_log_end(ab);
696}
697
698static int audit_set_feature(struct sk_buff *skb)
699{
700 struct audit_features *uaf;
701 int i;
702
703 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
704 uaf = nlmsg_data(nlmsg_hdr(skb));
705
706 /* if there is ever a version 2 we should handle that here */
707
708 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
709 u32 feature = AUDIT_FEATURE_TO_MASK(i);
710 u32 old_feature, new_feature, old_lock, new_lock;
711
712 /* if we are not changing this feature, move along */
713 if (!(feature & uaf->mask))
714 continue;
715
716 old_feature = af.features & feature;
717 new_feature = uaf->features & feature;
718 new_lock = (uaf->lock | af.lock) & feature;
719 old_lock = af.lock & feature;
720
721 /* are we changing a locked feature? */
722 if (old_lock && (new_feature != old_feature)) {
723 audit_log_feature_change(i, old_feature, new_feature,
724 old_lock, new_lock, 0);
725 return -EPERM;
726 }
727 }
728 /* nothing invalid, do the changes */
729 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
730 u32 feature = AUDIT_FEATURE_TO_MASK(i);
731 u32 old_feature, new_feature, old_lock, new_lock;
732
733 /* if we are not changing this feature, move along */
734 if (!(feature & uaf->mask))
735 continue;
736
737 old_feature = af.features & feature;
738 new_feature = uaf->features & feature;
739 old_lock = af.lock & feature;
740 new_lock = (uaf->lock | af.lock) & feature;
741
742 if (new_feature != old_feature)
743 audit_log_feature_change(i, old_feature, new_feature,
744 old_lock, new_lock, 1);
745
746 if (new_feature)
747 af.features |= feature;
748 else
749 af.features &= ~feature;
750 af.lock |= new_lock;
751 }
752
753 return 0;
754}
755
756static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
757{
758 u32 seq;
759 void *data;
760 int err;
761 struct audit_buffer *ab;
762 u16 msg_type = nlh->nlmsg_type;
763 struct audit_sig_info *sig_data;
764 char *ctx = NULL;
765 u32 len;
766
767 err = audit_netlink_ok(skb, msg_type);
768 if (err)
769 return err;
770
771 /* As soon as there's any sign of userspace auditd,
772 * start kauditd to talk to it */
773 if (!kauditd_task) {
774 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
775 if (IS_ERR(kauditd_task)) {
776 err = PTR_ERR(kauditd_task);
777 kauditd_task = NULL;
778 return err;
779 }
780 }
781 seq = nlh->nlmsg_seq;
782 data = nlmsg_data(nlh);
783
784 switch (msg_type) {
785 case AUDIT_GET: {
786 struct audit_status s;
787 memset(&s, 0, sizeof(s));
788 s.enabled = audit_enabled;
789 s.failure = audit_failure;
790 s.pid = audit_pid;
791 s.rate_limit = audit_rate_limit;
792 s.backlog_limit = audit_backlog_limit;
793 s.lost = atomic_read(&audit_lost);
794 s.backlog = skb_queue_len(&audit_skb_queue);
795 s.version = AUDIT_VERSION_LATEST;
796 s.backlog_wait_time = audit_backlog_wait_time;
797 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
798 &s, sizeof(s));
799 break;
800 }
801 case AUDIT_SET: {
802 struct audit_status s;
803 memset(&s, 0, sizeof(s));
804 /* guard against past and future API changes */
805 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
806 if (s.mask & AUDIT_STATUS_ENABLED) {
807 err = audit_set_enabled(s.enabled);
808 if (err < 0)
809 return err;
810 }
811 if (s.mask & AUDIT_STATUS_FAILURE) {
812 err = audit_set_failure(s.failure);
813 if (err < 0)
814 return err;
815 }
816 if (s.mask & AUDIT_STATUS_PID) {
817 int new_pid = s.pid;
818
819 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
820 return -EACCES;
821 if (audit_enabled != AUDIT_OFF)
822 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
823 audit_pid = new_pid;
824 audit_nlk_portid = NETLINK_CB(skb).portid;
825 audit_sock = skb->sk;
826 }
827 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
828 err = audit_set_rate_limit(s.rate_limit);
829 if (err < 0)
830 return err;
831 }
832 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
833 err = audit_set_backlog_limit(s.backlog_limit);
834 if (err < 0)
835 return err;
836 }
837 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
838 if (sizeof(s) > (size_t)nlh->nlmsg_len)
839 return -EINVAL;
840 if (s.backlog_wait_time < 0 ||
841 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
842 return -EINVAL;
843 err = audit_set_backlog_wait_time(s.backlog_wait_time);
844 if (err < 0)
845 return err;
846 }
847 break;
848 }
849 case AUDIT_GET_FEATURE:
850 err = audit_get_feature(skb);
851 if (err)
852 return err;
853 break;
854 case AUDIT_SET_FEATURE:
855 err = audit_set_feature(skb);
856 if (err)
857 return err;
858 break;
859 case AUDIT_USER:
860 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
861 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
862 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
863 return 0;
864
865 err = audit_filter_user(msg_type);
866 if (err == 1) { /* match or error */
867 err = 0;
868 if (msg_type == AUDIT_USER_TTY) {
869 err = tty_audit_push_current();
870 if (err)
871 break;
872 }
873 mutex_unlock(&audit_cmd_mutex);
874 audit_log_common_recv_msg(&ab, msg_type);
875 if (msg_type != AUDIT_USER_TTY)
876 audit_log_format(ab, " msg='%.*s'",
877 AUDIT_MESSAGE_TEXT_MAX,
878 (char *)data);
879 else {
880 int size;
881
882 audit_log_format(ab, " data=");
883 size = nlmsg_len(nlh);
884 if (size > 0 &&
885 ((unsigned char *)data)[size - 1] == '\0')
886 size--;
887 audit_log_n_untrustedstring(ab, data, size);
888 }
889 audit_set_portid(ab, NETLINK_CB(skb).portid);
890 audit_log_end(ab);
891 mutex_lock(&audit_cmd_mutex);
892 }
893 break;
894 case AUDIT_ADD_RULE:
895 case AUDIT_DEL_RULE:
896 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
897 return -EINVAL;
898 if (audit_enabled == AUDIT_LOCKED) {
899 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
900 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
901 audit_log_end(ab);
902 return -EPERM;
903 }
904 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
905 seq, data, nlmsg_len(nlh));
906 break;
907 case AUDIT_LIST_RULES:
908 err = audit_list_rules_send(NETLINK_CB(skb).portid, seq);
909 break;
910 case AUDIT_TRIM:
911 audit_trim_trees();
912 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
913 audit_log_format(ab, " op=trim res=1");
914 audit_log_end(ab);
915 break;
916 case AUDIT_MAKE_EQUIV: {
917 void *bufp = data;
918 u32 sizes[2];
919 size_t msglen = nlmsg_len(nlh);
920 char *old, *new;
921
922 err = -EINVAL;
923 if (msglen < 2 * sizeof(u32))
924 break;
925 memcpy(sizes, bufp, 2 * sizeof(u32));
926 bufp += 2 * sizeof(u32);
927 msglen -= 2 * sizeof(u32);
928 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
929 if (IS_ERR(old)) {
930 err = PTR_ERR(old);
931 break;
932 }
933 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
934 if (IS_ERR(new)) {
935 err = PTR_ERR(new);
936 kfree(old);
937 break;
938 }
939 /* OK, here comes... */
940 err = audit_tag_tree(old, new);
941
942 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
943
944 audit_log_format(ab, " op=make_equiv old=");
945 audit_log_untrustedstring(ab, old);
946 audit_log_format(ab, " new=");
947 audit_log_untrustedstring(ab, new);
948 audit_log_format(ab, " res=%d", !err);
949 audit_log_end(ab);
950 kfree(old);
951 kfree(new);
952 break;
953 }
954 case AUDIT_SIGNAL_INFO:
955 len = 0;
956 if (audit_sig_sid) {
957 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
958 if (err)
959 return err;
960 }
961 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
962 if (!sig_data) {
963 if (audit_sig_sid)
964 security_release_secctx(ctx, len);
965 return -ENOMEM;
966 }
967 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
968 sig_data->pid = audit_sig_pid;
969 if (audit_sig_sid) {
970 memcpy(sig_data->ctx, ctx, len);
971 security_release_secctx(ctx, len);
972 }
973 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
974 0, 0, sig_data, sizeof(*sig_data) + len);
975 kfree(sig_data);
976 break;
977 case AUDIT_TTY_GET: {
978 struct audit_tty_status s;
979 struct task_struct *tsk = current;
980
981 spin_lock(&tsk->sighand->siglock);
982 s.enabled = tsk->signal->audit_tty;
983 s.log_passwd = tsk->signal->audit_tty_log_passwd;
984 spin_unlock(&tsk->sighand->siglock);
985
986 audit_send_reply(NETLINK_CB(skb).portid, seq,
987 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
988 break;
989 }
990 case AUDIT_TTY_SET: {
991 struct audit_tty_status s, old;
992 struct task_struct *tsk = current;
993 struct audit_buffer *ab;
994
995 memset(&s, 0, sizeof(s));
996 /* guard against past and future API changes */
997 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
998 /* check if new data is valid */
999 if ((s.enabled != 0 && s.enabled != 1) ||
1000 (s.log_passwd != 0 && s.log_passwd != 1))
1001 err = -EINVAL;
1002
1003 spin_lock(&tsk->sighand->siglock);
1004 old.enabled = tsk->signal->audit_tty;
1005 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1006 if (!err) {
1007 tsk->signal->audit_tty = s.enabled;
1008 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1009 }
1010 spin_unlock(&tsk->sighand->siglock);
1011
1012 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1013 audit_log_format(ab, " op=tty_set"
1014 " old-enabled=%d old-log_passwd=%d"
1015 " new-enabled=%d new-log_passwd=%d"
1016 " res=%d",
1017 old.enabled, old.log_passwd,
1018 s.enabled, s.log_passwd,
1019 !err);
1020 audit_log_end(ab);
1021 break;
1022 }
1023 default:
1024 err = -EINVAL;
1025 break;
1026 }
1027
1028 return err < 0 ? err : 0;
1029}
1030
1031/*
1032 * Get message from skb. Each message is processed by audit_receive_msg.
1033 * Malformed skbs with wrong length are discarded silently.
1034 */
1035static void audit_receive_skb(struct sk_buff *skb)
1036{
1037 struct nlmsghdr *nlh;
1038 /*
1039 * len MUST be signed for nlmsg_next to be able to dec it below 0
1040 * if the nlmsg_len was not aligned
1041 */
1042 int len;
1043 int err;
1044
1045 nlh = nlmsg_hdr(skb);
1046 len = skb->len;
1047
1048 while (nlmsg_ok(nlh, len)) {
1049 err = audit_receive_msg(skb, nlh);
1050 /* if err or if this message says it wants a response */
1051 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1052 netlink_ack(skb, nlh, err);
1053
1054 nlh = nlmsg_next(nlh, &len);
1055 }
1056}
1057
1058/* Receive messages from netlink socket. */
1059static void audit_receive(struct sk_buff *skb)
1060{
1061 mutex_lock(&audit_cmd_mutex);
1062 audit_receive_skb(skb);
1063 mutex_unlock(&audit_cmd_mutex);
1064}
1065
1066static int __net_init audit_net_init(struct net *net)
1067{
1068 struct netlink_kernel_cfg cfg = {
1069 .input = audit_receive,
1070 };
1071
1072 struct audit_net *aunet = net_generic(net, audit_net_id);
1073
1074 pr_info("audit: initializing netlink socket in namespace\n");
1075
1076 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1077 if (aunet->nlsk == NULL) {
1078 audit_panic("cannot initialize netlink socket in namespace");
1079 return -ENOMEM;
1080 }
1081 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1082 return 0;
1083}
1084
1085static void __net_exit audit_net_exit(struct net *net)
1086{
1087 struct audit_net *aunet = net_generic(net, audit_net_id);
1088 struct sock *sock = aunet->nlsk;
1089 if (sock == audit_sock) {
1090 audit_pid = 0;
1091 audit_sock = NULL;
1092 }
1093
1094 rcu_assign_pointer(aunet->nlsk, NULL);
1095 synchronize_net();
1096 netlink_kernel_release(sock);
1097}
1098
1099static struct pernet_operations __net_initdata audit_net_ops = {
1100 .init = audit_net_init,
1101 .exit = audit_net_exit,
1102 .id = &audit_net_id,
1103 .size = sizeof(struct audit_net),
1104};
1105
1106/* Initialize audit support at boot time. */
1107static int __init audit_init(void)
1108{
1109 int i;
1110
1111 if (audit_initialized == AUDIT_DISABLED)
1112 return 0;
1113
1114 pr_info("audit: initializing netlink subsys (%s)\n",
1115 audit_default ? "enabled" : "disabled");
1116 register_pernet_subsys(&audit_net_ops);
1117
1118 skb_queue_head_init(&audit_skb_queue);
1119 skb_queue_head_init(&audit_skb_hold_queue);
1120 audit_initialized = AUDIT_INITIALIZED;
1121 audit_enabled = audit_default;
1122 audit_ever_enabled |= !!audit_default;
1123
1124 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1125
1126 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1127 INIT_LIST_HEAD(&audit_inode_hash[i]);
1128
1129 return 0;
1130}
1131__initcall(audit_init);
1132
1133/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1134static int __init audit_enable(char *str)
1135{
1136 audit_default = !!simple_strtol(str, NULL, 0);
1137 if (!audit_default)
1138 audit_initialized = AUDIT_DISABLED;
1139
1140 pr_info("audit: %s\n", audit_default ?
1141 "enabled (after initialization)" : "disabled (until reboot)");
1142
1143 return 1;
1144}
1145__setup("audit=", audit_enable);
1146
1147/* Process kernel command-line parameter at boot time.
1148 * audit_backlog_limit=<n> */
1149static int __init audit_backlog_limit_set(char *str)
1150{
1151 long int audit_backlog_limit_arg;
1152 pr_info("audit_backlog_limit: ");
1153 if (kstrtol(str, 0, &audit_backlog_limit_arg)) {
1154 printk("using default of %d, unable to parse %s\n",
1155 audit_backlog_limit, str);
1156 return 1;
1157 }
1158 if (audit_backlog_limit_arg >= 0)
1159 audit_backlog_limit = (int)audit_backlog_limit_arg;
1160 printk("%d\n", audit_backlog_limit);
1161
1162 return 1;
1163}
1164__setup("audit_backlog_limit=", audit_backlog_limit_set);
1165
1166static void audit_buffer_free(struct audit_buffer *ab)
1167{
1168 unsigned long flags;
1169
1170 if (!ab)
1171 return;
1172
1173 if (ab->skb)
1174 kfree_skb(ab->skb);
1175
1176 spin_lock_irqsave(&audit_freelist_lock, flags);
1177 if (audit_freelist_count > AUDIT_MAXFREE)
1178 kfree(ab);
1179 else {
1180 audit_freelist_count++;
1181 list_add(&ab->list, &audit_freelist);
1182 }
1183 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1184}
1185
1186static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1187 gfp_t gfp_mask, int type)
1188{
1189 unsigned long flags;
1190 struct audit_buffer *ab = NULL;
1191 struct nlmsghdr *nlh;
1192
1193 spin_lock_irqsave(&audit_freelist_lock, flags);
1194 if (!list_empty(&audit_freelist)) {
1195 ab = list_entry(audit_freelist.next,
1196 struct audit_buffer, list);
1197 list_del(&ab->list);
1198 --audit_freelist_count;
1199 }
1200 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1201
1202 if (!ab) {
1203 ab = kmalloc(sizeof(*ab), gfp_mask);
1204 if (!ab)
1205 goto err;
1206 }
1207
1208 ab->ctx = ctx;
1209 ab->gfp_mask = gfp_mask;
1210
1211 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1212 if (!ab->skb)
1213 goto err;
1214
1215 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1216 if (!nlh)
1217 goto out_kfree_skb;
1218
1219 return ab;
1220
1221out_kfree_skb:
1222 kfree_skb(ab->skb);
1223 ab->skb = NULL;
1224err:
1225 audit_buffer_free(ab);
1226 return NULL;
1227}
1228
1229/**
1230 * audit_serial - compute a serial number for the audit record
1231 *
1232 * Compute a serial number for the audit record. Audit records are
1233 * written to user-space as soon as they are generated, so a complete
1234 * audit record may be written in several pieces. The timestamp of the
1235 * record and this serial number are used by the user-space tools to
1236 * determine which pieces belong to the same audit record. The
1237 * (timestamp,serial) tuple is unique for each syscall and is live from
1238 * syscall entry to syscall exit.
1239 *
1240 * NOTE: Another possibility is to store the formatted records off the
1241 * audit context (for those records that have a context), and emit them
1242 * all at syscall exit. However, this could delay the reporting of
1243 * significant errors until syscall exit (or never, if the system
1244 * halts).
1245 */
1246unsigned int audit_serial(void)
1247{
1248 static DEFINE_SPINLOCK(serial_lock);
1249 static unsigned int serial = 0;
1250
1251 unsigned long flags;
1252 unsigned int ret;
1253
1254 spin_lock_irqsave(&serial_lock, flags);
1255 do {
1256 ret = ++serial;
1257 } while (unlikely(!ret));
1258 spin_unlock_irqrestore(&serial_lock, flags);
1259
1260 return ret;
1261}
1262
1263static inline void audit_get_stamp(struct audit_context *ctx,
1264 struct timespec *t, unsigned int *serial)
1265{
1266 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1267 *t = CURRENT_TIME;
1268 *serial = audit_serial();
1269 }
1270}
1271
1272/*
1273 * Wait for auditd to drain the queue a little
1274 */
1275static long wait_for_auditd(long sleep_time)
1276{
1277 DECLARE_WAITQUEUE(wait, current);
1278 set_current_state(TASK_UNINTERRUPTIBLE);
1279 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1280
1281 if (audit_backlog_limit &&
1282 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1283 sleep_time = schedule_timeout(sleep_time);
1284
1285 __set_current_state(TASK_RUNNING);
1286 remove_wait_queue(&audit_backlog_wait, &wait);
1287
1288 return sleep_time;
1289}
1290
1291/**
1292 * audit_log_start - obtain an audit buffer
1293 * @ctx: audit_context (may be NULL)
1294 * @gfp_mask: type of allocation
1295 * @type: audit message type
1296 *
1297 * Returns audit_buffer pointer on success or NULL on error.
1298 *
1299 * Obtain an audit buffer. This routine does locking to obtain the
1300 * audit buffer, but then no locking is required for calls to
1301 * audit_log_*format. If the task (ctx) is a task that is currently in a
1302 * syscall, then the syscall is marked as auditable and an audit record
1303 * will be written at syscall exit. If there is no associated task, then
1304 * task context (ctx) should be NULL.
1305 */
1306struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1307 int type)
1308{
1309 struct audit_buffer *ab = NULL;
1310 struct timespec t;
1311 unsigned int uninitialized_var(serial);
1312 int reserve = 5; /* Allow atomic callers to go up to five
1313 entries over the normal backlog limit */
1314 unsigned long timeout_start = jiffies;
1315
1316 if (audit_initialized != AUDIT_INITIALIZED)
1317 return NULL;
1318
1319 if (unlikely(audit_filter_type(type)))
1320 return NULL;
1321
1322 if (gfp_mask & __GFP_WAIT) {
1323 if (audit_pid && audit_pid == current->pid)
1324 gfp_mask &= ~__GFP_WAIT;
1325 else
1326 reserve = 0;
1327 }
1328
1329 while (audit_backlog_limit
1330 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1331 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1332 long sleep_time;
1333
1334 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1335 if (sleep_time > 0) {
1336 sleep_time = wait_for_auditd(sleep_time);
1337 if (sleep_time > 0)
1338 continue;
1339 }
1340 }
1341 if (audit_rate_check() && printk_ratelimit())
1342 printk(KERN_WARNING
1343 "audit: audit_backlog=%d > "
1344 "audit_backlog_limit=%d\n",
1345 skb_queue_len(&audit_skb_queue),
1346 audit_backlog_limit);
1347 audit_log_lost("backlog limit exceeded");
1348 audit_backlog_wait_time = audit_backlog_wait_overflow;
1349 wake_up(&audit_backlog_wait);
1350 return NULL;
1351 }
1352
1353 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1354
1355 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1356 if (!ab) {
1357 audit_log_lost("out of memory in audit_log_start");
1358 return NULL;
1359 }
1360
1361 audit_get_stamp(ab->ctx, &t, &serial);
1362
1363 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1364 t.tv_sec, t.tv_nsec/1000000, serial);
1365 return ab;
1366}
1367
1368/**
1369 * audit_expand - expand skb in the audit buffer
1370 * @ab: audit_buffer
1371 * @extra: space to add at tail of the skb
1372 *
1373 * Returns 0 (no space) on failed expansion, or available space if
1374 * successful.
1375 */
1376static inline int audit_expand(struct audit_buffer *ab, int extra)
1377{
1378 struct sk_buff *skb = ab->skb;
1379 int oldtail = skb_tailroom(skb);
1380 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1381 int newtail = skb_tailroom(skb);
1382
1383 if (ret < 0) {
1384 audit_log_lost("out of memory in audit_expand");
1385 return 0;
1386 }
1387
1388 skb->truesize += newtail - oldtail;
1389 return newtail;
1390}
1391
1392/*
1393 * Format an audit message into the audit buffer. If there isn't enough
1394 * room in the audit buffer, more room will be allocated and vsnprint
1395 * will be called a second time. Currently, we assume that a printk
1396 * can't format message larger than 1024 bytes, so we don't either.
1397 */
1398static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1399 va_list args)
1400{
1401 int len, avail;
1402 struct sk_buff *skb;
1403 va_list args2;
1404
1405 if (!ab)
1406 return;
1407
1408 BUG_ON(!ab->skb);
1409 skb = ab->skb;
1410 avail = skb_tailroom(skb);
1411 if (avail == 0) {
1412 avail = audit_expand(ab, AUDIT_BUFSIZ);
1413 if (!avail)
1414 goto out;
1415 }
1416 va_copy(args2, args);
1417 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1418 if (len >= avail) {
1419 /* The printk buffer is 1024 bytes long, so if we get
1420 * here and AUDIT_BUFSIZ is at least 1024, then we can
1421 * log everything that printk could have logged. */
1422 avail = audit_expand(ab,
1423 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1424 if (!avail)
1425 goto out_va_end;
1426 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1427 }
1428 if (len > 0)
1429 skb_put(skb, len);
1430out_va_end:
1431 va_end(args2);
1432out:
1433 return;
1434}
1435
1436/**
1437 * audit_log_format - format a message into the audit buffer.
1438 * @ab: audit_buffer
1439 * @fmt: format string
1440 * @...: optional parameters matching @fmt string
1441 *
1442 * All the work is done in audit_log_vformat.
1443 */
1444void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1445{
1446 va_list args;
1447
1448 if (!ab)
1449 return;
1450 va_start(args, fmt);
1451 audit_log_vformat(ab, fmt, args);
1452 va_end(args);
1453}
1454
1455/**
1456 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1457 * @ab: the audit_buffer
1458 * @buf: buffer to convert to hex
1459 * @len: length of @buf to be converted
1460 *
1461 * No return value; failure to expand is silently ignored.
1462 *
1463 * This function will take the passed buf and convert it into a string of
1464 * ascii hex digits. The new string is placed onto the skb.
1465 */
1466void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1467 size_t len)
1468{
1469 int i, avail, new_len;
1470 unsigned char *ptr;
1471 struct sk_buff *skb;
1472 static const unsigned char *hex = "0123456789ABCDEF";
1473
1474 if (!ab)
1475 return;
1476
1477 BUG_ON(!ab->skb);
1478 skb = ab->skb;
1479 avail = skb_tailroom(skb);
1480 new_len = len<<1;
1481 if (new_len >= avail) {
1482 /* Round the buffer request up to the next multiple */
1483 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1484 avail = audit_expand(ab, new_len);
1485 if (!avail)
1486 return;
1487 }
1488
1489 ptr = skb_tail_pointer(skb);
1490 for (i=0; i<len; i++) {
1491 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1492 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1493 }
1494 *ptr = 0;
1495 skb_put(skb, len << 1); /* new string is twice the old string */
1496}
1497
1498/*
1499 * Format a string of no more than slen characters into the audit buffer,
1500 * enclosed in quote marks.
1501 */
1502void audit_log_n_string(struct audit_buffer *ab, const char *string,
1503 size_t slen)
1504{
1505 int avail, new_len;
1506 unsigned char *ptr;
1507 struct sk_buff *skb;
1508
1509 if (!ab)
1510 return;
1511
1512 BUG_ON(!ab->skb);
1513 skb = ab->skb;
1514 avail = skb_tailroom(skb);
1515 new_len = slen + 3; /* enclosing quotes + null terminator */
1516 if (new_len > avail) {
1517 avail = audit_expand(ab, new_len);
1518 if (!avail)
1519 return;
1520 }
1521 ptr = skb_tail_pointer(skb);
1522 *ptr++ = '"';
1523 memcpy(ptr, string, slen);
1524 ptr += slen;
1525 *ptr++ = '"';
1526 *ptr = 0;
1527 skb_put(skb, slen + 2); /* don't include null terminator */
1528}
1529
1530/**
1531 * audit_string_contains_control - does a string need to be logged in hex
1532 * @string: string to be checked
1533 * @len: max length of the string to check
1534 */
1535int audit_string_contains_control(const char *string, size_t len)
1536{
1537 const unsigned char *p;
1538 for (p = string; p < (const unsigned char *)string + len; p++) {
1539 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1540 return 1;
1541 }
1542 return 0;
1543}
1544
1545/**
1546 * audit_log_n_untrustedstring - log a string that may contain random characters
1547 * @ab: audit_buffer
1548 * @len: length of string (not including trailing null)
1549 * @string: string to be logged
1550 *
1551 * This code will escape a string that is passed to it if the string
1552 * contains a control character, unprintable character, double quote mark,
1553 * or a space. Unescaped strings will start and end with a double quote mark.
1554 * Strings that are escaped are printed in hex (2 digits per char).
1555 *
1556 * The caller specifies the number of characters in the string to log, which may
1557 * or may not be the entire string.
1558 */
1559void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1560 size_t len)
1561{
1562 if (audit_string_contains_control(string, len))
1563 audit_log_n_hex(ab, string, len);
1564 else
1565 audit_log_n_string(ab, string, len);
1566}
1567
1568/**
1569 * audit_log_untrustedstring - log a string that may contain random characters
1570 * @ab: audit_buffer
1571 * @string: string to be logged
1572 *
1573 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1574 * determine string length.
1575 */
1576void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1577{
1578 audit_log_n_untrustedstring(ab, string, strlen(string));
1579}
1580
1581/* This is a helper-function to print the escaped d_path */
1582void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1583 const struct path *path)
1584{
1585 char *p, *pathname;
1586
1587 if (prefix)
1588 audit_log_format(ab, "%s", prefix);
1589
1590 /* We will allow 11 spaces for ' (deleted)' to be appended */
1591 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1592 if (!pathname) {
1593 audit_log_string(ab, "<no_memory>");
1594 return;
1595 }
1596 p = d_path(path, pathname, PATH_MAX+11);
1597 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1598 /* FIXME: can we save some information here? */
1599 audit_log_string(ab, "<too_long>");
1600 } else
1601 audit_log_untrustedstring(ab, p);
1602 kfree(pathname);
1603}
1604
1605void audit_log_session_info(struct audit_buffer *ab)
1606{
1607 unsigned int sessionid = audit_get_sessionid(current);
1608 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1609
1610 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1611}
1612
1613void audit_log_key(struct audit_buffer *ab, char *key)
1614{
1615 audit_log_format(ab, " key=");
1616 if (key)
1617 audit_log_untrustedstring(ab, key);
1618 else
1619 audit_log_format(ab, "(null)");
1620}
1621
1622void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1623{
1624 int i;
1625
1626 audit_log_format(ab, " %s=", prefix);
1627 CAP_FOR_EACH_U32(i) {
1628 audit_log_format(ab, "%08x",
1629 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1630 }
1631}
1632
1633void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1634{
1635 kernel_cap_t *perm = &name->fcap.permitted;
1636 kernel_cap_t *inh = &name->fcap.inheritable;
1637 int log = 0;
1638
1639 if (!cap_isclear(*perm)) {
1640 audit_log_cap(ab, "cap_fp", perm);
1641 log = 1;
1642 }
1643 if (!cap_isclear(*inh)) {
1644 audit_log_cap(ab, "cap_fi", inh);
1645 log = 1;
1646 }
1647
1648 if (log)
1649 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1650 name->fcap.fE, name->fcap_ver);
1651}
1652
1653static inline int audit_copy_fcaps(struct audit_names *name,
1654 const struct dentry *dentry)
1655{
1656 struct cpu_vfs_cap_data caps;
1657 int rc;
1658
1659 if (!dentry)
1660 return 0;
1661
1662 rc = get_vfs_caps_from_disk(dentry, &caps);
1663 if (rc)
1664 return rc;
1665
1666 name->fcap.permitted = caps.permitted;
1667 name->fcap.inheritable = caps.inheritable;
1668 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1669 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1670 VFS_CAP_REVISION_SHIFT;
1671
1672 return 0;
1673}
1674
1675/* Copy inode data into an audit_names. */
1676void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1677 const struct inode *inode)
1678{
1679 name->ino = inode->i_ino;
1680 name->dev = inode->i_sb->s_dev;
1681 name->mode = inode->i_mode;
1682 name->uid = inode->i_uid;
1683 name->gid = inode->i_gid;
1684 name->rdev = inode->i_rdev;
1685 security_inode_getsecid(inode, &name->osid);
1686 audit_copy_fcaps(name, dentry);
1687}
1688
1689/**
1690 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1691 * @context: audit_context for the task
1692 * @n: audit_names structure with reportable details
1693 * @path: optional path to report instead of audit_names->name
1694 * @record_num: record number to report when handling a list of names
1695 * @call_panic: optional pointer to int that will be updated if secid fails
1696 */
1697void audit_log_name(struct audit_context *context, struct audit_names *n,
1698 struct path *path, int record_num, int *call_panic)
1699{
1700 struct audit_buffer *ab;
1701 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1702 if (!ab)
1703 return;
1704
1705 audit_log_format(ab, "item=%d", record_num);
1706
1707 if (path)
1708 audit_log_d_path(ab, " name=", path);
1709 else if (n->name) {
1710 switch (n->name_len) {
1711 case AUDIT_NAME_FULL:
1712 /* log the full path */
1713 audit_log_format(ab, " name=");
1714 audit_log_untrustedstring(ab, n->name->name);
1715 break;
1716 case 0:
1717 /* name was specified as a relative path and the
1718 * directory component is the cwd */
1719 audit_log_d_path(ab, " name=", &context->pwd);
1720 break;
1721 default:
1722 /* log the name's directory component */
1723 audit_log_format(ab, " name=");
1724 audit_log_n_untrustedstring(ab, n->name->name,
1725 n->name_len);
1726 }
1727 } else
1728 audit_log_format(ab, " name=(null)");
1729
1730 if (n->ino != (unsigned long)-1) {
1731 audit_log_format(ab, " inode=%lu"
1732 " dev=%02x:%02x mode=%#ho"
1733 " ouid=%u ogid=%u rdev=%02x:%02x",
1734 n->ino,
1735 MAJOR(n->dev),
1736 MINOR(n->dev),
1737 n->mode,
1738 from_kuid(&init_user_ns, n->uid),
1739 from_kgid(&init_user_ns, n->gid),
1740 MAJOR(n->rdev),
1741 MINOR(n->rdev));
1742 }
1743 if (n->osid != 0) {
1744 char *ctx = NULL;
1745 u32 len;
1746 if (security_secid_to_secctx(
1747 n->osid, &ctx, &len)) {
1748 audit_log_format(ab, " osid=%u", n->osid);
1749 if (call_panic)
1750 *call_panic = 2;
1751 } else {
1752 audit_log_format(ab, " obj=%s", ctx);
1753 security_release_secctx(ctx, len);
1754 }
1755 }
1756
1757 /* log the audit_names record type */
1758 audit_log_format(ab, " nametype=");
1759 switch(n->type) {
1760 case AUDIT_TYPE_NORMAL:
1761 audit_log_format(ab, "NORMAL");
1762 break;
1763 case AUDIT_TYPE_PARENT:
1764 audit_log_format(ab, "PARENT");
1765 break;
1766 case AUDIT_TYPE_CHILD_DELETE:
1767 audit_log_format(ab, "DELETE");
1768 break;
1769 case AUDIT_TYPE_CHILD_CREATE:
1770 audit_log_format(ab, "CREATE");
1771 break;
1772 default:
1773 audit_log_format(ab, "UNKNOWN");
1774 break;
1775 }
1776
1777 audit_log_fcaps(ab, n);
1778 audit_log_end(ab);
1779}
1780
1781int audit_log_task_context(struct audit_buffer *ab)
1782{
1783 char *ctx = NULL;
1784 unsigned len;
1785 int error;
1786 u32 sid;
1787
1788 security_task_getsecid(current, &sid);
1789 if (!sid)
1790 return 0;
1791
1792 error = security_secid_to_secctx(sid, &ctx, &len);
1793 if (error) {
1794 if (error != -EINVAL)
1795 goto error_path;
1796 return 0;
1797 }
1798
1799 audit_log_format(ab, " subj=%s", ctx);
1800 security_release_secctx(ctx, len);
1801 return 0;
1802
1803error_path:
1804 audit_panic("error in audit_log_task_context");
1805 return error;
1806}
1807EXPORT_SYMBOL(audit_log_task_context);
1808
1809void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1810{
1811 const struct cred *cred;
1812 char name[sizeof(tsk->comm)];
1813 struct mm_struct *mm = tsk->mm;
1814 char *tty;
1815
1816 if (!ab)
1817 return;
1818
1819 /* tsk == current */
1820 cred = current_cred();
1821
1822 spin_lock_irq(&tsk->sighand->siglock);
1823 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1824 tty = tsk->signal->tty->name;
1825 else
1826 tty = "(none)";
1827 spin_unlock_irq(&tsk->sighand->siglock);
1828
1829 audit_log_format(ab,
1830 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1831 " euid=%u suid=%u fsuid=%u"
1832 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1833 sys_getppid(),
1834 tsk->pid,
1835 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1836 from_kuid(&init_user_ns, cred->uid),
1837 from_kgid(&init_user_ns, cred->gid),
1838 from_kuid(&init_user_ns, cred->euid),
1839 from_kuid(&init_user_ns, cred->suid),
1840 from_kuid(&init_user_ns, cred->fsuid),
1841 from_kgid(&init_user_ns, cred->egid),
1842 from_kgid(&init_user_ns, cred->sgid),
1843 from_kgid(&init_user_ns, cred->fsgid),
1844 tty, audit_get_sessionid(tsk));
1845
1846 get_task_comm(name, tsk);
1847 audit_log_format(ab, " comm=");
1848 audit_log_untrustedstring(ab, name);
1849
1850 if (mm) {
1851 down_read(&mm->mmap_sem);
1852 if (mm->exe_file)
1853 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1854 up_read(&mm->mmap_sem);
1855 } else
1856 audit_log_format(ab, " exe=(null)");
1857 audit_log_task_context(ab);
1858}
1859EXPORT_SYMBOL(audit_log_task_info);
1860
1861/**
1862 * audit_log_link_denied - report a link restriction denial
1863 * @operation: specific link opreation
1864 * @link: the path that triggered the restriction
1865 */
1866void audit_log_link_denied(const char *operation, struct path *link)
1867{
1868 struct audit_buffer *ab;
1869 struct audit_names *name;
1870
1871 name = kzalloc(sizeof(*name), GFP_NOFS);
1872 if (!name)
1873 return;
1874
1875 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1876 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1877 AUDIT_ANOM_LINK);
1878 if (!ab)
1879 goto out;
1880 audit_log_format(ab, "op=%s", operation);
1881 audit_log_task_info(ab, current);
1882 audit_log_format(ab, " res=0");
1883 audit_log_end(ab);
1884
1885 /* Generate AUDIT_PATH record with object. */
1886 name->type = AUDIT_TYPE_NORMAL;
1887 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1888 audit_log_name(current->audit_context, name, link, 0, NULL);
1889out:
1890 kfree(name);
1891}
1892
1893/**
1894 * audit_log_end - end one audit record
1895 * @ab: the audit_buffer
1896 *
1897 * The netlink_* functions cannot be called inside an irq context, so
1898 * the audit buffer is placed on a queue and a tasklet is scheduled to
1899 * remove them from the queue outside the irq context. May be called in
1900 * any context.
1901 */
1902void audit_log_end(struct audit_buffer *ab)
1903{
1904 if (!ab)
1905 return;
1906 if (!audit_rate_check()) {
1907 audit_log_lost("rate limit exceeded");
1908 } else {
1909 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1910 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1911
1912 if (audit_pid) {
1913 skb_queue_tail(&audit_skb_queue, ab->skb);
1914 wake_up_interruptible(&kauditd_wait);
1915 } else {
1916 audit_printk_skb(ab->skb);
1917 }
1918 ab->skb = NULL;
1919 }
1920 audit_buffer_free(ab);
1921}
1922
1923/**
1924 * audit_log - Log an audit record
1925 * @ctx: audit context
1926 * @gfp_mask: type of allocation
1927 * @type: audit message type
1928 * @fmt: format string to use
1929 * @...: variable parameters matching the format string
1930 *
1931 * This is a convenience function that calls audit_log_start,
1932 * audit_log_vformat, and audit_log_end. It may be called
1933 * in any context.
1934 */
1935void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1936 const char *fmt, ...)
1937{
1938 struct audit_buffer *ab;
1939 va_list args;
1940
1941 ab = audit_log_start(ctx, gfp_mask, type);
1942 if (ab) {
1943 va_start(args, fmt);
1944 audit_log_vformat(ab, fmt, args);
1945 va_end(args);
1946 audit_log_end(ab);
1947 }
1948}
1949
1950#ifdef CONFIG_SECURITY
1951/**
1952 * audit_log_secctx - Converts and logs SELinux context
1953 * @ab: audit_buffer
1954 * @secid: security number
1955 *
1956 * This is a helper function that calls security_secid_to_secctx to convert
1957 * secid to secctx and then adds the (converted) SELinux context to the audit
1958 * log by calling audit_log_format, thus also preventing leak of internal secid
1959 * to userspace. If secid cannot be converted audit_panic is called.
1960 */
1961void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1962{
1963 u32 len;
1964 char *secctx;
1965
1966 if (security_secid_to_secctx(secid, &secctx, &len)) {
1967 audit_panic("Cannot convert secid to context");
1968 } else {
1969 audit_log_format(ab, " obj=%s", secctx);
1970 security_release_secctx(secctx, len);
1971 }
1972}
1973EXPORT_SYMBOL(audit_log_secctx);
1974#endif
1975
1976EXPORT_SYMBOL(audit_log_start);
1977EXPORT_SYMBOL(audit_log_end);
1978EXPORT_SYMBOL(audit_log_format);
1979EXPORT_SYMBOL(audit_log);