io_uring: lockless task list
[linux-2.6-block.git] / io_uring / io_uring.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <net/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49#include <linux/bits.h>
50
51#include <linux/sched/signal.h>
52#include <linux/fs.h>
53#include <linux/file.h>
54#include <linux/fdtable.h>
55#include <linux/mm.h>
56#include <linux/mman.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/bvec.h>
60#include <linux/net.h>
61#include <net/sock.h>
62#include <net/af_unix.h>
63#include <net/scm.h>
64#include <linux/anon_inodes.h>
65#include <linux/sched/mm.h>
66#include <linux/uaccess.h>
67#include <linux/nospec.h>
68#include <linux/highmem.h>
69#include <linux/fsnotify.h>
70#include <linux/fadvise.h>
71#include <linux/task_work.h>
72#include <linux/io_uring.h>
73#include <linux/audit.h>
74#include <linux/security.h>
75
76#define CREATE_TRACE_POINTS
77#include <trace/events/io_uring.h>
78
79#include <uapi/linux/io_uring.h>
80
81#include "io-wq.h"
82
83#include "io_uring.h"
84#include "opdef.h"
85#include "refs.h"
86#include "tctx.h"
87#include "sqpoll.h"
88#include "fdinfo.h"
89#include "kbuf.h"
90#include "rsrc.h"
91#include "cancel.h"
92
93#include "timeout.h"
94#include "poll.h"
95
96#define IORING_MAX_ENTRIES 32768
97#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
98
99#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
100 IORING_REGISTER_LAST + IORING_OP_LAST)
101
102#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
103 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
104
105#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
106 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
107
108#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
109 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
110 REQ_F_ASYNC_DATA)
111
112#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
113 IO_REQ_CLEAN_FLAGS)
114
115#define IO_TCTX_REFS_CACHE_NR (1U << 10)
116
117#define IO_COMPL_BATCH 32
118#define IO_REQ_ALLOC_BATCH 8
119
120enum {
121 IO_CHECK_CQ_OVERFLOW_BIT,
122 IO_CHECK_CQ_DROPPED_BIT,
123};
124
125struct io_defer_entry {
126 struct list_head list;
127 struct io_kiocb *req;
128 u32 seq;
129};
130
131/* requests with any of those set should undergo io_disarm_next() */
132#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
133#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
134
135static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
136 struct task_struct *task,
137 bool cancel_all);
138
139static void io_dismantle_req(struct io_kiocb *req);
140static void io_clean_op(struct io_kiocb *req);
141static void io_queue_sqe(struct io_kiocb *req);
142
143static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
144
145static struct kmem_cache *req_cachep;
146
147struct sock *io_uring_get_socket(struct file *file)
148{
149#if defined(CONFIG_UNIX)
150 if (io_is_uring_fops(file)) {
151 struct io_ring_ctx *ctx = file->private_data;
152
153 return ctx->ring_sock->sk;
154 }
155#endif
156 return NULL;
157}
158EXPORT_SYMBOL(io_uring_get_socket);
159
160static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
161{
162 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
163 __io_submit_flush_completions(ctx);
164}
165
166static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
167{
168 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
169}
170
171static bool io_match_linked(struct io_kiocb *head)
172{
173 struct io_kiocb *req;
174
175 io_for_each_link(req, head) {
176 if (req->flags & REQ_F_INFLIGHT)
177 return true;
178 }
179 return false;
180}
181
182/*
183 * As io_match_task() but protected against racing with linked timeouts.
184 * User must not hold timeout_lock.
185 */
186bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
187 bool cancel_all)
188{
189 bool matched;
190
191 if (task && head->task != task)
192 return false;
193 if (cancel_all)
194 return true;
195
196 if (head->flags & REQ_F_LINK_TIMEOUT) {
197 struct io_ring_ctx *ctx = head->ctx;
198
199 /* protect against races with linked timeouts */
200 spin_lock_irq(&ctx->timeout_lock);
201 matched = io_match_linked(head);
202 spin_unlock_irq(&ctx->timeout_lock);
203 } else {
204 matched = io_match_linked(head);
205 }
206 return matched;
207}
208
209static inline void req_fail_link_node(struct io_kiocb *req, int res)
210{
211 req_set_fail(req);
212 io_req_set_res(req, res, 0);
213}
214
215static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
216{
217 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
218}
219
220static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
221{
222 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
223
224 complete(&ctx->ref_comp);
225}
226
227static __cold void io_fallback_req_func(struct work_struct *work)
228{
229 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
230 fallback_work.work);
231 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
232 struct io_kiocb *req, *tmp;
233 bool locked = false;
234
235 percpu_ref_get(&ctx->refs);
236 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
237 req->io_task_work.func(req, &locked);
238
239 if (locked) {
240 io_submit_flush_completions(ctx);
241 mutex_unlock(&ctx->uring_lock);
242 }
243 percpu_ref_put(&ctx->refs);
244}
245
246static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
247{
248 unsigned hash_buckets = 1U << bits;
249 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
250
251 table->hbs = kmalloc(hash_size, GFP_KERNEL);
252 if (!table->hbs)
253 return -ENOMEM;
254
255 table->hash_bits = bits;
256 init_hash_table(table, hash_buckets);
257 return 0;
258}
259
260static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
261{
262 struct io_ring_ctx *ctx;
263 int hash_bits;
264
265 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
266 if (!ctx)
267 return NULL;
268
269 xa_init(&ctx->io_bl_xa);
270
271 /*
272 * Use 5 bits less than the max cq entries, that should give us around
273 * 32 entries per hash list if totally full and uniformly spread, but
274 * don't keep too many buckets to not overconsume memory.
275 */
276 hash_bits = ilog2(p->cq_entries) - 5;
277 hash_bits = clamp(hash_bits, 1, 8);
278 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
279 goto err;
280 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
281 goto err;
282
283 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
284 if (!ctx->dummy_ubuf)
285 goto err;
286 /* set invalid range, so io_import_fixed() fails meeting it */
287 ctx->dummy_ubuf->ubuf = -1UL;
288
289 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
290 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
291 goto err;
292
293 ctx->flags = p->flags;
294 init_waitqueue_head(&ctx->sqo_sq_wait);
295 INIT_LIST_HEAD(&ctx->sqd_list);
296 INIT_LIST_HEAD(&ctx->cq_overflow_list);
297 INIT_LIST_HEAD(&ctx->io_buffers_cache);
298 INIT_LIST_HEAD(&ctx->apoll_cache);
299 init_completion(&ctx->ref_comp);
300 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
301 mutex_init(&ctx->uring_lock);
302 init_waitqueue_head(&ctx->cq_wait);
303 spin_lock_init(&ctx->completion_lock);
304 spin_lock_init(&ctx->timeout_lock);
305 INIT_WQ_LIST(&ctx->iopoll_list);
306 INIT_LIST_HEAD(&ctx->io_buffers_pages);
307 INIT_LIST_HEAD(&ctx->io_buffers_comp);
308 INIT_LIST_HEAD(&ctx->defer_list);
309 INIT_LIST_HEAD(&ctx->timeout_list);
310 INIT_LIST_HEAD(&ctx->ltimeout_list);
311 spin_lock_init(&ctx->rsrc_ref_lock);
312 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
313 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
314 init_llist_head(&ctx->rsrc_put_llist);
315 INIT_LIST_HEAD(&ctx->tctx_list);
316 ctx->submit_state.free_list.next = NULL;
317 INIT_WQ_LIST(&ctx->locked_free_list);
318 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
319 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
320 return ctx;
321err:
322 kfree(ctx->dummy_ubuf);
323 kfree(ctx->cancel_table.hbs);
324 kfree(ctx->cancel_table_locked.hbs);
325 kfree(ctx->io_bl);
326 xa_destroy(&ctx->io_bl_xa);
327 kfree(ctx);
328 return NULL;
329}
330
331static void io_account_cq_overflow(struct io_ring_ctx *ctx)
332{
333 struct io_rings *r = ctx->rings;
334
335 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
336 ctx->cq_extra--;
337}
338
339static bool req_need_defer(struct io_kiocb *req, u32 seq)
340{
341 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
342 struct io_ring_ctx *ctx = req->ctx;
343
344 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
345 }
346
347 return false;
348}
349
350static inline void io_req_track_inflight(struct io_kiocb *req)
351{
352 if (!(req->flags & REQ_F_INFLIGHT)) {
353 req->flags |= REQ_F_INFLIGHT;
354 atomic_inc(&req->task->io_uring->inflight_tracked);
355 }
356}
357
358static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
359{
360 if (WARN_ON_ONCE(!req->link))
361 return NULL;
362
363 req->flags &= ~REQ_F_ARM_LTIMEOUT;
364 req->flags |= REQ_F_LINK_TIMEOUT;
365
366 /* linked timeouts should have two refs once prep'ed */
367 io_req_set_refcount(req);
368 __io_req_set_refcount(req->link, 2);
369 return req->link;
370}
371
372static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
373{
374 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
375 return NULL;
376 return __io_prep_linked_timeout(req);
377}
378
379static noinline void __io_arm_ltimeout(struct io_kiocb *req)
380{
381 io_queue_linked_timeout(__io_prep_linked_timeout(req));
382}
383
384static inline void io_arm_ltimeout(struct io_kiocb *req)
385{
386 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
387 __io_arm_ltimeout(req);
388}
389
390static void io_prep_async_work(struct io_kiocb *req)
391{
392 const struct io_op_def *def = &io_op_defs[req->opcode];
393 struct io_ring_ctx *ctx = req->ctx;
394
395 if (!(req->flags & REQ_F_CREDS)) {
396 req->flags |= REQ_F_CREDS;
397 req->creds = get_current_cred();
398 }
399
400 req->work.list.next = NULL;
401 req->work.flags = 0;
402 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
403 if (req->flags & REQ_F_FORCE_ASYNC)
404 req->work.flags |= IO_WQ_WORK_CONCURRENT;
405
406 if (req->flags & REQ_F_ISREG) {
407 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
408 io_wq_hash_work(&req->work, file_inode(req->file));
409 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
410 if (def->unbound_nonreg_file)
411 req->work.flags |= IO_WQ_WORK_UNBOUND;
412 }
413}
414
415static void io_prep_async_link(struct io_kiocb *req)
416{
417 struct io_kiocb *cur;
418
419 if (req->flags & REQ_F_LINK_TIMEOUT) {
420 struct io_ring_ctx *ctx = req->ctx;
421
422 spin_lock_irq(&ctx->timeout_lock);
423 io_for_each_link(cur, req)
424 io_prep_async_work(cur);
425 spin_unlock_irq(&ctx->timeout_lock);
426 } else {
427 io_for_each_link(cur, req)
428 io_prep_async_work(cur);
429 }
430}
431
432void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
433{
434 struct io_kiocb *link = io_prep_linked_timeout(req);
435 struct io_uring_task *tctx = req->task->io_uring;
436
437 BUG_ON(!tctx);
438 BUG_ON(!tctx->io_wq);
439
440 /* init ->work of the whole link before punting */
441 io_prep_async_link(req);
442
443 /*
444 * Not expected to happen, but if we do have a bug where this _can_
445 * happen, catch it here and ensure the request is marked as
446 * canceled. That will make io-wq go through the usual work cancel
447 * procedure rather than attempt to run this request (or create a new
448 * worker for it).
449 */
450 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
451 req->work.flags |= IO_WQ_WORK_CANCEL;
452
453 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
454 io_wq_enqueue(tctx->io_wq, &req->work);
455 if (link)
456 io_queue_linked_timeout(link);
457}
458
459static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
460{
461 while (!list_empty(&ctx->defer_list)) {
462 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
463 struct io_defer_entry, list);
464
465 if (req_need_defer(de->req, de->seq))
466 break;
467 list_del_init(&de->list);
468 io_req_task_queue(de->req);
469 kfree(de);
470 }
471}
472
473static void io_eventfd_signal(struct io_ring_ctx *ctx)
474{
475 struct io_ev_fd *ev_fd;
476 bool skip;
477
478 spin_lock(&ctx->completion_lock);
479 /*
480 * Eventfd should only get triggered when at least one event has been
481 * posted. Some applications rely on the eventfd notification count only
482 * changing IFF a new CQE has been added to the CQ ring. There's no
483 * depedency on 1:1 relationship between how many times this function is
484 * called (and hence the eventfd count) and number of CQEs posted to the
485 * CQ ring.
486 */
487 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
488 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
489 spin_unlock(&ctx->completion_lock);
490 if (skip)
491 return;
492
493 rcu_read_lock();
494 /*
495 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
496 * and eventfd_signal
497 */
498 ev_fd = rcu_dereference(ctx->io_ev_fd);
499
500 /*
501 * Check again if ev_fd exists incase an io_eventfd_unregister call
502 * completed between the NULL check of ctx->io_ev_fd at the start of
503 * the function and rcu_read_lock.
504 */
505 if (unlikely(!ev_fd))
506 goto out;
507 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
508 goto out;
509
510 if (!ev_fd->eventfd_async || io_wq_current_is_worker())
511 eventfd_signal(ev_fd->cq_ev_fd, 1);
512out:
513 rcu_read_unlock();
514}
515
516void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
517{
518 if (ctx->off_timeout_used || ctx->drain_active) {
519 spin_lock(&ctx->completion_lock);
520 if (ctx->off_timeout_used)
521 io_flush_timeouts(ctx);
522 if (ctx->drain_active)
523 io_queue_deferred(ctx);
524 spin_unlock(&ctx->completion_lock);
525 }
526 if (ctx->has_evfd)
527 io_eventfd_signal(ctx);
528}
529
530static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
531{
532 io_commit_cqring_flush(ctx);
533 io_cqring_wake(ctx);
534}
535
536static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
537 __releases(ctx->completion_lock)
538{
539 io_commit_cqring(ctx);
540 spin_unlock(&ctx->completion_lock);
541 io_cqring_ev_posted(ctx);
542}
543
544void io_cq_unlock_post(struct io_ring_ctx *ctx)
545{
546 __io_cq_unlock_post(ctx);
547}
548
549/* Returns true if there are no backlogged entries after the flush */
550static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
551{
552 bool all_flushed;
553 size_t cqe_size = sizeof(struct io_uring_cqe);
554
555 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
556 return false;
557
558 if (ctx->flags & IORING_SETUP_CQE32)
559 cqe_size <<= 1;
560
561 io_cq_lock(ctx);
562 while (!list_empty(&ctx->cq_overflow_list)) {
563 struct io_uring_cqe *cqe = io_get_cqe(ctx);
564 struct io_overflow_cqe *ocqe;
565
566 if (!cqe && !force)
567 break;
568 ocqe = list_first_entry(&ctx->cq_overflow_list,
569 struct io_overflow_cqe, list);
570 if (cqe)
571 memcpy(cqe, &ocqe->cqe, cqe_size);
572 else
573 io_account_cq_overflow(ctx);
574
575 list_del(&ocqe->list);
576 kfree(ocqe);
577 }
578
579 all_flushed = list_empty(&ctx->cq_overflow_list);
580 if (all_flushed) {
581 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
582 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
583 }
584
585 io_cq_unlock_post(ctx);
586 return all_flushed;
587}
588
589static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
590{
591 bool ret = true;
592
593 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
594 /* iopoll syncs against uring_lock, not completion_lock */
595 if (ctx->flags & IORING_SETUP_IOPOLL)
596 mutex_lock(&ctx->uring_lock);
597 ret = __io_cqring_overflow_flush(ctx, false);
598 if (ctx->flags & IORING_SETUP_IOPOLL)
599 mutex_unlock(&ctx->uring_lock);
600 }
601
602 return ret;
603}
604
605static void __io_put_task(struct task_struct *task, int nr)
606{
607 struct io_uring_task *tctx = task->io_uring;
608
609 percpu_counter_sub(&tctx->inflight, nr);
610 if (unlikely(atomic_read(&tctx->in_idle)))
611 wake_up(&tctx->wait);
612 put_task_struct_many(task, nr);
613}
614
615/* must to be called somewhat shortly after putting a request */
616static inline void io_put_task(struct task_struct *task, int nr)
617{
618 if (likely(task == current))
619 task->io_uring->cached_refs += nr;
620 else
621 __io_put_task(task, nr);
622}
623
624static void io_task_refs_refill(struct io_uring_task *tctx)
625{
626 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
627
628 percpu_counter_add(&tctx->inflight, refill);
629 refcount_add(refill, &current->usage);
630 tctx->cached_refs += refill;
631}
632
633static inline void io_get_task_refs(int nr)
634{
635 struct io_uring_task *tctx = current->io_uring;
636
637 tctx->cached_refs -= nr;
638 if (unlikely(tctx->cached_refs < 0))
639 io_task_refs_refill(tctx);
640}
641
642static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
643{
644 struct io_uring_task *tctx = task->io_uring;
645 unsigned int refs = tctx->cached_refs;
646
647 if (refs) {
648 tctx->cached_refs = 0;
649 percpu_counter_sub(&tctx->inflight, refs);
650 put_task_struct_many(task, refs);
651 }
652}
653
654static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
655 s32 res, u32 cflags, u64 extra1, u64 extra2)
656{
657 struct io_overflow_cqe *ocqe;
658 size_t ocq_size = sizeof(struct io_overflow_cqe);
659 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
660
661 if (is_cqe32)
662 ocq_size += sizeof(struct io_uring_cqe);
663
664 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
665 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
666 if (!ocqe) {
667 /*
668 * If we're in ring overflow flush mode, or in task cancel mode,
669 * or cannot allocate an overflow entry, then we need to drop it
670 * on the floor.
671 */
672 io_account_cq_overflow(ctx);
673 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
674 return false;
675 }
676 if (list_empty(&ctx->cq_overflow_list)) {
677 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
678 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
679
680 }
681 ocqe->cqe.user_data = user_data;
682 ocqe->cqe.res = res;
683 ocqe->cqe.flags = cflags;
684 if (is_cqe32) {
685 ocqe->cqe.big_cqe[0] = extra1;
686 ocqe->cqe.big_cqe[1] = extra2;
687 }
688 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
689 return true;
690}
691
692bool io_req_cqe_overflow(struct io_kiocb *req)
693{
694 if (!(req->flags & REQ_F_CQE32_INIT)) {
695 req->extra1 = 0;
696 req->extra2 = 0;
697 }
698 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
699 req->cqe.res, req->cqe.flags,
700 req->extra1, req->extra2);
701}
702
703/*
704 * writes to the cq entry need to come after reading head; the
705 * control dependency is enough as we're using WRITE_ONCE to
706 * fill the cq entry
707 */
708struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx)
709{
710 struct io_rings *rings = ctx->rings;
711 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
712 unsigned int free, queued, len;
713
714
715 /* userspace may cheat modifying the tail, be safe and do min */
716 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
717 free = ctx->cq_entries - queued;
718 /* we need a contiguous range, limit based on the current array offset */
719 len = min(free, ctx->cq_entries - off);
720 if (!len)
721 return NULL;
722
723 if (ctx->flags & IORING_SETUP_CQE32) {
724 off <<= 1;
725 len <<= 1;
726 }
727
728 ctx->cqe_cached = &rings->cqes[off];
729 ctx->cqe_sentinel = ctx->cqe_cached + len;
730
731 ctx->cached_cq_tail++;
732 ctx->cqe_cached++;
733 if (ctx->flags & IORING_SETUP_CQE32)
734 ctx->cqe_cached++;
735 return &rings->cqes[off];
736}
737
738static bool io_fill_cqe_aux(struct io_ring_ctx *ctx,
739 u64 user_data, s32 res, u32 cflags)
740{
741 struct io_uring_cqe *cqe;
742
743 ctx->cq_extra++;
744 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
745
746 /*
747 * If we can't get a cq entry, userspace overflowed the
748 * submission (by quite a lot). Increment the overflow count in
749 * the ring.
750 */
751 cqe = io_get_cqe(ctx);
752 if (likely(cqe)) {
753 WRITE_ONCE(cqe->user_data, user_data);
754 WRITE_ONCE(cqe->res, res);
755 WRITE_ONCE(cqe->flags, cflags);
756
757 if (ctx->flags & IORING_SETUP_CQE32) {
758 WRITE_ONCE(cqe->big_cqe[0], 0);
759 WRITE_ONCE(cqe->big_cqe[1], 0);
760 }
761 return true;
762 }
763 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
764}
765
766bool io_post_aux_cqe(struct io_ring_ctx *ctx,
767 u64 user_data, s32 res, u32 cflags)
768{
769 bool filled;
770
771 io_cq_lock(ctx);
772 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
773 io_cq_unlock_post(ctx);
774 return filled;
775}
776
777static void __io_req_complete_put(struct io_kiocb *req)
778{
779 /*
780 * If we're the last reference to this request, add to our locked
781 * free_list cache.
782 */
783 if (req_ref_put_and_test(req)) {
784 struct io_ring_ctx *ctx = req->ctx;
785
786 if (req->flags & IO_REQ_LINK_FLAGS) {
787 if (req->flags & IO_DISARM_MASK)
788 io_disarm_next(req);
789 if (req->link) {
790 io_req_task_queue(req->link);
791 req->link = NULL;
792 }
793 }
794 io_req_put_rsrc(req);
795 /*
796 * Selected buffer deallocation in io_clean_op() assumes that
797 * we don't hold ->completion_lock. Clean them here to avoid
798 * deadlocks.
799 */
800 io_put_kbuf_comp(req);
801 io_dismantle_req(req);
802 io_put_task(req->task, 1);
803 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
804 ctx->locked_free_nr++;
805 }
806}
807
808void __io_req_complete_post(struct io_kiocb *req)
809{
810 if (!(req->flags & REQ_F_CQE_SKIP))
811 __io_fill_cqe_req(req->ctx, req);
812 __io_req_complete_put(req);
813}
814
815void io_req_complete_post(struct io_kiocb *req)
816{
817 struct io_ring_ctx *ctx = req->ctx;
818
819 io_cq_lock(ctx);
820 __io_req_complete_post(req);
821 io_cq_unlock_post(ctx);
822}
823
824inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
825{
826 io_req_complete_post(req);
827}
828
829void io_req_complete_failed(struct io_kiocb *req, s32 res)
830{
831 req_set_fail(req);
832 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
833 io_req_complete_post(req);
834}
835
836/*
837 * Don't initialise the fields below on every allocation, but do that in
838 * advance and keep them valid across allocations.
839 */
840static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
841{
842 req->ctx = ctx;
843 req->link = NULL;
844 req->async_data = NULL;
845 /* not necessary, but safer to zero */
846 req->cqe.res = 0;
847}
848
849static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
850 struct io_submit_state *state)
851{
852 spin_lock(&ctx->completion_lock);
853 wq_list_splice(&ctx->locked_free_list, &state->free_list);
854 ctx->locked_free_nr = 0;
855 spin_unlock(&ctx->completion_lock);
856}
857
858static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
859{
860 return !ctx->submit_state.free_list.next;
861}
862
863/*
864 * A request might get retired back into the request caches even before opcode
865 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
866 * Because of that, io_alloc_req() should be called only under ->uring_lock
867 * and with extra caution to not get a request that is still worked on.
868 */
869static __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
870 __must_hold(&ctx->uring_lock)
871{
872 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
873 void *reqs[IO_REQ_ALLOC_BATCH];
874 int ret, i;
875
876 /*
877 * If we have more than a batch's worth of requests in our IRQ side
878 * locked cache, grab the lock and move them over to our submission
879 * side cache.
880 */
881 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
882 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
883 if (!io_req_cache_empty(ctx))
884 return true;
885 }
886
887 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
888
889 /*
890 * Bulk alloc is all-or-nothing. If we fail to get a batch,
891 * retry single alloc to be on the safe side.
892 */
893 if (unlikely(ret <= 0)) {
894 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
895 if (!reqs[0])
896 return false;
897 ret = 1;
898 }
899
900 percpu_ref_get_many(&ctx->refs, ret);
901 for (i = 0; i < ret; i++) {
902 struct io_kiocb *req = reqs[i];
903
904 io_preinit_req(req, ctx);
905 io_req_add_to_cache(req, ctx);
906 }
907 return true;
908}
909
910static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
911{
912 if (unlikely(io_req_cache_empty(ctx)))
913 return __io_alloc_req_refill(ctx);
914 return true;
915}
916
917static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
918{
919 struct io_wq_work_node *node;
920
921 node = wq_stack_extract(&ctx->submit_state.free_list);
922 return container_of(node, struct io_kiocb, comp_list);
923}
924
925static inline void io_dismantle_req(struct io_kiocb *req)
926{
927 unsigned int flags = req->flags;
928
929 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
930 io_clean_op(req);
931 if (!(flags & REQ_F_FIXED_FILE))
932 io_put_file(req->file);
933}
934
935__cold void io_free_req(struct io_kiocb *req)
936{
937 struct io_ring_ctx *ctx = req->ctx;
938
939 io_req_put_rsrc(req);
940 io_dismantle_req(req);
941 io_put_task(req->task, 1);
942
943 spin_lock(&ctx->completion_lock);
944 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
945 ctx->locked_free_nr++;
946 spin_unlock(&ctx->completion_lock);
947}
948
949static void __io_req_find_next_prep(struct io_kiocb *req)
950{
951 struct io_ring_ctx *ctx = req->ctx;
952
953 io_cq_lock(ctx);
954 io_disarm_next(req);
955 io_cq_unlock_post(ctx);
956}
957
958static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
959{
960 struct io_kiocb *nxt;
961
962 /*
963 * If LINK is set, we have dependent requests in this chain. If we
964 * didn't fail this request, queue the first one up, moving any other
965 * dependencies to the next request. In case of failure, fail the rest
966 * of the chain.
967 */
968 if (unlikely(req->flags & IO_DISARM_MASK))
969 __io_req_find_next_prep(req);
970 nxt = req->link;
971 req->link = NULL;
972 return nxt;
973}
974
975static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
976{
977 if (!ctx)
978 return;
979 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
980 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
981 if (*locked) {
982 io_submit_flush_completions(ctx);
983 mutex_unlock(&ctx->uring_lock);
984 *locked = false;
985 }
986 percpu_ref_put(&ctx->refs);
987}
988
989
990static void handle_tw_list(struct llist_node *node,
991 struct io_ring_ctx **ctx, bool *locked)
992{
993 do {
994 struct llist_node *next = node->next;
995 struct io_kiocb *req = container_of(node, struct io_kiocb,
996 io_task_work.node);
997
998 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
999
1000 if (req->ctx != *ctx) {
1001 ctx_flush_and_put(*ctx, locked);
1002 *ctx = req->ctx;
1003 /* if not contended, grab and improve batching */
1004 *locked = mutex_trylock(&(*ctx)->uring_lock);
1005 percpu_ref_get(&(*ctx)->refs);
1006 }
1007 req->io_task_work.func(req, locked);
1008 node = next;
1009 } while (node);
1010}
1011
1012void tctx_task_work(struct callback_head *cb)
1013{
1014 bool uring_locked = false;
1015 struct io_ring_ctx *ctx = NULL;
1016 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1017 task_work);
1018 struct llist_node *node = llist_del_all(&tctx->task_list);
1019
1020 if (node) {
1021 handle_tw_list(node, &ctx, &uring_locked);
1022 cond_resched();
1023 }
1024
1025 ctx_flush_and_put(ctx, &uring_locked);
1026
1027 /* relaxed read is enough as only the task itself sets ->in_idle */
1028 if (unlikely(atomic_read(&tctx->in_idle)))
1029 io_uring_drop_tctx_refs(current);
1030}
1031
1032void io_req_task_work_add(struct io_kiocb *req)
1033{
1034 struct io_uring_task *tctx = req->task->io_uring;
1035 struct io_ring_ctx *ctx = req->ctx;
1036 struct llist_node *node;
1037 bool running;
1038
1039 running = !llist_add(&req->io_task_work.node, &tctx->task_list);
1040
1041 /* task_work already pending, we're done */
1042 if (running)
1043 return;
1044
1045 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1046 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1047
1048 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1049 return;
1050
1051
1052 node = llist_del_all(&tctx->task_list);
1053
1054 while (node) {
1055 req = container_of(node, struct io_kiocb, io_task_work.node);
1056 node = node->next;
1057 if (llist_add(&req->io_task_work.fallback_node,
1058 &req->ctx->fallback_llist))
1059 schedule_delayed_work(&req->ctx->fallback_work, 1);
1060 }
1061}
1062
1063static void io_req_tw_post(struct io_kiocb *req, bool *locked)
1064{
1065 io_req_complete_post(req);
1066}
1067
1068void io_req_tw_post_queue(struct io_kiocb *req, s32 res, u32 cflags)
1069{
1070 io_req_set_res(req, res, cflags);
1071 req->io_task_work.func = io_req_tw_post;
1072 io_req_task_work_add(req);
1073}
1074
1075static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1076{
1077 /* not needed for normal modes, but SQPOLL depends on it */
1078 io_tw_lock(req->ctx, locked);
1079 io_req_complete_failed(req, req->cqe.res);
1080}
1081
1082void io_req_task_submit(struct io_kiocb *req, bool *locked)
1083{
1084 io_tw_lock(req->ctx, locked);
1085 /* req->task == current here, checking PF_EXITING is safe */
1086 if (likely(!(req->task->flags & PF_EXITING)))
1087 io_queue_sqe(req);
1088 else
1089 io_req_complete_failed(req, -EFAULT);
1090}
1091
1092void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1093{
1094 io_req_set_res(req, ret, 0);
1095 req->io_task_work.func = io_req_task_cancel;
1096 io_req_task_work_add(req);
1097}
1098
1099void io_req_task_queue(struct io_kiocb *req)
1100{
1101 req->io_task_work.func = io_req_task_submit;
1102 io_req_task_work_add(req);
1103}
1104
1105void io_queue_next(struct io_kiocb *req)
1106{
1107 struct io_kiocb *nxt = io_req_find_next(req);
1108
1109 if (nxt)
1110 io_req_task_queue(nxt);
1111}
1112
1113void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1114 __must_hold(&ctx->uring_lock)
1115{
1116 struct task_struct *task = NULL;
1117 int task_refs = 0;
1118
1119 do {
1120 struct io_kiocb *req = container_of(node, struct io_kiocb,
1121 comp_list);
1122
1123 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1124 if (req->flags & REQ_F_REFCOUNT) {
1125 node = req->comp_list.next;
1126 if (!req_ref_put_and_test(req))
1127 continue;
1128 }
1129 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1130 struct async_poll *apoll = req->apoll;
1131
1132 if (apoll->double_poll)
1133 kfree(apoll->double_poll);
1134 list_add(&apoll->poll.wait.entry,
1135 &ctx->apoll_cache);
1136 req->flags &= ~REQ_F_POLLED;
1137 }
1138 if (req->flags & IO_REQ_LINK_FLAGS)
1139 io_queue_next(req);
1140 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1141 io_clean_op(req);
1142 }
1143 if (!(req->flags & REQ_F_FIXED_FILE))
1144 io_put_file(req->file);
1145
1146 io_req_put_rsrc_locked(req, ctx);
1147
1148 if (req->task != task) {
1149 if (task)
1150 io_put_task(task, task_refs);
1151 task = req->task;
1152 task_refs = 0;
1153 }
1154 task_refs++;
1155 node = req->comp_list.next;
1156 io_req_add_to_cache(req, ctx);
1157 } while (node);
1158
1159 if (task)
1160 io_put_task(task, task_refs);
1161}
1162
1163static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1164 __must_hold(&ctx->uring_lock)
1165{
1166 struct io_wq_work_node *node, *prev;
1167 struct io_submit_state *state = &ctx->submit_state;
1168
1169 spin_lock(&ctx->completion_lock);
1170 wq_list_for_each(node, prev, &state->compl_reqs) {
1171 struct io_kiocb *req = container_of(node, struct io_kiocb,
1172 comp_list);
1173
1174 if (!(req->flags & REQ_F_CQE_SKIP))
1175 __io_fill_cqe_req(ctx, req);
1176 }
1177 __io_cq_unlock_post(ctx);
1178
1179 io_free_batch_list(ctx, state->compl_reqs.first);
1180 INIT_WQ_LIST(&state->compl_reqs);
1181}
1182
1183/*
1184 * Drop reference to request, return next in chain (if there is one) if this
1185 * was the last reference to this request.
1186 */
1187static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1188{
1189 struct io_kiocb *nxt = NULL;
1190
1191 if (req_ref_put_and_test(req)) {
1192 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1193 nxt = io_req_find_next(req);
1194 io_free_req(req);
1195 }
1196 return nxt;
1197}
1198
1199static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1200{
1201 /* See comment at the top of this file */
1202 smp_rmb();
1203 return __io_cqring_events(ctx);
1204}
1205
1206/*
1207 * We can't just wait for polled events to come to us, we have to actively
1208 * find and complete them.
1209 */
1210static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1211{
1212 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1213 return;
1214
1215 mutex_lock(&ctx->uring_lock);
1216 while (!wq_list_empty(&ctx->iopoll_list)) {
1217 /* let it sleep and repeat later if can't complete a request */
1218 if (io_do_iopoll(ctx, true) == 0)
1219 break;
1220 /*
1221 * Ensure we allow local-to-the-cpu processing to take place,
1222 * in this case we need to ensure that we reap all events.
1223 * Also let task_work, etc. to progress by releasing the mutex
1224 */
1225 if (need_resched()) {
1226 mutex_unlock(&ctx->uring_lock);
1227 cond_resched();
1228 mutex_lock(&ctx->uring_lock);
1229 }
1230 }
1231 mutex_unlock(&ctx->uring_lock);
1232}
1233
1234static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1235{
1236 unsigned int nr_events = 0;
1237 int ret = 0;
1238 unsigned long check_cq;
1239
1240 check_cq = READ_ONCE(ctx->check_cq);
1241 if (unlikely(check_cq)) {
1242 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1243 __io_cqring_overflow_flush(ctx, false);
1244 /*
1245 * Similarly do not spin if we have not informed the user of any
1246 * dropped CQE.
1247 */
1248 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1249 return -EBADR;
1250 }
1251 /*
1252 * Don't enter poll loop if we already have events pending.
1253 * If we do, we can potentially be spinning for commands that
1254 * already triggered a CQE (eg in error).
1255 */
1256 if (io_cqring_events(ctx))
1257 return 0;
1258
1259 do {
1260 /*
1261 * If a submit got punted to a workqueue, we can have the
1262 * application entering polling for a command before it gets
1263 * issued. That app will hold the uring_lock for the duration
1264 * of the poll right here, so we need to take a breather every
1265 * now and then to ensure that the issue has a chance to add
1266 * the poll to the issued list. Otherwise we can spin here
1267 * forever, while the workqueue is stuck trying to acquire the
1268 * very same mutex.
1269 */
1270 if (wq_list_empty(&ctx->iopoll_list)) {
1271 u32 tail = ctx->cached_cq_tail;
1272
1273 mutex_unlock(&ctx->uring_lock);
1274 io_run_task_work();
1275 mutex_lock(&ctx->uring_lock);
1276
1277 /* some requests don't go through iopoll_list */
1278 if (tail != ctx->cached_cq_tail ||
1279 wq_list_empty(&ctx->iopoll_list))
1280 break;
1281 }
1282 ret = io_do_iopoll(ctx, !min);
1283 if (ret < 0)
1284 break;
1285 nr_events += ret;
1286 ret = 0;
1287 } while (nr_events < min && !need_resched());
1288
1289 return ret;
1290}
1291
1292void io_req_task_complete(struct io_kiocb *req, bool *locked)
1293{
1294 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1295 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1296
1297 req->cqe.flags |= io_put_kbuf(req, issue_flags);
1298 }
1299
1300 if (*locked)
1301 io_req_complete_defer(req);
1302 else
1303 io_req_complete_post(req);
1304}
1305
1306/*
1307 * After the iocb has been issued, it's safe to be found on the poll list.
1308 * Adding the kiocb to the list AFTER submission ensures that we don't
1309 * find it from a io_do_iopoll() thread before the issuer is done
1310 * accessing the kiocb cookie.
1311 */
1312static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1313{
1314 struct io_ring_ctx *ctx = req->ctx;
1315 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1316
1317 /* workqueue context doesn't hold uring_lock, grab it now */
1318 if (unlikely(needs_lock))
1319 mutex_lock(&ctx->uring_lock);
1320
1321 /*
1322 * Track whether we have multiple files in our lists. This will impact
1323 * how we do polling eventually, not spinning if we're on potentially
1324 * different devices.
1325 */
1326 if (wq_list_empty(&ctx->iopoll_list)) {
1327 ctx->poll_multi_queue = false;
1328 } else if (!ctx->poll_multi_queue) {
1329 struct io_kiocb *list_req;
1330
1331 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1332 comp_list);
1333 if (list_req->file != req->file)
1334 ctx->poll_multi_queue = true;
1335 }
1336
1337 /*
1338 * For fast devices, IO may have already completed. If it has, add
1339 * it to the front so we find it first.
1340 */
1341 if (READ_ONCE(req->iopoll_completed))
1342 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1343 else
1344 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1345
1346 if (unlikely(needs_lock)) {
1347 /*
1348 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1349 * in sq thread task context or in io worker task context. If
1350 * current task context is sq thread, we don't need to check
1351 * whether should wake up sq thread.
1352 */
1353 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1354 wq_has_sleeper(&ctx->sq_data->wait))
1355 wake_up(&ctx->sq_data->wait);
1356
1357 mutex_unlock(&ctx->uring_lock);
1358 }
1359}
1360
1361static bool io_bdev_nowait(struct block_device *bdev)
1362{
1363 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
1364}
1365
1366/*
1367 * If we tracked the file through the SCM inflight mechanism, we could support
1368 * any file. For now, just ensure that anything potentially problematic is done
1369 * inline.
1370 */
1371static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1372{
1373 if (S_ISBLK(mode)) {
1374 if (IS_ENABLED(CONFIG_BLOCK) &&
1375 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1376 return true;
1377 return false;
1378 }
1379 if (S_ISSOCK(mode))
1380 return true;
1381 if (S_ISREG(mode)) {
1382 if (IS_ENABLED(CONFIG_BLOCK) &&
1383 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1384 !io_is_uring_fops(file))
1385 return true;
1386 return false;
1387 }
1388
1389 /* any ->read/write should understand O_NONBLOCK */
1390 if (file->f_flags & O_NONBLOCK)
1391 return true;
1392 return file->f_mode & FMODE_NOWAIT;
1393}
1394
1395/*
1396 * If we tracked the file through the SCM inflight mechanism, we could support
1397 * any file. For now, just ensure that anything potentially problematic is done
1398 * inline.
1399 */
1400unsigned int io_file_get_flags(struct file *file)
1401{
1402 umode_t mode = file_inode(file)->i_mode;
1403 unsigned int res = 0;
1404
1405 if (S_ISREG(mode))
1406 res |= FFS_ISREG;
1407 if (__io_file_supports_nowait(file, mode))
1408 res |= FFS_NOWAIT;
1409 if (io_file_need_scm(file))
1410 res |= FFS_SCM;
1411 return res;
1412}
1413
1414bool io_alloc_async_data(struct io_kiocb *req)
1415{
1416 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1417 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1418 if (req->async_data) {
1419 req->flags |= REQ_F_ASYNC_DATA;
1420 return false;
1421 }
1422 return true;
1423}
1424
1425int io_req_prep_async(struct io_kiocb *req)
1426{
1427 const struct io_op_def *def = &io_op_defs[req->opcode];
1428
1429 /* assign early for deferred execution for non-fixed file */
1430 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1431 req->file = io_file_get_normal(req, req->cqe.fd);
1432 if (!def->prep_async)
1433 return 0;
1434 if (WARN_ON_ONCE(req_has_async_data(req)))
1435 return -EFAULT;
1436 if (io_alloc_async_data(req))
1437 return -EAGAIN;
1438
1439 return def->prep_async(req);
1440}
1441
1442static u32 io_get_sequence(struct io_kiocb *req)
1443{
1444 u32 seq = req->ctx->cached_sq_head;
1445 struct io_kiocb *cur;
1446
1447 /* need original cached_sq_head, but it was increased for each req */
1448 io_for_each_link(cur, req)
1449 seq--;
1450 return seq;
1451}
1452
1453static __cold void io_drain_req(struct io_kiocb *req)
1454{
1455 struct io_ring_ctx *ctx = req->ctx;
1456 struct io_defer_entry *de;
1457 int ret;
1458 u32 seq = io_get_sequence(req);
1459
1460 /* Still need defer if there is pending req in defer list. */
1461 spin_lock(&ctx->completion_lock);
1462 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1463 spin_unlock(&ctx->completion_lock);
1464queue:
1465 ctx->drain_active = false;
1466 io_req_task_queue(req);
1467 return;
1468 }
1469 spin_unlock(&ctx->completion_lock);
1470
1471 ret = io_req_prep_async(req);
1472 if (ret) {
1473fail:
1474 io_req_complete_failed(req, ret);
1475 return;
1476 }
1477 io_prep_async_link(req);
1478 de = kmalloc(sizeof(*de), GFP_KERNEL);
1479 if (!de) {
1480 ret = -ENOMEM;
1481 goto fail;
1482 }
1483
1484 spin_lock(&ctx->completion_lock);
1485 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1486 spin_unlock(&ctx->completion_lock);
1487 kfree(de);
1488 goto queue;
1489 }
1490
1491 trace_io_uring_defer(req);
1492 de->req = req;
1493 de->seq = seq;
1494 list_add_tail(&de->list, &ctx->defer_list);
1495 spin_unlock(&ctx->completion_lock);
1496}
1497
1498static void io_clean_op(struct io_kiocb *req)
1499{
1500 if (req->flags & REQ_F_BUFFER_SELECTED) {
1501 spin_lock(&req->ctx->completion_lock);
1502 io_put_kbuf_comp(req);
1503 spin_unlock(&req->ctx->completion_lock);
1504 }
1505
1506 if (req->flags & REQ_F_NEED_CLEANUP) {
1507 const struct io_op_def *def = &io_op_defs[req->opcode];
1508
1509 if (def->cleanup)
1510 def->cleanup(req);
1511 }
1512 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1513 kfree(req->apoll->double_poll);
1514 kfree(req->apoll);
1515 req->apoll = NULL;
1516 }
1517 if (req->flags & REQ_F_INFLIGHT) {
1518 struct io_uring_task *tctx = req->task->io_uring;
1519
1520 atomic_dec(&tctx->inflight_tracked);
1521 }
1522 if (req->flags & REQ_F_CREDS)
1523 put_cred(req->creds);
1524 if (req->flags & REQ_F_ASYNC_DATA) {
1525 kfree(req->async_data);
1526 req->async_data = NULL;
1527 }
1528 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1529}
1530
1531static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1532{
1533 if (req->file || !io_op_defs[req->opcode].needs_file)
1534 return true;
1535
1536 if (req->flags & REQ_F_FIXED_FILE)
1537 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1538 else
1539 req->file = io_file_get_normal(req, req->cqe.fd);
1540
1541 return !!req->file;
1542}
1543
1544static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1545{
1546 const struct io_op_def *def = &io_op_defs[req->opcode];
1547 const struct cred *creds = NULL;
1548 int ret;
1549
1550 if (unlikely(!io_assign_file(req, issue_flags)))
1551 return -EBADF;
1552
1553 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1554 creds = override_creds(req->creds);
1555
1556 if (!def->audit_skip)
1557 audit_uring_entry(req->opcode);
1558
1559 ret = def->issue(req, issue_flags);
1560
1561 if (!def->audit_skip)
1562 audit_uring_exit(!ret, ret);
1563
1564 if (creds)
1565 revert_creds(creds);
1566
1567 if (ret == IOU_OK) {
1568 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1569 io_req_complete_defer(req);
1570 else
1571 io_req_complete_post(req);
1572 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1573 return ret;
1574
1575 /* If the op doesn't have a file, we're not polling for it */
1576 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && req->file)
1577 io_iopoll_req_issued(req, issue_flags);
1578
1579 return 0;
1580}
1581
1582int io_poll_issue(struct io_kiocb *req, bool *locked)
1583{
1584 io_tw_lock(req->ctx, locked);
1585 if (unlikely(req->task->flags & PF_EXITING))
1586 return -EFAULT;
1587 return io_issue_sqe(req, IO_URING_F_NONBLOCK);
1588}
1589
1590struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1591{
1592 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1593
1594 req = io_put_req_find_next(req);
1595 return req ? &req->work : NULL;
1596}
1597
1598void io_wq_submit_work(struct io_wq_work *work)
1599{
1600 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1601 const struct io_op_def *def = &io_op_defs[req->opcode];
1602 unsigned int issue_flags = IO_URING_F_UNLOCKED;
1603 bool needs_poll = false;
1604 int ret = 0, err = -ECANCELED;
1605
1606 /* one will be dropped by ->io_free_work() after returning to io-wq */
1607 if (!(req->flags & REQ_F_REFCOUNT))
1608 __io_req_set_refcount(req, 2);
1609 else
1610 req_ref_get(req);
1611
1612 io_arm_ltimeout(req);
1613
1614 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1615 if (work->flags & IO_WQ_WORK_CANCEL) {
1616fail:
1617 io_req_task_queue_fail(req, err);
1618 return;
1619 }
1620 if (!io_assign_file(req, issue_flags)) {
1621 err = -EBADF;
1622 work->flags |= IO_WQ_WORK_CANCEL;
1623 goto fail;
1624 }
1625
1626 if (req->flags & REQ_F_FORCE_ASYNC) {
1627 bool opcode_poll = def->pollin || def->pollout;
1628
1629 if (opcode_poll && file_can_poll(req->file)) {
1630 needs_poll = true;
1631 issue_flags |= IO_URING_F_NONBLOCK;
1632 }
1633 }
1634
1635 do {
1636 ret = io_issue_sqe(req, issue_flags);
1637 if (ret != -EAGAIN)
1638 break;
1639 /*
1640 * We can get EAGAIN for iopolled IO even though we're
1641 * forcing a sync submission from here, since we can't
1642 * wait for request slots on the block side.
1643 */
1644 if (!needs_poll) {
1645 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1646 break;
1647 cond_resched();
1648 continue;
1649 }
1650
1651 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1652 return;
1653 /* aborted or ready, in either case retry blocking */
1654 needs_poll = false;
1655 issue_flags &= ~IO_URING_F_NONBLOCK;
1656 } while (1);
1657
1658 /* avoid locking problems by failing it from a clean context */
1659 if (ret < 0)
1660 io_req_task_queue_fail(req, ret);
1661}
1662
1663inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1664 unsigned int issue_flags)
1665{
1666 struct io_ring_ctx *ctx = req->ctx;
1667 struct file *file = NULL;
1668 unsigned long file_ptr;
1669
1670 io_ring_submit_lock(ctx, issue_flags);
1671
1672 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1673 goto out;
1674 fd = array_index_nospec(fd, ctx->nr_user_files);
1675 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1676 file = (struct file *) (file_ptr & FFS_MASK);
1677 file_ptr &= ~FFS_MASK;
1678 /* mask in overlapping REQ_F and FFS bits */
1679 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1680 io_req_set_rsrc_node(req, ctx, 0);
1681 WARN_ON_ONCE(file && !test_bit(fd, ctx->file_table.bitmap));
1682out:
1683 io_ring_submit_unlock(ctx, issue_flags);
1684 return file;
1685}
1686
1687struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1688{
1689 struct file *file = fget(fd);
1690
1691 trace_io_uring_file_get(req, fd);
1692
1693 /* we don't allow fixed io_uring files */
1694 if (file && io_is_uring_fops(file))
1695 io_req_track_inflight(req);
1696 return file;
1697}
1698
1699static void io_queue_async(struct io_kiocb *req, int ret)
1700 __must_hold(&req->ctx->uring_lock)
1701{
1702 struct io_kiocb *linked_timeout;
1703
1704 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1705 io_req_complete_failed(req, ret);
1706 return;
1707 }
1708
1709 linked_timeout = io_prep_linked_timeout(req);
1710
1711 switch (io_arm_poll_handler(req, 0)) {
1712 case IO_APOLL_READY:
1713 io_req_task_queue(req);
1714 break;
1715 case IO_APOLL_ABORTED:
1716 /*
1717 * Queued up for async execution, worker will release
1718 * submit reference when the iocb is actually submitted.
1719 */
1720 io_kbuf_recycle(req, 0);
1721 io_queue_iowq(req, NULL);
1722 break;
1723 case IO_APOLL_OK:
1724 break;
1725 }
1726
1727 if (linked_timeout)
1728 io_queue_linked_timeout(linked_timeout);
1729}
1730
1731static inline void io_queue_sqe(struct io_kiocb *req)
1732 __must_hold(&req->ctx->uring_lock)
1733{
1734 int ret;
1735
1736 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1737
1738 /*
1739 * We async punt it if the file wasn't marked NOWAIT, or if the file
1740 * doesn't support non-blocking read/write attempts
1741 */
1742 if (likely(!ret))
1743 io_arm_ltimeout(req);
1744 else
1745 io_queue_async(req, ret);
1746}
1747
1748static void io_queue_sqe_fallback(struct io_kiocb *req)
1749 __must_hold(&req->ctx->uring_lock)
1750{
1751 if (unlikely(req->flags & REQ_F_FAIL)) {
1752 /*
1753 * We don't submit, fail them all, for that replace hardlinks
1754 * with normal links. Extra REQ_F_LINK is tolerated.
1755 */
1756 req->flags &= ~REQ_F_HARDLINK;
1757 req->flags |= REQ_F_LINK;
1758 io_req_complete_failed(req, req->cqe.res);
1759 } else if (unlikely(req->ctx->drain_active)) {
1760 io_drain_req(req);
1761 } else {
1762 int ret = io_req_prep_async(req);
1763
1764 if (unlikely(ret))
1765 io_req_complete_failed(req, ret);
1766 else
1767 io_queue_iowq(req, NULL);
1768 }
1769}
1770
1771/*
1772 * Check SQE restrictions (opcode and flags).
1773 *
1774 * Returns 'true' if SQE is allowed, 'false' otherwise.
1775 */
1776static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1777 struct io_kiocb *req,
1778 unsigned int sqe_flags)
1779{
1780 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1781 return false;
1782
1783 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1784 ctx->restrictions.sqe_flags_required)
1785 return false;
1786
1787 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1788 ctx->restrictions.sqe_flags_required))
1789 return false;
1790
1791 return true;
1792}
1793
1794static void io_init_req_drain(struct io_kiocb *req)
1795{
1796 struct io_ring_ctx *ctx = req->ctx;
1797 struct io_kiocb *head = ctx->submit_state.link.head;
1798
1799 ctx->drain_active = true;
1800 if (head) {
1801 /*
1802 * If we need to drain a request in the middle of a link, drain
1803 * the head request and the next request/link after the current
1804 * link. Considering sequential execution of links,
1805 * REQ_F_IO_DRAIN will be maintained for every request of our
1806 * link.
1807 */
1808 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1809 ctx->drain_next = true;
1810 }
1811}
1812
1813static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1814 const struct io_uring_sqe *sqe)
1815 __must_hold(&ctx->uring_lock)
1816{
1817 const struct io_op_def *def;
1818 unsigned int sqe_flags;
1819 int personality;
1820 u8 opcode;
1821
1822 /* req is partially pre-initialised, see io_preinit_req() */
1823 req->opcode = opcode = READ_ONCE(sqe->opcode);
1824 /* same numerical values with corresponding REQ_F_*, safe to copy */
1825 req->flags = sqe_flags = READ_ONCE(sqe->flags);
1826 req->cqe.user_data = READ_ONCE(sqe->user_data);
1827 req->file = NULL;
1828 req->rsrc_node = NULL;
1829 req->task = current;
1830
1831 if (unlikely(opcode >= IORING_OP_LAST)) {
1832 req->opcode = 0;
1833 return -EINVAL;
1834 }
1835 def = &io_op_defs[opcode];
1836 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
1837 /* enforce forwards compatibility on users */
1838 if (sqe_flags & ~SQE_VALID_FLAGS)
1839 return -EINVAL;
1840 if (sqe_flags & IOSQE_BUFFER_SELECT) {
1841 if (!def->buffer_select)
1842 return -EOPNOTSUPP;
1843 req->buf_index = READ_ONCE(sqe->buf_group);
1844 }
1845 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
1846 ctx->drain_disabled = true;
1847 if (sqe_flags & IOSQE_IO_DRAIN) {
1848 if (ctx->drain_disabled)
1849 return -EOPNOTSUPP;
1850 io_init_req_drain(req);
1851 }
1852 }
1853 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
1854 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
1855 return -EACCES;
1856 /* knock it to the slow queue path, will be drained there */
1857 if (ctx->drain_active)
1858 req->flags |= REQ_F_FORCE_ASYNC;
1859 /* if there is no link, we're at "next" request and need to drain */
1860 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
1861 ctx->drain_next = false;
1862 ctx->drain_active = true;
1863 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1864 }
1865 }
1866
1867 if (!def->ioprio && sqe->ioprio)
1868 return -EINVAL;
1869 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
1870 return -EINVAL;
1871
1872 if (def->needs_file) {
1873 struct io_submit_state *state = &ctx->submit_state;
1874
1875 req->cqe.fd = READ_ONCE(sqe->fd);
1876
1877 /*
1878 * Plug now if we have more than 2 IO left after this, and the
1879 * target is potentially a read/write to block based storage.
1880 */
1881 if (state->need_plug && def->plug) {
1882 state->plug_started = true;
1883 state->need_plug = false;
1884 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
1885 }
1886 }
1887
1888 personality = READ_ONCE(sqe->personality);
1889 if (personality) {
1890 int ret;
1891
1892 req->creds = xa_load(&ctx->personalities, personality);
1893 if (!req->creds)
1894 return -EINVAL;
1895 get_cred(req->creds);
1896 ret = security_uring_override_creds(req->creds);
1897 if (ret) {
1898 put_cred(req->creds);
1899 return ret;
1900 }
1901 req->flags |= REQ_F_CREDS;
1902 }
1903
1904 return def->prep(req, sqe);
1905}
1906
1907static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
1908 struct io_kiocb *req, int ret)
1909{
1910 struct io_ring_ctx *ctx = req->ctx;
1911 struct io_submit_link *link = &ctx->submit_state.link;
1912 struct io_kiocb *head = link->head;
1913
1914 trace_io_uring_req_failed(sqe, req, ret);
1915
1916 /*
1917 * Avoid breaking links in the middle as it renders links with SQPOLL
1918 * unusable. Instead of failing eagerly, continue assembling the link if
1919 * applicable and mark the head with REQ_F_FAIL. The link flushing code
1920 * should find the flag and handle the rest.
1921 */
1922 req_fail_link_node(req, ret);
1923 if (head && !(head->flags & REQ_F_FAIL))
1924 req_fail_link_node(head, -ECANCELED);
1925
1926 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
1927 if (head) {
1928 link->last->link = req;
1929 link->head = NULL;
1930 req = head;
1931 }
1932 io_queue_sqe_fallback(req);
1933 return ret;
1934 }
1935
1936 if (head)
1937 link->last->link = req;
1938 else
1939 link->head = req;
1940 link->last = req;
1941 return 0;
1942}
1943
1944static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1945 const struct io_uring_sqe *sqe)
1946 __must_hold(&ctx->uring_lock)
1947{
1948 struct io_submit_link *link = &ctx->submit_state.link;
1949 int ret;
1950
1951 ret = io_init_req(ctx, req, sqe);
1952 if (unlikely(ret))
1953 return io_submit_fail_init(sqe, req, ret);
1954
1955 /* don't need @sqe from now on */
1956 trace_io_uring_submit_sqe(req, true);
1957
1958 /*
1959 * If we already have a head request, queue this one for async
1960 * submittal once the head completes. If we don't have a head but
1961 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
1962 * submitted sync once the chain is complete. If none of those
1963 * conditions are true (normal request), then just queue it.
1964 */
1965 if (unlikely(link->head)) {
1966 ret = io_req_prep_async(req);
1967 if (unlikely(ret))
1968 return io_submit_fail_init(sqe, req, ret);
1969
1970 trace_io_uring_link(req, link->head);
1971 link->last->link = req;
1972 link->last = req;
1973
1974 if (req->flags & IO_REQ_LINK_FLAGS)
1975 return 0;
1976 /* last request of the link, flush it */
1977 req = link->head;
1978 link->head = NULL;
1979 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
1980 goto fallback;
1981
1982 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
1983 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
1984 if (req->flags & IO_REQ_LINK_FLAGS) {
1985 link->head = req;
1986 link->last = req;
1987 } else {
1988fallback:
1989 io_queue_sqe_fallback(req);
1990 }
1991 return 0;
1992 }
1993
1994 io_queue_sqe(req);
1995 return 0;
1996}
1997
1998/*
1999 * Batched submission is done, ensure local IO is flushed out.
2000 */
2001static void io_submit_state_end(struct io_ring_ctx *ctx)
2002{
2003 struct io_submit_state *state = &ctx->submit_state;
2004
2005 if (unlikely(state->link.head))
2006 io_queue_sqe_fallback(state->link.head);
2007 /* flush only after queuing links as they can generate completions */
2008 io_submit_flush_completions(ctx);
2009 if (state->plug_started)
2010 blk_finish_plug(&state->plug);
2011}
2012
2013/*
2014 * Start submission side cache.
2015 */
2016static void io_submit_state_start(struct io_submit_state *state,
2017 unsigned int max_ios)
2018{
2019 state->plug_started = false;
2020 state->need_plug = max_ios > 2;
2021 state->submit_nr = max_ios;
2022 /* set only head, no need to init link_last in advance */
2023 state->link.head = NULL;
2024}
2025
2026static void io_commit_sqring(struct io_ring_ctx *ctx)
2027{
2028 struct io_rings *rings = ctx->rings;
2029
2030 /*
2031 * Ensure any loads from the SQEs are done at this point,
2032 * since once we write the new head, the application could
2033 * write new data to them.
2034 */
2035 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2036}
2037
2038/*
2039 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2040 * that is mapped by userspace. This means that care needs to be taken to
2041 * ensure that reads are stable, as we cannot rely on userspace always
2042 * being a good citizen. If members of the sqe are validated and then later
2043 * used, it's important that those reads are done through READ_ONCE() to
2044 * prevent a re-load down the line.
2045 */
2046static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2047{
2048 unsigned head, mask = ctx->sq_entries - 1;
2049 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2050
2051 /*
2052 * The cached sq head (or cq tail) serves two purposes:
2053 *
2054 * 1) allows us to batch the cost of updating the user visible
2055 * head updates.
2056 * 2) allows the kernel side to track the head on its own, even
2057 * though the application is the one updating it.
2058 */
2059 head = READ_ONCE(ctx->sq_array[sq_idx]);
2060 if (likely(head < ctx->sq_entries)) {
2061 /* double index for 128-byte SQEs, twice as long */
2062 if (ctx->flags & IORING_SETUP_SQE128)
2063 head <<= 1;
2064 return &ctx->sq_sqes[head];
2065 }
2066
2067 /* drop invalid entries */
2068 ctx->cq_extra--;
2069 WRITE_ONCE(ctx->rings->sq_dropped,
2070 READ_ONCE(ctx->rings->sq_dropped) + 1);
2071 return NULL;
2072}
2073
2074int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2075 __must_hold(&ctx->uring_lock)
2076{
2077 unsigned int entries = io_sqring_entries(ctx);
2078 unsigned int left;
2079 int ret;
2080
2081 if (unlikely(!entries))
2082 return 0;
2083 /* make sure SQ entry isn't read before tail */
2084 ret = left = min3(nr, ctx->sq_entries, entries);
2085 io_get_task_refs(left);
2086 io_submit_state_start(&ctx->submit_state, left);
2087
2088 do {
2089 const struct io_uring_sqe *sqe;
2090 struct io_kiocb *req;
2091
2092 if (unlikely(!io_alloc_req_refill(ctx)))
2093 break;
2094 req = io_alloc_req(ctx);
2095 sqe = io_get_sqe(ctx);
2096 if (unlikely(!sqe)) {
2097 io_req_add_to_cache(req, ctx);
2098 break;
2099 }
2100
2101 /*
2102 * Continue submitting even for sqe failure if the
2103 * ring was setup with IORING_SETUP_SUBMIT_ALL
2104 */
2105 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2106 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2107 left--;
2108 break;
2109 }
2110 } while (--left);
2111
2112 if (unlikely(left)) {
2113 ret -= left;
2114 /* try again if it submitted nothing and can't allocate a req */
2115 if (!ret && io_req_cache_empty(ctx))
2116 ret = -EAGAIN;
2117 current->io_uring->cached_refs += left;
2118 }
2119
2120 io_submit_state_end(ctx);
2121 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2122 io_commit_sqring(ctx);
2123 return ret;
2124}
2125
2126struct io_wait_queue {
2127 struct wait_queue_entry wq;
2128 struct io_ring_ctx *ctx;
2129 unsigned cq_tail;
2130 unsigned nr_timeouts;
2131};
2132
2133static inline bool io_should_wake(struct io_wait_queue *iowq)
2134{
2135 struct io_ring_ctx *ctx = iowq->ctx;
2136 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
2137
2138 /*
2139 * Wake up if we have enough events, or if a timeout occurred since we
2140 * started waiting. For timeouts, we always want to return to userspace,
2141 * regardless of event count.
2142 */
2143 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2144}
2145
2146static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2147 int wake_flags, void *key)
2148{
2149 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2150 wq);
2151
2152 /*
2153 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2154 * the task, and the next invocation will do it.
2155 */
2156 if (io_should_wake(iowq) ||
2157 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &iowq->ctx->check_cq))
2158 return autoremove_wake_function(curr, mode, wake_flags, key);
2159 return -1;
2160}
2161
2162int io_run_task_work_sig(void)
2163{
2164 if (io_run_task_work())
2165 return 1;
2166 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2167 return -ERESTARTSYS;
2168 if (task_sigpending(current))
2169 return -EINTR;
2170 return 0;
2171}
2172
2173/* when returns >0, the caller should retry */
2174static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2175 struct io_wait_queue *iowq,
2176 ktime_t timeout)
2177{
2178 int ret;
2179 unsigned long check_cq;
2180
2181 /* make sure we run task_work before checking for signals */
2182 ret = io_run_task_work_sig();
2183 if (ret || io_should_wake(iowq))
2184 return ret;
2185
2186 check_cq = READ_ONCE(ctx->check_cq);
2187 if (unlikely(check_cq)) {
2188 /* let the caller flush overflows, retry */
2189 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2190 return 1;
2191 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2192 return -EBADR;
2193 }
2194 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
2195 return -ETIME;
2196 return 1;
2197}
2198
2199/*
2200 * Wait until events become available, if we don't already have some. The
2201 * application must reap them itself, as they reside on the shared cq ring.
2202 */
2203static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2204 const sigset_t __user *sig, size_t sigsz,
2205 struct __kernel_timespec __user *uts)
2206{
2207 struct io_wait_queue iowq;
2208 struct io_rings *rings = ctx->rings;
2209 ktime_t timeout = KTIME_MAX;
2210 int ret;
2211
2212 do {
2213 io_cqring_overflow_flush(ctx);
2214 if (io_cqring_events(ctx) >= min_events)
2215 return 0;
2216 if (!io_run_task_work())
2217 break;
2218 } while (1);
2219
2220 if (sig) {
2221#ifdef CONFIG_COMPAT
2222 if (in_compat_syscall())
2223 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2224 sigsz);
2225 else
2226#endif
2227 ret = set_user_sigmask(sig, sigsz);
2228
2229 if (ret)
2230 return ret;
2231 }
2232
2233 if (uts) {
2234 struct timespec64 ts;
2235
2236 if (get_timespec64(&ts, uts))
2237 return -EFAULT;
2238 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2239 }
2240
2241 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2242 iowq.wq.private = current;
2243 INIT_LIST_HEAD(&iowq.wq.entry);
2244 iowq.ctx = ctx;
2245 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2246 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2247
2248 trace_io_uring_cqring_wait(ctx, min_events);
2249 do {
2250 /* if we can't even flush overflow, don't wait for more */
2251 if (!io_cqring_overflow_flush(ctx)) {
2252 ret = -EBUSY;
2253 break;
2254 }
2255 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2256 TASK_INTERRUPTIBLE);
2257 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
2258 cond_resched();
2259 } while (ret > 0);
2260
2261 finish_wait(&ctx->cq_wait, &iowq.wq);
2262 restore_saved_sigmask_unless(ret == -EINTR);
2263
2264 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2265}
2266
2267static void io_mem_free(void *ptr)
2268{
2269 struct page *page;
2270
2271 if (!ptr)
2272 return;
2273
2274 page = virt_to_head_page(ptr);
2275 if (put_page_testzero(page))
2276 free_compound_page(page);
2277}
2278
2279static void *io_mem_alloc(size_t size)
2280{
2281 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2282
2283 return (void *) __get_free_pages(gfp, get_order(size));
2284}
2285
2286static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2287 unsigned int cq_entries, size_t *sq_offset)
2288{
2289 struct io_rings *rings;
2290 size_t off, sq_array_size;
2291
2292 off = struct_size(rings, cqes, cq_entries);
2293 if (off == SIZE_MAX)
2294 return SIZE_MAX;
2295 if (ctx->flags & IORING_SETUP_CQE32) {
2296 if (check_shl_overflow(off, 1, &off))
2297 return SIZE_MAX;
2298 }
2299
2300#ifdef CONFIG_SMP
2301 off = ALIGN(off, SMP_CACHE_BYTES);
2302 if (off == 0)
2303 return SIZE_MAX;
2304#endif
2305
2306 if (sq_offset)
2307 *sq_offset = off;
2308
2309 sq_array_size = array_size(sizeof(u32), sq_entries);
2310 if (sq_array_size == SIZE_MAX)
2311 return SIZE_MAX;
2312
2313 if (check_add_overflow(off, sq_array_size, &off))
2314 return SIZE_MAX;
2315
2316 return off;
2317}
2318
2319static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2320 unsigned int eventfd_async)
2321{
2322 struct io_ev_fd *ev_fd;
2323 __s32 __user *fds = arg;
2324 int fd;
2325
2326 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2327 lockdep_is_held(&ctx->uring_lock));
2328 if (ev_fd)
2329 return -EBUSY;
2330
2331 if (copy_from_user(&fd, fds, sizeof(*fds)))
2332 return -EFAULT;
2333
2334 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2335 if (!ev_fd)
2336 return -ENOMEM;
2337
2338 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2339 if (IS_ERR(ev_fd->cq_ev_fd)) {
2340 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2341 kfree(ev_fd);
2342 return ret;
2343 }
2344
2345 spin_lock(&ctx->completion_lock);
2346 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2347 spin_unlock(&ctx->completion_lock);
2348
2349 ev_fd->eventfd_async = eventfd_async;
2350 ctx->has_evfd = true;
2351 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2352 return 0;
2353}
2354
2355static void io_eventfd_put(struct rcu_head *rcu)
2356{
2357 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
2358
2359 eventfd_ctx_put(ev_fd->cq_ev_fd);
2360 kfree(ev_fd);
2361}
2362
2363static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2364{
2365 struct io_ev_fd *ev_fd;
2366
2367 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2368 lockdep_is_held(&ctx->uring_lock));
2369 if (ev_fd) {
2370 ctx->has_evfd = false;
2371 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2372 call_rcu(&ev_fd->rcu, io_eventfd_put);
2373 return 0;
2374 }
2375
2376 return -ENXIO;
2377}
2378
2379static void io_req_caches_free(struct io_ring_ctx *ctx)
2380{
2381 struct io_submit_state *state = &ctx->submit_state;
2382 int nr = 0;
2383
2384 mutex_lock(&ctx->uring_lock);
2385 io_flush_cached_locked_reqs(ctx, state);
2386
2387 while (!io_req_cache_empty(ctx)) {
2388 struct io_wq_work_node *node;
2389 struct io_kiocb *req;
2390
2391 node = wq_stack_extract(&state->free_list);
2392 req = container_of(node, struct io_kiocb, comp_list);
2393 kmem_cache_free(req_cachep, req);
2394 nr++;
2395 }
2396 if (nr)
2397 percpu_ref_put_many(&ctx->refs, nr);
2398 mutex_unlock(&ctx->uring_lock);
2399}
2400
2401static void io_flush_apoll_cache(struct io_ring_ctx *ctx)
2402{
2403 struct async_poll *apoll;
2404
2405 while (!list_empty(&ctx->apoll_cache)) {
2406 apoll = list_first_entry(&ctx->apoll_cache, struct async_poll,
2407 poll.wait.entry);
2408 list_del(&apoll->poll.wait.entry);
2409 kfree(apoll);
2410 }
2411}
2412
2413static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2414{
2415 io_sq_thread_finish(ctx);
2416
2417 if (ctx->mm_account) {
2418 mmdrop(ctx->mm_account);
2419 ctx->mm_account = NULL;
2420 }
2421
2422 io_rsrc_refs_drop(ctx);
2423 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2424 io_wait_rsrc_data(ctx->buf_data);
2425 io_wait_rsrc_data(ctx->file_data);
2426
2427 mutex_lock(&ctx->uring_lock);
2428 if (ctx->buf_data)
2429 __io_sqe_buffers_unregister(ctx);
2430 if (ctx->file_data)
2431 __io_sqe_files_unregister(ctx);
2432 if (ctx->rings)
2433 __io_cqring_overflow_flush(ctx, true);
2434 io_eventfd_unregister(ctx);
2435 io_flush_apoll_cache(ctx);
2436 mutex_unlock(&ctx->uring_lock);
2437 io_destroy_buffers(ctx);
2438 if (ctx->sq_creds)
2439 put_cred(ctx->sq_creds);
2440 if (ctx->submitter_task)
2441 put_task_struct(ctx->submitter_task);
2442
2443 /* there are no registered resources left, nobody uses it */
2444 if (ctx->rsrc_node)
2445 io_rsrc_node_destroy(ctx->rsrc_node);
2446 if (ctx->rsrc_backup_node)
2447 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2448 flush_delayed_work(&ctx->rsrc_put_work);
2449 flush_delayed_work(&ctx->fallback_work);
2450
2451 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2452 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2453
2454#if defined(CONFIG_UNIX)
2455 if (ctx->ring_sock) {
2456 ctx->ring_sock->file = NULL; /* so that iput() is called */
2457 sock_release(ctx->ring_sock);
2458 }
2459#endif
2460 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2461
2462 io_mem_free(ctx->rings);
2463 io_mem_free(ctx->sq_sqes);
2464
2465 percpu_ref_exit(&ctx->refs);
2466 free_uid(ctx->user);
2467 io_req_caches_free(ctx);
2468 if (ctx->hash_map)
2469 io_wq_put_hash(ctx->hash_map);
2470 kfree(ctx->cancel_table.hbs);
2471 kfree(ctx->cancel_table_locked.hbs);
2472 kfree(ctx->dummy_ubuf);
2473 kfree(ctx->io_bl);
2474 xa_destroy(&ctx->io_bl_xa);
2475 kfree(ctx);
2476}
2477
2478static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2479{
2480 struct io_ring_ctx *ctx = file->private_data;
2481 __poll_t mask = 0;
2482
2483 poll_wait(file, &ctx->cq_wait, wait);
2484 /*
2485 * synchronizes with barrier from wq_has_sleeper call in
2486 * io_commit_cqring
2487 */
2488 smp_rmb();
2489 if (!io_sqring_full(ctx))
2490 mask |= EPOLLOUT | EPOLLWRNORM;
2491
2492 /*
2493 * Don't flush cqring overflow list here, just do a simple check.
2494 * Otherwise there could possible be ABBA deadlock:
2495 * CPU0 CPU1
2496 * ---- ----
2497 * lock(&ctx->uring_lock);
2498 * lock(&ep->mtx);
2499 * lock(&ctx->uring_lock);
2500 * lock(&ep->mtx);
2501 *
2502 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2503 * pushs them to do the flush.
2504 */
2505 if (io_cqring_events(ctx) ||
2506 test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
2507 mask |= EPOLLIN | EPOLLRDNORM;
2508
2509 return mask;
2510}
2511
2512static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2513{
2514 const struct cred *creds;
2515
2516 creds = xa_erase(&ctx->personalities, id);
2517 if (creds) {
2518 put_cred(creds);
2519 return 0;
2520 }
2521
2522 return -EINVAL;
2523}
2524
2525struct io_tctx_exit {
2526 struct callback_head task_work;
2527 struct completion completion;
2528 struct io_ring_ctx *ctx;
2529};
2530
2531static __cold void io_tctx_exit_cb(struct callback_head *cb)
2532{
2533 struct io_uring_task *tctx = current->io_uring;
2534 struct io_tctx_exit *work;
2535
2536 work = container_of(cb, struct io_tctx_exit, task_work);
2537 /*
2538 * When @in_idle, we're in cancellation and it's racy to remove the
2539 * node. It'll be removed by the end of cancellation, just ignore it.
2540 */
2541 if (!atomic_read(&tctx->in_idle))
2542 io_uring_del_tctx_node((unsigned long)work->ctx);
2543 complete(&work->completion);
2544}
2545
2546static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2547{
2548 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2549
2550 return req->ctx == data;
2551}
2552
2553static __cold void io_ring_exit_work(struct work_struct *work)
2554{
2555 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2556 unsigned long timeout = jiffies + HZ * 60 * 5;
2557 unsigned long interval = HZ / 20;
2558 struct io_tctx_exit exit;
2559 struct io_tctx_node *node;
2560 int ret;
2561
2562 /*
2563 * If we're doing polled IO and end up having requests being
2564 * submitted async (out-of-line), then completions can come in while
2565 * we're waiting for refs to drop. We need to reap these manually,
2566 * as nobody else will be looking for them.
2567 */
2568 do {
2569 while (io_uring_try_cancel_requests(ctx, NULL, true))
2570 cond_resched();
2571
2572 if (ctx->sq_data) {
2573 struct io_sq_data *sqd = ctx->sq_data;
2574 struct task_struct *tsk;
2575
2576 io_sq_thread_park(sqd);
2577 tsk = sqd->thread;
2578 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2579 io_wq_cancel_cb(tsk->io_uring->io_wq,
2580 io_cancel_ctx_cb, ctx, true);
2581 io_sq_thread_unpark(sqd);
2582 }
2583
2584 io_req_caches_free(ctx);
2585
2586 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2587 /* there is little hope left, don't run it too often */
2588 interval = HZ * 60;
2589 }
2590 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2591
2592 init_completion(&exit.completion);
2593 init_task_work(&exit.task_work, io_tctx_exit_cb);
2594 exit.ctx = ctx;
2595 /*
2596 * Some may use context even when all refs and requests have been put,
2597 * and they are free to do so while still holding uring_lock or
2598 * completion_lock, see io_req_task_submit(). Apart from other work,
2599 * this lock/unlock section also waits them to finish.
2600 */
2601 mutex_lock(&ctx->uring_lock);
2602 while (!list_empty(&ctx->tctx_list)) {
2603 WARN_ON_ONCE(time_after(jiffies, timeout));
2604
2605 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2606 ctx_node);
2607 /* don't spin on a single task if cancellation failed */
2608 list_rotate_left(&ctx->tctx_list);
2609 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2610 if (WARN_ON_ONCE(ret))
2611 continue;
2612
2613 mutex_unlock(&ctx->uring_lock);
2614 wait_for_completion(&exit.completion);
2615 mutex_lock(&ctx->uring_lock);
2616 }
2617 mutex_unlock(&ctx->uring_lock);
2618 spin_lock(&ctx->completion_lock);
2619 spin_unlock(&ctx->completion_lock);
2620
2621 io_ring_ctx_free(ctx);
2622}
2623
2624static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2625{
2626 unsigned long index;
2627 struct creds *creds;
2628
2629 mutex_lock(&ctx->uring_lock);
2630 percpu_ref_kill(&ctx->refs);
2631 if (ctx->rings)
2632 __io_cqring_overflow_flush(ctx, true);
2633 xa_for_each(&ctx->personalities, index, creds)
2634 io_unregister_personality(ctx, index);
2635 if (ctx->rings)
2636 io_poll_remove_all(ctx, NULL, true);
2637 mutex_unlock(&ctx->uring_lock);
2638
2639 /* failed during ring init, it couldn't have issued any requests */
2640 if (ctx->rings) {
2641 io_kill_timeouts(ctx, NULL, true);
2642 /* if we failed setting up the ctx, we might not have any rings */
2643 io_iopoll_try_reap_events(ctx);
2644 }
2645
2646 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2647 /*
2648 * Use system_unbound_wq to avoid spawning tons of event kworkers
2649 * if we're exiting a ton of rings at the same time. It just adds
2650 * noise and overhead, there's no discernable change in runtime
2651 * over using system_wq.
2652 */
2653 queue_work(system_unbound_wq, &ctx->exit_work);
2654}
2655
2656static int io_uring_release(struct inode *inode, struct file *file)
2657{
2658 struct io_ring_ctx *ctx = file->private_data;
2659
2660 file->private_data = NULL;
2661 io_ring_ctx_wait_and_kill(ctx);
2662 return 0;
2663}
2664
2665struct io_task_cancel {
2666 struct task_struct *task;
2667 bool all;
2668};
2669
2670static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2671{
2672 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2673 struct io_task_cancel *cancel = data;
2674
2675 return io_match_task_safe(req, cancel->task, cancel->all);
2676}
2677
2678static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2679 struct task_struct *task,
2680 bool cancel_all)
2681{
2682 struct io_defer_entry *de;
2683 LIST_HEAD(list);
2684
2685 spin_lock(&ctx->completion_lock);
2686 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2687 if (io_match_task_safe(de->req, task, cancel_all)) {
2688 list_cut_position(&list, &ctx->defer_list, &de->list);
2689 break;
2690 }
2691 }
2692 spin_unlock(&ctx->completion_lock);
2693 if (list_empty(&list))
2694 return false;
2695
2696 while (!list_empty(&list)) {
2697 de = list_first_entry(&list, struct io_defer_entry, list);
2698 list_del_init(&de->list);
2699 io_req_complete_failed(de->req, -ECANCELED);
2700 kfree(de);
2701 }
2702 return true;
2703}
2704
2705static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2706{
2707 struct io_tctx_node *node;
2708 enum io_wq_cancel cret;
2709 bool ret = false;
2710
2711 mutex_lock(&ctx->uring_lock);
2712 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2713 struct io_uring_task *tctx = node->task->io_uring;
2714
2715 /*
2716 * io_wq will stay alive while we hold uring_lock, because it's
2717 * killed after ctx nodes, which requires to take the lock.
2718 */
2719 if (!tctx || !tctx->io_wq)
2720 continue;
2721 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2722 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2723 }
2724 mutex_unlock(&ctx->uring_lock);
2725
2726 return ret;
2727}
2728
2729static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2730 struct task_struct *task,
2731 bool cancel_all)
2732{
2733 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2734 struct io_uring_task *tctx = task ? task->io_uring : NULL;
2735 enum io_wq_cancel cret;
2736 bool ret = false;
2737
2738 /* failed during ring init, it couldn't have issued any requests */
2739 if (!ctx->rings)
2740 return false;
2741
2742 if (!task) {
2743 ret |= io_uring_try_cancel_iowq(ctx);
2744 } else if (tctx && tctx->io_wq) {
2745 /*
2746 * Cancels requests of all rings, not only @ctx, but
2747 * it's fine as the task is in exit/exec.
2748 */
2749 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2750 &cancel, true);
2751 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2752 }
2753
2754 /* SQPOLL thread does its own polling */
2755 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2756 (ctx->sq_data && ctx->sq_data->thread == current)) {
2757 while (!wq_list_empty(&ctx->iopoll_list)) {
2758 io_iopoll_try_reap_events(ctx);
2759 ret = true;
2760 }
2761 }
2762
2763 ret |= io_cancel_defer_files(ctx, task, cancel_all);
2764 mutex_lock(&ctx->uring_lock);
2765 ret |= io_poll_remove_all(ctx, task, cancel_all);
2766 mutex_unlock(&ctx->uring_lock);
2767 ret |= io_kill_timeouts(ctx, task, cancel_all);
2768 if (task)
2769 ret |= io_run_task_work();
2770 return ret;
2771}
2772
2773static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2774{
2775 if (tracked)
2776 return atomic_read(&tctx->inflight_tracked);
2777 return percpu_counter_sum(&tctx->inflight);
2778}
2779
2780/*
2781 * Find any io_uring ctx that this task has registered or done IO on, and cancel
2782 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2783 */
2784__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2785{
2786 struct io_uring_task *tctx = current->io_uring;
2787 struct io_ring_ctx *ctx;
2788 s64 inflight;
2789 DEFINE_WAIT(wait);
2790
2791 WARN_ON_ONCE(sqd && sqd->thread != current);
2792
2793 if (!current->io_uring)
2794 return;
2795 if (tctx->io_wq)
2796 io_wq_exit_start(tctx->io_wq);
2797
2798 atomic_inc(&tctx->in_idle);
2799 do {
2800 bool loop = false;
2801
2802 io_uring_drop_tctx_refs(current);
2803 /* read completions before cancelations */
2804 inflight = tctx_inflight(tctx, !cancel_all);
2805 if (!inflight)
2806 break;
2807
2808 if (!sqd) {
2809 struct io_tctx_node *node;
2810 unsigned long index;
2811
2812 xa_for_each(&tctx->xa, index, node) {
2813 /* sqpoll task will cancel all its requests */
2814 if (node->ctx->sq_data)
2815 continue;
2816 loop |= io_uring_try_cancel_requests(node->ctx,
2817 current, cancel_all);
2818 }
2819 } else {
2820 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
2821 loop |= io_uring_try_cancel_requests(ctx,
2822 current,
2823 cancel_all);
2824 }
2825
2826 if (loop) {
2827 cond_resched();
2828 continue;
2829 }
2830
2831 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
2832 io_run_task_work();
2833 io_uring_drop_tctx_refs(current);
2834
2835 /*
2836 * If we've seen completions, retry without waiting. This
2837 * avoids a race where a completion comes in before we did
2838 * prepare_to_wait().
2839 */
2840 if (inflight == tctx_inflight(tctx, !cancel_all))
2841 schedule();
2842 finish_wait(&tctx->wait, &wait);
2843 } while (1);
2844
2845 io_uring_clean_tctx(tctx);
2846 if (cancel_all) {
2847 /*
2848 * We shouldn't run task_works after cancel, so just leave
2849 * ->in_idle set for normal exit.
2850 */
2851 atomic_dec(&tctx->in_idle);
2852 /* for exec all current's requests should be gone, kill tctx */
2853 __io_uring_free(current);
2854 }
2855}
2856
2857void __io_uring_cancel(bool cancel_all)
2858{
2859 io_uring_cancel_generic(cancel_all, NULL);
2860}
2861
2862static void *io_uring_validate_mmap_request(struct file *file,
2863 loff_t pgoff, size_t sz)
2864{
2865 struct io_ring_ctx *ctx = file->private_data;
2866 loff_t offset = pgoff << PAGE_SHIFT;
2867 struct page *page;
2868 void *ptr;
2869
2870 switch (offset) {
2871 case IORING_OFF_SQ_RING:
2872 case IORING_OFF_CQ_RING:
2873 ptr = ctx->rings;
2874 break;
2875 case IORING_OFF_SQES:
2876 ptr = ctx->sq_sqes;
2877 break;
2878 default:
2879 return ERR_PTR(-EINVAL);
2880 }
2881
2882 page = virt_to_head_page(ptr);
2883 if (sz > page_size(page))
2884 return ERR_PTR(-EINVAL);
2885
2886 return ptr;
2887}
2888
2889#ifdef CONFIG_MMU
2890
2891static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2892{
2893 size_t sz = vma->vm_end - vma->vm_start;
2894 unsigned long pfn;
2895 void *ptr;
2896
2897 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
2898 if (IS_ERR(ptr))
2899 return PTR_ERR(ptr);
2900
2901 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2902 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2903}
2904
2905#else /* !CONFIG_MMU */
2906
2907static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2908{
2909 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
2910}
2911
2912static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
2913{
2914 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
2915}
2916
2917static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
2918 unsigned long addr, unsigned long len,
2919 unsigned long pgoff, unsigned long flags)
2920{
2921 void *ptr;
2922
2923 ptr = io_uring_validate_mmap_request(file, pgoff, len);
2924 if (IS_ERR(ptr))
2925 return PTR_ERR(ptr);
2926
2927 return (unsigned long) ptr;
2928}
2929
2930#endif /* !CONFIG_MMU */
2931
2932static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
2933{
2934 if (flags & IORING_ENTER_EXT_ARG) {
2935 struct io_uring_getevents_arg arg;
2936
2937 if (argsz != sizeof(arg))
2938 return -EINVAL;
2939 if (copy_from_user(&arg, argp, sizeof(arg)))
2940 return -EFAULT;
2941 }
2942 return 0;
2943}
2944
2945static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
2946 struct __kernel_timespec __user **ts,
2947 const sigset_t __user **sig)
2948{
2949 struct io_uring_getevents_arg arg;
2950
2951 /*
2952 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
2953 * is just a pointer to the sigset_t.
2954 */
2955 if (!(flags & IORING_ENTER_EXT_ARG)) {
2956 *sig = (const sigset_t __user *) argp;
2957 *ts = NULL;
2958 return 0;
2959 }
2960
2961 /*
2962 * EXT_ARG is set - ensure we agree on the size of it and copy in our
2963 * timespec and sigset_t pointers if good.
2964 */
2965 if (*argsz != sizeof(arg))
2966 return -EINVAL;
2967 if (copy_from_user(&arg, argp, sizeof(arg)))
2968 return -EFAULT;
2969 if (arg.pad)
2970 return -EINVAL;
2971 *sig = u64_to_user_ptr(arg.sigmask);
2972 *argsz = arg.sigmask_sz;
2973 *ts = u64_to_user_ptr(arg.ts);
2974 return 0;
2975}
2976
2977SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2978 u32, min_complete, u32, flags, const void __user *, argp,
2979 size_t, argsz)
2980{
2981 struct io_ring_ctx *ctx;
2982 struct fd f;
2983 long ret;
2984
2985 io_run_task_work();
2986
2987 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
2988 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
2989 IORING_ENTER_REGISTERED_RING)))
2990 return -EINVAL;
2991
2992 /*
2993 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
2994 * need only dereference our task private array to find it.
2995 */
2996 if (flags & IORING_ENTER_REGISTERED_RING) {
2997 struct io_uring_task *tctx = current->io_uring;
2998
2999 if (!tctx || fd >= IO_RINGFD_REG_MAX)
3000 return -EINVAL;
3001 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3002 f.file = tctx->registered_rings[fd];
3003 f.flags = 0;
3004 } else {
3005 f = fdget(fd);
3006 }
3007
3008 if (unlikely(!f.file))
3009 return -EBADF;
3010
3011 ret = -EOPNOTSUPP;
3012 if (unlikely(!io_is_uring_fops(f.file)))
3013 goto out_fput;
3014
3015 ret = -ENXIO;
3016 ctx = f.file->private_data;
3017 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
3018 goto out_fput;
3019
3020 ret = -EBADFD;
3021 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3022 goto out;
3023
3024 /*
3025 * For SQ polling, the thread will do all submissions and completions.
3026 * Just return the requested submit count, and wake the thread if
3027 * we were asked to.
3028 */
3029 ret = 0;
3030 if (ctx->flags & IORING_SETUP_SQPOLL) {
3031 io_cqring_overflow_flush(ctx);
3032
3033 if (unlikely(ctx->sq_data->thread == NULL)) {
3034 ret = -EOWNERDEAD;
3035 goto out;
3036 }
3037 if (flags & IORING_ENTER_SQ_WAKEUP)
3038 wake_up(&ctx->sq_data->wait);
3039 if (flags & IORING_ENTER_SQ_WAIT) {
3040 ret = io_sqpoll_wait_sq(ctx);
3041 if (ret)
3042 goto out;
3043 }
3044 ret = to_submit;
3045 } else if (to_submit) {
3046 ret = io_uring_add_tctx_node(ctx);
3047 if (unlikely(ret))
3048 goto out;
3049
3050 mutex_lock(&ctx->uring_lock);
3051 ret = io_submit_sqes(ctx, to_submit);
3052 if (ret != to_submit) {
3053 mutex_unlock(&ctx->uring_lock);
3054 goto out;
3055 }
3056 if ((flags & IORING_ENTER_GETEVENTS) && ctx->syscall_iopoll)
3057 goto iopoll_locked;
3058 mutex_unlock(&ctx->uring_lock);
3059 }
3060 if (flags & IORING_ENTER_GETEVENTS) {
3061 int ret2;
3062 if (ctx->syscall_iopoll) {
3063 /*
3064 * We disallow the app entering submit/complete with
3065 * polling, but we still need to lock the ring to
3066 * prevent racing with polled issue that got punted to
3067 * a workqueue.
3068 */
3069 mutex_lock(&ctx->uring_lock);
3070iopoll_locked:
3071 ret2 = io_validate_ext_arg(flags, argp, argsz);
3072 if (likely(!ret2)) {
3073 min_complete = min(min_complete,
3074 ctx->cq_entries);
3075 ret2 = io_iopoll_check(ctx, min_complete);
3076 }
3077 mutex_unlock(&ctx->uring_lock);
3078 } else {
3079 const sigset_t __user *sig;
3080 struct __kernel_timespec __user *ts;
3081
3082 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3083 if (likely(!ret2)) {
3084 min_complete = min(min_complete,
3085 ctx->cq_entries);
3086 ret2 = io_cqring_wait(ctx, min_complete, sig,
3087 argsz, ts);
3088 }
3089 }
3090
3091 if (!ret) {
3092 ret = ret2;
3093
3094 /*
3095 * EBADR indicates that one or more CQE were dropped.
3096 * Once the user has been informed we can clear the bit
3097 * as they are obviously ok with those drops.
3098 */
3099 if (unlikely(ret2 == -EBADR))
3100 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3101 &ctx->check_cq);
3102 }
3103 }
3104
3105out:
3106 percpu_ref_put(&ctx->refs);
3107out_fput:
3108 fdput(f);
3109 return ret;
3110}
3111
3112static const struct file_operations io_uring_fops = {
3113 .release = io_uring_release,
3114 .mmap = io_uring_mmap,
3115#ifndef CONFIG_MMU
3116 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3117 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3118#endif
3119 .poll = io_uring_poll,
3120#ifdef CONFIG_PROC_FS
3121 .show_fdinfo = io_uring_show_fdinfo,
3122#endif
3123};
3124
3125bool io_is_uring_fops(struct file *file)
3126{
3127 return file->f_op == &io_uring_fops;
3128}
3129
3130static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3131 struct io_uring_params *p)
3132{
3133 struct io_rings *rings;
3134 size_t size, sq_array_offset;
3135
3136 /* make sure these are sane, as we already accounted them */
3137 ctx->sq_entries = p->sq_entries;
3138 ctx->cq_entries = p->cq_entries;
3139
3140 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3141 if (size == SIZE_MAX)
3142 return -EOVERFLOW;
3143
3144 rings = io_mem_alloc(size);
3145 if (!rings)
3146 return -ENOMEM;
3147
3148 ctx->rings = rings;
3149 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3150 rings->sq_ring_mask = p->sq_entries - 1;
3151 rings->cq_ring_mask = p->cq_entries - 1;
3152 rings->sq_ring_entries = p->sq_entries;
3153 rings->cq_ring_entries = p->cq_entries;
3154
3155 if (p->flags & IORING_SETUP_SQE128)
3156 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3157 else
3158 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3159 if (size == SIZE_MAX) {
3160 io_mem_free(ctx->rings);
3161 ctx->rings = NULL;
3162 return -EOVERFLOW;
3163 }
3164
3165 ctx->sq_sqes = io_mem_alloc(size);
3166 if (!ctx->sq_sqes) {
3167 io_mem_free(ctx->rings);
3168 ctx->rings = NULL;
3169 return -ENOMEM;
3170 }
3171
3172 return 0;
3173}
3174
3175static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3176{
3177 int ret, fd;
3178
3179 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3180 if (fd < 0)
3181 return fd;
3182
3183 ret = __io_uring_add_tctx_node(ctx, false);
3184 if (ret) {
3185 put_unused_fd(fd);
3186 return ret;
3187 }
3188 fd_install(fd, file);
3189 return fd;
3190}
3191
3192/*
3193 * Allocate an anonymous fd, this is what constitutes the application
3194 * visible backing of an io_uring instance. The application mmaps this
3195 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3196 * we have to tie this fd to a socket for file garbage collection purposes.
3197 */
3198static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3199{
3200 struct file *file;
3201#if defined(CONFIG_UNIX)
3202 int ret;
3203
3204 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3205 &ctx->ring_sock);
3206 if (ret)
3207 return ERR_PTR(ret);
3208#endif
3209
3210 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3211 O_RDWR | O_CLOEXEC, NULL);
3212#if defined(CONFIG_UNIX)
3213 if (IS_ERR(file)) {
3214 sock_release(ctx->ring_sock);
3215 ctx->ring_sock = NULL;
3216 } else {
3217 ctx->ring_sock->file = file;
3218 }
3219#endif
3220 return file;
3221}
3222
3223static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3224 struct io_uring_params __user *params)
3225{
3226 struct io_ring_ctx *ctx;
3227 struct file *file;
3228 int ret;
3229
3230 if (!entries)
3231 return -EINVAL;
3232 if (entries > IORING_MAX_ENTRIES) {
3233 if (!(p->flags & IORING_SETUP_CLAMP))
3234 return -EINVAL;
3235 entries = IORING_MAX_ENTRIES;
3236 }
3237
3238 /*
3239 * Use twice as many entries for the CQ ring. It's possible for the
3240 * application to drive a higher depth than the size of the SQ ring,
3241 * since the sqes are only used at submission time. This allows for
3242 * some flexibility in overcommitting a bit. If the application has
3243 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3244 * of CQ ring entries manually.
3245 */
3246 p->sq_entries = roundup_pow_of_two(entries);
3247 if (p->flags & IORING_SETUP_CQSIZE) {
3248 /*
3249 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3250 * to a power-of-two, if it isn't already. We do NOT impose
3251 * any cq vs sq ring sizing.
3252 */
3253 if (!p->cq_entries)
3254 return -EINVAL;
3255 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3256 if (!(p->flags & IORING_SETUP_CLAMP))
3257 return -EINVAL;
3258 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3259 }
3260 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3261 if (p->cq_entries < p->sq_entries)
3262 return -EINVAL;
3263 } else {
3264 p->cq_entries = 2 * p->sq_entries;
3265 }
3266
3267 ctx = io_ring_ctx_alloc(p);
3268 if (!ctx)
3269 return -ENOMEM;
3270
3271 /*
3272 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3273 * space applications don't need to do io completion events
3274 * polling again, they can rely on io_sq_thread to do polling
3275 * work, which can reduce cpu usage and uring_lock contention.
3276 */
3277 if (ctx->flags & IORING_SETUP_IOPOLL &&
3278 !(ctx->flags & IORING_SETUP_SQPOLL))
3279 ctx->syscall_iopoll = 1;
3280
3281 ctx->compat = in_compat_syscall();
3282 if (!capable(CAP_IPC_LOCK))
3283 ctx->user = get_uid(current_user());
3284
3285 /*
3286 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3287 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3288 */
3289 ret = -EINVAL;
3290 if (ctx->flags & IORING_SETUP_SQPOLL) {
3291 /* IPI related flags don't make sense with SQPOLL */
3292 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3293 IORING_SETUP_TASKRUN_FLAG))
3294 goto err;
3295 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3296 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3297 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3298 } else {
3299 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
3300 goto err;
3301 ctx->notify_method = TWA_SIGNAL;
3302 }
3303
3304 /*
3305 * This is just grabbed for accounting purposes. When a process exits,
3306 * the mm is exited and dropped before the files, hence we need to hang
3307 * on to this mm purely for the purposes of being able to unaccount
3308 * memory (locked/pinned vm). It's not used for anything else.
3309 */
3310 mmgrab(current->mm);
3311 ctx->mm_account = current->mm;
3312
3313 ret = io_allocate_scq_urings(ctx, p);
3314 if (ret)
3315 goto err;
3316
3317 ret = io_sq_offload_create(ctx, p);
3318 if (ret)
3319 goto err;
3320 /* always set a rsrc node */
3321 ret = io_rsrc_node_switch_start(ctx);
3322 if (ret)
3323 goto err;
3324 io_rsrc_node_switch(ctx, NULL);
3325
3326 memset(&p->sq_off, 0, sizeof(p->sq_off));
3327 p->sq_off.head = offsetof(struct io_rings, sq.head);
3328 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3329 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3330 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3331 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3332 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3333 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3334
3335 memset(&p->cq_off, 0, sizeof(p->cq_off));
3336 p->cq_off.head = offsetof(struct io_rings, cq.head);
3337 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3338 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3339 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3340 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3341 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3342 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3343
3344 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3345 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3346 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3347 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3348 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3349 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3350 IORING_FEAT_LINKED_FILE;
3351
3352 if (copy_to_user(params, p, sizeof(*p))) {
3353 ret = -EFAULT;
3354 goto err;
3355 }
3356
3357 file = io_uring_get_file(ctx);
3358 if (IS_ERR(file)) {
3359 ret = PTR_ERR(file);
3360 goto err;
3361 }
3362
3363 /*
3364 * Install ring fd as the very last thing, so we don't risk someone
3365 * having closed it before we finish setup
3366 */
3367 ret = io_uring_install_fd(ctx, file);
3368 if (ret < 0) {
3369 /* fput will clean it up */
3370 fput(file);
3371 return ret;
3372 }
3373
3374 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3375 return ret;
3376err:
3377 io_ring_ctx_wait_and_kill(ctx);
3378 return ret;
3379}
3380
3381/*
3382 * Sets up an aio uring context, and returns the fd. Applications asks for a
3383 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3384 * params structure passed in.
3385 */
3386static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3387{
3388 struct io_uring_params p;
3389 int i;
3390
3391 if (copy_from_user(&p, params, sizeof(p)))
3392 return -EFAULT;
3393 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3394 if (p.resv[i])
3395 return -EINVAL;
3396 }
3397
3398 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3399 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3400 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3401 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3402 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3403 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3404 IORING_SETUP_SINGLE_ISSUER))
3405 return -EINVAL;
3406
3407 return io_uring_create(entries, &p, params);
3408}
3409
3410SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3411 struct io_uring_params __user *, params)
3412{
3413 return io_uring_setup(entries, params);
3414}
3415
3416static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3417 unsigned nr_args)
3418{
3419 struct io_uring_probe *p;
3420 size_t size;
3421 int i, ret;
3422
3423 size = struct_size(p, ops, nr_args);
3424 if (size == SIZE_MAX)
3425 return -EOVERFLOW;
3426 p = kzalloc(size, GFP_KERNEL);
3427 if (!p)
3428 return -ENOMEM;
3429
3430 ret = -EFAULT;
3431 if (copy_from_user(p, arg, size))
3432 goto out;
3433 ret = -EINVAL;
3434 if (memchr_inv(p, 0, size))
3435 goto out;
3436
3437 p->last_op = IORING_OP_LAST - 1;
3438 if (nr_args > IORING_OP_LAST)
3439 nr_args = IORING_OP_LAST;
3440
3441 for (i = 0; i < nr_args; i++) {
3442 p->ops[i].op = i;
3443 if (!io_op_defs[i].not_supported)
3444 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3445 }
3446 p->ops_len = i;
3447
3448 ret = 0;
3449 if (copy_to_user(arg, p, size))
3450 ret = -EFAULT;
3451out:
3452 kfree(p);
3453 return ret;
3454}
3455
3456static int io_register_personality(struct io_ring_ctx *ctx)
3457{
3458 const struct cred *creds;
3459 u32 id;
3460 int ret;
3461
3462 creds = get_current_cred();
3463
3464 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3465 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3466 if (ret < 0) {
3467 put_cred(creds);
3468 return ret;
3469 }
3470 return id;
3471}
3472
3473static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3474 void __user *arg, unsigned int nr_args)
3475{
3476 struct io_uring_restriction *res;
3477 size_t size;
3478 int i, ret;
3479
3480 /* Restrictions allowed only if rings started disabled */
3481 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3482 return -EBADFD;
3483
3484 /* We allow only a single restrictions registration */
3485 if (ctx->restrictions.registered)
3486 return -EBUSY;
3487
3488 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3489 return -EINVAL;
3490
3491 size = array_size(nr_args, sizeof(*res));
3492 if (size == SIZE_MAX)
3493 return -EOVERFLOW;
3494
3495 res = memdup_user(arg, size);
3496 if (IS_ERR(res))
3497 return PTR_ERR(res);
3498
3499 ret = 0;
3500
3501 for (i = 0; i < nr_args; i++) {
3502 switch (res[i].opcode) {
3503 case IORING_RESTRICTION_REGISTER_OP:
3504 if (res[i].register_op >= IORING_REGISTER_LAST) {
3505 ret = -EINVAL;
3506 goto out;
3507 }
3508
3509 __set_bit(res[i].register_op,
3510 ctx->restrictions.register_op);
3511 break;
3512 case IORING_RESTRICTION_SQE_OP:
3513 if (res[i].sqe_op >= IORING_OP_LAST) {
3514 ret = -EINVAL;
3515 goto out;
3516 }
3517
3518 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3519 break;
3520 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3521 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3522 break;
3523 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3524 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3525 break;
3526 default:
3527 ret = -EINVAL;
3528 goto out;
3529 }
3530 }
3531
3532out:
3533 /* Reset all restrictions if an error happened */
3534 if (ret != 0)
3535 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3536 else
3537 ctx->restrictions.registered = true;
3538
3539 kfree(res);
3540 return ret;
3541}
3542
3543static int io_register_enable_rings(struct io_ring_ctx *ctx)
3544{
3545 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3546 return -EBADFD;
3547
3548 if (ctx->restrictions.registered)
3549 ctx->restricted = 1;
3550
3551 ctx->flags &= ~IORING_SETUP_R_DISABLED;
3552 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3553 wake_up(&ctx->sq_data->wait);
3554 return 0;
3555}
3556
3557static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3558 void __user *arg, unsigned len)
3559{
3560 struct io_uring_task *tctx = current->io_uring;
3561 cpumask_var_t new_mask;
3562 int ret;
3563
3564 if (!tctx || !tctx->io_wq)
3565 return -EINVAL;
3566
3567 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3568 return -ENOMEM;
3569
3570 cpumask_clear(new_mask);
3571 if (len > cpumask_size())
3572 len = cpumask_size();
3573
3574 if (in_compat_syscall()) {
3575 ret = compat_get_bitmap(cpumask_bits(new_mask),
3576 (const compat_ulong_t __user *)arg,
3577 len * 8 /* CHAR_BIT */);
3578 } else {
3579 ret = copy_from_user(new_mask, arg, len);
3580 }
3581
3582 if (ret) {
3583 free_cpumask_var(new_mask);
3584 return -EFAULT;
3585 }
3586
3587 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3588 free_cpumask_var(new_mask);
3589 return ret;
3590}
3591
3592static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3593{
3594 struct io_uring_task *tctx = current->io_uring;
3595
3596 if (!tctx || !tctx->io_wq)
3597 return -EINVAL;
3598
3599 return io_wq_cpu_affinity(tctx->io_wq, NULL);
3600}
3601
3602static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3603 void __user *arg)
3604 __must_hold(&ctx->uring_lock)
3605{
3606 struct io_tctx_node *node;
3607 struct io_uring_task *tctx = NULL;
3608 struct io_sq_data *sqd = NULL;
3609 __u32 new_count[2];
3610 int i, ret;
3611
3612 if (copy_from_user(new_count, arg, sizeof(new_count)))
3613 return -EFAULT;
3614 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3615 if (new_count[i] > INT_MAX)
3616 return -EINVAL;
3617
3618 if (ctx->flags & IORING_SETUP_SQPOLL) {
3619 sqd = ctx->sq_data;
3620 if (sqd) {
3621 /*
3622 * Observe the correct sqd->lock -> ctx->uring_lock
3623 * ordering. Fine to drop uring_lock here, we hold
3624 * a ref to the ctx.
3625 */
3626 refcount_inc(&sqd->refs);
3627 mutex_unlock(&ctx->uring_lock);
3628 mutex_lock(&sqd->lock);
3629 mutex_lock(&ctx->uring_lock);
3630 if (sqd->thread)
3631 tctx = sqd->thread->io_uring;
3632 }
3633 } else {
3634 tctx = current->io_uring;
3635 }
3636
3637 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3638
3639 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3640 if (new_count[i])
3641 ctx->iowq_limits[i] = new_count[i];
3642 ctx->iowq_limits_set = true;
3643
3644 if (tctx && tctx->io_wq) {
3645 ret = io_wq_max_workers(tctx->io_wq, new_count);
3646 if (ret)
3647 goto err;
3648 } else {
3649 memset(new_count, 0, sizeof(new_count));
3650 }
3651
3652 if (sqd) {
3653 mutex_unlock(&sqd->lock);
3654 io_put_sq_data(sqd);
3655 }
3656
3657 if (copy_to_user(arg, new_count, sizeof(new_count)))
3658 return -EFAULT;
3659
3660 /* that's it for SQPOLL, only the SQPOLL task creates requests */
3661 if (sqd)
3662 return 0;
3663
3664 /* now propagate the restriction to all registered users */
3665 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3666 struct io_uring_task *tctx = node->task->io_uring;
3667
3668 if (WARN_ON_ONCE(!tctx->io_wq))
3669 continue;
3670
3671 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3672 new_count[i] = ctx->iowq_limits[i];
3673 /* ignore errors, it always returns zero anyway */
3674 (void)io_wq_max_workers(tctx->io_wq, new_count);
3675 }
3676 return 0;
3677err:
3678 if (sqd) {
3679 mutex_unlock(&sqd->lock);
3680 io_put_sq_data(sqd);
3681 }
3682 return ret;
3683}
3684
3685static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3686 void __user *arg, unsigned nr_args)
3687 __releases(ctx->uring_lock)
3688 __acquires(ctx->uring_lock)
3689{
3690 int ret;
3691
3692 /*
3693 * We're inside the ring mutex, if the ref is already dying, then
3694 * someone else killed the ctx or is already going through
3695 * io_uring_register().
3696 */
3697 if (percpu_ref_is_dying(&ctx->refs))
3698 return -ENXIO;
3699
3700 if (ctx->restricted) {
3701 if (opcode >= IORING_REGISTER_LAST)
3702 return -EINVAL;
3703 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3704 if (!test_bit(opcode, ctx->restrictions.register_op))
3705 return -EACCES;
3706 }
3707
3708 switch (opcode) {
3709 case IORING_REGISTER_BUFFERS:
3710 ret = -EFAULT;
3711 if (!arg)
3712 break;
3713 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3714 break;
3715 case IORING_UNREGISTER_BUFFERS:
3716 ret = -EINVAL;
3717 if (arg || nr_args)
3718 break;
3719 ret = io_sqe_buffers_unregister(ctx);
3720 break;
3721 case IORING_REGISTER_FILES:
3722 ret = -EFAULT;
3723 if (!arg)
3724 break;
3725 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
3726 break;
3727 case IORING_UNREGISTER_FILES:
3728 ret = -EINVAL;
3729 if (arg || nr_args)
3730 break;
3731 ret = io_sqe_files_unregister(ctx);
3732 break;
3733 case IORING_REGISTER_FILES_UPDATE:
3734 ret = io_register_files_update(ctx, arg, nr_args);
3735 break;
3736 case IORING_REGISTER_EVENTFD:
3737 ret = -EINVAL;
3738 if (nr_args != 1)
3739 break;
3740 ret = io_eventfd_register(ctx, arg, 0);
3741 break;
3742 case IORING_REGISTER_EVENTFD_ASYNC:
3743 ret = -EINVAL;
3744 if (nr_args != 1)
3745 break;
3746 ret = io_eventfd_register(ctx, arg, 1);
3747 break;
3748 case IORING_UNREGISTER_EVENTFD:
3749 ret = -EINVAL;
3750 if (arg || nr_args)
3751 break;
3752 ret = io_eventfd_unregister(ctx);
3753 break;
3754 case IORING_REGISTER_PROBE:
3755 ret = -EINVAL;
3756 if (!arg || nr_args > 256)
3757 break;
3758 ret = io_probe(ctx, arg, nr_args);
3759 break;
3760 case IORING_REGISTER_PERSONALITY:
3761 ret = -EINVAL;
3762 if (arg || nr_args)
3763 break;
3764 ret = io_register_personality(ctx);
3765 break;
3766 case IORING_UNREGISTER_PERSONALITY:
3767 ret = -EINVAL;
3768 if (arg)
3769 break;
3770 ret = io_unregister_personality(ctx, nr_args);
3771 break;
3772 case IORING_REGISTER_ENABLE_RINGS:
3773 ret = -EINVAL;
3774 if (arg || nr_args)
3775 break;
3776 ret = io_register_enable_rings(ctx);
3777 break;
3778 case IORING_REGISTER_RESTRICTIONS:
3779 ret = io_register_restrictions(ctx, arg, nr_args);
3780 break;
3781 case IORING_REGISTER_FILES2:
3782 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
3783 break;
3784 case IORING_REGISTER_FILES_UPDATE2:
3785 ret = io_register_rsrc_update(ctx, arg, nr_args,
3786 IORING_RSRC_FILE);
3787 break;
3788 case IORING_REGISTER_BUFFERS2:
3789 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
3790 break;
3791 case IORING_REGISTER_BUFFERS_UPDATE:
3792 ret = io_register_rsrc_update(ctx, arg, nr_args,
3793 IORING_RSRC_BUFFER);
3794 break;
3795 case IORING_REGISTER_IOWQ_AFF:
3796 ret = -EINVAL;
3797 if (!arg || !nr_args)
3798 break;
3799 ret = io_register_iowq_aff(ctx, arg, nr_args);
3800 break;
3801 case IORING_UNREGISTER_IOWQ_AFF:
3802 ret = -EINVAL;
3803 if (arg || nr_args)
3804 break;
3805 ret = io_unregister_iowq_aff(ctx);
3806 break;
3807 case IORING_REGISTER_IOWQ_MAX_WORKERS:
3808 ret = -EINVAL;
3809 if (!arg || nr_args != 2)
3810 break;
3811 ret = io_register_iowq_max_workers(ctx, arg);
3812 break;
3813 case IORING_REGISTER_RING_FDS:
3814 ret = io_ringfd_register(ctx, arg, nr_args);
3815 break;
3816 case IORING_UNREGISTER_RING_FDS:
3817 ret = io_ringfd_unregister(ctx, arg, nr_args);
3818 break;
3819 case IORING_REGISTER_PBUF_RING:
3820 ret = -EINVAL;
3821 if (!arg || nr_args != 1)
3822 break;
3823 ret = io_register_pbuf_ring(ctx, arg);
3824 break;
3825 case IORING_UNREGISTER_PBUF_RING:
3826 ret = -EINVAL;
3827 if (!arg || nr_args != 1)
3828 break;
3829 ret = io_unregister_pbuf_ring(ctx, arg);
3830 break;
3831 default:
3832 ret = -EINVAL;
3833 break;
3834 }
3835
3836 return ret;
3837}
3838
3839SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3840 void __user *, arg, unsigned int, nr_args)
3841{
3842 struct io_ring_ctx *ctx;
3843 long ret = -EBADF;
3844 struct fd f;
3845
3846 f = fdget(fd);
3847 if (!f.file)
3848 return -EBADF;
3849
3850 ret = -EOPNOTSUPP;
3851 if (!io_is_uring_fops(f.file))
3852 goto out_fput;
3853
3854 ctx = f.file->private_data;
3855
3856 io_run_task_work();
3857
3858 mutex_lock(&ctx->uring_lock);
3859 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3860 mutex_unlock(&ctx->uring_lock);
3861 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
3862out_fput:
3863 fdput(f);
3864 return ret;
3865}
3866
3867static int __init io_uring_init(void)
3868{
3869#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
3870 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3871 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
3872} while (0)
3873
3874#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3875 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
3876 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3877 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3878 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3879 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3880 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3881 BUILD_BUG_SQE_ELEM(8, __u64, off);
3882 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3883 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3884 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3885 BUILD_BUG_SQE_ELEM(24, __u32, len);
3886 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3887 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3888 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3889 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3890 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3891 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3892 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3893 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3894 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3895 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3896 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3897 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3898 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3899 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3900 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3901 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3902 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3903 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3904 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3905 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3906 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3907 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3908
3909 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3910 sizeof(struct io_uring_rsrc_update));
3911 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3912 sizeof(struct io_uring_rsrc_update2));
3913
3914 /* ->buf_index is u16 */
3915 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3916 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3917 offsetof(struct io_uring_buf_ring, tail));
3918
3919 /* should fit into one byte */
3920 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3921 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3922 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3923
3924 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
3925
3926 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3927
3928 io_uring_optable_init();
3929
3930 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
3931 SLAB_ACCOUNT);
3932 return 0;
3933};
3934__initcall(io_uring_init);