io_uring/cmd: add cmd lazy tw wake helper
[linux-block.git] / include / linux / slab.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
15#include <linux/gfp.h>
16#include <linux/overflow.h>
17#include <linux/types.h>
18#include <linux/workqueue.h>
19#include <linux/percpu-refcount.h>
20
21
22/*
23 * Flags to pass to kmem_cache_create().
24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
25 */
26/* DEBUG: Perform (expensive) checks on alloc/free */
27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
28/* DEBUG: Red zone objs in a cache */
29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
30/* DEBUG: Poison objects */
31#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
32/* Indicate a kmalloc slab */
33#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U)
34/* Align objs on cache lines */
35#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
36/* Use GFP_DMA memory */
37#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
38/* Use GFP_DMA32 memory */
39#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
40/* DEBUG: Store the last owner for bug hunting */
41#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
42/* Panic if kmem_cache_create() fails */
43#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
44/*
45 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
46 *
47 * This delays freeing the SLAB page by a grace period, it does _NOT_
48 * delay object freeing. This means that if you do kmem_cache_free()
49 * that memory location is free to be reused at any time. Thus it may
50 * be possible to see another object there in the same RCU grace period.
51 *
52 * This feature only ensures the memory location backing the object
53 * stays valid, the trick to using this is relying on an independent
54 * object validation pass. Something like:
55 *
56 * rcu_read_lock()
57 * again:
58 * obj = lockless_lookup(key);
59 * if (obj) {
60 * if (!try_get_ref(obj)) // might fail for free objects
61 * goto again;
62 *
63 * if (obj->key != key) { // not the object we expected
64 * put_ref(obj);
65 * goto again;
66 * }
67 * }
68 * rcu_read_unlock();
69 *
70 * This is useful if we need to approach a kernel structure obliquely,
71 * from its address obtained without the usual locking. We can lock
72 * the structure to stabilize it and check it's still at the given address,
73 * only if we can be sure that the memory has not been meanwhile reused
74 * for some other kind of object (which our subsystem's lock might corrupt).
75 *
76 * rcu_read_lock before reading the address, then rcu_read_unlock after
77 * taking the spinlock within the structure expected at that address.
78 *
79 * Note that it is not possible to acquire a lock within a structure
80 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
81 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages
82 * are not zeroed before being given to the slab, which means that any
83 * locks must be initialized after each and every kmem_struct_alloc().
84 * Alternatively, make the ctor passed to kmem_cache_create() initialize
85 * the locks at page-allocation time, as is done in __i915_request_ctor(),
86 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers
87 * to safely acquire those ctor-initialized locks under rcu_read_lock()
88 * protection.
89 *
90 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
91 */
92/* Defer freeing slabs to RCU */
93#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
94/* Spread some memory over cpuset */
95#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
96/* Trace allocations and frees */
97#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
98
99/* Flag to prevent checks on free */
100#ifdef CONFIG_DEBUG_OBJECTS
101# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
102#else
103# define SLAB_DEBUG_OBJECTS 0
104#endif
105
106/* Avoid kmemleak tracing */
107#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
108
109/* Fault injection mark */
110#ifdef CONFIG_FAILSLAB
111# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
112#else
113# define SLAB_FAILSLAB 0
114#endif
115/* Account to memcg */
116#ifdef CONFIG_MEMCG_KMEM
117# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
118#else
119# define SLAB_ACCOUNT 0
120#endif
121
122#ifdef CONFIG_KASAN_GENERIC
123#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
124#else
125#define SLAB_KASAN 0
126#endif
127
128/*
129 * Ignore user specified debugging flags.
130 * Intended for caches created for self-tests so they have only flags
131 * specified in the code and other flags are ignored.
132 */
133#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U)
134
135#ifdef CONFIG_KFENCE
136#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U)
137#else
138#define SLAB_SKIP_KFENCE 0
139#endif
140
141/* The following flags affect the page allocator grouping pages by mobility */
142/* Objects are reclaimable */
143#ifndef CONFIG_SLUB_TINY
144#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
145#else
146#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0)
147#endif
148#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
149
150/*
151 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
152 *
153 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
154 *
155 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
156 * Both make kfree a no-op.
157 */
158#define ZERO_SIZE_PTR ((void *)16)
159
160#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
161 (unsigned long)ZERO_SIZE_PTR)
162
163#include <linux/kasan.h>
164
165struct list_lru;
166struct mem_cgroup;
167/*
168 * struct kmem_cache related prototypes
169 */
170bool slab_is_available(void);
171
172struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
173 unsigned int align, slab_flags_t flags,
174 void (*ctor)(void *));
175struct kmem_cache *kmem_cache_create_usercopy(const char *name,
176 unsigned int size, unsigned int align,
177 slab_flags_t flags,
178 unsigned int useroffset, unsigned int usersize,
179 void (*ctor)(void *));
180void kmem_cache_destroy(struct kmem_cache *s);
181int kmem_cache_shrink(struct kmem_cache *s);
182
183/*
184 * Please use this macro to create slab caches. Simply specify the
185 * name of the structure and maybe some flags that are listed above.
186 *
187 * The alignment of the struct determines object alignment. If you
188 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
189 * then the objects will be properly aligned in SMP configurations.
190 */
191#define KMEM_CACHE(__struct, __flags) \
192 kmem_cache_create(#__struct, sizeof(struct __struct), \
193 __alignof__(struct __struct), (__flags), NULL)
194
195/*
196 * To whitelist a single field for copying to/from usercopy, use this
197 * macro instead for KMEM_CACHE() above.
198 */
199#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
200 kmem_cache_create_usercopy(#__struct, \
201 sizeof(struct __struct), \
202 __alignof__(struct __struct), (__flags), \
203 offsetof(struct __struct, __field), \
204 sizeof_field(struct __struct, __field), NULL)
205
206/*
207 * Common kmalloc functions provided by all allocators
208 */
209void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
210void kfree(const void *objp);
211void kfree_sensitive(const void *objp);
212size_t __ksize(const void *objp);
213
214/**
215 * ksize - Report actual allocation size of associated object
216 *
217 * @objp: Pointer returned from a prior kmalloc()-family allocation.
218 *
219 * This should not be used for writing beyond the originally requested
220 * allocation size. Either use krealloc() or round up the allocation size
221 * with kmalloc_size_roundup() prior to allocation. If this is used to
222 * access beyond the originally requested allocation size, UBSAN_BOUNDS
223 * and/or FORTIFY_SOURCE may trip, since they only know about the
224 * originally allocated size via the __alloc_size attribute.
225 */
226size_t ksize(const void *objp);
227
228#ifdef CONFIG_PRINTK
229bool kmem_valid_obj(void *object);
230void kmem_dump_obj(void *object);
231#endif
232
233/*
234 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
235 * alignment larger than the alignment of a 64-bit integer.
236 * Setting ARCH_DMA_MINALIGN in arch headers allows that.
237 */
238#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
239#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
240#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
241#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
242#else
243#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
244#endif
245
246/*
247 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
248 * Intended for arches that get misalignment faults even for 64 bit integer
249 * aligned buffers.
250 */
251#ifndef ARCH_SLAB_MINALIGN
252#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
253#endif
254
255/*
256 * Arches can define this function if they want to decide the minimum slab
257 * alignment at runtime. The value returned by the function must be a power
258 * of two and >= ARCH_SLAB_MINALIGN.
259 */
260#ifndef arch_slab_minalign
261static inline unsigned int arch_slab_minalign(void)
262{
263 return ARCH_SLAB_MINALIGN;
264}
265#endif
266
267/*
268 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
269 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
270 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
271 */
272#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
273#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
274#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
275
276/*
277 * Kmalloc array related definitions
278 */
279
280#ifdef CONFIG_SLAB
281/*
282 * SLAB and SLUB directly allocates requests fitting in to an order-1 page
283 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
284 */
285#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
286#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
287#ifndef KMALLOC_SHIFT_LOW
288#define KMALLOC_SHIFT_LOW 5
289#endif
290#endif
291
292#ifdef CONFIG_SLUB
293#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
294#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
295#ifndef KMALLOC_SHIFT_LOW
296#define KMALLOC_SHIFT_LOW 3
297#endif
298#endif
299
300/* Maximum allocatable size */
301#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
302/* Maximum size for which we actually use a slab cache */
303#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
304/* Maximum order allocatable via the slab allocator */
305#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
306
307/*
308 * Kmalloc subsystem.
309 */
310#ifndef KMALLOC_MIN_SIZE
311#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
312#endif
313
314/*
315 * This restriction comes from byte sized index implementation.
316 * Page size is normally 2^12 bytes and, in this case, if we want to use
317 * byte sized index which can represent 2^8 entries, the size of the object
318 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
319 * If minimum size of kmalloc is less than 16, we use it as minimum object
320 * size and give up to use byte sized index.
321 */
322#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
323 (KMALLOC_MIN_SIZE) : 16)
324
325/*
326 * Whenever changing this, take care of that kmalloc_type() and
327 * create_kmalloc_caches() still work as intended.
328 *
329 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
330 * is for accounted but unreclaimable and non-dma objects. All the other
331 * kmem caches can have both accounted and unaccounted objects.
332 */
333enum kmalloc_cache_type {
334 KMALLOC_NORMAL = 0,
335#ifndef CONFIG_ZONE_DMA
336 KMALLOC_DMA = KMALLOC_NORMAL,
337#endif
338#ifndef CONFIG_MEMCG_KMEM
339 KMALLOC_CGROUP = KMALLOC_NORMAL,
340#endif
341#ifdef CONFIG_SLUB_TINY
342 KMALLOC_RECLAIM = KMALLOC_NORMAL,
343#else
344 KMALLOC_RECLAIM,
345#endif
346#ifdef CONFIG_ZONE_DMA
347 KMALLOC_DMA,
348#endif
349#ifdef CONFIG_MEMCG_KMEM
350 KMALLOC_CGROUP,
351#endif
352 NR_KMALLOC_TYPES
353};
354
355extern struct kmem_cache *
356kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
357
358/*
359 * Define gfp bits that should not be set for KMALLOC_NORMAL.
360 */
361#define KMALLOC_NOT_NORMAL_BITS \
362 (__GFP_RECLAIMABLE | \
363 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \
364 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
365
366static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
367{
368 /*
369 * The most common case is KMALLOC_NORMAL, so test for it
370 * with a single branch for all the relevant flags.
371 */
372 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
373 return KMALLOC_NORMAL;
374
375 /*
376 * At least one of the flags has to be set. Their priorities in
377 * decreasing order are:
378 * 1) __GFP_DMA
379 * 2) __GFP_RECLAIMABLE
380 * 3) __GFP_ACCOUNT
381 */
382 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
383 return KMALLOC_DMA;
384 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
385 return KMALLOC_RECLAIM;
386 else
387 return KMALLOC_CGROUP;
388}
389
390/*
391 * Figure out which kmalloc slab an allocation of a certain size
392 * belongs to.
393 * 0 = zero alloc
394 * 1 = 65 .. 96 bytes
395 * 2 = 129 .. 192 bytes
396 * n = 2^(n-1)+1 .. 2^n
397 *
398 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
399 * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
400 * Callers where !size_is_constant should only be test modules, where runtime
401 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab().
402 */
403static __always_inline unsigned int __kmalloc_index(size_t size,
404 bool size_is_constant)
405{
406 if (!size)
407 return 0;
408
409 if (size <= KMALLOC_MIN_SIZE)
410 return KMALLOC_SHIFT_LOW;
411
412 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
413 return 1;
414 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
415 return 2;
416 if (size <= 8) return 3;
417 if (size <= 16) return 4;
418 if (size <= 32) return 5;
419 if (size <= 64) return 6;
420 if (size <= 128) return 7;
421 if (size <= 256) return 8;
422 if (size <= 512) return 9;
423 if (size <= 1024) return 10;
424 if (size <= 2 * 1024) return 11;
425 if (size <= 4 * 1024) return 12;
426 if (size <= 8 * 1024) return 13;
427 if (size <= 16 * 1024) return 14;
428 if (size <= 32 * 1024) return 15;
429 if (size <= 64 * 1024) return 16;
430 if (size <= 128 * 1024) return 17;
431 if (size <= 256 * 1024) return 18;
432 if (size <= 512 * 1024) return 19;
433 if (size <= 1024 * 1024) return 20;
434 if (size <= 2 * 1024 * 1024) return 21;
435
436 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
437 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
438 else
439 BUG();
440
441 /* Will never be reached. Needed because the compiler may complain */
442 return -1;
443}
444static_assert(PAGE_SHIFT <= 20);
445#define kmalloc_index(s) __kmalloc_index(s, true)
446
447void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
448
449/**
450 * kmem_cache_alloc - Allocate an object
451 * @cachep: The cache to allocate from.
452 * @flags: See kmalloc().
453 *
454 * Allocate an object from this cache.
455 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
456 *
457 * Return: pointer to the new object or %NULL in case of error
458 */
459void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
460void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
461 gfp_t gfpflags) __assume_slab_alignment __malloc;
462void kmem_cache_free(struct kmem_cache *s, void *objp);
463
464/*
465 * Bulk allocation and freeing operations. These are accelerated in an
466 * allocator specific way to avoid taking locks repeatedly or building
467 * metadata structures unnecessarily.
468 *
469 * Note that interrupts must be enabled when calling these functions.
470 */
471void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
472int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
473
474static __always_inline void kfree_bulk(size_t size, void **p)
475{
476 kmem_cache_free_bulk(NULL, size, p);
477}
478
479void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
480 __alloc_size(1);
481void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
482 __malloc;
483
484void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
485 __assume_kmalloc_alignment __alloc_size(3);
486
487void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
488 int node, size_t size) __assume_kmalloc_alignment
489 __alloc_size(4);
490void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
491 __alloc_size(1);
492
493void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
494 __alloc_size(1);
495
496/**
497 * kmalloc - allocate kernel memory
498 * @size: how many bytes of memory are required.
499 * @flags: describe the allocation context
500 *
501 * kmalloc is the normal method of allocating memory
502 * for objects smaller than page size in the kernel.
503 *
504 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
505 * bytes. For @size of power of two bytes, the alignment is also guaranteed
506 * to be at least to the size.
507 *
508 * The @flags argument may be one of the GFP flags defined at
509 * include/linux/gfp_types.h and described at
510 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
511 *
512 * The recommended usage of the @flags is described at
513 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
514 *
515 * Below is a brief outline of the most useful GFP flags
516 *
517 * %GFP_KERNEL
518 * Allocate normal kernel ram. May sleep.
519 *
520 * %GFP_NOWAIT
521 * Allocation will not sleep.
522 *
523 * %GFP_ATOMIC
524 * Allocation will not sleep. May use emergency pools.
525 *
526 * Also it is possible to set different flags by OR'ing
527 * in one or more of the following additional @flags:
528 *
529 * %__GFP_ZERO
530 * Zero the allocated memory before returning. Also see kzalloc().
531 *
532 * %__GFP_HIGH
533 * This allocation has high priority and may use emergency pools.
534 *
535 * %__GFP_NOFAIL
536 * Indicate that this allocation is in no way allowed to fail
537 * (think twice before using).
538 *
539 * %__GFP_NORETRY
540 * If memory is not immediately available,
541 * then give up at once.
542 *
543 * %__GFP_NOWARN
544 * If allocation fails, don't issue any warnings.
545 *
546 * %__GFP_RETRY_MAYFAIL
547 * Try really hard to succeed the allocation but fail
548 * eventually.
549 */
550static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
551{
552 if (__builtin_constant_p(size) && size) {
553 unsigned int index;
554
555 if (size > KMALLOC_MAX_CACHE_SIZE)
556 return kmalloc_large(size, flags);
557
558 index = kmalloc_index(size);
559 return kmalloc_trace(
560 kmalloc_caches[kmalloc_type(flags)][index],
561 flags, size);
562 }
563 return __kmalloc(size, flags);
564}
565
566static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
567{
568 if (__builtin_constant_p(size) && size) {
569 unsigned int index;
570
571 if (size > KMALLOC_MAX_CACHE_SIZE)
572 return kmalloc_large_node(size, flags, node);
573
574 index = kmalloc_index(size);
575 return kmalloc_node_trace(
576 kmalloc_caches[kmalloc_type(flags)][index],
577 flags, node, size);
578 }
579 return __kmalloc_node(size, flags, node);
580}
581
582/**
583 * kmalloc_array - allocate memory for an array.
584 * @n: number of elements.
585 * @size: element size.
586 * @flags: the type of memory to allocate (see kmalloc).
587 */
588static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
589{
590 size_t bytes;
591
592 if (unlikely(check_mul_overflow(n, size, &bytes)))
593 return NULL;
594 if (__builtin_constant_p(n) && __builtin_constant_p(size))
595 return kmalloc(bytes, flags);
596 return __kmalloc(bytes, flags);
597}
598
599/**
600 * krealloc_array - reallocate memory for an array.
601 * @p: pointer to the memory chunk to reallocate
602 * @new_n: new number of elements to alloc
603 * @new_size: new size of a single member of the array
604 * @flags: the type of memory to allocate (see kmalloc)
605 */
606static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
607 size_t new_n,
608 size_t new_size,
609 gfp_t flags)
610{
611 size_t bytes;
612
613 if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
614 return NULL;
615
616 return krealloc(p, bytes, flags);
617}
618
619/**
620 * kcalloc - allocate memory for an array. The memory is set to zero.
621 * @n: number of elements.
622 * @size: element size.
623 * @flags: the type of memory to allocate (see kmalloc).
624 */
625static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
626{
627 return kmalloc_array(n, size, flags | __GFP_ZERO);
628}
629
630void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
631 unsigned long caller) __alloc_size(1);
632#define kmalloc_node_track_caller(size, flags, node) \
633 __kmalloc_node_track_caller(size, flags, node, \
634 _RET_IP_)
635
636/*
637 * kmalloc_track_caller is a special version of kmalloc that records the
638 * calling function of the routine calling it for slab leak tracking instead
639 * of just the calling function (confusing, eh?).
640 * It's useful when the call to kmalloc comes from a widely-used standard
641 * allocator where we care about the real place the memory allocation
642 * request comes from.
643 */
644#define kmalloc_track_caller(size, flags) \
645 __kmalloc_node_track_caller(size, flags, \
646 NUMA_NO_NODE, _RET_IP_)
647
648static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
649 int node)
650{
651 size_t bytes;
652
653 if (unlikely(check_mul_overflow(n, size, &bytes)))
654 return NULL;
655 if (__builtin_constant_p(n) && __builtin_constant_p(size))
656 return kmalloc_node(bytes, flags, node);
657 return __kmalloc_node(bytes, flags, node);
658}
659
660static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
661{
662 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
663}
664
665/*
666 * Shortcuts
667 */
668static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
669{
670 return kmem_cache_alloc(k, flags | __GFP_ZERO);
671}
672
673/**
674 * kzalloc - allocate memory. The memory is set to zero.
675 * @size: how many bytes of memory are required.
676 * @flags: the type of memory to allocate (see kmalloc).
677 */
678static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
679{
680 return kmalloc(size, flags | __GFP_ZERO);
681}
682
683/**
684 * kzalloc_node - allocate zeroed memory from a particular memory node.
685 * @size: how many bytes of memory are required.
686 * @flags: the type of memory to allocate (see kmalloc).
687 * @node: memory node from which to allocate
688 */
689static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
690{
691 return kmalloc_node(size, flags | __GFP_ZERO, node);
692}
693
694extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
695static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
696{
697 return kvmalloc_node(size, flags, NUMA_NO_NODE);
698}
699static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
700{
701 return kvmalloc_node(size, flags | __GFP_ZERO, node);
702}
703static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
704{
705 return kvmalloc(size, flags | __GFP_ZERO);
706}
707
708static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
709{
710 size_t bytes;
711
712 if (unlikely(check_mul_overflow(n, size, &bytes)))
713 return NULL;
714
715 return kvmalloc(bytes, flags);
716}
717
718static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
719{
720 return kvmalloc_array(n, size, flags | __GFP_ZERO);
721}
722
723extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
724 __realloc_size(3);
725extern void kvfree(const void *addr);
726extern void kvfree_sensitive(const void *addr, size_t len);
727
728unsigned int kmem_cache_size(struct kmem_cache *s);
729
730/**
731 * kmalloc_size_roundup - Report allocation bucket size for the given size
732 *
733 * @size: Number of bytes to round up from.
734 *
735 * This returns the number of bytes that would be available in a kmalloc()
736 * allocation of @size bytes. For example, a 126 byte request would be
737 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
738 * for the general-purpose kmalloc()-based allocations, and is not for the
739 * pre-sized kmem_cache_alloc()-based allocations.)
740 *
741 * Use this to kmalloc() the full bucket size ahead of time instead of using
742 * ksize() to query the size after an allocation.
743 */
744size_t kmalloc_size_roundup(size_t size);
745
746void __init kmem_cache_init_late(void);
747
748#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
749int slab_prepare_cpu(unsigned int cpu);
750int slab_dead_cpu(unsigned int cpu);
751#else
752#define slab_prepare_cpu NULL
753#define slab_dead_cpu NULL
754#endif
755
756#endif /* _LINUX_SLAB_H */