| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_MMZONE_H |
| 3 | #define _LINUX_MMZONE_H |
| 4 | |
| 5 | #ifndef __ASSEMBLY__ |
| 6 | #ifndef __GENERATING_BOUNDS_H |
| 7 | |
| 8 | #include <linux/spinlock.h> |
| 9 | #include <linux/list.h> |
| 10 | #include <linux/list_nulls.h> |
| 11 | #include <linux/wait.h> |
| 12 | #include <linux/bitops.h> |
| 13 | #include <linux/cache.h> |
| 14 | #include <linux/threads.h> |
| 15 | #include <linux/numa.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/seqlock.h> |
| 18 | #include <linux/nodemask.h> |
| 19 | #include <linux/pageblock-flags.h> |
| 20 | #include <linux/page-flags-layout.h> |
| 21 | #include <linux/atomic.h> |
| 22 | #include <linux/mm_types.h> |
| 23 | #include <linux/page-flags.h> |
| 24 | #include <linux/local_lock.h> |
| 25 | #include <linux/zswap.h> |
| 26 | #include <asm/page.h> |
| 27 | |
| 28 | /* Free memory management - zoned buddy allocator. */ |
| 29 | #ifndef CONFIG_ARCH_FORCE_MAX_ORDER |
| 30 | #define MAX_PAGE_ORDER 10 |
| 31 | #else |
| 32 | #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER |
| 33 | #endif |
| 34 | #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) |
| 35 | |
| 36 | #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) |
| 37 | |
| 38 | #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) |
| 39 | |
| 40 | /* Defines the order for the number of pages that have a migrate type. */ |
| 41 | #ifndef CONFIG_PAGE_BLOCK_ORDER |
| 42 | #define PAGE_BLOCK_ORDER MAX_PAGE_ORDER |
| 43 | #else |
| 44 | #define PAGE_BLOCK_ORDER CONFIG_PAGE_BLOCK_ORDER |
| 45 | #endif /* CONFIG_PAGE_BLOCK_ORDER */ |
| 46 | |
| 47 | /* |
| 48 | * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated |
| 49 | * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_ORDER, |
| 50 | * which defines the order for the number of pages that can have a migrate type |
| 51 | */ |
| 52 | #if (PAGE_BLOCK_ORDER > MAX_PAGE_ORDER) |
| 53 | #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_ORDER |
| 54 | #endif |
| 55 | |
| 56 | /* |
| 57 | * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed |
| 58 | * costly to service. That is between allocation orders which should |
| 59 | * coalesce naturally under reasonable reclaim pressure and those which |
| 60 | * will not. |
| 61 | */ |
| 62 | #define PAGE_ALLOC_COSTLY_ORDER 3 |
| 63 | |
| 64 | enum migratetype { |
| 65 | MIGRATE_UNMOVABLE, |
| 66 | MIGRATE_MOVABLE, |
| 67 | MIGRATE_RECLAIMABLE, |
| 68 | MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ |
| 69 | MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, |
| 70 | #ifdef CONFIG_CMA |
| 71 | /* |
| 72 | * MIGRATE_CMA migration type is designed to mimic the way |
| 73 | * ZONE_MOVABLE works. Only movable pages can be allocated |
| 74 | * from MIGRATE_CMA pageblocks and page allocator never |
| 75 | * implicitly change migration type of MIGRATE_CMA pageblock. |
| 76 | * |
| 77 | * The way to use it is to change migratetype of a range of |
| 78 | * pageblocks to MIGRATE_CMA which can be done by |
| 79 | * __free_pageblock_cma() function. |
| 80 | */ |
| 81 | MIGRATE_CMA, |
| 82 | #endif |
| 83 | #ifdef CONFIG_MEMORY_ISOLATION |
| 84 | MIGRATE_ISOLATE, /* can't allocate from here */ |
| 85 | #endif |
| 86 | MIGRATE_TYPES |
| 87 | }; |
| 88 | |
| 89 | /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ |
| 90 | extern const char * const migratetype_names[MIGRATE_TYPES]; |
| 91 | |
| 92 | #ifdef CONFIG_CMA |
| 93 | # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) |
| 94 | # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) |
| 95 | # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ |
| 96 | get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) |
| 97 | #else |
| 98 | # define is_migrate_cma(migratetype) false |
| 99 | # define is_migrate_cma_page(_page) false |
| 100 | # define is_migrate_cma_folio(folio, pfn) false |
| 101 | #endif |
| 102 | |
| 103 | static inline bool is_migrate_movable(int mt) |
| 104 | { |
| 105 | return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Check whether a migratetype can be merged with another migratetype. |
| 110 | * |
| 111 | * It is only mergeable when it can fall back to other migratetypes for |
| 112 | * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. |
| 113 | */ |
| 114 | static inline bool migratetype_is_mergeable(int mt) |
| 115 | { |
| 116 | return mt < MIGRATE_PCPTYPES; |
| 117 | } |
| 118 | |
| 119 | #define for_each_migratetype_order(order, type) \ |
| 120 | for (order = 0; order < NR_PAGE_ORDERS; order++) \ |
| 121 | for (type = 0; type < MIGRATE_TYPES; type++) |
| 122 | |
| 123 | extern int page_group_by_mobility_disabled; |
| 124 | |
| 125 | #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) |
| 126 | |
| 127 | #define get_pageblock_migratetype(page) \ |
| 128 | get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) |
| 129 | |
| 130 | #define folio_migratetype(folio) \ |
| 131 | get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ |
| 132 | MIGRATETYPE_MASK) |
| 133 | struct free_area { |
| 134 | struct list_head free_list[MIGRATE_TYPES]; |
| 135 | unsigned long nr_free; |
| 136 | }; |
| 137 | |
| 138 | struct pglist_data; |
| 139 | |
| 140 | #ifdef CONFIG_NUMA |
| 141 | enum numa_stat_item { |
| 142 | NUMA_HIT, /* allocated in intended node */ |
| 143 | NUMA_MISS, /* allocated in non intended node */ |
| 144 | NUMA_FOREIGN, /* was intended here, hit elsewhere */ |
| 145 | NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ |
| 146 | NUMA_LOCAL, /* allocation from local node */ |
| 147 | NUMA_OTHER, /* allocation from other node */ |
| 148 | NR_VM_NUMA_EVENT_ITEMS |
| 149 | }; |
| 150 | #else |
| 151 | #define NR_VM_NUMA_EVENT_ITEMS 0 |
| 152 | #endif |
| 153 | |
| 154 | enum zone_stat_item { |
| 155 | /* First 128 byte cacheline (assuming 64 bit words) */ |
| 156 | NR_FREE_PAGES, |
| 157 | NR_FREE_PAGES_BLOCKS, |
| 158 | NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ |
| 159 | NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, |
| 160 | NR_ZONE_ACTIVE_ANON, |
| 161 | NR_ZONE_INACTIVE_FILE, |
| 162 | NR_ZONE_ACTIVE_FILE, |
| 163 | NR_ZONE_UNEVICTABLE, |
| 164 | NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ |
| 165 | NR_MLOCK, /* mlock()ed pages found and moved off LRU */ |
| 166 | /* Second 128 byte cacheline */ |
| 167 | #if IS_ENABLED(CONFIG_ZSMALLOC) |
| 168 | NR_ZSPAGES, /* allocated in zsmalloc */ |
| 169 | #endif |
| 170 | NR_FREE_CMA_PAGES, |
| 171 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 172 | NR_UNACCEPTED, |
| 173 | #endif |
| 174 | NR_VM_ZONE_STAT_ITEMS }; |
| 175 | |
| 176 | enum node_stat_item { |
| 177 | NR_LRU_BASE, |
| 178 | NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ |
| 179 | NR_ACTIVE_ANON, /* " " " " " */ |
| 180 | NR_INACTIVE_FILE, /* " " " " " */ |
| 181 | NR_ACTIVE_FILE, /* " " " " " */ |
| 182 | NR_UNEVICTABLE, /* " " " " " */ |
| 183 | NR_SLAB_RECLAIMABLE_B, |
| 184 | NR_SLAB_UNRECLAIMABLE_B, |
| 185 | NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ |
| 186 | NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ |
| 187 | WORKINGSET_NODES, |
| 188 | WORKINGSET_REFAULT_BASE, |
| 189 | WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, |
| 190 | WORKINGSET_REFAULT_FILE, |
| 191 | WORKINGSET_ACTIVATE_BASE, |
| 192 | WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, |
| 193 | WORKINGSET_ACTIVATE_FILE, |
| 194 | WORKINGSET_RESTORE_BASE, |
| 195 | WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, |
| 196 | WORKINGSET_RESTORE_FILE, |
| 197 | WORKINGSET_NODERECLAIM, |
| 198 | NR_ANON_MAPPED, /* Mapped anonymous pages */ |
| 199 | NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. |
| 200 | only modified from process context */ |
| 201 | NR_FILE_PAGES, |
| 202 | NR_FILE_DIRTY, |
| 203 | NR_WRITEBACK, |
| 204 | NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ |
| 205 | NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ |
| 206 | NR_SHMEM_THPS, |
| 207 | NR_SHMEM_PMDMAPPED, |
| 208 | NR_FILE_THPS, |
| 209 | NR_FILE_PMDMAPPED, |
| 210 | NR_ANON_THPS, |
| 211 | NR_VMSCAN_WRITE, |
| 212 | NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ |
| 213 | NR_DIRTIED, /* page dirtyings since bootup */ |
| 214 | NR_WRITTEN, /* page writings since bootup */ |
| 215 | NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ |
| 216 | NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ |
| 217 | NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ |
| 218 | NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ |
| 219 | NR_KERNEL_STACK_KB, /* measured in KiB */ |
| 220 | #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) |
| 221 | NR_KERNEL_SCS_KB, /* measured in KiB */ |
| 222 | #endif |
| 223 | NR_PAGETABLE, /* used for pagetables */ |
| 224 | NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ |
| 225 | #ifdef CONFIG_IOMMU_SUPPORT |
| 226 | NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ |
| 227 | #endif |
| 228 | #ifdef CONFIG_SWAP |
| 229 | NR_SWAPCACHE, |
| 230 | #endif |
| 231 | #ifdef CONFIG_NUMA_BALANCING |
| 232 | PGPROMOTE_SUCCESS, /* promote successfully */ |
| 233 | PGPROMOTE_CANDIDATE, /* candidate pages to promote */ |
| 234 | #endif |
| 235 | /* PGDEMOTE_*: pages demoted */ |
| 236 | PGDEMOTE_KSWAPD, |
| 237 | PGDEMOTE_DIRECT, |
| 238 | PGDEMOTE_KHUGEPAGED, |
| 239 | PGDEMOTE_PROACTIVE, |
| 240 | #ifdef CONFIG_HUGETLB_PAGE |
| 241 | NR_HUGETLB, |
| 242 | #endif |
| 243 | NR_BALLOON_PAGES, |
| 244 | NR_VM_NODE_STAT_ITEMS |
| 245 | }; |
| 246 | |
| 247 | /* |
| 248 | * Returns true if the item should be printed in THPs (/proc/vmstat |
| 249 | * currently prints number of anon, file and shmem THPs. But the item |
| 250 | * is charged in pages). |
| 251 | */ |
| 252 | static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) |
| 253 | { |
| 254 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) |
| 255 | return false; |
| 256 | |
| 257 | return item == NR_ANON_THPS || |
| 258 | item == NR_FILE_THPS || |
| 259 | item == NR_SHMEM_THPS || |
| 260 | item == NR_SHMEM_PMDMAPPED || |
| 261 | item == NR_FILE_PMDMAPPED; |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * Returns true if the value is measured in bytes (most vmstat values are |
| 266 | * measured in pages). This defines the API part, the internal representation |
| 267 | * might be different. |
| 268 | */ |
| 269 | static __always_inline bool vmstat_item_in_bytes(int idx) |
| 270 | { |
| 271 | /* |
| 272 | * Global and per-node slab counters track slab pages. |
| 273 | * It's expected that changes are multiples of PAGE_SIZE. |
| 274 | * Internally values are stored in pages. |
| 275 | * |
| 276 | * Per-memcg and per-lruvec counters track memory, consumed |
| 277 | * by individual slab objects. These counters are actually |
| 278 | * byte-precise. |
| 279 | */ |
| 280 | return (idx == NR_SLAB_RECLAIMABLE_B || |
| 281 | idx == NR_SLAB_UNRECLAIMABLE_B); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * We do arithmetic on the LRU lists in various places in the code, |
| 286 | * so it is important to keep the active lists LRU_ACTIVE higher in |
| 287 | * the array than the corresponding inactive lists, and to keep |
| 288 | * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. |
| 289 | * |
| 290 | * This has to be kept in sync with the statistics in zone_stat_item |
| 291 | * above and the descriptions in vmstat_text in mm/vmstat.c |
| 292 | */ |
| 293 | #define LRU_BASE 0 |
| 294 | #define LRU_ACTIVE 1 |
| 295 | #define LRU_FILE 2 |
| 296 | |
| 297 | enum lru_list { |
| 298 | LRU_INACTIVE_ANON = LRU_BASE, |
| 299 | LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, |
| 300 | LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, |
| 301 | LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, |
| 302 | LRU_UNEVICTABLE, |
| 303 | NR_LRU_LISTS |
| 304 | }; |
| 305 | |
| 306 | enum vmscan_throttle_state { |
| 307 | VMSCAN_THROTTLE_WRITEBACK, |
| 308 | VMSCAN_THROTTLE_ISOLATED, |
| 309 | VMSCAN_THROTTLE_NOPROGRESS, |
| 310 | VMSCAN_THROTTLE_CONGESTED, |
| 311 | NR_VMSCAN_THROTTLE, |
| 312 | }; |
| 313 | |
| 314 | #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) |
| 315 | |
| 316 | #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) |
| 317 | |
| 318 | static inline bool is_file_lru(enum lru_list lru) |
| 319 | { |
| 320 | return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); |
| 321 | } |
| 322 | |
| 323 | static inline bool is_active_lru(enum lru_list lru) |
| 324 | { |
| 325 | return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); |
| 326 | } |
| 327 | |
| 328 | #define WORKINGSET_ANON 0 |
| 329 | #define WORKINGSET_FILE 1 |
| 330 | #define ANON_AND_FILE 2 |
| 331 | |
| 332 | enum lruvec_flags { |
| 333 | /* |
| 334 | * An lruvec has many dirty pages backed by a congested BDI: |
| 335 | * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. |
| 336 | * It can be cleared by cgroup reclaim or kswapd. |
| 337 | * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. |
| 338 | * It can only be cleared by kswapd. |
| 339 | * |
| 340 | * Essentially, kswapd can unthrottle an lruvec throttled by cgroup |
| 341 | * reclaim, but not vice versa. This only applies to the root cgroup. |
| 342 | * The goal is to prevent cgroup reclaim on the root cgroup (e.g. |
| 343 | * memory.reclaim) to unthrottle an unbalanced node (that was throttled |
| 344 | * by kswapd). |
| 345 | */ |
| 346 | LRUVEC_CGROUP_CONGESTED, |
| 347 | LRUVEC_NODE_CONGESTED, |
| 348 | }; |
| 349 | |
| 350 | #endif /* !__GENERATING_BOUNDS_H */ |
| 351 | |
| 352 | /* |
| 353 | * Evictable folios are divided into multiple generations. The youngest and the |
| 354 | * oldest generation numbers, max_seq and min_seq, are monotonically increasing. |
| 355 | * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An |
| 356 | * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the |
| 357 | * corresponding generation. The gen counter in folio->flags stores gen+1 while |
| 358 | * a folio is on one of lrugen->folios[]. Otherwise it stores 0. |
| 359 | * |
| 360 | * After a folio is faulted in, the aging needs to check the accessed bit at |
| 361 | * least twice before handing this folio over to the eviction. The first check |
| 362 | * clears the accessed bit from the initial fault; the second check makes sure |
| 363 | * this folio hasn't been used since then. This process, AKA second chance, |
| 364 | * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI |
| 365 | * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two |
| 366 | * generations are considered active; the rest of generations, if they exist, |
| 367 | * are considered inactive. See lru_gen_is_active(). |
| 368 | * |
| 369 | * PG_active is always cleared while a folio is on one of lrugen->folios[] so |
| 370 | * that the sliding window needs not to worry about it. And it's set again when |
| 371 | * a folio considered active is isolated for non-reclaiming purposes, e.g., |
| 372 | * migration. See lru_gen_add_folio() and lru_gen_del_folio(). |
| 373 | * |
| 374 | * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the |
| 375 | * number of categories of the active/inactive LRU when keeping track of |
| 376 | * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits |
| 377 | * in folio->flags, masked by LRU_GEN_MASK. |
| 378 | */ |
| 379 | #define MIN_NR_GENS 2U |
| 380 | #define MAX_NR_GENS 4U |
| 381 | |
| 382 | /* |
| 383 | * Each generation is divided into multiple tiers. A folio accessed N times |
| 384 | * through file descriptors is in tier order_base_2(N). A folio in the first |
| 385 | * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page |
| 386 | * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by |
| 387 | * PG_workingset. A folio in any other tier (1<N<5) between the first and last |
| 388 | * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. |
| 389 | * |
| 390 | * In contrast to moving across generations which requires the LRU lock, moving |
| 391 | * across tiers only involves atomic operations on folio->flags and therefore |
| 392 | * has a negligible cost in the buffered access path. In the eviction path, |
| 393 | * comparisons of refaulted/(evicted+protected) from the first tier and the rest |
| 394 | * infer whether folios accessed multiple times through file descriptors are |
| 395 | * statistically hot and thus worth protecting. |
| 396 | * |
| 397 | * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the |
| 398 | * number of categories of the active/inactive LRU when keeping track of |
| 399 | * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in |
| 400 | * folio->flags, masked by LRU_REFS_MASK. |
| 401 | */ |
| 402 | #define MAX_NR_TIERS 4U |
| 403 | |
| 404 | #ifndef __GENERATING_BOUNDS_H |
| 405 | |
| 406 | #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) |
| 407 | #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) |
| 408 | |
| 409 | /* |
| 410 | * For folios accessed multiple times through file descriptors, |
| 411 | * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags |
| 412 | * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its |
| 413 | * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily |
| 414 | * promoted into the second oldest generation in the eviction path. And when |
| 415 | * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that |
| 416 | * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is |
| 417 | * only valid when PG_referenced is set. |
| 418 | * |
| 419 | * For folios accessed multiple times through page tables, folio_update_gen() |
| 420 | * from a page table walk or lru_gen_set_refs() from a rmap walk sets |
| 421 | * PG_referenced after the accessed bit is cleared for the first time. |
| 422 | * Thereafter, those two paths set PG_workingset and promote folios to the |
| 423 | * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears |
| 424 | * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. |
| 425 | * |
| 426 | * For both cases above, after PG_workingset is set on a folio, it remains until |
| 427 | * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It |
| 428 | * can be set again if lru_gen_test_recent() returns true upon a refault. |
| 429 | */ |
| 430 | #define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) |
| 431 | |
| 432 | struct lruvec; |
| 433 | struct page_vma_mapped_walk; |
| 434 | |
| 435 | #ifdef CONFIG_LRU_GEN |
| 436 | |
| 437 | enum { |
| 438 | LRU_GEN_ANON, |
| 439 | LRU_GEN_FILE, |
| 440 | }; |
| 441 | |
| 442 | enum { |
| 443 | LRU_GEN_CORE, |
| 444 | LRU_GEN_MM_WALK, |
| 445 | LRU_GEN_NONLEAF_YOUNG, |
| 446 | NR_LRU_GEN_CAPS |
| 447 | }; |
| 448 | |
| 449 | #define MIN_LRU_BATCH BITS_PER_LONG |
| 450 | #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) |
| 451 | |
| 452 | /* whether to keep historical stats from evicted generations */ |
| 453 | #ifdef CONFIG_LRU_GEN_STATS |
| 454 | #define NR_HIST_GENS MAX_NR_GENS |
| 455 | #else |
| 456 | #define NR_HIST_GENS 1U |
| 457 | #endif |
| 458 | |
| 459 | /* |
| 460 | * The youngest generation number is stored in max_seq for both anon and file |
| 461 | * types as they are aged on an equal footing. The oldest generation numbers are |
| 462 | * stored in min_seq[] separately for anon and file types so that they can be |
| 463 | * incremented independently. Ideally min_seq[] are kept in sync when both anon |
| 464 | * and file types are evictable. However, to adapt to situations like extreme |
| 465 | * swappiness, they are allowed to be out of sync by at most |
| 466 | * MAX_NR_GENS-MIN_NR_GENS-1. |
| 467 | * |
| 468 | * The number of pages in each generation is eventually consistent and therefore |
| 469 | * can be transiently negative when reset_batch_size() is pending. |
| 470 | */ |
| 471 | struct lru_gen_folio { |
| 472 | /* the aging increments the youngest generation number */ |
| 473 | unsigned long max_seq; |
| 474 | /* the eviction increments the oldest generation numbers */ |
| 475 | unsigned long min_seq[ANON_AND_FILE]; |
| 476 | /* the birth time of each generation in jiffies */ |
| 477 | unsigned long timestamps[MAX_NR_GENS]; |
| 478 | /* the multi-gen LRU lists, lazily sorted on eviction */ |
| 479 | struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; |
| 480 | /* the multi-gen LRU sizes, eventually consistent */ |
| 481 | long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; |
| 482 | /* the exponential moving average of refaulted */ |
| 483 | unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; |
| 484 | /* the exponential moving average of evicted+protected */ |
| 485 | unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; |
| 486 | /* can only be modified under the LRU lock */ |
| 487 | unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; |
| 488 | /* can be modified without holding the LRU lock */ |
| 489 | atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; |
| 490 | atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; |
| 491 | /* whether the multi-gen LRU is enabled */ |
| 492 | bool enabled; |
| 493 | /* the memcg generation this lru_gen_folio belongs to */ |
| 494 | u8 gen; |
| 495 | /* the list segment this lru_gen_folio belongs to */ |
| 496 | u8 seg; |
| 497 | /* per-node lru_gen_folio list for global reclaim */ |
| 498 | struct hlist_nulls_node list; |
| 499 | }; |
| 500 | |
| 501 | enum { |
| 502 | MM_LEAF_TOTAL, /* total leaf entries */ |
| 503 | MM_LEAF_YOUNG, /* young leaf entries */ |
| 504 | MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ |
| 505 | MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ |
| 506 | NR_MM_STATS |
| 507 | }; |
| 508 | |
| 509 | /* double-buffering Bloom filters */ |
| 510 | #define NR_BLOOM_FILTERS 2 |
| 511 | |
| 512 | struct lru_gen_mm_state { |
| 513 | /* synced with max_seq after each iteration */ |
| 514 | unsigned long seq; |
| 515 | /* where the current iteration continues after */ |
| 516 | struct list_head *head; |
| 517 | /* where the last iteration ended before */ |
| 518 | struct list_head *tail; |
| 519 | /* Bloom filters flip after each iteration */ |
| 520 | unsigned long *filters[NR_BLOOM_FILTERS]; |
| 521 | /* the mm stats for debugging */ |
| 522 | unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; |
| 523 | }; |
| 524 | |
| 525 | struct lru_gen_mm_walk { |
| 526 | /* the lruvec under reclaim */ |
| 527 | struct lruvec *lruvec; |
| 528 | /* max_seq from lru_gen_folio: can be out of date */ |
| 529 | unsigned long seq; |
| 530 | /* the next address within an mm to scan */ |
| 531 | unsigned long next_addr; |
| 532 | /* to batch promoted pages */ |
| 533 | int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; |
| 534 | /* to batch the mm stats */ |
| 535 | int mm_stats[NR_MM_STATS]; |
| 536 | /* total batched items */ |
| 537 | int batched; |
| 538 | int swappiness; |
| 539 | bool force_scan; |
| 540 | }; |
| 541 | |
| 542 | /* |
| 543 | * For each node, memcgs are divided into two generations: the old and the |
| 544 | * young. For each generation, memcgs are randomly sharded into multiple bins |
| 545 | * to improve scalability. For each bin, the hlist_nulls is virtually divided |
| 546 | * into three segments: the head, the tail and the default. |
| 547 | * |
| 548 | * An onlining memcg is added to the tail of a random bin in the old generation. |
| 549 | * The eviction starts at the head of a random bin in the old generation. The |
| 550 | * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes |
| 551 | * the old generation, is incremented when all its bins become empty. |
| 552 | * |
| 553 | * There are four operations: |
| 554 | * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its |
| 555 | * current generation (old or young) and updates its "seg" to "head"; |
| 556 | * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its |
| 557 | * current generation (old or young) and updates its "seg" to "tail"; |
| 558 | * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old |
| 559 | * generation, updates its "gen" to "old" and resets its "seg" to "default"; |
| 560 | * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the |
| 561 | * young generation, updates its "gen" to "young" and resets its "seg" to |
| 562 | * "default". |
| 563 | * |
| 564 | * The events that trigger the above operations are: |
| 565 | * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; |
| 566 | * 2. The first attempt to reclaim a memcg below low, which triggers |
| 567 | * MEMCG_LRU_TAIL; |
| 568 | * 3. The first attempt to reclaim a memcg offlined or below reclaimable size |
| 569 | * threshold, which triggers MEMCG_LRU_TAIL; |
| 570 | * 4. The second attempt to reclaim a memcg offlined or below reclaimable size |
| 571 | * threshold, which triggers MEMCG_LRU_YOUNG; |
| 572 | * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; |
| 573 | * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; |
| 574 | * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. |
| 575 | * |
| 576 | * Notes: |
| 577 | * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing |
| 578 | * of their max_seq counters ensures the eventual fairness to all eligible |
| 579 | * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). |
| 580 | * 2. There are only two valid generations: old (seq) and young (seq+1). |
| 581 | * MEMCG_NR_GENS is set to three so that when reading the generation counter |
| 582 | * locklessly, a stale value (seq-1) does not wraparound to young. |
| 583 | */ |
| 584 | #define MEMCG_NR_GENS 3 |
| 585 | #define MEMCG_NR_BINS 8 |
| 586 | |
| 587 | struct lru_gen_memcg { |
| 588 | /* the per-node memcg generation counter */ |
| 589 | unsigned long seq; |
| 590 | /* each memcg has one lru_gen_folio per node */ |
| 591 | unsigned long nr_memcgs[MEMCG_NR_GENS]; |
| 592 | /* per-node lru_gen_folio list for global reclaim */ |
| 593 | struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; |
| 594 | /* protects the above */ |
| 595 | spinlock_t lock; |
| 596 | }; |
| 597 | |
| 598 | void lru_gen_init_pgdat(struct pglist_data *pgdat); |
| 599 | void lru_gen_init_lruvec(struct lruvec *lruvec); |
| 600 | bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); |
| 601 | |
| 602 | void lru_gen_init_memcg(struct mem_cgroup *memcg); |
| 603 | void lru_gen_exit_memcg(struct mem_cgroup *memcg); |
| 604 | void lru_gen_online_memcg(struct mem_cgroup *memcg); |
| 605 | void lru_gen_offline_memcg(struct mem_cgroup *memcg); |
| 606 | void lru_gen_release_memcg(struct mem_cgroup *memcg); |
| 607 | void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); |
| 608 | |
| 609 | #else /* !CONFIG_LRU_GEN */ |
| 610 | |
| 611 | static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) |
| 612 | { |
| 613 | } |
| 614 | |
| 615 | static inline void lru_gen_init_lruvec(struct lruvec *lruvec) |
| 616 | { |
| 617 | } |
| 618 | |
| 619 | static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) |
| 620 | { |
| 621 | return false; |
| 622 | } |
| 623 | |
| 624 | static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) |
| 625 | { |
| 626 | } |
| 627 | |
| 628 | static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) |
| 629 | { |
| 630 | } |
| 631 | |
| 632 | static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) |
| 633 | { |
| 634 | } |
| 635 | |
| 636 | static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) |
| 637 | { |
| 638 | } |
| 639 | |
| 640 | static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) |
| 641 | { |
| 642 | } |
| 643 | |
| 644 | static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) |
| 645 | { |
| 646 | } |
| 647 | |
| 648 | #endif /* CONFIG_LRU_GEN */ |
| 649 | |
| 650 | struct lruvec { |
| 651 | struct list_head lists[NR_LRU_LISTS]; |
| 652 | /* per lruvec lru_lock for memcg */ |
| 653 | spinlock_t lru_lock; |
| 654 | /* |
| 655 | * These track the cost of reclaiming one LRU - file or anon - |
| 656 | * over the other. As the observed cost of reclaiming one LRU |
| 657 | * increases, the reclaim scan balance tips toward the other. |
| 658 | */ |
| 659 | unsigned long anon_cost; |
| 660 | unsigned long file_cost; |
| 661 | /* Non-resident age, driven by LRU movement */ |
| 662 | atomic_long_t nonresident_age; |
| 663 | /* Refaults at the time of last reclaim cycle */ |
| 664 | unsigned long refaults[ANON_AND_FILE]; |
| 665 | /* Various lruvec state flags (enum lruvec_flags) */ |
| 666 | unsigned long flags; |
| 667 | #ifdef CONFIG_LRU_GEN |
| 668 | /* evictable pages divided into generations */ |
| 669 | struct lru_gen_folio lrugen; |
| 670 | #ifdef CONFIG_LRU_GEN_WALKS_MMU |
| 671 | /* to concurrently iterate lru_gen_mm_list */ |
| 672 | struct lru_gen_mm_state mm_state; |
| 673 | #endif |
| 674 | #endif /* CONFIG_LRU_GEN */ |
| 675 | #ifdef CONFIG_MEMCG |
| 676 | struct pglist_data *pgdat; |
| 677 | #endif |
| 678 | struct zswap_lruvec_state zswap_lruvec_state; |
| 679 | }; |
| 680 | |
| 681 | /* Isolate for asynchronous migration */ |
| 682 | #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) |
| 683 | /* Isolate unevictable pages */ |
| 684 | #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) |
| 685 | |
| 686 | /* LRU Isolation modes. */ |
| 687 | typedef unsigned __bitwise isolate_mode_t; |
| 688 | |
| 689 | enum zone_watermarks { |
| 690 | WMARK_MIN, |
| 691 | WMARK_LOW, |
| 692 | WMARK_HIGH, |
| 693 | WMARK_PROMO, |
| 694 | NR_WMARK |
| 695 | }; |
| 696 | |
| 697 | /* |
| 698 | * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists |
| 699 | * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list |
| 700 | * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. |
| 701 | */ |
| 702 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 703 | #define NR_PCP_THP 2 |
| 704 | #else |
| 705 | #define NR_PCP_THP 0 |
| 706 | #endif |
| 707 | #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) |
| 708 | #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) |
| 709 | |
| 710 | /* |
| 711 | * Flags used in pcp->flags field. |
| 712 | * |
| 713 | * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the |
| 714 | * previous page freeing. To avoid to drain PCP for an accident |
| 715 | * high-order page freeing. |
| 716 | * |
| 717 | * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before |
| 718 | * draining PCP for consecutive high-order pages freeing without |
| 719 | * allocation if data cache slice of CPU is large enough. To reduce |
| 720 | * zone lock contention and keep cache-hot pages reusing. |
| 721 | */ |
| 722 | #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) |
| 723 | #define PCPF_FREE_HIGH_BATCH BIT(1) |
| 724 | |
| 725 | struct per_cpu_pages { |
| 726 | spinlock_t lock; /* Protects lists field */ |
| 727 | int count; /* number of pages in the list */ |
| 728 | int high; /* high watermark, emptying needed */ |
| 729 | int high_min; /* min high watermark */ |
| 730 | int high_max; /* max high watermark */ |
| 731 | int batch; /* chunk size for buddy add/remove */ |
| 732 | u8 flags; /* protected by pcp->lock */ |
| 733 | u8 alloc_factor; /* batch scaling factor during allocate */ |
| 734 | #ifdef CONFIG_NUMA |
| 735 | u8 expire; /* When 0, remote pagesets are drained */ |
| 736 | #endif |
| 737 | short free_count; /* consecutive free count */ |
| 738 | |
| 739 | /* Lists of pages, one per migrate type stored on the pcp-lists */ |
| 740 | struct list_head lists[NR_PCP_LISTS]; |
| 741 | } ____cacheline_aligned_in_smp; |
| 742 | |
| 743 | struct per_cpu_zonestat { |
| 744 | #ifdef CONFIG_SMP |
| 745 | s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
| 746 | s8 stat_threshold; |
| 747 | #endif |
| 748 | #ifdef CONFIG_NUMA |
| 749 | /* |
| 750 | * Low priority inaccurate counters that are only folded |
| 751 | * on demand. Use a large type to avoid the overhead of |
| 752 | * folding during refresh_cpu_vm_stats. |
| 753 | */ |
| 754 | unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; |
| 755 | #endif |
| 756 | }; |
| 757 | |
| 758 | struct per_cpu_nodestat { |
| 759 | s8 stat_threshold; |
| 760 | s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; |
| 761 | }; |
| 762 | |
| 763 | #endif /* !__GENERATING_BOUNDS.H */ |
| 764 | |
| 765 | enum zone_type { |
| 766 | /* |
| 767 | * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able |
| 768 | * to DMA to all of the addressable memory (ZONE_NORMAL). |
| 769 | * On architectures where this area covers the whole 32 bit address |
| 770 | * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller |
| 771 | * DMA addressing constraints. This distinction is important as a 32bit |
| 772 | * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit |
| 773 | * platforms may need both zones as they support peripherals with |
| 774 | * different DMA addressing limitations. |
| 775 | */ |
| 776 | #ifdef CONFIG_ZONE_DMA |
| 777 | ZONE_DMA, |
| 778 | #endif |
| 779 | #ifdef CONFIG_ZONE_DMA32 |
| 780 | ZONE_DMA32, |
| 781 | #endif |
| 782 | /* |
| 783 | * Normal addressable memory is in ZONE_NORMAL. DMA operations can be |
| 784 | * performed on pages in ZONE_NORMAL if the DMA devices support |
| 785 | * transfers to all addressable memory. |
| 786 | */ |
| 787 | ZONE_NORMAL, |
| 788 | #ifdef CONFIG_HIGHMEM |
| 789 | /* |
| 790 | * A memory area that is only addressable by the kernel through |
| 791 | * mapping portions into its own address space. This is for example |
| 792 | * used by i386 to allow the kernel to address the memory beyond |
| 793 | * 900MB. The kernel will set up special mappings (page |
| 794 | * table entries on i386) for each page that the kernel needs to |
| 795 | * access. |
| 796 | */ |
| 797 | ZONE_HIGHMEM, |
| 798 | #endif |
| 799 | /* |
| 800 | * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains |
| 801 | * movable pages with few exceptional cases described below. Main use |
| 802 | * cases for ZONE_MOVABLE are to make memory offlining/unplug more |
| 803 | * likely to succeed, and to locally limit unmovable allocations - e.g., |
| 804 | * to increase the number of THP/huge pages. Notable special cases are: |
| 805 | * |
| 806 | * 1. Pinned pages: (long-term) pinning of movable pages might |
| 807 | * essentially turn such pages unmovable. Therefore, we do not allow |
| 808 | * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and |
| 809 | * faulted, they come from the right zone right away. However, it is |
| 810 | * still possible that address space already has pages in |
| 811 | * ZONE_MOVABLE at the time when pages are pinned (i.e. user has |
| 812 | * touches that memory before pinning). In such case we migrate them |
| 813 | * to a different zone. When migration fails - pinning fails. |
| 814 | * 2. memblock allocations: kernelcore/movablecore setups might create |
| 815 | * situations where ZONE_MOVABLE contains unmovable allocations |
| 816 | * after boot. Memory offlining and allocations fail early. |
| 817 | * 3. Memory holes: kernelcore/movablecore setups might create very rare |
| 818 | * situations where ZONE_MOVABLE contains memory holes after boot, |
| 819 | * for example, if we have sections that are only partially |
| 820 | * populated. Memory offlining and allocations fail early. |
| 821 | * 4. PG_hwpoison pages: while poisoned pages can be skipped during |
| 822 | * memory offlining, such pages cannot be allocated. |
| 823 | * 5. Unmovable PG_offline pages: in paravirtualized environments, |
| 824 | * hotplugged memory blocks might only partially be managed by the |
| 825 | * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The |
| 826 | * parts not manged by the buddy are unmovable PG_offline pages. In |
| 827 | * some cases (virtio-mem), such pages can be skipped during |
| 828 | * memory offlining, however, cannot be moved/allocated. These |
| 829 | * techniques might use alloc_contig_range() to hide previously |
| 830 | * exposed pages from the buddy again (e.g., to implement some sort |
| 831 | * of memory unplug in virtio-mem). |
| 832 | * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create |
| 833 | * situations where ZERO_PAGE(0) which is allocated differently |
| 834 | * on different platforms may end up in a movable zone. ZERO_PAGE(0) |
| 835 | * cannot be migrated. |
| 836 | * 7. Memory-hotplug: when using memmap_on_memory and onlining the |
| 837 | * memory to the MOVABLE zone, the vmemmap pages are also placed in |
| 838 | * such zone. Such pages cannot be really moved around as they are |
| 839 | * self-stored in the range, but they are treated as movable when |
| 840 | * the range they describe is about to be offlined. |
| 841 | * |
| 842 | * In general, no unmovable allocations that degrade memory offlining |
| 843 | * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) |
| 844 | * have to expect that migrating pages in ZONE_MOVABLE can fail (even |
| 845 | * if has_unmovable_pages() states that there are no unmovable pages, |
| 846 | * there can be false negatives). |
| 847 | */ |
| 848 | ZONE_MOVABLE, |
| 849 | #ifdef CONFIG_ZONE_DEVICE |
| 850 | ZONE_DEVICE, |
| 851 | #endif |
| 852 | __MAX_NR_ZONES |
| 853 | |
| 854 | }; |
| 855 | |
| 856 | #ifndef __GENERATING_BOUNDS_H |
| 857 | |
| 858 | #define ASYNC_AND_SYNC 2 |
| 859 | |
| 860 | struct zone { |
| 861 | /* Read-mostly fields */ |
| 862 | |
| 863 | /* zone watermarks, access with *_wmark_pages(zone) macros */ |
| 864 | unsigned long _watermark[NR_WMARK]; |
| 865 | unsigned long watermark_boost; |
| 866 | |
| 867 | unsigned long nr_reserved_highatomic; |
| 868 | unsigned long nr_free_highatomic; |
| 869 | |
| 870 | /* |
| 871 | * We don't know if the memory that we're going to allocate will be |
| 872 | * freeable or/and it will be released eventually, so to avoid totally |
| 873 | * wasting several GB of ram we must reserve some of the lower zone |
| 874 | * memory (otherwise we risk to run OOM on the lower zones despite |
| 875 | * there being tons of freeable ram on the higher zones). This array is |
| 876 | * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl |
| 877 | * changes. |
| 878 | */ |
| 879 | long lowmem_reserve[MAX_NR_ZONES]; |
| 880 | |
| 881 | #ifdef CONFIG_NUMA |
| 882 | int node; |
| 883 | #endif |
| 884 | struct pglist_data *zone_pgdat; |
| 885 | struct per_cpu_pages __percpu *per_cpu_pageset; |
| 886 | struct per_cpu_zonestat __percpu *per_cpu_zonestats; |
| 887 | /* |
| 888 | * the high and batch values are copied to individual pagesets for |
| 889 | * faster access |
| 890 | */ |
| 891 | int pageset_high_min; |
| 892 | int pageset_high_max; |
| 893 | int pageset_batch; |
| 894 | |
| 895 | #ifndef CONFIG_SPARSEMEM |
| 896 | /* |
| 897 | * Flags for a pageblock_nr_pages block. See pageblock-flags.h. |
| 898 | * In SPARSEMEM, this map is stored in struct mem_section |
| 899 | */ |
| 900 | unsigned long *pageblock_flags; |
| 901 | #endif /* CONFIG_SPARSEMEM */ |
| 902 | |
| 903 | /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
| 904 | unsigned long zone_start_pfn; |
| 905 | |
| 906 | /* |
| 907 | * spanned_pages is the total pages spanned by the zone, including |
| 908 | * holes, which is calculated as: |
| 909 | * spanned_pages = zone_end_pfn - zone_start_pfn; |
| 910 | * |
| 911 | * present_pages is physical pages existing within the zone, which |
| 912 | * is calculated as: |
| 913 | * present_pages = spanned_pages - absent_pages(pages in holes); |
| 914 | * |
| 915 | * present_early_pages is present pages existing within the zone |
| 916 | * located on memory available since early boot, excluding hotplugged |
| 917 | * memory. |
| 918 | * |
| 919 | * managed_pages is present pages managed by the buddy system, which |
| 920 | * is calculated as (reserved_pages includes pages allocated by the |
| 921 | * bootmem allocator): |
| 922 | * managed_pages = present_pages - reserved_pages; |
| 923 | * |
| 924 | * cma pages is present pages that are assigned for CMA use |
| 925 | * (MIGRATE_CMA). |
| 926 | * |
| 927 | * So present_pages may be used by memory hotplug or memory power |
| 928 | * management logic to figure out unmanaged pages by checking |
| 929 | * (present_pages - managed_pages). And managed_pages should be used |
| 930 | * by page allocator and vm scanner to calculate all kinds of watermarks |
| 931 | * and thresholds. |
| 932 | * |
| 933 | * Locking rules: |
| 934 | * |
| 935 | * zone_start_pfn and spanned_pages are protected by span_seqlock. |
| 936 | * It is a seqlock because it has to be read outside of zone->lock, |
| 937 | * and it is done in the main allocator path. But, it is written |
| 938 | * quite infrequently. |
| 939 | * |
| 940 | * The span_seq lock is declared along with zone->lock because it is |
| 941 | * frequently read in proximity to zone->lock. It's good to |
| 942 | * give them a chance of being in the same cacheline. |
| 943 | * |
| 944 | * Write access to present_pages at runtime should be protected by |
| 945 | * mem_hotplug_begin/done(). Any reader who can't tolerant drift of |
| 946 | * present_pages should use get_online_mems() to get a stable value. |
| 947 | */ |
| 948 | atomic_long_t managed_pages; |
| 949 | unsigned long spanned_pages; |
| 950 | unsigned long present_pages; |
| 951 | #if defined(CONFIG_MEMORY_HOTPLUG) |
| 952 | unsigned long present_early_pages; |
| 953 | #endif |
| 954 | #ifdef CONFIG_CMA |
| 955 | unsigned long cma_pages; |
| 956 | #endif |
| 957 | |
| 958 | const char *name; |
| 959 | |
| 960 | #ifdef CONFIG_MEMORY_ISOLATION |
| 961 | /* |
| 962 | * Number of isolated pageblock. It is used to solve incorrect |
| 963 | * freepage counting problem due to racy retrieving migratetype |
| 964 | * of pageblock. Protected by zone->lock. |
| 965 | */ |
| 966 | unsigned long nr_isolate_pageblock; |
| 967 | #endif |
| 968 | |
| 969 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 970 | /* see spanned/present_pages for more description */ |
| 971 | seqlock_t span_seqlock; |
| 972 | #endif |
| 973 | |
| 974 | int initialized; |
| 975 | |
| 976 | /* Write-intensive fields used from the page allocator */ |
| 977 | CACHELINE_PADDING(_pad1_); |
| 978 | |
| 979 | /* free areas of different sizes */ |
| 980 | struct free_area free_area[NR_PAGE_ORDERS]; |
| 981 | |
| 982 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 983 | /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ |
| 984 | struct list_head unaccepted_pages; |
| 985 | |
| 986 | /* To be called once the last page in the zone is accepted */ |
| 987 | struct work_struct unaccepted_cleanup; |
| 988 | #endif |
| 989 | |
| 990 | /* zone flags, see below */ |
| 991 | unsigned long flags; |
| 992 | |
| 993 | /* Primarily protects free_area */ |
| 994 | spinlock_t lock; |
| 995 | |
| 996 | /* Pages to be freed when next trylock succeeds */ |
| 997 | struct llist_head trylock_free_pages; |
| 998 | |
| 999 | /* Write-intensive fields used by compaction and vmstats. */ |
| 1000 | CACHELINE_PADDING(_pad2_); |
| 1001 | |
| 1002 | /* |
| 1003 | * When free pages are below this point, additional steps are taken |
| 1004 | * when reading the number of free pages to avoid per-cpu counter |
| 1005 | * drift allowing watermarks to be breached |
| 1006 | */ |
| 1007 | unsigned long percpu_drift_mark; |
| 1008 | |
| 1009 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
| 1010 | /* pfn where compaction free scanner should start */ |
| 1011 | unsigned long compact_cached_free_pfn; |
| 1012 | /* pfn where compaction migration scanner should start */ |
| 1013 | unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; |
| 1014 | unsigned long compact_init_migrate_pfn; |
| 1015 | unsigned long compact_init_free_pfn; |
| 1016 | #endif |
| 1017 | |
| 1018 | #ifdef CONFIG_COMPACTION |
| 1019 | /* |
| 1020 | * On compaction failure, 1<<compact_defer_shift compactions |
| 1021 | * are skipped before trying again. The number attempted since |
| 1022 | * last failure is tracked with compact_considered. |
| 1023 | * compact_order_failed is the minimum compaction failed order. |
| 1024 | */ |
| 1025 | unsigned int compact_considered; |
| 1026 | unsigned int compact_defer_shift; |
| 1027 | int compact_order_failed; |
| 1028 | #endif |
| 1029 | |
| 1030 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
| 1031 | /* Set to true when the PG_migrate_skip bits should be cleared */ |
| 1032 | bool compact_blockskip_flush; |
| 1033 | #endif |
| 1034 | |
| 1035 | bool contiguous; |
| 1036 | |
| 1037 | CACHELINE_PADDING(_pad3_); |
| 1038 | /* Zone statistics */ |
| 1039 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; |
| 1040 | atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; |
| 1041 | } ____cacheline_internodealigned_in_smp; |
| 1042 | |
| 1043 | enum pgdat_flags { |
| 1044 | PGDAT_DIRTY, /* reclaim scanning has recently found |
| 1045 | * many dirty file pages at the tail |
| 1046 | * of the LRU. |
| 1047 | */ |
| 1048 | PGDAT_WRITEBACK, /* reclaim scanning has recently found |
| 1049 | * many pages under writeback |
| 1050 | */ |
| 1051 | PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ |
| 1052 | }; |
| 1053 | |
| 1054 | enum zone_flags { |
| 1055 | ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. |
| 1056 | * Cleared when kswapd is woken. |
| 1057 | */ |
| 1058 | ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ |
| 1059 | ZONE_BELOW_HIGH, /* zone is below high watermark. */ |
| 1060 | }; |
| 1061 | |
| 1062 | static inline unsigned long wmark_pages(const struct zone *z, |
| 1063 | enum zone_watermarks w) |
| 1064 | { |
| 1065 | return z->_watermark[w] + z->watermark_boost; |
| 1066 | } |
| 1067 | |
| 1068 | static inline unsigned long min_wmark_pages(const struct zone *z) |
| 1069 | { |
| 1070 | return wmark_pages(z, WMARK_MIN); |
| 1071 | } |
| 1072 | |
| 1073 | static inline unsigned long low_wmark_pages(const struct zone *z) |
| 1074 | { |
| 1075 | return wmark_pages(z, WMARK_LOW); |
| 1076 | } |
| 1077 | |
| 1078 | static inline unsigned long high_wmark_pages(const struct zone *z) |
| 1079 | { |
| 1080 | return wmark_pages(z, WMARK_HIGH); |
| 1081 | } |
| 1082 | |
| 1083 | static inline unsigned long promo_wmark_pages(const struct zone *z) |
| 1084 | { |
| 1085 | return wmark_pages(z, WMARK_PROMO); |
| 1086 | } |
| 1087 | |
| 1088 | static inline unsigned long zone_managed_pages(struct zone *zone) |
| 1089 | { |
| 1090 | return (unsigned long)atomic_long_read(&zone->managed_pages); |
| 1091 | } |
| 1092 | |
| 1093 | static inline unsigned long zone_cma_pages(struct zone *zone) |
| 1094 | { |
| 1095 | #ifdef CONFIG_CMA |
| 1096 | return zone->cma_pages; |
| 1097 | #else |
| 1098 | return 0; |
| 1099 | #endif |
| 1100 | } |
| 1101 | |
| 1102 | static inline unsigned long zone_end_pfn(const struct zone *zone) |
| 1103 | { |
| 1104 | return zone->zone_start_pfn + zone->spanned_pages; |
| 1105 | } |
| 1106 | |
| 1107 | static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) |
| 1108 | { |
| 1109 | return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); |
| 1110 | } |
| 1111 | |
| 1112 | static inline bool zone_is_initialized(struct zone *zone) |
| 1113 | { |
| 1114 | return zone->initialized; |
| 1115 | } |
| 1116 | |
| 1117 | static inline bool zone_is_empty(struct zone *zone) |
| 1118 | { |
| 1119 | return zone->spanned_pages == 0; |
| 1120 | } |
| 1121 | |
| 1122 | #ifndef BUILD_VDSO32_64 |
| 1123 | /* |
| 1124 | * The zone field is never updated after free_area_init_core() |
| 1125 | * sets it, so none of the operations on it need to be atomic. |
| 1126 | */ |
| 1127 | |
| 1128 | /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ |
| 1129 | #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) |
| 1130 | #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) |
| 1131 | #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) |
| 1132 | #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) |
| 1133 | #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) |
| 1134 | #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) |
| 1135 | #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) |
| 1136 | |
| 1137 | /* |
| 1138 | * Define the bit shifts to access each section. For non-existent |
| 1139 | * sections we define the shift as 0; that plus a 0 mask ensures |
| 1140 | * the compiler will optimise away reference to them. |
| 1141 | */ |
| 1142 | #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) |
| 1143 | #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) |
| 1144 | #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) |
| 1145 | #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) |
| 1146 | #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) |
| 1147 | |
| 1148 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ |
| 1149 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
| 1150 | #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) |
| 1151 | #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ |
| 1152 | SECTIONS_PGOFF : ZONES_PGOFF) |
| 1153 | #else |
| 1154 | #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) |
| 1155 | #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ |
| 1156 | NODES_PGOFF : ZONES_PGOFF) |
| 1157 | #endif |
| 1158 | |
| 1159 | #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) |
| 1160 | |
| 1161 | #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) |
| 1162 | #define NODES_MASK ((1UL << NODES_WIDTH) - 1) |
| 1163 | #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) |
| 1164 | #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) |
| 1165 | #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) |
| 1166 | #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) |
| 1167 | |
| 1168 | static inline enum zone_type page_zonenum(const struct page *page) |
| 1169 | { |
| 1170 | ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); |
| 1171 | return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; |
| 1172 | } |
| 1173 | |
| 1174 | static inline enum zone_type folio_zonenum(const struct folio *folio) |
| 1175 | { |
| 1176 | return page_zonenum(&folio->page); |
| 1177 | } |
| 1178 | |
| 1179 | #ifdef CONFIG_ZONE_DEVICE |
| 1180 | static inline bool is_zone_device_page(const struct page *page) |
| 1181 | { |
| 1182 | return page_zonenum(page) == ZONE_DEVICE; |
| 1183 | } |
| 1184 | |
| 1185 | static inline struct dev_pagemap *page_pgmap(const struct page *page) |
| 1186 | { |
| 1187 | VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page); |
| 1188 | return page_folio(page)->pgmap; |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * Consecutive zone device pages should not be merged into the same sgl |
| 1193 | * or bvec segment with other types of pages or if they belong to different |
| 1194 | * pgmaps. Otherwise getting the pgmap of a given segment is not possible |
| 1195 | * without scanning the entire segment. This helper returns true either if |
| 1196 | * both pages are not zone device pages or both pages are zone device pages |
| 1197 | * with the same pgmap. |
| 1198 | */ |
| 1199 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, |
| 1200 | const struct page *b) |
| 1201 | { |
| 1202 | if (is_zone_device_page(a) != is_zone_device_page(b)) |
| 1203 | return false; |
| 1204 | if (!is_zone_device_page(a)) |
| 1205 | return true; |
| 1206 | return page_pgmap(a) == page_pgmap(b); |
| 1207 | } |
| 1208 | |
| 1209 | extern void memmap_init_zone_device(struct zone *, unsigned long, |
| 1210 | unsigned long, struct dev_pagemap *); |
| 1211 | #else |
| 1212 | static inline bool is_zone_device_page(const struct page *page) |
| 1213 | { |
| 1214 | return false; |
| 1215 | } |
| 1216 | static inline bool zone_device_pages_have_same_pgmap(const struct page *a, |
| 1217 | const struct page *b) |
| 1218 | { |
| 1219 | return true; |
| 1220 | } |
| 1221 | static inline struct dev_pagemap *page_pgmap(const struct page *page) |
| 1222 | { |
| 1223 | return NULL; |
| 1224 | } |
| 1225 | #endif |
| 1226 | |
| 1227 | static inline bool folio_is_zone_device(const struct folio *folio) |
| 1228 | { |
| 1229 | return is_zone_device_page(&folio->page); |
| 1230 | } |
| 1231 | |
| 1232 | static inline bool is_zone_movable_page(const struct page *page) |
| 1233 | { |
| 1234 | return page_zonenum(page) == ZONE_MOVABLE; |
| 1235 | } |
| 1236 | |
| 1237 | static inline bool folio_is_zone_movable(const struct folio *folio) |
| 1238 | { |
| 1239 | return folio_zonenum(folio) == ZONE_MOVABLE; |
| 1240 | } |
| 1241 | #endif |
| 1242 | |
| 1243 | /* |
| 1244 | * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty |
| 1245 | * intersection with the given zone |
| 1246 | */ |
| 1247 | static inline bool zone_intersects(struct zone *zone, |
| 1248 | unsigned long start_pfn, unsigned long nr_pages) |
| 1249 | { |
| 1250 | if (zone_is_empty(zone)) |
| 1251 | return false; |
| 1252 | if (start_pfn >= zone_end_pfn(zone) || |
| 1253 | start_pfn + nr_pages <= zone->zone_start_pfn) |
| 1254 | return false; |
| 1255 | |
| 1256 | return true; |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * The "priority" of VM scanning is how much of the queues we will scan in one |
| 1261 | * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the |
| 1262 | * queues ("queue_length >> 12") during an aging round. |
| 1263 | */ |
| 1264 | #define DEF_PRIORITY 12 |
| 1265 | |
| 1266 | /* Maximum number of zones on a zonelist */ |
| 1267 | #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) |
| 1268 | |
| 1269 | enum { |
| 1270 | ZONELIST_FALLBACK, /* zonelist with fallback */ |
| 1271 | #ifdef CONFIG_NUMA |
| 1272 | /* |
| 1273 | * The NUMA zonelists are doubled because we need zonelists that |
| 1274 | * restrict the allocations to a single node for __GFP_THISNODE. |
| 1275 | */ |
| 1276 | ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ |
| 1277 | #endif |
| 1278 | MAX_ZONELISTS |
| 1279 | }; |
| 1280 | |
| 1281 | /* |
| 1282 | * This struct contains information about a zone in a zonelist. It is stored |
| 1283 | * here to avoid dereferences into large structures and lookups of tables |
| 1284 | */ |
| 1285 | struct zoneref { |
| 1286 | struct zone *zone; /* Pointer to actual zone */ |
| 1287 | int zone_idx; /* zone_idx(zoneref->zone) */ |
| 1288 | }; |
| 1289 | |
| 1290 | /* |
| 1291 | * One allocation request operates on a zonelist. A zonelist |
| 1292 | * is a list of zones, the first one is the 'goal' of the |
| 1293 | * allocation, the other zones are fallback zones, in decreasing |
| 1294 | * priority. |
| 1295 | * |
| 1296 | * To speed the reading of the zonelist, the zonerefs contain the zone index |
| 1297 | * of the entry being read. Helper functions to access information given |
| 1298 | * a struct zoneref are |
| 1299 | * |
| 1300 | * zonelist_zone() - Return the struct zone * for an entry in _zonerefs |
| 1301 | * zonelist_zone_idx() - Return the index of the zone for an entry |
| 1302 | * zonelist_node_idx() - Return the index of the node for an entry |
| 1303 | */ |
| 1304 | struct zonelist { |
| 1305 | struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; |
| 1306 | }; |
| 1307 | |
| 1308 | /* |
| 1309 | * The array of struct pages for flatmem. |
| 1310 | * It must be declared for SPARSEMEM as well because there are configurations |
| 1311 | * that rely on that. |
| 1312 | */ |
| 1313 | extern struct page *mem_map; |
| 1314 | |
| 1315 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1316 | struct deferred_split { |
| 1317 | spinlock_t split_queue_lock; |
| 1318 | struct list_head split_queue; |
| 1319 | unsigned long split_queue_len; |
| 1320 | }; |
| 1321 | #endif |
| 1322 | |
| 1323 | #ifdef CONFIG_MEMORY_FAILURE |
| 1324 | /* |
| 1325 | * Per NUMA node memory failure handling statistics. |
| 1326 | */ |
| 1327 | struct memory_failure_stats { |
| 1328 | /* |
| 1329 | * Number of raw pages poisoned. |
| 1330 | * Cases not accounted: memory outside kernel control, offline page, |
| 1331 | * arch-specific memory_failure (SGX), hwpoison_filter() filtered |
| 1332 | * error events, and unpoison actions from hwpoison_unpoison. |
| 1333 | */ |
| 1334 | unsigned long total; |
| 1335 | /* |
| 1336 | * Recovery results of poisoned raw pages handled by memory_failure, |
| 1337 | * in sync with mf_result. |
| 1338 | * total = ignored + failed + delayed + recovered. |
| 1339 | * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. |
| 1340 | */ |
| 1341 | unsigned long ignored; |
| 1342 | unsigned long failed; |
| 1343 | unsigned long delayed; |
| 1344 | unsigned long recovered; |
| 1345 | }; |
| 1346 | #endif |
| 1347 | |
| 1348 | /* |
| 1349 | * On NUMA machines, each NUMA node would have a pg_data_t to describe |
| 1350 | * it's memory layout. On UMA machines there is a single pglist_data which |
| 1351 | * describes the whole memory. |
| 1352 | * |
| 1353 | * Memory statistics and page replacement data structures are maintained on a |
| 1354 | * per-zone basis. |
| 1355 | */ |
| 1356 | typedef struct pglist_data { |
| 1357 | /* |
| 1358 | * node_zones contains just the zones for THIS node. Not all of the |
| 1359 | * zones may be populated, but it is the full list. It is referenced by |
| 1360 | * this node's node_zonelists as well as other node's node_zonelists. |
| 1361 | */ |
| 1362 | struct zone node_zones[MAX_NR_ZONES]; |
| 1363 | |
| 1364 | /* |
| 1365 | * node_zonelists contains references to all zones in all nodes. |
| 1366 | * Generally the first zones will be references to this node's |
| 1367 | * node_zones. |
| 1368 | */ |
| 1369 | struct zonelist node_zonelists[MAX_ZONELISTS]; |
| 1370 | |
| 1371 | int nr_zones; /* number of populated zones in this node */ |
| 1372 | #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ |
| 1373 | struct page *node_mem_map; |
| 1374 | #ifdef CONFIG_PAGE_EXTENSION |
| 1375 | struct page_ext *node_page_ext; |
| 1376 | #endif |
| 1377 | #endif |
| 1378 | #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) |
| 1379 | /* |
| 1380 | * Must be held any time you expect node_start_pfn, |
| 1381 | * node_present_pages, node_spanned_pages or nr_zones to stay constant. |
| 1382 | * Also synchronizes pgdat->first_deferred_pfn during deferred page |
| 1383 | * init. |
| 1384 | * |
| 1385 | * pgdat_resize_lock() and pgdat_resize_unlock() are provided to |
| 1386 | * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG |
| 1387 | * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. |
| 1388 | * |
| 1389 | * Nests above zone->lock and zone->span_seqlock |
| 1390 | */ |
| 1391 | spinlock_t node_size_lock; |
| 1392 | #endif |
| 1393 | unsigned long node_start_pfn; |
| 1394 | unsigned long node_present_pages; /* total number of physical pages */ |
| 1395 | unsigned long node_spanned_pages; /* total size of physical page |
| 1396 | range, including holes */ |
| 1397 | int node_id; |
| 1398 | wait_queue_head_t kswapd_wait; |
| 1399 | wait_queue_head_t pfmemalloc_wait; |
| 1400 | |
| 1401 | /* workqueues for throttling reclaim for different reasons. */ |
| 1402 | wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; |
| 1403 | |
| 1404 | atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ |
| 1405 | unsigned long nr_reclaim_start; /* nr pages written while throttled |
| 1406 | * when throttling started. */ |
| 1407 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 1408 | struct mutex kswapd_lock; |
| 1409 | #endif |
| 1410 | struct task_struct *kswapd; /* Protected by kswapd_lock */ |
| 1411 | int kswapd_order; |
| 1412 | enum zone_type kswapd_highest_zoneidx; |
| 1413 | |
| 1414 | int kswapd_failures; /* Number of 'reclaimed == 0' runs */ |
| 1415 | |
| 1416 | #ifdef CONFIG_COMPACTION |
| 1417 | int kcompactd_max_order; |
| 1418 | enum zone_type kcompactd_highest_zoneidx; |
| 1419 | wait_queue_head_t kcompactd_wait; |
| 1420 | struct task_struct *kcompactd; |
| 1421 | bool proactive_compact_trigger; |
| 1422 | #endif |
| 1423 | /* |
| 1424 | * This is a per-node reserve of pages that are not available |
| 1425 | * to userspace allocations. |
| 1426 | */ |
| 1427 | unsigned long totalreserve_pages; |
| 1428 | |
| 1429 | #ifdef CONFIG_NUMA |
| 1430 | /* |
| 1431 | * node reclaim becomes active if more unmapped pages exist. |
| 1432 | */ |
| 1433 | unsigned long min_unmapped_pages; |
| 1434 | unsigned long min_slab_pages; |
| 1435 | #endif /* CONFIG_NUMA */ |
| 1436 | |
| 1437 | /* Write-intensive fields used by page reclaim */ |
| 1438 | CACHELINE_PADDING(_pad1_); |
| 1439 | |
| 1440 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| 1441 | /* |
| 1442 | * If memory initialisation on large machines is deferred then this |
| 1443 | * is the first PFN that needs to be initialised. |
| 1444 | */ |
| 1445 | unsigned long first_deferred_pfn; |
| 1446 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| 1447 | |
| 1448 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1449 | struct deferred_split deferred_split_queue; |
| 1450 | #endif |
| 1451 | |
| 1452 | #ifdef CONFIG_NUMA_BALANCING |
| 1453 | /* start time in ms of current promote rate limit period */ |
| 1454 | unsigned int nbp_rl_start; |
| 1455 | /* number of promote candidate pages at start time of current rate limit period */ |
| 1456 | unsigned long nbp_rl_nr_cand; |
| 1457 | /* promote threshold in ms */ |
| 1458 | unsigned int nbp_threshold; |
| 1459 | /* start time in ms of current promote threshold adjustment period */ |
| 1460 | unsigned int nbp_th_start; |
| 1461 | /* |
| 1462 | * number of promote candidate pages at start time of current promote |
| 1463 | * threshold adjustment period |
| 1464 | */ |
| 1465 | unsigned long nbp_th_nr_cand; |
| 1466 | #endif |
| 1467 | /* Fields commonly accessed by the page reclaim scanner */ |
| 1468 | |
| 1469 | /* |
| 1470 | * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. |
| 1471 | * |
| 1472 | * Use mem_cgroup_lruvec() to look up lruvecs. |
| 1473 | */ |
| 1474 | struct lruvec __lruvec; |
| 1475 | |
| 1476 | unsigned long flags; |
| 1477 | |
| 1478 | #ifdef CONFIG_LRU_GEN |
| 1479 | /* kswap mm walk data */ |
| 1480 | struct lru_gen_mm_walk mm_walk; |
| 1481 | /* lru_gen_folio list */ |
| 1482 | struct lru_gen_memcg memcg_lru; |
| 1483 | #endif |
| 1484 | |
| 1485 | CACHELINE_PADDING(_pad2_); |
| 1486 | |
| 1487 | /* Per-node vmstats */ |
| 1488 | struct per_cpu_nodestat __percpu *per_cpu_nodestats; |
| 1489 | atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; |
| 1490 | #ifdef CONFIG_NUMA |
| 1491 | struct memory_tier __rcu *memtier; |
| 1492 | #endif |
| 1493 | #ifdef CONFIG_MEMORY_FAILURE |
| 1494 | struct memory_failure_stats mf_stats; |
| 1495 | #endif |
| 1496 | } pg_data_t; |
| 1497 | |
| 1498 | #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) |
| 1499 | #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) |
| 1500 | |
| 1501 | #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) |
| 1502 | #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) |
| 1503 | |
| 1504 | static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) |
| 1505 | { |
| 1506 | return pgdat->node_start_pfn + pgdat->node_spanned_pages; |
| 1507 | } |
| 1508 | |
| 1509 | #include <linux/memory_hotplug.h> |
| 1510 | |
| 1511 | void build_all_zonelists(pg_data_t *pgdat); |
| 1512 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, |
| 1513 | enum zone_type highest_zoneidx); |
| 1514 | bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| 1515 | int highest_zoneidx, unsigned int alloc_flags, |
| 1516 | long free_pages); |
| 1517 | bool zone_watermark_ok(struct zone *z, unsigned int order, |
| 1518 | unsigned long mark, int highest_zoneidx, |
| 1519 | unsigned int alloc_flags); |
| 1520 | /* |
| 1521 | * Memory initialization context, use to differentiate memory added by |
| 1522 | * the platform statically or via memory hotplug interface. |
| 1523 | */ |
| 1524 | enum meminit_context { |
| 1525 | MEMINIT_EARLY, |
| 1526 | MEMINIT_HOTPLUG, |
| 1527 | }; |
| 1528 | |
| 1529 | extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
| 1530 | unsigned long size); |
| 1531 | |
| 1532 | extern void lruvec_init(struct lruvec *lruvec); |
| 1533 | |
| 1534 | static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) |
| 1535 | { |
| 1536 | #ifdef CONFIG_MEMCG |
| 1537 | return lruvec->pgdat; |
| 1538 | #else |
| 1539 | return container_of(lruvec, struct pglist_data, __lruvec); |
| 1540 | #endif |
| 1541 | } |
| 1542 | |
| 1543 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| 1544 | int local_memory_node(int node_id); |
| 1545 | #else |
| 1546 | static inline int local_memory_node(int node_id) { return node_id; }; |
| 1547 | #endif |
| 1548 | |
| 1549 | /* |
| 1550 | * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. |
| 1551 | */ |
| 1552 | #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) |
| 1553 | |
| 1554 | #ifdef CONFIG_ZONE_DEVICE |
| 1555 | static inline bool zone_is_zone_device(struct zone *zone) |
| 1556 | { |
| 1557 | return zone_idx(zone) == ZONE_DEVICE; |
| 1558 | } |
| 1559 | #else |
| 1560 | static inline bool zone_is_zone_device(struct zone *zone) |
| 1561 | { |
| 1562 | return false; |
| 1563 | } |
| 1564 | #endif |
| 1565 | |
| 1566 | /* |
| 1567 | * Returns true if a zone has pages managed by the buddy allocator. |
| 1568 | * All the reclaim decisions have to use this function rather than |
| 1569 | * populated_zone(). If the whole zone is reserved then we can easily |
| 1570 | * end up with populated_zone() && !managed_zone(). |
| 1571 | */ |
| 1572 | static inline bool managed_zone(struct zone *zone) |
| 1573 | { |
| 1574 | return zone_managed_pages(zone); |
| 1575 | } |
| 1576 | |
| 1577 | /* Returns true if a zone has memory */ |
| 1578 | static inline bool populated_zone(struct zone *zone) |
| 1579 | { |
| 1580 | return zone->present_pages; |
| 1581 | } |
| 1582 | |
| 1583 | #ifdef CONFIG_NUMA |
| 1584 | static inline int zone_to_nid(struct zone *zone) |
| 1585 | { |
| 1586 | return zone->node; |
| 1587 | } |
| 1588 | |
| 1589 | static inline void zone_set_nid(struct zone *zone, int nid) |
| 1590 | { |
| 1591 | zone->node = nid; |
| 1592 | } |
| 1593 | #else |
| 1594 | static inline int zone_to_nid(struct zone *zone) |
| 1595 | { |
| 1596 | return 0; |
| 1597 | } |
| 1598 | |
| 1599 | static inline void zone_set_nid(struct zone *zone, int nid) {} |
| 1600 | #endif |
| 1601 | |
| 1602 | extern int movable_zone; |
| 1603 | |
| 1604 | static inline int is_highmem_idx(enum zone_type idx) |
| 1605 | { |
| 1606 | #ifdef CONFIG_HIGHMEM |
| 1607 | return (idx == ZONE_HIGHMEM || |
| 1608 | (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); |
| 1609 | #else |
| 1610 | return 0; |
| 1611 | #endif |
| 1612 | } |
| 1613 | |
| 1614 | /** |
| 1615 | * is_highmem - helper function to quickly check if a struct zone is a |
| 1616 | * highmem zone or not. This is an attempt to keep references |
| 1617 | * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. |
| 1618 | * @zone: pointer to struct zone variable |
| 1619 | * Return: 1 for a highmem zone, 0 otherwise |
| 1620 | */ |
| 1621 | static inline int is_highmem(struct zone *zone) |
| 1622 | { |
| 1623 | return is_highmem_idx(zone_idx(zone)); |
| 1624 | } |
| 1625 | |
| 1626 | #ifdef CONFIG_ZONE_DMA |
| 1627 | bool has_managed_dma(void); |
| 1628 | #else |
| 1629 | static inline bool has_managed_dma(void) |
| 1630 | { |
| 1631 | return false; |
| 1632 | } |
| 1633 | #endif |
| 1634 | |
| 1635 | |
| 1636 | #ifndef CONFIG_NUMA |
| 1637 | |
| 1638 | extern struct pglist_data contig_page_data; |
| 1639 | static inline struct pglist_data *NODE_DATA(int nid) |
| 1640 | { |
| 1641 | return &contig_page_data; |
| 1642 | } |
| 1643 | |
| 1644 | #else /* CONFIG_NUMA */ |
| 1645 | |
| 1646 | #include <asm/mmzone.h> |
| 1647 | |
| 1648 | #endif /* !CONFIG_NUMA */ |
| 1649 | |
| 1650 | extern struct pglist_data *first_online_pgdat(void); |
| 1651 | extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); |
| 1652 | extern struct zone *next_zone(struct zone *zone); |
| 1653 | |
| 1654 | /** |
| 1655 | * for_each_online_pgdat - helper macro to iterate over all online nodes |
| 1656 | * @pgdat: pointer to a pg_data_t variable |
| 1657 | */ |
| 1658 | #define for_each_online_pgdat(pgdat) \ |
| 1659 | for (pgdat = first_online_pgdat(); \ |
| 1660 | pgdat; \ |
| 1661 | pgdat = next_online_pgdat(pgdat)) |
| 1662 | /** |
| 1663 | * for_each_zone - helper macro to iterate over all memory zones |
| 1664 | * @zone: pointer to struct zone variable |
| 1665 | * |
| 1666 | * The user only needs to declare the zone variable, for_each_zone |
| 1667 | * fills it in. |
| 1668 | */ |
| 1669 | #define for_each_zone(zone) \ |
| 1670 | for (zone = (first_online_pgdat())->node_zones; \ |
| 1671 | zone; \ |
| 1672 | zone = next_zone(zone)) |
| 1673 | |
| 1674 | #define for_each_populated_zone(zone) \ |
| 1675 | for (zone = (first_online_pgdat())->node_zones; \ |
| 1676 | zone; \ |
| 1677 | zone = next_zone(zone)) \ |
| 1678 | if (!populated_zone(zone)) \ |
| 1679 | ; /* do nothing */ \ |
| 1680 | else |
| 1681 | |
| 1682 | static inline struct zone *zonelist_zone(struct zoneref *zoneref) |
| 1683 | { |
| 1684 | return zoneref->zone; |
| 1685 | } |
| 1686 | |
| 1687 | static inline int zonelist_zone_idx(struct zoneref *zoneref) |
| 1688 | { |
| 1689 | return zoneref->zone_idx; |
| 1690 | } |
| 1691 | |
| 1692 | static inline int zonelist_node_idx(struct zoneref *zoneref) |
| 1693 | { |
| 1694 | return zone_to_nid(zoneref->zone); |
| 1695 | } |
| 1696 | |
| 1697 | struct zoneref *__next_zones_zonelist(struct zoneref *z, |
| 1698 | enum zone_type highest_zoneidx, |
| 1699 | nodemask_t *nodes); |
| 1700 | |
| 1701 | /** |
| 1702 | * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point |
| 1703 | * @z: The cursor used as a starting point for the search |
| 1704 | * @highest_zoneidx: The zone index of the highest zone to return |
| 1705 | * @nodes: An optional nodemask to filter the zonelist with |
| 1706 | * |
| 1707 | * This function returns the next zone at or below a given zone index that is |
| 1708 | * within the allowed nodemask using a cursor as the starting point for the |
| 1709 | * search. The zoneref returned is a cursor that represents the current zone |
| 1710 | * being examined. It should be advanced by one before calling |
| 1711 | * next_zones_zonelist again. |
| 1712 | * |
| 1713 | * Return: the next zone at or below highest_zoneidx within the allowed |
| 1714 | * nodemask using a cursor within a zonelist as a starting point |
| 1715 | */ |
| 1716 | static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, |
| 1717 | enum zone_type highest_zoneidx, |
| 1718 | nodemask_t *nodes) |
| 1719 | { |
| 1720 | if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) |
| 1721 | return z; |
| 1722 | return __next_zones_zonelist(z, highest_zoneidx, nodes); |
| 1723 | } |
| 1724 | |
| 1725 | /** |
| 1726 | * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist |
| 1727 | * @zonelist: The zonelist to search for a suitable zone |
| 1728 | * @highest_zoneidx: The zone index of the highest zone to return |
| 1729 | * @nodes: An optional nodemask to filter the zonelist with |
| 1730 | * |
| 1731 | * This function returns the first zone at or below a given zone index that is |
| 1732 | * within the allowed nodemask. The zoneref returned is a cursor that can be |
| 1733 | * used to iterate the zonelist with next_zones_zonelist by advancing it by |
| 1734 | * one before calling. |
| 1735 | * |
| 1736 | * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is |
| 1737 | * never NULL). This may happen either genuinely, or due to concurrent nodemask |
| 1738 | * update due to cpuset modification. |
| 1739 | * |
| 1740 | * Return: Zoneref pointer for the first suitable zone found |
| 1741 | */ |
| 1742 | static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, |
| 1743 | enum zone_type highest_zoneidx, |
| 1744 | nodemask_t *nodes) |
| 1745 | { |
| 1746 | return next_zones_zonelist(zonelist->_zonerefs, |
| 1747 | highest_zoneidx, nodes); |
| 1748 | } |
| 1749 | |
| 1750 | /** |
| 1751 | * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask |
| 1752 | * @zone: The current zone in the iterator |
| 1753 | * @z: The current pointer within zonelist->_zonerefs being iterated |
| 1754 | * @zlist: The zonelist being iterated |
| 1755 | * @highidx: The zone index of the highest zone to return |
| 1756 | * @nodemask: Nodemask allowed by the allocator |
| 1757 | * |
| 1758 | * This iterator iterates though all zones at or below a given zone index and |
| 1759 | * within a given nodemask |
| 1760 | */ |
| 1761 | #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ |
| 1762 | for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ |
| 1763 | zone; \ |
| 1764 | z = next_zones_zonelist(++z, highidx, nodemask), \ |
| 1765 | zone = zonelist_zone(z)) |
| 1766 | |
| 1767 | #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ |
| 1768 | for (zone = zonelist_zone(z); \ |
| 1769 | zone; \ |
| 1770 | z = next_zones_zonelist(++z, highidx, nodemask), \ |
| 1771 | zone = zonelist_zone(z)) |
| 1772 | |
| 1773 | |
| 1774 | /** |
| 1775 | * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index |
| 1776 | * @zone: The current zone in the iterator |
| 1777 | * @z: The current pointer within zonelist->zones being iterated |
| 1778 | * @zlist: The zonelist being iterated |
| 1779 | * @highidx: The zone index of the highest zone to return |
| 1780 | * |
| 1781 | * This iterator iterates though all zones at or below a given zone index. |
| 1782 | */ |
| 1783 | #define for_each_zone_zonelist(zone, z, zlist, highidx) \ |
| 1784 | for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) |
| 1785 | |
| 1786 | /* Whether the 'nodes' are all movable nodes */ |
| 1787 | static inline bool movable_only_nodes(nodemask_t *nodes) |
| 1788 | { |
| 1789 | struct zonelist *zonelist; |
| 1790 | struct zoneref *z; |
| 1791 | int nid; |
| 1792 | |
| 1793 | if (nodes_empty(*nodes)) |
| 1794 | return false; |
| 1795 | |
| 1796 | /* |
| 1797 | * We can chose arbitrary node from the nodemask to get a |
| 1798 | * zonelist as they are interlinked. We just need to find |
| 1799 | * at least one zone that can satisfy kernel allocations. |
| 1800 | */ |
| 1801 | nid = first_node(*nodes); |
| 1802 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; |
| 1803 | z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); |
| 1804 | return (!zonelist_zone(z)) ? true : false; |
| 1805 | } |
| 1806 | |
| 1807 | |
| 1808 | #ifdef CONFIG_SPARSEMEM |
| 1809 | #include <asm/sparsemem.h> |
| 1810 | #endif |
| 1811 | |
| 1812 | #ifdef CONFIG_FLATMEM |
| 1813 | #define pfn_to_nid(pfn) (0) |
| 1814 | #endif |
| 1815 | |
| 1816 | #ifdef CONFIG_SPARSEMEM |
| 1817 | |
| 1818 | /* |
| 1819 | * PA_SECTION_SHIFT physical address to/from section number |
| 1820 | * PFN_SECTION_SHIFT pfn to/from section number |
| 1821 | */ |
| 1822 | #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) |
| 1823 | #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) |
| 1824 | |
| 1825 | #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) |
| 1826 | |
| 1827 | #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) |
| 1828 | #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) |
| 1829 | |
| 1830 | #define SECTION_BLOCKFLAGS_BITS \ |
| 1831 | ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) |
| 1832 | |
| 1833 | #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS |
| 1834 | #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE |
| 1835 | #endif |
| 1836 | |
| 1837 | static inline unsigned long pfn_to_section_nr(unsigned long pfn) |
| 1838 | { |
| 1839 | return pfn >> PFN_SECTION_SHIFT; |
| 1840 | } |
| 1841 | static inline unsigned long section_nr_to_pfn(unsigned long sec) |
| 1842 | { |
| 1843 | return sec << PFN_SECTION_SHIFT; |
| 1844 | } |
| 1845 | |
| 1846 | #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) |
| 1847 | #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) |
| 1848 | |
| 1849 | #define SUBSECTION_SHIFT 21 |
| 1850 | #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) |
| 1851 | |
| 1852 | #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) |
| 1853 | #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) |
| 1854 | #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) |
| 1855 | |
| 1856 | #if SUBSECTION_SHIFT > SECTION_SIZE_BITS |
| 1857 | #error Subsection size exceeds section size |
| 1858 | #else |
| 1859 | #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) |
| 1860 | #endif |
| 1861 | |
| 1862 | #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) |
| 1863 | #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) |
| 1864 | |
| 1865 | struct mem_section_usage { |
| 1866 | struct rcu_head rcu; |
| 1867 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 1868 | DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); |
| 1869 | #endif |
| 1870 | /* See declaration of similar field in struct zone */ |
| 1871 | unsigned long pageblock_flags[0]; |
| 1872 | }; |
| 1873 | |
| 1874 | void subsection_map_init(unsigned long pfn, unsigned long nr_pages); |
| 1875 | |
| 1876 | struct page; |
| 1877 | struct page_ext; |
| 1878 | struct mem_section { |
| 1879 | /* |
| 1880 | * This is, logically, a pointer to an array of struct |
| 1881 | * pages. However, it is stored with some other magic. |
| 1882 | * (see sparse.c::sparse_init_one_section()) |
| 1883 | * |
| 1884 | * Additionally during early boot we encode node id of |
| 1885 | * the location of the section here to guide allocation. |
| 1886 | * (see sparse.c::memory_present()) |
| 1887 | * |
| 1888 | * Making it a UL at least makes someone do a cast |
| 1889 | * before using it wrong. |
| 1890 | */ |
| 1891 | unsigned long section_mem_map; |
| 1892 | |
| 1893 | struct mem_section_usage *usage; |
| 1894 | #ifdef CONFIG_PAGE_EXTENSION |
| 1895 | /* |
| 1896 | * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use |
| 1897 | * section. (see page_ext.h about this.) |
| 1898 | */ |
| 1899 | struct page_ext *page_ext; |
| 1900 | unsigned long pad; |
| 1901 | #endif |
| 1902 | /* |
| 1903 | * WARNING: mem_section must be a power-of-2 in size for the |
| 1904 | * calculation and use of SECTION_ROOT_MASK to make sense. |
| 1905 | */ |
| 1906 | }; |
| 1907 | |
| 1908 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 1909 | #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) |
| 1910 | #else |
| 1911 | #define SECTIONS_PER_ROOT 1 |
| 1912 | #endif |
| 1913 | |
| 1914 | #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
| 1915 | #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) |
| 1916 | #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) |
| 1917 | |
| 1918 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 1919 | extern struct mem_section **mem_section; |
| 1920 | #else |
| 1921 | extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
| 1922 | #endif |
| 1923 | |
| 1924 | static inline unsigned long *section_to_usemap(struct mem_section *ms) |
| 1925 | { |
| 1926 | return ms->usage->pageblock_flags; |
| 1927 | } |
| 1928 | |
| 1929 | static inline struct mem_section *__nr_to_section(unsigned long nr) |
| 1930 | { |
| 1931 | unsigned long root = SECTION_NR_TO_ROOT(nr); |
| 1932 | |
| 1933 | if (unlikely(root >= NR_SECTION_ROOTS)) |
| 1934 | return NULL; |
| 1935 | |
| 1936 | #ifdef CONFIG_SPARSEMEM_EXTREME |
| 1937 | if (!mem_section || !mem_section[root]) |
| 1938 | return NULL; |
| 1939 | #endif |
| 1940 | return &mem_section[root][nr & SECTION_ROOT_MASK]; |
| 1941 | } |
| 1942 | extern size_t mem_section_usage_size(void); |
| 1943 | |
| 1944 | /* |
| 1945 | * We use the lower bits of the mem_map pointer to store |
| 1946 | * a little bit of information. The pointer is calculated |
| 1947 | * as mem_map - section_nr_to_pfn(pnum). The result is |
| 1948 | * aligned to the minimum alignment of the two values: |
| 1949 | * 1. All mem_map arrays are page-aligned. |
| 1950 | * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT |
| 1951 | * lowest bits. PFN_SECTION_SHIFT is arch-specific |
| 1952 | * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the |
| 1953 | * worst combination is powerpc with 256k pages, |
| 1954 | * which results in PFN_SECTION_SHIFT equal 6. |
| 1955 | * To sum it up, at least 6 bits are available on all architectures. |
| 1956 | * However, we can exceed 6 bits on some other architectures except |
| 1957 | * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available |
| 1958 | * with the worst case of 64K pages on arm64) if we make sure the |
| 1959 | * exceeded bit is not applicable to powerpc. |
| 1960 | */ |
| 1961 | enum { |
| 1962 | SECTION_MARKED_PRESENT_BIT, |
| 1963 | SECTION_HAS_MEM_MAP_BIT, |
| 1964 | SECTION_IS_ONLINE_BIT, |
| 1965 | SECTION_IS_EARLY_BIT, |
| 1966 | #ifdef CONFIG_ZONE_DEVICE |
| 1967 | SECTION_TAINT_ZONE_DEVICE_BIT, |
| 1968 | #endif |
| 1969 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT |
| 1970 | SECTION_IS_VMEMMAP_PREINIT_BIT, |
| 1971 | #endif |
| 1972 | SECTION_MAP_LAST_BIT, |
| 1973 | }; |
| 1974 | |
| 1975 | #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) |
| 1976 | #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) |
| 1977 | #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) |
| 1978 | #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) |
| 1979 | #ifdef CONFIG_ZONE_DEVICE |
| 1980 | #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) |
| 1981 | #endif |
| 1982 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT |
| 1983 | #define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) |
| 1984 | #endif |
| 1985 | #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) |
| 1986 | #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT |
| 1987 | |
| 1988 | static inline struct page *__section_mem_map_addr(struct mem_section *section) |
| 1989 | { |
| 1990 | unsigned long map = section->section_mem_map; |
| 1991 | map &= SECTION_MAP_MASK; |
| 1992 | return (struct page *)map; |
| 1993 | } |
| 1994 | |
| 1995 | static inline int present_section(struct mem_section *section) |
| 1996 | { |
| 1997 | return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
| 1998 | } |
| 1999 | |
| 2000 | static inline int present_section_nr(unsigned long nr) |
| 2001 | { |
| 2002 | return present_section(__nr_to_section(nr)); |
| 2003 | } |
| 2004 | |
| 2005 | static inline int valid_section(struct mem_section *section) |
| 2006 | { |
| 2007 | return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
| 2008 | } |
| 2009 | |
| 2010 | static inline int early_section(struct mem_section *section) |
| 2011 | { |
| 2012 | return (section && (section->section_mem_map & SECTION_IS_EARLY)); |
| 2013 | } |
| 2014 | |
| 2015 | static inline int valid_section_nr(unsigned long nr) |
| 2016 | { |
| 2017 | return valid_section(__nr_to_section(nr)); |
| 2018 | } |
| 2019 | |
| 2020 | static inline int online_section(struct mem_section *section) |
| 2021 | { |
| 2022 | return (section && (section->section_mem_map & SECTION_IS_ONLINE)); |
| 2023 | } |
| 2024 | |
| 2025 | #ifdef CONFIG_ZONE_DEVICE |
| 2026 | static inline int online_device_section(struct mem_section *section) |
| 2027 | { |
| 2028 | unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; |
| 2029 | |
| 2030 | return section && ((section->section_mem_map & flags) == flags); |
| 2031 | } |
| 2032 | #else |
| 2033 | static inline int online_device_section(struct mem_section *section) |
| 2034 | { |
| 2035 | return 0; |
| 2036 | } |
| 2037 | #endif |
| 2038 | |
| 2039 | #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT |
| 2040 | static inline int preinited_vmemmap_section(struct mem_section *section) |
| 2041 | { |
| 2042 | return (section && |
| 2043 | (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); |
| 2044 | } |
| 2045 | |
| 2046 | void sparse_vmemmap_init_nid_early(int nid); |
| 2047 | void sparse_vmemmap_init_nid_late(int nid); |
| 2048 | |
| 2049 | #else |
| 2050 | static inline int preinited_vmemmap_section(struct mem_section *section) |
| 2051 | { |
| 2052 | return 0; |
| 2053 | } |
| 2054 | static inline void sparse_vmemmap_init_nid_early(int nid) |
| 2055 | { |
| 2056 | } |
| 2057 | |
| 2058 | static inline void sparse_vmemmap_init_nid_late(int nid) |
| 2059 | { |
| 2060 | } |
| 2061 | #endif |
| 2062 | |
| 2063 | static inline int online_section_nr(unsigned long nr) |
| 2064 | { |
| 2065 | return online_section(__nr_to_section(nr)); |
| 2066 | } |
| 2067 | |
| 2068 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 2069 | void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); |
| 2070 | void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); |
| 2071 | #endif |
| 2072 | |
| 2073 | static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
| 2074 | { |
| 2075 | return __nr_to_section(pfn_to_section_nr(pfn)); |
| 2076 | } |
| 2077 | |
| 2078 | extern unsigned long __highest_present_section_nr; |
| 2079 | |
| 2080 | static inline int subsection_map_index(unsigned long pfn) |
| 2081 | { |
| 2082 | return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; |
| 2083 | } |
| 2084 | |
| 2085 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 2086 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) |
| 2087 | { |
| 2088 | int idx = subsection_map_index(pfn); |
| 2089 | struct mem_section_usage *usage = READ_ONCE(ms->usage); |
| 2090 | |
| 2091 | return usage ? test_bit(idx, usage->subsection_map) : 0; |
| 2092 | } |
| 2093 | |
| 2094 | static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) |
| 2095 | { |
| 2096 | struct mem_section_usage *usage = READ_ONCE(ms->usage); |
| 2097 | int idx = subsection_map_index(*pfn); |
| 2098 | unsigned long bit; |
| 2099 | |
| 2100 | if (!usage) |
| 2101 | return false; |
| 2102 | |
| 2103 | if (test_bit(idx, usage->subsection_map)) |
| 2104 | return true; |
| 2105 | |
| 2106 | /* Find the next subsection that exists */ |
| 2107 | bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx); |
| 2108 | if (bit == SUBSECTIONS_PER_SECTION) |
| 2109 | return false; |
| 2110 | |
| 2111 | *pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION); |
| 2112 | return true; |
| 2113 | } |
| 2114 | #else |
| 2115 | static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) |
| 2116 | { |
| 2117 | return 1; |
| 2118 | } |
| 2119 | |
| 2120 | static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) |
| 2121 | { |
| 2122 | return true; |
| 2123 | } |
| 2124 | #endif |
| 2125 | |
| 2126 | void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, |
| 2127 | unsigned long flags); |
| 2128 | |
| 2129 | #ifndef CONFIG_HAVE_ARCH_PFN_VALID |
| 2130 | /** |
| 2131 | * pfn_valid - check if there is a valid memory map entry for a PFN |
| 2132 | * @pfn: the page frame number to check |
| 2133 | * |
| 2134 | * Check if there is a valid memory map entry aka struct page for the @pfn. |
| 2135 | * Note, that availability of the memory map entry does not imply that |
| 2136 | * there is actual usable memory at that @pfn. The struct page may |
| 2137 | * represent a hole or an unusable page frame. |
| 2138 | * |
| 2139 | * Return: 1 for PFNs that have memory map entries and 0 otherwise |
| 2140 | */ |
| 2141 | static inline int pfn_valid(unsigned long pfn) |
| 2142 | { |
| 2143 | struct mem_section *ms; |
| 2144 | int ret; |
| 2145 | |
| 2146 | /* |
| 2147 | * Ensure the upper PAGE_SHIFT bits are clear in the |
| 2148 | * pfn. Else it might lead to false positives when |
| 2149 | * some of the upper bits are set, but the lower bits |
| 2150 | * match a valid pfn. |
| 2151 | */ |
| 2152 | if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) |
| 2153 | return 0; |
| 2154 | |
| 2155 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| 2156 | return 0; |
| 2157 | ms = __pfn_to_section(pfn); |
| 2158 | rcu_read_lock_sched(); |
| 2159 | if (!valid_section(ms)) { |
| 2160 | rcu_read_unlock_sched(); |
| 2161 | return 0; |
| 2162 | } |
| 2163 | /* |
| 2164 | * Traditionally early sections always returned pfn_valid() for |
| 2165 | * the entire section-sized span. |
| 2166 | */ |
| 2167 | ret = early_section(ms) || pfn_section_valid(ms, pfn); |
| 2168 | rcu_read_unlock_sched(); |
| 2169 | |
| 2170 | return ret; |
| 2171 | } |
| 2172 | |
| 2173 | /* Returns end_pfn or higher if no valid PFN remaining in range */ |
| 2174 | static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn) |
| 2175 | { |
| 2176 | unsigned long nr = pfn_to_section_nr(pfn); |
| 2177 | |
| 2178 | rcu_read_lock_sched(); |
| 2179 | |
| 2180 | while (nr <= __highest_present_section_nr && pfn < end_pfn) { |
| 2181 | struct mem_section *ms = __pfn_to_section(pfn); |
| 2182 | |
| 2183 | if (valid_section(ms) && |
| 2184 | (early_section(ms) || pfn_section_first_valid(ms, &pfn))) { |
| 2185 | rcu_read_unlock_sched(); |
| 2186 | return pfn; |
| 2187 | } |
| 2188 | |
| 2189 | /* Nothing left in this section? Skip to next section */ |
| 2190 | nr++; |
| 2191 | pfn = section_nr_to_pfn(nr); |
| 2192 | } |
| 2193 | |
| 2194 | rcu_read_unlock_sched(); |
| 2195 | return end_pfn; |
| 2196 | } |
| 2197 | |
| 2198 | static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn) |
| 2199 | { |
| 2200 | pfn++; |
| 2201 | |
| 2202 | if (pfn >= end_pfn) |
| 2203 | return end_pfn; |
| 2204 | |
| 2205 | /* |
| 2206 | * Either every PFN within the section (or subsection for VMEMMAP) is |
| 2207 | * valid, or none of them are. So there's no point repeating the check |
| 2208 | * for every PFN; only call first_valid_pfn() again when crossing a |
| 2209 | * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)). |
| 2210 | */ |
| 2211 | if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ? |
| 2212 | PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK)) |
| 2213 | return pfn; |
| 2214 | |
| 2215 | return first_valid_pfn(pfn, end_pfn); |
| 2216 | } |
| 2217 | |
| 2218 | |
| 2219 | #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \ |
| 2220 | for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn)); \ |
| 2221 | (_pfn) < (_end_pfn); \ |
| 2222 | (_pfn) = next_valid_pfn((_pfn), (_end_pfn))) |
| 2223 | |
| 2224 | #endif |
| 2225 | |
| 2226 | static inline int pfn_in_present_section(unsigned long pfn) |
| 2227 | { |
| 2228 | if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| 2229 | return 0; |
| 2230 | return present_section(__pfn_to_section(pfn)); |
| 2231 | } |
| 2232 | |
| 2233 | static inline unsigned long next_present_section_nr(unsigned long section_nr) |
| 2234 | { |
| 2235 | while (++section_nr <= __highest_present_section_nr) { |
| 2236 | if (present_section_nr(section_nr)) |
| 2237 | return section_nr; |
| 2238 | } |
| 2239 | |
| 2240 | return -1; |
| 2241 | } |
| 2242 | |
| 2243 | #define for_each_present_section_nr(start, section_nr) \ |
| 2244 | for (section_nr = next_present_section_nr(start - 1); \ |
| 2245 | section_nr != -1; \ |
| 2246 | section_nr = next_present_section_nr(section_nr)) |
| 2247 | |
| 2248 | /* |
| 2249 | * These are _only_ used during initialisation, therefore they |
| 2250 | * can use __initdata ... They could have names to indicate |
| 2251 | * this restriction. |
| 2252 | */ |
| 2253 | #ifdef CONFIG_NUMA |
| 2254 | #define pfn_to_nid(pfn) \ |
| 2255 | ({ \ |
| 2256 | unsigned long __pfn_to_nid_pfn = (pfn); \ |
| 2257 | page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ |
| 2258 | }) |
| 2259 | #else |
| 2260 | #define pfn_to_nid(pfn) (0) |
| 2261 | #endif |
| 2262 | |
| 2263 | void sparse_init(void); |
| 2264 | #else |
| 2265 | #define sparse_init() do {} while (0) |
| 2266 | #define sparse_index_init(_sec, _nid) do {} while (0) |
| 2267 | #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) |
| 2268 | #define sparse_vmemmap_init_nid_late(_nid) do {} while (0) |
| 2269 | #define pfn_in_present_section pfn_valid |
| 2270 | #define subsection_map_init(_pfn, _nr_pages) do {} while (0) |
| 2271 | #endif /* CONFIG_SPARSEMEM */ |
| 2272 | |
| 2273 | /* |
| 2274 | * Fallback case for when the architecture provides its own pfn_valid() but |
| 2275 | * not a corresponding for_each_valid_pfn(). |
| 2276 | */ |
| 2277 | #ifndef for_each_valid_pfn |
| 2278 | #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \ |
| 2279 | for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++) \ |
| 2280 | if (pfn_valid(_pfn)) |
| 2281 | #endif |
| 2282 | |
| 2283 | #endif /* !__GENERATING_BOUNDS.H */ |
| 2284 | #endif /* !__ASSEMBLY__ */ |
| 2285 | #endif /* _LINUX_MMZONE_H */ |