| 1 | /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ |
| 2 | #ifndef _BTRFS_CTREE_H_ |
| 3 | #define _BTRFS_CTREE_H_ |
| 4 | |
| 5 | #include <linux/btrfs.h> |
| 6 | #include <linux/types.h> |
| 7 | #ifdef __KERNEL__ |
| 8 | #include <linux/stddef.h> |
| 9 | #else |
| 10 | #include <stddef.h> |
| 11 | #endif |
| 12 | |
| 13 | /* ASCII for _BHRfS_M, no terminating nul */ |
| 14 | #define BTRFS_MAGIC 0x4D5F53665248425FULL |
| 15 | |
| 16 | #define BTRFS_MAX_LEVEL 8 |
| 17 | |
| 18 | /* |
| 19 | * We can actually store much bigger names, but lets not confuse the rest of |
| 20 | * linux. |
| 21 | */ |
| 22 | #define BTRFS_NAME_LEN 255 |
| 23 | |
| 24 | /* |
| 25 | * Theoretical limit is larger, but we keep this down to a sane value. That |
| 26 | * should limit greatly the possibility of collisions on inode ref items. |
| 27 | */ |
| 28 | #define BTRFS_LINK_MAX 65535U |
| 29 | |
| 30 | /* |
| 31 | * This header contains the structure definitions and constants used |
| 32 | * by file system objects that can be retrieved using |
| 33 | * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that |
| 34 | * is needed to describe a leaf node's key or item contents. |
| 35 | */ |
| 36 | |
| 37 | /* holds pointers to all of the tree roots */ |
| 38 | #define BTRFS_ROOT_TREE_OBJECTID 1ULL |
| 39 | |
| 40 | /* stores information about which extents are in use, and reference counts */ |
| 41 | #define BTRFS_EXTENT_TREE_OBJECTID 2ULL |
| 42 | |
| 43 | /* |
| 44 | * chunk tree stores translations from logical -> physical block numbering |
| 45 | * the super block points to the chunk tree |
| 46 | */ |
| 47 | #define BTRFS_CHUNK_TREE_OBJECTID 3ULL |
| 48 | |
| 49 | /* |
| 50 | * stores information about which areas of a given device are in use. |
| 51 | * one per device. The tree of tree roots points to the device tree |
| 52 | */ |
| 53 | #define BTRFS_DEV_TREE_OBJECTID 4ULL |
| 54 | |
| 55 | /* one per subvolume, storing files and directories */ |
| 56 | #define BTRFS_FS_TREE_OBJECTID 5ULL |
| 57 | |
| 58 | /* directory objectid inside the root tree */ |
| 59 | #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL |
| 60 | |
| 61 | /* holds checksums of all the data extents */ |
| 62 | #define BTRFS_CSUM_TREE_OBJECTID 7ULL |
| 63 | |
| 64 | /* holds quota configuration and tracking */ |
| 65 | #define BTRFS_QUOTA_TREE_OBJECTID 8ULL |
| 66 | |
| 67 | /* for storing items that use the BTRFS_UUID_KEY* types */ |
| 68 | #define BTRFS_UUID_TREE_OBJECTID 9ULL |
| 69 | |
| 70 | /* tracks free space in block groups. */ |
| 71 | #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL |
| 72 | |
| 73 | /* Holds the block group items for extent tree v2. */ |
| 74 | #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL |
| 75 | |
| 76 | /* Tracks RAID stripes in block groups. */ |
| 77 | #define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL |
| 78 | |
| 79 | /* device stats in the device tree */ |
| 80 | #define BTRFS_DEV_STATS_OBJECTID 0ULL |
| 81 | |
| 82 | /* for storing balance parameters in the root tree */ |
| 83 | #define BTRFS_BALANCE_OBJECTID -4ULL |
| 84 | |
| 85 | /* orphan objectid for tracking unlinked/truncated files */ |
| 86 | #define BTRFS_ORPHAN_OBJECTID -5ULL |
| 87 | |
| 88 | /* does write ahead logging to speed up fsyncs */ |
| 89 | #define BTRFS_TREE_LOG_OBJECTID -6ULL |
| 90 | #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL |
| 91 | |
| 92 | /* for space balancing */ |
| 93 | #define BTRFS_TREE_RELOC_OBJECTID -8ULL |
| 94 | #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL |
| 95 | |
| 96 | /* |
| 97 | * extent checksums all have this objectid |
| 98 | * this allows them to share the logging tree |
| 99 | * for fsyncs |
| 100 | */ |
| 101 | #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL |
| 102 | |
| 103 | /* For storing free space cache */ |
| 104 | #define BTRFS_FREE_SPACE_OBJECTID -11ULL |
| 105 | |
| 106 | /* |
| 107 | * The inode number assigned to the special inode for storing |
| 108 | * free ino cache |
| 109 | */ |
| 110 | #define BTRFS_FREE_INO_OBJECTID -12ULL |
| 111 | |
| 112 | /* dummy objectid represents multiple objectids */ |
| 113 | #define BTRFS_MULTIPLE_OBJECTIDS -255ULL |
| 114 | |
| 115 | /* |
| 116 | * All files have objectids in this range. |
| 117 | */ |
| 118 | #define BTRFS_FIRST_FREE_OBJECTID 256ULL |
| 119 | #define BTRFS_LAST_FREE_OBJECTID -256ULL |
| 120 | #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL |
| 121 | |
| 122 | |
| 123 | /* |
| 124 | * the device items go into the chunk tree. The key is in the form |
| 125 | * [ 1 BTRFS_DEV_ITEM_KEY device_id ] |
| 126 | */ |
| 127 | #define BTRFS_DEV_ITEMS_OBJECTID 1ULL |
| 128 | |
| 129 | #define BTRFS_BTREE_INODE_OBJECTID 1 |
| 130 | |
| 131 | #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 |
| 132 | |
| 133 | #define BTRFS_DEV_REPLACE_DEVID 0ULL |
| 134 | |
| 135 | /* |
| 136 | * inode items have the data typically returned from stat and store other |
| 137 | * info about object characteristics. There is one for every file and dir in |
| 138 | * the FS |
| 139 | */ |
| 140 | #define BTRFS_INODE_ITEM_KEY 1 |
| 141 | #define BTRFS_INODE_REF_KEY 12 |
| 142 | #define BTRFS_INODE_EXTREF_KEY 13 |
| 143 | #define BTRFS_XATTR_ITEM_KEY 24 |
| 144 | |
| 145 | /* |
| 146 | * fs verity items are stored under two different key types on disk. |
| 147 | * The descriptor items: |
| 148 | * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] |
| 149 | * |
| 150 | * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size |
| 151 | * of the descriptor item and some extra data for encryption. |
| 152 | * Starting at offset 1, these hold the generic fs verity descriptor. The |
| 153 | * latter are opaque to btrfs, we just read and write them as a blob for the |
| 154 | * higher level verity code. The most common descriptor size is 256 bytes. |
| 155 | * |
| 156 | * The merkle tree items: |
| 157 | * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] |
| 158 | * |
| 159 | * These also start at offset 0, and correspond to the merkle tree bytes. When |
| 160 | * fsverity asks for page 0 of the merkle tree, we pull up one page starting at |
| 161 | * offset 0 for this key type. These are also opaque to btrfs, we're blindly |
| 162 | * storing whatever fsverity sends down. |
| 163 | */ |
| 164 | #define BTRFS_VERITY_DESC_ITEM_KEY 36 |
| 165 | #define BTRFS_VERITY_MERKLE_ITEM_KEY 37 |
| 166 | |
| 167 | #define BTRFS_ORPHAN_ITEM_KEY 48 |
| 168 | /* reserve 2-15 close to the inode for later flexibility */ |
| 169 | |
| 170 | /* |
| 171 | * dir items are the name -> inode pointers in a directory. There is one |
| 172 | * for every name in a directory. BTRFS_DIR_LOG_ITEM_KEY is no longer used |
| 173 | * but it's still defined here for documentation purposes and to help avoid |
| 174 | * having its numerical value reused in the future. |
| 175 | */ |
| 176 | #define BTRFS_DIR_LOG_ITEM_KEY 60 |
| 177 | #define BTRFS_DIR_LOG_INDEX_KEY 72 |
| 178 | #define BTRFS_DIR_ITEM_KEY 84 |
| 179 | #define BTRFS_DIR_INDEX_KEY 96 |
| 180 | /* |
| 181 | * extent data is for file data |
| 182 | */ |
| 183 | #define BTRFS_EXTENT_DATA_KEY 108 |
| 184 | |
| 185 | /* |
| 186 | * extent csums are stored in a separate tree and hold csums for |
| 187 | * an entire extent on disk. |
| 188 | */ |
| 189 | #define BTRFS_EXTENT_CSUM_KEY 128 |
| 190 | |
| 191 | /* |
| 192 | * root items point to tree roots. They are typically in the root |
| 193 | * tree used by the super block to find all the other trees |
| 194 | */ |
| 195 | #define BTRFS_ROOT_ITEM_KEY 132 |
| 196 | |
| 197 | /* |
| 198 | * root backrefs tie subvols and snapshots to the directory entries that |
| 199 | * reference them |
| 200 | */ |
| 201 | #define BTRFS_ROOT_BACKREF_KEY 144 |
| 202 | |
| 203 | /* |
| 204 | * root refs make a fast index for listing all of the snapshots and |
| 205 | * subvolumes referenced by a given root. They point directly to the |
| 206 | * directory item in the root that references the subvol |
| 207 | */ |
| 208 | #define BTRFS_ROOT_REF_KEY 156 |
| 209 | |
| 210 | /* |
| 211 | * extent items are in the extent map tree. These record which blocks |
| 212 | * are used, and how many references there are to each block |
| 213 | */ |
| 214 | #define BTRFS_EXTENT_ITEM_KEY 168 |
| 215 | |
| 216 | /* |
| 217 | * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know |
| 218 | * the length, so we save the level in key->offset instead of the length. |
| 219 | */ |
| 220 | #define BTRFS_METADATA_ITEM_KEY 169 |
| 221 | |
| 222 | /* |
| 223 | * Special inline ref key which stores the id of the subvolume which originally |
| 224 | * created the extent. This subvolume owns the extent permanently from the |
| 225 | * perspective of simple quotas. Needed to know which subvolume to free quota |
| 226 | * usage from when the extent is deleted. |
| 227 | * |
| 228 | * Stored as an inline ref rather to avoid wasting space on a separate item on |
| 229 | * top of the existing extent item. However, unlike the other inline refs, |
| 230 | * there is one one owner ref per extent rather than one per extent. |
| 231 | * |
| 232 | * Because of this, it goes at the front of the list of inline refs, and thus |
| 233 | * must have a lower type value than any other inline ref type (to satisfy the |
| 234 | * disk format rule that inline refs have non-decreasing type). |
| 235 | */ |
| 236 | #define BTRFS_EXTENT_OWNER_REF_KEY 172 |
| 237 | |
| 238 | #define BTRFS_TREE_BLOCK_REF_KEY 176 |
| 239 | |
| 240 | #define BTRFS_EXTENT_DATA_REF_KEY 178 |
| 241 | |
| 242 | /* |
| 243 | * Obsolete key. Defintion removed in 6.6, value may be reused in the future. |
| 244 | * |
| 245 | * #define BTRFS_EXTENT_REF_V0_KEY 180 |
| 246 | */ |
| 247 | |
| 248 | #define BTRFS_SHARED_BLOCK_REF_KEY 182 |
| 249 | |
| 250 | #define BTRFS_SHARED_DATA_REF_KEY 184 |
| 251 | |
| 252 | /* |
| 253 | * block groups give us hints into the extent allocation trees. Which |
| 254 | * blocks are free etc etc |
| 255 | */ |
| 256 | #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 |
| 257 | |
| 258 | /* |
| 259 | * Every block group is represented in the free space tree by a free space info |
| 260 | * item, which stores some accounting information. It is keyed on |
| 261 | * (block_group_start, FREE_SPACE_INFO, block_group_length). |
| 262 | */ |
| 263 | #define BTRFS_FREE_SPACE_INFO_KEY 198 |
| 264 | |
| 265 | /* |
| 266 | * A free space extent tracks an extent of space that is free in a block group. |
| 267 | * It is keyed on (start, FREE_SPACE_EXTENT, length). |
| 268 | */ |
| 269 | #define BTRFS_FREE_SPACE_EXTENT_KEY 199 |
| 270 | |
| 271 | /* |
| 272 | * When a block group becomes very fragmented, we convert it to use bitmaps |
| 273 | * instead of extents. A free space bitmap is keyed on |
| 274 | * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with |
| 275 | * (length / sectorsize) bits. |
| 276 | */ |
| 277 | #define BTRFS_FREE_SPACE_BITMAP_KEY 200 |
| 278 | |
| 279 | #define BTRFS_DEV_EXTENT_KEY 204 |
| 280 | #define BTRFS_DEV_ITEM_KEY 216 |
| 281 | #define BTRFS_CHUNK_ITEM_KEY 228 |
| 282 | |
| 283 | #define BTRFS_RAID_STRIPE_KEY 230 |
| 284 | |
| 285 | /* |
| 286 | * Records the overall state of the qgroups. |
| 287 | * There's only one instance of this key present, |
| 288 | * (0, BTRFS_QGROUP_STATUS_KEY, 0) |
| 289 | */ |
| 290 | #define BTRFS_QGROUP_STATUS_KEY 240 |
| 291 | /* |
| 292 | * Records the currently used space of the qgroup. |
| 293 | * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). |
| 294 | */ |
| 295 | #define BTRFS_QGROUP_INFO_KEY 242 |
| 296 | /* |
| 297 | * Contains the user configured limits for the qgroup. |
| 298 | * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). |
| 299 | */ |
| 300 | #define BTRFS_QGROUP_LIMIT_KEY 244 |
| 301 | /* |
| 302 | * Records the child-parent relationship of qgroups. For |
| 303 | * each relation, 2 keys are present: |
| 304 | * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) |
| 305 | * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) |
| 306 | */ |
| 307 | #define BTRFS_QGROUP_RELATION_KEY 246 |
| 308 | |
| 309 | /* |
| 310 | * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. |
| 311 | */ |
| 312 | #define BTRFS_BALANCE_ITEM_KEY 248 |
| 313 | |
| 314 | /* |
| 315 | * The key type for tree items that are stored persistently, but do not need to |
| 316 | * exist for extended period of time. The items can exist in any tree. |
| 317 | * |
| 318 | * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] |
| 319 | * |
| 320 | * Existing items: |
| 321 | * |
| 322 | * - balance status item |
| 323 | * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) |
| 324 | */ |
| 325 | #define BTRFS_TEMPORARY_ITEM_KEY 248 |
| 326 | |
| 327 | /* |
| 328 | * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY |
| 329 | */ |
| 330 | #define BTRFS_DEV_STATS_KEY 249 |
| 331 | |
| 332 | /* |
| 333 | * The key type for tree items that are stored persistently and usually exist |
| 334 | * for a long period, eg. filesystem lifetime. The item kinds can be status |
| 335 | * information, stats or preference values. The item can exist in any tree. |
| 336 | * |
| 337 | * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] |
| 338 | * |
| 339 | * Existing items: |
| 340 | * |
| 341 | * - device statistics, store IO stats in the device tree, one key for all |
| 342 | * stats |
| 343 | * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) |
| 344 | */ |
| 345 | #define BTRFS_PERSISTENT_ITEM_KEY 249 |
| 346 | |
| 347 | /* |
| 348 | * Persistently stores the device replace state in the device tree. |
| 349 | * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). |
| 350 | */ |
| 351 | #define BTRFS_DEV_REPLACE_KEY 250 |
| 352 | |
| 353 | /* |
| 354 | * Stores items that allow to quickly map UUIDs to something else. |
| 355 | * These items are part of the filesystem UUID tree. |
| 356 | * The key is built like this: |
| 357 | * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). |
| 358 | */ |
| 359 | #if BTRFS_UUID_SIZE != 16 |
| 360 | #error "UUID items require BTRFS_UUID_SIZE == 16!" |
| 361 | #endif |
| 362 | #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ |
| 363 | #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to |
| 364 | * received subvols */ |
| 365 | |
| 366 | /* |
| 367 | * string items are for debugging. They just store a short string of |
| 368 | * data in the FS |
| 369 | */ |
| 370 | #define BTRFS_STRING_ITEM_KEY 253 |
| 371 | |
| 372 | /* Maximum metadata block size (nodesize) */ |
| 373 | #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 |
| 374 | |
| 375 | /* 32 bytes in various csum fields */ |
| 376 | #define BTRFS_CSUM_SIZE 32 |
| 377 | |
| 378 | /* csum types */ |
| 379 | enum btrfs_csum_type { |
| 380 | BTRFS_CSUM_TYPE_CRC32 = 0, |
| 381 | BTRFS_CSUM_TYPE_XXHASH = 1, |
| 382 | BTRFS_CSUM_TYPE_SHA256 = 2, |
| 383 | BTRFS_CSUM_TYPE_BLAKE2 = 3, |
| 384 | }; |
| 385 | |
| 386 | /* |
| 387 | * flags definitions for directory entry item type |
| 388 | * |
| 389 | * Used by: |
| 390 | * struct btrfs_dir_item.type |
| 391 | * |
| 392 | * Values 0..7 must match common file type values in fs_types.h. |
| 393 | */ |
| 394 | #define BTRFS_FT_UNKNOWN 0 |
| 395 | #define BTRFS_FT_REG_FILE 1 |
| 396 | #define BTRFS_FT_DIR 2 |
| 397 | #define BTRFS_FT_CHRDEV 3 |
| 398 | #define BTRFS_FT_BLKDEV 4 |
| 399 | #define BTRFS_FT_FIFO 5 |
| 400 | #define BTRFS_FT_SOCK 6 |
| 401 | #define BTRFS_FT_SYMLINK 7 |
| 402 | #define BTRFS_FT_XATTR 8 |
| 403 | #define BTRFS_FT_MAX 9 |
| 404 | /* Directory contains encrypted data */ |
| 405 | #define BTRFS_FT_ENCRYPTED 0x80 |
| 406 | |
| 407 | static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags) |
| 408 | { |
| 409 | return flags & ~BTRFS_FT_ENCRYPTED; |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Inode flags |
| 414 | */ |
| 415 | #define BTRFS_INODE_NODATASUM (1U << 0) |
| 416 | #define BTRFS_INODE_NODATACOW (1U << 1) |
| 417 | #define BTRFS_INODE_READONLY (1U << 2) |
| 418 | #define BTRFS_INODE_NOCOMPRESS (1U << 3) |
| 419 | #define BTRFS_INODE_PREALLOC (1U << 4) |
| 420 | #define BTRFS_INODE_SYNC (1U << 5) |
| 421 | #define BTRFS_INODE_IMMUTABLE (1U << 6) |
| 422 | #define BTRFS_INODE_APPEND (1U << 7) |
| 423 | #define BTRFS_INODE_NODUMP (1U << 8) |
| 424 | #define BTRFS_INODE_NOATIME (1U << 9) |
| 425 | #define BTRFS_INODE_DIRSYNC (1U << 10) |
| 426 | #define BTRFS_INODE_COMPRESS (1U << 11) |
| 427 | |
| 428 | #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) |
| 429 | |
| 430 | #define BTRFS_INODE_FLAG_MASK \ |
| 431 | (BTRFS_INODE_NODATASUM | \ |
| 432 | BTRFS_INODE_NODATACOW | \ |
| 433 | BTRFS_INODE_READONLY | \ |
| 434 | BTRFS_INODE_NOCOMPRESS | \ |
| 435 | BTRFS_INODE_PREALLOC | \ |
| 436 | BTRFS_INODE_SYNC | \ |
| 437 | BTRFS_INODE_IMMUTABLE | \ |
| 438 | BTRFS_INODE_APPEND | \ |
| 439 | BTRFS_INODE_NODUMP | \ |
| 440 | BTRFS_INODE_NOATIME | \ |
| 441 | BTRFS_INODE_DIRSYNC | \ |
| 442 | BTRFS_INODE_COMPRESS | \ |
| 443 | BTRFS_INODE_ROOT_ITEM_INIT) |
| 444 | |
| 445 | #define BTRFS_INODE_RO_VERITY (1U << 0) |
| 446 | |
| 447 | #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) |
| 448 | |
| 449 | /* |
| 450 | * The key defines the order in the tree, and so it also defines (optimal) |
| 451 | * block layout. |
| 452 | * |
| 453 | * objectid corresponds to the inode number. |
| 454 | * |
| 455 | * type tells us things about the object, and is a kind of stream selector. |
| 456 | * so for a given inode, keys with type of 1 might refer to the inode data, |
| 457 | * type of 2 may point to file data in the btree and type == 3 may point to |
| 458 | * extents. |
| 459 | * |
| 460 | * offset is the starting byte offset for this key in the stream. |
| 461 | * |
| 462 | * btrfs_disk_key is in disk byte order. struct btrfs_key is always |
| 463 | * in cpu native order. Otherwise they are identical and their sizes |
| 464 | * should be the same (ie both packed) |
| 465 | */ |
| 466 | struct btrfs_disk_key { |
| 467 | __le64 objectid; |
| 468 | __u8 type; |
| 469 | __le64 offset; |
| 470 | } __attribute__ ((__packed__)); |
| 471 | |
| 472 | struct btrfs_key { |
| 473 | __u64 objectid; |
| 474 | __u8 type; |
| 475 | __u64 offset; |
| 476 | } __attribute__ ((__packed__)); |
| 477 | |
| 478 | /* |
| 479 | * Every tree block (leaf or node) starts with this header. |
| 480 | */ |
| 481 | struct btrfs_header { |
| 482 | /* These first four must match the super block */ |
| 483 | __u8 csum[BTRFS_CSUM_SIZE]; |
| 484 | /* FS specific uuid */ |
| 485 | __u8 fsid[BTRFS_FSID_SIZE]; |
| 486 | /* Which block this node is supposed to live in */ |
| 487 | __le64 bytenr; |
| 488 | __le64 flags; |
| 489 | |
| 490 | /* Allowed to be different from the super from here on down */ |
| 491 | __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; |
| 492 | __le64 generation; |
| 493 | __le64 owner; |
| 494 | __le32 nritems; |
| 495 | __u8 level; |
| 496 | } __attribute__ ((__packed__)); |
| 497 | |
| 498 | /* |
| 499 | * This is a very generous portion of the super block, giving us room to |
| 500 | * translate 14 chunks with 3 stripes each. |
| 501 | */ |
| 502 | #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 |
| 503 | |
| 504 | /* |
| 505 | * Just in case we somehow lose the roots and are not able to mount, we store |
| 506 | * an array of the roots from previous transactions in the super. |
| 507 | */ |
| 508 | #define BTRFS_NUM_BACKUP_ROOTS 4 |
| 509 | struct btrfs_root_backup { |
| 510 | __le64 tree_root; |
| 511 | __le64 tree_root_gen; |
| 512 | |
| 513 | __le64 chunk_root; |
| 514 | __le64 chunk_root_gen; |
| 515 | |
| 516 | __le64 extent_root; |
| 517 | __le64 extent_root_gen; |
| 518 | |
| 519 | __le64 fs_root; |
| 520 | __le64 fs_root_gen; |
| 521 | |
| 522 | __le64 dev_root; |
| 523 | __le64 dev_root_gen; |
| 524 | |
| 525 | __le64 csum_root; |
| 526 | __le64 csum_root_gen; |
| 527 | |
| 528 | __le64 total_bytes; |
| 529 | __le64 bytes_used; |
| 530 | __le64 num_devices; |
| 531 | /* future */ |
| 532 | __le64 unused_64[4]; |
| 533 | |
| 534 | __u8 tree_root_level; |
| 535 | __u8 chunk_root_level; |
| 536 | __u8 extent_root_level; |
| 537 | __u8 fs_root_level; |
| 538 | __u8 dev_root_level; |
| 539 | __u8 csum_root_level; |
| 540 | /* future and to align */ |
| 541 | __u8 unused_8[10]; |
| 542 | } __attribute__ ((__packed__)); |
| 543 | |
| 544 | /* |
| 545 | * A leaf is full of items. offset and size tell us where to find the item in |
| 546 | * the leaf (relative to the start of the data area) |
| 547 | */ |
| 548 | struct btrfs_item { |
| 549 | struct btrfs_disk_key key; |
| 550 | __le32 offset; |
| 551 | __le32 size; |
| 552 | } __attribute__ ((__packed__)); |
| 553 | |
| 554 | /* |
| 555 | * Leaves have an item area and a data area: |
| 556 | * [item0, item1....itemN] [free space] [dataN...data1, data0] |
| 557 | * |
| 558 | * The data is separate from the items to get the keys closer together during |
| 559 | * searches. |
| 560 | */ |
| 561 | struct btrfs_leaf { |
| 562 | struct btrfs_header header; |
| 563 | struct btrfs_item items[]; |
| 564 | } __attribute__ ((__packed__)); |
| 565 | |
| 566 | /* |
| 567 | * All non-leaf blocks are nodes, they hold only keys and pointers to other |
| 568 | * blocks. |
| 569 | */ |
| 570 | struct btrfs_key_ptr { |
| 571 | struct btrfs_disk_key key; |
| 572 | __le64 blockptr; |
| 573 | __le64 generation; |
| 574 | } __attribute__ ((__packed__)); |
| 575 | |
| 576 | struct btrfs_node { |
| 577 | struct btrfs_header header; |
| 578 | struct btrfs_key_ptr ptrs[]; |
| 579 | } __attribute__ ((__packed__)); |
| 580 | |
| 581 | struct btrfs_dev_item { |
| 582 | /* the internal btrfs device id */ |
| 583 | __le64 devid; |
| 584 | |
| 585 | /* size of the device */ |
| 586 | __le64 total_bytes; |
| 587 | |
| 588 | /* bytes used */ |
| 589 | __le64 bytes_used; |
| 590 | |
| 591 | /* optimal io alignment for this device */ |
| 592 | __le32 io_align; |
| 593 | |
| 594 | /* optimal io width for this device */ |
| 595 | __le32 io_width; |
| 596 | |
| 597 | /* minimal io size for this device */ |
| 598 | __le32 sector_size; |
| 599 | |
| 600 | /* type and info about this device */ |
| 601 | __le64 type; |
| 602 | |
| 603 | /* expected generation for this device */ |
| 604 | __le64 generation; |
| 605 | |
| 606 | /* |
| 607 | * starting byte of this partition on the device, |
| 608 | * to allow for stripe alignment in the future |
| 609 | */ |
| 610 | __le64 start_offset; |
| 611 | |
| 612 | /* grouping information for allocation decisions */ |
| 613 | __le32 dev_group; |
| 614 | |
| 615 | /* seek speed 0-100 where 100 is fastest */ |
| 616 | __u8 seek_speed; |
| 617 | |
| 618 | /* bandwidth 0-100 where 100 is fastest */ |
| 619 | __u8 bandwidth; |
| 620 | |
| 621 | /* btrfs generated uuid for this device */ |
| 622 | __u8 uuid[BTRFS_UUID_SIZE]; |
| 623 | |
| 624 | /* uuid of FS who owns this device */ |
| 625 | __u8 fsid[BTRFS_UUID_SIZE]; |
| 626 | } __attribute__ ((__packed__)); |
| 627 | |
| 628 | struct btrfs_stripe { |
| 629 | __le64 devid; |
| 630 | __le64 offset; |
| 631 | __u8 dev_uuid[BTRFS_UUID_SIZE]; |
| 632 | } __attribute__ ((__packed__)); |
| 633 | |
| 634 | struct btrfs_chunk { |
| 635 | /* size of this chunk in bytes */ |
| 636 | __le64 length; |
| 637 | |
| 638 | /* objectid of the root referencing this chunk */ |
| 639 | __le64 owner; |
| 640 | |
| 641 | __le64 stripe_len; |
| 642 | __le64 type; |
| 643 | |
| 644 | /* optimal io alignment for this chunk */ |
| 645 | __le32 io_align; |
| 646 | |
| 647 | /* optimal io width for this chunk */ |
| 648 | __le32 io_width; |
| 649 | |
| 650 | /* minimal io size for this chunk */ |
| 651 | __le32 sector_size; |
| 652 | |
| 653 | /* 2^16 stripes is quite a lot, a second limit is the size of a single |
| 654 | * item in the btree |
| 655 | */ |
| 656 | __le16 num_stripes; |
| 657 | |
| 658 | /* sub stripes only matter for raid10 */ |
| 659 | __le16 sub_stripes; |
| 660 | struct btrfs_stripe stripe; |
| 661 | /* additional stripes go here */ |
| 662 | } __attribute__ ((__packed__)); |
| 663 | |
| 664 | /* |
| 665 | * The super block basically lists the main trees of the FS. |
| 666 | */ |
| 667 | struct btrfs_super_block { |
| 668 | /* The first 4 fields must match struct btrfs_header */ |
| 669 | __u8 csum[BTRFS_CSUM_SIZE]; |
| 670 | /* FS specific UUID, visible to user */ |
| 671 | __u8 fsid[BTRFS_FSID_SIZE]; |
| 672 | /* This block number */ |
| 673 | __le64 bytenr; |
| 674 | __le64 flags; |
| 675 | |
| 676 | /* Allowed to be different from the btrfs_header from here own down */ |
| 677 | __le64 magic; |
| 678 | __le64 generation; |
| 679 | __le64 root; |
| 680 | __le64 chunk_root; |
| 681 | __le64 log_root; |
| 682 | |
| 683 | /* |
| 684 | * This member has never been utilized since the very beginning, thus |
| 685 | * it's always 0 regardless of kernel version. We always use |
| 686 | * generation + 1 to read log tree root. So here we mark it deprecated. |
| 687 | */ |
| 688 | __le64 __unused_log_root_transid; |
| 689 | __le64 total_bytes; |
| 690 | __le64 bytes_used; |
| 691 | __le64 root_dir_objectid; |
| 692 | __le64 num_devices; |
| 693 | __le32 sectorsize; |
| 694 | __le32 nodesize; |
| 695 | __le32 __unused_leafsize; |
| 696 | __le32 stripesize; |
| 697 | __le32 sys_chunk_array_size; |
| 698 | __le64 chunk_root_generation; |
| 699 | __le64 compat_flags; |
| 700 | __le64 compat_ro_flags; |
| 701 | __le64 incompat_flags; |
| 702 | __le16 csum_type; |
| 703 | __u8 root_level; |
| 704 | __u8 chunk_root_level; |
| 705 | __u8 log_root_level; |
| 706 | struct btrfs_dev_item dev_item; |
| 707 | |
| 708 | char label[BTRFS_LABEL_SIZE]; |
| 709 | |
| 710 | __le64 cache_generation; |
| 711 | __le64 uuid_tree_generation; |
| 712 | |
| 713 | /* The UUID written into btree blocks */ |
| 714 | __u8 metadata_uuid[BTRFS_FSID_SIZE]; |
| 715 | |
| 716 | __u64 nr_global_roots; |
| 717 | |
| 718 | /* Future expansion */ |
| 719 | __le64 reserved[27]; |
| 720 | __u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; |
| 721 | struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; |
| 722 | |
| 723 | /* Padded to 4096 bytes */ |
| 724 | __u8 padding[565]; |
| 725 | } __attribute__ ((__packed__)); |
| 726 | |
| 727 | #define BTRFS_FREE_SPACE_EXTENT 1 |
| 728 | #define BTRFS_FREE_SPACE_BITMAP 2 |
| 729 | |
| 730 | struct btrfs_free_space_entry { |
| 731 | __le64 offset; |
| 732 | __le64 bytes; |
| 733 | __u8 type; |
| 734 | } __attribute__ ((__packed__)); |
| 735 | |
| 736 | struct btrfs_free_space_header { |
| 737 | struct btrfs_disk_key location; |
| 738 | __le64 generation; |
| 739 | __le64 num_entries; |
| 740 | __le64 num_bitmaps; |
| 741 | } __attribute__ ((__packed__)); |
| 742 | |
| 743 | struct btrfs_raid_stride { |
| 744 | /* The id of device this raid extent lives on. */ |
| 745 | __le64 devid; |
| 746 | /* The physical location on disk. */ |
| 747 | __le64 physical; |
| 748 | } __attribute__ ((__packed__)); |
| 749 | |
| 750 | struct btrfs_stripe_extent { |
| 751 | /* An array of raid strides this stripe is composed of. */ |
| 752 | __DECLARE_FLEX_ARRAY(struct btrfs_raid_stride, strides); |
| 753 | } __attribute__ ((__packed__)); |
| 754 | |
| 755 | #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) |
| 756 | #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) |
| 757 | |
| 758 | /* Super block flags */ |
| 759 | /* Errors detected */ |
| 760 | #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) |
| 761 | |
| 762 | #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) |
| 763 | #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) |
| 764 | #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) |
| 765 | #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) |
| 766 | #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) |
| 767 | |
| 768 | /* |
| 769 | * Those are temporaray flags utilized by btrfs-progs to do offline conversion. |
| 770 | * They are rejected by kernel. |
| 771 | * But still keep them all here to avoid conflicts. |
| 772 | */ |
| 773 | #define BTRFS_SUPER_FLAG_CHANGING_BG_TREE (1ULL << 38) |
| 774 | #define BTRFS_SUPER_FLAG_CHANGING_DATA_CSUM (1ULL << 39) |
| 775 | #define BTRFS_SUPER_FLAG_CHANGING_META_CSUM (1ULL << 40) |
| 776 | |
| 777 | /* |
| 778 | * items in the extent btree are used to record the objectid of the |
| 779 | * owner of the block and the number of references |
| 780 | */ |
| 781 | |
| 782 | struct btrfs_extent_item { |
| 783 | __le64 refs; |
| 784 | __le64 generation; |
| 785 | __le64 flags; |
| 786 | } __attribute__ ((__packed__)); |
| 787 | |
| 788 | struct btrfs_extent_item_v0 { |
| 789 | __le32 refs; |
| 790 | } __attribute__ ((__packed__)); |
| 791 | |
| 792 | |
| 793 | #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) |
| 794 | #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) |
| 795 | |
| 796 | /* following flags only apply to tree blocks */ |
| 797 | |
| 798 | /* use full backrefs for extent pointers in the block */ |
| 799 | #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) |
| 800 | |
| 801 | #define BTRFS_BACKREF_REV_MAX 256 |
| 802 | #define BTRFS_BACKREF_REV_SHIFT 56 |
| 803 | #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ |
| 804 | BTRFS_BACKREF_REV_SHIFT) |
| 805 | |
| 806 | #define BTRFS_OLD_BACKREF_REV 0 |
| 807 | #define BTRFS_MIXED_BACKREF_REV 1 |
| 808 | |
| 809 | /* |
| 810 | * this flag is only used internally by scrub and may be changed at any time |
| 811 | * it is only declared here to avoid collisions |
| 812 | */ |
| 813 | #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) |
| 814 | |
| 815 | struct btrfs_tree_block_info { |
| 816 | struct btrfs_disk_key key; |
| 817 | __u8 level; |
| 818 | } __attribute__ ((__packed__)); |
| 819 | |
| 820 | struct btrfs_extent_data_ref { |
| 821 | __le64 root; |
| 822 | __le64 objectid; |
| 823 | __le64 offset; |
| 824 | __le32 count; |
| 825 | } __attribute__ ((__packed__)); |
| 826 | |
| 827 | struct btrfs_shared_data_ref { |
| 828 | __le32 count; |
| 829 | } __attribute__ ((__packed__)); |
| 830 | |
| 831 | struct btrfs_extent_owner_ref { |
| 832 | __le64 root_id; |
| 833 | } __attribute__ ((__packed__)); |
| 834 | |
| 835 | struct btrfs_extent_inline_ref { |
| 836 | __u8 type; |
| 837 | __le64 offset; |
| 838 | } __attribute__ ((__packed__)); |
| 839 | |
| 840 | /* dev extents record free space on individual devices. The owner |
| 841 | * field points back to the chunk allocation mapping tree that allocated |
| 842 | * the extent. The chunk tree uuid field is a way to double check the owner |
| 843 | */ |
| 844 | struct btrfs_dev_extent { |
| 845 | __le64 chunk_tree; |
| 846 | __le64 chunk_objectid; |
| 847 | __le64 chunk_offset; |
| 848 | __le64 length; |
| 849 | __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; |
| 850 | } __attribute__ ((__packed__)); |
| 851 | |
| 852 | struct btrfs_inode_ref { |
| 853 | __le64 index; |
| 854 | __le16 name_len; |
| 855 | /* name goes here */ |
| 856 | } __attribute__ ((__packed__)); |
| 857 | |
| 858 | struct btrfs_inode_extref { |
| 859 | __le64 parent_objectid; |
| 860 | __le64 index; |
| 861 | __le16 name_len; |
| 862 | __u8 name[]; |
| 863 | /* name goes here */ |
| 864 | } __attribute__ ((__packed__)); |
| 865 | |
| 866 | struct btrfs_timespec { |
| 867 | __le64 sec; |
| 868 | __le32 nsec; |
| 869 | } __attribute__ ((__packed__)); |
| 870 | |
| 871 | struct btrfs_inode_item { |
| 872 | /* nfs style generation number */ |
| 873 | __le64 generation; |
| 874 | /* transid that last touched this inode */ |
| 875 | __le64 transid; |
| 876 | __le64 size; |
| 877 | __le64 nbytes; |
| 878 | __le64 block_group; |
| 879 | __le32 nlink; |
| 880 | __le32 uid; |
| 881 | __le32 gid; |
| 882 | __le32 mode; |
| 883 | __le64 rdev; |
| 884 | __le64 flags; |
| 885 | |
| 886 | /* modification sequence number for NFS */ |
| 887 | __le64 sequence; |
| 888 | |
| 889 | /* |
| 890 | * a little future expansion, for more than this we can |
| 891 | * just grow the inode item and version it |
| 892 | */ |
| 893 | __le64 reserved[4]; |
| 894 | struct btrfs_timespec atime; |
| 895 | struct btrfs_timespec ctime; |
| 896 | struct btrfs_timespec mtime; |
| 897 | struct btrfs_timespec otime; |
| 898 | } __attribute__ ((__packed__)); |
| 899 | |
| 900 | struct btrfs_dir_log_item { |
| 901 | __le64 end; |
| 902 | } __attribute__ ((__packed__)); |
| 903 | |
| 904 | struct btrfs_dir_item { |
| 905 | struct btrfs_disk_key location; |
| 906 | __le64 transid; |
| 907 | __le16 data_len; |
| 908 | __le16 name_len; |
| 909 | __u8 type; |
| 910 | } __attribute__ ((__packed__)); |
| 911 | |
| 912 | #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) |
| 913 | |
| 914 | /* |
| 915 | * Internal in-memory flag that a subvolume has been marked for deletion but |
| 916 | * still visible as a directory |
| 917 | */ |
| 918 | #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) |
| 919 | |
| 920 | struct btrfs_root_item { |
| 921 | struct btrfs_inode_item inode; |
| 922 | __le64 generation; |
| 923 | __le64 root_dirid; |
| 924 | __le64 bytenr; |
| 925 | __le64 byte_limit; |
| 926 | __le64 bytes_used; |
| 927 | __le64 last_snapshot; |
| 928 | __le64 flags; |
| 929 | __le32 refs; |
| 930 | struct btrfs_disk_key drop_progress; |
| 931 | __u8 drop_level; |
| 932 | __u8 level; |
| 933 | |
| 934 | /* |
| 935 | * The following fields appear after subvol_uuids+subvol_times |
| 936 | * were introduced. |
| 937 | */ |
| 938 | |
| 939 | /* |
| 940 | * This generation number is used to test if the new fields are valid |
| 941 | * and up to date while reading the root item. Every time the root item |
| 942 | * is written out, the "generation" field is copied into this field. If |
| 943 | * anyone ever mounted the fs with an older kernel, we will have |
| 944 | * mismatching generation values here and thus must invalidate the |
| 945 | * new fields. See btrfs_update_root and btrfs_find_last_root for |
| 946 | * details. |
| 947 | * the offset of generation_v2 is also used as the start for the memset |
| 948 | * when invalidating the fields. |
| 949 | */ |
| 950 | __le64 generation_v2; |
| 951 | __u8 uuid[BTRFS_UUID_SIZE]; |
| 952 | __u8 parent_uuid[BTRFS_UUID_SIZE]; |
| 953 | __u8 received_uuid[BTRFS_UUID_SIZE]; |
| 954 | __le64 ctransid; /* updated when an inode changes */ |
| 955 | __le64 otransid; /* trans when created */ |
| 956 | __le64 stransid; /* trans when sent. non-zero for received subvol */ |
| 957 | __le64 rtransid; /* trans when received. non-zero for received subvol */ |
| 958 | struct btrfs_timespec ctime; |
| 959 | struct btrfs_timespec otime; |
| 960 | struct btrfs_timespec stime; |
| 961 | struct btrfs_timespec rtime; |
| 962 | __le64 reserved[8]; /* for future */ |
| 963 | } __attribute__ ((__packed__)); |
| 964 | |
| 965 | /* |
| 966 | * Btrfs root item used to be smaller than current size. The old format ends |
| 967 | * at where member generation_v2 is. |
| 968 | */ |
| 969 | static inline __u32 btrfs_legacy_root_item_size(void) |
| 970 | { |
| 971 | return offsetof(struct btrfs_root_item, generation_v2); |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * this is used for both forward and backward root refs |
| 976 | */ |
| 977 | struct btrfs_root_ref { |
| 978 | __le64 dirid; |
| 979 | __le64 sequence; |
| 980 | __le16 name_len; |
| 981 | } __attribute__ ((__packed__)); |
| 982 | |
| 983 | struct btrfs_disk_balance_args { |
| 984 | /* |
| 985 | * profiles to operate on, single is denoted by |
| 986 | * BTRFS_AVAIL_ALLOC_BIT_SINGLE |
| 987 | */ |
| 988 | __le64 profiles; |
| 989 | |
| 990 | /* |
| 991 | * usage filter |
| 992 | * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' |
| 993 | * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max |
| 994 | */ |
| 995 | union { |
| 996 | __le64 usage; |
| 997 | struct { |
| 998 | __le32 usage_min; |
| 999 | __le32 usage_max; |
| 1000 | }; |
| 1001 | }; |
| 1002 | |
| 1003 | /* devid filter */ |
| 1004 | __le64 devid; |
| 1005 | |
| 1006 | /* devid subset filter [pstart..pend) */ |
| 1007 | __le64 pstart; |
| 1008 | __le64 pend; |
| 1009 | |
| 1010 | /* btrfs virtual address space subset filter [vstart..vend) */ |
| 1011 | __le64 vstart; |
| 1012 | __le64 vend; |
| 1013 | |
| 1014 | /* |
| 1015 | * profile to convert to, single is denoted by |
| 1016 | * BTRFS_AVAIL_ALLOC_BIT_SINGLE |
| 1017 | */ |
| 1018 | __le64 target; |
| 1019 | |
| 1020 | /* BTRFS_BALANCE_ARGS_* */ |
| 1021 | __le64 flags; |
| 1022 | |
| 1023 | /* |
| 1024 | * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' |
| 1025 | * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum |
| 1026 | * and maximum |
| 1027 | */ |
| 1028 | union { |
| 1029 | __le64 limit; |
| 1030 | struct { |
| 1031 | __le32 limit_min; |
| 1032 | __le32 limit_max; |
| 1033 | }; |
| 1034 | }; |
| 1035 | |
| 1036 | /* |
| 1037 | * Process chunks that cross stripes_min..stripes_max devices, |
| 1038 | * BTRFS_BALANCE_ARGS_STRIPES_RANGE |
| 1039 | */ |
| 1040 | __le32 stripes_min; |
| 1041 | __le32 stripes_max; |
| 1042 | |
| 1043 | __le64 unused[6]; |
| 1044 | } __attribute__ ((__packed__)); |
| 1045 | |
| 1046 | /* |
| 1047 | * store balance parameters to disk so that balance can be properly |
| 1048 | * resumed after crash or unmount |
| 1049 | */ |
| 1050 | struct btrfs_balance_item { |
| 1051 | /* BTRFS_BALANCE_* */ |
| 1052 | __le64 flags; |
| 1053 | |
| 1054 | struct btrfs_disk_balance_args data; |
| 1055 | struct btrfs_disk_balance_args meta; |
| 1056 | struct btrfs_disk_balance_args sys; |
| 1057 | |
| 1058 | __le64 unused[4]; |
| 1059 | } __attribute__ ((__packed__)); |
| 1060 | |
| 1061 | enum { |
| 1062 | BTRFS_FILE_EXTENT_INLINE = 0, |
| 1063 | BTRFS_FILE_EXTENT_REG = 1, |
| 1064 | BTRFS_FILE_EXTENT_PREALLOC = 2, |
| 1065 | BTRFS_NR_FILE_EXTENT_TYPES = 3, |
| 1066 | }; |
| 1067 | |
| 1068 | struct btrfs_file_extent_item { |
| 1069 | /* |
| 1070 | * transaction id that created this extent |
| 1071 | */ |
| 1072 | __le64 generation; |
| 1073 | /* |
| 1074 | * max number of bytes to hold this extent in ram |
| 1075 | * when we split a compressed extent we can't know how big |
| 1076 | * each of the resulting pieces will be. So, this is |
| 1077 | * an upper limit on the size of the extent in ram instead of |
| 1078 | * an exact limit. |
| 1079 | */ |
| 1080 | __le64 ram_bytes; |
| 1081 | |
| 1082 | /* |
| 1083 | * 32 bits for the various ways we might encode the data, |
| 1084 | * including compression and encryption. If any of these |
| 1085 | * are set to something a given disk format doesn't understand |
| 1086 | * it is treated like an incompat flag for reading and writing, |
| 1087 | * but not for stat. |
| 1088 | */ |
| 1089 | __u8 compression; |
| 1090 | __u8 encryption; |
| 1091 | __le16 other_encoding; /* spare for later use */ |
| 1092 | |
| 1093 | /* are we inline data or a real extent? */ |
| 1094 | __u8 type; |
| 1095 | |
| 1096 | /* |
| 1097 | * disk space consumed by the extent, checksum blocks are included |
| 1098 | * in these numbers |
| 1099 | * |
| 1100 | * At this offset in the structure, the inline extent data start. |
| 1101 | */ |
| 1102 | __le64 disk_bytenr; |
| 1103 | __le64 disk_num_bytes; |
| 1104 | /* |
| 1105 | * the logical offset in file blocks (no csums) |
| 1106 | * this extent record is for. This allows a file extent to point |
| 1107 | * into the middle of an existing extent on disk, sharing it |
| 1108 | * between two snapshots (useful if some bytes in the middle of the |
| 1109 | * extent have changed |
| 1110 | */ |
| 1111 | __le64 offset; |
| 1112 | /* |
| 1113 | * the logical number of file blocks (no csums included). This |
| 1114 | * always reflects the size uncompressed and without encoding. |
| 1115 | */ |
| 1116 | __le64 num_bytes; |
| 1117 | |
| 1118 | } __attribute__ ((__packed__)); |
| 1119 | |
| 1120 | struct btrfs_csum_item { |
| 1121 | __u8 csum; |
| 1122 | } __attribute__ ((__packed__)); |
| 1123 | |
| 1124 | struct btrfs_dev_stats_item { |
| 1125 | /* |
| 1126 | * grow this item struct at the end for future enhancements and keep |
| 1127 | * the existing values unchanged |
| 1128 | */ |
| 1129 | __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; |
| 1130 | } __attribute__ ((__packed__)); |
| 1131 | |
| 1132 | #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 |
| 1133 | #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 |
| 1134 | |
| 1135 | struct btrfs_dev_replace_item { |
| 1136 | /* |
| 1137 | * grow this item struct at the end for future enhancements and keep |
| 1138 | * the existing values unchanged |
| 1139 | */ |
| 1140 | __le64 src_devid; |
| 1141 | __le64 cursor_left; |
| 1142 | __le64 cursor_right; |
| 1143 | __le64 cont_reading_from_srcdev_mode; |
| 1144 | |
| 1145 | __le64 replace_state; |
| 1146 | __le64 time_started; |
| 1147 | __le64 time_stopped; |
| 1148 | __le64 num_write_errors; |
| 1149 | __le64 num_uncorrectable_read_errors; |
| 1150 | } __attribute__ ((__packed__)); |
| 1151 | |
| 1152 | /* different types of block groups (and chunks) */ |
| 1153 | #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) |
| 1154 | #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) |
| 1155 | #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) |
| 1156 | #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) |
| 1157 | #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) |
| 1158 | #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) |
| 1159 | #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) |
| 1160 | #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) |
| 1161 | #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) |
| 1162 | #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) |
| 1163 | #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) |
| 1164 | #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ |
| 1165 | BTRFS_SPACE_INFO_GLOBAL_RSV) |
| 1166 | |
| 1167 | #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ |
| 1168 | BTRFS_BLOCK_GROUP_SYSTEM | \ |
| 1169 | BTRFS_BLOCK_GROUP_METADATA) |
| 1170 | |
| 1171 | #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ |
| 1172 | BTRFS_BLOCK_GROUP_RAID1 | \ |
| 1173 | BTRFS_BLOCK_GROUP_RAID1C3 | \ |
| 1174 | BTRFS_BLOCK_GROUP_RAID1C4 | \ |
| 1175 | BTRFS_BLOCK_GROUP_RAID5 | \ |
| 1176 | BTRFS_BLOCK_GROUP_RAID6 | \ |
| 1177 | BTRFS_BLOCK_GROUP_DUP | \ |
| 1178 | BTRFS_BLOCK_GROUP_RAID10) |
| 1179 | #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ |
| 1180 | BTRFS_BLOCK_GROUP_RAID6) |
| 1181 | |
| 1182 | #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ |
| 1183 | BTRFS_BLOCK_GROUP_RAID1C3 | \ |
| 1184 | BTRFS_BLOCK_GROUP_RAID1C4) |
| 1185 | |
| 1186 | /* |
| 1187 | * We need a bit for restriper to be able to tell when chunks of type |
| 1188 | * SINGLE are available. This "extended" profile format is used in |
| 1189 | * fs_info->avail_*_alloc_bits (in-memory) and balance item fields |
| 1190 | * (on-disk). The corresponding on-disk bit in chunk.type is reserved |
| 1191 | * to avoid remappings between two formats in future. |
| 1192 | */ |
| 1193 | #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) |
| 1194 | |
| 1195 | /* |
| 1196 | * A fake block group type that is used to communicate global block reserve |
| 1197 | * size to userspace via the SPACE_INFO ioctl. |
| 1198 | */ |
| 1199 | #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) |
| 1200 | |
| 1201 | #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ |
| 1202 | BTRFS_AVAIL_ALLOC_BIT_SINGLE) |
| 1203 | |
| 1204 | static inline __u64 chunk_to_extended(__u64 flags) |
| 1205 | { |
| 1206 | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) |
| 1207 | flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| 1208 | |
| 1209 | return flags; |
| 1210 | } |
| 1211 | static inline __u64 extended_to_chunk(__u64 flags) |
| 1212 | { |
| 1213 | return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| 1214 | } |
| 1215 | |
| 1216 | struct btrfs_block_group_item { |
| 1217 | __le64 used; |
| 1218 | __le64 chunk_objectid; |
| 1219 | __le64 flags; |
| 1220 | } __attribute__ ((__packed__)); |
| 1221 | |
| 1222 | struct btrfs_free_space_info { |
| 1223 | __le32 extent_count; |
| 1224 | __le32 flags; |
| 1225 | } __attribute__ ((__packed__)); |
| 1226 | |
| 1227 | #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) |
| 1228 | |
| 1229 | #define BTRFS_QGROUP_LEVEL_SHIFT 48 |
| 1230 | static inline __u16 btrfs_qgroup_level(__u64 qgroupid) |
| 1231 | { |
| 1232 | return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * is subvolume quota turned on? |
| 1237 | */ |
| 1238 | #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) |
| 1239 | /* |
| 1240 | * RESCAN is set during the initialization phase |
| 1241 | */ |
| 1242 | #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) |
| 1243 | /* |
| 1244 | * Some qgroup entries are known to be out of date, |
| 1245 | * either because the configuration has changed in a way that |
| 1246 | * makes a rescan necessary, or because the fs has been mounted |
| 1247 | * with a non-qgroup-aware version. |
| 1248 | * Turning qouta off and on again makes it inconsistent, too. |
| 1249 | */ |
| 1250 | #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) |
| 1251 | |
| 1252 | /* |
| 1253 | * Whether or not this filesystem is using simple quotas. Not exactly the |
| 1254 | * incompat bit, because we support using simple quotas, disabling it, then |
| 1255 | * going back to full qgroup quotas. |
| 1256 | */ |
| 1257 | #define BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE (1ULL << 3) |
| 1258 | |
| 1259 | #define BTRFS_QGROUP_STATUS_FLAGS_MASK (BTRFS_QGROUP_STATUS_FLAG_ON | \ |
| 1260 | BTRFS_QGROUP_STATUS_FLAG_RESCAN | \ |
| 1261 | BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT | \ |
| 1262 | BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE) |
| 1263 | |
| 1264 | #define BTRFS_QGROUP_STATUS_VERSION 1 |
| 1265 | |
| 1266 | struct btrfs_qgroup_status_item { |
| 1267 | __le64 version; |
| 1268 | /* |
| 1269 | * the generation is updated during every commit. As older |
| 1270 | * versions of btrfs are not aware of qgroups, it will be |
| 1271 | * possible to detect inconsistencies by checking the |
| 1272 | * generation on mount time |
| 1273 | */ |
| 1274 | __le64 generation; |
| 1275 | |
| 1276 | /* flag definitions see above */ |
| 1277 | __le64 flags; |
| 1278 | |
| 1279 | /* |
| 1280 | * only used during scanning to record the progress |
| 1281 | * of the scan. It contains a logical address |
| 1282 | */ |
| 1283 | __le64 rescan; |
| 1284 | |
| 1285 | /* |
| 1286 | * The generation when quotas were last enabled. Used by simple quotas to |
| 1287 | * avoid decrementing when freeing an extent that was written before |
| 1288 | * enable. |
| 1289 | * |
| 1290 | * Set only if flags contain BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE. |
| 1291 | */ |
| 1292 | __le64 enable_gen; |
| 1293 | } __attribute__ ((__packed__)); |
| 1294 | |
| 1295 | struct btrfs_qgroup_info_item { |
| 1296 | __le64 generation; |
| 1297 | __le64 rfer; |
| 1298 | __le64 rfer_cmpr; |
| 1299 | __le64 excl; |
| 1300 | __le64 excl_cmpr; |
| 1301 | } __attribute__ ((__packed__)); |
| 1302 | |
| 1303 | struct btrfs_qgroup_limit_item { |
| 1304 | /* |
| 1305 | * only updated when any of the other values change |
| 1306 | */ |
| 1307 | __le64 flags; |
| 1308 | __le64 max_rfer; |
| 1309 | __le64 max_excl; |
| 1310 | __le64 rsv_rfer; |
| 1311 | __le64 rsv_excl; |
| 1312 | } __attribute__ ((__packed__)); |
| 1313 | |
| 1314 | struct btrfs_verity_descriptor_item { |
| 1315 | /* Size of the verity descriptor in bytes */ |
| 1316 | __le64 size; |
| 1317 | /* |
| 1318 | * When we implement support for fscrypt, we will need to encrypt the |
| 1319 | * Merkle tree for encrypted verity files. These 128 bits are for the |
| 1320 | * eventual storage of an fscrypt initialization vector. |
| 1321 | */ |
| 1322 | __le64 reserved[2]; |
| 1323 | __u8 encryption; |
| 1324 | } __attribute__ ((__packed__)); |
| 1325 | |
| 1326 | #endif /* _BTRFS_CTREE_H_ */ |