Merge tag 'pull-work.unaligned' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / io_uring / io_uring.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <net/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49#include <linux/bits.h>
50
51#include <linux/sched/signal.h>
52#include <linux/fs.h>
53#include <linux/file.h>
54#include <linux/fdtable.h>
55#include <linux/mm.h>
56#include <linux/mman.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/bvec.h>
60#include <linux/net.h>
61#include <net/sock.h>
62#include <linux/anon_inodes.h>
63#include <linux/sched/mm.h>
64#include <linux/uaccess.h>
65#include <linux/nospec.h>
66#include <linux/fsnotify.h>
67#include <linux/fadvise.h>
68#include <linux/task_work.h>
69#include <linux/io_uring.h>
70#include <linux/io_uring/cmd.h>
71#include <linux/audit.h>
72#include <linux/security.h>
73#include <asm/shmparam.h>
74
75#define CREATE_TRACE_POINTS
76#include <trace/events/io_uring.h>
77
78#include <uapi/linux/io_uring.h>
79
80#include "io-wq.h"
81
82#include "io_uring.h"
83#include "opdef.h"
84#include "refs.h"
85#include "tctx.h"
86#include "register.h"
87#include "sqpoll.h"
88#include "fdinfo.h"
89#include "kbuf.h"
90#include "rsrc.h"
91#include "cancel.h"
92#include "net.h"
93#include "notif.h"
94#include "waitid.h"
95#include "futex.h"
96#include "napi.h"
97#include "uring_cmd.h"
98#include "msg_ring.h"
99#include "memmap.h"
100
101#include "timeout.h"
102#include "poll.h"
103#include "rw.h"
104#include "alloc_cache.h"
105#include "eventfd.h"
106
107#define IORING_MAX_ENTRIES 32768
108#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
109
110#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
111 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
112
113#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
114 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
115
116#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
119
120#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
121 IO_REQ_CLEAN_FLAGS)
122
123#define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125#define IO_COMPL_BATCH 32
126#define IO_REQ_ALLOC_BATCH 8
127
128struct io_defer_entry {
129 struct list_head list;
130 struct io_kiocb *req;
131 u32 seq;
132};
133
134/* requests with any of those set should undergo io_disarm_next() */
135#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137
138/*
139 * No waiters. It's larger than any valid value of the tw counter
140 * so that tests against ->cq_wait_nr would fail and skip wake_up().
141 */
142#define IO_CQ_WAKE_INIT (-1U)
143/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144#define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
145
146static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 struct task_struct *task,
148 bool cancel_all);
149
150static void io_queue_sqe(struct io_kiocb *req);
151
152struct kmem_cache *req_cachep;
153static struct workqueue_struct *iou_wq __ro_after_init;
154
155static int __read_mostly sysctl_io_uring_disabled;
156static int __read_mostly sysctl_io_uring_group = -1;
157
158#ifdef CONFIG_SYSCTL
159static struct ctl_table kernel_io_uring_disabled_table[] = {
160 {
161 .procname = "io_uring_disabled",
162 .data = &sysctl_io_uring_disabled,
163 .maxlen = sizeof(sysctl_io_uring_disabled),
164 .mode = 0644,
165 .proc_handler = proc_dointvec_minmax,
166 .extra1 = SYSCTL_ZERO,
167 .extra2 = SYSCTL_TWO,
168 },
169 {
170 .procname = "io_uring_group",
171 .data = &sysctl_io_uring_group,
172 .maxlen = sizeof(gid_t),
173 .mode = 0644,
174 .proc_handler = proc_dointvec,
175 },
176};
177#endif
178
179static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
180{
181 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182}
183
184static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
185{
186 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187}
188
189static bool io_match_linked(struct io_kiocb *head)
190{
191 struct io_kiocb *req;
192
193 io_for_each_link(req, head) {
194 if (req->flags & REQ_F_INFLIGHT)
195 return true;
196 }
197 return false;
198}
199
200/*
201 * As io_match_task() but protected against racing with linked timeouts.
202 * User must not hold timeout_lock.
203 */
204bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
205 bool cancel_all)
206{
207 bool matched;
208
209 if (task && head->task != task)
210 return false;
211 if (cancel_all)
212 return true;
213
214 if (head->flags & REQ_F_LINK_TIMEOUT) {
215 struct io_ring_ctx *ctx = head->ctx;
216
217 /* protect against races with linked timeouts */
218 spin_lock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
220 spin_unlock_irq(&ctx->timeout_lock);
221 } else {
222 matched = io_match_linked(head);
223 }
224 return matched;
225}
226
227static inline void req_fail_link_node(struct io_kiocb *req, int res)
228{
229 req_set_fail(req);
230 io_req_set_res(req, res, 0);
231}
232
233static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
234{
235 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
236}
237
238static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239{
240 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241
242 complete(&ctx->ref_comp);
243}
244
245static __cold void io_fallback_req_func(struct work_struct *work)
246{
247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 fallback_work.work);
249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
250 struct io_kiocb *req, *tmp;
251 struct io_tw_state ts = {};
252
253 percpu_ref_get(&ctx->refs);
254 mutex_lock(&ctx->uring_lock);
255 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
256 req->io_task_work.func(req, &ts);
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
259 percpu_ref_put(&ctx->refs);
260}
261
262static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263{
264 unsigned hash_buckets = 1U << bits;
265 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266
267 table->hbs = kmalloc(hash_size, GFP_KERNEL);
268 if (!table->hbs)
269 return -ENOMEM;
270
271 table->hash_bits = bits;
272 init_hash_table(table, hash_buckets);
273 return 0;
274}
275
276static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277{
278 struct io_ring_ctx *ctx;
279 int hash_bits;
280 bool ret;
281
282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 if (!ctx)
284 return NULL;
285
286 xa_init(&ctx->io_bl_xa);
287
288 /*
289 * Use 5 bits less than the max cq entries, that should give us around
290 * 32 entries per hash list if totally full and uniformly spread, but
291 * don't keep too many buckets to not overconsume memory.
292 */
293 hash_bits = ilog2(p->cq_entries) - 5;
294 hash_bits = clamp(hash_bits, 1, 8);
295 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
296 goto err;
297 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 goto err;
299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
300 0, GFP_KERNEL))
301 goto err;
302
303 ctx->flags = p->flags;
304 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
305 init_waitqueue_head(&ctx->sqo_sq_wait);
306 INIT_LIST_HEAD(&ctx->sqd_list);
307 INIT_LIST_HEAD(&ctx->cq_overflow_list);
308 INIT_LIST_HEAD(&ctx->io_buffers_cache);
309 ret = io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
310 sizeof(struct io_rsrc_node));
311 ret |= io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
312 sizeof(struct async_poll));
313 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
314 sizeof(struct io_async_msghdr));
315 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
316 sizeof(struct io_async_rw));
317 ret |= io_alloc_cache_init(&ctx->uring_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct uring_cache));
319 spin_lock_init(&ctx->msg_lock);
320 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
321 sizeof(struct io_kiocb));
322 ret |= io_futex_cache_init(ctx);
323 if (ret)
324 goto err;
325 init_completion(&ctx->ref_comp);
326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
327 mutex_init(&ctx->uring_lock);
328 init_waitqueue_head(&ctx->cq_wait);
329 init_waitqueue_head(&ctx->poll_wq);
330 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
331 spin_lock_init(&ctx->completion_lock);
332 spin_lock_init(&ctx->timeout_lock);
333 INIT_WQ_LIST(&ctx->iopoll_list);
334 INIT_LIST_HEAD(&ctx->io_buffers_comp);
335 INIT_LIST_HEAD(&ctx->defer_list);
336 INIT_LIST_HEAD(&ctx->timeout_list);
337 INIT_LIST_HEAD(&ctx->ltimeout_list);
338 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
339 init_llist_head(&ctx->work_llist);
340 INIT_LIST_HEAD(&ctx->tctx_list);
341 ctx->submit_state.free_list.next = NULL;
342 INIT_HLIST_HEAD(&ctx->waitid_list);
343#ifdef CONFIG_FUTEX
344 INIT_HLIST_HEAD(&ctx->futex_list);
345#endif
346 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
347 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
348 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
349 io_napi_init(ctx);
350
351 return ctx;
352err:
353 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
354 io_alloc_cache_free(&ctx->apoll_cache, kfree);
355 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
356 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
357 io_alloc_cache_free(&ctx->uring_cache, kfree);
358 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
359 io_futex_cache_free(ctx);
360 kfree(ctx->cancel_table.hbs);
361 kfree(ctx->cancel_table_locked.hbs);
362 xa_destroy(&ctx->io_bl_xa);
363 kfree(ctx);
364 return NULL;
365}
366
367static void io_account_cq_overflow(struct io_ring_ctx *ctx)
368{
369 struct io_rings *r = ctx->rings;
370
371 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
372 ctx->cq_extra--;
373}
374
375static bool req_need_defer(struct io_kiocb *req, u32 seq)
376{
377 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
378 struct io_ring_ctx *ctx = req->ctx;
379
380 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
381 }
382
383 return false;
384}
385
386static void io_clean_op(struct io_kiocb *req)
387{
388 if (req->flags & REQ_F_BUFFER_SELECTED) {
389 spin_lock(&req->ctx->completion_lock);
390 io_kbuf_drop(req);
391 spin_unlock(&req->ctx->completion_lock);
392 }
393
394 if (req->flags & REQ_F_NEED_CLEANUP) {
395 const struct io_cold_def *def = &io_cold_defs[req->opcode];
396
397 if (def->cleanup)
398 def->cleanup(req);
399 }
400 if ((req->flags & REQ_F_POLLED) && req->apoll) {
401 kfree(req->apoll->double_poll);
402 kfree(req->apoll);
403 req->apoll = NULL;
404 }
405 if (req->flags & REQ_F_INFLIGHT) {
406 struct io_uring_task *tctx = req->task->io_uring;
407
408 atomic_dec(&tctx->inflight_tracked);
409 }
410 if (req->flags & REQ_F_CREDS)
411 put_cred(req->creds);
412 if (req->flags & REQ_F_ASYNC_DATA) {
413 kfree(req->async_data);
414 req->async_data = NULL;
415 }
416 req->flags &= ~IO_REQ_CLEAN_FLAGS;
417}
418
419static inline void io_req_track_inflight(struct io_kiocb *req)
420{
421 if (!(req->flags & REQ_F_INFLIGHT)) {
422 req->flags |= REQ_F_INFLIGHT;
423 atomic_inc(&req->task->io_uring->inflight_tracked);
424 }
425}
426
427static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
428{
429 if (WARN_ON_ONCE(!req->link))
430 return NULL;
431
432 req->flags &= ~REQ_F_ARM_LTIMEOUT;
433 req->flags |= REQ_F_LINK_TIMEOUT;
434
435 /* linked timeouts should have two refs once prep'ed */
436 io_req_set_refcount(req);
437 __io_req_set_refcount(req->link, 2);
438 return req->link;
439}
440
441static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
442{
443 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
444 return NULL;
445 return __io_prep_linked_timeout(req);
446}
447
448static noinline void __io_arm_ltimeout(struct io_kiocb *req)
449{
450 io_queue_linked_timeout(__io_prep_linked_timeout(req));
451}
452
453static inline void io_arm_ltimeout(struct io_kiocb *req)
454{
455 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
456 __io_arm_ltimeout(req);
457}
458
459static void io_prep_async_work(struct io_kiocb *req)
460{
461 const struct io_issue_def *def = &io_issue_defs[req->opcode];
462 struct io_ring_ctx *ctx = req->ctx;
463
464 if (!(req->flags & REQ_F_CREDS)) {
465 req->flags |= REQ_F_CREDS;
466 req->creds = get_current_cred();
467 }
468
469 req->work.list.next = NULL;
470 atomic_set(&req->work.flags, 0);
471 if (req->flags & REQ_F_FORCE_ASYNC)
472 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
473
474 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
475 req->flags |= io_file_get_flags(req->file);
476
477 if (req->file && (req->flags & REQ_F_ISREG)) {
478 bool should_hash = def->hash_reg_file;
479
480 /* don't serialize this request if the fs doesn't need it */
481 if (should_hash && (req->file->f_flags & O_DIRECT) &&
482 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
483 should_hash = false;
484 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
485 io_wq_hash_work(&req->work, file_inode(req->file));
486 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
487 if (def->unbound_nonreg_file)
488 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
489 }
490}
491
492static void io_prep_async_link(struct io_kiocb *req)
493{
494 struct io_kiocb *cur;
495
496 if (req->flags & REQ_F_LINK_TIMEOUT) {
497 struct io_ring_ctx *ctx = req->ctx;
498
499 spin_lock_irq(&ctx->timeout_lock);
500 io_for_each_link(cur, req)
501 io_prep_async_work(cur);
502 spin_unlock_irq(&ctx->timeout_lock);
503 } else {
504 io_for_each_link(cur, req)
505 io_prep_async_work(cur);
506 }
507}
508
509static void io_queue_iowq(struct io_kiocb *req)
510{
511 struct io_kiocb *link = io_prep_linked_timeout(req);
512 struct io_uring_task *tctx = req->task->io_uring;
513
514 BUG_ON(!tctx);
515 BUG_ON(!tctx->io_wq);
516
517 /* init ->work of the whole link before punting */
518 io_prep_async_link(req);
519
520 /*
521 * Not expected to happen, but if we do have a bug where this _can_
522 * happen, catch it here and ensure the request is marked as
523 * canceled. That will make io-wq go through the usual work cancel
524 * procedure rather than attempt to run this request (or create a new
525 * worker for it).
526 */
527 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
528 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
529
530 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
531 io_wq_enqueue(tctx->io_wq, &req->work);
532 if (link)
533 io_queue_linked_timeout(link);
534}
535
536static void io_req_queue_iowq_tw(struct io_kiocb *req, struct io_tw_state *ts)
537{
538 io_queue_iowq(req);
539}
540
541void io_req_queue_iowq(struct io_kiocb *req)
542{
543 req->io_task_work.func = io_req_queue_iowq_tw;
544 io_req_task_work_add(req);
545}
546
547static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
548{
549 while (!list_empty(&ctx->defer_list)) {
550 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
551 struct io_defer_entry, list);
552
553 if (req_need_defer(de->req, de->seq))
554 break;
555 list_del_init(&de->list);
556 io_req_task_queue(de->req);
557 kfree(de);
558 }
559}
560
561void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
562{
563 if (ctx->poll_activated)
564 io_poll_wq_wake(ctx);
565 if (ctx->off_timeout_used)
566 io_flush_timeouts(ctx);
567 if (ctx->drain_active) {
568 spin_lock(&ctx->completion_lock);
569 io_queue_deferred(ctx);
570 spin_unlock(&ctx->completion_lock);
571 }
572 if (ctx->has_evfd)
573 io_eventfd_flush_signal(ctx);
574}
575
576static inline void __io_cq_lock(struct io_ring_ctx *ctx)
577{
578 if (!ctx->lockless_cq)
579 spin_lock(&ctx->completion_lock);
580}
581
582static inline void io_cq_lock(struct io_ring_ctx *ctx)
583 __acquires(ctx->completion_lock)
584{
585 spin_lock(&ctx->completion_lock);
586}
587
588static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
589{
590 io_commit_cqring(ctx);
591 if (!ctx->task_complete) {
592 if (!ctx->lockless_cq)
593 spin_unlock(&ctx->completion_lock);
594 /* IOPOLL rings only need to wake up if it's also SQPOLL */
595 if (!ctx->syscall_iopoll)
596 io_cqring_wake(ctx);
597 }
598 io_commit_cqring_flush(ctx);
599}
600
601static void io_cq_unlock_post(struct io_ring_ctx *ctx)
602 __releases(ctx->completion_lock)
603{
604 io_commit_cqring(ctx);
605 spin_unlock(&ctx->completion_lock);
606 io_cqring_wake(ctx);
607 io_commit_cqring_flush(ctx);
608}
609
610static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
611{
612 size_t cqe_size = sizeof(struct io_uring_cqe);
613
614 lockdep_assert_held(&ctx->uring_lock);
615
616 /* don't abort if we're dying, entries must get freed */
617 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
618 return;
619
620 if (ctx->flags & IORING_SETUP_CQE32)
621 cqe_size <<= 1;
622
623 io_cq_lock(ctx);
624 while (!list_empty(&ctx->cq_overflow_list)) {
625 struct io_uring_cqe *cqe;
626 struct io_overflow_cqe *ocqe;
627
628 ocqe = list_first_entry(&ctx->cq_overflow_list,
629 struct io_overflow_cqe, list);
630
631 if (!dying) {
632 if (!io_get_cqe_overflow(ctx, &cqe, true))
633 break;
634 memcpy(cqe, &ocqe->cqe, cqe_size);
635 }
636 list_del(&ocqe->list);
637 kfree(ocqe);
638
639 /*
640 * For silly syzbot cases that deliberately overflow by huge
641 * amounts, check if we need to resched and drop and
642 * reacquire the locks if so. Nothing real would ever hit this.
643 * Ideally we'd have a non-posting unlock for this, but hard
644 * to care for a non-real case.
645 */
646 if (need_resched()) {
647 io_cq_unlock_post(ctx);
648 mutex_unlock(&ctx->uring_lock);
649 cond_resched();
650 mutex_lock(&ctx->uring_lock);
651 io_cq_lock(ctx);
652 }
653 }
654
655 if (list_empty(&ctx->cq_overflow_list)) {
656 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
657 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
658 }
659 io_cq_unlock_post(ctx);
660}
661
662static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
663{
664 if (ctx->rings)
665 __io_cqring_overflow_flush(ctx, true);
666}
667
668static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
669{
670 mutex_lock(&ctx->uring_lock);
671 __io_cqring_overflow_flush(ctx, false);
672 mutex_unlock(&ctx->uring_lock);
673}
674
675/* can be called by any task */
676static void io_put_task_remote(struct task_struct *task)
677{
678 struct io_uring_task *tctx = task->io_uring;
679
680 percpu_counter_sub(&tctx->inflight, 1);
681 if (unlikely(atomic_read(&tctx->in_cancel)))
682 wake_up(&tctx->wait);
683 put_task_struct(task);
684}
685
686/* used by a task to put its own references */
687static void io_put_task_local(struct task_struct *task)
688{
689 task->io_uring->cached_refs++;
690}
691
692/* must to be called somewhat shortly after putting a request */
693static inline void io_put_task(struct task_struct *task)
694{
695 if (likely(task == current))
696 io_put_task_local(task);
697 else
698 io_put_task_remote(task);
699}
700
701void io_task_refs_refill(struct io_uring_task *tctx)
702{
703 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
704
705 percpu_counter_add(&tctx->inflight, refill);
706 refcount_add(refill, &current->usage);
707 tctx->cached_refs += refill;
708}
709
710static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
711{
712 struct io_uring_task *tctx = task->io_uring;
713 unsigned int refs = tctx->cached_refs;
714
715 if (refs) {
716 tctx->cached_refs = 0;
717 percpu_counter_sub(&tctx->inflight, refs);
718 put_task_struct_many(task, refs);
719 }
720}
721
722static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
723 s32 res, u32 cflags, u64 extra1, u64 extra2)
724{
725 struct io_overflow_cqe *ocqe;
726 size_t ocq_size = sizeof(struct io_overflow_cqe);
727 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
728
729 lockdep_assert_held(&ctx->completion_lock);
730
731 if (is_cqe32)
732 ocq_size += sizeof(struct io_uring_cqe);
733
734 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
735 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
736 if (!ocqe) {
737 /*
738 * If we're in ring overflow flush mode, or in task cancel mode,
739 * or cannot allocate an overflow entry, then we need to drop it
740 * on the floor.
741 */
742 io_account_cq_overflow(ctx);
743 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
744 return false;
745 }
746 if (list_empty(&ctx->cq_overflow_list)) {
747 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
748 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
749
750 }
751 ocqe->cqe.user_data = user_data;
752 ocqe->cqe.res = res;
753 ocqe->cqe.flags = cflags;
754 if (is_cqe32) {
755 ocqe->cqe.big_cqe[0] = extra1;
756 ocqe->cqe.big_cqe[1] = extra2;
757 }
758 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
759 return true;
760}
761
762static void io_req_cqe_overflow(struct io_kiocb *req)
763{
764 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
765 req->cqe.res, req->cqe.flags,
766 req->big_cqe.extra1, req->big_cqe.extra2);
767 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
768}
769
770/*
771 * writes to the cq entry need to come after reading head; the
772 * control dependency is enough as we're using WRITE_ONCE to
773 * fill the cq entry
774 */
775bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
776{
777 struct io_rings *rings = ctx->rings;
778 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
779 unsigned int free, queued, len;
780
781 /*
782 * Posting into the CQ when there are pending overflowed CQEs may break
783 * ordering guarantees, which will affect links, F_MORE users and more.
784 * Force overflow the completion.
785 */
786 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
787 return false;
788
789 /* userspace may cheat modifying the tail, be safe and do min */
790 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
791 free = ctx->cq_entries - queued;
792 /* we need a contiguous range, limit based on the current array offset */
793 len = min(free, ctx->cq_entries - off);
794 if (!len)
795 return false;
796
797 if (ctx->flags & IORING_SETUP_CQE32) {
798 off <<= 1;
799 len <<= 1;
800 }
801
802 ctx->cqe_cached = &rings->cqes[off];
803 ctx->cqe_sentinel = ctx->cqe_cached + len;
804 return true;
805}
806
807static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
808 u32 cflags)
809{
810 struct io_uring_cqe *cqe;
811
812 ctx->cq_extra++;
813
814 /*
815 * If we can't get a cq entry, userspace overflowed the
816 * submission (by quite a lot). Increment the overflow count in
817 * the ring.
818 */
819 if (likely(io_get_cqe(ctx, &cqe))) {
820 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
821
822 WRITE_ONCE(cqe->user_data, user_data);
823 WRITE_ONCE(cqe->res, res);
824 WRITE_ONCE(cqe->flags, cflags);
825
826 if (ctx->flags & IORING_SETUP_CQE32) {
827 WRITE_ONCE(cqe->big_cqe[0], 0);
828 WRITE_ONCE(cqe->big_cqe[1], 0);
829 }
830 return true;
831 }
832 return false;
833}
834
835static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res,
836 u32 cflags)
837{
838 bool filled;
839
840 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
841 if (!filled)
842 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
843
844 return filled;
845}
846
847bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
848{
849 bool filled;
850
851 io_cq_lock(ctx);
852 filled = __io_post_aux_cqe(ctx, user_data, res, cflags);
853 io_cq_unlock_post(ctx);
854 return filled;
855}
856
857/*
858 * Must be called from inline task_work so we now a flush will happen later,
859 * and obviously with ctx->uring_lock held (tw always has that).
860 */
861void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
862{
863 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
864 spin_lock(&ctx->completion_lock);
865 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
866 spin_unlock(&ctx->completion_lock);
867 }
868 ctx->submit_state.cq_flush = true;
869}
870
871/*
872 * A helper for multishot requests posting additional CQEs.
873 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
874 */
875bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
876{
877 struct io_ring_ctx *ctx = req->ctx;
878 bool posted;
879
880 lockdep_assert(!io_wq_current_is_worker());
881 lockdep_assert_held(&ctx->uring_lock);
882
883 __io_cq_lock(ctx);
884 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
885 ctx->submit_state.cq_flush = true;
886 __io_cq_unlock_post(ctx);
887 return posted;
888}
889
890static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
891{
892 struct io_ring_ctx *ctx = req->ctx;
893
894 /*
895 * All execution paths but io-wq use the deferred completions by
896 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
897 */
898 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
899 return;
900
901 /*
902 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
903 * the submitter task context, IOPOLL protects with uring_lock.
904 */
905 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) {
906 req->io_task_work.func = io_req_task_complete;
907 io_req_task_work_add(req);
908 return;
909 }
910
911 io_cq_lock(ctx);
912 if (!(req->flags & REQ_F_CQE_SKIP)) {
913 if (!io_fill_cqe_req(ctx, req))
914 io_req_cqe_overflow(req);
915 }
916 io_cq_unlock_post(ctx);
917
918 /*
919 * We don't free the request here because we know it's called from
920 * io-wq only, which holds a reference, so it cannot be the last put.
921 */
922 req_ref_put(req);
923}
924
925void io_req_defer_failed(struct io_kiocb *req, s32 res)
926 __must_hold(&ctx->uring_lock)
927{
928 const struct io_cold_def *def = &io_cold_defs[req->opcode];
929
930 lockdep_assert_held(&req->ctx->uring_lock);
931
932 req_set_fail(req);
933 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
934 if (def->fail)
935 def->fail(req);
936 io_req_complete_defer(req);
937}
938
939/*
940 * Don't initialise the fields below on every allocation, but do that in
941 * advance and keep them valid across allocations.
942 */
943static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
944{
945 req->ctx = ctx;
946 req->link = NULL;
947 req->async_data = NULL;
948 /* not necessary, but safer to zero */
949 memset(&req->cqe, 0, sizeof(req->cqe));
950 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
951}
952
953/*
954 * A request might get retired back into the request caches even before opcode
955 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
956 * Because of that, io_alloc_req() should be called only under ->uring_lock
957 * and with extra caution to not get a request that is still worked on.
958 */
959__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
960 __must_hold(&ctx->uring_lock)
961{
962 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
963 void *reqs[IO_REQ_ALLOC_BATCH];
964 int ret;
965
966 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
967
968 /*
969 * Bulk alloc is all-or-nothing. If we fail to get a batch,
970 * retry single alloc to be on the safe side.
971 */
972 if (unlikely(ret <= 0)) {
973 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
974 if (!reqs[0])
975 return false;
976 ret = 1;
977 }
978
979 percpu_ref_get_many(&ctx->refs, ret);
980 while (ret--) {
981 struct io_kiocb *req = reqs[ret];
982
983 io_preinit_req(req, ctx);
984 io_req_add_to_cache(req, ctx);
985 }
986 return true;
987}
988
989__cold void io_free_req(struct io_kiocb *req)
990{
991 /* refs were already put, restore them for io_req_task_complete() */
992 req->flags &= ~REQ_F_REFCOUNT;
993 /* we only want to free it, don't post CQEs */
994 req->flags |= REQ_F_CQE_SKIP;
995 req->io_task_work.func = io_req_task_complete;
996 io_req_task_work_add(req);
997}
998
999static void __io_req_find_next_prep(struct io_kiocb *req)
1000{
1001 struct io_ring_ctx *ctx = req->ctx;
1002
1003 spin_lock(&ctx->completion_lock);
1004 io_disarm_next(req);
1005 spin_unlock(&ctx->completion_lock);
1006}
1007
1008static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1009{
1010 struct io_kiocb *nxt;
1011
1012 /*
1013 * If LINK is set, we have dependent requests in this chain. If we
1014 * didn't fail this request, queue the first one up, moving any other
1015 * dependencies to the next request. In case of failure, fail the rest
1016 * of the chain.
1017 */
1018 if (unlikely(req->flags & IO_DISARM_MASK))
1019 __io_req_find_next_prep(req);
1020 nxt = req->link;
1021 req->link = NULL;
1022 return nxt;
1023}
1024
1025static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1026{
1027 if (!ctx)
1028 return;
1029 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1030 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1031
1032 io_submit_flush_completions(ctx);
1033 mutex_unlock(&ctx->uring_lock);
1034 percpu_ref_put(&ctx->refs);
1035}
1036
1037/*
1038 * Run queued task_work, returning the number of entries processed in *count.
1039 * If more entries than max_entries are available, stop processing once this
1040 * is reached and return the rest of the list.
1041 */
1042struct llist_node *io_handle_tw_list(struct llist_node *node,
1043 unsigned int *count,
1044 unsigned int max_entries)
1045{
1046 struct io_ring_ctx *ctx = NULL;
1047 struct io_tw_state ts = { };
1048
1049 do {
1050 struct llist_node *next = node->next;
1051 struct io_kiocb *req = container_of(node, struct io_kiocb,
1052 io_task_work.node);
1053
1054 if (req->ctx != ctx) {
1055 ctx_flush_and_put(ctx, &ts);
1056 ctx = req->ctx;
1057 mutex_lock(&ctx->uring_lock);
1058 percpu_ref_get(&ctx->refs);
1059 }
1060 INDIRECT_CALL_2(req->io_task_work.func,
1061 io_poll_task_func, io_req_rw_complete,
1062 req, &ts);
1063 node = next;
1064 (*count)++;
1065 if (unlikely(need_resched())) {
1066 ctx_flush_and_put(ctx, &ts);
1067 ctx = NULL;
1068 cond_resched();
1069 }
1070 } while (node && *count < max_entries);
1071
1072 ctx_flush_and_put(ctx, &ts);
1073 return node;
1074}
1075
1076/**
1077 * io_llist_xchg - swap all entries in a lock-less list
1078 * @head: the head of lock-less list to delete all entries
1079 * @new: new entry as the head of the list
1080 *
1081 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1082 * The order of entries returned is from the newest to the oldest added one.
1083 */
1084static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1085 struct llist_node *new)
1086{
1087 return xchg(&head->first, new);
1088}
1089
1090static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1091{
1092 struct llist_node *node = llist_del_all(&tctx->task_list);
1093 struct io_ring_ctx *last_ctx = NULL;
1094 struct io_kiocb *req;
1095
1096 while (node) {
1097 req = container_of(node, struct io_kiocb, io_task_work.node);
1098 node = node->next;
1099 if (sync && last_ctx != req->ctx) {
1100 if (last_ctx) {
1101 flush_delayed_work(&last_ctx->fallback_work);
1102 percpu_ref_put(&last_ctx->refs);
1103 }
1104 last_ctx = req->ctx;
1105 percpu_ref_get(&last_ctx->refs);
1106 }
1107 if (llist_add(&req->io_task_work.node,
1108 &req->ctx->fallback_llist))
1109 schedule_delayed_work(&req->ctx->fallback_work, 1);
1110 }
1111
1112 if (last_ctx) {
1113 flush_delayed_work(&last_ctx->fallback_work);
1114 percpu_ref_put(&last_ctx->refs);
1115 }
1116}
1117
1118struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1119 unsigned int max_entries,
1120 unsigned int *count)
1121{
1122 struct llist_node *node;
1123
1124 if (unlikely(current->flags & PF_EXITING)) {
1125 io_fallback_tw(tctx, true);
1126 return NULL;
1127 }
1128
1129 node = llist_del_all(&tctx->task_list);
1130 if (node) {
1131 node = llist_reverse_order(node);
1132 node = io_handle_tw_list(node, count, max_entries);
1133 }
1134
1135 /* relaxed read is enough as only the task itself sets ->in_cancel */
1136 if (unlikely(atomic_read(&tctx->in_cancel)))
1137 io_uring_drop_tctx_refs(current);
1138
1139 trace_io_uring_task_work_run(tctx, *count);
1140 return node;
1141}
1142
1143void tctx_task_work(struct callback_head *cb)
1144{
1145 struct io_uring_task *tctx;
1146 struct llist_node *ret;
1147 unsigned int count = 0;
1148
1149 tctx = container_of(cb, struct io_uring_task, task_work);
1150 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1151 /* can't happen */
1152 WARN_ON_ONCE(ret);
1153}
1154
1155static inline void io_req_local_work_add(struct io_kiocb *req,
1156 struct io_ring_ctx *ctx,
1157 unsigned flags)
1158{
1159 unsigned nr_wait, nr_tw, nr_tw_prev;
1160 struct llist_node *head;
1161
1162 /* See comment above IO_CQ_WAKE_INIT */
1163 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1164
1165 /*
1166 * We don't know how many reuqests is there in the link and whether
1167 * they can even be queued lazily, fall back to non-lazy.
1168 */
1169 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1170 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1171
1172 guard(rcu)();
1173
1174 head = READ_ONCE(ctx->work_llist.first);
1175 do {
1176 nr_tw_prev = 0;
1177 if (head) {
1178 struct io_kiocb *first_req = container_of(head,
1179 struct io_kiocb,
1180 io_task_work.node);
1181 /*
1182 * Might be executed at any moment, rely on
1183 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1184 */
1185 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1186 }
1187
1188 /*
1189 * Theoretically, it can overflow, but that's fine as one of
1190 * previous adds should've tried to wake the task.
1191 */
1192 nr_tw = nr_tw_prev + 1;
1193 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1194 nr_tw = IO_CQ_WAKE_FORCE;
1195
1196 req->nr_tw = nr_tw;
1197 req->io_task_work.node.next = head;
1198 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1199 &req->io_task_work.node));
1200
1201 /*
1202 * cmpxchg implies a full barrier, which pairs with the barrier
1203 * in set_current_state() on the io_cqring_wait() side. It's used
1204 * to ensure that either we see updated ->cq_wait_nr, or waiters
1205 * going to sleep will observe the work added to the list, which
1206 * is similar to the wait/wawke task state sync.
1207 */
1208
1209 if (!head) {
1210 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1211 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1212 if (ctx->has_evfd)
1213 io_eventfd_signal(ctx);
1214 }
1215
1216 nr_wait = atomic_read(&ctx->cq_wait_nr);
1217 /* not enough or no one is waiting */
1218 if (nr_tw < nr_wait)
1219 return;
1220 /* the previous add has already woken it up */
1221 if (nr_tw_prev >= nr_wait)
1222 return;
1223 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1224}
1225
1226static void io_req_normal_work_add(struct io_kiocb *req)
1227{
1228 struct io_uring_task *tctx = req->task->io_uring;
1229 struct io_ring_ctx *ctx = req->ctx;
1230
1231 /* task_work already pending, we're done */
1232 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1233 return;
1234
1235 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1236 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1237
1238 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1239 if (ctx->flags & IORING_SETUP_SQPOLL) {
1240 struct io_sq_data *sqd = ctx->sq_data;
1241
1242 if (sqd->thread)
1243 __set_notify_signal(sqd->thread);
1244 return;
1245 }
1246
1247 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1248 return;
1249
1250 io_fallback_tw(tctx, false);
1251}
1252
1253void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1254{
1255 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1256 io_req_local_work_add(req, req->ctx, flags);
1257 else
1258 io_req_normal_work_add(req);
1259}
1260
1261void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx,
1262 unsigned flags)
1263{
1264 if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1265 return;
1266 io_req_local_work_add(req, ctx, flags);
1267}
1268
1269static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1270{
1271 struct llist_node *node;
1272
1273 node = llist_del_all(&ctx->work_llist);
1274 while (node) {
1275 struct io_kiocb *req = container_of(node, struct io_kiocb,
1276 io_task_work.node);
1277
1278 node = node->next;
1279 io_req_normal_work_add(req);
1280 }
1281}
1282
1283static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1284 int min_events)
1285{
1286 if (llist_empty(&ctx->work_llist))
1287 return false;
1288 if (events < min_events)
1289 return true;
1290 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1291 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1292 return false;
1293}
1294
1295static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1296 int min_events)
1297{
1298 struct llist_node *node;
1299 unsigned int loops = 0;
1300 int ret = 0;
1301
1302 if (WARN_ON_ONCE(ctx->submitter_task != current))
1303 return -EEXIST;
1304 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1305 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1306again:
1307 /*
1308 * llists are in reverse order, flip it back the right way before
1309 * running the pending items.
1310 */
1311 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1312 while (node) {
1313 struct llist_node *next = node->next;
1314 struct io_kiocb *req = container_of(node, struct io_kiocb,
1315 io_task_work.node);
1316 INDIRECT_CALL_2(req->io_task_work.func,
1317 io_poll_task_func, io_req_rw_complete,
1318 req, ts);
1319 ret++;
1320 node = next;
1321 }
1322 loops++;
1323
1324 if (io_run_local_work_continue(ctx, ret, min_events))
1325 goto again;
1326 io_submit_flush_completions(ctx);
1327 if (io_run_local_work_continue(ctx, ret, min_events))
1328 goto again;
1329
1330 trace_io_uring_local_work_run(ctx, ret, loops);
1331 return ret;
1332}
1333
1334static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1335 int min_events)
1336{
1337 struct io_tw_state ts = {};
1338
1339 if (llist_empty(&ctx->work_llist))
1340 return 0;
1341 return __io_run_local_work(ctx, &ts, min_events);
1342}
1343
1344static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1345{
1346 struct io_tw_state ts = {};
1347 int ret;
1348
1349 mutex_lock(&ctx->uring_lock);
1350 ret = __io_run_local_work(ctx, &ts, min_events);
1351 mutex_unlock(&ctx->uring_lock);
1352 return ret;
1353}
1354
1355static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1356{
1357 io_tw_lock(req->ctx, ts);
1358 io_req_defer_failed(req, req->cqe.res);
1359}
1360
1361void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1362{
1363 io_tw_lock(req->ctx, ts);
1364 /* req->task == current here, checking PF_EXITING is safe */
1365 if (unlikely(req->task->flags & PF_EXITING))
1366 io_req_defer_failed(req, -EFAULT);
1367 else if (req->flags & REQ_F_FORCE_ASYNC)
1368 io_queue_iowq(req);
1369 else
1370 io_queue_sqe(req);
1371}
1372
1373void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1374{
1375 io_req_set_res(req, ret, 0);
1376 req->io_task_work.func = io_req_task_cancel;
1377 io_req_task_work_add(req);
1378}
1379
1380void io_req_task_queue(struct io_kiocb *req)
1381{
1382 req->io_task_work.func = io_req_task_submit;
1383 io_req_task_work_add(req);
1384}
1385
1386void io_queue_next(struct io_kiocb *req)
1387{
1388 struct io_kiocb *nxt = io_req_find_next(req);
1389
1390 if (nxt)
1391 io_req_task_queue(nxt);
1392}
1393
1394static void io_free_batch_list(struct io_ring_ctx *ctx,
1395 struct io_wq_work_node *node)
1396 __must_hold(&ctx->uring_lock)
1397{
1398 do {
1399 struct io_kiocb *req = container_of(node, struct io_kiocb,
1400 comp_list);
1401
1402 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1403 if (req->flags & REQ_F_REFCOUNT) {
1404 node = req->comp_list.next;
1405 if (!req_ref_put_and_test(req))
1406 continue;
1407 }
1408 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1409 struct async_poll *apoll = req->apoll;
1410
1411 if (apoll->double_poll)
1412 kfree(apoll->double_poll);
1413 if (!io_alloc_cache_put(&ctx->apoll_cache, apoll))
1414 kfree(apoll);
1415 req->flags &= ~REQ_F_POLLED;
1416 }
1417 if (req->flags & IO_REQ_LINK_FLAGS)
1418 io_queue_next(req);
1419 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1420 io_clean_op(req);
1421 }
1422 io_put_file(req);
1423 io_put_rsrc_node(ctx, req->rsrc_node);
1424 io_put_task(req->task);
1425
1426 node = req->comp_list.next;
1427 io_req_add_to_cache(req, ctx);
1428 } while (node);
1429}
1430
1431void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1432 __must_hold(&ctx->uring_lock)
1433{
1434 struct io_submit_state *state = &ctx->submit_state;
1435 struct io_wq_work_node *node;
1436
1437 __io_cq_lock(ctx);
1438 __wq_list_for_each(node, &state->compl_reqs) {
1439 struct io_kiocb *req = container_of(node, struct io_kiocb,
1440 comp_list);
1441
1442 if (!(req->flags & REQ_F_CQE_SKIP) &&
1443 unlikely(!io_fill_cqe_req(ctx, req))) {
1444 if (ctx->lockless_cq) {
1445 spin_lock(&ctx->completion_lock);
1446 io_req_cqe_overflow(req);
1447 spin_unlock(&ctx->completion_lock);
1448 } else {
1449 io_req_cqe_overflow(req);
1450 }
1451 }
1452 }
1453 __io_cq_unlock_post(ctx);
1454
1455 if (!wq_list_empty(&state->compl_reqs)) {
1456 io_free_batch_list(ctx, state->compl_reqs.first);
1457 INIT_WQ_LIST(&state->compl_reqs);
1458 }
1459 ctx->submit_state.cq_flush = false;
1460}
1461
1462static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1463{
1464 /* See comment at the top of this file */
1465 smp_rmb();
1466 return __io_cqring_events(ctx);
1467}
1468
1469/*
1470 * We can't just wait for polled events to come to us, we have to actively
1471 * find and complete them.
1472 */
1473static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1474{
1475 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1476 return;
1477
1478 mutex_lock(&ctx->uring_lock);
1479 while (!wq_list_empty(&ctx->iopoll_list)) {
1480 /* let it sleep and repeat later if can't complete a request */
1481 if (io_do_iopoll(ctx, true) == 0)
1482 break;
1483 /*
1484 * Ensure we allow local-to-the-cpu processing to take place,
1485 * in this case we need to ensure that we reap all events.
1486 * Also let task_work, etc. to progress by releasing the mutex
1487 */
1488 if (need_resched()) {
1489 mutex_unlock(&ctx->uring_lock);
1490 cond_resched();
1491 mutex_lock(&ctx->uring_lock);
1492 }
1493 }
1494 mutex_unlock(&ctx->uring_lock);
1495}
1496
1497static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1498{
1499 unsigned int nr_events = 0;
1500 unsigned long check_cq;
1501
1502 lockdep_assert_held(&ctx->uring_lock);
1503
1504 if (!io_allowed_run_tw(ctx))
1505 return -EEXIST;
1506
1507 check_cq = READ_ONCE(ctx->check_cq);
1508 if (unlikely(check_cq)) {
1509 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1510 __io_cqring_overflow_flush(ctx, false);
1511 /*
1512 * Similarly do not spin if we have not informed the user of any
1513 * dropped CQE.
1514 */
1515 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1516 return -EBADR;
1517 }
1518 /*
1519 * Don't enter poll loop if we already have events pending.
1520 * If we do, we can potentially be spinning for commands that
1521 * already triggered a CQE (eg in error).
1522 */
1523 if (io_cqring_events(ctx))
1524 return 0;
1525
1526 do {
1527 int ret = 0;
1528
1529 /*
1530 * If a submit got punted to a workqueue, we can have the
1531 * application entering polling for a command before it gets
1532 * issued. That app will hold the uring_lock for the duration
1533 * of the poll right here, so we need to take a breather every
1534 * now and then to ensure that the issue has a chance to add
1535 * the poll to the issued list. Otherwise we can spin here
1536 * forever, while the workqueue is stuck trying to acquire the
1537 * very same mutex.
1538 */
1539 if (wq_list_empty(&ctx->iopoll_list) ||
1540 io_task_work_pending(ctx)) {
1541 u32 tail = ctx->cached_cq_tail;
1542
1543 (void) io_run_local_work_locked(ctx, min);
1544
1545 if (task_work_pending(current) ||
1546 wq_list_empty(&ctx->iopoll_list)) {
1547 mutex_unlock(&ctx->uring_lock);
1548 io_run_task_work();
1549 mutex_lock(&ctx->uring_lock);
1550 }
1551 /* some requests don't go through iopoll_list */
1552 if (tail != ctx->cached_cq_tail ||
1553 wq_list_empty(&ctx->iopoll_list))
1554 break;
1555 }
1556 ret = io_do_iopoll(ctx, !min);
1557 if (unlikely(ret < 0))
1558 return ret;
1559
1560 if (task_sigpending(current))
1561 return -EINTR;
1562 if (need_resched())
1563 break;
1564
1565 nr_events += ret;
1566 } while (nr_events < min);
1567
1568 return 0;
1569}
1570
1571void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1572{
1573 io_req_complete_defer(req);
1574}
1575
1576/*
1577 * After the iocb has been issued, it's safe to be found on the poll list.
1578 * Adding the kiocb to the list AFTER submission ensures that we don't
1579 * find it from a io_do_iopoll() thread before the issuer is done
1580 * accessing the kiocb cookie.
1581 */
1582static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1583{
1584 struct io_ring_ctx *ctx = req->ctx;
1585 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1586
1587 /* workqueue context doesn't hold uring_lock, grab it now */
1588 if (unlikely(needs_lock))
1589 mutex_lock(&ctx->uring_lock);
1590
1591 /*
1592 * Track whether we have multiple files in our lists. This will impact
1593 * how we do polling eventually, not spinning if we're on potentially
1594 * different devices.
1595 */
1596 if (wq_list_empty(&ctx->iopoll_list)) {
1597 ctx->poll_multi_queue = false;
1598 } else if (!ctx->poll_multi_queue) {
1599 struct io_kiocb *list_req;
1600
1601 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1602 comp_list);
1603 if (list_req->file != req->file)
1604 ctx->poll_multi_queue = true;
1605 }
1606
1607 /*
1608 * For fast devices, IO may have already completed. If it has, add
1609 * it to the front so we find it first.
1610 */
1611 if (READ_ONCE(req->iopoll_completed))
1612 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1613 else
1614 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1615
1616 if (unlikely(needs_lock)) {
1617 /*
1618 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1619 * in sq thread task context or in io worker task context. If
1620 * current task context is sq thread, we don't need to check
1621 * whether should wake up sq thread.
1622 */
1623 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1624 wq_has_sleeper(&ctx->sq_data->wait))
1625 wake_up(&ctx->sq_data->wait);
1626
1627 mutex_unlock(&ctx->uring_lock);
1628 }
1629}
1630
1631io_req_flags_t io_file_get_flags(struct file *file)
1632{
1633 io_req_flags_t res = 0;
1634
1635 if (S_ISREG(file_inode(file)->i_mode))
1636 res |= REQ_F_ISREG;
1637 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1638 res |= REQ_F_SUPPORT_NOWAIT;
1639 return res;
1640}
1641
1642bool io_alloc_async_data(struct io_kiocb *req)
1643{
1644 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1645
1646 WARN_ON_ONCE(!def->async_size);
1647 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
1648 if (req->async_data) {
1649 req->flags |= REQ_F_ASYNC_DATA;
1650 return false;
1651 }
1652 return true;
1653}
1654
1655static u32 io_get_sequence(struct io_kiocb *req)
1656{
1657 u32 seq = req->ctx->cached_sq_head;
1658 struct io_kiocb *cur;
1659
1660 /* need original cached_sq_head, but it was increased for each req */
1661 io_for_each_link(cur, req)
1662 seq--;
1663 return seq;
1664}
1665
1666static __cold void io_drain_req(struct io_kiocb *req)
1667 __must_hold(&ctx->uring_lock)
1668{
1669 struct io_ring_ctx *ctx = req->ctx;
1670 struct io_defer_entry *de;
1671 int ret;
1672 u32 seq = io_get_sequence(req);
1673
1674 /* Still need defer if there is pending req in defer list. */
1675 spin_lock(&ctx->completion_lock);
1676 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1677 spin_unlock(&ctx->completion_lock);
1678queue:
1679 ctx->drain_active = false;
1680 io_req_task_queue(req);
1681 return;
1682 }
1683 spin_unlock(&ctx->completion_lock);
1684
1685 io_prep_async_link(req);
1686 de = kmalloc(sizeof(*de), GFP_KERNEL);
1687 if (!de) {
1688 ret = -ENOMEM;
1689 io_req_defer_failed(req, ret);
1690 return;
1691 }
1692
1693 spin_lock(&ctx->completion_lock);
1694 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1695 spin_unlock(&ctx->completion_lock);
1696 kfree(de);
1697 goto queue;
1698 }
1699
1700 trace_io_uring_defer(req);
1701 de->req = req;
1702 de->seq = seq;
1703 list_add_tail(&de->list, &ctx->defer_list);
1704 spin_unlock(&ctx->completion_lock);
1705}
1706
1707static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1708 unsigned int issue_flags)
1709{
1710 if (req->file || !def->needs_file)
1711 return true;
1712
1713 if (req->flags & REQ_F_FIXED_FILE)
1714 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1715 else
1716 req->file = io_file_get_normal(req, req->cqe.fd);
1717
1718 return !!req->file;
1719}
1720
1721static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1722{
1723 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1724 const struct cred *creds = NULL;
1725 int ret;
1726
1727 if (unlikely(!io_assign_file(req, def, issue_flags)))
1728 return -EBADF;
1729
1730 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1731 creds = override_creds(req->creds);
1732
1733 if (!def->audit_skip)
1734 audit_uring_entry(req->opcode);
1735
1736 ret = def->issue(req, issue_flags);
1737
1738 if (!def->audit_skip)
1739 audit_uring_exit(!ret, ret);
1740
1741 if (creds)
1742 revert_creds(creds);
1743
1744 if (ret == IOU_OK) {
1745 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1746 io_req_complete_defer(req);
1747 else
1748 io_req_complete_post(req, issue_flags);
1749
1750 return 0;
1751 }
1752
1753 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1754 ret = 0;
1755 io_arm_ltimeout(req);
1756
1757 /* If the op doesn't have a file, we're not polling for it */
1758 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1759 io_iopoll_req_issued(req, issue_flags);
1760 }
1761 return ret;
1762}
1763
1764int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1765{
1766 io_tw_lock(req->ctx, ts);
1767 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1768 IO_URING_F_COMPLETE_DEFER);
1769}
1770
1771struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1772{
1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1774 struct io_kiocb *nxt = NULL;
1775
1776 if (req_ref_put_and_test(req)) {
1777 if (req->flags & IO_REQ_LINK_FLAGS)
1778 nxt = io_req_find_next(req);
1779 io_free_req(req);
1780 }
1781 return nxt ? &nxt->work : NULL;
1782}
1783
1784void io_wq_submit_work(struct io_wq_work *work)
1785{
1786 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1787 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1788 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1789 bool needs_poll = false;
1790 int ret = 0, err = -ECANCELED;
1791
1792 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1793 if (!(req->flags & REQ_F_REFCOUNT))
1794 __io_req_set_refcount(req, 2);
1795 else
1796 req_ref_get(req);
1797
1798 io_arm_ltimeout(req);
1799
1800 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1801 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1802fail:
1803 io_req_task_queue_fail(req, err);
1804 return;
1805 }
1806 if (!io_assign_file(req, def, issue_flags)) {
1807 err = -EBADF;
1808 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1809 goto fail;
1810 }
1811
1812 /*
1813 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1814 * submitter task context. Final request completions are handed to the
1815 * right context, however this is not the case of auxiliary CQEs,
1816 * which is the main mean of operation for multishot requests.
1817 * Don't allow any multishot execution from io-wq. It's more restrictive
1818 * than necessary and also cleaner.
1819 */
1820 if (req->flags & REQ_F_APOLL_MULTISHOT) {
1821 err = -EBADFD;
1822 if (!io_file_can_poll(req))
1823 goto fail;
1824 if (req->file->f_flags & O_NONBLOCK ||
1825 req->file->f_mode & FMODE_NOWAIT) {
1826 err = -ECANCELED;
1827 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1828 goto fail;
1829 return;
1830 } else {
1831 req->flags &= ~REQ_F_APOLL_MULTISHOT;
1832 }
1833 }
1834
1835 if (req->flags & REQ_F_FORCE_ASYNC) {
1836 bool opcode_poll = def->pollin || def->pollout;
1837
1838 if (opcode_poll && io_file_can_poll(req)) {
1839 needs_poll = true;
1840 issue_flags |= IO_URING_F_NONBLOCK;
1841 }
1842 }
1843
1844 do {
1845 ret = io_issue_sqe(req, issue_flags);
1846 if (ret != -EAGAIN)
1847 break;
1848
1849 /*
1850 * If REQ_F_NOWAIT is set, then don't wait or retry with
1851 * poll. -EAGAIN is final for that case.
1852 */
1853 if (req->flags & REQ_F_NOWAIT)
1854 break;
1855
1856 /*
1857 * We can get EAGAIN for iopolled IO even though we're
1858 * forcing a sync submission from here, since we can't
1859 * wait for request slots on the block side.
1860 */
1861 if (!needs_poll) {
1862 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1863 break;
1864 if (io_wq_worker_stopped())
1865 break;
1866 cond_resched();
1867 continue;
1868 }
1869
1870 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1871 return;
1872 /* aborted or ready, in either case retry blocking */
1873 needs_poll = false;
1874 issue_flags &= ~IO_URING_F_NONBLOCK;
1875 } while (1);
1876
1877 /* avoid locking problems by failing it from a clean context */
1878 if (ret)
1879 io_req_task_queue_fail(req, ret);
1880}
1881
1882inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1883 unsigned int issue_flags)
1884{
1885 struct io_ring_ctx *ctx = req->ctx;
1886 struct io_fixed_file *slot;
1887 struct file *file = NULL;
1888
1889 io_ring_submit_lock(ctx, issue_flags);
1890
1891 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1892 goto out;
1893 fd = array_index_nospec(fd, ctx->nr_user_files);
1894 slot = io_fixed_file_slot(&ctx->file_table, fd);
1895 if (!req->rsrc_node)
1896 __io_req_set_rsrc_node(req, ctx);
1897 req->flags |= io_slot_flags(slot);
1898 file = io_slot_file(slot);
1899out:
1900 io_ring_submit_unlock(ctx, issue_flags);
1901 return file;
1902}
1903
1904struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1905{
1906 struct file *file = fget(fd);
1907
1908 trace_io_uring_file_get(req, fd);
1909
1910 /* we don't allow fixed io_uring files */
1911 if (file && io_is_uring_fops(file))
1912 io_req_track_inflight(req);
1913 return file;
1914}
1915
1916static void io_queue_async(struct io_kiocb *req, int ret)
1917 __must_hold(&req->ctx->uring_lock)
1918{
1919 struct io_kiocb *linked_timeout;
1920
1921 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1922 io_req_defer_failed(req, ret);
1923 return;
1924 }
1925
1926 linked_timeout = io_prep_linked_timeout(req);
1927
1928 switch (io_arm_poll_handler(req, 0)) {
1929 case IO_APOLL_READY:
1930 io_kbuf_recycle(req, 0);
1931 io_req_task_queue(req);
1932 break;
1933 case IO_APOLL_ABORTED:
1934 io_kbuf_recycle(req, 0);
1935 io_queue_iowq(req);
1936 break;
1937 case IO_APOLL_OK:
1938 break;
1939 }
1940
1941 if (linked_timeout)
1942 io_queue_linked_timeout(linked_timeout);
1943}
1944
1945static inline void io_queue_sqe(struct io_kiocb *req)
1946 __must_hold(&req->ctx->uring_lock)
1947{
1948 int ret;
1949
1950 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1951
1952 /*
1953 * We async punt it if the file wasn't marked NOWAIT, or if the file
1954 * doesn't support non-blocking read/write attempts
1955 */
1956 if (unlikely(ret))
1957 io_queue_async(req, ret);
1958}
1959
1960static void io_queue_sqe_fallback(struct io_kiocb *req)
1961 __must_hold(&req->ctx->uring_lock)
1962{
1963 if (unlikely(req->flags & REQ_F_FAIL)) {
1964 /*
1965 * We don't submit, fail them all, for that replace hardlinks
1966 * with normal links. Extra REQ_F_LINK is tolerated.
1967 */
1968 req->flags &= ~REQ_F_HARDLINK;
1969 req->flags |= REQ_F_LINK;
1970 io_req_defer_failed(req, req->cqe.res);
1971 } else {
1972 if (unlikely(req->ctx->drain_active))
1973 io_drain_req(req);
1974 else
1975 io_queue_iowq(req);
1976 }
1977}
1978
1979/*
1980 * Check SQE restrictions (opcode and flags).
1981 *
1982 * Returns 'true' if SQE is allowed, 'false' otherwise.
1983 */
1984static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1985 struct io_kiocb *req,
1986 unsigned int sqe_flags)
1987{
1988 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1989 return false;
1990
1991 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1992 ctx->restrictions.sqe_flags_required)
1993 return false;
1994
1995 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1996 ctx->restrictions.sqe_flags_required))
1997 return false;
1998
1999 return true;
2000}
2001
2002static void io_init_req_drain(struct io_kiocb *req)
2003{
2004 struct io_ring_ctx *ctx = req->ctx;
2005 struct io_kiocb *head = ctx->submit_state.link.head;
2006
2007 ctx->drain_active = true;
2008 if (head) {
2009 /*
2010 * If we need to drain a request in the middle of a link, drain
2011 * the head request and the next request/link after the current
2012 * link. Considering sequential execution of links,
2013 * REQ_F_IO_DRAIN will be maintained for every request of our
2014 * link.
2015 */
2016 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2017 ctx->drain_next = true;
2018 }
2019}
2020
2021static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2022{
2023 /* ensure per-opcode data is cleared if we fail before prep */
2024 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2025 return err;
2026}
2027
2028static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2029 const struct io_uring_sqe *sqe)
2030 __must_hold(&ctx->uring_lock)
2031{
2032 const struct io_issue_def *def;
2033 unsigned int sqe_flags;
2034 int personality;
2035 u8 opcode;
2036
2037 /* req is partially pre-initialised, see io_preinit_req() */
2038 req->opcode = opcode = READ_ONCE(sqe->opcode);
2039 /* same numerical values with corresponding REQ_F_*, safe to copy */
2040 sqe_flags = READ_ONCE(sqe->flags);
2041 req->flags = (io_req_flags_t) sqe_flags;
2042 req->cqe.user_data = READ_ONCE(sqe->user_data);
2043 req->file = NULL;
2044 req->rsrc_node = NULL;
2045 req->task = current;
2046 req->cancel_seq_set = false;
2047
2048 if (unlikely(opcode >= IORING_OP_LAST)) {
2049 req->opcode = 0;
2050 return io_init_fail_req(req, -EINVAL);
2051 }
2052 def = &io_issue_defs[opcode];
2053 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2054 /* enforce forwards compatibility on users */
2055 if (sqe_flags & ~SQE_VALID_FLAGS)
2056 return io_init_fail_req(req, -EINVAL);
2057 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2058 if (!def->buffer_select)
2059 return io_init_fail_req(req, -EOPNOTSUPP);
2060 req->buf_index = READ_ONCE(sqe->buf_group);
2061 }
2062 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2063 ctx->drain_disabled = true;
2064 if (sqe_flags & IOSQE_IO_DRAIN) {
2065 if (ctx->drain_disabled)
2066 return io_init_fail_req(req, -EOPNOTSUPP);
2067 io_init_req_drain(req);
2068 }
2069 }
2070 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2071 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2072 return io_init_fail_req(req, -EACCES);
2073 /* knock it to the slow queue path, will be drained there */
2074 if (ctx->drain_active)
2075 req->flags |= REQ_F_FORCE_ASYNC;
2076 /* if there is no link, we're at "next" request and need to drain */
2077 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2078 ctx->drain_next = false;
2079 ctx->drain_active = true;
2080 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2081 }
2082 }
2083
2084 if (!def->ioprio && sqe->ioprio)
2085 return io_init_fail_req(req, -EINVAL);
2086 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2087 return io_init_fail_req(req, -EINVAL);
2088
2089 if (def->needs_file) {
2090 struct io_submit_state *state = &ctx->submit_state;
2091
2092 req->cqe.fd = READ_ONCE(sqe->fd);
2093
2094 /*
2095 * Plug now if we have more than 2 IO left after this, and the
2096 * target is potentially a read/write to block based storage.
2097 */
2098 if (state->need_plug && def->plug) {
2099 state->plug_started = true;
2100 state->need_plug = false;
2101 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2102 }
2103 }
2104
2105 personality = READ_ONCE(sqe->personality);
2106 if (personality) {
2107 int ret;
2108
2109 req->creds = xa_load(&ctx->personalities, personality);
2110 if (!req->creds)
2111 return io_init_fail_req(req, -EINVAL);
2112 get_cred(req->creds);
2113 ret = security_uring_override_creds(req->creds);
2114 if (ret) {
2115 put_cred(req->creds);
2116 return io_init_fail_req(req, ret);
2117 }
2118 req->flags |= REQ_F_CREDS;
2119 }
2120
2121 return def->prep(req, sqe);
2122}
2123
2124static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2125 struct io_kiocb *req, int ret)
2126{
2127 struct io_ring_ctx *ctx = req->ctx;
2128 struct io_submit_link *link = &ctx->submit_state.link;
2129 struct io_kiocb *head = link->head;
2130
2131 trace_io_uring_req_failed(sqe, req, ret);
2132
2133 /*
2134 * Avoid breaking links in the middle as it renders links with SQPOLL
2135 * unusable. Instead of failing eagerly, continue assembling the link if
2136 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2137 * should find the flag and handle the rest.
2138 */
2139 req_fail_link_node(req, ret);
2140 if (head && !(head->flags & REQ_F_FAIL))
2141 req_fail_link_node(head, -ECANCELED);
2142
2143 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2144 if (head) {
2145 link->last->link = req;
2146 link->head = NULL;
2147 req = head;
2148 }
2149 io_queue_sqe_fallback(req);
2150 return ret;
2151 }
2152
2153 if (head)
2154 link->last->link = req;
2155 else
2156 link->head = req;
2157 link->last = req;
2158 return 0;
2159}
2160
2161static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2162 const struct io_uring_sqe *sqe)
2163 __must_hold(&ctx->uring_lock)
2164{
2165 struct io_submit_link *link = &ctx->submit_state.link;
2166 int ret;
2167
2168 ret = io_init_req(ctx, req, sqe);
2169 if (unlikely(ret))
2170 return io_submit_fail_init(sqe, req, ret);
2171
2172 trace_io_uring_submit_req(req);
2173
2174 /*
2175 * If we already have a head request, queue this one for async
2176 * submittal once the head completes. If we don't have a head but
2177 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2178 * submitted sync once the chain is complete. If none of those
2179 * conditions are true (normal request), then just queue it.
2180 */
2181 if (unlikely(link->head)) {
2182 trace_io_uring_link(req, link->last);
2183 link->last->link = req;
2184 link->last = req;
2185
2186 if (req->flags & IO_REQ_LINK_FLAGS)
2187 return 0;
2188 /* last request of the link, flush it */
2189 req = link->head;
2190 link->head = NULL;
2191 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2192 goto fallback;
2193
2194 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2195 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2196 if (req->flags & IO_REQ_LINK_FLAGS) {
2197 link->head = req;
2198 link->last = req;
2199 } else {
2200fallback:
2201 io_queue_sqe_fallback(req);
2202 }
2203 return 0;
2204 }
2205
2206 io_queue_sqe(req);
2207 return 0;
2208}
2209
2210/*
2211 * Batched submission is done, ensure local IO is flushed out.
2212 */
2213static void io_submit_state_end(struct io_ring_ctx *ctx)
2214{
2215 struct io_submit_state *state = &ctx->submit_state;
2216
2217 if (unlikely(state->link.head))
2218 io_queue_sqe_fallback(state->link.head);
2219 /* flush only after queuing links as they can generate completions */
2220 io_submit_flush_completions(ctx);
2221 if (state->plug_started)
2222 blk_finish_plug(&state->plug);
2223}
2224
2225/*
2226 * Start submission side cache.
2227 */
2228static void io_submit_state_start(struct io_submit_state *state,
2229 unsigned int max_ios)
2230{
2231 state->plug_started = false;
2232 state->need_plug = max_ios > 2;
2233 state->submit_nr = max_ios;
2234 /* set only head, no need to init link_last in advance */
2235 state->link.head = NULL;
2236}
2237
2238static void io_commit_sqring(struct io_ring_ctx *ctx)
2239{
2240 struct io_rings *rings = ctx->rings;
2241
2242 /*
2243 * Ensure any loads from the SQEs are done at this point,
2244 * since once we write the new head, the application could
2245 * write new data to them.
2246 */
2247 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2248}
2249
2250/*
2251 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2252 * that is mapped by userspace. This means that care needs to be taken to
2253 * ensure that reads are stable, as we cannot rely on userspace always
2254 * being a good citizen. If members of the sqe are validated and then later
2255 * used, it's important that those reads are done through READ_ONCE() to
2256 * prevent a re-load down the line.
2257 */
2258static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2259{
2260 unsigned mask = ctx->sq_entries - 1;
2261 unsigned head = ctx->cached_sq_head++ & mask;
2262
2263 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2264 head = READ_ONCE(ctx->sq_array[head]);
2265 if (unlikely(head >= ctx->sq_entries)) {
2266 /* drop invalid entries */
2267 spin_lock(&ctx->completion_lock);
2268 ctx->cq_extra--;
2269 spin_unlock(&ctx->completion_lock);
2270 WRITE_ONCE(ctx->rings->sq_dropped,
2271 READ_ONCE(ctx->rings->sq_dropped) + 1);
2272 return false;
2273 }
2274 }
2275
2276 /*
2277 * The cached sq head (or cq tail) serves two purposes:
2278 *
2279 * 1) allows us to batch the cost of updating the user visible
2280 * head updates.
2281 * 2) allows the kernel side to track the head on its own, even
2282 * though the application is the one updating it.
2283 */
2284
2285 /* double index for 128-byte SQEs, twice as long */
2286 if (ctx->flags & IORING_SETUP_SQE128)
2287 head <<= 1;
2288 *sqe = &ctx->sq_sqes[head];
2289 return true;
2290}
2291
2292int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2293 __must_hold(&ctx->uring_lock)
2294{
2295 unsigned int entries = io_sqring_entries(ctx);
2296 unsigned int left;
2297 int ret;
2298
2299 if (unlikely(!entries))
2300 return 0;
2301 /* make sure SQ entry isn't read before tail */
2302 ret = left = min(nr, entries);
2303 io_get_task_refs(left);
2304 io_submit_state_start(&ctx->submit_state, left);
2305
2306 do {
2307 const struct io_uring_sqe *sqe;
2308 struct io_kiocb *req;
2309
2310 if (unlikely(!io_alloc_req(ctx, &req)))
2311 break;
2312 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2313 io_req_add_to_cache(req, ctx);
2314 break;
2315 }
2316
2317 /*
2318 * Continue submitting even for sqe failure if the
2319 * ring was setup with IORING_SETUP_SUBMIT_ALL
2320 */
2321 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2322 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2323 left--;
2324 break;
2325 }
2326 } while (--left);
2327
2328 if (unlikely(left)) {
2329 ret -= left;
2330 /* try again if it submitted nothing and can't allocate a req */
2331 if (!ret && io_req_cache_empty(ctx))
2332 ret = -EAGAIN;
2333 current->io_uring->cached_refs += left;
2334 }
2335
2336 io_submit_state_end(ctx);
2337 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2338 io_commit_sqring(ctx);
2339 return ret;
2340}
2341
2342static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2343 int wake_flags, void *key)
2344{
2345 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2346
2347 /*
2348 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2349 * the task, and the next invocation will do it.
2350 */
2351 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2352 return autoremove_wake_function(curr, mode, wake_flags, key);
2353 return -1;
2354}
2355
2356int io_run_task_work_sig(struct io_ring_ctx *ctx)
2357{
2358 if (!llist_empty(&ctx->work_llist)) {
2359 __set_current_state(TASK_RUNNING);
2360 if (io_run_local_work(ctx, INT_MAX) > 0)
2361 return 0;
2362 }
2363 if (io_run_task_work() > 0)
2364 return 0;
2365 if (task_sigpending(current))
2366 return -EINTR;
2367 return 0;
2368}
2369
2370static bool current_pending_io(void)
2371{
2372 struct io_uring_task *tctx = current->io_uring;
2373
2374 if (!tctx)
2375 return false;
2376 return percpu_counter_read_positive(&tctx->inflight);
2377}
2378
2379static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2380{
2381 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2382
2383 WRITE_ONCE(iowq->hit_timeout, 1);
2384 iowq->min_timeout = 0;
2385 wake_up_process(iowq->wq.private);
2386 return HRTIMER_NORESTART;
2387}
2388
2389/*
2390 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2391 * wake up. If not, and we have a normal timeout, switch to that and keep
2392 * sleeping.
2393 */
2394static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2395{
2396 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2397 struct io_ring_ctx *ctx = iowq->ctx;
2398
2399 /* no general timeout, or shorter (or equal), we are done */
2400 if (iowq->timeout == KTIME_MAX ||
2401 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2402 goto out_wake;
2403 /* work we may need to run, wake function will see if we need to wake */
2404 if (io_has_work(ctx))
2405 goto out_wake;
2406 /* got events since we started waiting, min timeout is done */
2407 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2408 goto out_wake;
2409 /* if we have any events and min timeout expired, we're done */
2410 if (io_cqring_events(ctx))
2411 goto out_wake;
2412
2413 /*
2414 * If using deferred task_work running and application is waiting on
2415 * more than one request, ensure we reset it now where we are switching
2416 * to normal sleeps. Any request completion post min_wait should wake
2417 * the task and return.
2418 */
2419 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2420 atomic_set(&ctx->cq_wait_nr, 1);
2421 smp_mb();
2422 if (!llist_empty(&ctx->work_llist))
2423 goto out_wake;
2424 }
2425
2426 iowq->t.function = io_cqring_timer_wakeup;
2427 hrtimer_set_expires(timer, iowq->timeout);
2428 return HRTIMER_RESTART;
2429out_wake:
2430 return io_cqring_timer_wakeup(timer);
2431}
2432
2433static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2434 clockid_t clock_id, ktime_t start_time)
2435{
2436 ktime_t timeout;
2437
2438 hrtimer_init_on_stack(&iowq->t, clock_id, HRTIMER_MODE_ABS);
2439 if (iowq->min_timeout) {
2440 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2441 iowq->t.function = io_cqring_min_timer_wakeup;
2442 } else {
2443 timeout = iowq->timeout;
2444 iowq->t.function = io_cqring_timer_wakeup;
2445 }
2446
2447 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2448 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2449
2450 if (!READ_ONCE(iowq->hit_timeout))
2451 schedule();
2452
2453 hrtimer_cancel(&iowq->t);
2454 destroy_hrtimer_on_stack(&iowq->t);
2455 __set_current_state(TASK_RUNNING);
2456
2457 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2458}
2459
2460static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2461 struct io_wait_queue *iowq,
2462 ktime_t start_time)
2463{
2464 int ret = 0;
2465
2466 /*
2467 * Mark us as being in io_wait if we have pending requests, so cpufreq
2468 * can take into account that the task is waiting for IO - turns out
2469 * to be important for low QD IO.
2470 */
2471 if (current_pending_io())
2472 current->in_iowait = 1;
2473 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2474 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2475 else
2476 schedule();
2477 current->in_iowait = 0;
2478 return ret;
2479}
2480
2481/* If this returns > 0, the caller should retry */
2482static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2483 struct io_wait_queue *iowq,
2484 ktime_t start_time)
2485{
2486 if (unlikely(READ_ONCE(ctx->check_cq)))
2487 return 1;
2488 if (unlikely(!llist_empty(&ctx->work_llist)))
2489 return 1;
2490 if (unlikely(task_work_pending(current)))
2491 return 1;
2492 if (unlikely(task_sigpending(current)))
2493 return -EINTR;
2494 if (unlikely(io_should_wake(iowq)))
2495 return 0;
2496
2497 return __io_cqring_wait_schedule(ctx, iowq, start_time);
2498}
2499
2500struct ext_arg {
2501 size_t argsz;
2502 struct __kernel_timespec __user *ts;
2503 const sigset_t __user *sig;
2504 ktime_t min_time;
2505};
2506
2507/*
2508 * Wait until events become available, if we don't already have some. The
2509 * application must reap them itself, as they reside on the shared cq ring.
2510 */
2511static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2512 struct ext_arg *ext_arg)
2513{
2514 struct io_wait_queue iowq;
2515 struct io_rings *rings = ctx->rings;
2516 ktime_t start_time;
2517 int ret;
2518
2519 if (!io_allowed_run_tw(ctx))
2520 return -EEXIST;
2521 if (!llist_empty(&ctx->work_llist))
2522 io_run_local_work(ctx, min_events);
2523 io_run_task_work();
2524
2525 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2526 io_cqring_do_overflow_flush(ctx);
2527 if (__io_cqring_events_user(ctx) >= min_events)
2528 return 0;
2529
2530 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2531 iowq.wq.private = current;
2532 INIT_LIST_HEAD(&iowq.wq.entry);
2533 iowq.ctx = ctx;
2534 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2535 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2536 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2537 iowq.hit_timeout = 0;
2538 iowq.min_timeout = ext_arg->min_time;
2539 iowq.timeout = KTIME_MAX;
2540 start_time = io_get_time(ctx);
2541
2542 if (ext_arg->ts) {
2543 struct timespec64 ts;
2544
2545 if (get_timespec64(&ts, ext_arg->ts))
2546 return -EFAULT;
2547
2548 iowq.timeout = timespec64_to_ktime(ts);
2549 if (!(flags & IORING_ENTER_ABS_TIMER))
2550 iowq.timeout = ktime_add(iowq.timeout, start_time);
2551 }
2552
2553 if (ext_arg->sig) {
2554#ifdef CONFIG_COMPAT
2555 if (in_compat_syscall())
2556 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2557 ext_arg->argsz);
2558 else
2559#endif
2560 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2561
2562 if (ret)
2563 return ret;
2564 }
2565
2566 io_napi_busy_loop(ctx, &iowq);
2567
2568 trace_io_uring_cqring_wait(ctx, min_events);
2569 do {
2570 unsigned long check_cq;
2571 int nr_wait;
2572
2573 /* if min timeout has been hit, don't reset wait count */
2574 if (!iowq.hit_timeout)
2575 nr_wait = (int) iowq.cq_tail -
2576 READ_ONCE(ctx->rings->cq.tail);
2577 else
2578 nr_wait = 1;
2579
2580 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2581 atomic_set(&ctx->cq_wait_nr, nr_wait);
2582 set_current_state(TASK_INTERRUPTIBLE);
2583 } else {
2584 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2585 TASK_INTERRUPTIBLE);
2586 }
2587
2588 ret = io_cqring_wait_schedule(ctx, &iowq, start_time);
2589 __set_current_state(TASK_RUNNING);
2590 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2591
2592 /*
2593 * Run task_work after scheduling and before io_should_wake().
2594 * If we got woken because of task_work being processed, run it
2595 * now rather than let the caller do another wait loop.
2596 */
2597 if (!llist_empty(&ctx->work_llist))
2598 io_run_local_work(ctx, nr_wait);
2599 io_run_task_work();
2600
2601 /*
2602 * Non-local task_work will be run on exit to userspace, but
2603 * if we're using DEFER_TASKRUN, then we could have waited
2604 * with a timeout for a number of requests. If the timeout
2605 * hits, we could have some requests ready to process. Ensure
2606 * this break is _after_ we have run task_work, to avoid
2607 * deferring running potentially pending requests until the
2608 * next time we wait for events.
2609 */
2610 if (ret < 0)
2611 break;
2612
2613 check_cq = READ_ONCE(ctx->check_cq);
2614 if (unlikely(check_cq)) {
2615 /* let the caller flush overflows, retry */
2616 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2617 io_cqring_do_overflow_flush(ctx);
2618 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2619 ret = -EBADR;
2620 break;
2621 }
2622 }
2623
2624 if (io_should_wake(&iowq)) {
2625 ret = 0;
2626 break;
2627 }
2628 cond_resched();
2629 } while (1);
2630
2631 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2632 finish_wait(&ctx->cq_wait, &iowq.wq);
2633 restore_saved_sigmask_unless(ret == -EINTR);
2634
2635 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2636}
2637
2638static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2639 size_t size)
2640{
2641 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2642 size);
2643}
2644
2645static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2646 size_t size)
2647{
2648 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2649 size);
2650}
2651
2652static void io_rings_free(struct io_ring_ctx *ctx)
2653{
2654 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2655 io_pages_unmap(ctx->rings, &ctx->ring_pages, &ctx->n_ring_pages,
2656 true);
2657 io_pages_unmap(ctx->sq_sqes, &ctx->sqe_pages, &ctx->n_sqe_pages,
2658 true);
2659 } else {
2660 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2661 ctx->n_ring_pages = 0;
2662 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2663 ctx->n_sqe_pages = 0;
2664 vunmap(ctx->rings);
2665 vunmap(ctx->sq_sqes);
2666 }
2667
2668 ctx->rings = NULL;
2669 ctx->sq_sqes = NULL;
2670}
2671
2672static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2673 unsigned int cq_entries, size_t *sq_offset)
2674{
2675 struct io_rings *rings;
2676 size_t off, sq_array_size;
2677
2678 off = struct_size(rings, cqes, cq_entries);
2679 if (off == SIZE_MAX)
2680 return SIZE_MAX;
2681 if (ctx->flags & IORING_SETUP_CQE32) {
2682 if (check_shl_overflow(off, 1, &off))
2683 return SIZE_MAX;
2684 }
2685
2686#ifdef CONFIG_SMP
2687 off = ALIGN(off, SMP_CACHE_BYTES);
2688 if (off == 0)
2689 return SIZE_MAX;
2690#endif
2691
2692 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2693 *sq_offset = SIZE_MAX;
2694 return off;
2695 }
2696
2697 *sq_offset = off;
2698
2699 sq_array_size = array_size(sizeof(u32), sq_entries);
2700 if (sq_array_size == SIZE_MAX)
2701 return SIZE_MAX;
2702
2703 if (check_add_overflow(off, sq_array_size, &off))
2704 return SIZE_MAX;
2705
2706 return off;
2707}
2708
2709static void io_req_caches_free(struct io_ring_ctx *ctx)
2710{
2711 struct io_kiocb *req;
2712 int nr = 0;
2713
2714 mutex_lock(&ctx->uring_lock);
2715
2716 while (!io_req_cache_empty(ctx)) {
2717 req = io_extract_req(ctx);
2718 kmem_cache_free(req_cachep, req);
2719 nr++;
2720 }
2721 if (nr)
2722 percpu_ref_put_many(&ctx->refs, nr);
2723 mutex_unlock(&ctx->uring_lock);
2724}
2725
2726static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2727{
2728 io_sq_thread_finish(ctx);
2729 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2730 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2731 return;
2732
2733 mutex_lock(&ctx->uring_lock);
2734 if (ctx->buf_data)
2735 __io_sqe_buffers_unregister(ctx);
2736 if (ctx->file_data)
2737 __io_sqe_files_unregister(ctx);
2738 io_cqring_overflow_kill(ctx);
2739 io_eventfd_unregister(ctx);
2740 io_alloc_cache_free(&ctx->apoll_cache, kfree);
2741 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2742 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
2743 io_alloc_cache_free(&ctx->uring_cache, kfree);
2744 io_alloc_cache_free(&ctx->msg_cache, io_msg_cache_free);
2745 io_futex_cache_free(ctx);
2746 io_destroy_buffers(ctx);
2747 mutex_unlock(&ctx->uring_lock);
2748 if (ctx->sq_creds)
2749 put_cred(ctx->sq_creds);
2750 if (ctx->submitter_task)
2751 put_task_struct(ctx->submitter_task);
2752
2753 /* there are no registered resources left, nobody uses it */
2754 if (ctx->rsrc_node)
2755 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2756
2757 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2758 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2759
2760 io_alloc_cache_free(&ctx->rsrc_node_cache, kfree);
2761 if (ctx->mm_account) {
2762 mmdrop(ctx->mm_account);
2763 ctx->mm_account = NULL;
2764 }
2765 io_rings_free(ctx);
2766
2767 percpu_ref_exit(&ctx->refs);
2768 free_uid(ctx->user);
2769 io_req_caches_free(ctx);
2770 if (ctx->hash_map)
2771 io_wq_put_hash(ctx->hash_map);
2772 io_napi_free(ctx);
2773 kfree(ctx->cancel_table.hbs);
2774 kfree(ctx->cancel_table_locked.hbs);
2775 xa_destroy(&ctx->io_bl_xa);
2776 kfree(ctx);
2777}
2778
2779static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2780{
2781 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2782 poll_wq_task_work);
2783
2784 mutex_lock(&ctx->uring_lock);
2785 ctx->poll_activated = true;
2786 mutex_unlock(&ctx->uring_lock);
2787
2788 /*
2789 * Wake ups for some events between start of polling and activation
2790 * might've been lost due to loose synchronisation.
2791 */
2792 wake_up_all(&ctx->poll_wq);
2793 percpu_ref_put(&ctx->refs);
2794}
2795
2796__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2797{
2798 spin_lock(&ctx->completion_lock);
2799 /* already activated or in progress */
2800 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2801 goto out;
2802 if (WARN_ON_ONCE(!ctx->task_complete))
2803 goto out;
2804 if (!ctx->submitter_task)
2805 goto out;
2806 /*
2807 * with ->submitter_task only the submitter task completes requests, we
2808 * only need to sync with it, which is done by injecting a tw
2809 */
2810 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2811 percpu_ref_get(&ctx->refs);
2812 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2813 percpu_ref_put(&ctx->refs);
2814out:
2815 spin_unlock(&ctx->completion_lock);
2816}
2817
2818static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2819{
2820 struct io_ring_ctx *ctx = file->private_data;
2821 __poll_t mask = 0;
2822
2823 if (unlikely(!ctx->poll_activated))
2824 io_activate_pollwq(ctx);
2825
2826 poll_wait(file, &ctx->poll_wq, wait);
2827 /*
2828 * synchronizes with barrier from wq_has_sleeper call in
2829 * io_commit_cqring
2830 */
2831 smp_rmb();
2832 if (!io_sqring_full(ctx))
2833 mask |= EPOLLOUT | EPOLLWRNORM;
2834
2835 /*
2836 * Don't flush cqring overflow list here, just do a simple check.
2837 * Otherwise there could possible be ABBA deadlock:
2838 * CPU0 CPU1
2839 * ---- ----
2840 * lock(&ctx->uring_lock);
2841 * lock(&ep->mtx);
2842 * lock(&ctx->uring_lock);
2843 * lock(&ep->mtx);
2844 *
2845 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2846 * pushes them to do the flush.
2847 */
2848
2849 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2850 mask |= EPOLLIN | EPOLLRDNORM;
2851
2852 return mask;
2853}
2854
2855struct io_tctx_exit {
2856 struct callback_head task_work;
2857 struct completion completion;
2858 struct io_ring_ctx *ctx;
2859};
2860
2861static __cold void io_tctx_exit_cb(struct callback_head *cb)
2862{
2863 struct io_uring_task *tctx = current->io_uring;
2864 struct io_tctx_exit *work;
2865
2866 work = container_of(cb, struct io_tctx_exit, task_work);
2867 /*
2868 * When @in_cancel, we're in cancellation and it's racy to remove the
2869 * node. It'll be removed by the end of cancellation, just ignore it.
2870 * tctx can be NULL if the queueing of this task_work raced with
2871 * work cancelation off the exec path.
2872 */
2873 if (tctx && !atomic_read(&tctx->in_cancel))
2874 io_uring_del_tctx_node((unsigned long)work->ctx);
2875 complete(&work->completion);
2876}
2877
2878static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2879{
2880 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2881
2882 return req->ctx == data;
2883}
2884
2885static __cold void io_ring_exit_work(struct work_struct *work)
2886{
2887 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2888 unsigned long timeout = jiffies + HZ * 60 * 5;
2889 unsigned long interval = HZ / 20;
2890 struct io_tctx_exit exit;
2891 struct io_tctx_node *node;
2892 int ret;
2893
2894 /*
2895 * If we're doing polled IO and end up having requests being
2896 * submitted async (out-of-line), then completions can come in while
2897 * we're waiting for refs to drop. We need to reap these manually,
2898 * as nobody else will be looking for them.
2899 */
2900 do {
2901 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2902 mutex_lock(&ctx->uring_lock);
2903 io_cqring_overflow_kill(ctx);
2904 mutex_unlock(&ctx->uring_lock);
2905 }
2906
2907 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2908 io_move_task_work_from_local(ctx);
2909
2910 while (io_uring_try_cancel_requests(ctx, NULL, true))
2911 cond_resched();
2912
2913 if (ctx->sq_data) {
2914 struct io_sq_data *sqd = ctx->sq_data;
2915 struct task_struct *tsk;
2916
2917 io_sq_thread_park(sqd);
2918 tsk = sqd->thread;
2919 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2920 io_wq_cancel_cb(tsk->io_uring->io_wq,
2921 io_cancel_ctx_cb, ctx, true);
2922 io_sq_thread_unpark(sqd);
2923 }
2924
2925 io_req_caches_free(ctx);
2926
2927 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2928 /* there is little hope left, don't run it too often */
2929 interval = HZ * 60;
2930 }
2931 /*
2932 * This is really an uninterruptible wait, as it has to be
2933 * complete. But it's also run from a kworker, which doesn't
2934 * take signals, so it's fine to make it interruptible. This
2935 * avoids scenarios where we knowingly can wait much longer
2936 * on completions, for example if someone does a SIGSTOP on
2937 * a task that needs to finish task_work to make this loop
2938 * complete. That's a synthetic situation that should not
2939 * cause a stuck task backtrace, and hence a potential panic
2940 * on stuck tasks if that is enabled.
2941 */
2942 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2943
2944 init_completion(&exit.completion);
2945 init_task_work(&exit.task_work, io_tctx_exit_cb);
2946 exit.ctx = ctx;
2947
2948 mutex_lock(&ctx->uring_lock);
2949 while (!list_empty(&ctx->tctx_list)) {
2950 WARN_ON_ONCE(time_after(jiffies, timeout));
2951
2952 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2953 ctx_node);
2954 /* don't spin on a single task if cancellation failed */
2955 list_rotate_left(&ctx->tctx_list);
2956 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2957 if (WARN_ON_ONCE(ret))
2958 continue;
2959
2960 mutex_unlock(&ctx->uring_lock);
2961 /*
2962 * See comment above for
2963 * wait_for_completion_interruptible_timeout() on why this
2964 * wait is marked as interruptible.
2965 */
2966 wait_for_completion_interruptible(&exit.completion);
2967 mutex_lock(&ctx->uring_lock);
2968 }
2969 mutex_unlock(&ctx->uring_lock);
2970 spin_lock(&ctx->completion_lock);
2971 spin_unlock(&ctx->completion_lock);
2972
2973 /* pairs with RCU read section in io_req_local_work_add() */
2974 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2975 synchronize_rcu();
2976
2977 io_ring_ctx_free(ctx);
2978}
2979
2980static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2981{
2982 unsigned long index;
2983 struct creds *creds;
2984
2985 mutex_lock(&ctx->uring_lock);
2986 percpu_ref_kill(&ctx->refs);
2987 xa_for_each(&ctx->personalities, index, creds)
2988 io_unregister_personality(ctx, index);
2989 mutex_unlock(&ctx->uring_lock);
2990
2991 flush_delayed_work(&ctx->fallback_work);
2992
2993 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2994 /*
2995 * Use system_unbound_wq to avoid spawning tons of event kworkers
2996 * if we're exiting a ton of rings at the same time. It just adds
2997 * noise and overhead, there's no discernable change in runtime
2998 * over using system_wq.
2999 */
3000 queue_work(iou_wq, &ctx->exit_work);
3001}
3002
3003static int io_uring_release(struct inode *inode, struct file *file)
3004{
3005 struct io_ring_ctx *ctx = file->private_data;
3006
3007 file->private_data = NULL;
3008 io_ring_ctx_wait_and_kill(ctx);
3009 return 0;
3010}
3011
3012struct io_task_cancel {
3013 struct task_struct *task;
3014 bool all;
3015};
3016
3017static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3018{
3019 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3020 struct io_task_cancel *cancel = data;
3021
3022 return io_match_task_safe(req, cancel->task, cancel->all);
3023}
3024
3025static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3026 struct task_struct *task,
3027 bool cancel_all)
3028{
3029 struct io_defer_entry *de;
3030 LIST_HEAD(list);
3031
3032 spin_lock(&ctx->completion_lock);
3033 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3034 if (io_match_task_safe(de->req, task, cancel_all)) {
3035 list_cut_position(&list, &ctx->defer_list, &de->list);
3036 break;
3037 }
3038 }
3039 spin_unlock(&ctx->completion_lock);
3040 if (list_empty(&list))
3041 return false;
3042
3043 while (!list_empty(&list)) {
3044 de = list_first_entry(&list, struct io_defer_entry, list);
3045 list_del_init(&de->list);
3046 io_req_task_queue_fail(de->req, -ECANCELED);
3047 kfree(de);
3048 }
3049 return true;
3050}
3051
3052static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3053{
3054 struct io_tctx_node *node;
3055 enum io_wq_cancel cret;
3056 bool ret = false;
3057
3058 mutex_lock(&ctx->uring_lock);
3059 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3060 struct io_uring_task *tctx = node->task->io_uring;
3061
3062 /*
3063 * io_wq will stay alive while we hold uring_lock, because it's
3064 * killed after ctx nodes, which requires to take the lock.
3065 */
3066 if (!tctx || !tctx->io_wq)
3067 continue;
3068 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3069 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3070 }
3071 mutex_unlock(&ctx->uring_lock);
3072
3073 return ret;
3074}
3075
3076static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3077 struct task_struct *task,
3078 bool cancel_all)
3079{
3080 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3081 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3082 enum io_wq_cancel cret;
3083 bool ret = false;
3084
3085 /* set it so io_req_local_work_add() would wake us up */
3086 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3087 atomic_set(&ctx->cq_wait_nr, 1);
3088 smp_mb();
3089 }
3090
3091 /* failed during ring init, it couldn't have issued any requests */
3092 if (!ctx->rings)
3093 return false;
3094
3095 if (!task) {
3096 ret |= io_uring_try_cancel_iowq(ctx);
3097 } else if (tctx && tctx->io_wq) {
3098 /*
3099 * Cancels requests of all rings, not only @ctx, but
3100 * it's fine as the task is in exit/exec.
3101 */
3102 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3103 &cancel, true);
3104 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3105 }
3106
3107 /* SQPOLL thread does its own polling */
3108 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3109 (ctx->sq_data && ctx->sq_data->thread == current)) {
3110 while (!wq_list_empty(&ctx->iopoll_list)) {
3111 io_iopoll_try_reap_events(ctx);
3112 ret = true;
3113 cond_resched();
3114 }
3115 }
3116
3117 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3118 io_allowed_defer_tw_run(ctx))
3119 ret |= io_run_local_work(ctx, INT_MAX) > 0;
3120 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3121 mutex_lock(&ctx->uring_lock);
3122 ret |= io_poll_remove_all(ctx, task, cancel_all);
3123 ret |= io_waitid_remove_all(ctx, task, cancel_all);
3124 ret |= io_futex_remove_all(ctx, task, cancel_all);
3125 ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3126 mutex_unlock(&ctx->uring_lock);
3127 ret |= io_kill_timeouts(ctx, task, cancel_all);
3128 if (task)
3129 ret |= io_run_task_work() > 0;
3130 else
3131 ret |= flush_delayed_work(&ctx->fallback_work);
3132 return ret;
3133}
3134
3135static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3136{
3137 if (tracked)
3138 return atomic_read(&tctx->inflight_tracked);
3139 return percpu_counter_sum(&tctx->inflight);
3140}
3141
3142/*
3143 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3144 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3145 */
3146__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3147{
3148 struct io_uring_task *tctx = current->io_uring;
3149 struct io_ring_ctx *ctx;
3150 struct io_tctx_node *node;
3151 unsigned long index;
3152 s64 inflight;
3153 DEFINE_WAIT(wait);
3154
3155 WARN_ON_ONCE(sqd && sqd->thread != current);
3156
3157 if (!current->io_uring)
3158 return;
3159 if (tctx->io_wq)
3160 io_wq_exit_start(tctx->io_wq);
3161
3162 atomic_inc(&tctx->in_cancel);
3163 do {
3164 bool loop = false;
3165
3166 io_uring_drop_tctx_refs(current);
3167 if (!tctx_inflight(tctx, !cancel_all))
3168 break;
3169
3170 /* read completions before cancelations */
3171 inflight = tctx_inflight(tctx, false);
3172 if (!inflight)
3173 break;
3174
3175 if (!sqd) {
3176 xa_for_each(&tctx->xa, index, node) {
3177 /* sqpoll task will cancel all its requests */
3178 if (node->ctx->sq_data)
3179 continue;
3180 loop |= io_uring_try_cancel_requests(node->ctx,
3181 current, cancel_all);
3182 }
3183 } else {
3184 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3185 loop |= io_uring_try_cancel_requests(ctx,
3186 current,
3187 cancel_all);
3188 }
3189
3190 if (loop) {
3191 cond_resched();
3192 continue;
3193 }
3194
3195 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3196 io_run_task_work();
3197 io_uring_drop_tctx_refs(current);
3198 xa_for_each(&tctx->xa, index, node) {
3199 if (!llist_empty(&node->ctx->work_llist)) {
3200 WARN_ON_ONCE(node->ctx->submitter_task &&
3201 node->ctx->submitter_task != current);
3202 goto end_wait;
3203 }
3204 }
3205 /*
3206 * If we've seen completions, retry without waiting. This
3207 * avoids a race where a completion comes in before we did
3208 * prepare_to_wait().
3209 */
3210 if (inflight == tctx_inflight(tctx, !cancel_all))
3211 schedule();
3212end_wait:
3213 finish_wait(&tctx->wait, &wait);
3214 } while (1);
3215
3216 io_uring_clean_tctx(tctx);
3217 if (cancel_all) {
3218 /*
3219 * We shouldn't run task_works after cancel, so just leave
3220 * ->in_cancel set for normal exit.
3221 */
3222 atomic_dec(&tctx->in_cancel);
3223 /* for exec all current's requests should be gone, kill tctx */
3224 __io_uring_free(current);
3225 }
3226}
3227
3228void __io_uring_cancel(bool cancel_all)
3229{
3230 io_uring_cancel_generic(cancel_all, NULL);
3231}
3232
3233static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3234{
3235 if (flags & IORING_ENTER_EXT_ARG) {
3236 struct io_uring_getevents_arg arg;
3237
3238 if (argsz != sizeof(arg))
3239 return -EINVAL;
3240 if (copy_from_user(&arg, argp, sizeof(arg)))
3241 return -EFAULT;
3242 }
3243 return 0;
3244}
3245
3246static int io_get_ext_arg(unsigned flags, const void __user *argp,
3247 struct ext_arg *ext_arg)
3248{
3249 struct io_uring_getevents_arg arg;
3250
3251 /*
3252 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3253 * is just a pointer to the sigset_t.
3254 */
3255 if (!(flags & IORING_ENTER_EXT_ARG)) {
3256 ext_arg->sig = (const sigset_t __user *) argp;
3257 ext_arg->ts = NULL;
3258 return 0;
3259 }
3260
3261 /*
3262 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3263 * timespec and sigset_t pointers if good.
3264 */
3265 if (ext_arg->argsz != sizeof(arg))
3266 return -EINVAL;
3267 if (copy_from_user(&arg, argp, sizeof(arg)))
3268 return -EFAULT;
3269 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3270 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3271 ext_arg->argsz = arg.sigmask_sz;
3272 ext_arg->ts = u64_to_user_ptr(arg.ts);
3273 return 0;
3274}
3275
3276SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3277 u32, min_complete, u32, flags, const void __user *, argp,
3278 size_t, argsz)
3279{
3280 struct io_ring_ctx *ctx;
3281 struct file *file;
3282 long ret;
3283
3284 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3285 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3286 IORING_ENTER_REGISTERED_RING |
3287 IORING_ENTER_ABS_TIMER)))
3288 return -EINVAL;
3289
3290 /*
3291 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3292 * need only dereference our task private array to find it.
3293 */
3294 if (flags & IORING_ENTER_REGISTERED_RING) {
3295 struct io_uring_task *tctx = current->io_uring;
3296
3297 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3298 return -EINVAL;
3299 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3300 file = tctx->registered_rings[fd];
3301 if (unlikely(!file))
3302 return -EBADF;
3303 } else {
3304 file = fget(fd);
3305 if (unlikely(!file))
3306 return -EBADF;
3307 ret = -EOPNOTSUPP;
3308 if (unlikely(!io_is_uring_fops(file)))
3309 goto out;
3310 }
3311
3312 ctx = file->private_data;
3313 ret = -EBADFD;
3314 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3315 goto out;
3316
3317 /*
3318 * For SQ polling, the thread will do all submissions and completions.
3319 * Just return the requested submit count, and wake the thread if
3320 * we were asked to.
3321 */
3322 ret = 0;
3323 if (ctx->flags & IORING_SETUP_SQPOLL) {
3324 if (unlikely(ctx->sq_data->thread == NULL)) {
3325 ret = -EOWNERDEAD;
3326 goto out;
3327 }
3328 if (flags & IORING_ENTER_SQ_WAKEUP)
3329 wake_up(&ctx->sq_data->wait);
3330 if (flags & IORING_ENTER_SQ_WAIT)
3331 io_sqpoll_wait_sq(ctx);
3332
3333 ret = to_submit;
3334 } else if (to_submit) {
3335 ret = io_uring_add_tctx_node(ctx);
3336 if (unlikely(ret))
3337 goto out;
3338
3339 mutex_lock(&ctx->uring_lock);
3340 ret = io_submit_sqes(ctx, to_submit);
3341 if (ret != to_submit) {
3342 mutex_unlock(&ctx->uring_lock);
3343 goto out;
3344 }
3345 if (flags & IORING_ENTER_GETEVENTS) {
3346 if (ctx->syscall_iopoll)
3347 goto iopoll_locked;
3348 /*
3349 * Ignore errors, we'll soon call io_cqring_wait() and
3350 * it should handle ownership problems if any.
3351 */
3352 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3353 (void)io_run_local_work_locked(ctx, min_complete);
3354 }
3355 mutex_unlock(&ctx->uring_lock);
3356 }
3357
3358 if (flags & IORING_ENTER_GETEVENTS) {
3359 int ret2;
3360
3361 if (ctx->syscall_iopoll) {
3362 /*
3363 * We disallow the app entering submit/complete with
3364 * polling, but we still need to lock the ring to
3365 * prevent racing with polled issue that got punted to
3366 * a workqueue.
3367 */
3368 mutex_lock(&ctx->uring_lock);
3369iopoll_locked:
3370 ret2 = io_validate_ext_arg(flags, argp, argsz);
3371 if (likely(!ret2)) {
3372 min_complete = min(min_complete,
3373 ctx->cq_entries);
3374 ret2 = io_iopoll_check(ctx, min_complete);
3375 }
3376 mutex_unlock(&ctx->uring_lock);
3377 } else {
3378 struct ext_arg ext_arg = { .argsz = argsz };
3379
3380 ret2 = io_get_ext_arg(flags, argp, &ext_arg);
3381 if (likely(!ret2)) {
3382 min_complete = min(min_complete,
3383 ctx->cq_entries);
3384 ret2 = io_cqring_wait(ctx, min_complete, flags,
3385 &ext_arg);
3386 }
3387 }
3388
3389 if (!ret) {
3390 ret = ret2;
3391
3392 /*
3393 * EBADR indicates that one or more CQE were dropped.
3394 * Once the user has been informed we can clear the bit
3395 * as they are obviously ok with those drops.
3396 */
3397 if (unlikely(ret2 == -EBADR))
3398 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3399 &ctx->check_cq);
3400 }
3401 }
3402out:
3403 if (!(flags & IORING_ENTER_REGISTERED_RING))
3404 fput(file);
3405 return ret;
3406}
3407
3408static const struct file_operations io_uring_fops = {
3409 .release = io_uring_release,
3410 .mmap = io_uring_mmap,
3411 .get_unmapped_area = io_uring_get_unmapped_area,
3412#ifndef CONFIG_MMU
3413 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3414#endif
3415 .poll = io_uring_poll,
3416#ifdef CONFIG_PROC_FS
3417 .show_fdinfo = io_uring_show_fdinfo,
3418#endif
3419};
3420
3421bool io_is_uring_fops(struct file *file)
3422{
3423 return file->f_op == &io_uring_fops;
3424}
3425
3426static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3427 struct io_uring_params *p)
3428{
3429 struct io_rings *rings;
3430 size_t size, sq_array_offset;
3431 void *ptr;
3432
3433 /* make sure these are sane, as we already accounted them */
3434 ctx->sq_entries = p->sq_entries;
3435 ctx->cq_entries = p->cq_entries;
3436
3437 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3438 if (size == SIZE_MAX)
3439 return -EOVERFLOW;
3440
3441 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3442 rings = io_pages_map(&ctx->ring_pages, &ctx->n_ring_pages, size);
3443 else
3444 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3445
3446 if (IS_ERR(rings))
3447 return PTR_ERR(rings);
3448
3449 ctx->rings = rings;
3450 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3451 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3452 rings->sq_ring_mask = p->sq_entries - 1;
3453 rings->cq_ring_mask = p->cq_entries - 1;
3454 rings->sq_ring_entries = p->sq_entries;
3455 rings->cq_ring_entries = p->cq_entries;
3456
3457 if (p->flags & IORING_SETUP_SQE128)
3458 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3459 else
3460 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3461 if (size == SIZE_MAX) {
3462 io_rings_free(ctx);
3463 return -EOVERFLOW;
3464 }
3465
3466 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3467 ptr = io_pages_map(&ctx->sqe_pages, &ctx->n_sqe_pages, size);
3468 else
3469 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3470
3471 if (IS_ERR(ptr)) {
3472 io_rings_free(ctx);
3473 return PTR_ERR(ptr);
3474 }
3475
3476 ctx->sq_sqes = ptr;
3477 return 0;
3478}
3479
3480static int io_uring_install_fd(struct file *file)
3481{
3482 int fd;
3483
3484 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3485 if (fd < 0)
3486 return fd;
3487 fd_install(fd, file);
3488 return fd;
3489}
3490
3491/*
3492 * Allocate an anonymous fd, this is what constitutes the application
3493 * visible backing of an io_uring instance. The application mmaps this
3494 * fd to gain access to the SQ/CQ ring details.
3495 */
3496static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3497{
3498 /* Create a new inode so that the LSM can block the creation. */
3499 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3500 O_RDWR | O_CLOEXEC, NULL);
3501}
3502
3503static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3504 struct io_uring_params __user *params)
3505{
3506 struct io_ring_ctx *ctx;
3507 struct io_uring_task *tctx;
3508 struct file *file;
3509 int ret;
3510
3511 if (!entries)
3512 return -EINVAL;
3513 if (entries > IORING_MAX_ENTRIES) {
3514 if (!(p->flags & IORING_SETUP_CLAMP))
3515 return -EINVAL;
3516 entries = IORING_MAX_ENTRIES;
3517 }
3518
3519 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3520 && !(p->flags & IORING_SETUP_NO_MMAP))
3521 return -EINVAL;
3522
3523 /*
3524 * Use twice as many entries for the CQ ring. It's possible for the
3525 * application to drive a higher depth than the size of the SQ ring,
3526 * since the sqes are only used at submission time. This allows for
3527 * some flexibility in overcommitting a bit. If the application has
3528 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3529 * of CQ ring entries manually.
3530 */
3531 p->sq_entries = roundup_pow_of_two(entries);
3532 if (p->flags & IORING_SETUP_CQSIZE) {
3533 /*
3534 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3535 * to a power-of-two, if it isn't already. We do NOT impose
3536 * any cq vs sq ring sizing.
3537 */
3538 if (!p->cq_entries)
3539 return -EINVAL;
3540 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3541 if (!(p->flags & IORING_SETUP_CLAMP))
3542 return -EINVAL;
3543 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3544 }
3545 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3546 if (p->cq_entries < p->sq_entries)
3547 return -EINVAL;
3548 } else {
3549 p->cq_entries = 2 * p->sq_entries;
3550 }
3551
3552 ctx = io_ring_ctx_alloc(p);
3553 if (!ctx)
3554 return -ENOMEM;
3555
3556 ctx->clockid = CLOCK_MONOTONIC;
3557 ctx->clock_offset = 0;
3558
3559 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3560 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3561 !(ctx->flags & IORING_SETUP_SQPOLL))
3562 ctx->task_complete = true;
3563
3564 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3565 ctx->lockless_cq = true;
3566
3567 /*
3568 * lazy poll_wq activation relies on ->task_complete for synchronisation
3569 * purposes, see io_activate_pollwq()
3570 */
3571 if (!ctx->task_complete)
3572 ctx->poll_activated = true;
3573
3574 /*
3575 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3576 * space applications don't need to do io completion events
3577 * polling again, they can rely on io_sq_thread to do polling
3578 * work, which can reduce cpu usage and uring_lock contention.
3579 */
3580 if (ctx->flags & IORING_SETUP_IOPOLL &&
3581 !(ctx->flags & IORING_SETUP_SQPOLL))
3582 ctx->syscall_iopoll = 1;
3583
3584 ctx->compat = in_compat_syscall();
3585 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3586 ctx->user = get_uid(current_user());
3587
3588 /*
3589 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3590 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3591 */
3592 ret = -EINVAL;
3593 if (ctx->flags & IORING_SETUP_SQPOLL) {
3594 /* IPI related flags don't make sense with SQPOLL */
3595 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3596 IORING_SETUP_TASKRUN_FLAG |
3597 IORING_SETUP_DEFER_TASKRUN))
3598 goto err;
3599 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3600 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3601 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3602 } else {
3603 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3604 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3605 goto err;
3606 ctx->notify_method = TWA_SIGNAL;
3607 }
3608
3609 /*
3610 * For DEFER_TASKRUN we require the completion task to be the same as the
3611 * submission task. This implies that there is only one submitter, so enforce
3612 * that.
3613 */
3614 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3615 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3616 goto err;
3617 }
3618
3619 /*
3620 * This is just grabbed for accounting purposes. When a process exits,
3621 * the mm is exited and dropped before the files, hence we need to hang
3622 * on to this mm purely for the purposes of being able to unaccount
3623 * memory (locked/pinned vm). It's not used for anything else.
3624 */
3625 mmgrab(current->mm);
3626 ctx->mm_account = current->mm;
3627
3628 ret = io_allocate_scq_urings(ctx, p);
3629 if (ret)
3630 goto err;
3631
3632 ret = io_sq_offload_create(ctx, p);
3633 if (ret)
3634 goto err;
3635
3636 ret = io_rsrc_init(ctx);
3637 if (ret)
3638 goto err;
3639
3640 p->sq_off.head = offsetof(struct io_rings, sq.head);
3641 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3642 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3643 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3644 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3645 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3646 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3647 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3648 p->sq_off.resv1 = 0;
3649 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3650 p->sq_off.user_addr = 0;
3651
3652 p->cq_off.head = offsetof(struct io_rings, cq.head);
3653 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3654 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3655 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3656 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3657 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3658 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3659 p->cq_off.resv1 = 0;
3660 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3661 p->cq_off.user_addr = 0;
3662
3663 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3664 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3665 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3666 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3667 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3668 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3669 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3670 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT;
3671
3672 if (copy_to_user(params, p, sizeof(*p))) {
3673 ret = -EFAULT;
3674 goto err;
3675 }
3676
3677 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3678 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3679 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3680
3681 file = io_uring_get_file(ctx);
3682 if (IS_ERR(file)) {
3683 ret = PTR_ERR(file);
3684 goto err;
3685 }
3686
3687 ret = __io_uring_add_tctx_node(ctx);
3688 if (ret)
3689 goto err_fput;
3690 tctx = current->io_uring;
3691
3692 /*
3693 * Install ring fd as the very last thing, so we don't risk someone
3694 * having closed it before we finish setup
3695 */
3696 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3697 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3698 else
3699 ret = io_uring_install_fd(file);
3700 if (ret < 0)
3701 goto err_fput;
3702
3703 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3704 return ret;
3705err:
3706 io_ring_ctx_wait_and_kill(ctx);
3707 return ret;
3708err_fput:
3709 fput(file);
3710 return ret;
3711}
3712
3713/*
3714 * Sets up an aio uring context, and returns the fd. Applications asks for a
3715 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3716 * params structure passed in.
3717 */
3718static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3719{
3720 struct io_uring_params p;
3721 int i;
3722
3723 if (copy_from_user(&p, params, sizeof(p)))
3724 return -EFAULT;
3725 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3726 if (p.resv[i])
3727 return -EINVAL;
3728 }
3729
3730 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3731 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3732 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3733 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3734 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3735 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3736 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3737 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3738 IORING_SETUP_NO_SQARRAY))
3739 return -EINVAL;
3740
3741 return io_uring_create(entries, &p, params);
3742}
3743
3744static inline bool io_uring_allowed(void)
3745{
3746 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3747 kgid_t io_uring_group;
3748
3749 if (disabled == 2)
3750 return false;
3751
3752 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3753 return true;
3754
3755 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3756 if (!gid_valid(io_uring_group))
3757 return false;
3758
3759 return in_group_p(io_uring_group);
3760}
3761
3762SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3763 struct io_uring_params __user *, params)
3764{
3765 if (!io_uring_allowed())
3766 return -EPERM;
3767
3768 return io_uring_setup(entries, params);
3769}
3770
3771static int __init io_uring_init(void)
3772{
3773 struct kmem_cache_args kmem_args = {
3774 .useroffset = offsetof(struct io_kiocb, cmd.data),
3775 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3776 };
3777
3778#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3779 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3780 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3781} while (0)
3782
3783#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3784 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3785#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3786 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3787 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3788 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3789 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3790 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3791 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3792 BUILD_BUG_SQE_ELEM(8, __u64, off);
3793 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3794 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3795 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3796 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3797 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3798 BUILD_BUG_SQE_ELEM(24, __u32, len);
3799 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3800 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3801 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3802 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3803 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3804 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3805 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3806 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3807 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3808 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3809 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3810 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3811 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3812 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3813 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3814 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3815 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3816 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3817 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3818 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3819 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3820 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3821 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3822 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3823 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3824 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3825 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3826 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3827 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3828 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3829 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3830
3831 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3832 sizeof(struct io_uring_rsrc_update));
3833 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3834 sizeof(struct io_uring_rsrc_update2));
3835
3836 /* ->buf_index is u16 */
3837 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3838 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3839 offsetof(struct io_uring_buf_ring, tail));
3840
3841 /* should fit into one byte */
3842 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3843 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3844 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3845
3846 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3847
3848 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3849
3850 /* top 8bits are for internal use */
3851 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3852
3853 io_uring_optable_init();
3854
3855 /*
3856 * Allow user copy in the per-command field, which starts after the
3857 * file in io_kiocb and until the opcode field. The openat2 handling
3858 * requires copying in user memory into the io_kiocb object in that
3859 * range, and HARDENED_USERCOPY will complain if we haven't
3860 * correctly annotated this range.
3861 */
3862 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3863 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3864 SLAB_TYPESAFE_BY_RCU);
3865 io_buf_cachep = KMEM_CACHE(io_buffer,
3866 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
3867
3868 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3869
3870#ifdef CONFIG_SYSCTL
3871 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3872#endif
3873
3874 return 0;
3875};
3876__initcall(io_uring_init);