Merge branch 'netsec-fixes'
[linux-block.git] / include / net / sock.h
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61#include <linux/wait.h>
62#include <linux/cgroup-defs.h>
63#include <linux/rbtree.h>
64#include <linux/filter.h>
65#include <linux/rculist_nulls.h>
66#include <linux/poll.h>
67
68#include <linux/atomic.h>
69#include <linux/refcount.h>
70#include <net/dst.h>
71#include <net/checksum.h>
72#include <net/tcp_states.h>
73#include <linux/net_tstamp.h>
74#include <net/smc.h>
75#include <net/l3mdev.h>
76
77/*
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
81 */
82
83/* Define this to get the SOCK_DBG debugging facility. */
84#define SOCK_DEBUGGING
85#ifdef SOCK_DEBUGGING
86#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88#else
89/* Validate arguments and do nothing */
90static inline __printf(2, 3)
91void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92{
93}
94#endif
95
96/* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
99 */
100typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
104 /*
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
109 */
110#ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112#endif
113} socket_lock_t;
114
115struct sock;
116struct proto;
117struct net;
118
119typedef __u32 __bitwise __portpair;
120typedef __u64 __bitwise __addrpair;
121
122/**
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_rx_queue_mapping: rx queue number for this connection
143 * @skc_flags: place holder for sk_flags
144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146 * @skc_incoming_cpu: record/match cpu processing incoming packets
147 * @skc_refcnt: reference count
148 *
149 * This is the minimal network layer representation of sockets, the header
150 * for struct sock and struct inet_timewait_sock.
151 */
152struct sock_common {
153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 * address on 64bit arches : cf INET_MATCH()
155 */
156 union {
157 __addrpair skc_addrpair;
158 struct {
159 __be32 skc_daddr;
160 __be32 skc_rcv_saddr;
161 };
162 };
163 union {
164 unsigned int skc_hash;
165 __u16 skc_u16hashes[2];
166 };
167 /* skc_dport && skc_num must be grouped as well */
168 union {
169 __portpair skc_portpair;
170 struct {
171 __be16 skc_dport;
172 __u16 skc_num;
173 };
174 };
175
176 unsigned short skc_family;
177 volatile unsigned char skc_state;
178 unsigned char skc_reuse:4;
179 unsigned char skc_reuseport:1;
180 unsigned char skc_ipv6only:1;
181 unsigned char skc_net_refcnt:1;
182 int skc_bound_dev_if;
183 union {
184 struct hlist_node skc_bind_node;
185 struct hlist_node skc_portaddr_node;
186 };
187 struct proto *skc_prot;
188 possible_net_t skc_net;
189
190#if IS_ENABLED(CONFIG_IPV6)
191 struct in6_addr skc_v6_daddr;
192 struct in6_addr skc_v6_rcv_saddr;
193#endif
194
195 atomic64_t skc_cookie;
196
197 /* following fields are padding to force
198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 * assuming IPV6 is enabled. We use this padding differently
200 * for different kind of 'sockets'
201 */
202 union {
203 unsigned long skc_flags;
204 struct sock *skc_listener; /* request_sock */
205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 };
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 unsigned short skc_tx_queue_mapping;
219#ifdef CONFIG_XPS
220 unsigned short skc_rx_queue_mapping;
221#endif
222 union {
223 int skc_incoming_cpu;
224 u32 skc_rcv_wnd;
225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
226 };
227
228 refcount_t skc_refcnt;
229 /* private: */
230 int skc_dontcopy_end[0];
231 union {
232 u32 skc_rxhash;
233 u32 skc_window_clamp;
234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 };
236 /* public: */
237};
238
239/**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_napi_id: id of the last napi context to receive data for sk
260 * @sk_ll_usec: usecs to busypoll when there is no data
261 * @sk_allocation: allocation mode
262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265 * @sk_sndbuf: size of send buffer in bytes
266 * @__sk_flags_offset: empty field used to determine location of bitfield
267 * @sk_padding: unused element for alignment
268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269 * @sk_no_check_rx: allow zero checksum in RX packets
270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273 * @sk_gso_max_size: Maximum GSO segment size to build
274 * @sk_gso_max_segs: Maximum number of GSO segments
275 * @sk_pacing_shift: scaling factor for TCP Small Queues
276 * @sk_lingertime: %SO_LINGER l_linger setting
277 * @sk_backlog: always used with the per-socket spinlock held
278 * @sk_callback_lock: used with the callbacks in the end of this struct
279 * @sk_error_queue: rarely used
280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281 * IPV6_ADDRFORM for instance)
282 * @sk_err: last error
283 * @sk_err_soft: errors that don't cause failure but are the cause of a
284 * persistent failure not just 'timed out'
285 * @sk_drops: raw/udp drops counter
286 * @sk_ack_backlog: current listen backlog
287 * @sk_max_ack_backlog: listen backlog set in listen()
288 * @sk_uid: user id of owner
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_type: socket type (%SOCK_STREAM, etc)
291 * @sk_protocol: which protocol this socket belongs in this network family
292 * @sk_peer_pid: &struct pid for this socket's peer
293 * @sk_peer_cred: %SO_PEERCRED setting
294 * @sk_rcvlowat: %SO_RCVLOWAT setting
295 * @sk_rcvtimeo: %SO_RCVTIMEO setting
296 * @sk_sndtimeo: %SO_SNDTIMEO setting
297 * @sk_txhash: computed flow hash for use on transmit
298 * @sk_filter: socket filtering instructions
299 * @sk_timer: sock cleanup timer
300 * @sk_stamp: time stamp of last packet received
301 * @sk_tsflags: SO_TIMESTAMPING socket options
302 * @sk_tskey: counter to disambiguate concurrent tstamp requests
303 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
304 * @sk_socket: Identd and reporting IO signals
305 * @sk_user_data: RPC layer private data
306 * @sk_frag: cached page frag
307 * @sk_peek_off: current peek_offset value
308 * @sk_send_head: front of stuff to transmit
309 * @sk_security: used by security modules
310 * @sk_mark: generic packet mark
311 * @sk_cgrp_data: cgroup data for this cgroup
312 * @sk_memcg: this socket's memory cgroup association
313 * @sk_write_pending: a write to stream socket waits to start
314 * @sk_state_change: callback to indicate change in the state of the sock
315 * @sk_data_ready: callback to indicate there is data to be processed
316 * @sk_write_space: callback to indicate there is bf sending space available
317 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
318 * @sk_backlog_rcv: callback to process the backlog
319 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
320 * @sk_reuseport_cb: reuseport group container
321 * @sk_rcu: used during RCU grace period
322 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
323 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
324 * @sk_txtime_unused: unused txtime flags
325 */
326struct sock {
327 /*
328 * Now struct inet_timewait_sock also uses sock_common, so please just
329 * don't add nothing before this first member (__sk_common) --acme
330 */
331 struct sock_common __sk_common;
332#define sk_node __sk_common.skc_node
333#define sk_nulls_node __sk_common.skc_nulls_node
334#define sk_refcnt __sk_common.skc_refcnt
335#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
336#ifdef CONFIG_XPS
337#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
338#endif
339
340#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
341#define sk_dontcopy_end __sk_common.skc_dontcopy_end
342#define sk_hash __sk_common.skc_hash
343#define sk_portpair __sk_common.skc_portpair
344#define sk_num __sk_common.skc_num
345#define sk_dport __sk_common.skc_dport
346#define sk_addrpair __sk_common.skc_addrpair
347#define sk_daddr __sk_common.skc_daddr
348#define sk_rcv_saddr __sk_common.skc_rcv_saddr
349#define sk_family __sk_common.skc_family
350#define sk_state __sk_common.skc_state
351#define sk_reuse __sk_common.skc_reuse
352#define sk_reuseport __sk_common.skc_reuseport
353#define sk_ipv6only __sk_common.skc_ipv6only
354#define sk_net_refcnt __sk_common.skc_net_refcnt
355#define sk_bound_dev_if __sk_common.skc_bound_dev_if
356#define sk_bind_node __sk_common.skc_bind_node
357#define sk_prot __sk_common.skc_prot
358#define sk_net __sk_common.skc_net
359#define sk_v6_daddr __sk_common.skc_v6_daddr
360#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
361#define sk_cookie __sk_common.skc_cookie
362#define sk_incoming_cpu __sk_common.skc_incoming_cpu
363#define sk_flags __sk_common.skc_flags
364#define sk_rxhash __sk_common.skc_rxhash
365
366 socket_lock_t sk_lock;
367 atomic_t sk_drops;
368 int sk_rcvlowat;
369 struct sk_buff_head sk_error_queue;
370 struct sk_buff_head sk_receive_queue;
371 /*
372 * The backlog queue is special, it is always used with
373 * the per-socket spinlock held and requires low latency
374 * access. Therefore we special case it's implementation.
375 * Note : rmem_alloc is in this structure to fill a hole
376 * on 64bit arches, not because its logically part of
377 * backlog.
378 */
379 struct {
380 atomic_t rmem_alloc;
381 int len;
382 struct sk_buff *head;
383 struct sk_buff *tail;
384 } sk_backlog;
385#define sk_rmem_alloc sk_backlog.rmem_alloc
386
387 int sk_forward_alloc;
388#ifdef CONFIG_NET_RX_BUSY_POLL
389 unsigned int sk_ll_usec;
390 /* ===== mostly read cache line ===== */
391 unsigned int sk_napi_id;
392#endif
393 int sk_rcvbuf;
394
395 struct sk_filter __rcu *sk_filter;
396 union {
397 struct socket_wq __rcu *sk_wq;
398 struct socket_wq *sk_wq_raw;
399 };
400#ifdef CONFIG_XFRM
401 struct xfrm_policy __rcu *sk_policy[2];
402#endif
403 struct dst_entry *sk_rx_dst;
404 struct dst_entry __rcu *sk_dst_cache;
405 atomic_t sk_omem_alloc;
406 int sk_sndbuf;
407
408 /* ===== cache line for TX ===== */
409 int sk_wmem_queued;
410 refcount_t sk_wmem_alloc;
411 unsigned long sk_tsq_flags;
412 union {
413 struct sk_buff *sk_send_head;
414 struct rb_root tcp_rtx_queue;
415 };
416 struct sk_buff_head sk_write_queue;
417 __s32 sk_peek_off;
418 int sk_write_pending;
419 __u32 sk_dst_pending_confirm;
420 u32 sk_pacing_status; /* see enum sk_pacing */
421 long sk_sndtimeo;
422 struct timer_list sk_timer;
423 __u32 sk_priority;
424 __u32 sk_mark;
425 unsigned long sk_pacing_rate; /* bytes per second */
426 unsigned long sk_max_pacing_rate;
427 struct page_frag sk_frag;
428 netdev_features_t sk_route_caps;
429 netdev_features_t sk_route_nocaps;
430 netdev_features_t sk_route_forced_caps;
431 int sk_gso_type;
432 unsigned int sk_gso_max_size;
433 gfp_t sk_allocation;
434 __u32 sk_txhash;
435
436 /*
437 * Because of non atomicity rules, all
438 * changes are protected by socket lock.
439 */
440 unsigned int __sk_flags_offset[0];
441#ifdef __BIG_ENDIAN_BITFIELD
442#define SK_FL_PROTO_SHIFT 16
443#define SK_FL_PROTO_MASK 0x00ff0000
444
445#define SK_FL_TYPE_SHIFT 0
446#define SK_FL_TYPE_MASK 0x0000ffff
447#else
448#define SK_FL_PROTO_SHIFT 8
449#define SK_FL_PROTO_MASK 0x0000ff00
450
451#define SK_FL_TYPE_SHIFT 16
452#define SK_FL_TYPE_MASK 0xffff0000
453#endif
454
455 unsigned int sk_padding : 1,
456 sk_kern_sock : 1,
457 sk_no_check_tx : 1,
458 sk_no_check_rx : 1,
459 sk_userlocks : 4,
460 sk_protocol : 8,
461 sk_type : 16;
462#define SK_PROTOCOL_MAX U8_MAX
463 u16 sk_gso_max_segs;
464 u8 sk_pacing_shift;
465 unsigned long sk_lingertime;
466 struct proto *sk_prot_creator;
467 rwlock_t sk_callback_lock;
468 int sk_err,
469 sk_err_soft;
470 u32 sk_ack_backlog;
471 u32 sk_max_ack_backlog;
472 kuid_t sk_uid;
473 struct pid *sk_peer_pid;
474 const struct cred *sk_peer_cred;
475 long sk_rcvtimeo;
476 ktime_t sk_stamp;
477 u16 sk_tsflags;
478 u8 sk_shutdown;
479 u32 sk_tskey;
480 atomic_t sk_zckey;
481
482 u8 sk_clockid;
483 u8 sk_txtime_deadline_mode : 1,
484 sk_txtime_report_errors : 1,
485 sk_txtime_unused : 6;
486
487 struct socket *sk_socket;
488 void *sk_user_data;
489#ifdef CONFIG_SECURITY
490 void *sk_security;
491#endif
492 struct sock_cgroup_data sk_cgrp_data;
493 struct mem_cgroup *sk_memcg;
494 void (*sk_state_change)(struct sock *sk);
495 void (*sk_data_ready)(struct sock *sk);
496 void (*sk_write_space)(struct sock *sk);
497 void (*sk_error_report)(struct sock *sk);
498 int (*sk_backlog_rcv)(struct sock *sk,
499 struct sk_buff *skb);
500#ifdef CONFIG_SOCK_VALIDATE_XMIT
501 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
502 struct net_device *dev,
503 struct sk_buff *skb);
504#endif
505 void (*sk_destruct)(struct sock *sk);
506 struct sock_reuseport __rcu *sk_reuseport_cb;
507 struct rcu_head sk_rcu;
508};
509
510enum sk_pacing {
511 SK_PACING_NONE = 0,
512 SK_PACING_NEEDED = 1,
513 SK_PACING_FQ = 2,
514};
515
516#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
517
518#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
519#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
520
521/*
522 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
523 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
524 * on a socket means that the socket will reuse everybody else's port
525 * without looking at the other's sk_reuse value.
526 */
527
528#define SK_NO_REUSE 0
529#define SK_CAN_REUSE 1
530#define SK_FORCE_REUSE 2
531
532int sk_set_peek_off(struct sock *sk, int val);
533
534static inline int sk_peek_offset(struct sock *sk, int flags)
535{
536 if (unlikely(flags & MSG_PEEK)) {
537 return READ_ONCE(sk->sk_peek_off);
538 }
539
540 return 0;
541}
542
543static inline void sk_peek_offset_bwd(struct sock *sk, int val)
544{
545 s32 off = READ_ONCE(sk->sk_peek_off);
546
547 if (unlikely(off >= 0)) {
548 off = max_t(s32, off - val, 0);
549 WRITE_ONCE(sk->sk_peek_off, off);
550 }
551}
552
553static inline void sk_peek_offset_fwd(struct sock *sk, int val)
554{
555 sk_peek_offset_bwd(sk, -val);
556}
557
558/*
559 * Hashed lists helper routines
560 */
561static inline struct sock *sk_entry(const struct hlist_node *node)
562{
563 return hlist_entry(node, struct sock, sk_node);
564}
565
566static inline struct sock *__sk_head(const struct hlist_head *head)
567{
568 return hlist_entry(head->first, struct sock, sk_node);
569}
570
571static inline struct sock *sk_head(const struct hlist_head *head)
572{
573 return hlist_empty(head) ? NULL : __sk_head(head);
574}
575
576static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
577{
578 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
579}
580
581static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
582{
583 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
584}
585
586static inline struct sock *sk_next(const struct sock *sk)
587{
588 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
589}
590
591static inline struct sock *sk_nulls_next(const struct sock *sk)
592{
593 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
594 hlist_nulls_entry(sk->sk_nulls_node.next,
595 struct sock, sk_nulls_node) :
596 NULL;
597}
598
599static inline bool sk_unhashed(const struct sock *sk)
600{
601 return hlist_unhashed(&sk->sk_node);
602}
603
604static inline bool sk_hashed(const struct sock *sk)
605{
606 return !sk_unhashed(sk);
607}
608
609static inline void sk_node_init(struct hlist_node *node)
610{
611 node->pprev = NULL;
612}
613
614static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
615{
616 node->pprev = NULL;
617}
618
619static inline void __sk_del_node(struct sock *sk)
620{
621 __hlist_del(&sk->sk_node);
622}
623
624/* NB: equivalent to hlist_del_init_rcu */
625static inline bool __sk_del_node_init(struct sock *sk)
626{
627 if (sk_hashed(sk)) {
628 __sk_del_node(sk);
629 sk_node_init(&sk->sk_node);
630 return true;
631 }
632 return false;
633}
634
635/* Grab socket reference count. This operation is valid only
636 when sk is ALREADY grabbed f.e. it is found in hash table
637 or a list and the lookup is made under lock preventing hash table
638 modifications.
639 */
640
641static __always_inline void sock_hold(struct sock *sk)
642{
643 refcount_inc(&sk->sk_refcnt);
644}
645
646/* Ungrab socket in the context, which assumes that socket refcnt
647 cannot hit zero, f.e. it is true in context of any socketcall.
648 */
649static __always_inline void __sock_put(struct sock *sk)
650{
651 refcount_dec(&sk->sk_refcnt);
652}
653
654static inline bool sk_del_node_init(struct sock *sk)
655{
656 bool rc = __sk_del_node_init(sk);
657
658 if (rc) {
659 /* paranoid for a while -acme */
660 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
661 __sock_put(sk);
662 }
663 return rc;
664}
665#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
666
667static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
668{
669 if (sk_hashed(sk)) {
670 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
671 return true;
672 }
673 return false;
674}
675
676static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
677{
678 bool rc = __sk_nulls_del_node_init_rcu(sk);
679
680 if (rc) {
681 /* paranoid for a while -acme */
682 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
683 __sock_put(sk);
684 }
685 return rc;
686}
687
688static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
689{
690 hlist_add_head(&sk->sk_node, list);
691}
692
693static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
694{
695 sock_hold(sk);
696 __sk_add_node(sk, list);
697}
698
699static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
700{
701 sock_hold(sk);
702 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
703 sk->sk_family == AF_INET6)
704 hlist_add_tail_rcu(&sk->sk_node, list);
705 else
706 hlist_add_head_rcu(&sk->sk_node, list);
707}
708
709static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
710{
711 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
712}
713
714static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
715{
716 sock_hold(sk);
717 __sk_nulls_add_node_rcu(sk, list);
718}
719
720static inline void __sk_del_bind_node(struct sock *sk)
721{
722 __hlist_del(&sk->sk_bind_node);
723}
724
725static inline void sk_add_bind_node(struct sock *sk,
726 struct hlist_head *list)
727{
728 hlist_add_head(&sk->sk_bind_node, list);
729}
730
731#define sk_for_each(__sk, list) \
732 hlist_for_each_entry(__sk, list, sk_node)
733#define sk_for_each_rcu(__sk, list) \
734 hlist_for_each_entry_rcu(__sk, list, sk_node)
735#define sk_nulls_for_each(__sk, node, list) \
736 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
737#define sk_nulls_for_each_rcu(__sk, node, list) \
738 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
739#define sk_for_each_from(__sk) \
740 hlist_for_each_entry_from(__sk, sk_node)
741#define sk_nulls_for_each_from(__sk, node) \
742 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
743 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
744#define sk_for_each_safe(__sk, tmp, list) \
745 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
746#define sk_for_each_bound(__sk, list) \
747 hlist_for_each_entry(__sk, list, sk_bind_node)
748
749/**
750 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
751 * @tpos: the type * to use as a loop cursor.
752 * @pos: the &struct hlist_node to use as a loop cursor.
753 * @head: the head for your list.
754 * @offset: offset of hlist_node within the struct.
755 *
756 */
757#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
758 for (pos = rcu_dereference(hlist_first_rcu(head)); \
759 pos != NULL && \
760 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
761 pos = rcu_dereference(hlist_next_rcu(pos)))
762
763static inline struct user_namespace *sk_user_ns(struct sock *sk)
764{
765 /* Careful only use this in a context where these parameters
766 * can not change and must all be valid, such as recvmsg from
767 * userspace.
768 */
769 return sk->sk_socket->file->f_cred->user_ns;
770}
771
772/* Sock flags */
773enum sock_flags {
774 SOCK_DEAD,
775 SOCK_DONE,
776 SOCK_URGINLINE,
777 SOCK_KEEPOPEN,
778 SOCK_LINGER,
779 SOCK_DESTROY,
780 SOCK_BROADCAST,
781 SOCK_TIMESTAMP,
782 SOCK_ZAPPED,
783 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
784 SOCK_DBG, /* %SO_DEBUG setting */
785 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
786 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
787 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
788 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
789 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
790 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
791 SOCK_FASYNC, /* fasync() active */
792 SOCK_RXQ_OVFL,
793 SOCK_ZEROCOPY, /* buffers from userspace */
794 SOCK_WIFI_STATUS, /* push wifi status to userspace */
795 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
796 * Will use last 4 bytes of packet sent from
797 * user-space instead.
798 */
799 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
800 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
801 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
802 SOCK_TXTIME,
803 SOCK_XDP, /* XDP is attached */
804};
805
806#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
807
808static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
809{
810 nsk->sk_flags = osk->sk_flags;
811}
812
813static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
814{
815 __set_bit(flag, &sk->sk_flags);
816}
817
818static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
819{
820 __clear_bit(flag, &sk->sk_flags);
821}
822
823static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
824{
825 return test_bit(flag, &sk->sk_flags);
826}
827
828#ifdef CONFIG_NET
829DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
830static inline int sk_memalloc_socks(void)
831{
832 return static_branch_unlikely(&memalloc_socks_key);
833}
834#else
835
836static inline int sk_memalloc_socks(void)
837{
838 return 0;
839}
840
841#endif
842
843static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
844{
845 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
846}
847
848static inline void sk_acceptq_removed(struct sock *sk)
849{
850 sk->sk_ack_backlog--;
851}
852
853static inline void sk_acceptq_added(struct sock *sk)
854{
855 sk->sk_ack_backlog++;
856}
857
858static inline bool sk_acceptq_is_full(const struct sock *sk)
859{
860 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
861}
862
863/*
864 * Compute minimal free write space needed to queue new packets.
865 */
866static inline int sk_stream_min_wspace(const struct sock *sk)
867{
868 return sk->sk_wmem_queued >> 1;
869}
870
871static inline int sk_stream_wspace(const struct sock *sk)
872{
873 return sk->sk_sndbuf - sk->sk_wmem_queued;
874}
875
876void sk_stream_write_space(struct sock *sk);
877
878/* OOB backlog add */
879static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
880{
881 /* dont let skb dst not refcounted, we are going to leave rcu lock */
882 skb_dst_force(skb);
883
884 if (!sk->sk_backlog.tail)
885 sk->sk_backlog.head = skb;
886 else
887 sk->sk_backlog.tail->next = skb;
888
889 sk->sk_backlog.tail = skb;
890 skb->next = NULL;
891}
892
893/*
894 * Take into account size of receive queue and backlog queue
895 * Do not take into account this skb truesize,
896 * to allow even a single big packet to come.
897 */
898static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
899{
900 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
901
902 return qsize > limit;
903}
904
905/* The per-socket spinlock must be held here. */
906static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
907 unsigned int limit)
908{
909 if (sk_rcvqueues_full(sk, limit))
910 return -ENOBUFS;
911
912 /*
913 * If the skb was allocated from pfmemalloc reserves, only
914 * allow SOCK_MEMALLOC sockets to use it as this socket is
915 * helping free memory
916 */
917 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
918 return -ENOMEM;
919
920 __sk_add_backlog(sk, skb);
921 sk->sk_backlog.len += skb->truesize;
922 return 0;
923}
924
925int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
926
927static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
928{
929 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
930 return __sk_backlog_rcv(sk, skb);
931
932 return sk->sk_backlog_rcv(sk, skb);
933}
934
935static inline void sk_incoming_cpu_update(struct sock *sk)
936{
937 int cpu = raw_smp_processor_id();
938
939 if (unlikely(sk->sk_incoming_cpu != cpu))
940 sk->sk_incoming_cpu = cpu;
941}
942
943static inline void sock_rps_record_flow_hash(__u32 hash)
944{
945#ifdef CONFIG_RPS
946 struct rps_sock_flow_table *sock_flow_table;
947
948 rcu_read_lock();
949 sock_flow_table = rcu_dereference(rps_sock_flow_table);
950 rps_record_sock_flow(sock_flow_table, hash);
951 rcu_read_unlock();
952#endif
953}
954
955static inline void sock_rps_record_flow(const struct sock *sk)
956{
957#ifdef CONFIG_RPS
958 if (static_key_false(&rfs_needed)) {
959 /* Reading sk->sk_rxhash might incur an expensive cache line
960 * miss.
961 *
962 * TCP_ESTABLISHED does cover almost all states where RFS
963 * might be useful, and is cheaper [1] than testing :
964 * IPv4: inet_sk(sk)->inet_daddr
965 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
966 * OR an additional socket flag
967 * [1] : sk_state and sk_prot are in the same cache line.
968 */
969 if (sk->sk_state == TCP_ESTABLISHED)
970 sock_rps_record_flow_hash(sk->sk_rxhash);
971 }
972#endif
973}
974
975static inline void sock_rps_save_rxhash(struct sock *sk,
976 const struct sk_buff *skb)
977{
978#ifdef CONFIG_RPS
979 if (unlikely(sk->sk_rxhash != skb->hash))
980 sk->sk_rxhash = skb->hash;
981#endif
982}
983
984static inline void sock_rps_reset_rxhash(struct sock *sk)
985{
986#ifdef CONFIG_RPS
987 sk->sk_rxhash = 0;
988#endif
989}
990
991#define sk_wait_event(__sk, __timeo, __condition, __wait) \
992 ({ int __rc; \
993 release_sock(__sk); \
994 __rc = __condition; \
995 if (!__rc) { \
996 *(__timeo) = wait_woken(__wait, \
997 TASK_INTERRUPTIBLE, \
998 *(__timeo)); \
999 } \
1000 sched_annotate_sleep(); \
1001 lock_sock(__sk); \
1002 __rc = __condition; \
1003 __rc; \
1004 })
1005
1006int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1007int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1008void sk_stream_wait_close(struct sock *sk, long timeo_p);
1009int sk_stream_error(struct sock *sk, int flags, int err);
1010void sk_stream_kill_queues(struct sock *sk);
1011void sk_set_memalloc(struct sock *sk);
1012void sk_clear_memalloc(struct sock *sk);
1013
1014void __sk_flush_backlog(struct sock *sk);
1015
1016static inline bool sk_flush_backlog(struct sock *sk)
1017{
1018 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1019 __sk_flush_backlog(sk);
1020 return true;
1021 }
1022 return false;
1023}
1024
1025int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1026
1027struct request_sock_ops;
1028struct timewait_sock_ops;
1029struct inet_hashinfo;
1030struct raw_hashinfo;
1031struct smc_hashinfo;
1032struct module;
1033
1034/*
1035 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1036 * un-modified. Special care is taken when initializing object to zero.
1037 */
1038static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1039{
1040 if (offsetof(struct sock, sk_node.next) != 0)
1041 memset(sk, 0, offsetof(struct sock, sk_node.next));
1042 memset(&sk->sk_node.pprev, 0,
1043 size - offsetof(struct sock, sk_node.pprev));
1044}
1045
1046/* Networking protocol blocks we attach to sockets.
1047 * socket layer -> transport layer interface
1048 */
1049struct proto {
1050 void (*close)(struct sock *sk,
1051 long timeout);
1052 int (*pre_connect)(struct sock *sk,
1053 struct sockaddr *uaddr,
1054 int addr_len);
1055 int (*connect)(struct sock *sk,
1056 struct sockaddr *uaddr,
1057 int addr_len);
1058 int (*disconnect)(struct sock *sk, int flags);
1059
1060 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1061 bool kern);
1062
1063 int (*ioctl)(struct sock *sk, int cmd,
1064 unsigned long arg);
1065 int (*init)(struct sock *sk);
1066 void (*destroy)(struct sock *sk);
1067 void (*shutdown)(struct sock *sk, int how);
1068 int (*setsockopt)(struct sock *sk, int level,
1069 int optname, char __user *optval,
1070 unsigned int optlen);
1071 int (*getsockopt)(struct sock *sk, int level,
1072 int optname, char __user *optval,
1073 int __user *option);
1074 void (*keepalive)(struct sock *sk, int valbool);
1075#ifdef CONFIG_COMPAT
1076 int (*compat_setsockopt)(struct sock *sk,
1077 int level,
1078 int optname, char __user *optval,
1079 unsigned int optlen);
1080 int (*compat_getsockopt)(struct sock *sk,
1081 int level,
1082 int optname, char __user *optval,
1083 int __user *option);
1084 int (*compat_ioctl)(struct sock *sk,
1085 unsigned int cmd, unsigned long arg);
1086#endif
1087 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1088 size_t len);
1089 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1090 size_t len, int noblock, int flags,
1091 int *addr_len);
1092 int (*sendpage)(struct sock *sk, struct page *page,
1093 int offset, size_t size, int flags);
1094 int (*bind)(struct sock *sk,
1095 struct sockaddr *uaddr, int addr_len);
1096
1097 int (*backlog_rcv) (struct sock *sk,
1098 struct sk_buff *skb);
1099
1100 void (*release_cb)(struct sock *sk);
1101
1102 /* Keeping track of sk's, looking them up, and port selection methods. */
1103 int (*hash)(struct sock *sk);
1104 void (*unhash)(struct sock *sk);
1105 void (*rehash)(struct sock *sk);
1106 int (*get_port)(struct sock *sk, unsigned short snum);
1107
1108 /* Keeping track of sockets in use */
1109#ifdef CONFIG_PROC_FS
1110 unsigned int inuse_idx;
1111#endif
1112
1113 bool (*stream_memory_free)(const struct sock *sk);
1114 bool (*stream_memory_read)(const struct sock *sk);
1115 /* Memory pressure */
1116 void (*enter_memory_pressure)(struct sock *sk);
1117 void (*leave_memory_pressure)(struct sock *sk);
1118 atomic_long_t *memory_allocated; /* Current allocated memory. */
1119 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1120 /*
1121 * Pressure flag: try to collapse.
1122 * Technical note: it is used by multiple contexts non atomically.
1123 * All the __sk_mem_schedule() is of this nature: accounting
1124 * is strict, actions are advisory and have some latency.
1125 */
1126 unsigned long *memory_pressure;
1127 long *sysctl_mem;
1128
1129 int *sysctl_wmem;
1130 int *sysctl_rmem;
1131 u32 sysctl_wmem_offset;
1132 u32 sysctl_rmem_offset;
1133
1134 int max_header;
1135 bool no_autobind;
1136
1137 struct kmem_cache *slab;
1138 unsigned int obj_size;
1139 slab_flags_t slab_flags;
1140 unsigned int useroffset; /* Usercopy region offset */
1141 unsigned int usersize; /* Usercopy region size */
1142
1143 struct percpu_counter *orphan_count;
1144
1145 struct request_sock_ops *rsk_prot;
1146 struct timewait_sock_ops *twsk_prot;
1147
1148 union {
1149 struct inet_hashinfo *hashinfo;
1150 struct udp_table *udp_table;
1151 struct raw_hashinfo *raw_hash;
1152 struct smc_hashinfo *smc_hash;
1153 } h;
1154
1155 struct module *owner;
1156
1157 char name[32];
1158
1159 struct list_head node;
1160#ifdef SOCK_REFCNT_DEBUG
1161 atomic_t socks;
1162#endif
1163 int (*diag_destroy)(struct sock *sk, int err);
1164} __randomize_layout;
1165
1166int proto_register(struct proto *prot, int alloc_slab);
1167void proto_unregister(struct proto *prot);
1168int sock_load_diag_module(int family, int protocol);
1169
1170#ifdef SOCK_REFCNT_DEBUG
1171static inline void sk_refcnt_debug_inc(struct sock *sk)
1172{
1173 atomic_inc(&sk->sk_prot->socks);
1174}
1175
1176static inline void sk_refcnt_debug_dec(struct sock *sk)
1177{
1178 atomic_dec(&sk->sk_prot->socks);
1179 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1180 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1181}
1182
1183static inline void sk_refcnt_debug_release(const struct sock *sk)
1184{
1185 if (refcount_read(&sk->sk_refcnt) != 1)
1186 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1187 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1188}
1189#else /* SOCK_REFCNT_DEBUG */
1190#define sk_refcnt_debug_inc(sk) do { } while (0)
1191#define sk_refcnt_debug_dec(sk) do { } while (0)
1192#define sk_refcnt_debug_release(sk) do { } while (0)
1193#endif /* SOCK_REFCNT_DEBUG */
1194
1195static inline bool sk_stream_memory_free(const struct sock *sk)
1196{
1197 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1198 return false;
1199
1200 return sk->sk_prot->stream_memory_free ?
1201 sk->sk_prot->stream_memory_free(sk) : true;
1202}
1203
1204static inline bool sk_stream_is_writeable(const struct sock *sk)
1205{
1206 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1207 sk_stream_memory_free(sk);
1208}
1209
1210static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1211 struct cgroup *ancestor)
1212{
1213#ifdef CONFIG_SOCK_CGROUP_DATA
1214 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1215 ancestor);
1216#else
1217 return -ENOTSUPP;
1218#endif
1219}
1220
1221static inline bool sk_has_memory_pressure(const struct sock *sk)
1222{
1223 return sk->sk_prot->memory_pressure != NULL;
1224}
1225
1226static inline bool sk_under_memory_pressure(const struct sock *sk)
1227{
1228 if (!sk->sk_prot->memory_pressure)
1229 return false;
1230
1231 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1232 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1233 return true;
1234
1235 return !!*sk->sk_prot->memory_pressure;
1236}
1237
1238static inline long
1239sk_memory_allocated(const struct sock *sk)
1240{
1241 return atomic_long_read(sk->sk_prot->memory_allocated);
1242}
1243
1244static inline long
1245sk_memory_allocated_add(struct sock *sk, int amt)
1246{
1247 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1248}
1249
1250static inline void
1251sk_memory_allocated_sub(struct sock *sk, int amt)
1252{
1253 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1254}
1255
1256static inline void sk_sockets_allocated_dec(struct sock *sk)
1257{
1258 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1259}
1260
1261static inline void sk_sockets_allocated_inc(struct sock *sk)
1262{
1263 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1264}
1265
1266static inline int
1267sk_sockets_allocated_read_positive(struct sock *sk)
1268{
1269 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1270}
1271
1272static inline int
1273proto_sockets_allocated_sum_positive(struct proto *prot)
1274{
1275 return percpu_counter_sum_positive(prot->sockets_allocated);
1276}
1277
1278static inline long
1279proto_memory_allocated(struct proto *prot)
1280{
1281 return atomic_long_read(prot->memory_allocated);
1282}
1283
1284static inline bool
1285proto_memory_pressure(struct proto *prot)
1286{
1287 if (!prot->memory_pressure)
1288 return false;
1289 return !!*prot->memory_pressure;
1290}
1291
1292
1293#ifdef CONFIG_PROC_FS
1294/* Called with local bh disabled */
1295void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1296int sock_prot_inuse_get(struct net *net, struct proto *proto);
1297int sock_inuse_get(struct net *net);
1298#else
1299static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1300 int inc)
1301{
1302}
1303#endif
1304
1305
1306/* With per-bucket locks this operation is not-atomic, so that
1307 * this version is not worse.
1308 */
1309static inline int __sk_prot_rehash(struct sock *sk)
1310{
1311 sk->sk_prot->unhash(sk);
1312 return sk->sk_prot->hash(sk);
1313}
1314
1315/* About 10 seconds */
1316#define SOCK_DESTROY_TIME (10*HZ)
1317
1318/* Sockets 0-1023 can't be bound to unless you are superuser */
1319#define PROT_SOCK 1024
1320
1321#define SHUTDOWN_MASK 3
1322#define RCV_SHUTDOWN 1
1323#define SEND_SHUTDOWN 2
1324
1325#define SOCK_SNDBUF_LOCK 1
1326#define SOCK_RCVBUF_LOCK 2
1327#define SOCK_BINDADDR_LOCK 4
1328#define SOCK_BINDPORT_LOCK 8
1329
1330struct socket_alloc {
1331 struct socket socket;
1332 struct inode vfs_inode;
1333};
1334
1335static inline struct socket *SOCKET_I(struct inode *inode)
1336{
1337 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1338}
1339
1340static inline struct inode *SOCK_INODE(struct socket *socket)
1341{
1342 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1343}
1344
1345/*
1346 * Functions for memory accounting
1347 */
1348int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1349int __sk_mem_schedule(struct sock *sk, int size, int kind);
1350void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1351void __sk_mem_reclaim(struct sock *sk, int amount);
1352
1353/* We used to have PAGE_SIZE here, but systems with 64KB pages
1354 * do not necessarily have 16x time more memory than 4KB ones.
1355 */
1356#define SK_MEM_QUANTUM 4096
1357#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1358#define SK_MEM_SEND 0
1359#define SK_MEM_RECV 1
1360
1361/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1362static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1363{
1364 long val = sk->sk_prot->sysctl_mem[index];
1365
1366#if PAGE_SIZE > SK_MEM_QUANTUM
1367 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1368#elif PAGE_SIZE < SK_MEM_QUANTUM
1369 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1370#endif
1371 return val;
1372}
1373
1374static inline int sk_mem_pages(int amt)
1375{
1376 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1377}
1378
1379static inline bool sk_has_account(struct sock *sk)
1380{
1381 /* return true if protocol supports memory accounting */
1382 return !!sk->sk_prot->memory_allocated;
1383}
1384
1385static inline bool sk_wmem_schedule(struct sock *sk, int size)
1386{
1387 if (!sk_has_account(sk))
1388 return true;
1389 return size <= sk->sk_forward_alloc ||
1390 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1391}
1392
1393static inline bool
1394sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1395{
1396 if (!sk_has_account(sk))
1397 return true;
1398 return size<= sk->sk_forward_alloc ||
1399 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1400 skb_pfmemalloc(skb);
1401}
1402
1403static inline void sk_mem_reclaim(struct sock *sk)
1404{
1405 if (!sk_has_account(sk))
1406 return;
1407 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1408 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1409}
1410
1411static inline void sk_mem_reclaim_partial(struct sock *sk)
1412{
1413 if (!sk_has_account(sk))
1414 return;
1415 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1416 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1417}
1418
1419static inline void sk_mem_charge(struct sock *sk, int size)
1420{
1421 if (!sk_has_account(sk))
1422 return;
1423 sk->sk_forward_alloc -= size;
1424}
1425
1426static inline void sk_mem_uncharge(struct sock *sk, int size)
1427{
1428 if (!sk_has_account(sk))
1429 return;
1430 sk->sk_forward_alloc += size;
1431
1432 /* Avoid a possible overflow.
1433 * TCP send queues can make this happen, if sk_mem_reclaim()
1434 * is not called and more than 2 GBytes are released at once.
1435 *
1436 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1437 * no need to hold that much forward allocation anyway.
1438 */
1439 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1440 __sk_mem_reclaim(sk, 1 << 20);
1441}
1442
1443static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1444{
1445 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1446 sk->sk_wmem_queued -= skb->truesize;
1447 sk_mem_uncharge(sk, skb->truesize);
1448 __kfree_skb(skb);
1449}
1450
1451static inline void sock_release_ownership(struct sock *sk)
1452{
1453 if (sk->sk_lock.owned) {
1454 sk->sk_lock.owned = 0;
1455
1456 /* The sk_lock has mutex_unlock() semantics: */
1457 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1458 }
1459}
1460
1461/*
1462 * Macro so as to not evaluate some arguments when
1463 * lockdep is not enabled.
1464 *
1465 * Mark both the sk_lock and the sk_lock.slock as a
1466 * per-address-family lock class.
1467 */
1468#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1469do { \
1470 sk->sk_lock.owned = 0; \
1471 init_waitqueue_head(&sk->sk_lock.wq); \
1472 spin_lock_init(&(sk)->sk_lock.slock); \
1473 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1474 sizeof((sk)->sk_lock)); \
1475 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1476 (skey), (sname)); \
1477 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1478} while (0)
1479
1480#ifdef CONFIG_LOCKDEP
1481static inline bool lockdep_sock_is_held(const struct sock *sk)
1482{
1483 return lockdep_is_held(&sk->sk_lock) ||
1484 lockdep_is_held(&sk->sk_lock.slock);
1485}
1486#endif
1487
1488void lock_sock_nested(struct sock *sk, int subclass);
1489
1490static inline void lock_sock(struct sock *sk)
1491{
1492 lock_sock_nested(sk, 0);
1493}
1494
1495void __release_sock(struct sock *sk);
1496void release_sock(struct sock *sk);
1497
1498/* BH context may only use the following locking interface. */
1499#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1500#define bh_lock_sock_nested(__sk) \
1501 spin_lock_nested(&((__sk)->sk_lock.slock), \
1502 SINGLE_DEPTH_NESTING)
1503#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1504
1505bool lock_sock_fast(struct sock *sk);
1506/**
1507 * unlock_sock_fast - complement of lock_sock_fast
1508 * @sk: socket
1509 * @slow: slow mode
1510 *
1511 * fast unlock socket for user context.
1512 * If slow mode is on, we call regular release_sock()
1513 */
1514static inline void unlock_sock_fast(struct sock *sk, bool slow)
1515{
1516 if (slow)
1517 release_sock(sk);
1518 else
1519 spin_unlock_bh(&sk->sk_lock.slock);
1520}
1521
1522/* Used by processes to "lock" a socket state, so that
1523 * interrupts and bottom half handlers won't change it
1524 * from under us. It essentially blocks any incoming
1525 * packets, so that we won't get any new data or any
1526 * packets that change the state of the socket.
1527 *
1528 * While locked, BH processing will add new packets to
1529 * the backlog queue. This queue is processed by the
1530 * owner of the socket lock right before it is released.
1531 *
1532 * Since ~2.3.5 it is also exclusive sleep lock serializing
1533 * accesses from user process context.
1534 */
1535
1536static inline void sock_owned_by_me(const struct sock *sk)
1537{
1538#ifdef CONFIG_LOCKDEP
1539 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1540#endif
1541}
1542
1543static inline bool sock_owned_by_user(const struct sock *sk)
1544{
1545 sock_owned_by_me(sk);
1546 return sk->sk_lock.owned;
1547}
1548
1549static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1550{
1551 return sk->sk_lock.owned;
1552}
1553
1554/* no reclassification while locks are held */
1555static inline bool sock_allow_reclassification(const struct sock *csk)
1556{
1557 struct sock *sk = (struct sock *)csk;
1558
1559 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1560}
1561
1562struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1563 struct proto *prot, int kern);
1564void sk_free(struct sock *sk);
1565void sk_destruct(struct sock *sk);
1566struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1567void sk_free_unlock_clone(struct sock *sk);
1568
1569struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1570 gfp_t priority);
1571void __sock_wfree(struct sk_buff *skb);
1572void sock_wfree(struct sk_buff *skb);
1573struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1574 gfp_t priority);
1575void skb_orphan_partial(struct sk_buff *skb);
1576void sock_rfree(struct sk_buff *skb);
1577void sock_efree(struct sk_buff *skb);
1578#ifdef CONFIG_INET
1579void sock_edemux(struct sk_buff *skb);
1580#else
1581#define sock_edemux sock_efree
1582#endif
1583
1584int sock_setsockopt(struct socket *sock, int level, int op,
1585 char __user *optval, unsigned int optlen);
1586
1587int sock_getsockopt(struct socket *sock, int level, int op,
1588 char __user *optval, int __user *optlen);
1589struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1590 int noblock, int *errcode);
1591struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1592 unsigned long data_len, int noblock,
1593 int *errcode, int max_page_order);
1594void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1595void sock_kfree_s(struct sock *sk, void *mem, int size);
1596void sock_kzfree_s(struct sock *sk, void *mem, int size);
1597void sk_send_sigurg(struct sock *sk);
1598
1599struct sockcm_cookie {
1600 u64 transmit_time;
1601 u32 mark;
1602 u16 tsflags;
1603};
1604
1605static inline void sockcm_init(struct sockcm_cookie *sockc,
1606 const struct sock *sk)
1607{
1608 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1609}
1610
1611int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1612 struct sockcm_cookie *sockc);
1613int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1614 struct sockcm_cookie *sockc);
1615
1616/*
1617 * Functions to fill in entries in struct proto_ops when a protocol
1618 * does not implement a particular function.
1619 */
1620int sock_no_bind(struct socket *, struct sockaddr *, int);
1621int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1622int sock_no_socketpair(struct socket *, struct socket *);
1623int sock_no_accept(struct socket *, struct socket *, int, bool);
1624int sock_no_getname(struct socket *, struct sockaddr *, int);
1625int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1626int sock_no_listen(struct socket *, int);
1627int sock_no_shutdown(struct socket *, int);
1628int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1629int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1630int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1631int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1632int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1633int sock_no_mmap(struct file *file, struct socket *sock,
1634 struct vm_area_struct *vma);
1635ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1636 size_t size, int flags);
1637ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1638 int offset, size_t size, int flags);
1639
1640/*
1641 * Functions to fill in entries in struct proto_ops when a protocol
1642 * uses the inet style.
1643 */
1644int sock_common_getsockopt(struct socket *sock, int level, int optname,
1645 char __user *optval, int __user *optlen);
1646int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1647 int flags);
1648int sock_common_setsockopt(struct socket *sock, int level, int optname,
1649 char __user *optval, unsigned int optlen);
1650int compat_sock_common_getsockopt(struct socket *sock, int level,
1651 int optname, char __user *optval, int __user *optlen);
1652int compat_sock_common_setsockopt(struct socket *sock, int level,
1653 int optname, char __user *optval, unsigned int optlen);
1654
1655void sk_common_release(struct sock *sk);
1656
1657/*
1658 * Default socket callbacks and setup code
1659 */
1660
1661/* Initialise core socket variables */
1662void sock_init_data(struct socket *sock, struct sock *sk);
1663
1664/*
1665 * Socket reference counting postulates.
1666 *
1667 * * Each user of socket SHOULD hold a reference count.
1668 * * Each access point to socket (an hash table bucket, reference from a list,
1669 * running timer, skb in flight MUST hold a reference count.
1670 * * When reference count hits 0, it means it will never increase back.
1671 * * When reference count hits 0, it means that no references from
1672 * outside exist to this socket and current process on current CPU
1673 * is last user and may/should destroy this socket.
1674 * * sk_free is called from any context: process, BH, IRQ. When
1675 * it is called, socket has no references from outside -> sk_free
1676 * may release descendant resources allocated by the socket, but
1677 * to the time when it is called, socket is NOT referenced by any
1678 * hash tables, lists etc.
1679 * * Packets, delivered from outside (from network or from another process)
1680 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1681 * when they sit in queue. Otherwise, packets will leak to hole, when
1682 * socket is looked up by one cpu and unhasing is made by another CPU.
1683 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1684 * (leak to backlog). Packet socket does all the processing inside
1685 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1686 * use separate SMP lock, so that they are prone too.
1687 */
1688
1689/* Ungrab socket and destroy it, if it was the last reference. */
1690static inline void sock_put(struct sock *sk)
1691{
1692 if (refcount_dec_and_test(&sk->sk_refcnt))
1693 sk_free(sk);
1694}
1695/* Generic version of sock_put(), dealing with all sockets
1696 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1697 */
1698void sock_gen_put(struct sock *sk);
1699
1700int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1701 unsigned int trim_cap, bool refcounted);
1702static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1703 const int nested)
1704{
1705 return __sk_receive_skb(sk, skb, nested, 1, true);
1706}
1707
1708static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1709{
1710 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1711 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1712 return;
1713 sk->sk_tx_queue_mapping = tx_queue;
1714}
1715
1716#define NO_QUEUE_MAPPING USHRT_MAX
1717
1718static inline void sk_tx_queue_clear(struct sock *sk)
1719{
1720 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1721}
1722
1723static inline int sk_tx_queue_get(const struct sock *sk)
1724{
1725 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1726 return sk->sk_tx_queue_mapping;
1727
1728 return -1;
1729}
1730
1731static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1732{
1733#ifdef CONFIG_XPS
1734 if (skb_rx_queue_recorded(skb)) {
1735 u16 rx_queue = skb_get_rx_queue(skb);
1736
1737 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1738 return;
1739
1740 sk->sk_rx_queue_mapping = rx_queue;
1741 }
1742#endif
1743}
1744
1745static inline void sk_rx_queue_clear(struct sock *sk)
1746{
1747#ifdef CONFIG_XPS
1748 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1749#endif
1750}
1751
1752#ifdef CONFIG_XPS
1753static inline int sk_rx_queue_get(const struct sock *sk)
1754{
1755 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1756 return sk->sk_rx_queue_mapping;
1757
1758 return -1;
1759}
1760#endif
1761
1762static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1763{
1764 sk_tx_queue_clear(sk);
1765 sk->sk_socket = sock;
1766}
1767
1768static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1769{
1770 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1771 return &rcu_dereference_raw(sk->sk_wq)->wait;
1772}
1773/* Detach socket from process context.
1774 * Announce socket dead, detach it from wait queue and inode.
1775 * Note that parent inode held reference count on this struct sock,
1776 * we do not release it in this function, because protocol
1777 * probably wants some additional cleanups or even continuing
1778 * to work with this socket (TCP).
1779 */
1780static inline void sock_orphan(struct sock *sk)
1781{
1782 write_lock_bh(&sk->sk_callback_lock);
1783 sock_set_flag(sk, SOCK_DEAD);
1784 sk_set_socket(sk, NULL);
1785 sk->sk_wq = NULL;
1786 write_unlock_bh(&sk->sk_callback_lock);
1787}
1788
1789static inline void sock_graft(struct sock *sk, struct socket *parent)
1790{
1791 WARN_ON(parent->sk);
1792 write_lock_bh(&sk->sk_callback_lock);
1793 rcu_assign_pointer(sk->sk_wq, parent->wq);
1794 parent->sk = sk;
1795 sk_set_socket(sk, parent);
1796 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1797 security_sock_graft(sk, parent);
1798 write_unlock_bh(&sk->sk_callback_lock);
1799}
1800
1801kuid_t sock_i_uid(struct sock *sk);
1802unsigned long sock_i_ino(struct sock *sk);
1803
1804static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1805{
1806 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1807}
1808
1809static inline u32 net_tx_rndhash(void)
1810{
1811 u32 v = prandom_u32();
1812
1813 return v ?: 1;
1814}
1815
1816static inline void sk_set_txhash(struct sock *sk)
1817{
1818 sk->sk_txhash = net_tx_rndhash();
1819}
1820
1821static inline void sk_rethink_txhash(struct sock *sk)
1822{
1823 if (sk->sk_txhash)
1824 sk_set_txhash(sk);
1825}
1826
1827static inline struct dst_entry *
1828__sk_dst_get(struct sock *sk)
1829{
1830 return rcu_dereference_check(sk->sk_dst_cache,
1831 lockdep_sock_is_held(sk));
1832}
1833
1834static inline struct dst_entry *
1835sk_dst_get(struct sock *sk)
1836{
1837 struct dst_entry *dst;
1838
1839 rcu_read_lock();
1840 dst = rcu_dereference(sk->sk_dst_cache);
1841 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1842 dst = NULL;
1843 rcu_read_unlock();
1844 return dst;
1845}
1846
1847static inline void dst_negative_advice(struct sock *sk)
1848{
1849 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1850
1851 sk_rethink_txhash(sk);
1852
1853 if (dst && dst->ops->negative_advice) {
1854 ndst = dst->ops->negative_advice(dst);
1855
1856 if (ndst != dst) {
1857 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1858 sk_tx_queue_clear(sk);
1859 sk->sk_dst_pending_confirm = 0;
1860 }
1861 }
1862}
1863
1864static inline void
1865__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1866{
1867 struct dst_entry *old_dst;
1868
1869 sk_tx_queue_clear(sk);
1870 sk->sk_dst_pending_confirm = 0;
1871 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1872 lockdep_sock_is_held(sk));
1873 rcu_assign_pointer(sk->sk_dst_cache, dst);
1874 dst_release(old_dst);
1875}
1876
1877static inline void
1878sk_dst_set(struct sock *sk, struct dst_entry *dst)
1879{
1880 struct dst_entry *old_dst;
1881
1882 sk_tx_queue_clear(sk);
1883 sk->sk_dst_pending_confirm = 0;
1884 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1885 dst_release(old_dst);
1886}
1887
1888static inline void
1889__sk_dst_reset(struct sock *sk)
1890{
1891 __sk_dst_set(sk, NULL);
1892}
1893
1894static inline void
1895sk_dst_reset(struct sock *sk)
1896{
1897 sk_dst_set(sk, NULL);
1898}
1899
1900struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1901
1902struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1903
1904static inline void sk_dst_confirm(struct sock *sk)
1905{
1906 if (!sk->sk_dst_pending_confirm)
1907 sk->sk_dst_pending_confirm = 1;
1908}
1909
1910static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1911{
1912 if (skb_get_dst_pending_confirm(skb)) {
1913 struct sock *sk = skb->sk;
1914 unsigned long now = jiffies;
1915
1916 /* avoid dirtying neighbour */
1917 if (n->confirmed != now)
1918 n->confirmed = now;
1919 if (sk && sk->sk_dst_pending_confirm)
1920 sk->sk_dst_pending_confirm = 0;
1921 }
1922}
1923
1924bool sk_mc_loop(struct sock *sk);
1925
1926static inline bool sk_can_gso(const struct sock *sk)
1927{
1928 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1929}
1930
1931void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1932
1933static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1934{
1935 sk->sk_route_nocaps |= flags;
1936 sk->sk_route_caps &= ~flags;
1937}
1938
1939static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1940 struct iov_iter *from, char *to,
1941 int copy, int offset)
1942{
1943 if (skb->ip_summed == CHECKSUM_NONE) {
1944 __wsum csum = 0;
1945 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1946 return -EFAULT;
1947 skb->csum = csum_block_add(skb->csum, csum, offset);
1948 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1949 if (!copy_from_iter_full_nocache(to, copy, from))
1950 return -EFAULT;
1951 } else if (!copy_from_iter_full(to, copy, from))
1952 return -EFAULT;
1953
1954 return 0;
1955}
1956
1957static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1958 struct iov_iter *from, int copy)
1959{
1960 int err, offset = skb->len;
1961
1962 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1963 copy, offset);
1964 if (err)
1965 __skb_trim(skb, offset);
1966
1967 return err;
1968}
1969
1970static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1971 struct sk_buff *skb,
1972 struct page *page,
1973 int off, int copy)
1974{
1975 int err;
1976
1977 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1978 copy, skb->len);
1979 if (err)
1980 return err;
1981
1982 skb->len += copy;
1983 skb->data_len += copy;
1984 skb->truesize += copy;
1985 sk->sk_wmem_queued += copy;
1986 sk_mem_charge(sk, copy);
1987 return 0;
1988}
1989
1990/**
1991 * sk_wmem_alloc_get - returns write allocations
1992 * @sk: socket
1993 *
1994 * Returns sk_wmem_alloc minus initial offset of one
1995 */
1996static inline int sk_wmem_alloc_get(const struct sock *sk)
1997{
1998 return refcount_read(&sk->sk_wmem_alloc) - 1;
1999}
2000
2001/**
2002 * sk_rmem_alloc_get - returns read allocations
2003 * @sk: socket
2004 *
2005 * Returns sk_rmem_alloc
2006 */
2007static inline int sk_rmem_alloc_get(const struct sock *sk)
2008{
2009 return atomic_read(&sk->sk_rmem_alloc);
2010}
2011
2012/**
2013 * sk_has_allocations - check if allocations are outstanding
2014 * @sk: socket
2015 *
2016 * Returns true if socket has write or read allocations
2017 */
2018static inline bool sk_has_allocations(const struct sock *sk)
2019{
2020 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2021}
2022
2023/**
2024 * skwq_has_sleeper - check if there are any waiting processes
2025 * @wq: struct socket_wq
2026 *
2027 * Returns true if socket_wq has waiting processes
2028 *
2029 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2030 * barrier call. They were added due to the race found within the tcp code.
2031 *
2032 * Consider following tcp code paths::
2033 *
2034 * CPU1 CPU2
2035 * sys_select receive packet
2036 * ... ...
2037 * __add_wait_queue update tp->rcv_nxt
2038 * ... ...
2039 * tp->rcv_nxt check sock_def_readable
2040 * ... {
2041 * schedule rcu_read_lock();
2042 * wq = rcu_dereference(sk->sk_wq);
2043 * if (wq && waitqueue_active(&wq->wait))
2044 * wake_up_interruptible(&wq->wait)
2045 * ...
2046 * }
2047 *
2048 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2049 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2050 * could then endup calling schedule and sleep forever if there are no more
2051 * data on the socket.
2052 *
2053 */
2054static inline bool skwq_has_sleeper(struct socket_wq *wq)
2055{
2056 return wq && wq_has_sleeper(&wq->wait);
2057}
2058
2059/**
2060 * sock_poll_wait - place memory barrier behind the poll_wait call.
2061 * @filp: file
2062 * @p: poll_table
2063 *
2064 * See the comments in the wq_has_sleeper function.
2065 */
2066static inline void sock_poll_wait(struct file *filp, poll_table *p)
2067{
2068 struct socket *sock = filp->private_data;
2069
2070 if (!poll_does_not_wait(p)) {
2071 poll_wait(filp, &sock->wq->wait, p);
2072 /* We need to be sure we are in sync with the
2073 * socket flags modification.
2074 *
2075 * This memory barrier is paired in the wq_has_sleeper.
2076 */
2077 smp_mb();
2078 }
2079}
2080
2081static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2082{
2083 if (sk->sk_txhash) {
2084 skb->l4_hash = 1;
2085 skb->hash = sk->sk_txhash;
2086 }
2087}
2088
2089void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2090
2091/*
2092 * Queue a received datagram if it will fit. Stream and sequenced
2093 * protocols can't normally use this as they need to fit buffers in
2094 * and play with them.
2095 *
2096 * Inlined as it's very short and called for pretty much every
2097 * packet ever received.
2098 */
2099static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2100{
2101 skb_orphan(skb);
2102 skb->sk = sk;
2103 skb->destructor = sock_rfree;
2104 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2105 sk_mem_charge(sk, skb->truesize);
2106}
2107
2108void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2109 unsigned long expires);
2110
2111void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2112
2113int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2114 struct sk_buff *skb, unsigned int flags,
2115 void (*destructor)(struct sock *sk,
2116 struct sk_buff *skb));
2117int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2118int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2119
2120int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2121struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2122
2123/*
2124 * Recover an error report and clear atomically
2125 */
2126
2127static inline int sock_error(struct sock *sk)
2128{
2129 int err;
2130 if (likely(!sk->sk_err))
2131 return 0;
2132 err = xchg(&sk->sk_err, 0);
2133 return -err;
2134}
2135
2136static inline unsigned long sock_wspace(struct sock *sk)
2137{
2138 int amt = 0;
2139
2140 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2141 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2142 if (amt < 0)
2143 amt = 0;
2144 }
2145 return amt;
2146}
2147
2148/* Note:
2149 * We use sk->sk_wq_raw, from contexts knowing this
2150 * pointer is not NULL and cannot disappear/change.
2151 */
2152static inline void sk_set_bit(int nr, struct sock *sk)
2153{
2154 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2155 !sock_flag(sk, SOCK_FASYNC))
2156 return;
2157
2158 set_bit(nr, &sk->sk_wq_raw->flags);
2159}
2160
2161static inline void sk_clear_bit(int nr, struct sock *sk)
2162{
2163 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2164 !sock_flag(sk, SOCK_FASYNC))
2165 return;
2166
2167 clear_bit(nr, &sk->sk_wq_raw->flags);
2168}
2169
2170static inline void sk_wake_async(const struct sock *sk, int how, int band)
2171{
2172 if (sock_flag(sk, SOCK_FASYNC)) {
2173 rcu_read_lock();
2174 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2175 rcu_read_unlock();
2176 }
2177}
2178
2179/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2180 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2181 * Note: for send buffers, TCP works better if we can build two skbs at
2182 * minimum.
2183 */
2184#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2185
2186#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2187#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2188
2189static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2190{
2191 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2192 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2193 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2194 }
2195}
2196
2197struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2198 bool force_schedule);
2199
2200/**
2201 * sk_page_frag - return an appropriate page_frag
2202 * @sk: socket
2203 *
2204 * If socket allocation mode allows current thread to sleep, it means its
2205 * safe to use the per task page_frag instead of the per socket one.
2206 */
2207static inline struct page_frag *sk_page_frag(struct sock *sk)
2208{
2209 if (gfpflags_allow_blocking(sk->sk_allocation))
2210 return &current->task_frag;
2211
2212 return &sk->sk_frag;
2213}
2214
2215bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2216
2217/*
2218 * Default write policy as shown to user space via poll/select/SIGIO
2219 */
2220static inline bool sock_writeable(const struct sock *sk)
2221{
2222 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2223}
2224
2225static inline gfp_t gfp_any(void)
2226{
2227 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2228}
2229
2230static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2231{
2232 return noblock ? 0 : sk->sk_rcvtimeo;
2233}
2234
2235static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2236{
2237 return noblock ? 0 : sk->sk_sndtimeo;
2238}
2239
2240static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2241{
2242 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2243}
2244
2245/* Alas, with timeout socket operations are not restartable.
2246 * Compare this to poll().
2247 */
2248static inline int sock_intr_errno(long timeo)
2249{
2250 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2251}
2252
2253struct sock_skb_cb {
2254 u32 dropcount;
2255};
2256
2257/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2258 * using skb->cb[] would keep using it directly and utilize its
2259 * alignement guarantee.
2260 */
2261#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2262 sizeof(struct sock_skb_cb)))
2263
2264#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2265 SOCK_SKB_CB_OFFSET))
2266
2267#define sock_skb_cb_check_size(size) \
2268 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2269
2270static inline void
2271sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2272{
2273 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2274 atomic_read(&sk->sk_drops) : 0;
2275}
2276
2277static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2278{
2279 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2280
2281 atomic_add(segs, &sk->sk_drops);
2282}
2283
2284void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2285 struct sk_buff *skb);
2286void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2287 struct sk_buff *skb);
2288
2289static inline void
2290sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2291{
2292 ktime_t kt = skb->tstamp;
2293 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2294
2295 /*
2296 * generate control messages if
2297 * - receive time stamping in software requested
2298 * - software time stamp available and wanted
2299 * - hardware time stamps available and wanted
2300 */
2301 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2302 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2303 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2304 (hwtstamps->hwtstamp &&
2305 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2306 __sock_recv_timestamp(msg, sk, skb);
2307 else
2308 sk->sk_stamp = kt;
2309
2310 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2311 __sock_recv_wifi_status(msg, sk, skb);
2312}
2313
2314void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2315 struct sk_buff *skb);
2316
2317#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2318static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2319 struct sk_buff *skb)
2320{
2321#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2322 (1UL << SOCK_RCVTSTAMP))
2323#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2324 SOF_TIMESTAMPING_RAW_HARDWARE)
2325
2326 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2327 __sock_recv_ts_and_drops(msg, sk, skb);
2328 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2329 sk->sk_stamp = skb->tstamp;
2330 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2331 sk->sk_stamp = 0;
2332}
2333
2334void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2335
2336/**
2337 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2338 * @sk: socket sending this packet
2339 * @tsflags: timestamping flags to use
2340 * @tx_flags: completed with instructions for time stamping
2341 *
2342 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2343 */
2344static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2345 __u8 *tx_flags)
2346{
2347 if (unlikely(tsflags))
2348 __sock_tx_timestamp(tsflags, tx_flags);
2349 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2350 *tx_flags |= SKBTX_WIFI_STATUS;
2351}
2352
2353/**
2354 * sk_eat_skb - Release a skb if it is no longer needed
2355 * @sk: socket to eat this skb from
2356 * @skb: socket buffer to eat
2357 *
2358 * This routine must be called with interrupts disabled or with the socket
2359 * locked so that the sk_buff queue operation is ok.
2360*/
2361static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2362{
2363 __skb_unlink(skb, &sk->sk_receive_queue);
2364 __kfree_skb(skb);
2365}
2366
2367static inline
2368struct net *sock_net(const struct sock *sk)
2369{
2370 return read_pnet(&sk->sk_net);
2371}
2372
2373static inline
2374void sock_net_set(struct sock *sk, struct net *net)
2375{
2376 write_pnet(&sk->sk_net, net);
2377}
2378
2379static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2380{
2381 if (skb->sk) {
2382 struct sock *sk = skb->sk;
2383
2384 skb->destructor = NULL;
2385 skb->sk = NULL;
2386 return sk;
2387 }
2388 return NULL;
2389}
2390
2391/* This helper checks if a socket is a full socket,
2392 * ie _not_ a timewait or request socket.
2393 */
2394static inline bool sk_fullsock(const struct sock *sk)
2395{
2396 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2397}
2398
2399/* Checks if this SKB belongs to an HW offloaded socket
2400 * and whether any SW fallbacks are required based on dev.
2401 */
2402static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2403 struct net_device *dev)
2404{
2405#ifdef CONFIG_SOCK_VALIDATE_XMIT
2406 struct sock *sk = skb->sk;
2407
2408 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2409 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2410#endif
2411
2412 return skb;
2413}
2414
2415/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2416 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2417 */
2418static inline bool sk_listener(const struct sock *sk)
2419{
2420 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2421}
2422
2423void sock_enable_timestamp(struct sock *sk, int flag);
2424int sock_get_timestamp(struct sock *, struct timeval __user *);
2425int sock_get_timestampns(struct sock *, struct timespec __user *);
2426int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2427 int type);
2428
2429bool sk_ns_capable(const struct sock *sk,
2430 struct user_namespace *user_ns, int cap);
2431bool sk_capable(const struct sock *sk, int cap);
2432bool sk_net_capable(const struct sock *sk, int cap);
2433
2434void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2435
2436/* Take into consideration the size of the struct sk_buff overhead in the
2437 * determination of these values, since that is non-constant across
2438 * platforms. This makes socket queueing behavior and performance
2439 * not depend upon such differences.
2440 */
2441#define _SK_MEM_PACKETS 256
2442#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2443#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2444#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2445
2446extern __u32 sysctl_wmem_max;
2447extern __u32 sysctl_rmem_max;
2448
2449extern int sysctl_tstamp_allow_data;
2450extern int sysctl_optmem_max;
2451
2452extern __u32 sysctl_wmem_default;
2453extern __u32 sysctl_rmem_default;
2454
2455static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2456{
2457 /* Does this proto have per netns sysctl_wmem ? */
2458 if (proto->sysctl_wmem_offset)
2459 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2460
2461 return *proto->sysctl_wmem;
2462}
2463
2464static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2465{
2466 /* Does this proto have per netns sysctl_rmem ? */
2467 if (proto->sysctl_rmem_offset)
2468 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2469
2470 return *proto->sysctl_rmem;
2471}
2472
2473/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2474 * Some wifi drivers need to tweak it to get more chunks.
2475 * They can use this helper from their ndo_start_xmit()
2476 */
2477static inline void sk_pacing_shift_update(struct sock *sk, int val)
2478{
2479 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2480 return;
2481 sk->sk_pacing_shift = val;
2482}
2483
2484/* if a socket is bound to a device, check that the given device
2485 * index is either the same or that the socket is bound to an L3
2486 * master device and the given device index is also enslaved to
2487 * that L3 master
2488 */
2489static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2490{
2491 int mdif;
2492
2493 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2494 return true;
2495
2496 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2497 if (mdif && mdif == sk->sk_bound_dev_if)
2498 return true;
2499
2500 return false;
2501}
2502
2503#endif /* _SOCK_H */