Linux 6.16-rc6
[linux-2.6-block.git] / include / linux / netdevice.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31#include <asm/local.h>
32
33#include <linux/percpu.h>
34#include <linux/rculist.h>
35#include <linux/workqueue.h>
36#include <linux/dynamic_queue_limits.h>
37
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <linux/netdev_features.h>
44#include <linux/neighbour.h>
45#include <linux/netdevice_xmit.h>
46#include <uapi/linux/netdevice.h>
47#include <uapi/linux/if_bonding.h>
48#include <uapi/linux/pkt_cls.h>
49#include <uapi/linux/netdev.h>
50#include <linux/hashtable.h>
51#include <linux/rbtree.h>
52#include <net/net_trackers.h>
53#include <net/net_debug.h>
54#include <net/dropreason-core.h>
55#include <net/neighbour_tables.h>
56
57struct netpoll_info;
58struct device;
59struct ethtool_ops;
60struct kernel_hwtstamp_config;
61struct phy_device;
62struct dsa_port;
63struct ip_tunnel_parm_kern;
64struct macsec_context;
65struct macsec_ops;
66struct netdev_config;
67struct netdev_name_node;
68struct sd_flow_limit;
69struct sfp_bus;
70/* 802.11 specific */
71struct wireless_dev;
72/* 802.15.4 specific */
73struct wpan_dev;
74struct mpls_dev;
75/* UDP Tunnel offloads */
76struct udp_tunnel_info;
77struct udp_tunnel_nic_info;
78struct udp_tunnel_nic;
79struct bpf_prog;
80struct xdp_buff;
81struct xdp_frame;
82struct xdp_metadata_ops;
83struct xdp_md;
84struct ethtool_netdev_state;
85struct phy_link_topology;
86struct hwtstamp_provider;
87
88typedef u32 xdp_features_t;
89
90void synchronize_net(void);
91void netdev_set_default_ethtool_ops(struct net_device *dev,
92 const struct ethtool_ops *ops);
93void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94
95/* Backlog congestion levels */
96#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
97#define NET_RX_DROP 1 /* packet dropped */
98
99#define MAX_NEST_DEV 8
100
101/*
102 * Transmit return codes: transmit return codes originate from three different
103 * namespaces:
104 *
105 * - qdisc return codes
106 * - driver transmit return codes
107 * - errno values
108 *
109 * Drivers are allowed to return any one of those in their hard_start_xmit()
110 * function. Real network devices commonly used with qdiscs should only return
111 * the driver transmit return codes though - when qdiscs are used, the actual
112 * transmission happens asynchronously, so the value is not propagated to
113 * higher layers. Virtual network devices transmit synchronously; in this case
114 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115 * others are propagated to higher layers.
116 */
117
118/* qdisc ->enqueue() return codes. */
119#define NET_XMIT_SUCCESS 0x00
120#define NET_XMIT_DROP 0x01 /* skb dropped */
121#define NET_XMIT_CN 0x02 /* congestion notification */
122#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
123
124/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125 * indicates that the device will soon be dropping packets, or already drops
126 * some packets of the same priority; prompting us to send less aggressively. */
127#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
128#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129
130/* Driver transmit return codes */
131#define NETDEV_TX_MASK 0xf0
132
133enum netdev_tx {
134 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
135 NETDEV_TX_OK = 0x00, /* driver took care of packet */
136 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
137};
138typedef enum netdev_tx netdev_tx_t;
139
140/*
141 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143 */
144static inline bool dev_xmit_complete(int rc)
145{
146 /*
147 * Positive cases with an skb consumed by a driver:
148 * - successful transmission (rc == NETDEV_TX_OK)
149 * - error while transmitting (rc < 0)
150 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 */
152 if (likely(rc < NET_XMIT_MASK))
153 return true;
154
155 return false;
156}
157
158/*
159 * Compute the worst-case header length according to the protocols
160 * used.
161 */
162
163#if defined(CONFIG_HYPERV_NET)
164# define LL_MAX_HEADER 128
165#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166# if defined(CONFIG_MAC80211_MESH)
167# define LL_MAX_HEADER 128
168# else
169# define LL_MAX_HEADER 96
170# endif
171#else
172# define LL_MAX_HEADER 32
173#endif
174
175#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177#define MAX_HEADER LL_MAX_HEADER
178#else
179#define MAX_HEADER (LL_MAX_HEADER + 48)
180#endif
181
182/*
183 * Old network device statistics. Fields are native words
184 * (unsigned long) so they can be read and written atomically.
185 */
186
187#define NET_DEV_STAT(FIELD) \
188 union { \
189 unsigned long FIELD; \
190 atomic_long_t __##FIELD; \
191 }
192
193struct net_device_stats {
194 NET_DEV_STAT(rx_packets);
195 NET_DEV_STAT(tx_packets);
196 NET_DEV_STAT(rx_bytes);
197 NET_DEV_STAT(tx_bytes);
198 NET_DEV_STAT(rx_errors);
199 NET_DEV_STAT(tx_errors);
200 NET_DEV_STAT(rx_dropped);
201 NET_DEV_STAT(tx_dropped);
202 NET_DEV_STAT(multicast);
203 NET_DEV_STAT(collisions);
204 NET_DEV_STAT(rx_length_errors);
205 NET_DEV_STAT(rx_over_errors);
206 NET_DEV_STAT(rx_crc_errors);
207 NET_DEV_STAT(rx_frame_errors);
208 NET_DEV_STAT(rx_fifo_errors);
209 NET_DEV_STAT(rx_missed_errors);
210 NET_DEV_STAT(tx_aborted_errors);
211 NET_DEV_STAT(tx_carrier_errors);
212 NET_DEV_STAT(tx_fifo_errors);
213 NET_DEV_STAT(tx_heartbeat_errors);
214 NET_DEV_STAT(tx_window_errors);
215 NET_DEV_STAT(rx_compressed);
216 NET_DEV_STAT(tx_compressed);
217};
218#undef NET_DEV_STAT
219
220/* per-cpu stats, allocated on demand.
221 * Try to fit them in a single cache line, for dev_get_stats() sake.
222 */
223struct net_device_core_stats {
224 unsigned long rx_dropped;
225 unsigned long tx_dropped;
226 unsigned long rx_nohandler;
227 unsigned long rx_otherhost_dropped;
228} __aligned(4 * sizeof(unsigned long));
229
230#include <linux/cache.h>
231#include <linux/skbuff.h>
232
233struct neighbour;
234struct neigh_parms;
235struct sk_buff;
236
237struct netdev_hw_addr {
238 struct list_head list;
239 struct rb_node node;
240 unsigned char addr[MAX_ADDR_LEN];
241 unsigned char type;
242#define NETDEV_HW_ADDR_T_LAN 1
243#define NETDEV_HW_ADDR_T_SAN 2
244#define NETDEV_HW_ADDR_T_UNICAST 3
245#define NETDEV_HW_ADDR_T_MULTICAST 4
246 bool global_use;
247 int sync_cnt;
248 int refcount;
249 int synced;
250 struct rcu_head rcu_head;
251};
252
253struct netdev_hw_addr_list {
254 struct list_head list;
255 int count;
256
257 /* Auxiliary tree for faster lookup on addition and deletion */
258 struct rb_root tree;
259};
260
261#define netdev_hw_addr_list_count(l) ((l)->count)
262#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263#define netdev_hw_addr_list_for_each(ha, l) \
264 list_for_each_entry(ha, &(l)->list, list)
265
266#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268#define netdev_for_each_uc_addr(ha, dev) \
269 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270#define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 netdev_for_each_uc_addr((_ha), (_dev)) \
272 if ((_ha)->sync_cnt)
273
274#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276#define netdev_for_each_mc_addr(ha, dev) \
277 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278#define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 netdev_for_each_mc_addr((_ha), (_dev)) \
280 if ((_ha)->sync_cnt)
281
282struct hh_cache {
283 unsigned int hh_len;
284 seqlock_t hh_lock;
285
286 /* cached hardware header; allow for machine alignment needs. */
287#define HH_DATA_MOD 16
288#define HH_DATA_OFF(__len) \
289 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290#define HH_DATA_ALIGN(__len) \
291 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293};
294
295/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296 * Alternative is:
297 * dev->hard_header_len ? (dev->hard_header_len +
298 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299 *
300 * We could use other alignment values, but we must maintain the
301 * relationship HH alignment <= LL alignment.
302 */
303#define LL_RESERVED_SPACE(dev) \
304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309
310struct header_ops {
311 int (*create) (struct sk_buff *skb, struct net_device *dev,
312 unsigned short type, const void *daddr,
313 const void *saddr, unsigned int len);
314 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 void (*cache_update)(struct hh_cache *hh,
317 const struct net_device *dev,
318 const unsigned char *haddr);
319 bool (*validate)(const char *ll_header, unsigned int len);
320 __be16 (*parse_protocol)(const struct sk_buff *skb);
321};
322
323/* These flag bits are private to the generic network queueing
324 * layer; they may not be explicitly referenced by any other
325 * code.
326 */
327
328enum netdev_state_t {
329 __LINK_STATE_START,
330 __LINK_STATE_PRESENT,
331 __LINK_STATE_NOCARRIER,
332 __LINK_STATE_LINKWATCH_PENDING,
333 __LINK_STATE_DORMANT,
334 __LINK_STATE_TESTING,
335};
336
337struct gro_list {
338 struct list_head list;
339 int count;
340};
341
342/*
343 * size of gro hash buckets, must be <= the number of bits in
344 * gro_node::bitmask
345 */
346#define GRO_HASH_BUCKETS 8
347
348/**
349 * struct gro_node - structure to support Generic Receive Offload
350 * @bitmask: bitmask to indicate used buckets in @hash
351 * @hash: hashtable of pending aggregated skbs, separated by flows
352 * @rx_list: list of pending ``GRO_NORMAL`` skbs
353 * @rx_count: cached current length of @rx_list
354 * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone
355 */
356struct gro_node {
357 unsigned long bitmask;
358 struct gro_list hash[GRO_HASH_BUCKETS];
359 struct list_head rx_list;
360 u32 rx_count;
361 u32 cached_napi_id;
362};
363
364/*
365 * Structure for per-NAPI config
366 */
367struct napi_config {
368 u64 gro_flush_timeout;
369 u64 irq_suspend_timeout;
370 u32 defer_hard_irqs;
371 cpumask_t affinity_mask;
372 unsigned int napi_id;
373};
374
375/*
376 * Structure for NAPI scheduling similar to tasklet but with weighting
377 */
378struct napi_struct {
379 /* The poll_list must only be managed by the entity which
380 * changes the state of the NAPI_STATE_SCHED bit. This means
381 * whoever atomically sets that bit can add this napi_struct
382 * to the per-CPU poll_list, and whoever clears that bit
383 * can remove from the list right before clearing the bit.
384 */
385 struct list_head poll_list;
386
387 unsigned long state;
388 int weight;
389 u32 defer_hard_irqs_count;
390 int (*poll)(struct napi_struct *, int);
391#ifdef CONFIG_NETPOLL
392 /* CPU actively polling if netpoll is configured */
393 int poll_owner;
394#endif
395 /* CPU on which NAPI has been scheduled for processing */
396 int list_owner;
397 struct net_device *dev;
398 struct sk_buff *skb;
399 struct gro_node gro;
400 struct hrtimer timer;
401 /* all fields past this point are write-protected by netdev_lock */
402 struct task_struct *thread;
403 unsigned long gro_flush_timeout;
404 unsigned long irq_suspend_timeout;
405 u32 defer_hard_irqs;
406 /* control-path-only fields follow */
407 u32 napi_id;
408 struct list_head dev_list;
409 struct hlist_node napi_hash_node;
410 int irq;
411 struct irq_affinity_notify notify;
412 int napi_rmap_idx;
413 int index;
414 struct napi_config *config;
415};
416
417enum {
418 NAPI_STATE_SCHED, /* Poll is scheduled */
419 NAPI_STATE_MISSED, /* reschedule a napi */
420 NAPI_STATE_DISABLE, /* Disable pending */
421 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
422 NAPI_STATE_LISTED, /* NAPI added to system lists */
423 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
424 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
425 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
426 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
427 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
428 NAPI_STATE_HAS_NOTIFIER, /* Napi has an IRQ notifier */
429};
430
431enum {
432 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
433 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
434 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
435 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
436 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
437 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
438 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
439 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
440 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
441 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
442 NAPIF_STATE_HAS_NOTIFIER = BIT(NAPI_STATE_HAS_NOTIFIER),
443};
444
445enum gro_result {
446 GRO_MERGED,
447 GRO_MERGED_FREE,
448 GRO_HELD,
449 GRO_NORMAL,
450 GRO_CONSUMED,
451};
452typedef enum gro_result gro_result_t;
453
454/*
455 * enum rx_handler_result - Possible return values for rx_handlers.
456 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
457 * further.
458 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
459 * case skb->dev was changed by rx_handler.
460 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
461 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
462 *
463 * rx_handlers are functions called from inside __netif_receive_skb(), to do
464 * special processing of the skb, prior to delivery to protocol handlers.
465 *
466 * Currently, a net_device can only have a single rx_handler registered. Trying
467 * to register a second rx_handler will return -EBUSY.
468 *
469 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
470 * To unregister a rx_handler on a net_device, use
471 * netdev_rx_handler_unregister().
472 *
473 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
474 * do with the skb.
475 *
476 * If the rx_handler consumed the skb in some way, it should return
477 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
478 * the skb to be delivered in some other way.
479 *
480 * If the rx_handler changed skb->dev, to divert the skb to another
481 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
482 * new device will be called if it exists.
483 *
484 * If the rx_handler decides the skb should be ignored, it should return
485 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
486 * are registered on exact device (ptype->dev == skb->dev).
487 *
488 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
489 * delivered, it should return RX_HANDLER_PASS.
490 *
491 * A device without a registered rx_handler will behave as if rx_handler
492 * returned RX_HANDLER_PASS.
493 */
494
495enum rx_handler_result {
496 RX_HANDLER_CONSUMED,
497 RX_HANDLER_ANOTHER,
498 RX_HANDLER_EXACT,
499 RX_HANDLER_PASS,
500};
501typedef enum rx_handler_result rx_handler_result_t;
502typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
503
504void __napi_schedule(struct napi_struct *n);
505void __napi_schedule_irqoff(struct napi_struct *n);
506
507static inline bool napi_disable_pending(struct napi_struct *n)
508{
509 return test_bit(NAPI_STATE_DISABLE, &n->state);
510}
511
512static inline bool napi_prefer_busy_poll(struct napi_struct *n)
513{
514 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
515}
516
517/**
518 * napi_is_scheduled - test if NAPI is scheduled
519 * @n: NAPI context
520 *
521 * This check is "best-effort". With no locking implemented,
522 * a NAPI can be scheduled or terminate right after this check
523 * and produce not precise results.
524 *
525 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
526 * should not be used normally and napi_schedule should be
527 * used instead.
528 *
529 * Use only if the driver really needs to check if a NAPI
530 * is scheduled for example in the context of delayed timer
531 * that can be skipped if a NAPI is already scheduled.
532 *
533 * Return: True if NAPI is scheduled, False otherwise.
534 */
535static inline bool napi_is_scheduled(struct napi_struct *n)
536{
537 return test_bit(NAPI_STATE_SCHED, &n->state);
538}
539
540bool napi_schedule_prep(struct napi_struct *n);
541
542/**
543 * napi_schedule - schedule NAPI poll
544 * @n: NAPI context
545 *
546 * Schedule NAPI poll routine to be called if it is not already
547 * running.
548 * Return: true if we schedule a NAPI or false if not.
549 * Refer to napi_schedule_prep() for additional reason on why
550 * a NAPI might not be scheduled.
551 */
552static inline bool napi_schedule(struct napi_struct *n)
553{
554 if (napi_schedule_prep(n)) {
555 __napi_schedule(n);
556 return true;
557 }
558
559 return false;
560}
561
562/**
563 * napi_schedule_irqoff - schedule NAPI poll
564 * @n: NAPI context
565 *
566 * Variant of napi_schedule(), assuming hard irqs are masked.
567 */
568static inline void napi_schedule_irqoff(struct napi_struct *n)
569{
570 if (napi_schedule_prep(n))
571 __napi_schedule_irqoff(n);
572}
573
574/**
575 * napi_complete_done - NAPI processing complete
576 * @n: NAPI context
577 * @work_done: number of packets processed
578 *
579 * Mark NAPI processing as complete. Should only be called if poll budget
580 * has not been completely consumed.
581 * Prefer over napi_complete().
582 * Return: false if device should avoid rearming interrupts.
583 */
584bool napi_complete_done(struct napi_struct *n, int work_done);
585
586static inline bool napi_complete(struct napi_struct *n)
587{
588 return napi_complete_done(n, 0);
589}
590
591int dev_set_threaded(struct net_device *dev, bool threaded);
592
593void napi_disable(struct napi_struct *n);
594void napi_disable_locked(struct napi_struct *n);
595
596void napi_enable(struct napi_struct *n);
597void napi_enable_locked(struct napi_struct *n);
598
599/**
600 * napi_synchronize - wait until NAPI is not running
601 * @n: NAPI context
602 *
603 * Wait until NAPI is done being scheduled on this context.
604 * Waits till any outstanding processing completes but
605 * does not disable future activations.
606 */
607static inline void napi_synchronize(const struct napi_struct *n)
608{
609 if (IS_ENABLED(CONFIG_SMP))
610 while (test_bit(NAPI_STATE_SCHED, &n->state))
611 msleep(1);
612 else
613 barrier();
614}
615
616/**
617 * napi_if_scheduled_mark_missed - if napi is running, set the
618 * NAPIF_STATE_MISSED
619 * @n: NAPI context
620 *
621 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
622 * NAPI is scheduled.
623 **/
624static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
625{
626 unsigned long val, new;
627
628 val = READ_ONCE(n->state);
629 do {
630 if (val & NAPIF_STATE_DISABLE)
631 return true;
632
633 if (!(val & NAPIF_STATE_SCHED))
634 return false;
635
636 new = val | NAPIF_STATE_MISSED;
637 } while (!try_cmpxchg(&n->state, &val, new));
638
639 return true;
640}
641
642enum netdev_queue_state_t {
643 __QUEUE_STATE_DRV_XOFF,
644 __QUEUE_STATE_STACK_XOFF,
645 __QUEUE_STATE_FROZEN,
646};
647
648#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
649#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
650#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
651
652#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
653#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
654 QUEUE_STATE_FROZEN)
655#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
656 QUEUE_STATE_FROZEN)
657
658/*
659 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
660 * netif_tx_* functions below are used to manipulate this flag. The
661 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
662 * queue independently. The netif_xmit_*stopped functions below are called
663 * to check if the queue has been stopped by the driver or stack (either
664 * of the XOFF bits are set in the state). Drivers should not need to call
665 * netif_xmit*stopped functions, they should only be using netif_tx_*.
666 */
667
668struct netdev_queue {
669/*
670 * read-mostly part
671 */
672 struct net_device *dev;
673 netdevice_tracker dev_tracker;
674
675 struct Qdisc __rcu *qdisc;
676 struct Qdisc __rcu *qdisc_sleeping;
677#ifdef CONFIG_SYSFS
678 struct kobject kobj;
679 const struct attribute_group **groups;
680#endif
681 unsigned long tx_maxrate;
682 /*
683 * Number of TX timeouts for this queue
684 * (/sys/class/net/DEV/Q/trans_timeout)
685 */
686 atomic_long_t trans_timeout;
687
688 /* Subordinate device that the queue has been assigned to */
689 struct net_device *sb_dev;
690#ifdef CONFIG_XDP_SOCKETS
691 /* "ops protected", see comment about net_device::lock */
692 struct xsk_buff_pool *pool;
693#endif
694
695/*
696 * write-mostly part
697 */
698#ifdef CONFIG_BQL
699 struct dql dql;
700#endif
701 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
702 int xmit_lock_owner;
703 /*
704 * Time (in jiffies) of last Tx
705 */
706 unsigned long trans_start;
707
708 unsigned long state;
709
710/*
711 * slow- / control-path part
712 */
713 /* NAPI instance for the queue
714 * "ops protected", see comment about net_device::lock
715 */
716 struct napi_struct *napi;
717
718#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
719 int numa_node;
720#endif
721} ____cacheline_aligned_in_smp;
722
723extern int sysctl_fb_tunnels_only_for_init_net;
724extern int sysctl_devconf_inherit_init_net;
725
726/*
727 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
728 * == 1 : For initns only
729 * == 2 : For none.
730 */
731static inline bool net_has_fallback_tunnels(const struct net *net)
732{
733#if IS_ENABLED(CONFIG_SYSCTL)
734 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
735
736 return !fb_tunnels_only_for_init_net ||
737 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
738#else
739 return true;
740#endif
741}
742
743static inline int net_inherit_devconf(void)
744{
745#if IS_ENABLED(CONFIG_SYSCTL)
746 return READ_ONCE(sysctl_devconf_inherit_init_net);
747#else
748 return 0;
749#endif
750}
751
752static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
753{
754#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
755 return q->numa_node;
756#else
757 return NUMA_NO_NODE;
758#endif
759}
760
761static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
762{
763#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
764 q->numa_node = node;
765#endif
766}
767
768#ifdef CONFIG_RFS_ACCEL
769bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
770 u16 filter_id);
771#endif
772
773/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
774enum xps_map_type {
775 XPS_CPUS = 0,
776 XPS_RXQS,
777 XPS_MAPS_MAX,
778};
779
780#ifdef CONFIG_XPS
781/*
782 * This structure holds an XPS map which can be of variable length. The
783 * map is an array of queues.
784 */
785struct xps_map {
786 unsigned int len;
787 unsigned int alloc_len;
788 struct rcu_head rcu;
789 u16 queues[];
790};
791#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
792#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
793 - sizeof(struct xps_map)) / sizeof(u16))
794
795/*
796 * This structure holds all XPS maps for device. Maps are indexed by CPU.
797 *
798 * We keep track of the number of cpus/rxqs used when the struct is allocated,
799 * in nr_ids. This will help not accessing out-of-bound memory.
800 *
801 * We keep track of the number of traffic classes used when the struct is
802 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
803 * not crossing its upper bound, as the original dev->num_tc can be updated in
804 * the meantime.
805 */
806struct xps_dev_maps {
807 struct rcu_head rcu;
808 unsigned int nr_ids;
809 s16 num_tc;
810 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
811};
812
813#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
814 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
815
816#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
817 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
818
819#endif /* CONFIG_XPS */
820
821#define TC_MAX_QUEUE 16
822#define TC_BITMASK 15
823/* HW offloaded queuing disciplines txq count and offset maps */
824struct netdev_tc_txq {
825 u16 count;
826 u16 offset;
827};
828
829#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
830/*
831 * This structure is to hold information about the device
832 * configured to run FCoE protocol stack.
833 */
834struct netdev_fcoe_hbainfo {
835 char manufacturer[64];
836 char serial_number[64];
837 char hardware_version[64];
838 char driver_version[64];
839 char optionrom_version[64];
840 char firmware_version[64];
841 char model[256];
842 char model_description[256];
843};
844#endif
845
846#define MAX_PHYS_ITEM_ID_LEN 32
847
848/* This structure holds a unique identifier to identify some
849 * physical item (port for example) used by a netdevice.
850 */
851struct netdev_phys_item_id {
852 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
853 unsigned char id_len;
854};
855
856static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
857 struct netdev_phys_item_id *b)
858{
859 return a->id_len == b->id_len &&
860 memcmp(a->id, b->id, a->id_len) == 0;
861}
862
863typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
864 struct sk_buff *skb,
865 struct net_device *sb_dev);
866
867enum net_device_path_type {
868 DEV_PATH_ETHERNET = 0,
869 DEV_PATH_VLAN,
870 DEV_PATH_BRIDGE,
871 DEV_PATH_PPPOE,
872 DEV_PATH_DSA,
873 DEV_PATH_MTK_WDMA,
874};
875
876struct net_device_path {
877 enum net_device_path_type type;
878 const struct net_device *dev;
879 union {
880 struct {
881 u16 id;
882 __be16 proto;
883 u8 h_dest[ETH_ALEN];
884 } encap;
885 struct {
886 enum {
887 DEV_PATH_BR_VLAN_KEEP,
888 DEV_PATH_BR_VLAN_TAG,
889 DEV_PATH_BR_VLAN_UNTAG,
890 DEV_PATH_BR_VLAN_UNTAG_HW,
891 } vlan_mode;
892 u16 vlan_id;
893 __be16 vlan_proto;
894 } bridge;
895 struct {
896 int port;
897 u16 proto;
898 } dsa;
899 struct {
900 u8 wdma_idx;
901 u8 queue;
902 u16 wcid;
903 u8 bss;
904 u8 amsdu;
905 } mtk_wdma;
906 };
907};
908
909#define NET_DEVICE_PATH_STACK_MAX 5
910#define NET_DEVICE_PATH_VLAN_MAX 2
911
912struct net_device_path_stack {
913 int num_paths;
914 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
915};
916
917struct net_device_path_ctx {
918 const struct net_device *dev;
919 u8 daddr[ETH_ALEN];
920
921 int num_vlans;
922 struct {
923 u16 id;
924 __be16 proto;
925 } vlan[NET_DEVICE_PATH_VLAN_MAX];
926};
927
928enum tc_setup_type {
929 TC_QUERY_CAPS,
930 TC_SETUP_QDISC_MQPRIO,
931 TC_SETUP_CLSU32,
932 TC_SETUP_CLSFLOWER,
933 TC_SETUP_CLSMATCHALL,
934 TC_SETUP_CLSBPF,
935 TC_SETUP_BLOCK,
936 TC_SETUP_QDISC_CBS,
937 TC_SETUP_QDISC_RED,
938 TC_SETUP_QDISC_PRIO,
939 TC_SETUP_QDISC_MQ,
940 TC_SETUP_QDISC_ETF,
941 TC_SETUP_ROOT_QDISC,
942 TC_SETUP_QDISC_GRED,
943 TC_SETUP_QDISC_TAPRIO,
944 TC_SETUP_FT,
945 TC_SETUP_QDISC_ETS,
946 TC_SETUP_QDISC_TBF,
947 TC_SETUP_QDISC_FIFO,
948 TC_SETUP_QDISC_HTB,
949 TC_SETUP_ACT,
950};
951
952/* These structures hold the attributes of bpf state that are being passed
953 * to the netdevice through the bpf op.
954 */
955enum bpf_netdev_command {
956 /* Set or clear a bpf program used in the earliest stages of packet
957 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
958 * is responsible for calling bpf_prog_put on any old progs that are
959 * stored. In case of error, the callee need not release the new prog
960 * reference, but on success it takes ownership and must bpf_prog_put
961 * when it is no longer used.
962 */
963 XDP_SETUP_PROG,
964 XDP_SETUP_PROG_HW,
965 /* BPF program for offload callbacks, invoked at program load time. */
966 BPF_OFFLOAD_MAP_ALLOC,
967 BPF_OFFLOAD_MAP_FREE,
968 XDP_SETUP_XSK_POOL,
969};
970
971struct bpf_prog_offload_ops;
972struct netlink_ext_ack;
973struct xdp_umem;
974struct xdp_dev_bulk_queue;
975struct bpf_xdp_link;
976
977enum bpf_xdp_mode {
978 XDP_MODE_SKB = 0,
979 XDP_MODE_DRV = 1,
980 XDP_MODE_HW = 2,
981 __MAX_XDP_MODE
982};
983
984struct bpf_xdp_entity {
985 struct bpf_prog *prog;
986 struct bpf_xdp_link *link;
987};
988
989struct netdev_bpf {
990 enum bpf_netdev_command command;
991 union {
992 /* XDP_SETUP_PROG */
993 struct {
994 u32 flags;
995 struct bpf_prog *prog;
996 struct netlink_ext_ack *extack;
997 };
998 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
999 struct {
1000 struct bpf_offloaded_map *offmap;
1001 };
1002 /* XDP_SETUP_XSK_POOL */
1003 struct {
1004 struct xsk_buff_pool *pool;
1005 u16 queue_id;
1006 } xsk;
1007 };
1008};
1009
1010/* Flags for ndo_xsk_wakeup. */
1011#define XDP_WAKEUP_RX (1 << 0)
1012#define XDP_WAKEUP_TX (1 << 1)
1013
1014#ifdef CONFIG_XFRM_OFFLOAD
1015struct xfrmdev_ops {
1016 int (*xdo_dev_state_add)(struct net_device *dev,
1017 struct xfrm_state *x,
1018 struct netlink_ext_ack *extack);
1019 void (*xdo_dev_state_delete)(struct net_device *dev,
1020 struct xfrm_state *x);
1021 void (*xdo_dev_state_free)(struct net_device *dev,
1022 struct xfrm_state *x);
1023 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1024 struct xfrm_state *x);
1025 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1026 void (*xdo_dev_state_update_stats) (struct xfrm_state *x);
1027 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1028 void (*xdo_dev_policy_delete) (struct xfrm_policy *x);
1029 void (*xdo_dev_policy_free) (struct xfrm_policy *x);
1030};
1031#endif
1032
1033struct dev_ifalias {
1034 struct rcu_head rcuhead;
1035 char ifalias[];
1036};
1037
1038struct devlink;
1039struct tlsdev_ops;
1040
1041struct netdev_net_notifier {
1042 struct list_head list;
1043 struct notifier_block *nb;
1044};
1045
1046/*
1047 * This structure defines the management hooks for network devices.
1048 * The following hooks can be defined; unless noted otherwise, they are
1049 * optional and can be filled with a null pointer.
1050 *
1051 * int (*ndo_init)(struct net_device *dev);
1052 * This function is called once when a network device is registered.
1053 * The network device can use this for any late stage initialization
1054 * or semantic validation. It can fail with an error code which will
1055 * be propagated back to register_netdev.
1056 *
1057 * void (*ndo_uninit)(struct net_device *dev);
1058 * This function is called when device is unregistered or when registration
1059 * fails. It is not called if init fails.
1060 *
1061 * int (*ndo_open)(struct net_device *dev);
1062 * This function is called when a network device transitions to the up
1063 * state.
1064 *
1065 * int (*ndo_stop)(struct net_device *dev);
1066 * This function is called when a network device transitions to the down
1067 * state.
1068 *
1069 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev);
1071 * Called when a packet needs to be transmitted.
1072 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1073 * the queue before that can happen; it's for obsolete devices and weird
1074 * corner cases, but the stack really does a non-trivial amount
1075 * of useless work if you return NETDEV_TX_BUSY.
1076 * Required; cannot be NULL.
1077 *
1078 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1079 * struct net_device *dev
1080 * netdev_features_t features);
1081 * Called by core transmit path to determine if device is capable of
1082 * performing offload operations on a given packet. This is to give
1083 * the device an opportunity to implement any restrictions that cannot
1084 * be otherwise expressed by feature flags. The check is called with
1085 * the set of features that the stack has calculated and it returns
1086 * those the driver believes to be appropriate.
1087 *
1088 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1089 * struct net_device *sb_dev);
1090 * Called to decide which queue to use when device supports multiple
1091 * transmit queues.
1092 *
1093 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1094 * This function is called to allow device receiver to make
1095 * changes to configuration when multicast or promiscuous is enabled.
1096 *
1097 * void (*ndo_set_rx_mode)(struct net_device *dev);
1098 * This function is called device changes address list filtering.
1099 * If driver handles unicast address filtering, it should set
1100 * IFF_UNICAST_FLT in its priv_flags.
1101 *
1102 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1103 * This function is called when the Media Access Control address
1104 * needs to be changed. If this interface is not defined, the
1105 * MAC address can not be changed.
1106 *
1107 * int (*ndo_validate_addr)(struct net_device *dev);
1108 * Test if Media Access Control address is valid for the device.
1109 *
1110 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1111 * Old-style ioctl entry point. This is used internally by the
1112 * ieee802154 subsystem but is no longer called by the device
1113 * ioctl handler.
1114 *
1115 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1116 * Used by the bonding driver for its device specific ioctls:
1117 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1118 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1119 *
1120 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1121 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1122 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1123 *
1124 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1125 * Used to set network devices bus interface parameters. This interface
1126 * is retained for legacy reasons; new devices should use the bus
1127 * interface (PCI) for low level management.
1128 *
1129 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1130 * Called when a user wants to change the Maximum Transfer Unit
1131 * of a device.
1132 *
1133 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1134 * Callback used when the transmitter has not made any progress
1135 * for dev->watchdog ticks.
1136 *
1137 * void (*ndo_get_stats64)(struct net_device *dev,
1138 * struct rtnl_link_stats64 *storage);
1139 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140 * Called when a user wants to get the network device usage
1141 * statistics. Drivers must do one of the following:
1142 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1143 * rtnl_link_stats64 structure passed by the caller.
1144 * 2. Define @ndo_get_stats to update a net_device_stats structure
1145 * (which should normally be dev->stats) and return a pointer to
1146 * it. The structure may be changed asynchronously only if each
1147 * field is written atomically.
1148 * 3. Update dev->stats asynchronously and atomically, and define
1149 * neither operation.
1150 *
1151 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1152 * Return true if this device supports offload stats of this attr_id.
1153 *
1154 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1155 * void *attr_data)
1156 * Get statistics for offload operations by attr_id. Write it into the
1157 * attr_data pointer.
1158 *
1159 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1160 * If device supports VLAN filtering this function is called when a
1161 * VLAN id is registered.
1162 *
1163 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1164 * If device supports VLAN filtering this function is called when a
1165 * VLAN id is unregistered.
1166 *
1167 * void (*ndo_poll_controller)(struct net_device *dev);
1168 *
1169 * SR-IOV management functions.
1170 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1171 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1172 * u8 qos, __be16 proto);
1173 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1174 * int max_tx_rate);
1175 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1176 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1177 * int (*ndo_get_vf_config)(struct net_device *dev,
1178 * int vf, struct ifla_vf_info *ivf);
1179 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1180 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1181 * struct nlattr *port[]);
1182 *
1183 * Enable or disable the VF ability to query its RSS Redirection Table and
1184 * Hash Key. This is needed since on some devices VF share this information
1185 * with PF and querying it may introduce a theoretical security risk.
1186 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1187 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1188 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1189 * void *type_data);
1190 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1191 * This is always called from the stack with the rtnl lock held and netif
1192 * tx queues stopped. This allows the netdevice to perform queue
1193 * management safely.
1194 *
1195 * Fiber Channel over Ethernet (FCoE) offload functions.
1196 * int (*ndo_fcoe_enable)(struct net_device *dev);
1197 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1198 * so the underlying device can perform whatever needed configuration or
1199 * initialization to support acceleration of FCoE traffic.
1200 *
1201 * int (*ndo_fcoe_disable)(struct net_device *dev);
1202 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1203 * so the underlying device can perform whatever needed clean-ups to
1204 * stop supporting acceleration of FCoE traffic.
1205 *
1206 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1207 * struct scatterlist *sgl, unsigned int sgc);
1208 * Called when the FCoE Initiator wants to initialize an I/O that
1209 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1210 * perform necessary setup and returns 1 to indicate the device is set up
1211 * successfully to perform DDP on this I/O, otherwise this returns 0.
1212 *
1213 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1214 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1215 * indicated by the FC exchange id 'xid', so the underlying device can
1216 * clean up and reuse resources for later DDP requests.
1217 *
1218 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1219 * struct scatterlist *sgl, unsigned int sgc);
1220 * Called when the FCoE Target wants to initialize an I/O that
1221 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1222 * perform necessary setup and returns 1 to indicate the device is set up
1223 * successfully to perform DDP on this I/O, otherwise this returns 0.
1224 *
1225 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1226 * struct netdev_fcoe_hbainfo *hbainfo);
1227 * Called when the FCoE Protocol stack wants information on the underlying
1228 * device. This information is utilized by the FCoE protocol stack to
1229 * register attributes with Fiber Channel management service as per the
1230 * FC-GS Fabric Device Management Information(FDMI) specification.
1231 *
1232 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1233 * Called when the underlying device wants to override default World Wide
1234 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1235 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1236 * protocol stack to use.
1237 *
1238 * RFS acceleration.
1239 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1240 * u16 rxq_index, u32 flow_id);
1241 * Set hardware filter for RFS. rxq_index is the target queue index;
1242 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1243 * Return the filter ID on success, or a negative error code.
1244 *
1245 * Slave management functions (for bridge, bonding, etc).
1246 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1247 * Called to make another netdev an underling.
1248 *
1249 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1250 * Called to release previously enslaved netdev.
1251 *
1252 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1253 * struct sk_buff *skb,
1254 * bool all_slaves);
1255 * Get the xmit slave of master device. If all_slaves is true, function
1256 * assume all the slaves can transmit.
1257 *
1258 * Feature/offload setting functions.
1259 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1260 * netdev_features_t features);
1261 * Adjusts the requested feature flags according to device-specific
1262 * constraints, and returns the resulting flags. Must not modify
1263 * the device state.
1264 *
1265 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1266 * Called to update device configuration to new features. Passed
1267 * feature set might be less than what was returned by ndo_fix_features()).
1268 * Must return >0 or -errno if it changed dev->features itself.
1269 *
1270 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1271 * struct net_device *dev,
1272 * const unsigned char *addr, u16 vid, u16 flags,
1273 * bool *notified, struct netlink_ext_ack *extack);
1274 * Adds an FDB entry to dev for addr.
1275 * Callee shall set *notified to true if it sent any appropriate
1276 * notification(s). Otherwise core will send a generic one.
1277 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1278 * struct net_device *dev,
1279 * const unsigned char *addr, u16 vid
1280 * bool *notified, struct netlink_ext_ack *extack);
1281 * Deletes the FDB entry from dev corresponding to addr.
1282 * Callee shall set *notified to true if it sent any appropriate
1283 * notification(s). Otherwise core will send a generic one.
1284 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1285 * struct netlink_ext_ack *extack);
1286 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1287 * struct net_device *dev, struct net_device *filter_dev,
1288 * int *idx)
1289 * Used to add FDB entries to dump requests. Implementers should add
1290 * entries to skb and update idx with the number of entries.
1291 *
1292 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1293 * u16 nlmsg_flags, struct netlink_ext_ack *extack);
1294 * Adds an MDB entry to dev.
1295 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1296 * struct netlink_ext_ack *extack);
1297 * Deletes the MDB entry from dev.
1298 * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1299 * struct netlink_ext_ack *extack);
1300 * Bulk deletes MDB entries from dev.
1301 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1302 * struct netlink_callback *cb);
1303 * Dumps MDB entries from dev. The first argument (marker) in the netlink
1304 * callback is used by core rtnetlink code.
1305 *
1306 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1307 * u16 flags, struct netlink_ext_ack *extack)
1308 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1309 * struct net_device *dev, u32 filter_mask,
1310 * int nlflags)
1311 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1312 * u16 flags);
1313 *
1314 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1315 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1316 * which do not represent real hardware may define this to allow their
1317 * userspace components to manage their virtual carrier state. Devices
1318 * that determine carrier state from physical hardware properties (eg
1319 * network cables) or protocol-dependent mechanisms (eg
1320 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1321 *
1322 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1323 * struct netdev_phys_item_id *ppid);
1324 * Called to get ID of physical port of this device. If driver does
1325 * not implement this, it is assumed that the hw is not able to have
1326 * multiple net devices on single physical port.
1327 *
1328 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1329 * struct netdev_phys_item_id *ppid)
1330 * Called to get the parent ID of the physical port of this device.
1331 *
1332 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1333 * struct net_device *dev)
1334 * Called by upper layer devices to accelerate switching or other
1335 * station functionality into hardware. 'pdev is the lowerdev
1336 * to use for the offload and 'dev' is the net device that will
1337 * back the offload. Returns a pointer to the private structure
1338 * the upper layer will maintain.
1339 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1340 * Called by upper layer device to delete the station created
1341 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1342 * the station and priv is the structure returned by the add
1343 * operation.
1344 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1345 * int queue_index, u32 maxrate);
1346 * Called when a user wants to set a max-rate limitation of specific
1347 * TX queue.
1348 * int (*ndo_get_iflink)(const struct net_device *dev);
1349 * Called to get the iflink value of this device.
1350 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1351 * This function is used to get egress tunnel information for given skb.
1352 * This is useful for retrieving outer tunnel header parameters while
1353 * sampling packet.
1354 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1355 * This function is used to specify the headroom that the skb must
1356 * consider when allocation skb during packet reception. Setting
1357 * appropriate rx headroom value allows avoiding skb head copy on
1358 * forward. Setting a negative value resets the rx headroom to the
1359 * default value.
1360 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1361 * This function is used to set or query state related to XDP on the
1362 * netdevice and manage BPF offload. See definition of
1363 * enum bpf_netdev_command for details.
1364 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1365 * u32 flags);
1366 * This function is used to submit @n XDP packets for transmit on a
1367 * netdevice. Returns number of frames successfully transmitted, frames
1368 * that got dropped are freed/returned via xdp_return_frame().
1369 * Returns negative number, means general error invoking ndo, meaning
1370 * no frames were xmit'ed and core-caller will free all frames.
1371 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1372 * struct xdp_buff *xdp);
1373 * Get the xmit slave of master device based on the xdp_buff.
1374 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1375 * This function is used to wake up the softirq, ksoftirqd or kthread
1376 * responsible for sending and/or receiving packets on a specific
1377 * queue id bound to an AF_XDP socket. The flags field specifies if
1378 * only RX, only Tx, or both should be woken up using the flags
1379 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1380 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1381 * int cmd);
1382 * Add, change, delete or get information on an IPv4 tunnel.
1383 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1384 * If a device is paired with a peer device, return the peer instance.
1385 * The caller must be under RCU read context.
1386 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1387 * Get the forwarding path to reach the real device from the HW destination address
1388 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1389 * const struct skb_shared_hwtstamps *hwtstamps,
1390 * bool cycles);
1391 * Get hardware timestamp based on normal/adjustable time or free running
1392 * cycle counter. This function is required if physical clock supports a
1393 * free running cycle counter.
1394 *
1395 * int (*ndo_hwtstamp_get)(struct net_device *dev,
1396 * struct kernel_hwtstamp_config *kernel_config);
1397 * Get the currently configured hardware timestamping parameters for the
1398 * NIC device.
1399 *
1400 * int (*ndo_hwtstamp_set)(struct net_device *dev,
1401 * struct kernel_hwtstamp_config *kernel_config,
1402 * struct netlink_ext_ack *extack);
1403 * Change the hardware timestamping parameters for NIC device.
1404 */
1405struct net_device_ops {
1406 int (*ndo_init)(struct net_device *dev);
1407 void (*ndo_uninit)(struct net_device *dev);
1408 int (*ndo_open)(struct net_device *dev);
1409 int (*ndo_stop)(struct net_device *dev);
1410 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1411 struct net_device *dev);
1412 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1413 struct net_device *dev,
1414 netdev_features_t features);
1415 u16 (*ndo_select_queue)(struct net_device *dev,
1416 struct sk_buff *skb,
1417 struct net_device *sb_dev);
1418 void (*ndo_change_rx_flags)(struct net_device *dev,
1419 int flags);
1420 void (*ndo_set_rx_mode)(struct net_device *dev);
1421 int (*ndo_set_mac_address)(struct net_device *dev,
1422 void *addr);
1423 int (*ndo_validate_addr)(struct net_device *dev);
1424 int (*ndo_do_ioctl)(struct net_device *dev,
1425 struct ifreq *ifr, int cmd);
1426 int (*ndo_eth_ioctl)(struct net_device *dev,
1427 struct ifreq *ifr, int cmd);
1428 int (*ndo_siocbond)(struct net_device *dev,
1429 struct ifreq *ifr, int cmd);
1430 int (*ndo_siocwandev)(struct net_device *dev,
1431 struct if_settings *ifs);
1432 int (*ndo_siocdevprivate)(struct net_device *dev,
1433 struct ifreq *ifr,
1434 void __user *data, int cmd);
1435 int (*ndo_set_config)(struct net_device *dev,
1436 struct ifmap *map);
1437 int (*ndo_change_mtu)(struct net_device *dev,
1438 int new_mtu);
1439 int (*ndo_neigh_setup)(struct net_device *dev,
1440 struct neigh_parms *);
1441 void (*ndo_tx_timeout) (struct net_device *dev,
1442 unsigned int txqueue);
1443
1444 void (*ndo_get_stats64)(struct net_device *dev,
1445 struct rtnl_link_stats64 *storage);
1446 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1447 int (*ndo_get_offload_stats)(int attr_id,
1448 const struct net_device *dev,
1449 void *attr_data);
1450 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1451
1452 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1453 __be16 proto, u16 vid);
1454 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1455 __be16 proto, u16 vid);
1456#ifdef CONFIG_NET_POLL_CONTROLLER
1457 void (*ndo_poll_controller)(struct net_device *dev);
1458 int (*ndo_netpoll_setup)(struct net_device *dev);
1459 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1460#endif
1461 int (*ndo_set_vf_mac)(struct net_device *dev,
1462 int queue, u8 *mac);
1463 int (*ndo_set_vf_vlan)(struct net_device *dev,
1464 int queue, u16 vlan,
1465 u8 qos, __be16 proto);
1466 int (*ndo_set_vf_rate)(struct net_device *dev,
1467 int vf, int min_tx_rate,
1468 int max_tx_rate);
1469 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1470 int vf, bool setting);
1471 int (*ndo_set_vf_trust)(struct net_device *dev,
1472 int vf, bool setting);
1473 int (*ndo_get_vf_config)(struct net_device *dev,
1474 int vf,
1475 struct ifla_vf_info *ivf);
1476 int (*ndo_set_vf_link_state)(struct net_device *dev,
1477 int vf, int link_state);
1478 int (*ndo_get_vf_stats)(struct net_device *dev,
1479 int vf,
1480 struct ifla_vf_stats
1481 *vf_stats);
1482 int (*ndo_set_vf_port)(struct net_device *dev,
1483 int vf,
1484 struct nlattr *port[]);
1485 int (*ndo_get_vf_port)(struct net_device *dev,
1486 int vf, struct sk_buff *skb);
1487 int (*ndo_get_vf_guid)(struct net_device *dev,
1488 int vf,
1489 struct ifla_vf_guid *node_guid,
1490 struct ifla_vf_guid *port_guid);
1491 int (*ndo_set_vf_guid)(struct net_device *dev,
1492 int vf, u64 guid,
1493 int guid_type);
1494 int (*ndo_set_vf_rss_query_en)(
1495 struct net_device *dev,
1496 int vf, bool setting);
1497 int (*ndo_setup_tc)(struct net_device *dev,
1498 enum tc_setup_type type,
1499 void *type_data);
1500#if IS_ENABLED(CONFIG_FCOE)
1501 int (*ndo_fcoe_enable)(struct net_device *dev);
1502 int (*ndo_fcoe_disable)(struct net_device *dev);
1503 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1504 u16 xid,
1505 struct scatterlist *sgl,
1506 unsigned int sgc);
1507 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1508 u16 xid);
1509 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1510 u16 xid,
1511 struct scatterlist *sgl,
1512 unsigned int sgc);
1513 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1514 struct netdev_fcoe_hbainfo *hbainfo);
1515#endif
1516
1517#if IS_ENABLED(CONFIG_LIBFCOE)
1518#define NETDEV_FCOE_WWNN 0
1519#define NETDEV_FCOE_WWPN 1
1520 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1521 u64 *wwn, int type);
1522#endif
1523
1524#ifdef CONFIG_RFS_ACCEL
1525 int (*ndo_rx_flow_steer)(struct net_device *dev,
1526 const struct sk_buff *skb,
1527 u16 rxq_index,
1528 u32 flow_id);
1529#endif
1530 int (*ndo_add_slave)(struct net_device *dev,
1531 struct net_device *slave_dev,
1532 struct netlink_ext_ack *extack);
1533 int (*ndo_del_slave)(struct net_device *dev,
1534 struct net_device *slave_dev);
1535 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1536 struct sk_buff *skb,
1537 bool all_slaves);
1538 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1539 struct sock *sk);
1540 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1541 netdev_features_t features);
1542 int (*ndo_set_features)(struct net_device *dev,
1543 netdev_features_t features);
1544 int (*ndo_neigh_construct)(struct net_device *dev,
1545 struct neighbour *n);
1546 void (*ndo_neigh_destroy)(struct net_device *dev,
1547 struct neighbour *n);
1548
1549 int (*ndo_fdb_add)(struct ndmsg *ndm,
1550 struct nlattr *tb[],
1551 struct net_device *dev,
1552 const unsigned char *addr,
1553 u16 vid,
1554 u16 flags,
1555 bool *notified,
1556 struct netlink_ext_ack *extack);
1557 int (*ndo_fdb_del)(struct ndmsg *ndm,
1558 struct nlattr *tb[],
1559 struct net_device *dev,
1560 const unsigned char *addr,
1561 u16 vid,
1562 bool *notified,
1563 struct netlink_ext_ack *extack);
1564 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1565 struct net_device *dev,
1566 struct netlink_ext_ack *extack);
1567 int (*ndo_fdb_dump)(struct sk_buff *skb,
1568 struct netlink_callback *cb,
1569 struct net_device *dev,
1570 struct net_device *filter_dev,
1571 int *idx);
1572 int (*ndo_fdb_get)(struct sk_buff *skb,
1573 struct nlattr *tb[],
1574 struct net_device *dev,
1575 const unsigned char *addr,
1576 u16 vid, u32 portid, u32 seq,
1577 struct netlink_ext_ack *extack);
1578 int (*ndo_mdb_add)(struct net_device *dev,
1579 struct nlattr *tb[],
1580 u16 nlmsg_flags,
1581 struct netlink_ext_ack *extack);
1582 int (*ndo_mdb_del)(struct net_device *dev,
1583 struct nlattr *tb[],
1584 struct netlink_ext_ack *extack);
1585 int (*ndo_mdb_del_bulk)(struct net_device *dev,
1586 struct nlattr *tb[],
1587 struct netlink_ext_ack *extack);
1588 int (*ndo_mdb_dump)(struct net_device *dev,
1589 struct sk_buff *skb,
1590 struct netlink_callback *cb);
1591 int (*ndo_mdb_get)(struct net_device *dev,
1592 struct nlattr *tb[], u32 portid,
1593 u32 seq,
1594 struct netlink_ext_ack *extack);
1595 int (*ndo_bridge_setlink)(struct net_device *dev,
1596 struct nlmsghdr *nlh,
1597 u16 flags,
1598 struct netlink_ext_ack *extack);
1599 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1600 u32 pid, u32 seq,
1601 struct net_device *dev,
1602 u32 filter_mask,
1603 int nlflags);
1604 int (*ndo_bridge_dellink)(struct net_device *dev,
1605 struct nlmsghdr *nlh,
1606 u16 flags);
1607 int (*ndo_change_carrier)(struct net_device *dev,
1608 bool new_carrier);
1609 int (*ndo_get_phys_port_id)(struct net_device *dev,
1610 struct netdev_phys_item_id *ppid);
1611 int (*ndo_get_port_parent_id)(struct net_device *dev,
1612 struct netdev_phys_item_id *ppid);
1613 int (*ndo_get_phys_port_name)(struct net_device *dev,
1614 char *name, size_t len);
1615 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1616 struct net_device *dev);
1617 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1618 void *priv);
1619
1620 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1621 int queue_index,
1622 u32 maxrate);
1623 int (*ndo_get_iflink)(const struct net_device *dev);
1624 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1625 struct sk_buff *skb);
1626 void (*ndo_set_rx_headroom)(struct net_device *dev,
1627 int needed_headroom);
1628 int (*ndo_bpf)(struct net_device *dev,
1629 struct netdev_bpf *bpf);
1630 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1631 struct xdp_frame **xdp,
1632 u32 flags);
1633 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1634 struct xdp_buff *xdp);
1635 int (*ndo_xsk_wakeup)(struct net_device *dev,
1636 u32 queue_id, u32 flags);
1637 int (*ndo_tunnel_ctl)(struct net_device *dev,
1638 struct ip_tunnel_parm_kern *p,
1639 int cmd);
1640 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1641 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1642 struct net_device_path *path);
1643 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1644 const struct skb_shared_hwtstamps *hwtstamps,
1645 bool cycles);
1646 int (*ndo_hwtstamp_get)(struct net_device *dev,
1647 struct kernel_hwtstamp_config *kernel_config);
1648 int (*ndo_hwtstamp_set)(struct net_device *dev,
1649 struct kernel_hwtstamp_config *kernel_config,
1650 struct netlink_ext_ack *extack);
1651
1652#if IS_ENABLED(CONFIG_NET_SHAPER)
1653 /**
1654 * @net_shaper_ops: Device shaping offload operations
1655 * see include/net/net_shapers.h
1656 */
1657 const struct net_shaper_ops *net_shaper_ops;
1658#endif
1659};
1660
1661/**
1662 * enum netdev_priv_flags - &struct net_device priv_flags
1663 *
1664 * These are the &struct net_device, they are only set internally
1665 * by drivers and used in the kernel. These flags are invisible to
1666 * userspace; this means that the order of these flags can change
1667 * during any kernel release.
1668 *
1669 * You should add bitfield booleans after either net_device::priv_flags
1670 * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1671 *
1672 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1673 * @IFF_EBRIDGE: Ethernet bridging device
1674 * @IFF_BONDING: bonding master or slave
1675 * @IFF_ISATAP: ISATAP interface (RFC4214)
1676 * @IFF_WAN_HDLC: WAN HDLC device
1677 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1678 * release skb->dst
1679 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1680 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1681 * @IFF_MACVLAN_PORT: device used as macvlan port
1682 * @IFF_BRIDGE_PORT: device used as bridge port
1683 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1684 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1685 * @IFF_UNICAST_FLT: Supports unicast filtering
1686 * @IFF_TEAM_PORT: device used as team port
1687 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1688 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1689 * change when it's running
1690 * @IFF_MACVLAN: Macvlan device
1691 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1692 * underlying stacked devices
1693 * @IFF_L3MDEV_MASTER: device is an L3 master device
1694 * @IFF_NO_QUEUE: device can run without qdisc attached
1695 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1696 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1697 * @IFF_TEAM: device is a team device
1698 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1699 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1700 * entity (i.e. the master device for bridged veth)
1701 * @IFF_MACSEC: device is a MACsec device
1702 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1703 * @IFF_FAILOVER: device is a failover master device
1704 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1705 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1706 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1707 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1708 * skb_headlen(skb) == 0 (data starts from frag0)
1709 */
1710enum netdev_priv_flags {
1711 IFF_802_1Q_VLAN = 1<<0,
1712 IFF_EBRIDGE = 1<<1,
1713 IFF_BONDING = 1<<2,
1714 IFF_ISATAP = 1<<3,
1715 IFF_WAN_HDLC = 1<<4,
1716 IFF_XMIT_DST_RELEASE = 1<<5,
1717 IFF_DONT_BRIDGE = 1<<6,
1718 IFF_DISABLE_NETPOLL = 1<<7,
1719 IFF_MACVLAN_PORT = 1<<8,
1720 IFF_BRIDGE_PORT = 1<<9,
1721 IFF_OVS_DATAPATH = 1<<10,
1722 IFF_TX_SKB_SHARING = 1<<11,
1723 IFF_UNICAST_FLT = 1<<12,
1724 IFF_TEAM_PORT = 1<<13,
1725 IFF_SUPP_NOFCS = 1<<14,
1726 IFF_LIVE_ADDR_CHANGE = 1<<15,
1727 IFF_MACVLAN = 1<<16,
1728 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1729 IFF_L3MDEV_MASTER = 1<<18,
1730 IFF_NO_QUEUE = 1<<19,
1731 IFF_OPENVSWITCH = 1<<20,
1732 IFF_L3MDEV_SLAVE = 1<<21,
1733 IFF_TEAM = 1<<22,
1734 IFF_RXFH_CONFIGURED = 1<<23,
1735 IFF_PHONY_HEADROOM = 1<<24,
1736 IFF_MACSEC = 1<<25,
1737 IFF_NO_RX_HANDLER = 1<<26,
1738 IFF_FAILOVER = 1<<27,
1739 IFF_FAILOVER_SLAVE = 1<<28,
1740 IFF_L3MDEV_RX_HANDLER = 1<<29,
1741 IFF_NO_ADDRCONF = BIT_ULL(30),
1742 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1743};
1744
1745/* Specifies the type of the struct net_device::ml_priv pointer */
1746enum netdev_ml_priv_type {
1747 ML_PRIV_NONE,
1748 ML_PRIV_CAN,
1749};
1750
1751enum netdev_stat_type {
1752 NETDEV_PCPU_STAT_NONE,
1753 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1754 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1755 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1756};
1757
1758enum netdev_reg_state {
1759 NETREG_UNINITIALIZED = 0,
1760 NETREG_REGISTERED, /* completed register_netdevice */
1761 NETREG_UNREGISTERING, /* called unregister_netdevice */
1762 NETREG_UNREGISTERED, /* completed unregister todo */
1763 NETREG_RELEASED, /* called free_netdev */
1764 NETREG_DUMMY, /* dummy device for NAPI poll */
1765};
1766
1767/**
1768 * struct net_device - The DEVICE structure.
1769 *
1770 * Actually, this whole structure is a big mistake. It mixes I/O
1771 * data with strictly "high-level" data, and it has to know about
1772 * almost every data structure used in the INET module.
1773 *
1774 * @priv_flags: flags invisible to userspace defined as bits, see
1775 * enum netdev_priv_flags for the definitions
1776 * @lltx: device supports lockless Tx. Deprecated for real HW
1777 * drivers. Mainly used by logical interfaces, such as
1778 * bonding and tunnels
1779 * @netmem_tx: device support netmem_tx.
1780 *
1781 * @name: This is the first field of the "visible" part of this structure
1782 * (i.e. as seen by users in the "Space.c" file). It is the name
1783 * of the interface.
1784 *
1785 * @name_node: Name hashlist node
1786 * @ifalias: SNMP alias
1787 * @mem_end: Shared memory end
1788 * @mem_start: Shared memory start
1789 * @base_addr: Device I/O address
1790 * @irq: Device IRQ number
1791 *
1792 * @state: Generic network queuing layer state, see netdev_state_t
1793 * @dev_list: The global list of network devices
1794 * @napi_list: List entry used for polling NAPI devices
1795 * @unreg_list: List entry when we are unregistering the
1796 * device; see the function unregister_netdev
1797 * @close_list: List entry used when we are closing the device
1798 * @ptype_all: Device-specific packet handlers for all protocols
1799 * @ptype_specific: Device-specific, protocol-specific packet handlers
1800 *
1801 * @adj_list: Directly linked devices, like slaves for bonding
1802 * @features: Currently active device features
1803 * @hw_features: User-changeable features
1804 *
1805 * @wanted_features: User-requested features
1806 * @vlan_features: Mask of features inheritable by VLAN devices
1807 *
1808 * @hw_enc_features: Mask of features inherited by encapsulating devices
1809 * This field indicates what encapsulation
1810 * offloads the hardware is capable of doing,
1811 * and drivers will need to set them appropriately.
1812 *
1813 * @mpls_features: Mask of features inheritable by MPLS
1814 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1815 *
1816 * @ifindex: interface index
1817 * @group: The group the device belongs to
1818 *
1819 * @stats: Statistics struct, which was left as a legacy, use
1820 * rtnl_link_stats64 instead
1821 *
1822 * @core_stats: core networking counters,
1823 * do not use this in drivers
1824 * @carrier_up_count: Number of times the carrier has been up
1825 * @carrier_down_count: Number of times the carrier has been down
1826 *
1827 * @wireless_handlers: List of functions to handle Wireless Extensions,
1828 * instead of ioctl,
1829 * see <net/iw_handler.h> for details.
1830 *
1831 * @netdev_ops: Includes several pointers to callbacks,
1832 * if one wants to override the ndo_*() functions
1833 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks.
1834 * @xsk_tx_metadata_ops: Includes pointers to AF_XDP TX metadata callbacks.
1835 * @ethtool_ops: Management operations
1836 * @l3mdev_ops: Layer 3 master device operations
1837 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1838 * discovery handling. Necessary for e.g. 6LoWPAN.
1839 * @xfrmdev_ops: Transformation offload operations
1840 * @tlsdev_ops: Transport Layer Security offload operations
1841 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1842 * of Layer 2 headers.
1843 *
1844 * @flags: Interface flags (a la BSD)
1845 * @xdp_features: XDP capability supported by the device
1846 * @gflags: Global flags ( kept as legacy )
1847 * @priv_len: Size of the ->priv flexible array
1848 * @priv: Flexible array containing private data
1849 * @operstate: RFC2863 operstate
1850 * @link_mode: Mapping policy to operstate
1851 * @if_port: Selectable AUI, TP, ...
1852 * @dma: DMA channel
1853 * @mtu: Interface MTU value
1854 * @min_mtu: Interface Minimum MTU value
1855 * @max_mtu: Interface Maximum MTU value
1856 * @type: Interface hardware type
1857 * @hard_header_len: Maximum hardware header length.
1858 * @min_header_len: Minimum hardware header length
1859 *
1860 * @needed_headroom: Extra headroom the hardware may need, but not in all
1861 * cases can this be guaranteed
1862 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1863 * cases can this be guaranteed. Some cases also use
1864 * LL_MAX_HEADER instead to allocate the skb
1865 *
1866 * interface address info:
1867 *
1868 * @perm_addr: Permanent hw address
1869 * @addr_assign_type: Hw address assignment type
1870 * @addr_len: Hardware address length
1871 * @upper_level: Maximum depth level of upper devices.
1872 * @lower_level: Maximum depth level of lower devices.
1873 * @neigh_priv_len: Used in neigh_alloc()
1874 * @dev_id: Used to differentiate devices that share
1875 * the same link layer address
1876 * @dev_port: Used to differentiate devices that share
1877 * the same function
1878 * @addr_list_lock: XXX: need comments on this one
1879 * @name_assign_type: network interface name assignment type
1880 * @uc_promisc: Counter that indicates promiscuous mode
1881 * has been enabled due to the need to listen to
1882 * additional unicast addresses in a device that
1883 * does not implement ndo_set_rx_mode()
1884 * @uc: unicast mac addresses
1885 * @mc: multicast mac addresses
1886 * @dev_addrs: list of device hw addresses
1887 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1888 * @promiscuity: Number of times the NIC is told to work in
1889 * promiscuous mode; if it becomes 0 the NIC will
1890 * exit promiscuous mode
1891 * @allmulti: Counter, enables or disables allmulticast mode
1892 *
1893 * @vlan_info: VLAN info
1894 * @dsa_ptr: dsa specific data
1895 * @tipc_ptr: TIPC specific data
1896 * @atalk_ptr: AppleTalk link
1897 * @ip_ptr: IPv4 specific data
1898 * @ip6_ptr: IPv6 specific data
1899 * @ax25_ptr: AX.25 specific data
1900 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1901 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1902 * device struct
1903 * @mpls_ptr: mpls_dev struct pointer
1904 * @mctp_ptr: MCTP specific data
1905 *
1906 * @dev_addr: Hw address (before bcast,
1907 * because most packets are unicast)
1908 *
1909 * @_rx: Array of RX queues
1910 * @num_rx_queues: Number of RX queues
1911 * allocated at register_netdev() time
1912 * @real_num_rx_queues: Number of RX queues currently active in device
1913 * @xdp_prog: XDP sockets filter program pointer
1914 *
1915 * @rx_handler: handler for received packets
1916 * @rx_handler_data: XXX: need comments on this one
1917 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing
1918 * @ingress_queue: XXX: need comments on this one
1919 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1920 * @broadcast: hw bcast address
1921 *
1922 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1923 * indexed by RX queue number. Assigned by driver.
1924 * This must only be set if the ndo_rx_flow_steer
1925 * operation is defined
1926 * @index_hlist: Device index hash chain
1927 *
1928 * @_tx: Array of TX queues
1929 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1930 * @real_num_tx_queues: Number of TX queues currently active in device
1931 * @qdisc: Root qdisc from userspace point of view
1932 * @tx_queue_len: Max frames per queue allowed
1933 * @tx_global_lock: XXX: need comments on this one
1934 * @xdp_bulkq: XDP device bulk queue
1935 * @xps_maps: all CPUs/RXQs maps for XPS device
1936 *
1937 * @xps_maps: XXX: need comments on this one
1938 * @tcx_egress: BPF & clsact qdisc specific data for egress processing
1939 * @nf_hooks_egress: netfilter hooks executed for egress packets
1940 * @qdisc_hash: qdisc hash table
1941 * @watchdog_timeo: Represents the timeout that is used by
1942 * the watchdog (see dev_watchdog())
1943 * @watchdog_timer: List of timers
1944 *
1945 * @proto_down_reason: reason a netdev interface is held down
1946 * @pcpu_refcnt: Number of references to this device
1947 * @dev_refcnt: Number of references to this device
1948 * @refcnt_tracker: Tracker directory for tracked references to this device
1949 * @todo_list: Delayed register/unregister
1950 * @link_watch_list: XXX: need comments on this one
1951 *
1952 * @reg_state: Register/unregister state machine
1953 * @dismantle: Device is going to be freed
1954 * @needs_free_netdev: Should unregister perform free_netdev?
1955 * @priv_destructor: Called from unregister
1956 * @npinfo: XXX: need comments on this one
1957 * @nd_net: Network namespace this network device is inside
1958 * protected by @lock
1959 *
1960 * @ml_priv: Mid-layer private
1961 * @ml_priv_type: Mid-layer private type
1962 *
1963 * @pcpu_stat_type: Type of device statistics which the core should
1964 * allocate/free: none, lstats, tstats, dstats. none
1965 * means the driver is handling statistics allocation/
1966 * freeing internally.
1967 * @lstats: Loopback statistics: packets, bytes
1968 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes
1969 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes
1970 *
1971 * @garp_port: GARP
1972 * @mrp_port: MRP
1973 *
1974 * @dm_private: Drop monitor private
1975 *
1976 * @dev: Class/net/name entry
1977 * @sysfs_groups: Space for optional device, statistics and wireless
1978 * sysfs groups
1979 *
1980 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1981 * @rtnl_link_ops: Rtnl_link_ops
1982 * @stat_ops: Optional ops for queue-aware statistics
1983 * @queue_mgmt_ops: Optional ops for queue management
1984 *
1985 * @gso_max_size: Maximum size of generic segmentation offload
1986 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1987 * @gso_max_segs: Maximum number of segments that can be passed to the
1988 * NIC for GSO
1989 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1990 * @gso_ipv4_max_size: Maximum size of generic segmentation offload,
1991 * for IPv4.
1992 *
1993 * @dcbnl_ops: Data Center Bridging netlink ops
1994 * @num_tc: Number of traffic classes in the net device
1995 * @tc_to_txq: XXX: need comments on this one
1996 * @prio_tc_map: XXX: need comments on this one
1997 *
1998 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1999 *
2000 * @priomap: XXX: need comments on this one
2001 * @link_topo: Physical link topology tracking attached PHYs
2002 * @phydev: Physical device may attach itself
2003 * for hardware timestamping
2004 * @sfp_bus: attached &struct sfp_bus structure.
2005 *
2006 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2007 *
2008 * @proto_down: protocol port state information can be sent to the
2009 * switch driver and used to set the phys state of the
2010 * switch port.
2011 *
2012 * @threaded: napi threaded mode is enabled
2013 *
2014 * @irq_affinity_auto: driver wants the core to store and re-assign the IRQ
2015 * affinity. Set by netif_enable_irq_affinity(), then
2016 * the driver must create a persistent napi by
2017 * netif_napi_add_config() and finally bind the napi to
2018 * IRQ (via netif_napi_set_irq()).
2019 *
2020 * @rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap.
2021 * Set by calling netif_enable_cpu_rmap().
2022 *
2023 * @see_all_hwtstamp_requests: device wants to see calls to
2024 * ndo_hwtstamp_set() for all timestamp requests
2025 * regardless of source, even if those aren't
2026 * HWTSTAMP_SOURCE_NETDEV
2027 * @change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
2028 * @netns_immutable: interface can't change network namespaces
2029 * @fcoe_mtu: device supports maximum FCoE MTU, 2158 bytes
2030 *
2031 * @net_notifier_list: List of per-net netdev notifier block
2032 * that follow this device when it is moved
2033 * to another network namespace.
2034 *
2035 * @macsec_ops: MACsec offloading ops
2036 *
2037 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
2038 * offload capabilities of the device
2039 * @udp_tunnel_nic: UDP tunnel offload state
2040 * @ethtool: ethtool related state
2041 * @xdp_state: stores info on attached XDP BPF programs
2042 *
2043 * @nested_level: Used as a parameter of spin_lock_nested() of
2044 * dev->addr_list_lock.
2045 * @unlink_list: As netif_addr_lock() can be called recursively,
2046 * keep a list of interfaces to be deleted.
2047 * @gro_max_size: Maximum size of aggregated packet in generic
2048 * receive offload (GRO)
2049 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic
2050 * receive offload (GRO), for IPv4.
2051 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP
2052 * zero copy driver
2053 *
2054 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2055 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2056 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2057 * @dev_registered_tracker: tracker for reference held while
2058 * registered
2059 * @offload_xstats_l3: L3 HW stats for this netdevice.
2060 *
2061 * @devlink_port: Pointer to related devlink port structure.
2062 * Assigned by a driver before netdev registration using
2063 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2064 * during the time netdevice is registered.
2065 *
2066 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2067 * where the clock is recovered.
2068 *
2069 * @max_pacing_offload_horizon: max EDT offload horizon in nsec.
2070 * @napi_config: An array of napi_config structures containing per-NAPI
2071 * settings.
2072 * @gro_flush_timeout: timeout for GRO layer in NAPI
2073 * @napi_defer_hard_irqs: If not zero, provides a counter that would
2074 * allow to avoid NIC hard IRQ, on busy queues.
2075 *
2076 * @neighbours: List heads pointing to this device's neighbours'
2077 * dev_list, one per address-family.
2078 * @hwprov: Tracks which PTP performs hardware packet time stamping.
2079 *
2080 * FIXME: cleanup struct net_device such that network protocol info
2081 * moves out.
2082 */
2083
2084struct net_device {
2085 /* Cacheline organization can be found documented in
2086 * Documentation/networking/net_cachelines/net_device.rst.
2087 * Please update the document when adding new fields.
2088 */
2089
2090 /* TX read-mostly hotpath */
2091 __cacheline_group_begin(net_device_read_tx);
2092 struct_group(priv_flags_fast,
2093 unsigned long priv_flags:32;
2094 unsigned long lltx:1;
2095 unsigned long netmem_tx:1;
2096 );
2097 const struct net_device_ops *netdev_ops;
2098 const struct header_ops *header_ops;
2099 struct netdev_queue *_tx;
2100 netdev_features_t gso_partial_features;
2101 unsigned int real_num_tx_queues;
2102 unsigned int gso_max_size;
2103 unsigned int gso_ipv4_max_size;
2104 u16 gso_max_segs;
2105 s16 num_tc;
2106 /* Note : dev->mtu is often read without holding a lock.
2107 * Writers usually hold RTNL.
2108 * It is recommended to use READ_ONCE() to annotate the reads,
2109 * and to use WRITE_ONCE() to annotate the writes.
2110 */
2111 unsigned int mtu;
2112 unsigned short needed_headroom;
2113 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2114#ifdef CONFIG_XPS
2115 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2116#endif
2117#ifdef CONFIG_NETFILTER_EGRESS
2118 struct nf_hook_entries __rcu *nf_hooks_egress;
2119#endif
2120#ifdef CONFIG_NET_XGRESS
2121 struct bpf_mprog_entry __rcu *tcx_egress;
2122#endif
2123 __cacheline_group_end(net_device_read_tx);
2124
2125 /* TXRX read-mostly hotpath */
2126 __cacheline_group_begin(net_device_read_txrx);
2127 union {
2128 struct pcpu_lstats __percpu *lstats;
2129 struct pcpu_sw_netstats __percpu *tstats;
2130 struct pcpu_dstats __percpu *dstats;
2131 };
2132 unsigned long state;
2133 unsigned int flags;
2134 unsigned short hard_header_len;
2135 netdev_features_t features;
2136 struct inet6_dev __rcu *ip6_ptr;
2137 __cacheline_group_end(net_device_read_txrx);
2138
2139 /* RX read-mostly hotpath */
2140 __cacheline_group_begin(net_device_read_rx);
2141 struct bpf_prog __rcu *xdp_prog;
2142 struct list_head ptype_specific;
2143 int ifindex;
2144 unsigned int real_num_rx_queues;
2145 struct netdev_rx_queue *_rx;
2146 unsigned int gro_max_size;
2147 unsigned int gro_ipv4_max_size;
2148 rx_handler_func_t __rcu *rx_handler;
2149 void __rcu *rx_handler_data;
2150 possible_net_t nd_net;
2151#ifdef CONFIG_NETPOLL
2152 struct netpoll_info __rcu *npinfo;
2153#endif
2154#ifdef CONFIG_NET_XGRESS
2155 struct bpf_mprog_entry __rcu *tcx_ingress;
2156#endif
2157 __cacheline_group_end(net_device_read_rx);
2158
2159 char name[IFNAMSIZ];
2160 struct netdev_name_node *name_node;
2161 struct dev_ifalias __rcu *ifalias;
2162 /*
2163 * I/O specific fields
2164 * FIXME: Merge these and struct ifmap into one
2165 */
2166 unsigned long mem_end;
2167 unsigned long mem_start;
2168 unsigned long base_addr;
2169
2170 /*
2171 * Some hardware also needs these fields (state,dev_list,
2172 * napi_list,unreg_list,close_list) but they are not
2173 * part of the usual set specified in Space.c.
2174 */
2175
2176
2177 struct list_head dev_list;
2178 struct list_head napi_list;
2179 struct list_head unreg_list;
2180 struct list_head close_list;
2181 struct list_head ptype_all;
2182
2183 struct {
2184 struct list_head upper;
2185 struct list_head lower;
2186 } adj_list;
2187
2188 /* Read-mostly cache-line for fast-path access */
2189 xdp_features_t xdp_features;
2190 const struct xdp_metadata_ops *xdp_metadata_ops;
2191 const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2192 unsigned short gflags;
2193
2194 unsigned short needed_tailroom;
2195
2196 netdev_features_t hw_features;
2197 netdev_features_t wanted_features;
2198 netdev_features_t vlan_features;
2199 netdev_features_t hw_enc_features;
2200 netdev_features_t mpls_features;
2201
2202 unsigned int min_mtu;
2203 unsigned int max_mtu;
2204 unsigned short type;
2205 unsigned char min_header_len;
2206 unsigned char name_assign_type;
2207
2208 int group;
2209
2210 struct net_device_stats stats; /* not used by modern drivers */
2211
2212 struct net_device_core_stats __percpu *core_stats;
2213
2214 /* Stats to monitor link on/off, flapping */
2215 atomic_t carrier_up_count;
2216 atomic_t carrier_down_count;
2217
2218#ifdef CONFIG_WIRELESS_EXT
2219 const struct iw_handler_def *wireless_handlers;
2220#endif
2221 const struct ethtool_ops *ethtool_ops;
2222#ifdef CONFIG_NET_L3_MASTER_DEV
2223 const struct l3mdev_ops *l3mdev_ops;
2224#endif
2225#if IS_ENABLED(CONFIG_IPV6)
2226 const struct ndisc_ops *ndisc_ops;
2227#endif
2228
2229#ifdef CONFIG_XFRM_OFFLOAD
2230 const struct xfrmdev_ops *xfrmdev_ops;
2231#endif
2232
2233#if IS_ENABLED(CONFIG_TLS_DEVICE)
2234 const struct tlsdev_ops *tlsdev_ops;
2235#endif
2236
2237 unsigned int operstate;
2238 unsigned char link_mode;
2239
2240 unsigned char if_port;
2241 unsigned char dma;
2242
2243 /* Interface address info. */
2244 unsigned char perm_addr[MAX_ADDR_LEN];
2245 unsigned char addr_assign_type;
2246 unsigned char addr_len;
2247 unsigned char upper_level;
2248 unsigned char lower_level;
2249
2250 unsigned short neigh_priv_len;
2251 unsigned short dev_id;
2252 unsigned short dev_port;
2253 int irq;
2254 u32 priv_len;
2255
2256 spinlock_t addr_list_lock;
2257
2258 struct netdev_hw_addr_list uc;
2259 struct netdev_hw_addr_list mc;
2260 struct netdev_hw_addr_list dev_addrs;
2261
2262#ifdef CONFIG_SYSFS
2263 struct kset *queues_kset;
2264#endif
2265#ifdef CONFIG_LOCKDEP
2266 struct list_head unlink_list;
2267#endif
2268 unsigned int promiscuity;
2269 unsigned int allmulti;
2270 bool uc_promisc;
2271#ifdef CONFIG_LOCKDEP
2272 unsigned char nested_level;
2273#endif
2274
2275
2276 /* Protocol-specific pointers */
2277 struct in_device __rcu *ip_ptr;
2278 /** @fib_nh_head: nexthops associated with this netdev */
2279 struct hlist_head fib_nh_head;
2280
2281#if IS_ENABLED(CONFIG_VLAN_8021Q)
2282 struct vlan_info __rcu *vlan_info;
2283#endif
2284#if IS_ENABLED(CONFIG_NET_DSA)
2285 struct dsa_port *dsa_ptr;
2286#endif
2287#if IS_ENABLED(CONFIG_TIPC)
2288 struct tipc_bearer __rcu *tipc_ptr;
2289#endif
2290#if IS_ENABLED(CONFIG_ATALK)
2291 void *atalk_ptr;
2292#endif
2293#if IS_ENABLED(CONFIG_AX25)
2294 struct ax25_dev __rcu *ax25_ptr;
2295#endif
2296#if IS_ENABLED(CONFIG_CFG80211)
2297 struct wireless_dev *ieee80211_ptr;
2298#endif
2299#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2300 struct wpan_dev *ieee802154_ptr;
2301#endif
2302#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2303 struct mpls_dev __rcu *mpls_ptr;
2304#endif
2305#if IS_ENABLED(CONFIG_MCTP)
2306 struct mctp_dev __rcu *mctp_ptr;
2307#endif
2308
2309/*
2310 * Cache lines mostly used on receive path (including eth_type_trans())
2311 */
2312 /* Interface address info used in eth_type_trans() */
2313 const unsigned char *dev_addr;
2314
2315 unsigned int num_rx_queues;
2316#define GRO_LEGACY_MAX_SIZE 65536u
2317/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2318 * and shinfo->gso_segs is a 16bit field.
2319 */
2320#define GRO_MAX_SIZE (8 * 65535u)
2321 unsigned int xdp_zc_max_segs;
2322 struct netdev_queue __rcu *ingress_queue;
2323#ifdef CONFIG_NETFILTER_INGRESS
2324 struct nf_hook_entries __rcu *nf_hooks_ingress;
2325#endif
2326
2327 unsigned char broadcast[MAX_ADDR_LEN];
2328#ifdef CONFIG_RFS_ACCEL
2329 struct cpu_rmap *rx_cpu_rmap;
2330#endif
2331 struct hlist_node index_hlist;
2332
2333/*
2334 * Cache lines mostly used on transmit path
2335 */
2336 unsigned int num_tx_queues;
2337 struct Qdisc __rcu *qdisc;
2338 unsigned int tx_queue_len;
2339 spinlock_t tx_global_lock;
2340
2341 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2342
2343#ifdef CONFIG_NET_SCHED
2344 DECLARE_HASHTABLE (qdisc_hash, 4);
2345#endif
2346 /* These may be needed for future network-power-down code. */
2347 struct timer_list watchdog_timer;
2348 int watchdog_timeo;
2349
2350 u32 proto_down_reason;
2351
2352 struct list_head todo_list;
2353
2354#ifdef CONFIG_PCPU_DEV_REFCNT
2355 int __percpu *pcpu_refcnt;
2356#else
2357 refcount_t dev_refcnt;
2358#endif
2359 struct ref_tracker_dir refcnt_tracker;
2360
2361 struct list_head link_watch_list;
2362
2363 u8 reg_state;
2364
2365 bool dismantle;
2366
2367 /** @moving_ns: device is changing netns, protected by @lock */
2368 bool moving_ns;
2369 /** @rtnl_link_initializing: Device being created, suppress events */
2370 bool rtnl_link_initializing;
2371
2372 bool needs_free_netdev;
2373 void (*priv_destructor)(struct net_device *dev);
2374
2375 /* mid-layer private */
2376 void *ml_priv;
2377 enum netdev_ml_priv_type ml_priv_type;
2378
2379 enum netdev_stat_type pcpu_stat_type:8;
2380
2381#if IS_ENABLED(CONFIG_GARP)
2382 struct garp_port __rcu *garp_port;
2383#endif
2384#if IS_ENABLED(CONFIG_MRP)
2385 struct mrp_port __rcu *mrp_port;
2386#endif
2387#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2388 struct dm_hw_stat_delta __rcu *dm_private;
2389#endif
2390 struct device dev;
2391 const struct attribute_group *sysfs_groups[4];
2392 const struct attribute_group *sysfs_rx_queue_group;
2393
2394 const struct rtnl_link_ops *rtnl_link_ops;
2395
2396 const struct netdev_stat_ops *stat_ops;
2397
2398 const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2399
2400 /* for setting kernel sock attribute on TCP connection setup */
2401#define GSO_MAX_SEGS 65535u
2402#define GSO_LEGACY_MAX_SIZE 65536u
2403/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2404 * and shinfo->gso_segs is a 16bit field.
2405 */
2406#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2407
2408#define TSO_LEGACY_MAX_SIZE 65536
2409#define TSO_MAX_SIZE UINT_MAX
2410 unsigned int tso_max_size;
2411#define TSO_MAX_SEGS U16_MAX
2412 u16 tso_max_segs;
2413
2414#ifdef CONFIG_DCB
2415 const struct dcbnl_rtnl_ops *dcbnl_ops;
2416#endif
2417 u8 prio_tc_map[TC_BITMASK + 1];
2418
2419#if IS_ENABLED(CONFIG_FCOE)
2420 unsigned int fcoe_ddp_xid;
2421#endif
2422#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2423 struct netprio_map __rcu *priomap;
2424#endif
2425 struct phy_link_topology *link_topo;
2426 struct phy_device *phydev;
2427 struct sfp_bus *sfp_bus;
2428 struct lock_class_key *qdisc_tx_busylock;
2429 bool proto_down;
2430 bool threaded;
2431 bool irq_affinity_auto;
2432 bool rx_cpu_rmap_auto;
2433
2434 /* priv_flags_slow, ungrouped to save space */
2435 unsigned long see_all_hwtstamp_requests:1;
2436 unsigned long change_proto_down:1;
2437 unsigned long netns_immutable:1;
2438 unsigned long fcoe_mtu:1;
2439
2440 struct list_head net_notifier_list;
2441
2442#if IS_ENABLED(CONFIG_MACSEC)
2443 /* MACsec management functions */
2444 const struct macsec_ops *macsec_ops;
2445#endif
2446 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2447 struct udp_tunnel_nic *udp_tunnel_nic;
2448
2449 /** @cfg: net_device queue-related configuration */
2450 struct netdev_config *cfg;
2451 /**
2452 * @cfg_pending: same as @cfg but when device is being actively
2453 * reconfigured includes any changes to the configuration
2454 * requested by the user, but which may or may not be rejected.
2455 */
2456 struct netdev_config *cfg_pending;
2457 struct ethtool_netdev_state *ethtool;
2458
2459 /* protected by rtnl_lock */
2460 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2461
2462 u8 dev_addr_shadow[MAX_ADDR_LEN];
2463 netdevice_tracker linkwatch_dev_tracker;
2464 netdevice_tracker watchdog_dev_tracker;
2465 netdevice_tracker dev_registered_tracker;
2466 struct rtnl_hw_stats64 *offload_xstats_l3;
2467
2468 struct devlink_port *devlink_port;
2469
2470#if IS_ENABLED(CONFIG_DPLL)
2471 struct dpll_pin __rcu *dpll_pin;
2472#endif
2473#if IS_ENABLED(CONFIG_PAGE_POOL)
2474 /** @page_pools: page pools created for this netdevice */
2475 struct hlist_head page_pools;
2476#endif
2477
2478 /** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2479 struct dim_irq_moder *irq_moder;
2480
2481 u64 max_pacing_offload_horizon;
2482 struct napi_config *napi_config;
2483 unsigned long gro_flush_timeout;
2484 u32 napi_defer_hard_irqs;
2485
2486 /**
2487 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2488 * May report false negatives while the device is being opened
2489 * or closed (@lock does not protect .ndo_open, or .ndo_close).
2490 */
2491 bool up;
2492
2493 /**
2494 * @request_ops_lock: request the core to run all @netdev_ops and
2495 * @ethtool_ops under the @lock.
2496 */
2497 bool request_ops_lock;
2498
2499 /**
2500 * @lock: netdev-scope lock, protects a small selection of fields.
2501 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2502 * Drivers are free to use it for other protection.
2503 *
2504 * For the drivers that implement shaper or queue API, the scope
2505 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs
2506 * operations. Drivers may opt-in to this behavior by setting
2507 * @request_ops_lock.
2508 *
2509 * @lock protection mixes with rtnl_lock in multiple ways, fields are
2510 * either:
2511 *
2512 * - simply protected by the instance @lock;
2513 *
2514 * - double protected - writers hold both locks, readers hold either;
2515 *
2516 * - ops protected - protected by the lock held around the NDOs
2517 * and other callbacks, that is the instance lock on devices for
2518 * which netdev_need_ops_lock() returns true, otherwise by rtnl_lock;
2519 *
2520 * - double ops protected - always protected by rtnl_lock but for
2521 * devices for which netdev_need_ops_lock() returns true - also
2522 * the instance lock.
2523 *
2524 * Simply protects:
2525 * @gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2526 * @net_shaper_hierarchy, @reg_state, @threaded
2527 *
2528 * Double protects:
2529 * @up, @moving_ns, @nd_net, @xdp_features
2530 *
2531 * Double ops protects:
2532 * @real_num_rx_queues, @real_num_tx_queues
2533 *
2534 * Also protects some fields in:
2535 * struct napi_struct, struct netdev_queue, struct netdev_rx_queue
2536 *
2537 * Ordering: take after rtnl_lock.
2538 */
2539 struct mutex lock;
2540
2541#if IS_ENABLED(CONFIG_NET_SHAPER)
2542 /**
2543 * @net_shaper_hierarchy: data tracking the current shaper status
2544 * see include/net/net_shapers.h
2545 */
2546 struct net_shaper_hierarchy *net_shaper_hierarchy;
2547#endif
2548
2549 struct hlist_head neighbours[NEIGH_NR_TABLES];
2550
2551 struct hwtstamp_provider __rcu *hwprov;
2552
2553 u8 priv[] ____cacheline_aligned
2554 __counted_by(priv_len);
2555} ____cacheline_aligned;
2556#define to_net_dev(d) container_of(d, struct net_device, dev)
2557
2558/*
2559 * Driver should use this to assign devlink port instance to a netdevice
2560 * before it registers the netdevice. Therefore devlink_port is static
2561 * during the netdev lifetime after it is registered.
2562 */
2563#define SET_NETDEV_DEVLINK_PORT(dev, port) \
2564({ \
2565 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \
2566 ((dev)->devlink_port = (port)); \
2567})
2568
2569static inline bool netif_elide_gro(const struct net_device *dev)
2570{
2571 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2572 return true;
2573 return false;
2574}
2575
2576#define NETDEV_ALIGN 32
2577
2578static inline
2579int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2580{
2581 return dev->prio_tc_map[prio & TC_BITMASK];
2582}
2583
2584static inline
2585int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2586{
2587 if (tc >= dev->num_tc)
2588 return -EINVAL;
2589
2590 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2591 return 0;
2592}
2593
2594int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2595void netdev_reset_tc(struct net_device *dev);
2596int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2597int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2598
2599static inline
2600int netdev_get_num_tc(struct net_device *dev)
2601{
2602 return dev->num_tc;
2603}
2604
2605static inline void net_prefetch(void *p)
2606{
2607 prefetch(p);
2608#if L1_CACHE_BYTES < 128
2609 prefetch((u8 *)p + L1_CACHE_BYTES);
2610#endif
2611}
2612
2613static inline void net_prefetchw(void *p)
2614{
2615 prefetchw(p);
2616#if L1_CACHE_BYTES < 128
2617 prefetchw((u8 *)p + L1_CACHE_BYTES);
2618#endif
2619}
2620
2621void netdev_unbind_sb_channel(struct net_device *dev,
2622 struct net_device *sb_dev);
2623int netdev_bind_sb_channel_queue(struct net_device *dev,
2624 struct net_device *sb_dev,
2625 u8 tc, u16 count, u16 offset);
2626int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2627static inline int netdev_get_sb_channel(struct net_device *dev)
2628{
2629 return max_t(int, -dev->num_tc, 0);
2630}
2631
2632static inline
2633struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2634 unsigned int index)
2635{
2636 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2637 return &dev->_tx[index];
2638}
2639
2640static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2641 const struct sk_buff *skb)
2642{
2643 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2644}
2645
2646static inline void netdev_for_each_tx_queue(struct net_device *dev,
2647 void (*f)(struct net_device *,
2648 struct netdev_queue *,
2649 void *),
2650 void *arg)
2651{
2652 unsigned int i;
2653
2654 for (i = 0; i < dev->num_tx_queues; i++)
2655 f(dev, &dev->_tx[i], arg);
2656}
2657
2658u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2659 struct net_device *sb_dev);
2660struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2661 struct sk_buff *skb,
2662 struct net_device *sb_dev);
2663
2664/* returns the headroom that the master device needs to take in account
2665 * when forwarding to this dev
2666 */
2667static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2668{
2669 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2670}
2671
2672static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2673{
2674 if (dev->netdev_ops->ndo_set_rx_headroom)
2675 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2676}
2677
2678/* set the device rx headroom to the dev's default */
2679static inline void netdev_reset_rx_headroom(struct net_device *dev)
2680{
2681 netdev_set_rx_headroom(dev, -1);
2682}
2683
2684static inline void *netdev_get_ml_priv(struct net_device *dev,
2685 enum netdev_ml_priv_type type)
2686{
2687 if (dev->ml_priv_type != type)
2688 return NULL;
2689
2690 return dev->ml_priv;
2691}
2692
2693static inline void netdev_set_ml_priv(struct net_device *dev,
2694 void *ml_priv,
2695 enum netdev_ml_priv_type type)
2696{
2697 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2698 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2699 dev->ml_priv_type, type);
2700 WARN(!dev->ml_priv_type && dev->ml_priv,
2701 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2702
2703 dev->ml_priv = ml_priv;
2704 dev->ml_priv_type = type;
2705}
2706
2707/*
2708 * Net namespace inlines
2709 */
2710static inline
2711struct net *dev_net(const struct net_device *dev)
2712{
2713 return read_pnet(&dev->nd_net);
2714}
2715
2716static inline
2717struct net *dev_net_rcu(const struct net_device *dev)
2718{
2719 return read_pnet_rcu(&dev->nd_net);
2720}
2721
2722static inline
2723void dev_net_set(struct net_device *dev, struct net *net)
2724{
2725 write_pnet(&dev->nd_net, net);
2726}
2727
2728/**
2729 * netdev_priv - access network device private data
2730 * @dev: network device
2731 *
2732 * Get network device private data
2733 */
2734static inline void *netdev_priv(const struct net_device *dev)
2735{
2736 return (void *)dev->priv;
2737}
2738
2739/* Set the sysfs physical device reference for the network logical device
2740 * if set prior to registration will cause a symlink during initialization.
2741 */
2742#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2743
2744/* Set the sysfs device type for the network logical device to allow
2745 * fine-grained identification of different network device types. For
2746 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2747 */
2748#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2749
2750void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2751 enum netdev_queue_type type,
2752 struct napi_struct *napi);
2753
2754static inline void netdev_lock(struct net_device *dev)
2755{
2756 mutex_lock(&dev->lock);
2757}
2758
2759static inline void netdev_unlock(struct net_device *dev)
2760{
2761 mutex_unlock(&dev->lock);
2762}
2763/* Additional netdev_lock()-related helpers are in net/netdev_lock.h */
2764
2765void netif_napi_set_irq_locked(struct napi_struct *napi, int irq);
2766
2767static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2768{
2769 netdev_lock(napi->dev);
2770 netif_napi_set_irq_locked(napi, irq);
2771 netdev_unlock(napi->dev);
2772}
2773
2774/* Default NAPI poll() weight
2775 * Device drivers are strongly advised to not use bigger value
2776 */
2777#define NAPI_POLL_WEIGHT 64
2778
2779void netif_napi_add_weight_locked(struct net_device *dev,
2780 struct napi_struct *napi,
2781 int (*poll)(struct napi_struct *, int),
2782 int weight);
2783
2784static inline void
2785netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2786 int (*poll)(struct napi_struct *, int), int weight)
2787{
2788 netdev_lock(dev);
2789 netif_napi_add_weight_locked(dev, napi, poll, weight);
2790 netdev_unlock(dev);
2791}
2792
2793/**
2794 * netif_napi_add() - initialize a NAPI context
2795 * @dev: network device
2796 * @napi: NAPI context
2797 * @poll: polling function
2798 *
2799 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2800 * *any* of the other NAPI-related functions.
2801 */
2802static inline void
2803netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2804 int (*poll)(struct napi_struct *, int))
2805{
2806 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2807}
2808
2809static inline void
2810netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2811 int (*poll)(struct napi_struct *, int))
2812{
2813 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2814}
2815
2816static inline void
2817netif_napi_add_tx_weight(struct net_device *dev,
2818 struct napi_struct *napi,
2819 int (*poll)(struct napi_struct *, int),
2820 int weight)
2821{
2822 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2823 netif_napi_add_weight(dev, napi, poll, weight);
2824}
2825
2826static inline void
2827netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2828 int (*poll)(struct napi_struct *, int), int index)
2829{
2830 napi->index = index;
2831 napi->config = &dev->napi_config[index];
2832 netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2833}
2834
2835/**
2836 * netif_napi_add_config - initialize a NAPI context with persistent config
2837 * @dev: network device
2838 * @napi: NAPI context
2839 * @poll: polling function
2840 * @index: the NAPI index
2841 */
2842static inline void
2843netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2844 int (*poll)(struct napi_struct *, int), int index)
2845{
2846 netdev_lock(dev);
2847 netif_napi_add_config_locked(dev, napi, poll, index);
2848 netdev_unlock(dev);
2849}
2850
2851/**
2852 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2853 * @dev: network device
2854 * @napi: NAPI context
2855 * @poll: polling function
2856 *
2857 * This variant of netif_napi_add() should be used from drivers using NAPI
2858 * to exclusively poll a TX queue.
2859 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2860 */
2861static inline void netif_napi_add_tx(struct net_device *dev,
2862 struct napi_struct *napi,
2863 int (*poll)(struct napi_struct *, int))
2864{
2865 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2866}
2867
2868void __netif_napi_del_locked(struct napi_struct *napi);
2869
2870/**
2871 * __netif_napi_del - remove a NAPI context
2872 * @napi: NAPI context
2873 *
2874 * Warning: caller must observe RCU grace period before freeing memory
2875 * containing @napi. Drivers might want to call this helper to combine
2876 * all the needed RCU grace periods into a single one.
2877 */
2878static inline void __netif_napi_del(struct napi_struct *napi)
2879{
2880 netdev_lock(napi->dev);
2881 __netif_napi_del_locked(napi);
2882 netdev_unlock(napi->dev);
2883}
2884
2885static inline void netif_napi_del_locked(struct napi_struct *napi)
2886{
2887 __netif_napi_del_locked(napi);
2888 synchronize_net();
2889}
2890
2891/**
2892 * netif_napi_del - remove a NAPI context
2893 * @napi: NAPI context
2894 *
2895 * netif_napi_del() removes a NAPI context from the network device NAPI list
2896 */
2897static inline void netif_napi_del(struct napi_struct *napi)
2898{
2899 __netif_napi_del(napi);
2900 synchronize_net();
2901}
2902
2903int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs);
2904void netif_set_affinity_auto(struct net_device *dev);
2905
2906struct packet_type {
2907 __be16 type; /* This is really htons(ether_type). */
2908 bool ignore_outgoing;
2909 struct net_device *dev; /* NULL is wildcarded here */
2910 netdevice_tracker dev_tracker;
2911 int (*func) (struct sk_buff *,
2912 struct net_device *,
2913 struct packet_type *,
2914 struct net_device *);
2915 void (*list_func) (struct list_head *,
2916 struct packet_type *,
2917 struct net_device *);
2918 bool (*id_match)(struct packet_type *ptype,
2919 struct sock *sk);
2920 struct net *af_packet_net;
2921 void *af_packet_priv;
2922 struct list_head list;
2923};
2924
2925struct offload_callbacks {
2926 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2927 netdev_features_t features);
2928 struct sk_buff *(*gro_receive)(struct list_head *head,
2929 struct sk_buff *skb);
2930 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2931};
2932
2933struct packet_offload {
2934 __be16 type; /* This is really htons(ether_type). */
2935 u16 priority;
2936 struct offload_callbacks callbacks;
2937 struct list_head list;
2938};
2939
2940/* often modified stats are per-CPU, other are shared (netdev->stats) */
2941struct pcpu_sw_netstats {
2942 u64_stats_t rx_packets;
2943 u64_stats_t rx_bytes;
2944 u64_stats_t tx_packets;
2945 u64_stats_t tx_bytes;
2946 struct u64_stats_sync syncp;
2947} __aligned(4 * sizeof(u64));
2948
2949struct pcpu_dstats {
2950 u64_stats_t rx_packets;
2951 u64_stats_t rx_bytes;
2952 u64_stats_t tx_packets;
2953 u64_stats_t tx_bytes;
2954 u64_stats_t rx_drops;
2955 u64_stats_t tx_drops;
2956 struct u64_stats_sync syncp;
2957} __aligned(8 * sizeof(u64));
2958
2959struct pcpu_lstats {
2960 u64_stats_t packets;
2961 u64_stats_t bytes;
2962 struct u64_stats_sync syncp;
2963} __aligned(2 * sizeof(u64));
2964
2965void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2966
2967static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2968{
2969 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2970
2971 u64_stats_update_begin(&tstats->syncp);
2972 u64_stats_add(&tstats->rx_bytes, len);
2973 u64_stats_inc(&tstats->rx_packets);
2974 u64_stats_update_end(&tstats->syncp);
2975}
2976
2977static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2978 unsigned int packets,
2979 unsigned int len)
2980{
2981 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2982
2983 u64_stats_update_begin(&tstats->syncp);
2984 u64_stats_add(&tstats->tx_bytes, len);
2985 u64_stats_add(&tstats->tx_packets, packets);
2986 u64_stats_update_end(&tstats->syncp);
2987}
2988
2989static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2990{
2991 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2992
2993 u64_stats_update_begin(&lstats->syncp);
2994 u64_stats_add(&lstats->bytes, len);
2995 u64_stats_inc(&lstats->packets);
2996 u64_stats_update_end(&lstats->syncp);
2997}
2998
2999static inline void dev_dstats_rx_add(struct net_device *dev,
3000 unsigned int len)
3001{
3002 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3003
3004 u64_stats_update_begin(&dstats->syncp);
3005 u64_stats_inc(&dstats->rx_packets);
3006 u64_stats_add(&dstats->rx_bytes, len);
3007 u64_stats_update_end(&dstats->syncp);
3008}
3009
3010static inline void dev_dstats_rx_dropped(struct net_device *dev)
3011{
3012 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3013
3014 u64_stats_update_begin(&dstats->syncp);
3015 u64_stats_inc(&dstats->rx_drops);
3016 u64_stats_update_end(&dstats->syncp);
3017}
3018
3019static inline void dev_dstats_tx_add(struct net_device *dev,
3020 unsigned int len)
3021{
3022 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3023
3024 u64_stats_update_begin(&dstats->syncp);
3025 u64_stats_inc(&dstats->tx_packets);
3026 u64_stats_add(&dstats->tx_bytes, len);
3027 u64_stats_update_end(&dstats->syncp);
3028}
3029
3030static inline void dev_dstats_tx_dropped(struct net_device *dev)
3031{
3032 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3033
3034 u64_stats_update_begin(&dstats->syncp);
3035 u64_stats_inc(&dstats->tx_drops);
3036 u64_stats_update_end(&dstats->syncp);
3037}
3038
3039#define __netdev_alloc_pcpu_stats(type, gfp) \
3040({ \
3041 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3042 if (pcpu_stats) { \
3043 int __cpu; \
3044 for_each_possible_cpu(__cpu) { \
3045 typeof(type) *stat; \
3046 stat = per_cpu_ptr(pcpu_stats, __cpu); \
3047 u64_stats_init(&stat->syncp); \
3048 } \
3049 } \
3050 pcpu_stats; \
3051})
3052
3053#define netdev_alloc_pcpu_stats(type) \
3054 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3055
3056#define devm_netdev_alloc_pcpu_stats(dev, type) \
3057({ \
3058 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3059 if (pcpu_stats) { \
3060 int __cpu; \
3061 for_each_possible_cpu(__cpu) { \
3062 typeof(type) *stat; \
3063 stat = per_cpu_ptr(pcpu_stats, __cpu); \
3064 u64_stats_init(&stat->syncp); \
3065 } \
3066 } \
3067 pcpu_stats; \
3068})
3069
3070enum netdev_lag_tx_type {
3071 NETDEV_LAG_TX_TYPE_UNKNOWN,
3072 NETDEV_LAG_TX_TYPE_RANDOM,
3073 NETDEV_LAG_TX_TYPE_BROADCAST,
3074 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3075 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3076 NETDEV_LAG_TX_TYPE_HASH,
3077};
3078
3079enum netdev_lag_hash {
3080 NETDEV_LAG_HASH_NONE,
3081 NETDEV_LAG_HASH_L2,
3082 NETDEV_LAG_HASH_L34,
3083 NETDEV_LAG_HASH_L23,
3084 NETDEV_LAG_HASH_E23,
3085 NETDEV_LAG_HASH_E34,
3086 NETDEV_LAG_HASH_VLAN_SRCMAC,
3087 NETDEV_LAG_HASH_UNKNOWN,
3088};
3089
3090struct netdev_lag_upper_info {
3091 enum netdev_lag_tx_type tx_type;
3092 enum netdev_lag_hash hash_type;
3093};
3094
3095struct netdev_lag_lower_state_info {
3096 u8 link_up : 1,
3097 tx_enabled : 1;
3098};
3099
3100#include <linux/notifier.h>
3101
3102/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3103 * and the rtnetlink notification exclusion list in rtnetlink_event() when
3104 * adding new types.
3105 */
3106enum netdev_cmd {
3107 NETDEV_UP = 1, /* For now you can't veto a device up/down */
3108 NETDEV_DOWN,
3109 NETDEV_REBOOT, /* Tell a protocol stack a network interface
3110 detected a hardware crash and restarted
3111 - we can use this eg to kick tcp sessions
3112 once done */
3113 NETDEV_CHANGE, /* Notify device state change */
3114 NETDEV_REGISTER,
3115 NETDEV_UNREGISTER,
3116 NETDEV_CHANGEMTU, /* notify after mtu change happened */
3117 NETDEV_CHANGEADDR, /* notify after the address change */
3118 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
3119 NETDEV_GOING_DOWN,
3120 NETDEV_CHANGENAME,
3121 NETDEV_FEAT_CHANGE,
3122 NETDEV_BONDING_FAILOVER,
3123 NETDEV_PRE_UP,
3124 NETDEV_PRE_TYPE_CHANGE,
3125 NETDEV_POST_TYPE_CHANGE,
3126 NETDEV_POST_INIT,
3127 NETDEV_PRE_UNINIT,
3128 NETDEV_RELEASE,
3129 NETDEV_NOTIFY_PEERS,
3130 NETDEV_JOIN,
3131 NETDEV_CHANGEUPPER,
3132 NETDEV_RESEND_IGMP,
3133 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
3134 NETDEV_CHANGEINFODATA,
3135 NETDEV_BONDING_INFO,
3136 NETDEV_PRECHANGEUPPER,
3137 NETDEV_CHANGELOWERSTATE,
3138 NETDEV_UDP_TUNNEL_PUSH_INFO,
3139 NETDEV_UDP_TUNNEL_DROP_INFO,
3140 NETDEV_CHANGE_TX_QUEUE_LEN,
3141 NETDEV_CVLAN_FILTER_PUSH_INFO,
3142 NETDEV_CVLAN_FILTER_DROP_INFO,
3143 NETDEV_SVLAN_FILTER_PUSH_INFO,
3144 NETDEV_SVLAN_FILTER_DROP_INFO,
3145 NETDEV_OFFLOAD_XSTATS_ENABLE,
3146 NETDEV_OFFLOAD_XSTATS_DISABLE,
3147 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3148 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3149 NETDEV_XDP_FEAT_CHANGE,
3150};
3151const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3152
3153int register_netdevice_notifier(struct notifier_block *nb);
3154int unregister_netdevice_notifier(struct notifier_block *nb);
3155int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3156int unregister_netdevice_notifier_net(struct net *net,
3157 struct notifier_block *nb);
3158int register_netdevice_notifier_dev_net(struct net_device *dev,
3159 struct notifier_block *nb,
3160 struct netdev_net_notifier *nn);
3161int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3162 struct notifier_block *nb,
3163 struct netdev_net_notifier *nn);
3164
3165struct netdev_notifier_info {
3166 struct net_device *dev;
3167 struct netlink_ext_ack *extack;
3168};
3169
3170struct netdev_notifier_info_ext {
3171 struct netdev_notifier_info info; /* must be first */
3172 union {
3173 u32 mtu;
3174 } ext;
3175};
3176
3177struct netdev_notifier_change_info {
3178 struct netdev_notifier_info info; /* must be first */
3179 unsigned int flags_changed;
3180};
3181
3182struct netdev_notifier_changeupper_info {
3183 struct netdev_notifier_info info; /* must be first */
3184 struct net_device *upper_dev; /* new upper dev */
3185 bool master; /* is upper dev master */
3186 bool linking; /* is the notification for link or unlink */
3187 void *upper_info; /* upper dev info */
3188};
3189
3190struct netdev_notifier_changelowerstate_info {
3191 struct netdev_notifier_info info; /* must be first */
3192 void *lower_state_info; /* is lower dev state */
3193};
3194
3195struct netdev_notifier_pre_changeaddr_info {
3196 struct netdev_notifier_info info; /* must be first */
3197 const unsigned char *dev_addr;
3198};
3199
3200enum netdev_offload_xstats_type {
3201 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3202};
3203
3204struct netdev_notifier_offload_xstats_info {
3205 struct netdev_notifier_info info; /* must be first */
3206 enum netdev_offload_xstats_type type;
3207
3208 union {
3209 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3210 struct netdev_notifier_offload_xstats_rd *report_delta;
3211 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3212 struct netdev_notifier_offload_xstats_ru *report_used;
3213 };
3214};
3215
3216int netdev_offload_xstats_enable(struct net_device *dev,
3217 enum netdev_offload_xstats_type type,
3218 struct netlink_ext_ack *extack);
3219int netdev_offload_xstats_disable(struct net_device *dev,
3220 enum netdev_offload_xstats_type type);
3221bool netdev_offload_xstats_enabled(const struct net_device *dev,
3222 enum netdev_offload_xstats_type type);
3223int netdev_offload_xstats_get(struct net_device *dev,
3224 enum netdev_offload_xstats_type type,
3225 struct rtnl_hw_stats64 *stats, bool *used,
3226 struct netlink_ext_ack *extack);
3227void
3228netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3229 const struct rtnl_hw_stats64 *stats);
3230void
3231netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3232void netdev_offload_xstats_push_delta(struct net_device *dev,
3233 enum netdev_offload_xstats_type type,
3234 const struct rtnl_hw_stats64 *stats);
3235
3236static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3237 struct net_device *dev)
3238{
3239 info->dev = dev;
3240 info->extack = NULL;
3241}
3242
3243static inline struct net_device *
3244netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3245{
3246 return info->dev;
3247}
3248
3249static inline struct netlink_ext_ack *
3250netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3251{
3252 return info->extack;
3253}
3254
3255int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3256int call_netdevice_notifiers_info(unsigned long val,
3257 struct netdev_notifier_info *info);
3258
3259#define for_each_netdev(net, d) \
3260 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3261#define for_each_netdev_reverse(net, d) \
3262 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3263#define for_each_netdev_rcu(net, d) \
3264 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3265#define for_each_netdev_safe(net, d, n) \
3266 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3267#define for_each_netdev_continue(net, d) \
3268 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3269#define for_each_netdev_continue_reverse(net, d) \
3270 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3271 dev_list)
3272#define for_each_netdev_continue_rcu(net, d) \
3273 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3274#define for_each_netdev_in_bond_rcu(bond, slave) \
3275 for_each_netdev_rcu(dev_net_rcu(bond), slave) \
3276 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3277#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
3278
3279#define for_each_netdev_dump(net, d, ifindex) \
3280 for (; (d = xa_find(&(net)->dev_by_index, &ifindex, \
3281 ULONG_MAX, XA_PRESENT)); ifindex++)
3282
3283static inline struct net_device *next_net_device(struct net_device *dev)
3284{
3285 struct list_head *lh;
3286 struct net *net;
3287
3288 net = dev_net(dev);
3289 lh = dev->dev_list.next;
3290 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3291}
3292
3293static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3294{
3295 struct list_head *lh;
3296 struct net *net;
3297
3298 net = dev_net(dev);
3299 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3300 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3301}
3302
3303static inline struct net_device *first_net_device(struct net *net)
3304{
3305 return list_empty(&net->dev_base_head) ? NULL :
3306 net_device_entry(net->dev_base_head.next);
3307}
3308
3309static inline struct net_device *first_net_device_rcu(struct net *net)
3310{
3311 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3312
3313 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3314}
3315
3316int netdev_boot_setup_check(struct net_device *dev);
3317struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3318 const char *hwaddr);
3319struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3320 const char *hwaddr);
3321struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3322void dev_add_pack(struct packet_type *pt);
3323void dev_remove_pack(struct packet_type *pt);
3324void __dev_remove_pack(struct packet_type *pt);
3325void dev_add_offload(struct packet_offload *po);
3326void dev_remove_offload(struct packet_offload *po);
3327
3328int dev_get_iflink(const struct net_device *dev);
3329int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3330int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3331 struct net_device_path_stack *stack);
3332struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3333 unsigned short mask);
3334struct net_device *dev_get_by_name(struct net *net, const char *name);
3335struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3336struct net_device *__dev_get_by_name(struct net *net, const char *name);
3337bool netdev_name_in_use(struct net *net, const char *name);
3338int dev_alloc_name(struct net_device *dev, const char *name);
3339int netif_open(struct net_device *dev, struct netlink_ext_ack *extack);
3340int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3341void netif_close(struct net_device *dev);
3342void dev_close(struct net_device *dev);
3343void dev_close_many(struct list_head *head, bool unlink);
3344void netif_disable_lro(struct net_device *dev);
3345void dev_disable_lro(struct net_device *dev);
3346int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3347u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3348 struct net_device *sb_dev);
3349
3350int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3351int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3352
3353static inline int dev_queue_xmit(struct sk_buff *skb)
3354{
3355 return __dev_queue_xmit(skb, NULL);
3356}
3357
3358static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3359 struct net_device *sb_dev)
3360{
3361 return __dev_queue_xmit(skb, sb_dev);
3362}
3363
3364static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3365{
3366 int ret;
3367
3368 ret = __dev_direct_xmit(skb, queue_id);
3369 if (!dev_xmit_complete(ret))
3370 kfree_skb(skb);
3371 return ret;
3372}
3373
3374int register_netdevice(struct net_device *dev);
3375void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3376void unregister_netdevice_many(struct list_head *head);
3377static inline void unregister_netdevice(struct net_device *dev)
3378{
3379 unregister_netdevice_queue(dev, NULL);
3380}
3381
3382int netdev_refcnt_read(const struct net_device *dev);
3383void free_netdev(struct net_device *dev);
3384
3385struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3386 struct sk_buff *skb,
3387 bool all_slaves);
3388struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3389 struct sock *sk);
3390struct net_device *dev_get_by_index(struct net *net, int ifindex);
3391struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3392struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3393 netdevice_tracker *tracker, gfp_t gfp);
3394struct net_device *netdev_get_by_name(struct net *net, const char *name,
3395 netdevice_tracker *tracker, gfp_t gfp);
3396struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3397void netdev_copy_name(struct net_device *dev, char *name);
3398
3399static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3400 unsigned short type,
3401 const void *daddr, const void *saddr,
3402 unsigned int len)
3403{
3404 if (!dev->header_ops || !dev->header_ops->create)
3405 return 0;
3406
3407 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3408}
3409
3410static inline int dev_parse_header(const struct sk_buff *skb,
3411 unsigned char *haddr)
3412{
3413 const struct net_device *dev = skb->dev;
3414
3415 if (!dev->header_ops || !dev->header_ops->parse)
3416 return 0;
3417 return dev->header_ops->parse(skb, haddr);
3418}
3419
3420static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3421{
3422 const struct net_device *dev = skb->dev;
3423
3424 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3425 return 0;
3426 return dev->header_ops->parse_protocol(skb);
3427}
3428
3429/* ll_header must have at least hard_header_len allocated */
3430static inline bool dev_validate_header(const struct net_device *dev,
3431 char *ll_header, int len)
3432{
3433 if (likely(len >= dev->hard_header_len))
3434 return true;
3435 if (len < dev->min_header_len)
3436 return false;
3437
3438 if (capable(CAP_SYS_RAWIO)) {
3439 memset(ll_header + len, 0, dev->hard_header_len - len);
3440 return true;
3441 }
3442
3443 if (dev->header_ops && dev->header_ops->validate)
3444 return dev->header_ops->validate(ll_header, len);
3445
3446 return false;
3447}
3448
3449static inline bool dev_has_header(const struct net_device *dev)
3450{
3451 return dev->header_ops && dev->header_ops->create;
3452}
3453
3454/*
3455 * Incoming packets are placed on per-CPU queues
3456 */
3457struct softnet_data {
3458 struct list_head poll_list;
3459 struct sk_buff_head process_queue;
3460 local_lock_t process_queue_bh_lock;
3461
3462 /* stats */
3463 unsigned int processed;
3464 unsigned int time_squeeze;
3465#ifdef CONFIG_RPS
3466 struct softnet_data *rps_ipi_list;
3467#endif
3468
3469 unsigned int received_rps;
3470 bool in_net_rx_action;
3471 bool in_napi_threaded_poll;
3472
3473#ifdef CONFIG_NET_FLOW_LIMIT
3474 struct sd_flow_limit __rcu *flow_limit;
3475#endif
3476 struct Qdisc *output_queue;
3477 struct Qdisc **output_queue_tailp;
3478 struct sk_buff *completion_queue;
3479#ifdef CONFIG_XFRM_OFFLOAD
3480 struct sk_buff_head xfrm_backlog;
3481#endif
3482 /* written and read only by owning cpu: */
3483 struct netdev_xmit xmit;
3484#ifdef CONFIG_RPS
3485 /* input_queue_head should be written by cpu owning this struct,
3486 * and only read by other cpus. Worth using a cache line.
3487 */
3488 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3489
3490 /* Elements below can be accessed between CPUs for RPS/RFS */
3491 call_single_data_t csd ____cacheline_aligned_in_smp;
3492 struct softnet_data *rps_ipi_next;
3493 unsigned int cpu;
3494 unsigned int input_queue_tail;
3495#endif
3496 struct sk_buff_head input_pkt_queue;
3497 struct napi_struct backlog;
3498
3499 atomic_t dropped ____cacheline_aligned_in_smp;
3500
3501 /* Another possibly contended cache line */
3502 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3503 int defer_count;
3504 int defer_ipi_scheduled;
3505 struct sk_buff *defer_list;
3506 call_single_data_t defer_csd;
3507};
3508
3509DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3510
3511struct page_pool_bh {
3512 struct page_pool *pool;
3513 local_lock_t bh_lock;
3514};
3515DECLARE_PER_CPU(struct page_pool_bh, system_page_pool);
3516
3517#ifndef CONFIG_PREEMPT_RT
3518static inline int dev_recursion_level(void)
3519{
3520 return this_cpu_read(softnet_data.xmit.recursion);
3521}
3522#else
3523static inline int dev_recursion_level(void)
3524{
3525 return current->net_xmit.recursion;
3526}
3527
3528#endif
3529
3530void __netif_schedule(struct Qdisc *q);
3531void netif_schedule_queue(struct netdev_queue *txq);
3532
3533static inline void netif_tx_schedule_all(struct net_device *dev)
3534{
3535 unsigned int i;
3536
3537 for (i = 0; i < dev->num_tx_queues; i++)
3538 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3539}
3540
3541static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3542{
3543 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3544}
3545
3546/**
3547 * netif_start_queue - allow transmit
3548 * @dev: network device
3549 *
3550 * Allow upper layers to call the device hard_start_xmit routine.
3551 */
3552static inline void netif_start_queue(struct net_device *dev)
3553{
3554 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3555}
3556
3557static inline void netif_tx_start_all_queues(struct net_device *dev)
3558{
3559 unsigned int i;
3560
3561 for (i = 0; i < dev->num_tx_queues; i++) {
3562 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3563 netif_tx_start_queue(txq);
3564 }
3565}
3566
3567void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3568
3569/**
3570 * netif_wake_queue - restart transmit
3571 * @dev: network device
3572 *
3573 * Allow upper layers to call the device hard_start_xmit routine.
3574 * Used for flow control when transmit resources are available.
3575 */
3576static inline void netif_wake_queue(struct net_device *dev)
3577{
3578 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3579}
3580
3581static inline void netif_tx_wake_all_queues(struct net_device *dev)
3582{
3583 unsigned int i;
3584
3585 for (i = 0; i < dev->num_tx_queues; i++) {
3586 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3587 netif_tx_wake_queue(txq);
3588 }
3589}
3590
3591static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3592{
3593 /* Paired with READ_ONCE() from dev_watchdog() */
3594 WRITE_ONCE(dev_queue->trans_start, jiffies);
3595
3596 /* This barrier is paired with smp_mb() from dev_watchdog() */
3597 smp_mb__before_atomic();
3598
3599 /* Must be an atomic op see netif_txq_try_stop() */
3600 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3601}
3602
3603/**
3604 * netif_stop_queue - stop transmitted packets
3605 * @dev: network device
3606 *
3607 * Stop upper layers calling the device hard_start_xmit routine.
3608 * Used for flow control when transmit resources are unavailable.
3609 */
3610static inline void netif_stop_queue(struct net_device *dev)
3611{
3612 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3613}
3614
3615void netif_tx_stop_all_queues(struct net_device *dev);
3616
3617static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3618{
3619 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3620}
3621
3622/**
3623 * netif_queue_stopped - test if transmit queue is flowblocked
3624 * @dev: network device
3625 *
3626 * Test if transmit queue on device is currently unable to send.
3627 */
3628static inline bool netif_queue_stopped(const struct net_device *dev)
3629{
3630 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3631}
3632
3633static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3634{
3635 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3636}
3637
3638static inline bool
3639netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3640{
3641 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3642}
3643
3644static inline bool
3645netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3646{
3647 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3648}
3649
3650/**
3651 * netdev_queue_set_dql_min_limit - set dql minimum limit
3652 * @dev_queue: pointer to transmit queue
3653 * @min_limit: dql minimum limit
3654 *
3655 * Forces xmit_more() to return true until the minimum threshold
3656 * defined by @min_limit is reached (or until the tx queue is
3657 * empty). Warning: to be use with care, misuse will impact the
3658 * latency.
3659 */
3660static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3661 unsigned int min_limit)
3662{
3663#ifdef CONFIG_BQL
3664 dev_queue->dql.min_limit = min_limit;
3665#endif
3666}
3667
3668static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3669{
3670#ifdef CONFIG_BQL
3671 /* Non-BQL migrated drivers will return 0, too. */
3672 return dql_avail(&txq->dql);
3673#else
3674 return 0;
3675#endif
3676}
3677
3678/**
3679 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3680 * @dev_queue: pointer to transmit queue
3681 *
3682 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3683 * to give appropriate hint to the CPU.
3684 */
3685static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3686{
3687#ifdef CONFIG_BQL
3688 prefetchw(&dev_queue->dql.num_queued);
3689#endif
3690}
3691
3692/**
3693 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3694 * @dev_queue: pointer to transmit queue
3695 *
3696 * BQL enabled drivers might use this helper in their TX completion path,
3697 * to give appropriate hint to the CPU.
3698 */
3699static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3700{
3701#ifdef CONFIG_BQL
3702 prefetchw(&dev_queue->dql.limit);
3703#endif
3704}
3705
3706/**
3707 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3708 * @dev_queue: network device queue
3709 * @bytes: number of bytes queued to the device queue
3710 *
3711 * Report the number of bytes queued for sending/completion to the network
3712 * device hardware queue. @bytes should be a good approximation and should
3713 * exactly match netdev_completed_queue() @bytes.
3714 * This is typically called once per packet, from ndo_start_xmit().
3715 */
3716static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3717 unsigned int bytes)
3718{
3719#ifdef CONFIG_BQL
3720 dql_queued(&dev_queue->dql, bytes);
3721
3722 if (likely(dql_avail(&dev_queue->dql) >= 0))
3723 return;
3724
3725 /* Paired with READ_ONCE() from dev_watchdog() */
3726 WRITE_ONCE(dev_queue->trans_start, jiffies);
3727
3728 /* This barrier is paired with smp_mb() from dev_watchdog() */
3729 smp_mb__before_atomic();
3730
3731 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3732
3733 /*
3734 * The XOFF flag must be set before checking the dql_avail below,
3735 * because in netdev_tx_completed_queue we update the dql_completed
3736 * before checking the XOFF flag.
3737 */
3738 smp_mb__after_atomic();
3739
3740 /* check again in case another CPU has just made room avail */
3741 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3742 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3743#endif
3744}
3745
3746/* Variant of netdev_tx_sent_queue() for drivers that are aware
3747 * that they should not test BQL status themselves.
3748 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3749 * skb of a batch.
3750 * Returns true if the doorbell must be used to kick the NIC.
3751 */
3752static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3753 unsigned int bytes,
3754 bool xmit_more)
3755{
3756 if (xmit_more) {
3757#ifdef CONFIG_BQL
3758 dql_queued(&dev_queue->dql, bytes);
3759#endif
3760 return netif_tx_queue_stopped(dev_queue);
3761 }
3762 netdev_tx_sent_queue(dev_queue, bytes);
3763 return true;
3764}
3765
3766/**
3767 * netdev_sent_queue - report the number of bytes queued to hardware
3768 * @dev: network device
3769 * @bytes: number of bytes queued to the hardware device queue
3770 *
3771 * Report the number of bytes queued for sending/completion to the network
3772 * device hardware queue#0. @bytes should be a good approximation and should
3773 * exactly match netdev_completed_queue() @bytes.
3774 * This is typically called once per packet, from ndo_start_xmit().
3775 */
3776static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3777{
3778 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3779}
3780
3781static inline bool __netdev_sent_queue(struct net_device *dev,
3782 unsigned int bytes,
3783 bool xmit_more)
3784{
3785 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3786 xmit_more);
3787}
3788
3789/**
3790 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3791 * @dev_queue: network device queue
3792 * @pkts: number of packets (currently ignored)
3793 * @bytes: number of bytes dequeued from the device queue
3794 *
3795 * Must be called at most once per TX completion round (and not per
3796 * individual packet), so that BQL can adjust its limits appropriately.
3797 */
3798static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3799 unsigned int pkts, unsigned int bytes)
3800{
3801#ifdef CONFIG_BQL
3802 if (unlikely(!bytes))
3803 return;
3804
3805 dql_completed(&dev_queue->dql, bytes);
3806
3807 /*
3808 * Without the memory barrier there is a small possibility that
3809 * netdev_tx_sent_queue will miss the update and cause the queue to
3810 * be stopped forever
3811 */
3812 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3813
3814 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3815 return;
3816
3817 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3818 netif_schedule_queue(dev_queue);
3819#endif
3820}
3821
3822/**
3823 * netdev_completed_queue - report bytes and packets completed by device
3824 * @dev: network device
3825 * @pkts: actual number of packets sent over the medium
3826 * @bytes: actual number of bytes sent over the medium
3827 *
3828 * Report the number of bytes and packets transmitted by the network device
3829 * hardware queue over the physical medium, @bytes must exactly match the
3830 * @bytes amount passed to netdev_sent_queue()
3831 */
3832static inline void netdev_completed_queue(struct net_device *dev,
3833 unsigned int pkts, unsigned int bytes)
3834{
3835 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3836}
3837
3838static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3839{
3840#ifdef CONFIG_BQL
3841 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3842 dql_reset(&q->dql);
3843#endif
3844}
3845
3846/**
3847 * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3848 * @dev: network device
3849 * @qid: stack index of the queue to reset
3850 */
3851static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3852 u32 qid)
3853{
3854 netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3855}
3856
3857/**
3858 * netdev_reset_queue - reset the packets and bytes count of a network device
3859 * @dev_queue: network device
3860 *
3861 * Reset the bytes and packet count of a network device and clear the
3862 * software flow control OFF bit for this network device
3863 */
3864static inline void netdev_reset_queue(struct net_device *dev_queue)
3865{
3866 netdev_tx_reset_subqueue(dev_queue, 0);
3867}
3868
3869/**
3870 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3871 * @dev: network device
3872 * @queue_index: given tx queue index
3873 *
3874 * Returns 0 if given tx queue index >= number of device tx queues,
3875 * otherwise returns the originally passed tx queue index.
3876 */
3877static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3878{
3879 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3880 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3881 dev->name, queue_index,
3882 dev->real_num_tx_queues);
3883 return 0;
3884 }
3885
3886 return queue_index;
3887}
3888
3889/**
3890 * netif_running - test if up
3891 * @dev: network device
3892 *
3893 * Test if the device has been brought up.
3894 */
3895static inline bool netif_running(const struct net_device *dev)
3896{
3897 return test_bit(__LINK_STATE_START, &dev->state);
3898}
3899
3900/*
3901 * Routines to manage the subqueues on a device. We only need start,
3902 * stop, and a check if it's stopped. All other device management is
3903 * done at the overall netdevice level.
3904 * Also test the device if we're multiqueue.
3905 */
3906
3907/**
3908 * netif_start_subqueue - allow sending packets on subqueue
3909 * @dev: network device
3910 * @queue_index: sub queue index
3911 *
3912 * Start individual transmit queue of a device with multiple transmit queues.
3913 */
3914static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3915{
3916 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3917
3918 netif_tx_start_queue(txq);
3919}
3920
3921/**
3922 * netif_stop_subqueue - stop sending packets on subqueue
3923 * @dev: network device
3924 * @queue_index: sub queue index
3925 *
3926 * Stop individual transmit queue of a device with multiple transmit queues.
3927 */
3928static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3929{
3930 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3931 netif_tx_stop_queue(txq);
3932}
3933
3934/**
3935 * __netif_subqueue_stopped - test status of subqueue
3936 * @dev: network device
3937 * @queue_index: sub queue index
3938 *
3939 * Check individual transmit queue of a device with multiple transmit queues.
3940 */
3941static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3942 u16 queue_index)
3943{
3944 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3945
3946 return netif_tx_queue_stopped(txq);
3947}
3948
3949/**
3950 * netif_subqueue_stopped - test status of subqueue
3951 * @dev: network device
3952 * @skb: sub queue buffer pointer
3953 *
3954 * Check individual transmit queue of a device with multiple transmit queues.
3955 */
3956static inline bool netif_subqueue_stopped(const struct net_device *dev,
3957 struct sk_buff *skb)
3958{
3959 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3960}
3961
3962/**
3963 * netif_wake_subqueue - allow sending packets on subqueue
3964 * @dev: network device
3965 * @queue_index: sub queue index
3966 *
3967 * Resume individual transmit queue of a device with multiple transmit queues.
3968 */
3969static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3970{
3971 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3972
3973 netif_tx_wake_queue(txq);
3974}
3975
3976#ifdef CONFIG_XPS
3977int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3978 u16 index);
3979int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3980 u16 index, enum xps_map_type type);
3981
3982/**
3983 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3984 * @j: CPU/Rx queue index
3985 * @mask: bitmask of all cpus/rx queues
3986 * @nr_bits: number of bits in the bitmask
3987 *
3988 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3989 */
3990static inline bool netif_attr_test_mask(unsigned long j,
3991 const unsigned long *mask,
3992 unsigned int nr_bits)
3993{
3994 cpu_max_bits_warn(j, nr_bits);
3995 return test_bit(j, mask);
3996}
3997
3998/**
3999 * netif_attr_test_online - Test for online CPU/Rx queue
4000 * @j: CPU/Rx queue index
4001 * @online_mask: bitmask for CPUs/Rx queues that are online
4002 * @nr_bits: number of bits in the bitmask
4003 *
4004 * Returns: true if a CPU/Rx queue is online.
4005 */
4006static inline bool netif_attr_test_online(unsigned long j,
4007 const unsigned long *online_mask,
4008 unsigned int nr_bits)
4009{
4010 cpu_max_bits_warn(j, nr_bits);
4011
4012 if (online_mask)
4013 return test_bit(j, online_mask);
4014
4015 return (j < nr_bits);
4016}
4017
4018/**
4019 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
4020 * @n: CPU/Rx queue index
4021 * @srcp: the cpumask/Rx queue mask pointer
4022 * @nr_bits: number of bits in the bitmask
4023 *
4024 * Returns: next (after n) CPU/Rx queue index in the mask;
4025 * >= nr_bits if no further CPUs/Rx queues set.
4026 */
4027static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
4028 unsigned int nr_bits)
4029{
4030 /* -1 is a legal arg here. */
4031 if (n != -1)
4032 cpu_max_bits_warn(n, nr_bits);
4033
4034 if (srcp)
4035 return find_next_bit(srcp, nr_bits, n + 1);
4036
4037 return n + 1;
4038}
4039
4040/**
4041 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
4042 * @n: CPU/Rx queue index
4043 * @src1p: the first CPUs/Rx queues mask pointer
4044 * @src2p: the second CPUs/Rx queues mask pointer
4045 * @nr_bits: number of bits in the bitmask
4046 *
4047 * Returns: next (after n) CPU/Rx queue index set in both masks;
4048 * >= nr_bits if no further CPUs/Rx queues set in both.
4049 */
4050static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4051 const unsigned long *src2p,
4052 unsigned int nr_bits)
4053{
4054 /* -1 is a legal arg here. */
4055 if (n != -1)
4056 cpu_max_bits_warn(n, nr_bits);
4057
4058 if (src1p && src2p)
4059 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4060 else if (src1p)
4061 return find_next_bit(src1p, nr_bits, n + 1);
4062 else if (src2p)
4063 return find_next_bit(src2p, nr_bits, n + 1);
4064
4065 return n + 1;
4066}
4067#else
4068static inline int netif_set_xps_queue(struct net_device *dev,
4069 const struct cpumask *mask,
4070 u16 index)
4071{
4072 return 0;
4073}
4074
4075static inline int __netif_set_xps_queue(struct net_device *dev,
4076 const unsigned long *mask,
4077 u16 index, enum xps_map_type type)
4078{
4079 return 0;
4080}
4081#endif
4082
4083/**
4084 * netif_is_multiqueue - test if device has multiple transmit queues
4085 * @dev: network device
4086 *
4087 * Check if device has multiple transmit queues
4088 */
4089static inline bool netif_is_multiqueue(const struct net_device *dev)
4090{
4091 return dev->num_tx_queues > 1;
4092}
4093
4094int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4095int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4096int netif_set_real_num_queues(struct net_device *dev,
4097 unsigned int txq, unsigned int rxq);
4098
4099int netif_get_num_default_rss_queues(void);
4100
4101void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4102void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4103
4104/*
4105 * It is not allowed to call kfree_skb() or consume_skb() from hardware
4106 * interrupt context or with hardware interrupts being disabled.
4107 * (in_hardirq() || irqs_disabled())
4108 *
4109 * We provide four helpers that can be used in following contexts :
4110 *
4111 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4112 * replacing kfree_skb(skb)
4113 *
4114 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4115 * Typically used in place of consume_skb(skb) in TX completion path
4116 *
4117 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4118 * replacing kfree_skb(skb)
4119 *
4120 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4121 * and consumed a packet. Used in place of consume_skb(skb)
4122 */
4123static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4124{
4125 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4126}
4127
4128static inline void dev_consume_skb_irq(struct sk_buff *skb)
4129{
4130 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4131}
4132
4133static inline void dev_kfree_skb_any(struct sk_buff *skb)
4134{
4135 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4136}
4137
4138static inline void dev_consume_skb_any(struct sk_buff *skb)
4139{
4140 dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4141}
4142
4143u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4144 const struct bpf_prog *xdp_prog);
4145void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4146int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4147int netif_rx(struct sk_buff *skb);
4148int __netif_rx(struct sk_buff *skb);
4149
4150int netif_receive_skb(struct sk_buff *skb);
4151int netif_receive_skb_core(struct sk_buff *skb);
4152void netif_receive_skb_list_internal(struct list_head *head);
4153void netif_receive_skb_list(struct list_head *head);
4154gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb);
4155
4156static inline gro_result_t napi_gro_receive(struct napi_struct *napi,
4157 struct sk_buff *skb)
4158{
4159 return gro_receive_skb(&napi->gro, skb);
4160}
4161
4162struct sk_buff *napi_get_frags(struct napi_struct *napi);
4163gro_result_t napi_gro_frags(struct napi_struct *napi);
4164
4165static inline void napi_free_frags(struct napi_struct *napi)
4166{
4167 kfree_skb(napi->skb);
4168 napi->skb = NULL;
4169}
4170
4171bool netdev_is_rx_handler_busy(struct net_device *dev);
4172int netdev_rx_handler_register(struct net_device *dev,
4173 rx_handler_func_t *rx_handler,
4174 void *rx_handler_data);
4175void netdev_rx_handler_unregister(struct net_device *dev);
4176
4177bool dev_valid_name(const char *name);
4178static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4179{
4180 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4181}
4182int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4183int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4184int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4185 void __user *data, bool *need_copyout);
4186int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4187int dev_eth_ioctl(struct net_device *dev,
4188 struct ifreq *ifr, unsigned int cmd);
4189int generic_hwtstamp_get_lower(struct net_device *dev,
4190 struct kernel_hwtstamp_config *kernel_cfg);
4191int generic_hwtstamp_set_lower(struct net_device *dev,
4192 struct kernel_hwtstamp_config *kernel_cfg,
4193 struct netlink_ext_ack *extack);
4194int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4195unsigned int dev_get_flags(const struct net_device *);
4196int __dev_change_flags(struct net_device *dev, unsigned int flags,
4197 struct netlink_ext_ack *extack);
4198int netif_change_flags(struct net_device *dev, unsigned int flags,
4199 struct netlink_ext_ack *extack);
4200int dev_change_flags(struct net_device *dev, unsigned int flags,
4201 struct netlink_ext_ack *extack);
4202int netif_set_alias(struct net_device *dev, const char *alias, size_t len);
4203int dev_set_alias(struct net_device *, const char *, size_t);
4204int dev_get_alias(const struct net_device *, char *, size_t);
4205int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4206 const char *pat, int new_ifindex,
4207 struct netlink_ext_ack *extack);
4208int dev_change_net_namespace(struct net_device *dev, struct net *net,
4209 const char *pat);
4210int __dev_set_mtu(struct net_device *, int);
4211int netif_set_mtu(struct net_device *dev, int new_mtu);
4212int dev_set_mtu(struct net_device *, int);
4213int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4214 struct netlink_ext_ack *extack);
4215int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4216 struct netlink_ext_ack *extack);
4217int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4218 struct netlink_ext_ack *extack);
4219int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss,
4220 struct netlink_ext_ack *extack);
4221int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4222int dev_get_port_parent_id(struct net_device *dev,
4223 struct netdev_phys_item_id *ppid, bool recurse);
4224bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4225
4226struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4227struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4228 struct netdev_queue *txq, int *ret);
4229
4230int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4231u8 dev_xdp_prog_count(struct net_device *dev);
4232int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4233int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4234u8 dev_xdp_sb_prog_count(struct net_device *dev);
4235u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4236
4237u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4238
4239int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4241int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4242bool is_skb_forwardable(const struct net_device *dev,
4243 const struct sk_buff *skb);
4244
4245static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4246 const struct sk_buff *skb,
4247 const bool check_mtu)
4248{
4249 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4250 unsigned int len;
4251
4252 if (!(dev->flags & IFF_UP))
4253 return false;
4254
4255 if (!check_mtu)
4256 return true;
4257
4258 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4259 if (skb->len <= len)
4260 return true;
4261
4262 /* if TSO is enabled, we don't care about the length as the packet
4263 * could be forwarded without being segmented before
4264 */
4265 if (skb_is_gso(skb))
4266 return true;
4267
4268 return false;
4269}
4270
4271void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4272
4273#define DEV_CORE_STATS_INC(FIELD) \
4274static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
4275{ \
4276 netdev_core_stats_inc(dev, \
4277 offsetof(struct net_device_core_stats, FIELD)); \
4278}
4279DEV_CORE_STATS_INC(rx_dropped)
4280DEV_CORE_STATS_INC(tx_dropped)
4281DEV_CORE_STATS_INC(rx_nohandler)
4282DEV_CORE_STATS_INC(rx_otherhost_dropped)
4283#undef DEV_CORE_STATS_INC
4284
4285static __always_inline int ____dev_forward_skb(struct net_device *dev,
4286 struct sk_buff *skb,
4287 const bool check_mtu)
4288{
4289 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4290 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4291 dev_core_stats_rx_dropped_inc(dev);
4292 kfree_skb(skb);
4293 return NET_RX_DROP;
4294 }
4295
4296 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4297 skb->priority = 0;
4298 return 0;
4299}
4300
4301bool dev_nit_active_rcu(const struct net_device *dev);
4302static inline bool dev_nit_active(const struct net_device *dev)
4303{
4304 bool ret;
4305
4306 rcu_read_lock();
4307 ret = dev_nit_active_rcu(dev);
4308 rcu_read_unlock();
4309 return ret;
4310}
4311
4312void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4313
4314static inline void __dev_put(struct net_device *dev)
4315{
4316 if (dev) {
4317#ifdef CONFIG_PCPU_DEV_REFCNT
4318 this_cpu_dec(*dev->pcpu_refcnt);
4319#else
4320 refcount_dec(&dev->dev_refcnt);
4321#endif
4322 }
4323}
4324
4325static inline void __dev_hold(struct net_device *dev)
4326{
4327 if (dev) {
4328#ifdef CONFIG_PCPU_DEV_REFCNT
4329 this_cpu_inc(*dev->pcpu_refcnt);
4330#else
4331 refcount_inc(&dev->dev_refcnt);
4332#endif
4333 }
4334}
4335
4336static inline void __netdev_tracker_alloc(struct net_device *dev,
4337 netdevice_tracker *tracker,
4338 gfp_t gfp)
4339{
4340#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4341 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4342#endif
4343}
4344
4345/* netdev_tracker_alloc() can upgrade a prior untracked reference
4346 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4347 */
4348static inline void netdev_tracker_alloc(struct net_device *dev,
4349 netdevice_tracker *tracker, gfp_t gfp)
4350{
4351#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4352 refcount_dec(&dev->refcnt_tracker.no_tracker);
4353 __netdev_tracker_alloc(dev, tracker, gfp);
4354#endif
4355}
4356
4357static inline void netdev_tracker_free(struct net_device *dev,
4358 netdevice_tracker *tracker)
4359{
4360#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4361 ref_tracker_free(&dev->refcnt_tracker, tracker);
4362#endif
4363}
4364
4365static inline void netdev_hold(struct net_device *dev,
4366 netdevice_tracker *tracker, gfp_t gfp)
4367{
4368 if (dev) {
4369 __dev_hold(dev);
4370 __netdev_tracker_alloc(dev, tracker, gfp);
4371 }
4372}
4373
4374static inline void netdev_put(struct net_device *dev,
4375 netdevice_tracker *tracker)
4376{
4377 if (dev) {
4378 netdev_tracker_free(dev, tracker);
4379 __dev_put(dev);
4380 }
4381}
4382
4383/**
4384 * dev_hold - get reference to device
4385 * @dev: network device
4386 *
4387 * Hold reference to device to keep it from being freed.
4388 * Try using netdev_hold() instead.
4389 */
4390static inline void dev_hold(struct net_device *dev)
4391{
4392 netdev_hold(dev, NULL, GFP_ATOMIC);
4393}
4394
4395/**
4396 * dev_put - release reference to device
4397 * @dev: network device
4398 *
4399 * Release reference to device to allow it to be freed.
4400 * Try using netdev_put() instead.
4401 */
4402static inline void dev_put(struct net_device *dev)
4403{
4404 netdev_put(dev, NULL);
4405}
4406
4407DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4408
4409static inline void netdev_ref_replace(struct net_device *odev,
4410 struct net_device *ndev,
4411 netdevice_tracker *tracker,
4412 gfp_t gfp)
4413{
4414 if (odev)
4415 netdev_tracker_free(odev, tracker);
4416
4417 __dev_hold(ndev);
4418 __dev_put(odev);
4419
4420 if (ndev)
4421 __netdev_tracker_alloc(ndev, tracker, gfp);
4422}
4423
4424/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4425 * and _off may be called from IRQ context, but it is caller
4426 * who is responsible for serialization of these calls.
4427 *
4428 * The name carrier is inappropriate, these functions should really be
4429 * called netif_lowerlayer_*() because they represent the state of any
4430 * kind of lower layer not just hardware media.
4431 */
4432void linkwatch_fire_event(struct net_device *dev);
4433
4434/**
4435 * linkwatch_sync_dev - sync linkwatch for the given device
4436 * @dev: network device to sync linkwatch for
4437 *
4438 * Sync linkwatch for the given device, removing it from the
4439 * pending work list (if queued).
4440 */
4441void linkwatch_sync_dev(struct net_device *dev);
4442void __linkwatch_sync_dev(struct net_device *dev);
4443
4444/**
4445 * netif_carrier_ok - test if carrier present
4446 * @dev: network device
4447 *
4448 * Check if carrier is present on device
4449 */
4450static inline bool netif_carrier_ok(const struct net_device *dev)
4451{
4452 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4453}
4454
4455unsigned long dev_trans_start(struct net_device *dev);
4456
4457void netdev_watchdog_up(struct net_device *dev);
4458
4459void netif_carrier_on(struct net_device *dev);
4460void netif_carrier_off(struct net_device *dev);
4461void netif_carrier_event(struct net_device *dev);
4462
4463/**
4464 * netif_dormant_on - mark device as dormant.
4465 * @dev: network device
4466 *
4467 * Mark device as dormant (as per RFC2863).
4468 *
4469 * The dormant state indicates that the relevant interface is not
4470 * actually in a condition to pass packets (i.e., it is not 'up') but is
4471 * in a "pending" state, waiting for some external event. For "on-
4472 * demand" interfaces, this new state identifies the situation where the
4473 * interface is waiting for events to place it in the up state.
4474 */
4475static inline void netif_dormant_on(struct net_device *dev)
4476{
4477 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4478 linkwatch_fire_event(dev);
4479}
4480
4481/**
4482 * netif_dormant_off - set device as not dormant.
4483 * @dev: network device
4484 *
4485 * Device is not in dormant state.
4486 */
4487static inline void netif_dormant_off(struct net_device *dev)
4488{
4489 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4490 linkwatch_fire_event(dev);
4491}
4492
4493/**
4494 * netif_dormant - test if device is dormant
4495 * @dev: network device
4496 *
4497 * Check if device is dormant.
4498 */
4499static inline bool netif_dormant(const struct net_device *dev)
4500{
4501 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4502}
4503
4504
4505/**
4506 * netif_testing_on - mark device as under test.
4507 * @dev: network device
4508 *
4509 * Mark device as under test (as per RFC2863).
4510 *
4511 * The testing state indicates that some test(s) must be performed on
4512 * the interface. After completion, of the test, the interface state
4513 * will change to up, dormant, or down, as appropriate.
4514 */
4515static inline void netif_testing_on(struct net_device *dev)
4516{
4517 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4518 linkwatch_fire_event(dev);
4519}
4520
4521/**
4522 * netif_testing_off - set device as not under test.
4523 * @dev: network device
4524 *
4525 * Device is not in testing state.
4526 */
4527static inline void netif_testing_off(struct net_device *dev)
4528{
4529 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4530 linkwatch_fire_event(dev);
4531}
4532
4533/**
4534 * netif_testing - test if device is under test
4535 * @dev: network device
4536 *
4537 * Check if device is under test
4538 */
4539static inline bool netif_testing(const struct net_device *dev)
4540{
4541 return test_bit(__LINK_STATE_TESTING, &dev->state);
4542}
4543
4544
4545/**
4546 * netif_oper_up - test if device is operational
4547 * @dev: network device
4548 *
4549 * Check if carrier is operational
4550 */
4551static inline bool netif_oper_up(const struct net_device *dev)
4552{
4553 unsigned int operstate = READ_ONCE(dev->operstate);
4554
4555 return operstate == IF_OPER_UP ||
4556 operstate == IF_OPER_UNKNOWN /* backward compat */;
4557}
4558
4559/**
4560 * netif_device_present - is device available or removed
4561 * @dev: network device
4562 *
4563 * Check if device has not been removed from system.
4564 */
4565static inline bool netif_device_present(const struct net_device *dev)
4566{
4567 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4568}
4569
4570void netif_device_detach(struct net_device *dev);
4571
4572void netif_device_attach(struct net_device *dev);
4573
4574/*
4575 * Network interface message level settings
4576 */
4577
4578enum {
4579 NETIF_MSG_DRV_BIT,
4580 NETIF_MSG_PROBE_BIT,
4581 NETIF_MSG_LINK_BIT,
4582 NETIF_MSG_TIMER_BIT,
4583 NETIF_MSG_IFDOWN_BIT,
4584 NETIF_MSG_IFUP_BIT,
4585 NETIF_MSG_RX_ERR_BIT,
4586 NETIF_MSG_TX_ERR_BIT,
4587 NETIF_MSG_TX_QUEUED_BIT,
4588 NETIF_MSG_INTR_BIT,
4589 NETIF_MSG_TX_DONE_BIT,
4590 NETIF_MSG_RX_STATUS_BIT,
4591 NETIF_MSG_PKTDATA_BIT,
4592 NETIF_MSG_HW_BIT,
4593 NETIF_MSG_WOL_BIT,
4594
4595 /* When you add a new bit above, update netif_msg_class_names array
4596 * in net/ethtool/common.c
4597 */
4598 NETIF_MSG_CLASS_COUNT,
4599};
4600/* Both ethtool_ops interface and internal driver implementation use u32 */
4601static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4602
4603#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4604#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4605
4606#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4607#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4608#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4609#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4610#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4611#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4612#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4613#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4614#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4615#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4616#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4617#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4618#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4619#define NETIF_MSG_HW __NETIF_MSG(HW)
4620#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4621
4622#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4623#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4624#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4625#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4626#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4627#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4628#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4629#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4630#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4631#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4632#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4633#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4634#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4635#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4636#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4637
4638static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4639{
4640 /* use default */
4641 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4642 return default_msg_enable_bits;
4643 if (debug_value == 0) /* no output */
4644 return 0;
4645 /* set low N bits */
4646 return (1U << debug_value) - 1;
4647}
4648
4649static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4650{
4651 spin_lock(&txq->_xmit_lock);
4652 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4653 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4654}
4655
4656static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4657{
4658 __acquire(&txq->_xmit_lock);
4659 return true;
4660}
4661
4662static inline void __netif_tx_release(struct netdev_queue *txq)
4663{
4664 __release(&txq->_xmit_lock);
4665}
4666
4667static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4668{
4669 spin_lock_bh(&txq->_xmit_lock);
4670 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4671 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4672}
4673
4674static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4675{
4676 bool ok = spin_trylock(&txq->_xmit_lock);
4677
4678 if (likely(ok)) {
4679 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4680 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4681 }
4682 return ok;
4683}
4684
4685static inline void __netif_tx_unlock(struct netdev_queue *txq)
4686{
4687 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4688 WRITE_ONCE(txq->xmit_lock_owner, -1);
4689 spin_unlock(&txq->_xmit_lock);
4690}
4691
4692static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4693{
4694 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4695 WRITE_ONCE(txq->xmit_lock_owner, -1);
4696 spin_unlock_bh(&txq->_xmit_lock);
4697}
4698
4699/*
4700 * txq->trans_start can be read locklessly from dev_watchdog()
4701 */
4702static inline void txq_trans_update(const struct net_device *dev,
4703 struct netdev_queue *txq)
4704{
4705 if (!dev->lltx)
4706 WRITE_ONCE(txq->trans_start, jiffies);
4707}
4708
4709static inline void txq_trans_cond_update(struct netdev_queue *txq)
4710{
4711 unsigned long now = jiffies;
4712
4713 if (READ_ONCE(txq->trans_start) != now)
4714 WRITE_ONCE(txq->trans_start, now);
4715}
4716
4717/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4718static inline void netif_trans_update(struct net_device *dev)
4719{
4720 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4721
4722 txq_trans_cond_update(txq);
4723}
4724
4725/**
4726 * netif_tx_lock - grab network device transmit lock
4727 * @dev: network device
4728 *
4729 * Get network device transmit lock
4730 */
4731void netif_tx_lock(struct net_device *dev);
4732
4733static inline void netif_tx_lock_bh(struct net_device *dev)
4734{
4735 local_bh_disable();
4736 netif_tx_lock(dev);
4737}
4738
4739void netif_tx_unlock(struct net_device *dev);
4740
4741static inline void netif_tx_unlock_bh(struct net_device *dev)
4742{
4743 netif_tx_unlock(dev);
4744 local_bh_enable();
4745}
4746
4747#define HARD_TX_LOCK(dev, txq, cpu) { \
4748 if (!(dev)->lltx) { \
4749 __netif_tx_lock(txq, cpu); \
4750 } else { \
4751 __netif_tx_acquire(txq); \
4752 } \
4753}
4754
4755#define HARD_TX_TRYLOCK(dev, txq) \
4756 (!(dev)->lltx ? \
4757 __netif_tx_trylock(txq) : \
4758 __netif_tx_acquire(txq))
4759
4760#define HARD_TX_UNLOCK(dev, txq) { \
4761 if (!(dev)->lltx) { \
4762 __netif_tx_unlock(txq); \
4763 } else { \
4764 __netif_tx_release(txq); \
4765 } \
4766}
4767
4768static inline void netif_tx_disable(struct net_device *dev)
4769{
4770 unsigned int i;
4771 int cpu;
4772
4773 local_bh_disable();
4774 cpu = smp_processor_id();
4775 spin_lock(&dev->tx_global_lock);
4776 for (i = 0; i < dev->num_tx_queues; i++) {
4777 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4778
4779 __netif_tx_lock(txq, cpu);
4780 netif_tx_stop_queue(txq);
4781 __netif_tx_unlock(txq);
4782 }
4783 spin_unlock(&dev->tx_global_lock);
4784 local_bh_enable();
4785}
4786
4787static inline void netif_addr_lock(struct net_device *dev)
4788{
4789 unsigned char nest_level = 0;
4790
4791#ifdef CONFIG_LOCKDEP
4792 nest_level = dev->nested_level;
4793#endif
4794 spin_lock_nested(&dev->addr_list_lock, nest_level);
4795}
4796
4797static inline void netif_addr_lock_bh(struct net_device *dev)
4798{
4799 unsigned char nest_level = 0;
4800
4801#ifdef CONFIG_LOCKDEP
4802 nest_level = dev->nested_level;
4803#endif
4804 local_bh_disable();
4805 spin_lock_nested(&dev->addr_list_lock, nest_level);
4806}
4807
4808static inline void netif_addr_unlock(struct net_device *dev)
4809{
4810 spin_unlock(&dev->addr_list_lock);
4811}
4812
4813static inline void netif_addr_unlock_bh(struct net_device *dev)
4814{
4815 spin_unlock_bh(&dev->addr_list_lock);
4816}
4817
4818/*
4819 * dev_addrs walker. Should be used only for read access. Call with
4820 * rcu_read_lock held.
4821 */
4822#define for_each_dev_addr(dev, ha) \
4823 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4824
4825/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4826
4827void ether_setup(struct net_device *dev);
4828
4829/* Allocate dummy net_device */
4830struct net_device *alloc_netdev_dummy(int sizeof_priv);
4831
4832/* Support for loadable net-drivers */
4833struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4834 unsigned char name_assign_type,
4835 void (*setup)(struct net_device *),
4836 unsigned int txqs, unsigned int rxqs);
4837#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4838 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4839
4840#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4841 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4842 count)
4843
4844int register_netdev(struct net_device *dev);
4845void unregister_netdev(struct net_device *dev);
4846
4847int devm_register_netdev(struct device *dev, struct net_device *ndev);
4848
4849/* General hardware address lists handling functions */
4850int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4851 struct netdev_hw_addr_list *from_list, int addr_len);
4852int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4853 struct netdev_hw_addr_list *from_list,
4854 int addr_len);
4855void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4856 struct netdev_hw_addr_list *from_list, int addr_len);
4857int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4858 struct net_device *dev,
4859 int (*sync)(struct net_device *, const unsigned char *),
4860 int (*unsync)(struct net_device *,
4861 const unsigned char *));
4862int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4863 struct net_device *dev,
4864 int (*sync)(struct net_device *,
4865 const unsigned char *, int),
4866 int (*unsync)(struct net_device *,
4867 const unsigned char *, int));
4868void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4869 struct net_device *dev,
4870 int (*unsync)(struct net_device *,
4871 const unsigned char *, int));
4872void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4873 struct net_device *dev,
4874 int (*unsync)(struct net_device *,
4875 const unsigned char *));
4876void __hw_addr_init(struct netdev_hw_addr_list *list);
4877
4878/* Functions used for device addresses handling */
4879void dev_addr_mod(struct net_device *dev, unsigned int offset,
4880 const void *addr, size_t len);
4881
4882static inline void
4883__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4884{
4885 dev_addr_mod(dev, 0, addr, len);
4886}
4887
4888static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4889{
4890 __dev_addr_set(dev, addr, dev->addr_len);
4891}
4892
4893int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4894 unsigned char addr_type);
4895int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4896 unsigned char addr_type);
4897
4898/* Functions used for unicast addresses handling */
4899int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4900int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4901int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4902int dev_uc_sync(struct net_device *to, struct net_device *from);
4903int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4904void dev_uc_unsync(struct net_device *to, struct net_device *from);
4905void dev_uc_flush(struct net_device *dev);
4906void dev_uc_init(struct net_device *dev);
4907
4908/**
4909 * __dev_uc_sync - Synchronize device's unicast list
4910 * @dev: device to sync
4911 * @sync: function to call if address should be added
4912 * @unsync: function to call if address should be removed
4913 *
4914 * Add newly added addresses to the interface, and release
4915 * addresses that have been deleted.
4916 */
4917static inline int __dev_uc_sync(struct net_device *dev,
4918 int (*sync)(struct net_device *,
4919 const unsigned char *),
4920 int (*unsync)(struct net_device *,
4921 const unsigned char *))
4922{
4923 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4924}
4925
4926/**
4927 * __dev_uc_unsync - Remove synchronized addresses from device
4928 * @dev: device to sync
4929 * @unsync: function to call if address should be removed
4930 *
4931 * Remove all addresses that were added to the device by dev_uc_sync().
4932 */
4933static inline void __dev_uc_unsync(struct net_device *dev,
4934 int (*unsync)(struct net_device *,
4935 const unsigned char *))
4936{
4937 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4938}
4939
4940/* Functions used for multicast addresses handling */
4941int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4942int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4943int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4944int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4945int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4946int dev_mc_sync(struct net_device *to, struct net_device *from);
4947int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4948void dev_mc_unsync(struct net_device *to, struct net_device *from);
4949void dev_mc_flush(struct net_device *dev);
4950void dev_mc_init(struct net_device *dev);
4951
4952/**
4953 * __dev_mc_sync - Synchronize device's multicast list
4954 * @dev: device to sync
4955 * @sync: function to call if address should be added
4956 * @unsync: function to call if address should be removed
4957 *
4958 * Add newly added addresses to the interface, and release
4959 * addresses that have been deleted.
4960 */
4961static inline int __dev_mc_sync(struct net_device *dev,
4962 int (*sync)(struct net_device *,
4963 const unsigned char *),
4964 int (*unsync)(struct net_device *,
4965 const unsigned char *))
4966{
4967 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4968}
4969
4970/**
4971 * __dev_mc_unsync - Remove synchronized addresses from device
4972 * @dev: device to sync
4973 * @unsync: function to call if address should be removed
4974 *
4975 * Remove all addresses that were added to the device by dev_mc_sync().
4976 */
4977static inline void __dev_mc_unsync(struct net_device *dev,
4978 int (*unsync)(struct net_device *,
4979 const unsigned char *))
4980{
4981 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4982}
4983
4984/* Functions used for secondary unicast and multicast support */
4985void dev_set_rx_mode(struct net_device *dev);
4986int netif_set_promiscuity(struct net_device *dev, int inc);
4987int dev_set_promiscuity(struct net_device *dev, int inc);
4988int netif_set_allmulti(struct net_device *dev, int inc, bool notify);
4989int dev_set_allmulti(struct net_device *dev, int inc);
4990void netif_state_change(struct net_device *dev);
4991void netdev_state_change(struct net_device *dev);
4992void __netdev_notify_peers(struct net_device *dev);
4993void netdev_notify_peers(struct net_device *dev);
4994void netdev_features_change(struct net_device *dev);
4995/* Load a device via the kmod */
4996void dev_load(struct net *net, const char *name);
4997struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4998 struct rtnl_link_stats64 *storage);
4999void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5000 const struct net_device_stats *netdev_stats);
5001void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
5002 const struct pcpu_sw_netstats __percpu *netstats);
5003void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
5004
5005enum {
5006 NESTED_SYNC_IMM_BIT,
5007 NESTED_SYNC_TODO_BIT,
5008};
5009
5010#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
5011#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
5012
5013#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
5014#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
5015
5016struct netdev_nested_priv {
5017 unsigned char flags;
5018 void *data;
5019};
5020
5021bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
5022struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5023 struct list_head **iter);
5024
5025/* iterate through upper list, must be called under RCU read lock */
5026#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
5027 for (iter = &(dev)->adj_list.upper, \
5028 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
5029 updev; \
5030 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
5031
5032int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5033 int (*fn)(struct net_device *upper_dev,
5034 struct netdev_nested_priv *priv),
5035 struct netdev_nested_priv *priv);
5036
5037bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5038 struct net_device *upper_dev);
5039
5040bool netdev_has_any_upper_dev(struct net_device *dev);
5041
5042void *netdev_lower_get_next_private(struct net_device *dev,
5043 struct list_head **iter);
5044void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5045 struct list_head **iter);
5046
5047#define netdev_for_each_lower_private(dev, priv, iter) \
5048 for (iter = (dev)->adj_list.lower.next, \
5049 priv = netdev_lower_get_next_private(dev, &(iter)); \
5050 priv; \
5051 priv = netdev_lower_get_next_private(dev, &(iter)))
5052
5053#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
5054 for (iter = &(dev)->adj_list.lower, \
5055 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
5056 priv; \
5057 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
5058
5059void *netdev_lower_get_next(struct net_device *dev,
5060 struct list_head **iter);
5061
5062#define netdev_for_each_lower_dev(dev, ldev, iter) \
5063 for (iter = (dev)->adj_list.lower.next, \
5064 ldev = netdev_lower_get_next(dev, &(iter)); \
5065 ldev; \
5066 ldev = netdev_lower_get_next(dev, &(iter)))
5067
5068struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5069 struct list_head **iter);
5070int netdev_walk_all_lower_dev(struct net_device *dev,
5071 int (*fn)(struct net_device *lower_dev,
5072 struct netdev_nested_priv *priv),
5073 struct netdev_nested_priv *priv);
5074int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5075 int (*fn)(struct net_device *lower_dev,
5076 struct netdev_nested_priv *priv),
5077 struct netdev_nested_priv *priv);
5078
5079void *netdev_adjacent_get_private(struct list_head *adj_list);
5080void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5081struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5082struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5083int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5084 struct netlink_ext_ack *extack);
5085int netdev_master_upper_dev_link(struct net_device *dev,
5086 struct net_device *upper_dev,
5087 void *upper_priv, void *upper_info,
5088 struct netlink_ext_ack *extack);
5089void netdev_upper_dev_unlink(struct net_device *dev,
5090 struct net_device *upper_dev);
5091int netdev_adjacent_change_prepare(struct net_device *old_dev,
5092 struct net_device *new_dev,
5093 struct net_device *dev,
5094 struct netlink_ext_ack *extack);
5095void netdev_adjacent_change_commit(struct net_device *old_dev,
5096 struct net_device *new_dev,
5097 struct net_device *dev);
5098void netdev_adjacent_change_abort(struct net_device *old_dev,
5099 struct net_device *new_dev,
5100 struct net_device *dev);
5101void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5102void *netdev_lower_dev_get_private(struct net_device *dev,
5103 struct net_device *lower_dev);
5104void netdev_lower_state_changed(struct net_device *lower_dev,
5105 void *lower_state_info);
5106
5107/* RSS keys are 40 or 52 bytes long */
5108#define NETDEV_RSS_KEY_LEN 52
5109extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5110void netdev_rss_key_fill(void *buffer, size_t len);
5111
5112int skb_checksum_help(struct sk_buff *skb);
5113int skb_crc32c_csum_help(struct sk_buff *skb);
5114int skb_csum_hwoffload_help(struct sk_buff *skb,
5115 const netdev_features_t features);
5116
5117struct netdev_bonding_info {
5118 ifslave slave;
5119 ifbond master;
5120};
5121
5122struct netdev_notifier_bonding_info {
5123 struct netdev_notifier_info info; /* must be first */
5124 struct netdev_bonding_info bonding_info;
5125};
5126
5127void netdev_bonding_info_change(struct net_device *dev,
5128 struct netdev_bonding_info *bonding_info);
5129
5130#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5131void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5132#else
5133static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5134 const void *data)
5135{
5136}
5137#endif
5138
5139__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5140
5141static inline bool can_checksum_protocol(netdev_features_t features,
5142 __be16 protocol)
5143{
5144 if (protocol == htons(ETH_P_FCOE))
5145 return !!(features & NETIF_F_FCOE_CRC);
5146
5147 /* Assume this is an IP checksum (not SCTP CRC) */
5148
5149 if (features & NETIF_F_HW_CSUM) {
5150 /* Can checksum everything */
5151 return true;
5152 }
5153
5154 switch (protocol) {
5155 case htons(ETH_P_IP):
5156 return !!(features & NETIF_F_IP_CSUM);
5157 case htons(ETH_P_IPV6):
5158 return !!(features & NETIF_F_IPV6_CSUM);
5159 default:
5160 return false;
5161 }
5162}
5163
5164#ifdef CONFIG_BUG
5165void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5166#else
5167static inline void netdev_rx_csum_fault(struct net_device *dev,
5168 struct sk_buff *skb)
5169{
5170}
5171#endif
5172/* rx skb timestamps */
5173void net_enable_timestamp(void);
5174void net_disable_timestamp(void);
5175
5176static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5177 const struct skb_shared_hwtstamps *hwtstamps,
5178 bool cycles)
5179{
5180 const struct net_device_ops *ops = dev->netdev_ops;
5181
5182 if (ops->ndo_get_tstamp)
5183 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5184
5185 return hwtstamps->hwtstamp;
5186}
5187
5188#ifndef CONFIG_PREEMPT_RT
5189static inline void netdev_xmit_set_more(bool more)
5190{
5191 __this_cpu_write(softnet_data.xmit.more, more);
5192}
5193
5194static inline bool netdev_xmit_more(void)
5195{
5196 return __this_cpu_read(softnet_data.xmit.more);
5197}
5198#else
5199static inline void netdev_xmit_set_more(bool more)
5200{
5201 current->net_xmit.more = more;
5202}
5203
5204static inline bool netdev_xmit_more(void)
5205{
5206 return current->net_xmit.more;
5207}
5208#endif
5209
5210static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5211 struct sk_buff *skb, struct net_device *dev,
5212 bool more)
5213{
5214 netdev_xmit_set_more(more);
5215 return ops->ndo_start_xmit(skb, dev);
5216}
5217
5218static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5219 struct netdev_queue *txq, bool more)
5220{
5221 const struct net_device_ops *ops = dev->netdev_ops;
5222 netdev_tx_t rc;
5223
5224 rc = __netdev_start_xmit(ops, skb, dev, more);
5225 if (rc == NETDEV_TX_OK)
5226 txq_trans_update(dev, txq);
5227
5228 return rc;
5229}
5230
5231int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5232 const void *ns);
5233void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5234 const void *ns);
5235
5236extern const struct kobj_ns_type_operations net_ns_type_operations;
5237
5238const char *netdev_drivername(const struct net_device *dev);
5239
5240static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5241 netdev_features_t f2)
5242{
5243 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5244 if (f1 & NETIF_F_HW_CSUM)
5245 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5246 else
5247 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5248 }
5249
5250 return f1 & f2;
5251}
5252
5253static inline netdev_features_t netdev_get_wanted_features(
5254 struct net_device *dev)
5255{
5256 return (dev->features & ~dev->hw_features) | dev->wanted_features;
5257}
5258netdev_features_t netdev_increment_features(netdev_features_t all,
5259 netdev_features_t one, netdev_features_t mask);
5260
5261/* Allow TSO being used on stacked device :
5262 * Performing the GSO segmentation before last device
5263 * is a performance improvement.
5264 */
5265static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5266 netdev_features_t mask)
5267{
5268 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5269}
5270
5271int __netdev_update_features(struct net_device *dev);
5272void netdev_update_features(struct net_device *dev);
5273void netdev_change_features(struct net_device *dev);
5274
5275void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5276 struct net_device *dev);
5277
5278netdev_features_t passthru_features_check(struct sk_buff *skb,
5279 struct net_device *dev,
5280 netdev_features_t features);
5281netdev_features_t netif_skb_features(struct sk_buff *skb);
5282void skb_warn_bad_offload(const struct sk_buff *skb);
5283
5284static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5285{
5286 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5287
5288 /* check flags correspondence */
5289 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5290 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5291 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5292 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5293 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5294 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5295 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5296 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5297 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5298 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5299 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5300 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5301 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5302 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5303 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5304 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5305 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5306 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5307 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5308 BUILD_BUG_ON(SKB_GSO_TCP_ACCECN !=
5309 (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT));
5310
5311 return (features & feature) == feature;
5312}
5313
5314static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5315{
5316 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5317 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5318}
5319
5320static inline bool netif_needs_gso(struct sk_buff *skb,
5321 netdev_features_t features)
5322{
5323 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5324 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5325 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5326}
5327
5328void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5329void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5330void netif_inherit_tso_max(struct net_device *to,
5331 const struct net_device *from);
5332
5333static inline unsigned int
5334netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5335{
5336 /* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5337 return skb->protocol == htons(ETH_P_IPV6) ?
5338 READ_ONCE(dev->gro_max_size) :
5339 READ_ONCE(dev->gro_ipv4_max_size);
5340}
5341
5342static inline unsigned int
5343netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5344{
5345 /* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5346 return skb->protocol == htons(ETH_P_IPV6) ?
5347 READ_ONCE(dev->gso_max_size) :
5348 READ_ONCE(dev->gso_ipv4_max_size);
5349}
5350
5351static inline bool netif_is_macsec(const struct net_device *dev)
5352{
5353 return dev->priv_flags & IFF_MACSEC;
5354}
5355
5356static inline bool netif_is_macvlan(const struct net_device *dev)
5357{
5358 return dev->priv_flags & IFF_MACVLAN;
5359}
5360
5361static inline bool netif_is_macvlan_port(const struct net_device *dev)
5362{
5363 return dev->priv_flags & IFF_MACVLAN_PORT;
5364}
5365
5366static inline bool netif_is_bond_master(const struct net_device *dev)
5367{
5368 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5369}
5370
5371static inline bool netif_is_bond_slave(const struct net_device *dev)
5372{
5373 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5374}
5375
5376static inline bool netif_supports_nofcs(struct net_device *dev)
5377{
5378 return dev->priv_flags & IFF_SUPP_NOFCS;
5379}
5380
5381static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5382{
5383 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5384}
5385
5386static inline bool netif_is_l3_master(const struct net_device *dev)
5387{
5388 return dev->priv_flags & IFF_L3MDEV_MASTER;
5389}
5390
5391static inline bool netif_is_l3_slave(const struct net_device *dev)
5392{
5393 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5394}
5395
5396static inline int dev_sdif(const struct net_device *dev)
5397{
5398#ifdef CONFIG_NET_L3_MASTER_DEV
5399 if (netif_is_l3_slave(dev))
5400 return dev->ifindex;
5401#endif
5402 return 0;
5403}
5404
5405static inline bool netif_is_bridge_master(const struct net_device *dev)
5406{
5407 return dev->priv_flags & IFF_EBRIDGE;
5408}
5409
5410static inline bool netif_is_bridge_port(const struct net_device *dev)
5411{
5412 return dev->priv_flags & IFF_BRIDGE_PORT;
5413}
5414
5415static inline bool netif_is_ovs_master(const struct net_device *dev)
5416{
5417 return dev->priv_flags & IFF_OPENVSWITCH;
5418}
5419
5420static inline bool netif_is_ovs_port(const struct net_device *dev)
5421{
5422 return dev->priv_flags & IFF_OVS_DATAPATH;
5423}
5424
5425static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5426{
5427 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5428}
5429
5430static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5431{
5432 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5433}
5434
5435static inline bool netif_is_team_master(const struct net_device *dev)
5436{
5437 return dev->priv_flags & IFF_TEAM;
5438}
5439
5440static inline bool netif_is_team_port(const struct net_device *dev)
5441{
5442 return dev->priv_flags & IFF_TEAM_PORT;
5443}
5444
5445static inline bool netif_is_lag_master(const struct net_device *dev)
5446{
5447 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5448}
5449
5450static inline bool netif_is_lag_port(const struct net_device *dev)
5451{
5452 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5453}
5454
5455static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5456{
5457 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5458}
5459
5460static inline bool netif_is_failover(const struct net_device *dev)
5461{
5462 return dev->priv_flags & IFF_FAILOVER;
5463}
5464
5465static inline bool netif_is_failover_slave(const struct net_device *dev)
5466{
5467 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5468}
5469
5470/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5471static inline void netif_keep_dst(struct net_device *dev)
5472{
5473 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5474}
5475
5476/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5477static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5478{
5479 /* TODO: reserve and use an additional IFF bit, if we get more users */
5480 return netif_is_macsec(dev);
5481}
5482
5483extern struct pernet_operations __net_initdata loopback_net_ops;
5484
5485/* Logging, debugging and troubleshooting/diagnostic helpers. */
5486
5487/* netdev_printk helpers, similar to dev_printk */
5488
5489static inline const char *netdev_name(const struct net_device *dev)
5490{
5491 if (!dev->name[0] || strchr(dev->name, '%'))
5492 return "(unnamed net_device)";
5493 return dev->name;
5494}
5495
5496static inline const char *netdev_reg_state(const struct net_device *dev)
5497{
5498 u8 reg_state = READ_ONCE(dev->reg_state);
5499
5500 switch (reg_state) {
5501 case NETREG_UNINITIALIZED: return " (uninitialized)";
5502 case NETREG_REGISTERED: return "";
5503 case NETREG_UNREGISTERING: return " (unregistering)";
5504 case NETREG_UNREGISTERED: return " (unregistered)";
5505 case NETREG_RELEASED: return " (released)";
5506 case NETREG_DUMMY: return " (dummy)";
5507 }
5508
5509 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5510 return " (unknown)";
5511}
5512
5513#define MODULE_ALIAS_NETDEV(device) \
5514 MODULE_ALIAS("netdev-" device)
5515
5516/*
5517 * netdev_WARN() acts like dev_printk(), but with the key difference
5518 * of using a WARN/WARN_ON to get the message out, including the
5519 * file/line information and a backtrace.
5520 */
5521#define netdev_WARN(dev, format, args...) \
5522 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5523 netdev_reg_state(dev), ##args)
5524
5525#define netdev_WARN_ONCE(dev, format, args...) \
5526 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5527 netdev_reg_state(dev), ##args)
5528
5529/*
5530 * The list of packet types we will receive (as opposed to discard)
5531 * and the routines to invoke.
5532 *
5533 * Why 16. Because with 16 the only overlap we get on a hash of the
5534 * low nibble of the protocol value is RARP/SNAP/X.25.
5535 *
5536 * 0800 IP
5537 * 0001 802.3
5538 * 0002 AX.25
5539 * 0004 802.2
5540 * 8035 RARP
5541 * 0005 SNAP
5542 * 0805 X.25
5543 * 0806 ARP
5544 * 8137 IPX
5545 * 0009 Localtalk
5546 * 86DD IPv6
5547 */
5548#define PTYPE_HASH_SIZE (16)
5549#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5550
5551extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5552
5553extern struct net_device *blackhole_netdev;
5554
5555/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5556#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5557#define DEV_STATS_ADD(DEV, FIELD, VAL) \
5558 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5559#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5560
5561#endif /* _LINUX_NETDEVICE_H */