| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_PID_H |
| 3 | #define _LINUX_PID_H |
| 4 | |
| 5 | #include <linux/pid_types.h> |
| 6 | #include <linux/rculist.h> |
| 7 | #include <linux/rcupdate.h> |
| 8 | #include <linux/refcount.h> |
| 9 | #include <linux/sched.h> |
| 10 | #include <linux/wait.h> |
| 11 | |
| 12 | /* |
| 13 | * What is struct pid? |
| 14 | * |
| 15 | * A struct pid is the kernel's internal notion of a process identifier. |
| 16 | * It refers to individual tasks, process groups, and sessions. While |
| 17 | * there are processes attached to it the struct pid lives in a hash |
| 18 | * table, so it and then the processes that it refers to can be found |
| 19 | * quickly from the numeric pid value. The attached processes may be |
| 20 | * quickly accessed by following pointers from struct pid. |
| 21 | * |
| 22 | * Storing pid_t values in the kernel and referring to them later has a |
| 23 | * problem. The process originally with that pid may have exited and the |
| 24 | * pid allocator wrapped, and another process could have come along |
| 25 | * and been assigned that pid. |
| 26 | * |
| 27 | * Referring to user space processes by holding a reference to struct |
| 28 | * task_struct has a problem. When the user space process exits |
| 29 | * the now useless task_struct is still kept. A task_struct plus a |
| 30 | * stack consumes around 10K of low kernel memory. More precisely |
| 31 | * this is THREAD_SIZE + sizeof(struct task_struct). By comparison |
| 32 | * a struct pid is about 64 bytes. |
| 33 | * |
| 34 | * Holding a reference to struct pid solves both of these problems. |
| 35 | * It is small so holding a reference does not consume a lot of |
| 36 | * resources, and since a new struct pid is allocated when the numeric pid |
| 37 | * value is reused (when pids wrap around) we don't mistakenly refer to new |
| 38 | * processes. |
| 39 | */ |
| 40 | |
| 41 | |
| 42 | /* |
| 43 | * struct upid is used to get the id of the struct pid, as it is |
| 44 | * seen in particular namespace. Later the struct pid is found with |
| 45 | * find_pid_ns() using the int nr and struct pid_namespace *ns. |
| 46 | */ |
| 47 | |
| 48 | #define RESERVED_PIDS 300 |
| 49 | |
| 50 | struct upid { |
| 51 | int nr; |
| 52 | struct pid_namespace *ns; |
| 53 | }; |
| 54 | |
| 55 | struct pid |
| 56 | { |
| 57 | refcount_t count; |
| 58 | unsigned int level; |
| 59 | spinlock_t lock; |
| 60 | struct dentry *stashed; |
| 61 | u64 ino; |
| 62 | struct rb_node pidfs_node; |
| 63 | /* lists of tasks that use this pid */ |
| 64 | struct hlist_head tasks[PIDTYPE_MAX]; |
| 65 | struct hlist_head inodes; |
| 66 | /* wait queue for pidfd notifications */ |
| 67 | wait_queue_head_t wait_pidfd; |
| 68 | struct rcu_head rcu; |
| 69 | struct upid numbers[]; |
| 70 | }; |
| 71 | |
| 72 | extern seqcount_spinlock_t pidmap_lock_seq; |
| 73 | extern struct pid init_struct_pid; |
| 74 | |
| 75 | struct file; |
| 76 | |
| 77 | struct pid *pidfd_pid(const struct file *file); |
| 78 | struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); |
| 79 | struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags); |
| 80 | int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file); |
| 81 | void do_notify_pidfd(struct task_struct *task); |
| 82 | |
| 83 | static inline struct pid *get_pid(struct pid *pid) |
| 84 | { |
| 85 | if (pid) |
| 86 | refcount_inc(&pid->count); |
| 87 | return pid; |
| 88 | } |
| 89 | |
| 90 | extern void put_pid(struct pid *pid); |
| 91 | extern struct task_struct *pid_task(struct pid *pid, enum pid_type); |
| 92 | static inline bool pid_has_task(struct pid *pid, enum pid_type type) |
| 93 | { |
| 94 | return !hlist_empty(&pid->tasks[type]); |
| 95 | } |
| 96 | extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); |
| 97 | |
| 98 | extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); |
| 99 | |
| 100 | /* |
| 101 | * these helpers must be called with the tasklist_lock write-held. |
| 102 | */ |
| 103 | extern void attach_pid(struct task_struct *task, enum pid_type); |
| 104 | void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type); |
| 105 | void change_pid(struct pid **pids, struct task_struct *task, enum pid_type, |
| 106 | struct pid *pid); |
| 107 | extern void exchange_tids(struct task_struct *task, struct task_struct *old); |
| 108 | extern void transfer_pid(struct task_struct *old, struct task_struct *new, |
| 109 | enum pid_type); |
| 110 | |
| 111 | /* |
| 112 | * look up a PID in the hash table. Must be called with the tasklist_lock |
| 113 | * or rcu_read_lock() held. |
| 114 | * |
| 115 | * find_pid_ns() finds the pid in the namespace specified |
| 116 | * find_vpid() finds the pid by its virtual id, i.e. in the current namespace |
| 117 | * |
| 118 | * see also find_task_by_vpid() set in include/linux/sched.h |
| 119 | */ |
| 120 | extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); |
| 121 | extern struct pid *find_vpid(int nr); |
| 122 | |
| 123 | /* |
| 124 | * Lookup a PID in the hash table, and return with it's count elevated. |
| 125 | */ |
| 126 | extern struct pid *find_get_pid(int nr); |
| 127 | extern struct pid *find_ge_pid(int nr, struct pid_namespace *); |
| 128 | |
| 129 | extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, |
| 130 | size_t set_tid_size); |
| 131 | extern void free_pid(struct pid *pid); |
| 132 | void free_pids(struct pid **pids); |
| 133 | extern void disable_pid_allocation(struct pid_namespace *ns); |
| 134 | |
| 135 | /* |
| 136 | * ns_of_pid() returns the pid namespace in which the specified pid was |
| 137 | * allocated. |
| 138 | * |
| 139 | * NOTE: |
| 140 | * ns_of_pid() is expected to be called for a process (task) that has |
| 141 | * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid |
| 142 | * is expected to be non-NULL. If @pid is NULL, caller should handle |
| 143 | * the resulting NULL pid-ns. |
| 144 | */ |
| 145 | static inline struct pid_namespace *ns_of_pid(struct pid *pid) |
| 146 | { |
| 147 | struct pid_namespace *ns = NULL; |
| 148 | if (pid) |
| 149 | ns = pid->numbers[pid->level].ns; |
| 150 | return ns; |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * is_child_reaper returns true if the pid is the init process |
| 155 | * of the current namespace. As this one could be checked before |
| 156 | * pid_ns->child_reaper is assigned in copy_process, we check |
| 157 | * with the pid number. |
| 158 | */ |
| 159 | static inline bool is_child_reaper(struct pid *pid) |
| 160 | { |
| 161 | return pid->numbers[pid->level].nr == 1; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * the helpers to get the pid's id seen from different namespaces |
| 166 | * |
| 167 | * pid_nr() : global id, i.e. the id seen from the init namespace; |
| 168 | * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
| 169 | * current. |
| 170 | * pid_nr_ns() : id seen from the ns specified. |
| 171 | * |
| 172 | * see also task_xid_nr() etc in include/linux/sched.h |
| 173 | */ |
| 174 | |
| 175 | static inline pid_t pid_nr(struct pid *pid) |
| 176 | { |
| 177 | pid_t nr = 0; |
| 178 | if (pid) |
| 179 | nr = pid->numbers[0].nr; |
| 180 | return nr; |
| 181 | } |
| 182 | |
| 183 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); |
| 184 | pid_t pid_vnr(struct pid *pid); |
| 185 | |
| 186 | #define do_each_pid_task(pid, type, task) \ |
| 187 | do { \ |
| 188 | if ((pid) != NULL) \ |
| 189 | hlist_for_each_entry_rcu((task), \ |
| 190 | &(pid)->tasks[type], pid_links[type]) { |
| 191 | |
| 192 | /* |
| 193 | * Both old and new leaders may be attached to |
| 194 | * the same pid in the middle of de_thread(). |
| 195 | */ |
| 196 | #define while_each_pid_task(pid, type, task) \ |
| 197 | if (type == PIDTYPE_PID) \ |
| 198 | break; \ |
| 199 | } \ |
| 200 | } while (0) |
| 201 | |
| 202 | #define do_each_pid_thread(pid, type, task) \ |
| 203 | do_each_pid_task(pid, type, task) { \ |
| 204 | struct task_struct *tg___ = task; \ |
| 205 | for_each_thread(tg___, task) { |
| 206 | |
| 207 | #define while_each_pid_thread(pid, type, task) \ |
| 208 | } \ |
| 209 | task = tg___; \ |
| 210 | } while_each_pid_task(pid, type, task) |
| 211 | |
| 212 | static inline struct pid *task_pid(struct task_struct *task) |
| 213 | { |
| 214 | return task->thread_pid; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * the helpers to get the task's different pids as they are seen |
| 219 | * from various namespaces |
| 220 | * |
| 221 | * task_xid_nr() : global id, i.e. the id seen from the init namespace; |
| 222 | * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
| 223 | * current. |
| 224 | * task_xid_nr_ns() : id seen from the ns specified; |
| 225 | * |
| 226 | * see also pid_nr() etc in include/linux/pid.h |
| 227 | */ |
| 228 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); |
| 229 | |
| 230 | static inline pid_t task_pid_nr(struct task_struct *tsk) |
| 231 | { |
| 232 | return tsk->pid; |
| 233 | } |
| 234 | |
| 235 | static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 236 | { |
| 237 | return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); |
| 238 | } |
| 239 | |
| 240 | static inline pid_t task_pid_vnr(struct task_struct *tsk) |
| 241 | { |
| 242 | return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); |
| 243 | } |
| 244 | |
| 245 | |
| 246 | static inline pid_t task_tgid_nr(struct task_struct *tsk) |
| 247 | { |
| 248 | return tsk->tgid; |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * pid_alive - check that a task structure is not stale |
| 253 | * @p: Task structure to be checked. |
| 254 | * |
| 255 | * Test if a process is not yet dead (at most zombie state) |
| 256 | * If pid_alive fails, then pointers within the task structure |
| 257 | * can be stale and must not be dereferenced. |
| 258 | * |
| 259 | * Return: 1 if the process is alive. 0 otherwise. |
| 260 | */ |
| 261 | static inline int pid_alive(const struct task_struct *p) |
| 262 | { |
| 263 | return p->thread_pid != NULL; |
| 264 | } |
| 265 | |
| 266 | static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 267 | { |
| 268 | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); |
| 269 | } |
| 270 | |
| 271 | static inline pid_t task_pgrp_vnr(struct task_struct *tsk) |
| 272 | { |
| 273 | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); |
| 274 | } |
| 275 | |
| 276 | |
| 277 | static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 278 | { |
| 279 | return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); |
| 280 | } |
| 281 | |
| 282 | static inline pid_t task_session_vnr(struct task_struct *tsk) |
| 283 | { |
| 284 | return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); |
| 285 | } |
| 286 | |
| 287 | static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 288 | { |
| 289 | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); |
| 290 | } |
| 291 | |
| 292 | static inline pid_t task_tgid_vnr(struct task_struct *tsk) |
| 293 | { |
| 294 | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); |
| 295 | } |
| 296 | |
| 297 | static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) |
| 298 | { |
| 299 | pid_t pid = 0; |
| 300 | |
| 301 | rcu_read_lock(); |
| 302 | if (pid_alive(tsk)) |
| 303 | pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); |
| 304 | rcu_read_unlock(); |
| 305 | |
| 306 | return pid; |
| 307 | } |
| 308 | |
| 309 | static inline pid_t task_ppid_nr(const struct task_struct *tsk) |
| 310 | { |
| 311 | return task_ppid_nr_ns(tsk, &init_pid_ns); |
| 312 | } |
| 313 | |
| 314 | /* Obsolete, do not use: */ |
| 315 | static inline pid_t task_pgrp_nr(struct task_struct *tsk) |
| 316 | { |
| 317 | return task_pgrp_nr_ns(tsk, &init_pid_ns); |
| 318 | } |
| 319 | |
| 320 | /** |
| 321 | * is_global_init - check if a task structure is init. Since init |
| 322 | * is free to have sub-threads we need to check tgid. |
| 323 | * @tsk: Task structure to be checked. |
| 324 | * |
| 325 | * Check if a task structure is the first user space task the kernel created. |
| 326 | * |
| 327 | * Return: 1 if the task structure is init. 0 otherwise. |
| 328 | */ |
| 329 | static inline int is_global_init(struct task_struct *tsk) |
| 330 | { |
| 331 | return task_tgid_nr(tsk) == 1; |
| 332 | } |
| 333 | |
| 334 | #endif /* _LINUX_PID_H */ |