Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-block.git] / include / linux / slab.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
15#include <linux/cache.h>
16#include <linux/gfp.h>
17#include <linux/overflow.h>
18#include <linux/types.h>
19#include <linux/workqueue.h>
20#include <linux/percpu-refcount.h>
21#include <linux/cleanup.h>
22#include <linux/hash.h>
23
24enum _slab_flag_bits {
25 _SLAB_CONSISTENCY_CHECKS,
26 _SLAB_RED_ZONE,
27 _SLAB_POISON,
28 _SLAB_KMALLOC,
29 _SLAB_HWCACHE_ALIGN,
30 _SLAB_CACHE_DMA,
31 _SLAB_CACHE_DMA32,
32 _SLAB_STORE_USER,
33 _SLAB_PANIC,
34 _SLAB_TYPESAFE_BY_RCU,
35 _SLAB_TRACE,
36#ifdef CONFIG_DEBUG_OBJECTS
37 _SLAB_DEBUG_OBJECTS,
38#endif
39 _SLAB_NOLEAKTRACE,
40 _SLAB_NO_MERGE,
41#ifdef CONFIG_FAILSLAB
42 _SLAB_FAILSLAB,
43#endif
44#ifdef CONFIG_MEMCG
45 _SLAB_ACCOUNT,
46#endif
47#ifdef CONFIG_KASAN_GENERIC
48 _SLAB_KASAN,
49#endif
50 _SLAB_NO_USER_FLAGS,
51#ifdef CONFIG_KFENCE
52 _SLAB_SKIP_KFENCE,
53#endif
54#ifndef CONFIG_SLUB_TINY
55 _SLAB_RECLAIM_ACCOUNT,
56#endif
57 _SLAB_OBJECT_POISON,
58 _SLAB_CMPXCHG_DOUBLE,
59#ifdef CONFIG_SLAB_OBJ_EXT
60 _SLAB_NO_OBJ_EXT,
61#endif
62 _SLAB_FLAGS_LAST_BIT
63};
64
65#define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr)))
66#define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U))
67
68/*
69 * Flags to pass to kmem_cache_create().
70 * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71 */
72/* DEBUG: Perform (expensive) checks on alloc/free */
73#define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74/* DEBUG: Red zone objs in a cache */
75#define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76/* DEBUG: Poison objects */
77#define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON)
78/* Indicate a kmalloc slab */
79#define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC)
80/* Align objs on cache lines */
81#define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
82/* Use GFP_DMA memory */
83#define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
84/* Use GFP_DMA32 memory */
85#define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
86/* DEBUG: Store the last owner for bug hunting */
87#define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER)
88/* Panic if kmem_cache_create() fails */
89#define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC)
90/*
91 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
92 *
93 * This delays freeing the SLAB page by a grace period, it does _NOT_
94 * delay object freeing. This means that if you do kmem_cache_free()
95 * that memory location is free to be reused at any time. Thus it may
96 * be possible to see another object there in the same RCU grace period.
97 *
98 * This feature only ensures the memory location backing the object
99 * stays valid, the trick to using this is relying on an independent
100 * object validation pass. Something like:
101 *
102 * begin:
103 * rcu_read_lock();
104 * obj = lockless_lookup(key);
105 * if (obj) {
106 * if (!try_get_ref(obj)) // might fail for free objects
107 * rcu_read_unlock();
108 * goto begin;
109 *
110 * if (obj->key != key) { // not the object we expected
111 * put_ref(obj);
112 * rcu_read_unlock();
113 * goto begin;
114 * }
115 * }
116 * rcu_read_unlock();
117 *
118 * This is useful if we need to approach a kernel structure obliquely,
119 * from its address obtained without the usual locking. We can lock
120 * the structure to stabilize it and check it's still at the given address,
121 * only if we can be sure that the memory has not been meanwhile reused
122 * for some other kind of object (which our subsystem's lock might corrupt).
123 *
124 * rcu_read_lock before reading the address, then rcu_read_unlock after
125 * taking the spinlock within the structure expected at that address.
126 *
127 * Note that it is not possible to acquire a lock within a structure
128 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
129 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages
130 * are not zeroed before being given to the slab, which means that any
131 * locks must be initialized after each and every kmem_struct_alloc().
132 * Alternatively, make the ctor passed to kmem_cache_create() initialize
133 * the locks at page-allocation time, as is done in __i915_request_ctor(),
134 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers
135 * to safely acquire those ctor-initialized locks under rcu_read_lock()
136 * protection.
137 *
138 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
139 */
140/* Defer freeing slabs to RCU */
141#define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
142/* Trace allocations and frees */
143#define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE)
144
145/* Flag to prevent checks on free */
146#ifdef CONFIG_DEBUG_OBJECTS
147# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
148#else
149# define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED
150#endif
151
152/* Avoid kmemleak tracing */
153#define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
154
155/*
156 * Prevent merging with compatible kmem caches. This flag should be used
157 * cautiously. Valid use cases:
158 *
159 * - caches created for self-tests (e.g. kunit)
160 * - general caches created and used by a subsystem, only when a
161 * (subsystem-specific) debug option is enabled
162 * - performance critical caches, should be very rare and consulted with slab
163 * maintainers, and not used together with CONFIG_SLUB_TINY
164 */
165#define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE)
166
167/* Fault injection mark */
168#ifdef CONFIG_FAILSLAB
169# define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB)
170#else
171# define SLAB_FAILSLAB __SLAB_FLAG_UNUSED
172#endif
173/* Account to memcg */
174#ifdef CONFIG_MEMCG
175# define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT)
176#else
177# define SLAB_ACCOUNT __SLAB_FLAG_UNUSED
178#endif
179
180#ifdef CONFIG_KASAN_GENERIC
181#define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN)
182#else
183#define SLAB_KASAN __SLAB_FLAG_UNUSED
184#endif
185
186/*
187 * Ignore user specified debugging flags.
188 * Intended for caches created for self-tests so they have only flags
189 * specified in the code and other flags are ignored.
190 */
191#define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
192
193#ifdef CONFIG_KFENCE
194#define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
195#else
196#define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED
197#endif
198
199/* The following flags affect the page allocator grouping pages by mobility */
200/* Objects are reclaimable */
201#ifndef CONFIG_SLUB_TINY
202#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
203#else
204#define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED
205#endif
206#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
207
208/* Slab created using create_boot_cache */
209#ifdef CONFIG_SLAB_OBJ_EXT
210#define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
211#else
212#define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED
213#endif
214
215/*
216 * freeptr_t represents a SLUB freelist pointer, which might be encoded
217 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
218 */
219typedef struct { unsigned long v; } freeptr_t;
220
221/*
222 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
223 *
224 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
225 *
226 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
227 * Both make kfree a no-op.
228 */
229#define ZERO_SIZE_PTR ((void *)16)
230
231#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
232 (unsigned long)ZERO_SIZE_PTR)
233
234#include <linux/kasan.h>
235
236struct list_lru;
237struct mem_cgroup;
238/*
239 * struct kmem_cache related prototypes
240 */
241bool slab_is_available(void);
242
243/**
244 * struct kmem_cache_args - Less common arguments for kmem_cache_create()
245 *
246 * Any uninitialized fields of the structure are interpreted as unused. The
247 * exception is @freeptr_offset where %0 is a valid value, so
248 * @use_freeptr_offset must be also set to %true in order to interpret the field
249 * as used. For @useroffset %0 is also valid, but only with non-%0
250 * @usersize.
251 *
252 * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
253 * fields unused.
254 */
255struct kmem_cache_args {
256 /**
257 * @align: The required alignment for the objects.
258 *
259 * %0 means no specific alignment is requested.
260 */
261 unsigned int align;
262 /**
263 * @useroffset: Usercopy region offset.
264 *
265 * %0 is a valid offset, when @usersize is non-%0
266 */
267 unsigned int useroffset;
268 /**
269 * @usersize: Usercopy region size.
270 *
271 * %0 means no usercopy region is specified.
272 */
273 unsigned int usersize;
274 /**
275 * @freeptr_offset: Custom offset for the free pointer
276 * in &SLAB_TYPESAFE_BY_RCU caches
277 *
278 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
279 * outside of the object. This might cause the object to grow in size.
280 * Cache creators that have a reason to avoid this can specify a custom
281 * free pointer offset in their struct where the free pointer will be
282 * placed.
283 *
284 * Note that placing the free pointer inside the object requires the
285 * caller to ensure that no fields are invalidated that are required to
286 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
287 * details).
288 *
289 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
290 * is specified, %use_freeptr_offset must be set %true.
291 *
292 * Note that @ctor currently isn't supported with custom free pointers
293 * as a @ctor requires an external free pointer.
294 */
295 unsigned int freeptr_offset;
296 /**
297 * @use_freeptr_offset: Whether a @freeptr_offset is used.
298 */
299 bool use_freeptr_offset;
300 /**
301 * @ctor: A constructor for the objects.
302 *
303 * The constructor is invoked for each object in a newly allocated slab
304 * page. It is the cache user's responsibility to free object in the
305 * same state as after calling the constructor, or deal appropriately
306 * with any differences between a freshly constructed and a reallocated
307 * object.
308 *
309 * %NULL means no constructor.
310 */
311 void (*ctor)(void *);
312};
313
314struct kmem_cache *__kmem_cache_create_args(const char *name,
315 unsigned int object_size,
316 struct kmem_cache_args *args,
317 slab_flags_t flags);
318static inline struct kmem_cache *
319__kmem_cache_create(const char *name, unsigned int size, unsigned int align,
320 slab_flags_t flags, void (*ctor)(void *))
321{
322 struct kmem_cache_args kmem_args = {
323 .align = align,
324 .ctor = ctor,
325 };
326
327 return __kmem_cache_create_args(name, size, &kmem_args, flags);
328}
329
330/**
331 * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
332 * for copying to userspace.
333 * @name: A string which is used in /proc/slabinfo to identify this cache.
334 * @size: The size of objects to be created in this cache.
335 * @align: The required alignment for the objects.
336 * @flags: SLAB flags
337 * @useroffset: Usercopy region offset
338 * @usersize: Usercopy region size
339 * @ctor: A constructor for the objects, or %NULL.
340 *
341 * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
342 * if whitelisting a single field is sufficient, or kmem_cache_create() with
343 * the necessary parameters passed via the args parameter (see
344 * &struct kmem_cache_args)
345 *
346 * Return: a pointer to the cache on success, NULL on failure.
347 */
348static inline struct kmem_cache *
349kmem_cache_create_usercopy(const char *name, unsigned int size,
350 unsigned int align, slab_flags_t flags,
351 unsigned int useroffset, unsigned int usersize,
352 void (*ctor)(void *))
353{
354 struct kmem_cache_args kmem_args = {
355 .align = align,
356 .ctor = ctor,
357 .useroffset = useroffset,
358 .usersize = usersize,
359 };
360
361 return __kmem_cache_create_args(name, size, &kmem_args, flags);
362}
363
364/* If NULL is passed for @args, use this variant with default arguments. */
365static inline struct kmem_cache *
366__kmem_cache_default_args(const char *name, unsigned int size,
367 struct kmem_cache_args *args,
368 slab_flags_t flags)
369{
370 struct kmem_cache_args kmem_default_args = {};
371
372 /* Make sure we don't get passed garbage. */
373 if (WARN_ON_ONCE(args))
374 return ERR_PTR(-EINVAL);
375
376 return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
377}
378
379/**
380 * kmem_cache_create - Create a kmem cache.
381 * @__name: A string which is used in /proc/slabinfo to identify this cache.
382 * @__object_size: The size of objects to be created in this cache.
383 * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
384 * means defaults will be used for all the arguments.
385 *
386 * This is currently implemented as a macro using ``_Generic()`` to call
387 * either the new variant of the function, or a legacy one.
388 *
389 * The new variant has 4 parameters:
390 * ``kmem_cache_create(name, object_size, args, flags)``
391 *
392 * See __kmem_cache_create_args() which implements this.
393 *
394 * The legacy variant has 5 parameters:
395 * ``kmem_cache_create(name, object_size, align, flags, ctor)``
396 *
397 * The align and ctor parameters map to the respective fields of
398 * &struct kmem_cache_args
399 *
400 * Context: Cannot be called within a interrupt, but can be interrupted.
401 *
402 * Return: a pointer to the cache on success, NULL on failure.
403 */
404#define kmem_cache_create(__name, __object_size, __args, ...) \
405 _Generic((__args), \
406 struct kmem_cache_args *: __kmem_cache_create_args, \
407 void *: __kmem_cache_default_args, \
408 default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
409
410void kmem_cache_destroy(struct kmem_cache *s);
411int kmem_cache_shrink(struct kmem_cache *s);
412
413/*
414 * Please use this macro to create slab caches. Simply specify the
415 * name of the structure and maybe some flags that are listed above.
416 *
417 * The alignment of the struct determines object alignment. If you
418 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
419 * then the objects will be properly aligned in SMP configurations.
420 */
421#define KMEM_CACHE(__struct, __flags) \
422 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \
423 &(struct kmem_cache_args) { \
424 .align = __alignof__(struct __struct), \
425 }, (__flags))
426
427/*
428 * To whitelist a single field for copying to/from usercopy, use this
429 * macro instead for KMEM_CACHE() above.
430 */
431#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
432 __kmem_cache_create_args(#__struct, sizeof(struct __struct), \
433 &(struct kmem_cache_args) { \
434 .align = __alignof__(struct __struct), \
435 .useroffset = offsetof(struct __struct, __field), \
436 .usersize = sizeof_field(struct __struct, __field), \
437 }, (__flags))
438
439/*
440 * Common kmalloc functions provided by all allocators
441 */
442void * __must_check krealloc_noprof(const void *objp, size_t new_size,
443 gfp_t flags) __realloc_size(2);
444#define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__))
445
446void kfree(const void *objp);
447void kfree_sensitive(const void *objp);
448size_t __ksize(const void *objp);
449
450DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
451
452/**
453 * ksize - Report actual allocation size of associated object
454 *
455 * @objp: Pointer returned from a prior kmalloc()-family allocation.
456 *
457 * This should not be used for writing beyond the originally requested
458 * allocation size. Either use krealloc() or round up the allocation size
459 * with kmalloc_size_roundup() prior to allocation. If this is used to
460 * access beyond the originally requested allocation size, UBSAN_BOUNDS
461 * and/or FORTIFY_SOURCE may trip, since they only know about the
462 * originally allocated size via the __alloc_size attribute.
463 */
464size_t ksize(const void *objp);
465
466#ifdef CONFIG_PRINTK
467bool kmem_dump_obj(void *object);
468#else
469static inline bool kmem_dump_obj(void *object) { return false; }
470#endif
471
472/*
473 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
474 * alignment larger than the alignment of a 64-bit integer.
475 * Setting ARCH_DMA_MINALIGN in arch headers allows that.
476 */
477#ifdef ARCH_HAS_DMA_MINALIGN
478#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
479#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
480#endif
481#endif
482
483#ifndef ARCH_KMALLOC_MINALIGN
484#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
485#elif ARCH_KMALLOC_MINALIGN > 8
486#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
487#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
488#endif
489
490/*
491 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
492 * Intended for arches that get misalignment faults even for 64 bit integer
493 * aligned buffers.
494 */
495#ifndef ARCH_SLAB_MINALIGN
496#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
497#endif
498
499/*
500 * Arches can define this function if they want to decide the minimum slab
501 * alignment at runtime. The value returned by the function must be a power
502 * of two and >= ARCH_SLAB_MINALIGN.
503 */
504#ifndef arch_slab_minalign
505static inline unsigned int arch_slab_minalign(void)
506{
507 return ARCH_SLAB_MINALIGN;
508}
509#endif
510
511/*
512 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
513 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
514 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
515 */
516#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
517#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
518#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
519
520/*
521 * Kmalloc array related definitions
522 */
523
524/*
525 * SLUB directly allocates requests fitting in to an order-1 page
526 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
527 */
528#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
529#define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT)
530#ifndef KMALLOC_SHIFT_LOW
531#define KMALLOC_SHIFT_LOW 3
532#endif
533
534/* Maximum allocatable size */
535#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
536/* Maximum size for which we actually use a slab cache */
537#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
538/* Maximum order allocatable via the slab allocator */
539#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
540
541/*
542 * Kmalloc subsystem.
543 */
544#ifndef KMALLOC_MIN_SIZE
545#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
546#endif
547
548/*
549 * This restriction comes from byte sized index implementation.
550 * Page size is normally 2^12 bytes and, in this case, if we want to use
551 * byte sized index which can represent 2^8 entries, the size of the object
552 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
553 * If minimum size of kmalloc is less than 16, we use it as minimum object
554 * size and give up to use byte sized index.
555 */
556#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
557 (KMALLOC_MIN_SIZE) : 16)
558
559#ifdef CONFIG_RANDOM_KMALLOC_CACHES
560#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies
561#else
562#define RANDOM_KMALLOC_CACHES_NR 0
563#endif
564
565/*
566 * Whenever changing this, take care of that kmalloc_type() and
567 * create_kmalloc_caches() still work as intended.
568 *
569 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
570 * is for accounted but unreclaimable and non-dma objects. All the other
571 * kmem caches can have both accounted and unaccounted objects.
572 */
573enum kmalloc_cache_type {
574 KMALLOC_NORMAL = 0,
575#ifndef CONFIG_ZONE_DMA
576 KMALLOC_DMA = KMALLOC_NORMAL,
577#endif
578#ifndef CONFIG_MEMCG
579 KMALLOC_CGROUP = KMALLOC_NORMAL,
580#endif
581 KMALLOC_RANDOM_START = KMALLOC_NORMAL,
582 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
583#ifdef CONFIG_SLUB_TINY
584 KMALLOC_RECLAIM = KMALLOC_NORMAL,
585#else
586 KMALLOC_RECLAIM,
587#endif
588#ifdef CONFIG_ZONE_DMA
589 KMALLOC_DMA,
590#endif
591#ifdef CONFIG_MEMCG
592 KMALLOC_CGROUP,
593#endif
594 NR_KMALLOC_TYPES
595};
596
597typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
598
599extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
600
601/*
602 * Define gfp bits that should not be set for KMALLOC_NORMAL.
603 */
604#define KMALLOC_NOT_NORMAL_BITS \
605 (__GFP_RECLAIMABLE | \
606 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
607 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
608
609extern unsigned long random_kmalloc_seed;
610
611static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
612{
613 /*
614 * The most common case is KMALLOC_NORMAL, so test for it
615 * with a single branch for all the relevant flags.
616 */
617 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
618#ifdef CONFIG_RANDOM_KMALLOC_CACHES
619 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
620 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
621 ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
622#else
623 return KMALLOC_NORMAL;
624#endif
625
626 /*
627 * At least one of the flags has to be set. Their priorities in
628 * decreasing order are:
629 * 1) __GFP_DMA
630 * 2) __GFP_RECLAIMABLE
631 * 3) __GFP_ACCOUNT
632 */
633 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
634 return KMALLOC_DMA;
635 if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
636 return KMALLOC_RECLAIM;
637 else
638 return KMALLOC_CGROUP;
639}
640
641/*
642 * Figure out which kmalloc slab an allocation of a certain size
643 * belongs to.
644 * 0 = zero alloc
645 * 1 = 65 .. 96 bytes
646 * 2 = 129 .. 192 bytes
647 * n = 2^(n-1)+1 .. 2^n
648 *
649 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
650 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
651 * Callers where !size_is_constant should only be test modules, where runtime
652 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
653 */
654static __always_inline unsigned int __kmalloc_index(size_t size,
655 bool size_is_constant)
656{
657 if (!size)
658 return 0;
659
660 if (size <= KMALLOC_MIN_SIZE)
661 return KMALLOC_SHIFT_LOW;
662
663 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
664 return 1;
665 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
666 return 2;
667 if (size <= 8) return 3;
668 if (size <= 16) return 4;
669 if (size <= 32) return 5;
670 if (size <= 64) return 6;
671 if (size <= 128) return 7;
672 if (size <= 256) return 8;
673 if (size <= 512) return 9;
674 if (size <= 1024) return 10;
675 if (size <= 2 * 1024) return 11;
676 if (size <= 4 * 1024) return 12;
677 if (size <= 8 * 1024) return 13;
678 if (size <= 16 * 1024) return 14;
679 if (size <= 32 * 1024) return 15;
680 if (size <= 64 * 1024) return 16;
681 if (size <= 128 * 1024) return 17;
682 if (size <= 256 * 1024) return 18;
683 if (size <= 512 * 1024) return 19;
684 if (size <= 1024 * 1024) return 20;
685 if (size <= 2 * 1024 * 1024) return 21;
686
687 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
688 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
689 else
690 BUG();
691
692 /* Will never be reached. Needed because the compiler may complain */
693 return -1;
694}
695static_assert(PAGE_SHIFT <= 20);
696#define kmalloc_index(s) __kmalloc_index(s, true)
697
698#include <linux/alloc_tag.h>
699
700/**
701 * kmem_cache_alloc - Allocate an object
702 * @cachep: The cache to allocate from.
703 * @flags: See kmalloc().
704 *
705 * Allocate an object from this cache.
706 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
707 *
708 * Return: pointer to the new object or %NULL in case of error
709 */
710void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
711 gfp_t flags) __assume_slab_alignment __malloc;
712#define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
713
714void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
715 gfp_t gfpflags) __assume_slab_alignment __malloc;
716#define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
717
718/**
719 * kmem_cache_charge - memcg charge an already allocated slab memory
720 * @objp: address of the slab object to memcg charge
721 * @gfpflags: describe the allocation context
722 *
723 * kmem_cache_charge allows charging a slab object to the current memcg,
724 * primarily in cases where charging at allocation time might not be possible
725 * because the target memcg is not known (i.e. softirq context)
726 *
727 * The objp should be pointer returned by the slab allocator functions like
728 * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
729 * behavior can be controlled through gfpflags parameter, which affects how the
730 * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
731 * that overcharging is requested instead of failure, but is not applied for the
732 * internal metadata allocation.
733 *
734 * There are several cases where it will return true even if the charging was
735 * not done:
736 * More specifically:
737 *
738 * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
739 * 2. Already charged slab objects.
740 * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
741 * without __GFP_ACCOUNT
742 * 4. Allocating internal metadata has failed
743 *
744 * Return: true if charge was successful otherwise false.
745 */
746bool kmem_cache_charge(void *objp, gfp_t gfpflags);
747void kmem_cache_free(struct kmem_cache *s, void *objp);
748
749kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
750 unsigned int useroffset, unsigned int usersize,
751 void (*ctor)(void *));
752
753/*
754 * Bulk allocation and freeing operations. These are accelerated in an
755 * allocator specific way to avoid taking locks repeatedly or building
756 * metadata structures unnecessarily.
757 *
758 * Note that interrupts must be enabled when calling these functions.
759 */
760void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
761
762int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
763#define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
764
765static __always_inline void kfree_bulk(size_t size, void **p)
766{
767 kmem_cache_free_bulk(NULL, size, p);
768}
769
770void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
771 int node) __assume_slab_alignment __malloc;
772#define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
773
774/*
775 * These macros allow declaring a kmem_buckets * parameter alongside size, which
776 * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
777 * sites don't have to pass NULL.
778 */
779#ifdef CONFIG_SLAB_BUCKETS
780#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b)
781#define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b)
782#define PASS_BUCKET_PARAM(_b) (_b)
783#else
784#define DECL_BUCKET_PARAMS(_size, _b) size_t (_size)
785#define PASS_BUCKET_PARAMS(_size, _b) (_size)
786#define PASS_BUCKET_PARAM(_b) NULL
787#endif
788
789/*
790 * The following functions are not to be used directly and are intended only
791 * for internal use from kmalloc() and kmalloc_node()
792 * with the exception of kunit tests
793 */
794
795void *__kmalloc_noprof(size_t size, gfp_t flags)
796 __assume_kmalloc_alignment __alloc_size(1);
797
798void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
799 __assume_kmalloc_alignment __alloc_size(1);
800
801void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
802 __assume_kmalloc_alignment __alloc_size(3);
803
804void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
805 int node, size_t size)
806 __assume_kmalloc_alignment __alloc_size(4);
807
808void *__kmalloc_large_noprof(size_t size, gfp_t flags)
809 __assume_page_alignment __alloc_size(1);
810
811void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
812 __assume_page_alignment __alloc_size(1);
813
814/**
815 * kmalloc - allocate kernel memory
816 * @size: how many bytes of memory are required.
817 * @flags: describe the allocation context
818 *
819 * kmalloc is the normal method of allocating memory
820 * for objects smaller than page size in the kernel.
821 *
822 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
823 * bytes. For @size of power of two bytes, the alignment is also guaranteed
824 * to be at least to the size. For other sizes, the alignment is guaranteed to
825 * be at least the largest power-of-two divisor of @size.
826 *
827 * The @flags argument may be one of the GFP flags defined at
828 * include/linux/gfp_types.h and described at
829 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
830 *
831 * The recommended usage of the @flags is described at
832 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
833 *
834 * Below is a brief outline of the most useful GFP flags
835 *
836 * %GFP_KERNEL
837 * Allocate normal kernel ram. May sleep.
838 *
839 * %GFP_NOWAIT
840 * Allocation will not sleep.
841 *
842 * %GFP_ATOMIC
843 * Allocation will not sleep. May use emergency pools.
844 *
845 * Also it is possible to set different flags by OR'ing
846 * in one or more of the following additional @flags:
847 *
848 * %__GFP_ZERO
849 * Zero the allocated memory before returning. Also see kzalloc().
850 *
851 * %__GFP_HIGH
852 * This allocation has high priority and may use emergency pools.
853 *
854 * %__GFP_NOFAIL
855 * Indicate that this allocation is in no way allowed to fail
856 * (think twice before using).
857 *
858 * %__GFP_NORETRY
859 * If memory is not immediately available,
860 * then give up at once.
861 *
862 * %__GFP_NOWARN
863 * If allocation fails, don't issue any warnings.
864 *
865 * %__GFP_RETRY_MAYFAIL
866 * Try really hard to succeed the allocation but fail
867 * eventually.
868 */
869static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
870{
871 if (__builtin_constant_p(size) && size) {
872 unsigned int index;
873
874 if (size > KMALLOC_MAX_CACHE_SIZE)
875 return __kmalloc_large_noprof(size, flags);
876
877 index = kmalloc_index(size);
878 return __kmalloc_cache_noprof(
879 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
880 flags, size);
881 }
882 return __kmalloc_noprof(size, flags);
883}
884#define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__))
885
886#define kmem_buckets_alloc(_b, _size, _flags) \
887 alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
888
889#define kmem_buckets_alloc_track_caller(_b, _size, _flags) \
890 alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
891
892static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
893{
894 if (__builtin_constant_p(size) && size) {
895 unsigned int index;
896
897 if (size > KMALLOC_MAX_CACHE_SIZE)
898 return __kmalloc_large_node_noprof(size, flags, node);
899
900 index = kmalloc_index(size);
901 return __kmalloc_cache_node_noprof(
902 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
903 flags, node, size);
904 }
905 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
906}
907#define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
908
909/**
910 * kmalloc_array - allocate memory for an array.
911 * @n: number of elements.
912 * @size: element size.
913 * @flags: the type of memory to allocate (see kmalloc).
914 */
915static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
916{
917 size_t bytes;
918
919 if (unlikely(check_mul_overflow(n, size, &bytes)))
920 return NULL;
921 if (__builtin_constant_p(n) && __builtin_constant_p(size))
922 return kmalloc_noprof(bytes, flags);
923 return kmalloc_noprof(bytes, flags);
924}
925#define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
926
927/**
928 * krealloc_array - reallocate memory for an array.
929 * @p: pointer to the memory chunk to reallocate
930 * @new_n: new number of elements to alloc
931 * @new_size: new size of a single member of the array
932 * @flags: the type of memory to allocate (see kmalloc)
933 *
934 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
935 * initial memory allocation, every subsequent call to this API for the same
936 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
937 * __GFP_ZERO is not fully honored by this API.
938 *
939 * See krealloc_noprof() for further details.
940 *
941 * In any case, the contents of the object pointed to are preserved up to the
942 * lesser of the new and old sizes.
943 */
944static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
945 size_t new_n,
946 size_t new_size,
947 gfp_t flags)
948{
949 size_t bytes;
950
951 if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
952 return NULL;
953
954 return krealloc_noprof(p, bytes, flags);
955}
956#define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
957
958/**
959 * kcalloc - allocate memory for an array. The memory is set to zero.
960 * @n: number of elements.
961 * @size: element size.
962 * @flags: the type of memory to allocate (see kmalloc).
963 */
964#define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO)
965
966void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
967 unsigned long caller) __alloc_size(1);
968#define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
969 __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
970#define kmalloc_node_track_caller(...) \
971 alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
972
973/*
974 * kmalloc_track_caller is a special version of kmalloc that records the
975 * calling function of the routine calling it for slab leak tracking instead
976 * of just the calling function (confusing, eh?).
977 * It's useful when the call to kmalloc comes from a widely-used standard
978 * allocator where we care about the real place the memory allocation
979 * request comes from.
980 */
981#define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
982
983#define kmalloc_track_caller_noprof(...) \
984 kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
985
986static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
987 int node)
988{
989 size_t bytes;
990
991 if (unlikely(check_mul_overflow(n, size, &bytes)))
992 return NULL;
993 if (__builtin_constant_p(n) && __builtin_constant_p(size))
994 return kmalloc_node_noprof(bytes, flags, node);
995 return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
996}
997#define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
998
999#define kcalloc_node(_n, _size, _flags, _node) \
1000 kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1001
1002/*
1003 * Shortcuts
1004 */
1005#define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1006
1007/**
1008 * kzalloc - allocate memory. The memory is set to zero.
1009 * @size: how many bytes of memory are required.
1010 * @flags: the type of memory to allocate (see kmalloc).
1011 */
1012static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1013{
1014 return kmalloc_noprof(size, flags | __GFP_ZERO);
1015}
1016#define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1017#define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1018
1019void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1020#define kvmalloc_node_noprof(size, flags, node) \
1021 __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1022#define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1023
1024#define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1025#define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1026#define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO)
1027
1028#define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1029#define kmem_buckets_valloc(_b, _size, _flags) \
1030 alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1031
1032static inline __alloc_size(1, 2) void *
1033kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1034{
1035 size_t bytes;
1036
1037 if (unlikely(check_mul_overflow(n, size, &bytes)))
1038 return NULL;
1039
1040 return kvmalloc_node_noprof(bytes, flags, node);
1041}
1042
1043#define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1044#define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1045#define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1046
1047#define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1048#define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1049#define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1050
1051void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1052 __realloc_size(2);
1053#define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1054
1055extern void kvfree(const void *addr);
1056DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1057
1058extern void kvfree_sensitive(const void *addr, size_t len);
1059
1060unsigned int kmem_cache_size(struct kmem_cache *s);
1061
1062/**
1063 * kmalloc_size_roundup - Report allocation bucket size for the given size
1064 *
1065 * @size: Number of bytes to round up from.
1066 *
1067 * This returns the number of bytes that would be available in a kmalloc()
1068 * allocation of @size bytes. For example, a 126 byte request would be
1069 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1070 * for the general-purpose kmalloc()-based allocations, and is not for the
1071 * pre-sized kmem_cache_alloc()-based allocations.)
1072 *
1073 * Use this to kmalloc() the full bucket size ahead of time instead of using
1074 * ksize() to query the size after an allocation.
1075 */
1076size_t kmalloc_size_roundup(size_t size);
1077
1078void __init kmem_cache_init_late(void);
1079
1080#endif /* _LINUX_SLAB_H */