Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / include / linux / mm.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/pgalloc_tag.h>
9#include <linux/bug.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/atomic.h>
14#include <linux/debug_locks.h>
15#include <linux/compiler.h>
16#include <linux/mm_types.h>
17#include <linux/mmap_lock.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page-flags.h>
27#include <linux/page_ref.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30#include <linux/sched.h>
31#include <linux/pgtable.h>
32#include <linux/kasan.h>
33#include <linux/memremap.h>
34#include <linux/slab.h>
35#include <linux/cacheinfo.h>
36#include <linux/rcuwait.h>
37
38struct mempolicy;
39struct anon_vma;
40struct anon_vma_chain;
41struct user_struct;
42struct pt_regs;
43struct folio_batch;
44
45void arch_mm_preinit(void);
46void mm_core_init(void);
47void init_mm_internals(void);
48
49extern atomic_long_t _totalram_pages;
50static inline unsigned long totalram_pages(void)
51{
52 return (unsigned long)atomic_long_read(&_totalram_pages);
53}
54
55static inline void totalram_pages_inc(void)
56{
57 atomic_long_inc(&_totalram_pages);
58}
59
60static inline void totalram_pages_dec(void)
61{
62 atomic_long_dec(&_totalram_pages);
63}
64
65static inline void totalram_pages_add(long count)
66{
67 atomic_long_add(count, &_totalram_pages);
68}
69
70extern void * high_memory;
71
72#ifdef CONFIG_SYSCTL
73extern int sysctl_legacy_va_layout;
74#else
75#define sysctl_legacy_va_layout 0
76#endif
77
78#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79extern const int mmap_rnd_bits_min;
80extern int mmap_rnd_bits_max __ro_after_init;
81extern int mmap_rnd_bits __read_mostly;
82#endif
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84extern const int mmap_rnd_compat_bits_min;
85extern const int mmap_rnd_compat_bits_max;
86extern int mmap_rnd_compat_bits __read_mostly;
87#endif
88
89#ifndef DIRECT_MAP_PHYSMEM_END
90# ifdef MAX_PHYSMEM_BITS
91# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
92# else
93# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
94# endif
95#endif
96
97#include <asm/page.h>
98#include <asm/processor.h>
99
100#ifndef __pa_symbol
101#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
102#endif
103
104#ifndef page_to_virt
105#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
106#endif
107
108#ifndef lm_alias
109#define lm_alias(x) __va(__pa_symbol(x))
110#endif
111
112/*
113 * To prevent common memory management code establishing
114 * a zero page mapping on a read fault.
115 * This macro should be defined within <asm/pgtable.h>.
116 * s390 does this to prevent multiplexing of hardware bits
117 * related to the physical page in case of virtualization.
118 */
119#ifndef mm_forbids_zeropage
120#define mm_forbids_zeropage(X) (0)
121#endif
122
123/*
124 * On some architectures it is expensive to call memset() for small sizes.
125 * If an architecture decides to implement their own version of
126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127 * define their own version of this macro in <asm/pgtable.h>
128 */
129#if BITS_PER_LONG == 64
130/* This function must be updated when the size of struct page grows above 96
131 * or reduces below 56. The idea that compiler optimizes out switch()
132 * statement, and only leaves move/store instructions. Also the compiler can
133 * combine write statements if they are both assignments and can be reordered,
134 * this can result in several of the writes here being dropped.
135 */
136#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
137static inline void __mm_zero_struct_page(struct page *page)
138{
139 unsigned long *_pp = (void *)page;
140
141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 BUILD_BUG_ON(sizeof(struct page) & 7);
143 BUILD_BUG_ON(sizeof(struct page) < 56);
144 BUILD_BUG_ON(sizeof(struct page) > 96);
145
146 switch (sizeof(struct page)) {
147 case 96:
148 _pp[11] = 0;
149 fallthrough;
150 case 88:
151 _pp[10] = 0;
152 fallthrough;
153 case 80:
154 _pp[9] = 0;
155 fallthrough;
156 case 72:
157 _pp[8] = 0;
158 fallthrough;
159 case 64:
160 _pp[7] = 0;
161 fallthrough;
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
197extern unsigned long sysctl_user_reserve_kbytes;
198extern unsigned long sysctl_admin_reserve_kbytes;
199
200#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
203#else
204#define nth_page(page,n) ((page) + (n))
205#define folio_page_idx(folio, p) ((p) - &(folio)->page)
206#endif
207
208/* to align the pointer to the (next) page boundary */
209#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210
211/* to align the pointer to the (prev) page boundary */
212#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213
214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216
217static inline struct folio *lru_to_folio(struct list_head *head)
218{
219 return list_entry((head)->prev, struct folio, lru);
220}
221
222void setup_initial_init_mm(void *start_code, void *end_code,
223 void *end_data, void *brk);
224
225/*
226 * Linux kernel virtual memory manager primitives.
227 * The idea being to have a "virtual" mm in the same way
228 * we have a virtual fs - giving a cleaner interface to the
229 * mm details, and allowing different kinds of memory mappings
230 * (from shared memory to executable loading to arbitrary
231 * mmap() functions).
232 */
233
234struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236void vm_area_free(struct vm_area_struct *);
237
238#ifndef CONFIG_MMU
239extern struct rb_root nommu_region_tree;
240extern struct rw_semaphore nommu_region_sem;
241
242extern unsigned int kobjsize(const void *objp);
243#endif
244
245/*
246 * vm_flags in vm_area_struct, see mm_types.h.
247 * When changing, update also include/trace/events/mmflags.h
248 */
249#define VM_NONE 0x00000000
250
251#define VM_READ 0x00000001 /* currently active flags */
252#define VM_WRITE 0x00000002
253#define VM_EXEC 0x00000004
254#define VM_SHARED 0x00000008
255
256/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
258#define VM_MAYWRITE 0x00000020
259#define VM_MAYEXEC 0x00000040
260#define VM_MAYSHARE 0x00000080
261
262#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
263#ifdef CONFIG_MMU
264#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
265#else /* CONFIG_MMU */
266#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267#define VM_UFFD_MISSING 0
268#endif /* CONFIG_MMU */
269#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
271
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285#define VM_SYNC 0x00800000 /* Synchronous page faults */
286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
289
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
300
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
308#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
314#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
315#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
318#ifdef CONFIG_ARCH_HAS_PKEYS
319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323#if CONFIG_ARCH_PKEY_BITS > 3
324# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
325#else
326# define VM_PKEY_BIT3 0
327#endif
328#if CONFIG_ARCH_PKEY_BITS > 4
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
332#endif
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#ifdef CONFIG_X86_USER_SHADOW_STACK
336/*
337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338 * support core mm.
339 *
340 * These VMAs will get a single end guard page. This helps userspace protect
341 * itself from attacks. A single page is enough for current shadow stack archs
342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343 * for more details on the guard size.
344 */
345# define VM_SHADOW_STACK VM_HIGH_ARCH_5
346#endif
347
348#if defined(CONFIG_ARM64_GCS)
349/*
350 * arm64's Guarded Control Stack implements similar functionality and
351 * has similar constraints to shadow stacks.
352 */
353# define VM_SHADOW_STACK VM_HIGH_ARCH_6
354#endif
355
356#ifndef VM_SHADOW_STACK
357# define VM_SHADOW_STACK VM_NONE
358#endif
359
360#if defined(CONFIG_PPC64)
361# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
362#elif defined(CONFIG_PARISC)
363# define VM_GROWSUP VM_ARCH_1
364#elif defined(CONFIG_SPARC64)
365# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
366# define VM_ARCH_CLEAR VM_SPARC_ADI
367#elif defined(CONFIG_ARM64)
368# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
369# define VM_ARCH_CLEAR VM_ARM64_BTI
370#elif !defined(CONFIG_MMU)
371# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
372#endif
373
374#if defined(CONFIG_ARM64_MTE)
375# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
376# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
377#else
378# define VM_MTE VM_NONE
379# define VM_MTE_ALLOWED VM_NONE
380#endif
381
382#ifndef VM_GROWSUP
383# define VM_GROWSUP VM_NONE
384#endif
385
386#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387# define VM_UFFD_MINOR_BIT 41
388# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
389#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390# define VM_UFFD_MINOR VM_NONE
391#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392
393/*
394 * This flag is used to connect VFIO to arch specific KVM code. It
395 * indicates that the memory under this VMA is safe for use with any
396 * non-cachable memory type inside KVM. Some VFIO devices, on some
397 * platforms, are thought to be unsafe and can cause machine crashes
398 * if KVM does not lock down the memory type.
399 */
400#ifdef CONFIG_64BIT
401#define VM_ALLOW_ANY_UNCACHED_BIT 39
402#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403#else
404#define VM_ALLOW_ANY_UNCACHED VM_NONE
405#endif
406
407#ifdef CONFIG_64BIT
408#define VM_DROPPABLE_BIT 40
409#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
410#elif defined(CONFIG_PPC32)
411#define VM_DROPPABLE VM_ARCH_1
412#else
413#define VM_DROPPABLE VM_NONE
414#endif
415
416#ifdef CONFIG_64BIT
417/* VM is sealed, in vm_flags */
418#define VM_SEALED _BITUL(63)
419#endif
420
421/* Bits set in the VMA until the stack is in its final location */
422#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423
424#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425
426/* Common data flag combinations */
427#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
430 VM_MAYWRITE | VM_MAYEXEC)
431#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433
434#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
435#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
436#endif
437
438#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
439#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440#endif
441
442#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443
444#ifdef CONFIG_STACK_GROWSUP
445#define VM_STACK VM_GROWSUP
446#define VM_STACK_EARLY VM_GROWSDOWN
447#else
448#define VM_STACK VM_GROWSDOWN
449#define VM_STACK_EARLY 0
450#endif
451
452#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453
454/* VMA basic access permission flags */
455#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456
457
458/*
459 * Special vmas that are non-mergable, non-mlock()able.
460 */
461#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462
463/* This mask prevents VMA from being scanned with khugepaged */
464#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465
466/* This mask defines which mm->def_flags a process can inherit its parent */
467#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
468
469/* This mask represents all the VMA flag bits used by mlock */
470#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
471
472/* Arch-specific flags to clear when updating VM flags on protection change */
473#ifndef VM_ARCH_CLEAR
474# define VM_ARCH_CLEAR VM_NONE
475#endif
476#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477
478/*
479 * mapping from the currently active vm_flags protection bits (the
480 * low four bits) to a page protection mask..
481 */
482
483/*
484 * The default fault flags that should be used by most of the
485 * arch-specific page fault handlers.
486 */
487#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
488 FAULT_FLAG_KILLABLE | \
489 FAULT_FLAG_INTERRUPTIBLE)
490
491/**
492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493 * @flags: Fault flags.
494 *
495 * This is mostly used for places where we want to try to avoid taking
496 * the mmap_lock for too long a time when waiting for another condition
497 * to change, in which case we can try to be polite to release the
498 * mmap_lock in the first round to avoid potential starvation of other
499 * processes that would also want the mmap_lock.
500 *
501 * Return: true if the page fault allows retry and this is the first
502 * attempt of the fault handling; false otherwise.
503 */
504static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505{
506 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 (!(flags & FAULT_FLAG_TRIED));
508}
509
510#define FAULT_FLAG_TRACE \
511 { FAULT_FLAG_WRITE, "WRITE" }, \
512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
516 { FAULT_FLAG_TRIED, "TRIED" }, \
517 { FAULT_FLAG_USER, "USER" }, \
518 { FAULT_FLAG_REMOTE, "REMOTE" }, \
519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
522
523/*
524 * vm_fault is filled by the pagefault handler and passed to the vma's
525 * ->fault function. The vma's ->fault is responsible for returning a bitmask
526 * of VM_FAULT_xxx flags that give details about how the fault was handled.
527 *
528 * MM layer fills up gfp_mask for page allocations but fault handler might
529 * alter it if its implementation requires a different allocation context.
530 *
531 * pgoff should be used in favour of virtual_address, if possible.
532 */
533struct vm_fault {
534 const struct {
535 struct vm_area_struct *vma; /* Target VMA */
536 gfp_t gfp_mask; /* gfp mask to be used for allocations */
537 pgoff_t pgoff; /* Logical page offset based on vma */
538 unsigned long address; /* Faulting virtual address - masked */
539 unsigned long real_address; /* Faulting virtual address - unmasked */
540 };
541 enum fault_flag flags; /* FAULT_FLAG_xxx flags
542 * XXX: should really be 'const' */
543 pmd_t *pmd; /* Pointer to pmd entry matching
544 * the 'address' */
545 pud_t *pud; /* Pointer to pud entry matching
546 * the 'address'
547 */
548 union {
549 pte_t orig_pte; /* Value of PTE at the time of fault */
550 pmd_t orig_pmd; /* Value of PMD at the time of fault,
551 * used by PMD fault only.
552 */
553 };
554
555 struct page *cow_page; /* Page handler may use for COW fault */
556 struct page *page; /* ->fault handlers should return a
557 * page here, unless VM_FAULT_NOPAGE
558 * is set (which is also implied by
559 * VM_FAULT_ERROR).
560 */
561 /* These three entries are valid only while holding ptl lock */
562 pte_t *pte; /* Pointer to pte entry matching
563 * the 'address'. NULL if the page
564 * table hasn't been allocated.
565 */
566 spinlock_t *ptl; /* Page table lock.
567 * Protects pte page table if 'pte'
568 * is not NULL, otherwise pmd.
569 */
570 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
571 * vm_ops->map_pages() sets up a page
572 * table from atomic context.
573 * do_fault_around() pre-allocates
574 * page table to avoid allocation from
575 * atomic context.
576 */
577};
578
579/*
580 * These are the virtual MM functions - opening of an area, closing and
581 * unmapping it (needed to keep files on disk up-to-date etc), pointer
582 * to the functions called when a no-page or a wp-page exception occurs.
583 */
584struct vm_operations_struct {
585 void (*open)(struct vm_area_struct * area);
586 /**
587 * @close: Called when the VMA is being removed from the MM.
588 * Context: User context. May sleep. Caller holds mmap_lock.
589 */
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if mprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 pgoff_t start_pgoff, pgoff_t end_pgoff);
605 unsigned long (*pagesize)(struct vm_area_struct * area);
606
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610
611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613
614 /* called by access_process_vm when get_user_pages() fails, typically
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
617 */
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
620
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
625
626#ifdef CONFIG_NUMA
627 /*
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
632 * mempolicy.
633 */
634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635
636 /*
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
644 * policy.
645 */
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr, pgoff_t *ilx);
648#endif
649 /*
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
653 */
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
655 unsigned long addr);
656};
657
658#ifdef CONFIG_NUMA_BALANCING
659static inline void vma_numab_state_init(struct vm_area_struct *vma)
660{
661 vma->numab_state = NULL;
662}
663static inline void vma_numab_state_free(struct vm_area_struct *vma)
664{
665 kfree(vma->numab_state);
666}
667#else
668static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670#endif /* CONFIG_NUMA_BALANCING */
671
672/*
673 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
674 * declared in this header.
675 */
676#ifdef CONFIG_PER_VMA_LOCK
677static inline void release_fault_lock(struct vm_fault *vmf)
678{
679 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
680 vma_end_read(vmf->vma);
681 else
682 mmap_read_unlock(vmf->vma->vm_mm);
683}
684
685static inline void assert_fault_locked(struct vm_fault *vmf)
686{
687 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
688 vma_assert_locked(vmf->vma);
689 else
690 mmap_assert_locked(vmf->vma->vm_mm);
691}
692#else
693static inline void release_fault_lock(struct vm_fault *vmf)
694{
695 mmap_read_unlock(vmf->vma->vm_mm);
696}
697
698static inline void assert_fault_locked(struct vm_fault *vmf)
699{
700 mmap_assert_locked(vmf->vma->vm_mm);
701}
702#endif /* CONFIG_PER_VMA_LOCK */
703
704extern const struct vm_operations_struct vma_dummy_vm_ops;
705
706static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
707{
708 memset(vma, 0, sizeof(*vma));
709 vma->vm_mm = mm;
710 vma->vm_ops = &vma_dummy_vm_ops;
711 INIT_LIST_HEAD(&vma->anon_vma_chain);
712 vma_lock_init(vma, false);
713}
714
715/* Use when VMA is not part of the VMA tree and needs no locking */
716static inline void vm_flags_init(struct vm_area_struct *vma,
717 vm_flags_t flags)
718{
719 ACCESS_PRIVATE(vma, __vm_flags) = flags;
720}
721
722/*
723 * Use when VMA is part of the VMA tree and modifications need coordination
724 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
725 * it should be locked explicitly beforehand.
726 */
727static inline void vm_flags_reset(struct vm_area_struct *vma,
728 vm_flags_t flags)
729{
730 vma_assert_write_locked(vma);
731 vm_flags_init(vma, flags);
732}
733
734static inline void vm_flags_reset_once(struct vm_area_struct *vma,
735 vm_flags_t flags)
736{
737 vma_assert_write_locked(vma);
738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
739}
740
741static inline void vm_flags_set(struct vm_area_struct *vma,
742 vm_flags_t flags)
743{
744 vma_start_write(vma);
745 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
746}
747
748static inline void vm_flags_clear(struct vm_area_struct *vma,
749 vm_flags_t flags)
750{
751 vma_start_write(vma);
752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
753}
754
755/*
756 * Use only if VMA is not part of the VMA tree or has no other users and
757 * therefore needs no locking.
758 */
759static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 vm_flags_t set, vm_flags_t clear)
761{
762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
763}
764
765/*
766 * Use only when the order of set/clear operations is unimportant, otherwise
767 * use vm_flags_{set|clear} explicitly.
768 */
769static inline void vm_flags_mod(struct vm_area_struct *vma,
770 vm_flags_t set, vm_flags_t clear)
771{
772 vma_start_write(vma);
773 __vm_flags_mod(vma, set, clear);
774}
775
776static inline void vma_set_anonymous(struct vm_area_struct *vma)
777{
778 vma->vm_ops = NULL;
779}
780
781static inline bool vma_is_anonymous(struct vm_area_struct *vma)
782{
783 return !vma->vm_ops;
784}
785
786/*
787 * Indicate if the VMA is a heap for the given task; for
788 * /proc/PID/maps that is the heap of the main task.
789 */
790static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
791{
792 return vma->vm_start < vma->vm_mm->brk &&
793 vma->vm_end > vma->vm_mm->start_brk;
794}
795
796/*
797 * Indicate if the VMA is a stack for the given task; for
798 * /proc/PID/maps that is the stack of the main task.
799 */
800static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
801{
802 /*
803 * We make no effort to guess what a given thread considers to be
804 * its "stack". It's not even well-defined for programs written
805 * languages like Go.
806 */
807 return vma->vm_start <= vma->vm_mm->start_stack &&
808 vma->vm_end >= vma->vm_mm->start_stack;
809}
810
811static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
812{
813 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
814
815 if (!maybe_stack)
816 return false;
817
818 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
819 VM_STACK_INCOMPLETE_SETUP)
820 return true;
821
822 return false;
823}
824
825static inline bool vma_is_foreign(struct vm_area_struct *vma)
826{
827 if (!current->mm)
828 return true;
829
830 if (current->mm != vma->vm_mm)
831 return true;
832
833 return false;
834}
835
836static inline bool vma_is_accessible(struct vm_area_struct *vma)
837{
838 return vma->vm_flags & VM_ACCESS_FLAGS;
839}
840
841static inline bool is_shared_maywrite(vm_flags_t vm_flags)
842{
843 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
844 (VM_SHARED | VM_MAYWRITE);
845}
846
847static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
848{
849 return is_shared_maywrite(vma->vm_flags);
850}
851
852static inline
853struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
854{
855 return mas_find(&vmi->mas, max - 1);
856}
857
858static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
859{
860 /*
861 * Uses mas_find() to get the first VMA when the iterator starts.
862 * Calling mas_next() could skip the first entry.
863 */
864 return mas_find(&vmi->mas, ULONG_MAX);
865}
866
867static inline
868struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
869{
870 return mas_next_range(&vmi->mas, ULONG_MAX);
871}
872
873
874static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
875{
876 return mas_prev(&vmi->mas, 0);
877}
878
879static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
880 unsigned long start, unsigned long end, gfp_t gfp)
881{
882 __mas_set_range(&vmi->mas, start, end - 1);
883 mas_store_gfp(&vmi->mas, NULL, gfp);
884 if (unlikely(mas_is_err(&vmi->mas)))
885 return -ENOMEM;
886
887 return 0;
888}
889
890/* Free any unused preallocations */
891static inline void vma_iter_free(struct vma_iterator *vmi)
892{
893 mas_destroy(&vmi->mas);
894}
895
896static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
897 struct vm_area_struct *vma)
898{
899 vmi->mas.index = vma->vm_start;
900 vmi->mas.last = vma->vm_end - 1;
901 mas_store(&vmi->mas, vma);
902 if (unlikely(mas_is_err(&vmi->mas)))
903 return -ENOMEM;
904
905 vma_mark_attached(vma);
906 return 0;
907}
908
909static inline void vma_iter_invalidate(struct vma_iterator *vmi)
910{
911 mas_pause(&vmi->mas);
912}
913
914static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
915{
916 mas_set(&vmi->mas, addr);
917}
918
919#define for_each_vma(__vmi, __vma) \
920 while (((__vma) = vma_next(&(__vmi))) != NULL)
921
922/* The MM code likes to work with exclusive end addresses */
923#define for_each_vma_range(__vmi, __vma, __end) \
924 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
925
926#ifdef CONFIG_SHMEM
927/*
928 * The vma_is_shmem is not inline because it is used only by slow
929 * paths in userfault.
930 */
931bool vma_is_shmem(struct vm_area_struct *vma);
932bool vma_is_anon_shmem(struct vm_area_struct *vma);
933#else
934static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
935static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
936#endif
937
938int vma_is_stack_for_current(struct vm_area_struct *vma);
939
940/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
941#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
942
943struct mmu_gather;
944struct inode;
945
946extern void prep_compound_page(struct page *page, unsigned int order);
947
948static inline unsigned int folio_large_order(const struct folio *folio)
949{
950 return folio->_flags_1 & 0xff;
951}
952
953#ifdef NR_PAGES_IN_LARGE_FOLIO
954static inline long folio_large_nr_pages(const struct folio *folio)
955{
956 return folio->_nr_pages;
957}
958#else
959static inline long folio_large_nr_pages(const struct folio *folio)
960{
961 return 1L << folio_large_order(folio);
962}
963#endif
964
965/*
966 * compound_order() can be called without holding a reference, which means
967 * that niceties like page_folio() don't work. These callers should be
968 * prepared to handle wild return values. For example, PG_head may be
969 * set before the order is initialised, or this may be a tail page.
970 * See compaction.c for some good examples.
971 */
972static inline unsigned int compound_order(struct page *page)
973{
974 struct folio *folio = (struct folio *)page;
975
976 if (!test_bit(PG_head, &folio->flags))
977 return 0;
978 return folio_large_order(folio);
979}
980
981/**
982 * folio_order - The allocation order of a folio.
983 * @folio: The folio.
984 *
985 * A folio is composed of 2^order pages. See get_order() for the definition
986 * of order.
987 *
988 * Return: The order of the folio.
989 */
990static inline unsigned int folio_order(const struct folio *folio)
991{
992 if (!folio_test_large(folio))
993 return 0;
994 return folio_large_order(folio);
995}
996
997/**
998 * folio_reset_order - Reset the folio order and derived _nr_pages
999 * @folio: The folio.
1000 *
1001 * Reset the order and derived _nr_pages to 0. Must only be used in the
1002 * process of splitting large folios.
1003 */
1004static inline void folio_reset_order(struct folio *folio)
1005{
1006 if (WARN_ON_ONCE(!folio_test_large(folio)))
1007 return;
1008 folio->_flags_1 &= ~0xffUL;
1009#ifdef NR_PAGES_IN_LARGE_FOLIO
1010 folio->_nr_pages = 0;
1011#endif
1012}
1013
1014#include <linux/huge_mm.h>
1015
1016/*
1017 * Methods to modify the page usage count.
1018 *
1019 * What counts for a page usage:
1020 * - cache mapping (page->mapping)
1021 * - private data (page->private)
1022 * - page mapped in a task's page tables, each mapping
1023 * is counted separately
1024 *
1025 * Also, many kernel routines increase the page count before a critical
1026 * routine so they can be sure the page doesn't go away from under them.
1027 */
1028
1029/*
1030 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1031 */
1032static inline int put_page_testzero(struct page *page)
1033{
1034 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1035 return page_ref_dec_and_test(page);
1036}
1037
1038static inline int folio_put_testzero(struct folio *folio)
1039{
1040 return put_page_testzero(&folio->page);
1041}
1042
1043/*
1044 * Try to grab a ref unless the page has a refcount of zero, return false if
1045 * that is the case.
1046 * This can be called when MMU is off so it must not access
1047 * any of the virtual mappings.
1048 */
1049static inline bool get_page_unless_zero(struct page *page)
1050{
1051 return page_ref_add_unless(page, 1, 0);
1052}
1053
1054static inline struct folio *folio_get_nontail_page(struct page *page)
1055{
1056 if (unlikely(!get_page_unless_zero(page)))
1057 return NULL;
1058 return (struct folio *)page;
1059}
1060
1061extern int page_is_ram(unsigned long pfn);
1062
1063enum {
1064 REGION_INTERSECTS,
1065 REGION_DISJOINT,
1066 REGION_MIXED,
1067};
1068
1069int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1070 unsigned long desc);
1071
1072/* Support for virtually mapped pages */
1073struct page *vmalloc_to_page(const void *addr);
1074unsigned long vmalloc_to_pfn(const void *addr);
1075
1076/*
1077 * Determine if an address is within the vmalloc range
1078 *
1079 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1080 * is no special casing required.
1081 */
1082#ifdef CONFIG_MMU
1083extern bool is_vmalloc_addr(const void *x);
1084extern int is_vmalloc_or_module_addr(const void *x);
1085#else
1086static inline bool is_vmalloc_addr(const void *x)
1087{
1088 return false;
1089}
1090static inline int is_vmalloc_or_module_addr(const void *x)
1091{
1092 return 0;
1093}
1094#endif
1095
1096/*
1097 * How many times the entire folio is mapped as a single unit (eg by a
1098 * PMD or PUD entry). This is probably not what you want, except for
1099 * debugging purposes or implementation of other core folio_*() primitives.
1100 */
1101static inline int folio_entire_mapcount(const struct folio *folio)
1102{
1103 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1104 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1105 return 0;
1106 return atomic_read(&folio->_entire_mapcount) + 1;
1107}
1108
1109static inline int folio_large_mapcount(const struct folio *folio)
1110{
1111 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1112 return atomic_read(&folio->_large_mapcount) + 1;
1113}
1114
1115/**
1116 * folio_mapcount() - Number of mappings of this folio.
1117 * @folio: The folio.
1118 *
1119 * The folio mapcount corresponds to the number of present user page table
1120 * entries that reference any part of a folio. Each such present user page
1121 * table entry must be paired with exactly on folio reference.
1122 *
1123 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1124 * exactly once.
1125 *
1126 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1127 * references the entire folio counts exactly once, even when such special
1128 * page table entries are comprised of multiple ordinary page table entries.
1129 *
1130 * Will report 0 for pages which cannot be mapped into userspace, such as
1131 * slab, page tables and similar.
1132 *
1133 * Return: The number of times this folio is mapped.
1134 */
1135static inline int folio_mapcount(const struct folio *folio)
1136{
1137 int mapcount;
1138
1139 if (likely(!folio_test_large(folio))) {
1140 mapcount = atomic_read(&folio->_mapcount) + 1;
1141 if (page_mapcount_is_type(mapcount))
1142 mapcount = 0;
1143 return mapcount;
1144 }
1145 return folio_large_mapcount(folio);
1146}
1147
1148/**
1149 * folio_mapped - Is this folio mapped into userspace?
1150 * @folio: The folio.
1151 *
1152 * Return: True if any page in this folio is referenced by user page tables.
1153 */
1154static inline bool folio_mapped(const struct folio *folio)
1155{
1156 return folio_mapcount(folio) >= 1;
1157}
1158
1159/*
1160 * Return true if this page is mapped into pagetables.
1161 * For compound page it returns true if any sub-page of compound page is mapped,
1162 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1163 */
1164static inline bool page_mapped(const struct page *page)
1165{
1166 return folio_mapped(page_folio(page));
1167}
1168
1169static inline struct page *virt_to_head_page(const void *x)
1170{
1171 struct page *page = virt_to_page(x);
1172
1173 return compound_head(page);
1174}
1175
1176static inline struct folio *virt_to_folio(const void *x)
1177{
1178 struct page *page = virt_to_page(x);
1179
1180 return page_folio(page);
1181}
1182
1183void __folio_put(struct folio *folio);
1184
1185void split_page(struct page *page, unsigned int order);
1186void folio_copy(struct folio *dst, struct folio *src);
1187int folio_mc_copy(struct folio *dst, struct folio *src);
1188
1189unsigned long nr_free_buffer_pages(void);
1190
1191/* Returns the number of bytes in this potentially compound page. */
1192static inline unsigned long page_size(struct page *page)
1193{
1194 return PAGE_SIZE << compound_order(page);
1195}
1196
1197/* Returns the number of bits needed for the number of bytes in a page */
1198static inline unsigned int page_shift(struct page *page)
1199{
1200 return PAGE_SHIFT + compound_order(page);
1201}
1202
1203/**
1204 * thp_order - Order of a transparent huge page.
1205 * @page: Head page of a transparent huge page.
1206 */
1207static inline unsigned int thp_order(struct page *page)
1208{
1209 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1210 return compound_order(page);
1211}
1212
1213/**
1214 * thp_size - Size of a transparent huge page.
1215 * @page: Head page of a transparent huge page.
1216 *
1217 * Return: Number of bytes in this page.
1218 */
1219static inline unsigned long thp_size(struct page *page)
1220{
1221 return PAGE_SIZE << thp_order(page);
1222}
1223
1224#ifdef CONFIG_MMU
1225/*
1226 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1227 * servicing faults for write access. In the normal case, do always want
1228 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1229 * that do not have writing enabled, when used by access_process_vm.
1230 */
1231static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1232{
1233 if (likely(vma->vm_flags & VM_WRITE))
1234 pte = pte_mkwrite(pte, vma);
1235 return pte;
1236}
1237
1238vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1239void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1240 struct page *page, unsigned int nr, unsigned long addr);
1241
1242vm_fault_t finish_fault(struct vm_fault *vmf);
1243#endif
1244
1245/*
1246 * Multiple processes may "see" the same page. E.g. for untouched
1247 * mappings of /dev/null, all processes see the same page full of
1248 * zeroes, and text pages of executables and shared libraries have
1249 * only one copy in memory, at most, normally.
1250 *
1251 * For the non-reserved pages, page_count(page) denotes a reference count.
1252 * page_count() == 0 means the page is free. page->lru is then used for
1253 * freelist management in the buddy allocator.
1254 * page_count() > 0 means the page has been allocated.
1255 *
1256 * Pages are allocated by the slab allocator in order to provide memory
1257 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1258 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1259 * unless a particular usage is carefully commented. (the responsibility of
1260 * freeing the kmalloc memory is the caller's, of course).
1261 *
1262 * A page may be used by anyone else who does a __get_free_page().
1263 * In this case, page_count still tracks the references, and should only
1264 * be used through the normal accessor functions. The top bits of page->flags
1265 * and page->virtual store page management information, but all other fields
1266 * are unused and could be used privately, carefully. The management of this
1267 * page is the responsibility of the one who allocated it, and those who have
1268 * subsequently been given references to it.
1269 *
1270 * The other pages (we may call them "pagecache pages") are completely
1271 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1272 * The following discussion applies only to them.
1273 *
1274 * A pagecache page contains an opaque `private' member, which belongs to the
1275 * page's address_space. Usually, this is the address of a circular list of
1276 * the page's disk buffers. PG_private must be set to tell the VM to call
1277 * into the filesystem to release these pages.
1278 *
1279 * A folio may belong to an inode's memory mapping. In this case,
1280 * folio->mapping points to the inode, and folio->index is the file
1281 * offset of the folio, in units of PAGE_SIZE.
1282 *
1283 * If pagecache pages are not associated with an inode, they are said to be
1284 * anonymous pages. These may become associated with the swapcache, and in that
1285 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1286 *
1287 * In either case (swapcache or inode backed), the pagecache itself holds one
1288 * reference to the page. Setting PG_private should also increment the
1289 * refcount. The each user mapping also has a reference to the page.
1290 *
1291 * The pagecache pages are stored in a per-mapping radix tree, which is
1292 * rooted at mapping->i_pages, and indexed by offset.
1293 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1294 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1295 *
1296 * All pagecache pages may be subject to I/O:
1297 * - inode pages may need to be read from disk,
1298 * - inode pages which have been modified and are MAP_SHARED may need
1299 * to be written back to the inode on disk,
1300 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1301 * modified may need to be swapped out to swap space and (later) to be read
1302 * back into memory.
1303 */
1304
1305/* 127: arbitrary random number, small enough to assemble well */
1306#define folio_ref_zero_or_close_to_overflow(folio) \
1307 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1308
1309/**
1310 * folio_get - Increment the reference count on a folio.
1311 * @folio: The folio.
1312 *
1313 * Context: May be called in any context, as long as you know that
1314 * you have a refcount on the folio. If you do not already have one,
1315 * folio_try_get() may be the right interface for you to use.
1316 */
1317static inline void folio_get(struct folio *folio)
1318{
1319 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1320 folio_ref_inc(folio);
1321}
1322
1323static inline void get_page(struct page *page)
1324{
1325 struct folio *folio = page_folio(page);
1326 if (WARN_ON_ONCE(folio_test_slab(folio)))
1327 return;
1328 folio_get(folio);
1329}
1330
1331static inline __must_check bool try_get_page(struct page *page)
1332{
1333 page = compound_head(page);
1334 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1335 return false;
1336 page_ref_inc(page);
1337 return true;
1338}
1339
1340/**
1341 * folio_put - Decrement the reference count on a folio.
1342 * @folio: The folio.
1343 *
1344 * If the folio's reference count reaches zero, the memory will be
1345 * released back to the page allocator and may be used by another
1346 * allocation immediately. Do not access the memory or the struct folio
1347 * after calling folio_put() unless you can be sure that it wasn't the
1348 * last reference.
1349 *
1350 * Context: May be called in process or interrupt context, but not in NMI
1351 * context. May be called while holding a spinlock.
1352 */
1353static inline void folio_put(struct folio *folio)
1354{
1355 if (folio_put_testzero(folio))
1356 __folio_put(folio);
1357}
1358
1359/**
1360 * folio_put_refs - Reduce the reference count on a folio.
1361 * @folio: The folio.
1362 * @refs: The amount to subtract from the folio's reference count.
1363 *
1364 * If the folio's reference count reaches zero, the memory will be
1365 * released back to the page allocator and may be used by another
1366 * allocation immediately. Do not access the memory or the struct folio
1367 * after calling folio_put_refs() unless you can be sure that these weren't
1368 * the last references.
1369 *
1370 * Context: May be called in process or interrupt context, but not in NMI
1371 * context. May be called while holding a spinlock.
1372 */
1373static inline void folio_put_refs(struct folio *folio, int refs)
1374{
1375 if (folio_ref_sub_and_test(folio, refs))
1376 __folio_put(folio);
1377}
1378
1379void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1380
1381/*
1382 * union release_pages_arg - an array of pages or folios
1383 *
1384 * release_pages() releases a simple array of multiple pages, and
1385 * accepts various different forms of said page array: either
1386 * a regular old boring array of pages, an array of folios, or
1387 * an array of encoded page pointers.
1388 *
1389 * The transparent union syntax for this kind of "any of these
1390 * argument types" is all kinds of ugly, so look away.
1391 */
1392typedef union {
1393 struct page **pages;
1394 struct folio **folios;
1395 struct encoded_page **encoded_pages;
1396} release_pages_arg __attribute__ ((__transparent_union__));
1397
1398void release_pages(release_pages_arg, int nr);
1399
1400/**
1401 * folios_put - Decrement the reference count on an array of folios.
1402 * @folios: The folios.
1403 *
1404 * Like folio_put(), but for a batch of folios. This is more efficient
1405 * than writing the loop yourself as it will optimise the locks which need
1406 * to be taken if the folios are freed. The folios batch is returned
1407 * empty and ready to be reused for another batch; there is no need to
1408 * reinitialise it.
1409 *
1410 * Context: May be called in process or interrupt context, but not in NMI
1411 * context. May be called while holding a spinlock.
1412 */
1413static inline void folios_put(struct folio_batch *folios)
1414{
1415 folios_put_refs(folios, NULL);
1416}
1417
1418static inline void put_page(struct page *page)
1419{
1420 struct folio *folio = page_folio(page);
1421
1422 if (folio_test_slab(folio))
1423 return;
1424
1425 folio_put(folio);
1426}
1427
1428/*
1429 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1430 * the page's refcount so that two separate items are tracked: the original page
1431 * reference count, and also a new count of how many pin_user_pages() calls were
1432 * made against the page. ("gup-pinned" is another term for the latter).
1433 *
1434 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1435 * distinct from normal pages. As such, the unpin_user_page() call (and its
1436 * variants) must be used in order to release gup-pinned pages.
1437 *
1438 * Choice of value:
1439 *
1440 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1441 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1442 * simpler, due to the fact that adding an even power of two to the page
1443 * refcount has the effect of using only the upper N bits, for the code that
1444 * counts up using the bias value. This means that the lower bits are left for
1445 * the exclusive use of the original code that increments and decrements by one
1446 * (or at least, by much smaller values than the bias value).
1447 *
1448 * Of course, once the lower bits overflow into the upper bits (and this is
1449 * OK, because subtraction recovers the original values), then visual inspection
1450 * no longer suffices to directly view the separate counts. However, for normal
1451 * applications that don't have huge page reference counts, this won't be an
1452 * issue.
1453 *
1454 * Locking: the lockless algorithm described in folio_try_get_rcu()
1455 * provides safe operation for get_user_pages(), folio_mkclean() and
1456 * other calls that race to set up page table entries.
1457 */
1458#define GUP_PIN_COUNTING_BIAS (1U << 10)
1459
1460void unpin_user_page(struct page *page);
1461void unpin_folio(struct folio *folio);
1462void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1463 bool make_dirty);
1464void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1465 bool make_dirty);
1466void unpin_user_pages(struct page **pages, unsigned long npages);
1467void unpin_user_folio(struct folio *folio, unsigned long npages);
1468void unpin_folios(struct folio **folios, unsigned long nfolios);
1469
1470static inline bool is_cow_mapping(vm_flags_t flags)
1471{
1472 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1473}
1474
1475#ifndef CONFIG_MMU
1476static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1477{
1478 /*
1479 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1480 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1481 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1482 * underlying memory if ptrace is active, so this is only possible if
1483 * ptrace does not apply. Note that there is no mprotect() to upgrade
1484 * write permissions later.
1485 */
1486 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1487}
1488#endif
1489
1490#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1491#define SECTION_IN_PAGE_FLAGS
1492#endif
1493
1494/*
1495 * The identification function is mainly used by the buddy allocator for
1496 * determining if two pages could be buddies. We are not really identifying
1497 * the zone since we could be using the section number id if we do not have
1498 * node id available in page flags.
1499 * We only guarantee that it will return the same value for two combinable
1500 * pages in a zone.
1501 */
1502static inline int page_zone_id(struct page *page)
1503{
1504 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1505}
1506
1507#ifdef NODE_NOT_IN_PAGE_FLAGS
1508int page_to_nid(const struct page *page);
1509#else
1510static inline int page_to_nid(const struct page *page)
1511{
1512 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1513}
1514#endif
1515
1516static inline int folio_nid(const struct folio *folio)
1517{
1518 return page_to_nid(&folio->page);
1519}
1520
1521#ifdef CONFIG_NUMA_BALANCING
1522/* page access time bits needs to hold at least 4 seconds */
1523#define PAGE_ACCESS_TIME_MIN_BITS 12
1524#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1525#define PAGE_ACCESS_TIME_BUCKETS \
1526 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1527#else
1528#define PAGE_ACCESS_TIME_BUCKETS 0
1529#endif
1530
1531#define PAGE_ACCESS_TIME_MASK \
1532 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1533
1534static inline int cpu_pid_to_cpupid(int cpu, int pid)
1535{
1536 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1537}
1538
1539static inline int cpupid_to_pid(int cpupid)
1540{
1541 return cpupid & LAST__PID_MASK;
1542}
1543
1544static inline int cpupid_to_cpu(int cpupid)
1545{
1546 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1547}
1548
1549static inline int cpupid_to_nid(int cpupid)
1550{
1551 return cpu_to_node(cpupid_to_cpu(cpupid));
1552}
1553
1554static inline bool cpupid_pid_unset(int cpupid)
1555{
1556 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1557}
1558
1559static inline bool cpupid_cpu_unset(int cpupid)
1560{
1561 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1562}
1563
1564static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1565{
1566 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1567}
1568
1569#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1570#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1571static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1572{
1573 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1574}
1575
1576static inline int folio_last_cpupid(struct folio *folio)
1577{
1578 return folio->_last_cpupid;
1579}
1580static inline void page_cpupid_reset_last(struct page *page)
1581{
1582 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1583}
1584#else
1585static inline int folio_last_cpupid(struct folio *folio)
1586{
1587 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1588}
1589
1590int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1591
1592static inline void page_cpupid_reset_last(struct page *page)
1593{
1594 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1595}
1596#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1597
1598static inline int folio_xchg_access_time(struct folio *folio, int time)
1599{
1600 int last_time;
1601
1602 last_time = folio_xchg_last_cpupid(folio,
1603 time >> PAGE_ACCESS_TIME_BUCKETS);
1604 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1605}
1606
1607static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1608{
1609 unsigned int pid_bit;
1610
1611 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1612 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1613 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1614 }
1615}
1616
1617bool folio_use_access_time(struct folio *folio);
1618#else /* !CONFIG_NUMA_BALANCING */
1619static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1620{
1621 return folio_nid(folio); /* XXX */
1622}
1623
1624static inline int folio_xchg_access_time(struct folio *folio, int time)
1625{
1626 return 0;
1627}
1628
1629static inline int folio_last_cpupid(struct folio *folio)
1630{
1631 return folio_nid(folio); /* XXX */
1632}
1633
1634static inline int cpupid_to_nid(int cpupid)
1635{
1636 return -1;
1637}
1638
1639static inline int cpupid_to_pid(int cpupid)
1640{
1641 return -1;
1642}
1643
1644static inline int cpupid_to_cpu(int cpupid)
1645{
1646 return -1;
1647}
1648
1649static inline int cpu_pid_to_cpupid(int nid, int pid)
1650{
1651 return -1;
1652}
1653
1654static inline bool cpupid_pid_unset(int cpupid)
1655{
1656 return true;
1657}
1658
1659static inline void page_cpupid_reset_last(struct page *page)
1660{
1661}
1662
1663static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1664{
1665 return false;
1666}
1667
1668static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1669{
1670}
1671static inline bool folio_use_access_time(struct folio *folio)
1672{
1673 return false;
1674}
1675#endif /* CONFIG_NUMA_BALANCING */
1676
1677#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1678
1679/*
1680 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1681 * setting tags for all pages to native kernel tag value 0xff, as the default
1682 * value 0x00 maps to 0xff.
1683 */
1684
1685static inline u8 page_kasan_tag(const struct page *page)
1686{
1687 u8 tag = KASAN_TAG_KERNEL;
1688
1689 if (kasan_enabled()) {
1690 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1691 tag ^= 0xff;
1692 }
1693
1694 return tag;
1695}
1696
1697static inline void page_kasan_tag_set(struct page *page, u8 tag)
1698{
1699 unsigned long old_flags, flags;
1700
1701 if (!kasan_enabled())
1702 return;
1703
1704 tag ^= 0xff;
1705 old_flags = READ_ONCE(page->flags);
1706 do {
1707 flags = old_flags;
1708 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1709 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1710 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1711}
1712
1713static inline void page_kasan_tag_reset(struct page *page)
1714{
1715 if (kasan_enabled())
1716 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1717}
1718
1719#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1720
1721static inline u8 page_kasan_tag(const struct page *page)
1722{
1723 return 0xff;
1724}
1725
1726static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1727static inline void page_kasan_tag_reset(struct page *page) { }
1728
1729#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1730
1731static inline struct zone *page_zone(const struct page *page)
1732{
1733 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1734}
1735
1736static inline pg_data_t *page_pgdat(const struct page *page)
1737{
1738 return NODE_DATA(page_to_nid(page));
1739}
1740
1741static inline struct zone *folio_zone(const struct folio *folio)
1742{
1743 return page_zone(&folio->page);
1744}
1745
1746static inline pg_data_t *folio_pgdat(const struct folio *folio)
1747{
1748 return page_pgdat(&folio->page);
1749}
1750
1751#ifdef SECTION_IN_PAGE_FLAGS
1752static inline void set_page_section(struct page *page, unsigned long section)
1753{
1754 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1755 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1756}
1757
1758static inline unsigned long page_to_section(const struct page *page)
1759{
1760 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1761}
1762#endif
1763
1764/**
1765 * folio_pfn - Return the Page Frame Number of a folio.
1766 * @folio: The folio.
1767 *
1768 * A folio may contain multiple pages. The pages have consecutive
1769 * Page Frame Numbers.
1770 *
1771 * Return: The Page Frame Number of the first page in the folio.
1772 */
1773static inline unsigned long folio_pfn(const struct folio *folio)
1774{
1775 return page_to_pfn(&folio->page);
1776}
1777
1778static inline struct folio *pfn_folio(unsigned long pfn)
1779{
1780 return page_folio(pfn_to_page(pfn));
1781}
1782
1783#ifdef CONFIG_MMU
1784static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1785{
1786 return pfn_pte(page_to_pfn(page), pgprot);
1787}
1788
1789/**
1790 * folio_mk_pte - Create a PTE for this folio
1791 * @folio: The folio to create a PTE for
1792 * @pgprot: The page protection bits to use
1793 *
1794 * Create a page table entry for the first page of this folio.
1795 * This is suitable for passing to set_ptes().
1796 *
1797 * Return: A page table entry suitable for mapping this folio.
1798 */
1799static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1800{
1801 return pfn_pte(folio_pfn(folio), pgprot);
1802}
1803
1804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1805/**
1806 * folio_mk_pmd - Create a PMD for this folio
1807 * @folio: The folio to create a PMD for
1808 * @pgprot: The page protection bits to use
1809 *
1810 * Create a page table entry for the first page of this folio.
1811 * This is suitable for passing to set_pmd_at().
1812 *
1813 * Return: A page table entry suitable for mapping this folio.
1814 */
1815static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1816{
1817 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1818}
1819#endif
1820#endif /* CONFIG_MMU */
1821
1822static inline bool folio_has_pincount(const struct folio *folio)
1823{
1824 if (IS_ENABLED(CONFIG_64BIT))
1825 return folio_test_large(folio);
1826 return folio_order(folio) > 1;
1827}
1828
1829/**
1830 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1831 * @folio: The folio.
1832 *
1833 * This function checks if a folio has been pinned via a call to
1834 * a function in the pin_user_pages() family.
1835 *
1836 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1837 * because it means "definitely not pinned for DMA", but true means "probably
1838 * pinned for DMA, but possibly a false positive due to having at least
1839 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1840 *
1841 * False positives are OK, because: a) it's unlikely for a folio to
1842 * get that many refcounts, and b) all the callers of this routine are
1843 * expected to be able to deal gracefully with a false positive.
1844 *
1845 * For most large folios, the result will be exactly correct. That's because
1846 * we have more tracking data available: the _pincount field is used
1847 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1848 *
1849 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1850 *
1851 * Return: True, if it is likely that the folio has been "dma-pinned".
1852 * False, if the folio is definitely not dma-pinned.
1853 */
1854static inline bool folio_maybe_dma_pinned(struct folio *folio)
1855{
1856 if (folio_has_pincount(folio))
1857 return atomic_read(&folio->_pincount) > 0;
1858
1859 /*
1860 * folio_ref_count() is signed. If that refcount overflows, then
1861 * folio_ref_count() returns a negative value, and callers will avoid
1862 * further incrementing the refcount.
1863 *
1864 * Here, for that overflow case, use the sign bit to count a little
1865 * bit higher via unsigned math, and thus still get an accurate result.
1866 */
1867 return ((unsigned int)folio_ref_count(folio)) >=
1868 GUP_PIN_COUNTING_BIAS;
1869}
1870
1871/*
1872 * This should most likely only be called during fork() to see whether we
1873 * should break the cow immediately for an anon page on the src mm.
1874 *
1875 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1876 */
1877static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1878 struct folio *folio)
1879{
1880 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1881
1882 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1883 return false;
1884
1885 return folio_maybe_dma_pinned(folio);
1886}
1887
1888/**
1889 * is_zero_page - Query if a page is a zero page
1890 * @page: The page to query
1891 *
1892 * This returns true if @page is one of the permanent zero pages.
1893 */
1894static inline bool is_zero_page(const struct page *page)
1895{
1896 return is_zero_pfn(page_to_pfn(page));
1897}
1898
1899/**
1900 * is_zero_folio - Query if a folio is a zero page
1901 * @folio: The folio to query
1902 *
1903 * This returns true if @folio is one of the permanent zero pages.
1904 */
1905static inline bool is_zero_folio(const struct folio *folio)
1906{
1907 return is_zero_page(&folio->page);
1908}
1909
1910/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1911#ifdef CONFIG_MIGRATION
1912static inline bool folio_is_longterm_pinnable(struct folio *folio)
1913{
1914#ifdef CONFIG_CMA
1915 int mt = folio_migratetype(folio);
1916
1917 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1918 return false;
1919#endif
1920 /* The zero page can be "pinned" but gets special handling. */
1921 if (is_zero_folio(folio))
1922 return true;
1923
1924 /* Coherent device memory must always allow eviction. */
1925 if (folio_is_device_coherent(folio))
1926 return false;
1927
1928 /*
1929 * Filesystems can only tolerate transient delays to truncate and
1930 * hole-punch operations
1931 */
1932 if (folio_is_fsdax(folio))
1933 return false;
1934
1935 /* Otherwise, non-movable zone folios can be pinned. */
1936 return !folio_is_zone_movable(folio);
1937
1938}
1939#else
1940static inline bool folio_is_longterm_pinnable(struct folio *folio)
1941{
1942 return true;
1943}
1944#endif
1945
1946static inline void set_page_zone(struct page *page, enum zone_type zone)
1947{
1948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1950}
1951
1952static inline void set_page_node(struct page *page, unsigned long node)
1953{
1954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1956}
1957
1958static inline void set_page_links(struct page *page, enum zone_type zone,
1959 unsigned long node, unsigned long pfn)
1960{
1961 set_page_zone(page, zone);
1962 set_page_node(page, node);
1963#ifdef SECTION_IN_PAGE_FLAGS
1964 set_page_section(page, pfn_to_section_nr(pfn));
1965#endif
1966}
1967
1968/**
1969 * folio_nr_pages - The number of pages in the folio.
1970 * @folio: The folio.
1971 *
1972 * Return: A positive power of two.
1973 */
1974static inline long folio_nr_pages(const struct folio *folio)
1975{
1976 if (!folio_test_large(folio))
1977 return 1;
1978 return folio_large_nr_pages(folio);
1979}
1980
1981/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
1982#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1983#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
1984#else
1985#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
1986#endif
1987
1988/*
1989 * compound_nr() returns the number of pages in this potentially compound
1990 * page. compound_nr() can be called on a tail page, and is defined to
1991 * return 1 in that case.
1992 */
1993static inline long compound_nr(struct page *page)
1994{
1995 struct folio *folio = (struct folio *)page;
1996
1997 if (!test_bit(PG_head, &folio->flags))
1998 return 1;
1999 return folio_large_nr_pages(folio);
2000}
2001
2002/**
2003 * folio_next - Move to the next physical folio.
2004 * @folio: The folio we're currently operating on.
2005 *
2006 * If you have physically contiguous memory which may span more than
2007 * one folio (eg a &struct bio_vec), use this function to move from one
2008 * folio to the next. Do not use it if the memory is only virtually
2009 * contiguous as the folios are almost certainly not adjacent to each
2010 * other. This is the folio equivalent to writing ``page++``.
2011 *
2012 * Context: We assume that the folios are refcounted and/or locked at a
2013 * higher level and do not adjust the reference counts.
2014 * Return: The next struct folio.
2015 */
2016static inline struct folio *folio_next(struct folio *folio)
2017{
2018 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2019}
2020
2021/**
2022 * folio_shift - The size of the memory described by this folio.
2023 * @folio: The folio.
2024 *
2025 * A folio represents a number of bytes which is a power-of-two in size.
2026 * This function tells you which power-of-two the folio is. See also
2027 * folio_size() and folio_order().
2028 *
2029 * Context: The caller should have a reference on the folio to prevent
2030 * it from being split. It is not necessary for the folio to be locked.
2031 * Return: The base-2 logarithm of the size of this folio.
2032 */
2033static inline unsigned int folio_shift(const struct folio *folio)
2034{
2035 return PAGE_SHIFT + folio_order(folio);
2036}
2037
2038/**
2039 * folio_size - The number of bytes in a folio.
2040 * @folio: The folio.
2041 *
2042 * Context: The caller should have a reference on the folio to prevent
2043 * it from being split. It is not necessary for the folio to be locked.
2044 * Return: The number of bytes in this folio.
2045 */
2046static inline size_t folio_size(const struct folio *folio)
2047{
2048 return PAGE_SIZE << folio_order(folio);
2049}
2050
2051/**
2052 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2053 * tables of more than one MM
2054 * @folio: The folio.
2055 *
2056 * This function checks if the folio maybe currently mapped into more than one
2057 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2058 * MM ("mapped exclusively").
2059 *
2060 * For KSM folios, this function also returns "mapped shared" when a folio is
2061 * mapped multiple times into the same MM, because the individual page mappings
2062 * are independent.
2063 *
2064 * For small anonymous folios and anonymous hugetlb folios, the return
2065 * value will be exactly correct: non-KSM folios can only be mapped at most once
2066 * into an MM, and they cannot be partially mapped. KSM folios are
2067 * considered shared even if mapped multiple times into the same MM.
2068 *
2069 * For other folios, the result can be fuzzy:
2070 * #. For partially-mappable large folios (THP), the return value can wrongly
2071 * indicate "mapped shared" (false positive) if a folio was mapped by
2072 * more than two MMs at one point in time.
2073 * #. For pagecache folios (including hugetlb), the return value can wrongly
2074 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2075 * cover the same file range.
2076 *
2077 * Further, this function only considers current page table mappings that
2078 * are tracked using the folio mapcount(s).
2079 *
2080 * This function does not consider:
2081 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2082 * pagecache, temporary unmapping for migration).
2083 * #. If the folio is mapped differently (VM_PFNMAP).
2084 * #. If hugetlb page table sharing applies. Callers might want to check
2085 * hugetlb_pmd_shared().
2086 *
2087 * Return: Whether the folio is estimated to be mapped into more than one MM.
2088 */
2089static inline bool folio_maybe_mapped_shared(struct folio *folio)
2090{
2091 int mapcount = folio_mapcount(folio);
2092
2093 /* Only partially-mappable folios require more care. */
2094 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2095 return mapcount > 1;
2096
2097 /*
2098 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2099 * simply assume "mapped shared", nobody should really care
2100 * about this for arbitrary kernel allocations.
2101 */
2102 if (!IS_ENABLED(CONFIG_MM_ID))
2103 return true;
2104
2105 /*
2106 * A single mapping implies "mapped exclusively", even if the
2107 * folio flag says something different: it's easier to handle this
2108 * case here instead of on the RMAP hot path.
2109 */
2110 if (mapcount <= 1)
2111 return false;
2112 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2113}
2114
2115/**
2116 * folio_expected_ref_count - calculate the expected folio refcount
2117 * @folio: the folio
2118 *
2119 * Calculate the expected folio refcount, taking references from the pagecache,
2120 * swapcache, PG_private and page table mappings into account. Useful in
2121 * combination with folio_ref_count() to detect unexpected references (e.g.,
2122 * GUP or other temporary references).
2123 *
2124 * Does currently not consider references from the LRU cache. If the folio
2125 * was isolated from the LRU (which is the case during migration or split),
2126 * the LRU cache does not apply.
2127 *
2128 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2129 * locked will return a stable result.
2130 *
2131 * Calling this function on a mapped folio will not result in a stable result,
2132 * because nothing stops additional page table mappings from coming (e.g.,
2133 * fork()) or going (e.g., munmap()).
2134 *
2135 * Calling this function without the folio lock will also not result in a
2136 * stable result: for example, the folio might get dropped from the swapcache
2137 * concurrently.
2138 *
2139 * However, even when called without the folio lock or on a mapped folio,
2140 * this function can be used to detect unexpected references early (for example,
2141 * if it makes sense to even lock the folio and unmap it).
2142 *
2143 * The caller must add any reference (e.g., from folio_try_get()) it might be
2144 * holding itself to the result.
2145 *
2146 * Returns the expected folio refcount.
2147 */
2148static inline int folio_expected_ref_count(const struct folio *folio)
2149{
2150 const int order = folio_order(folio);
2151 int ref_count = 0;
2152
2153 if (WARN_ON_ONCE(folio_test_slab(folio)))
2154 return 0;
2155
2156 if (folio_test_anon(folio)) {
2157 /* One reference per page from the swapcache. */
2158 ref_count += folio_test_swapcache(folio) << order;
2159 } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) {
2160 /* One reference per page from the pagecache. */
2161 ref_count += !!folio->mapping << order;
2162 /* One reference from PG_private. */
2163 ref_count += folio_test_private(folio);
2164 }
2165
2166 /* One reference per page table mapping. */
2167 return ref_count + folio_mapcount(folio);
2168}
2169
2170#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2171static inline int arch_make_folio_accessible(struct folio *folio)
2172{
2173 return 0;
2174}
2175#endif
2176
2177/*
2178 * Some inline functions in vmstat.h depend on page_zone()
2179 */
2180#include <linux/vmstat.h>
2181
2182#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2183#define HASHED_PAGE_VIRTUAL
2184#endif
2185
2186#if defined(WANT_PAGE_VIRTUAL)
2187static inline void *page_address(const struct page *page)
2188{
2189 return page->virtual;
2190}
2191static inline void set_page_address(struct page *page, void *address)
2192{
2193 page->virtual = address;
2194}
2195#define page_address_init() do { } while(0)
2196#endif
2197
2198#if defined(HASHED_PAGE_VIRTUAL)
2199void *page_address(const struct page *page);
2200void set_page_address(struct page *page, void *virtual);
2201void page_address_init(void);
2202#endif
2203
2204static __always_inline void *lowmem_page_address(const struct page *page)
2205{
2206 return page_to_virt(page);
2207}
2208
2209#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2210#define page_address(page) lowmem_page_address(page)
2211#define set_page_address(page, address) do { } while(0)
2212#define page_address_init() do { } while(0)
2213#endif
2214
2215static inline void *folio_address(const struct folio *folio)
2216{
2217 return page_address(&folio->page);
2218}
2219
2220/*
2221 * Return true only if the page has been allocated with
2222 * ALLOC_NO_WATERMARKS and the low watermark was not
2223 * met implying that the system is under some pressure.
2224 */
2225static inline bool page_is_pfmemalloc(const struct page *page)
2226{
2227 /*
2228 * lru.next has bit 1 set if the page is allocated from the
2229 * pfmemalloc reserves. Callers may simply overwrite it if
2230 * they do not need to preserve that information.
2231 */
2232 return (uintptr_t)page->lru.next & BIT(1);
2233}
2234
2235/*
2236 * Return true only if the folio has been allocated with
2237 * ALLOC_NO_WATERMARKS and the low watermark was not
2238 * met implying that the system is under some pressure.
2239 */
2240static inline bool folio_is_pfmemalloc(const struct folio *folio)
2241{
2242 /*
2243 * lru.next has bit 1 set if the page is allocated from the
2244 * pfmemalloc reserves. Callers may simply overwrite it if
2245 * they do not need to preserve that information.
2246 */
2247 return (uintptr_t)folio->lru.next & BIT(1);
2248}
2249
2250/*
2251 * Only to be called by the page allocator on a freshly allocated
2252 * page.
2253 */
2254static inline void set_page_pfmemalloc(struct page *page)
2255{
2256 page->lru.next = (void *)BIT(1);
2257}
2258
2259static inline void clear_page_pfmemalloc(struct page *page)
2260{
2261 page->lru.next = NULL;
2262}
2263
2264/*
2265 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2266 */
2267extern void pagefault_out_of_memory(void);
2268
2269#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2270#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2271
2272/*
2273 * Parameter block passed down to zap_pte_range in exceptional cases.
2274 */
2275struct zap_details {
2276 struct folio *single_folio; /* Locked folio to be unmapped */
2277 bool even_cows; /* Zap COWed private pages too? */
2278 bool reclaim_pt; /* Need reclaim page tables? */
2279 zap_flags_t zap_flags; /* Extra flags for zapping */
2280};
2281
2282/*
2283 * Whether to drop the pte markers, for example, the uffd-wp information for
2284 * file-backed memory. This should only be specified when we will completely
2285 * drop the page in the mm, either by truncation or unmapping of the vma. By
2286 * default, the flag is not set.
2287 */
2288#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2289/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2290#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2291
2292#ifdef CONFIG_SCHED_MM_CID
2293void sched_mm_cid_before_execve(struct task_struct *t);
2294void sched_mm_cid_after_execve(struct task_struct *t);
2295void sched_mm_cid_fork(struct task_struct *t);
2296void sched_mm_cid_exit_signals(struct task_struct *t);
2297static inline int task_mm_cid(struct task_struct *t)
2298{
2299 return t->mm_cid;
2300}
2301#else
2302static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2303static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2304static inline void sched_mm_cid_fork(struct task_struct *t) { }
2305static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2306static inline int task_mm_cid(struct task_struct *t)
2307{
2308 /*
2309 * Use the processor id as a fall-back when the mm cid feature is
2310 * disabled. This provides functional per-cpu data structure accesses
2311 * in user-space, althrough it won't provide the memory usage benefits.
2312 */
2313 return raw_smp_processor_id();
2314}
2315#endif
2316
2317#ifdef CONFIG_MMU
2318extern bool can_do_mlock(void);
2319#else
2320static inline bool can_do_mlock(void) { return false; }
2321#endif
2322extern int user_shm_lock(size_t, struct ucounts *);
2323extern void user_shm_unlock(size_t, struct ucounts *);
2324
2325struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2326 pte_t pte);
2327struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2328 pte_t pte);
2329struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2330 unsigned long addr, pmd_t pmd);
2331struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2332 pmd_t pmd);
2333
2334void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2335 unsigned long size);
2336void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2337 unsigned long size, struct zap_details *details);
2338static inline void zap_vma_pages(struct vm_area_struct *vma)
2339{
2340 zap_page_range_single(vma, vma->vm_start,
2341 vma->vm_end - vma->vm_start, NULL);
2342}
2343void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2344 struct vm_area_struct *start_vma, unsigned long start,
2345 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2346
2347struct mmu_notifier_range;
2348
2349void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2350 unsigned long end, unsigned long floor, unsigned long ceiling);
2351int
2352copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2353int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2354 void *buf, int len, int write);
2355
2356struct follow_pfnmap_args {
2357 /**
2358 * Inputs:
2359 * @vma: Pointer to @vm_area_struct struct
2360 * @address: the virtual address to walk
2361 */
2362 struct vm_area_struct *vma;
2363 unsigned long address;
2364 /**
2365 * Internals:
2366 *
2367 * The caller shouldn't touch any of these.
2368 */
2369 spinlock_t *lock;
2370 pte_t *ptep;
2371 /**
2372 * Outputs:
2373 *
2374 * @pfn: the PFN of the address
2375 * @addr_mask: address mask covering pfn
2376 * @pgprot: the pgprot_t of the mapping
2377 * @writable: whether the mapping is writable
2378 * @special: whether the mapping is a special mapping (real PFN maps)
2379 */
2380 unsigned long pfn;
2381 unsigned long addr_mask;
2382 pgprot_t pgprot;
2383 bool writable;
2384 bool special;
2385};
2386int follow_pfnmap_start(struct follow_pfnmap_args *args);
2387void follow_pfnmap_end(struct follow_pfnmap_args *args);
2388
2389extern void truncate_pagecache(struct inode *inode, loff_t new);
2390extern void truncate_setsize(struct inode *inode, loff_t newsize);
2391void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2392void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2393int generic_error_remove_folio(struct address_space *mapping,
2394 struct folio *folio);
2395
2396struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2397 unsigned long address, struct pt_regs *regs);
2398
2399#ifdef CONFIG_MMU
2400extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2401 unsigned long address, unsigned int flags,
2402 struct pt_regs *regs);
2403extern int fixup_user_fault(struct mm_struct *mm,
2404 unsigned long address, unsigned int fault_flags,
2405 bool *unlocked);
2406void unmap_mapping_pages(struct address_space *mapping,
2407 pgoff_t start, pgoff_t nr, bool even_cows);
2408void unmap_mapping_range(struct address_space *mapping,
2409 loff_t const holebegin, loff_t const holelen, int even_cows);
2410#else
2411static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2412 unsigned long address, unsigned int flags,
2413 struct pt_regs *regs)
2414{
2415 /* should never happen if there's no MMU */
2416 BUG();
2417 return VM_FAULT_SIGBUS;
2418}
2419static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2420 unsigned int fault_flags, bool *unlocked)
2421{
2422 /* should never happen if there's no MMU */
2423 BUG();
2424 return -EFAULT;
2425}
2426static inline void unmap_mapping_pages(struct address_space *mapping,
2427 pgoff_t start, pgoff_t nr, bool even_cows) { }
2428static inline void unmap_mapping_range(struct address_space *mapping,
2429 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2430#endif
2431
2432static inline void unmap_shared_mapping_range(struct address_space *mapping,
2433 loff_t const holebegin, loff_t const holelen)
2434{
2435 unmap_mapping_range(mapping, holebegin, holelen, 0);
2436}
2437
2438static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2439 unsigned long addr);
2440
2441extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2442 void *buf, int len, unsigned int gup_flags);
2443extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2444 void *buf, int len, unsigned int gup_flags);
2445
2446#ifdef CONFIG_BPF_SYSCALL
2447extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2448 void *buf, int len, unsigned int gup_flags);
2449#endif
2450
2451long get_user_pages_remote(struct mm_struct *mm,
2452 unsigned long start, unsigned long nr_pages,
2453 unsigned int gup_flags, struct page **pages,
2454 int *locked);
2455long pin_user_pages_remote(struct mm_struct *mm,
2456 unsigned long start, unsigned long nr_pages,
2457 unsigned int gup_flags, struct page **pages,
2458 int *locked);
2459
2460/*
2461 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2462 */
2463static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2464 unsigned long addr,
2465 int gup_flags,
2466 struct vm_area_struct **vmap)
2467{
2468 struct page *page;
2469 struct vm_area_struct *vma;
2470 int got;
2471
2472 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2473 return ERR_PTR(-EINVAL);
2474
2475 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2476
2477 if (got < 0)
2478 return ERR_PTR(got);
2479
2480 vma = vma_lookup(mm, addr);
2481 if (WARN_ON_ONCE(!vma)) {
2482 put_page(page);
2483 return ERR_PTR(-EINVAL);
2484 }
2485
2486 *vmap = vma;
2487 return page;
2488}
2489
2490long get_user_pages(unsigned long start, unsigned long nr_pages,
2491 unsigned int gup_flags, struct page **pages);
2492long pin_user_pages(unsigned long start, unsigned long nr_pages,
2493 unsigned int gup_flags, struct page **pages);
2494long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2495 struct page **pages, unsigned int gup_flags);
2496long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2497 struct page **pages, unsigned int gup_flags);
2498long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2499 struct folio **folios, unsigned int max_folios,
2500 pgoff_t *offset);
2501int folio_add_pins(struct folio *folio, unsigned int pins);
2502
2503int get_user_pages_fast(unsigned long start, int nr_pages,
2504 unsigned int gup_flags, struct page **pages);
2505int pin_user_pages_fast(unsigned long start, int nr_pages,
2506 unsigned int gup_flags, struct page **pages);
2507void folio_add_pin(struct folio *folio);
2508
2509int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2510int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2511 struct task_struct *task, bool bypass_rlim);
2512
2513struct kvec;
2514struct page *get_dump_page(unsigned long addr, int *locked);
2515
2516bool folio_mark_dirty(struct folio *folio);
2517bool folio_mark_dirty_lock(struct folio *folio);
2518bool set_page_dirty(struct page *page);
2519int set_page_dirty_lock(struct page *page);
2520
2521int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2522
2523/*
2524 * Flags used by change_protection(). For now we make it a bitmap so
2525 * that we can pass in multiple flags just like parameters. However
2526 * for now all the callers are only use one of the flags at the same
2527 * time.
2528 */
2529/*
2530 * Whether we should manually check if we can map individual PTEs writable,
2531 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2532 * PTEs automatically in a writable mapping.
2533 */
2534#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2535/* Whether this protection change is for NUMA hints */
2536#define MM_CP_PROT_NUMA (1UL << 1)
2537/* Whether this change is for write protecting */
2538#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2539#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2540#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2541 MM_CP_UFFD_WP_RESOLVE)
2542
2543bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2544 pte_t pte);
2545extern long change_protection(struct mmu_gather *tlb,
2546 struct vm_area_struct *vma, unsigned long start,
2547 unsigned long end, unsigned long cp_flags);
2548extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2549 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2550 unsigned long start, unsigned long end, unsigned long newflags);
2551
2552/*
2553 * doesn't attempt to fault and will return short.
2554 */
2555int get_user_pages_fast_only(unsigned long start, int nr_pages,
2556 unsigned int gup_flags, struct page **pages);
2557
2558static inline bool get_user_page_fast_only(unsigned long addr,
2559 unsigned int gup_flags, struct page **pagep)
2560{
2561 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2562}
2563/*
2564 * per-process(per-mm_struct) statistics.
2565 */
2566static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2567{
2568 return percpu_counter_read_positive(&mm->rss_stat[member]);
2569}
2570
2571static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2572{
2573 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2574}
2575
2576void mm_trace_rss_stat(struct mm_struct *mm, int member);
2577
2578static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2579{
2580 percpu_counter_add(&mm->rss_stat[member], value);
2581
2582 mm_trace_rss_stat(mm, member);
2583}
2584
2585static inline void inc_mm_counter(struct mm_struct *mm, int member)
2586{
2587 percpu_counter_inc(&mm->rss_stat[member]);
2588
2589 mm_trace_rss_stat(mm, member);
2590}
2591
2592static inline void dec_mm_counter(struct mm_struct *mm, int member)
2593{
2594 percpu_counter_dec(&mm->rss_stat[member]);
2595
2596 mm_trace_rss_stat(mm, member);
2597}
2598
2599/* Optimized variant when folio is already known not to be anon */
2600static inline int mm_counter_file(struct folio *folio)
2601{
2602 if (folio_test_swapbacked(folio))
2603 return MM_SHMEMPAGES;
2604 return MM_FILEPAGES;
2605}
2606
2607static inline int mm_counter(struct folio *folio)
2608{
2609 if (folio_test_anon(folio))
2610 return MM_ANONPAGES;
2611 return mm_counter_file(folio);
2612}
2613
2614static inline unsigned long get_mm_rss(struct mm_struct *mm)
2615{
2616 return get_mm_counter(mm, MM_FILEPAGES) +
2617 get_mm_counter(mm, MM_ANONPAGES) +
2618 get_mm_counter(mm, MM_SHMEMPAGES);
2619}
2620
2621static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2622{
2623 return max(mm->hiwater_rss, get_mm_rss(mm));
2624}
2625
2626static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2627{
2628 return max(mm->hiwater_vm, mm->total_vm);
2629}
2630
2631static inline void update_hiwater_rss(struct mm_struct *mm)
2632{
2633 unsigned long _rss = get_mm_rss(mm);
2634
2635 if (data_race(mm->hiwater_rss) < _rss)
2636 (mm)->hiwater_rss = _rss;
2637}
2638
2639static inline void update_hiwater_vm(struct mm_struct *mm)
2640{
2641 if (mm->hiwater_vm < mm->total_vm)
2642 mm->hiwater_vm = mm->total_vm;
2643}
2644
2645static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2646{
2647 mm->hiwater_rss = get_mm_rss(mm);
2648}
2649
2650static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2651 struct mm_struct *mm)
2652{
2653 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2654
2655 if (*maxrss < hiwater_rss)
2656 *maxrss = hiwater_rss;
2657}
2658
2659#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2660static inline int pte_special(pte_t pte)
2661{
2662 return 0;
2663}
2664
2665static inline pte_t pte_mkspecial(pte_t pte)
2666{
2667 return pte;
2668}
2669#endif
2670
2671#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2672static inline bool pmd_special(pmd_t pmd)
2673{
2674 return false;
2675}
2676
2677static inline pmd_t pmd_mkspecial(pmd_t pmd)
2678{
2679 return pmd;
2680}
2681#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2682
2683#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2684static inline bool pud_special(pud_t pud)
2685{
2686 return false;
2687}
2688
2689static inline pud_t pud_mkspecial(pud_t pud)
2690{
2691 return pud;
2692}
2693#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2694
2695#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2696static inline int pte_devmap(pte_t pte)
2697{
2698 return 0;
2699}
2700#endif
2701
2702extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2703 spinlock_t **ptl);
2704static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2705 spinlock_t **ptl)
2706{
2707 pte_t *ptep;
2708 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2709 return ptep;
2710}
2711
2712#ifdef __PAGETABLE_P4D_FOLDED
2713static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2714 unsigned long address)
2715{
2716 return 0;
2717}
2718#else
2719int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2720#endif
2721
2722#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2723static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2724 unsigned long address)
2725{
2726 return 0;
2727}
2728static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2729static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2730
2731#else
2732int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2733
2734static inline void mm_inc_nr_puds(struct mm_struct *mm)
2735{
2736 if (mm_pud_folded(mm))
2737 return;
2738 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2739}
2740
2741static inline void mm_dec_nr_puds(struct mm_struct *mm)
2742{
2743 if (mm_pud_folded(mm))
2744 return;
2745 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2746}
2747#endif
2748
2749#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2750static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2751 unsigned long address)
2752{
2753 return 0;
2754}
2755
2756static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2757static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2758
2759#else
2760int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2761
2762static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2763{
2764 if (mm_pmd_folded(mm))
2765 return;
2766 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2767}
2768
2769static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2770{
2771 if (mm_pmd_folded(mm))
2772 return;
2773 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2774}
2775#endif
2776
2777#ifdef CONFIG_MMU
2778static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2779{
2780 atomic_long_set(&mm->pgtables_bytes, 0);
2781}
2782
2783static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2784{
2785 return atomic_long_read(&mm->pgtables_bytes);
2786}
2787
2788static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2789{
2790 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2791}
2792
2793static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2794{
2795 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2796}
2797#else
2798
2799static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2800static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2801{
2802 return 0;
2803}
2804
2805static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2806static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2807#endif
2808
2809int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2810int __pte_alloc_kernel(pmd_t *pmd);
2811
2812#if defined(CONFIG_MMU)
2813
2814static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2815 unsigned long address)
2816{
2817 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2818 NULL : p4d_offset(pgd, address);
2819}
2820
2821static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2822 unsigned long address)
2823{
2824 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2825 NULL : pud_offset(p4d, address);
2826}
2827
2828static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2829{
2830 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2831 NULL: pmd_offset(pud, address);
2832}
2833#endif /* CONFIG_MMU */
2834
2835static inline struct ptdesc *virt_to_ptdesc(const void *x)
2836{
2837 return page_ptdesc(virt_to_page(x));
2838}
2839
2840static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2841{
2842 return page_to_virt(ptdesc_page(pt));
2843}
2844
2845static inline void *ptdesc_address(const struct ptdesc *pt)
2846{
2847 return folio_address(ptdesc_folio(pt));
2848}
2849
2850static inline bool pagetable_is_reserved(struct ptdesc *pt)
2851{
2852 return folio_test_reserved(ptdesc_folio(pt));
2853}
2854
2855/**
2856 * pagetable_alloc - Allocate pagetables
2857 * @gfp: GFP flags
2858 * @order: desired pagetable order
2859 *
2860 * pagetable_alloc allocates memory for page tables as well as a page table
2861 * descriptor to describe that memory.
2862 *
2863 * Return: The ptdesc describing the allocated page tables.
2864 */
2865static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2866{
2867 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2868
2869 return page_ptdesc(page);
2870}
2871#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2872
2873/**
2874 * pagetable_free - Free pagetables
2875 * @pt: The page table descriptor
2876 *
2877 * pagetable_free frees the memory of all page tables described by a page
2878 * table descriptor and the memory for the descriptor itself.
2879 */
2880static inline void pagetable_free(struct ptdesc *pt)
2881{
2882 struct page *page = ptdesc_page(pt);
2883
2884 __free_pages(page, compound_order(page));
2885}
2886
2887#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2888#if ALLOC_SPLIT_PTLOCKS
2889void __init ptlock_cache_init(void);
2890bool ptlock_alloc(struct ptdesc *ptdesc);
2891void ptlock_free(struct ptdesc *ptdesc);
2892
2893static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2894{
2895 return ptdesc->ptl;
2896}
2897#else /* ALLOC_SPLIT_PTLOCKS */
2898static inline void ptlock_cache_init(void)
2899{
2900}
2901
2902static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2903{
2904 return true;
2905}
2906
2907static inline void ptlock_free(struct ptdesc *ptdesc)
2908{
2909}
2910
2911static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2912{
2913 return &ptdesc->ptl;
2914}
2915#endif /* ALLOC_SPLIT_PTLOCKS */
2916
2917static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2918{
2919 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2920}
2921
2922static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2923{
2924 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2925 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2926 return ptlock_ptr(virt_to_ptdesc(pte));
2927}
2928
2929static inline bool ptlock_init(struct ptdesc *ptdesc)
2930{
2931 /*
2932 * prep_new_page() initialize page->private (and therefore page->ptl)
2933 * with 0. Make sure nobody took it in use in between.
2934 *
2935 * It can happen if arch try to use slab for page table allocation:
2936 * slab code uses page->slab_cache, which share storage with page->ptl.
2937 */
2938 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2939 if (!ptlock_alloc(ptdesc))
2940 return false;
2941 spin_lock_init(ptlock_ptr(ptdesc));
2942 return true;
2943}
2944
2945#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2946/*
2947 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2948 */
2949static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2950{
2951 return &mm->page_table_lock;
2952}
2953static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2954{
2955 return &mm->page_table_lock;
2956}
2957static inline void ptlock_cache_init(void) {}
2958static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2959static inline void ptlock_free(struct ptdesc *ptdesc) {}
2960#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2961
2962static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2963{
2964 struct folio *folio = ptdesc_folio(ptdesc);
2965
2966 __folio_set_pgtable(folio);
2967 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2968}
2969
2970static inline void pagetable_dtor(struct ptdesc *ptdesc)
2971{
2972 struct folio *folio = ptdesc_folio(ptdesc);
2973
2974 ptlock_free(ptdesc);
2975 __folio_clear_pgtable(folio);
2976 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2977}
2978
2979static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2980{
2981 pagetable_dtor(ptdesc);
2982 pagetable_free(ptdesc);
2983}
2984
2985static inline bool pagetable_pte_ctor(struct mm_struct *mm,
2986 struct ptdesc *ptdesc)
2987{
2988 if (mm != &init_mm && !ptlock_init(ptdesc))
2989 return false;
2990 __pagetable_ctor(ptdesc);
2991 return true;
2992}
2993
2994pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2995static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
2996 pmd_t *pmdvalp)
2997{
2998 pte_t *pte;
2999
3000 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3001 return pte;
3002}
3003static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3004{
3005 return __pte_offset_map(pmd, addr, NULL);
3006}
3007
3008pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3009 unsigned long addr, spinlock_t **ptlp);
3010static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3011 unsigned long addr, spinlock_t **ptlp)
3012{
3013 pte_t *pte;
3014
3015 __cond_lock(RCU, __cond_lock(*ptlp,
3016 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3017 return pte;
3018}
3019
3020pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3021 unsigned long addr, spinlock_t **ptlp);
3022pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3023 unsigned long addr, pmd_t *pmdvalp,
3024 spinlock_t **ptlp);
3025
3026#define pte_unmap_unlock(pte, ptl) do { \
3027 spin_unlock(ptl); \
3028 pte_unmap(pte); \
3029} while (0)
3030
3031#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3032
3033#define pte_alloc_map(mm, pmd, address) \
3034 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3035
3036#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3037 (pte_alloc(mm, pmd) ? \
3038 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3039
3040#define pte_alloc_kernel(pmd, address) \
3041 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3042 NULL: pte_offset_kernel(pmd, address))
3043
3044#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3045
3046static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3047{
3048 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3049 return virt_to_page((void *)((unsigned long) pmd & mask));
3050}
3051
3052static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3053{
3054 return page_ptdesc(pmd_pgtable_page(pmd));
3055}
3056
3057static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3058{
3059 return ptlock_ptr(pmd_ptdesc(pmd));
3060}
3061
3062static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3063{
3064#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3065 ptdesc->pmd_huge_pte = NULL;
3066#endif
3067 return ptlock_init(ptdesc);
3068}
3069
3070#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3071
3072#else
3073
3074static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3075{
3076 return &mm->page_table_lock;
3077}
3078
3079static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3080
3081#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3082
3083#endif
3084
3085static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3086{
3087 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3088 spin_lock(ptl);
3089 return ptl;
3090}
3091
3092static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3093 struct ptdesc *ptdesc)
3094{
3095 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3096 return false;
3097 ptdesc_pmd_pts_init(ptdesc);
3098 __pagetable_ctor(ptdesc);
3099 return true;
3100}
3101
3102/*
3103 * No scalability reason to split PUD locks yet, but follow the same pattern
3104 * as the PMD locks to make it easier if we decide to. The VM should not be
3105 * considered ready to switch to split PUD locks yet; there may be places
3106 * which need to be converted from page_table_lock.
3107 */
3108static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3109{
3110 return &mm->page_table_lock;
3111}
3112
3113static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3114{
3115 spinlock_t *ptl = pud_lockptr(mm, pud);
3116
3117 spin_lock(ptl);
3118 return ptl;
3119}
3120
3121static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3122{
3123 __pagetable_ctor(ptdesc);
3124}
3125
3126static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3127{
3128 __pagetable_ctor(ptdesc);
3129}
3130
3131static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3132{
3133 __pagetable_ctor(ptdesc);
3134}
3135
3136extern void __init pagecache_init(void);
3137extern void free_initmem(void);
3138
3139/*
3140 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3141 * into the buddy system. The freed pages will be poisoned with pattern
3142 * "poison" if it's within range [0, UCHAR_MAX].
3143 * Return pages freed into the buddy system.
3144 */
3145extern unsigned long free_reserved_area(void *start, void *end,
3146 int poison, const char *s);
3147
3148extern void adjust_managed_page_count(struct page *page, long count);
3149
3150extern void reserve_bootmem_region(phys_addr_t start,
3151 phys_addr_t end, int nid);
3152
3153/* Free the reserved page into the buddy system, so it gets managed. */
3154void free_reserved_page(struct page *page);
3155
3156static inline void mark_page_reserved(struct page *page)
3157{
3158 SetPageReserved(page);
3159 adjust_managed_page_count(page, -1);
3160}
3161
3162static inline void free_reserved_ptdesc(struct ptdesc *pt)
3163{
3164 free_reserved_page(ptdesc_page(pt));
3165}
3166
3167/*
3168 * Default method to free all the __init memory into the buddy system.
3169 * The freed pages will be poisoned with pattern "poison" if it's within
3170 * range [0, UCHAR_MAX].
3171 * Return pages freed into the buddy system.
3172 */
3173static inline unsigned long free_initmem_default(int poison)
3174{
3175 extern char __init_begin[], __init_end[];
3176
3177 return free_reserved_area(&__init_begin, &__init_end,
3178 poison, "unused kernel image (initmem)");
3179}
3180
3181static inline unsigned long get_num_physpages(void)
3182{
3183 int nid;
3184 unsigned long phys_pages = 0;
3185
3186 for_each_online_node(nid)
3187 phys_pages += node_present_pages(nid);
3188
3189 return phys_pages;
3190}
3191
3192/*
3193 * Using memblock node mappings, an architecture may initialise its
3194 * zones, allocate the backing mem_map and account for memory holes in an
3195 * architecture independent manner.
3196 *
3197 * An architecture is expected to register range of page frames backed by
3198 * physical memory with memblock_add[_node]() before calling
3199 * free_area_init() passing in the PFN each zone ends at. At a basic
3200 * usage, an architecture is expected to do something like
3201 *
3202 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3203 * max_highmem_pfn};
3204 * for_each_valid_physical_page_range()
3205 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3206 * free_area_init(max_zone_pfns);
3207 */
3208void free_area_init(unsigned long *max_zone_pfn);
3209unsigned long node_map_pfn_alignment(void);
3210extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3211 unsigned long end_pfn);
3212extern void get_pfn_range_for_nid(unsigned int nid,
3213 unsigned long *start_pfn, unsigned long *end_pfn);
3214
3215#ifndef CONFIG_NUMA
3216static inline int early_pfn_to_nid(unsigned long pfn)
3217{
3218 return 0;
3219}
3220#else
3221/* please see mm/page_alloc.c */
3222extern int __meminit early_pfn_to_nid(unsigned long pfn);
3223#endif
3224
3225extern void mem_init(void);
3226extern void __init mmap_init(void);
3227
3228extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3229static inline void show_mem(void)
3230{
3231 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3232}
3233extern long si_mem_available(void);
3234extern void si_meminfo(struct sysinfo * val);
3235extern void si_meminfo_node(struct sysinfo *val, int nid);
3236
3237extern __printf(3, 4)
3238void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3239
3240extern void setup_per_cpu_pageset(void);
3241
3242/* nommu.c */
3243extern atomic_long_t mmap_pages_allocated;
3244extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3245
3246/* interval_tree.c */
3247void vma_interval_tree_insert(struct vm_area_struct *node,
3248 struct rb_root_cached *root);
3249void vma_interval_tree_insert_after(struct vm_area_struct *node,
3250 struct vm_area_struct *prev,
3251 struct rb_root_cached *root);
3252void vma_interval_tree_remove(struct vm_area_struct *node,
3253 struct rb_root_cached *root);
3254struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3255 unsigned long start, unsigned long last);
3256struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3257 unsigned long start, unsigned long last);
3258
3259#define vma_interval_tree_foreach(vma, root, start, last) \
3260 for (vma = vma_interval_tree_iter_first(root, start, last); \
3261 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3262
3263void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3264 struct rb_root_cached *root);
3265void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3266 struct rb_root_cached *root);
3267struct anon_vma_chain *
3268anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 unsigned long start, unsigned long last);
3270struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3271 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3272#ifdef CONFIG_DEBUG_VM_RB
3273void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3274#endif
3275
3276#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3277 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3278 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3279
3280/* mmap.c */
3281extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3282extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3283extern void exit_mmap(struct mm_struct *);
3284bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3285 unsigned long addr, bool write);
3286
3287static inline int check_data_rlimit(unsigned long rlim,
3288 unsigned long new,
3289 unsigned long start,
3290 unsigned long end_data,
3291 unsigned long start_data)
3292{
3293 if (rlim < RLIM_INFINITY) {
3294 if (((new - start) + (end_data - start_data)) > rlim)
3295 return -ENOSPC;
3296 }
3297
3298 return 0;
3299}
3300
3301extern int mm_take_all_locks(struct mm_struct *mm);
3302extern void mm_drop_all_locks(struct mm_struct *mm);
3303
3304extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3305extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3306extern struct file *get_mm_exe_file(struct mm_struct *mm);
3307extern struct file *get_task_exe_file(struct task_struct *task);
3308
3309extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3310extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3311
3312extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3313 const struct vm_special_mapping *sm);
3314extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3315 unsigned long addr, unsigned long len,
3316 unsigned long flags,
3317 const struct vm_special_mapping *spec);
3318
3319unsigned long randomize_stack_top(unsigned long stack_top);
3320unsigned long randomize_page(unsigned long start, unsigned long range);
3321
3322unsigned long
3323__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3324 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3325
3326static inline unsigned long
3327get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3328 unsigned long pgoff, unsigned long flags)
3329{
3330 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3331}
3332
3333extern unsigned long do_mmap(struct file *file, unsigned long addr,
3334 unsigned long len, unsigned long prot, unsigned long flags,
3335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3336 struct list_head *uf);
3337extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3338 unsigned long start, size_t len, struct list_head *uf,
3339 bool unlock);
3340int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3341 struct mm_struct *mm, unsigned long start,
3342 unsigned long end, struct list_head *uf, bool unlock);
3343extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3344 struct list_head *uf);
3345extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3346
3347#ifdef CONFIG_MMU
3348extern int __mm_populate(unsigned long addr, unsigned long len,
3349 int ignore_errors);
3350static inline void mm_populate(unsigned long addr, unsigned long len)
3351{
3352 /* Ignore errors */
3353 (void) __mm_populate(addr, len, 1);
3354}
3355#else
3356static inline void mm_populate(unsigned long addr, unsigned long len) {}
3357#endif
3358
3359/* This takes the mm semaphore itself */
3360extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3361extern int vm_munmap(unsigned long, size_t);
3362extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3363 unsigned long, unsigned long,
3364 unsigned long, unsigned long);
3365
3366struct vm_unmapped_area_info {
3367#define VM_UNMAPPED_AREA_TOPDOWN 1
3368 unsigned long flags;
3369 unsigned long length;
3370 unsigned long low_limit;
3371 unsigned long high_limit;
3372 unsigned long align_mask;
3373 unsigned long align_offset;
3374 unsigned long start_gap;
3375};
3376
3377extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3378
3379/* truncate.c */
3380extern void truncate_inode_pages(struct address_space *, loff_t);
3381extern void truncate_inode_pages_range(struct address_space *,
3382 loff_t lstart, loff_t lend);
3383extern void truncate_inode_pages_final(struct address_space *);
3384
3385/* generic vm_area_ops exported for stackable file systems */
3386extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3387extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3388 pgoff_t start_pgoff, pgoff_t end_pgoff);
3389extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3390
3391extern unsigned long stack_guard_gap;
3392/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3393int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3394struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3395
3396/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3397extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3398extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3399 struct vm_area_struct **pprev);
3400
3401/*
3402 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3403 * NULL if none. Assume start_addr < end_addr.
3404 */
3405struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3406 unsigned long start_addr, unsigned long end_addr);
3407
3408/**
3409 * vma_lookup() - Find a VMA at a specific address
3410 * @mm: The process address space.
3411 * @addr: The user address.
3412 *
3413 * Return: The vm_area_struct at the given address, %NULL otherwise.
3414 */
3415static inline
3416struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3417{
3418 return mtree_load(&mm->mm_mt, addr);
3419}
3420
3421static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3422{
3423 if (vma->vm_flags & VM_GROWSDOWN)
3424 return stack_guard_gap;
3425
3426 /* See reasoning around the VM_SHADOW_STACK definition */
3427 if (vma->vm_flags & VM_SHADOW_STACK)
3428 return PAGE_SIZE;
3429
3430 return 0;
3431}
3432
3433static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3434{
3435 unsigned long gap = stack_guard_start_gap(vma);
3436 unsigned long vm_start = vma->vm_start;
3437
3438 vm_start -= gap;
3439 if (vm_start > vma->vm_start)
3440 vm_start = 0;
3441 return vm_start;
3442}
3443
3444static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3445{
3446 unsigned long vm_end = vma->vm_end;
3447
3448 if (vma->vm_flags & VM_GROWSUP) {
3449 vm_end += stack_guard_gap;
3450 if (vm_end < vma->vm_end)
3451 vm_end = -PAGE_SIZE;
3452 }
3453 return vm_end;
3454}
3455
3456static inline unsigned long vma_pages(struct vm_area_struct *vma)
3457{
3458 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3459}
3460
3461/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3462static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3463 unsigned long vm_start, unsigned long vm_end)
3464{
3465 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3466
3467 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3468 vma = NULL;
3469
3470 return vma;
3471}
3472
3473static inline bool range_in_vma(struct vm_area_struct *vma,
3474 unsigned long start, unsigned long end)
3475{
3476 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3477}
3478
3479#ifdef CONFIG_MMU
3480pgprot_t vm_get_page_prot(unsigned long vm_flags);
3481void vma_set_page_prot(struct vm_area_struct *vma);
3482#else
3483static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3484{
3485 return __pgprot(0);
3486}
3487static inline void vma_set_page_prot(struct vm_area_struct *vma)
3488{
3489 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3490}
3491#endif
3492
3493void vma_set_file(struct vm_area_struct *vma, struct file *file);
3494
3495#ifdef CONFIG_NUMA_BALANCING
3496unsigned long change_prot_numa(struct vm_area_struct *vma,
3497 unsigned long start, unsigned long end);
3498#endif
3499
3500struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3501 unsigned long addr);
3502int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3503 unsigned long pfn, unsigned long size, pgprot_t);
3504int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3505 unsigned long pfn, unsigned long size, pgprot_t prot);
3506int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3507int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3508 struct page **pages, unsigned long *num);
3509int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3510 unsigned long num);
3511int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3512 unsigned long num);
3513vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3514 bool write);
3515vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3516 unsigned long pfn);
3517vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3518 unsigned long pfn, pgprot_t pgprot);
3519vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3520 pfn_t pfn);
3521vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3522 unsigned long addr, pfn_t pfn);
3523int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3524
3525static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3526 unsigned long addr, struct page *page)
3527{
3528 int err = vm_insert_page(vma, addr, page);
3529
3530 if (err == -ENOMEM)
3531 return VM_FAULT_OOM;
3532 if (err < 0 && err != -EBUSY)
3533 return VM_FAULT_SIGBUS;
3534
3535 return VM_FAULT_NOPAGE;
3536}
3537
3538#ifndef io_remap_pfn_range
3539static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3540 unsigned long addr, unsigned long pfn,
3541 unsigned long size, pgprot_t prot)
3542{
3543 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3544}
3545#endif
3546
3547static inline vm_fault_t vmf_error(int err)
3548{
3549 if (err == -ENOMEM)
3550 return VM_FAULT_OOM;
3551 else if (err == -EHWPOISON)
3552 return VM_FAULT_HWPOISON;
3553 return VM_FAULT_SIGBUS;
3554}
3555
3556/*
3557 * Convert errno to return value for ->page_mkwrite() calls.
3558 *
3559 * This should eventually be merged with vmf_error() above, but will need a
3560 * careful audit of all vmf_error() callers.
3561 */
3562static inline vm_fault_t vmf_fs_error(int err)
3563{
3564 if (err == 0)
3565 return VM_FAULT_LOCKED;
3566 if (err == -EFAULT || err == -EAGAIN)
3567 return VM_FAULT_NOPAGE;
3568 if (err == -ENOMEM)
3569 return VM_FAULT_OOM;
3570 /* -ENOSPC, -EDQUOT, -EIO ... */
3571 return VM_FAULT_SIGBUS;
3572}
3573
3574static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3575{
3576 if (vm_fault & VM_FAULT_OOM)
3577 return -ENOMEM;
3578 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3579 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3580 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3581 return -EFAULT;
3582 return 0;
3583}
3584
3585/*
3586 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3587 * a (NUMA hinting) fault is required.
3588 */
3589static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3590 unsigned int flags)
3591{
3592 /*
3593 * If callers don't want to honor NUMA hinting faults, no need to
3594 * determine if we would actually have to trigger a NUMA hinting fault.
3595 */
3596 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3597 return true;
3598
3599 /*
3600 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3601 *
3602 * Requiring a fault here even for inaccessible VMAs would mean that
3603 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3604 * refuses to process NUMA hinting faults in inaccessible VMAs.
3605 */
3606 return !vma_is_accessible(vma);
3607}
3608
3609typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3610extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3611 unsigned long size, pte_fn_t fn, void *data);
3612extern int apply_to_existing_page_range(struct mm_struct *mm,
3613 unsigned long address, unsigned long size,
3614 pte_fn_t fn, void *data);
3615
3616#ifdef CONFIG_PAGE_POISONING
3617extern void __kernel_poison_pages(struct page *page, int numpages);
3618extern void __kernel_unpoison_pages(struct page *page, int numpages);
3619extern bool _page_poisoning_enabled_early;
3620DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3621static inline bool page_poisoning_enabled(void)
3622{
3623 return _page_poisoning_enabled_early;
3624}
3625/*
3626 * For use in fast paths after init_mem_debugging() has run, or when a
3627 * false negative result is not harmful when called too early.
3628 */
3629static inline bool page_poisoning_enabled_static(void)
3630{
3631 return static_branch_unlikely(&_page_poisoning_enabled);
3632}
3633static inline void kernel_poison_pages(struct page *page, int numpages)
3634{
3635 if (page_poisoning_enabled_static())
3636 __kernel_poison_pages(page, numpages);
3637}
3638static inline void kernel_unpoison_pages(struct page *page, int numpages)
3639{
3640 if (page_poisoning_enabled_static())
3641 __kernel_unpoison_pages(page, numpages);
3642}
3643#else
3644static inline bool page_poisoning_enabled(void) { return false; }
3645static inline bool page_poisoning_enabled_static(void) { return false; }
3646static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3647static inline void kernel_poison_pages(struct page *page, int numpages) { }
3648static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3649#endif
3650
3651DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3652static inline bool want_init_on_alloc(gfp_t flags)
3653{
3654 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3655 &init_on_alloc))
3656 return true;
3657 return flags & __GFP_ZERO;
3658}
3659
3660DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3661static inline bool want_init_on_free(void)
3662{
3663 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3664 &init_on_free);
3665}
3666
3667extern bool _debug_pagealloc_enabled_early;
3668DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3669
3670static inline bool debug_pagealloc_enabled(void)
3671{
3672 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3673 _debug_pagealloc_enabled_early;
3674}
3675
3676/*
3677 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3678 * or when a false negative result is not harmful when called too early.
3679 */
3680static inline bool debug_pagealloc_enabled_static(void)
3681{
3682 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3683 return false;
3684
3685 return static_branch_unlikely(&_debug_pagealloc_enabled);
3686}
3687
3688/*
3689 * To support DEBUG_PAGEALLOC architecture must ensure that
3690 * __kernel_map_pages() never fails
3691 */
3692extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3693#ifdef CONFIG_DEBUG_PAGEALLOC
3694static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3695{
3696 if (debug_pagealloc_enabled_static())
3697 __kernel_map_pages(page, numpages, 1);
3698}
3699
3700static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3701{
3702 if (debug_pagealloc_enabled_static())
3703 __kernel_map_pages(page, numpages, 0);
3704}
3705
3706extern unsigned int _debug_guardpage_minorder;
3707DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3708
3709static inline unsigned int debug_guardpage_minorder(void)
3710{
3711 return _debug_guardpage_minorder;
3712}
3713
3714static inline bool debug_guardpage_enabled(void)
3715{
3716 return static_branch_unlikely(&_debug_guardpage_enabled);
3717}
3718
3719static inline bool page_is_guard(struct page *page)
3720{
3721 if (!debug_guardpage_enabled())
3722 return false;
3723
3724 return PageGuard(page);
3725}
3726
3727bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3728static inline bool set_page_guard(struct zone *zone, struct page *page,
3729 unsigned int order)
3730{
3731 if (!debug_guardpage_enabled())
3732 return false;
3733 return __set_page_guard(zone, page, order);
3734}
3735
3736void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3737static inline void clear_page_guard(struct zone *zone, struct page *page,
3738 unsigned int order)
3739{
3740 if (!debug_guardpage_enabled())
3741 return;
3742 __clear_page_guard(zone, page, order);
3743}
3744
3745#else /* CONFIG_DEBUG_PAGEALLOC */
3746static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3747static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3748static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3749static inline bool debug_guardpage_enabled(void) { return false; }
3750static inline bool page_is_guard(struct page *page) { return false; }
3751static inline bool set_page_guard(struct zone *zone, struct page *page,
3752 unsigned int order) { return false; }
3753static inline void clear_page_guard(struct zone *zone, struct page *page,
3754 unsigned int order) {}
3755#endif /* CONFIG_DEBUG_PAGEALLOC */
3756
3757#ifdef __HAVE_ARCH_GATE_AREA
3758extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3759extern int in_gate_area_no_mm(unsigned long addr);
3760extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3761#else
3762static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3763{
3764 return NULL;
3765}
3766static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3767static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3768{
3769 return 0;
3770}
3771#endif /* __HAVE_ARCH_GATE_AREA */
3772
3773extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3774
3775void drop_slab(void);
3776
3777#ifndef CONFIG_MMU
3778#define randomize_va_space 0
3779#else
3780extern int randomize_va_space;
3781#endif
3782
3783const char * arch_vma_name(struct vm_area_struct *vma);
3784#ifdef CONFIG_MMU
3785void print_vma_addr(char *prefix, unsigned long rip);
3786#else
3787static inline void print_vma_addr(char *prefix, unsigned long rip)
3788{
3789}
3790#endif
3791
3792void *sparse_buffer_alloc(unsigned long size);
3793unsigned long section_map_size(void);
3794struct page * __populate_section_memmap(unsigned long pfn,
3795 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3796 struct dev_pagemap *pgmap);
3797pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3798p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3799pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3800pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3801pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3802 struct vmem_altmap *altmap, unsigned long ptpfn,
3803 unsigned long flags);
3804void *vmemmap_alloc_block(unsigned long size, int node);
3805struct vmem_altmap;
3806void *vmemmap_alloc_block_buf(unsigned long size, int node,
3807 struct vmem_altmap *altmap);
3808void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3809void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3810 unsigned long addr, unsigned long next);
3811int vmemmap_check_pmd(pmd_t *pmd, int node,
3812 unsigned long addr, unsigned long next);
3813int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3814 int node, struct vmem_altmap *altmap);
3815int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3816 int node, struct vmem_altmap *altmap);
3817int vmemmap_populate(unsigned long start, unsigned long end, int node,
3818 struct vmem_altmap *altmap);
3819int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3820 unsigned long headsize);
3821int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3822 unsigned long headsize);
3823void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3824 unsigned long headsize);
3825void vmemmap_populate_print_last(void);
3826#ifdef CONFIG_MEMORY_HOTPLUG
3827void vmemmap_free(unsigned long start, unsigned long end,
3828 struct vmem_altmap *altmap);
3829#endif
3830
3831#ifdef CONFIG_SPARSEMEM_VMEMMAP
3832static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3833{
3834 /* number of pfns from base where pfn_to_page() is valid */
3835 if (altmap)
3836 return altmap->reserve + altmap->free;
3837 return 0;
3838}
3839
3840static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3841 unsigned long nr_pfns)
3842{
3843 altmap->alloc -= nr_pfns;
3844}
3845#else
3846static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847{
3848 return 0;
3849}
3850
3851static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3852 unsigned long nr_pfns)
3853{
3854}
3855#endif
3856
3857#define VMEMMAP_RESERVE_NR 2
3858#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3859static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3860 struct dev_pagemap *pgmap)
3861{
3862 unsigned long nr_pages;
3863 unsigned long nr_vmemmap_pages;
3864
3865 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3866 return false;
3867
3868 nr_pages = pgmap_vmemmap_nr(pgmap);
3869 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3870 /*
3871 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3872 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3873 */
3874 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3875}
3876/*
3877 * If we don't have an architecture override, use the generic rule
3878 */
3879#ifndef vmemmap_can_optimize
3880#define vmemmap_can_optimize __vmemmap_can_optimize
3881#endif
3882
3883#else
3884static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3885 struct dev_pagemap *pgmap)
3886{
3887 return false;
3888}
3889#endif
3890
3891enum mf_flags {
3892 MF_COUNT_INCREASED = 1 << 0,
3893 MF_ACTION_REQUIRED = 1 << 1,
3894 MF_MUST_KILL = 1 << 2,
3895 MF_SOFT_OFFLINE = 1 << 3,
3896 MF_UNPOISON = 1 << 4,
3897 MF_SW_SIMULATED = 1 << 5,
3898 MF_NO_RETRY = 1 << 6,
3899 MF_MEM_PRE_REMOVE = 1 << 7,
3900};
3901int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3902 unsigned long count, int mf_flags);
3903extern int memory_failure(unsigned long pfn, int flags);
3904extern void memory_failure_queue_kick(int cpu);
3905extern int unpoison_memory(unsigned long pfn);
3906extern atomic_long_t num_poisoned_pages __read_mostly;
3907extern int soft_offline_page(unsigned long pfn, int flags);
3908#ifdef CONFIG_MEMORY_FAILURE
3909/*
3910 * Sysfs entries for memory failure handling statistics.
3911 */
3912extern const struct attribute_group memory_failure_attr_group;
3913extern void memory_failure_queue(unsigned long pfn, int flags);
3914extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3915 bool *migratable_cleared);
3916void num_poisoned_pages_inc(unsigned long pfn);
3917void num_poisoned_pages_sub(unsigned long pfn, long i);
3918#else
3919static inline void memory_failure_queue(unsigned long pfn, int flags)
3920{
3921}
3922
3923static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3924 bool *migratable_cleared)
3925{
3926 return 0;
3927}
3928
3929static inline void num_poisoned_pages_inc(unsigned long pfn)
3930{
3931}
3932
3933static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3934{
3935}
3936#endif
3937
3938#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3939extern void memblk_nr_poison_inc(unsigned long pfn);
3940extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3941#else
3942static inline void memblk_nr_poison_inc(unsigned long pfn)
3943{
3944}
3945
3946static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3947{
3948}
3949#endif
3950
3951#ifndef arch_memory_failure
3952static inline int arch_memory_failure(unsigned long pfn, int flags)
3953{
3954 return -ENXIO;
3955}
3956#endif
3957
3958#ifndef arch_is_platform_page
3959static inline bool arch_is_platform_page(u64 paddr)
3960{
3961 return false;
3962}
3963#endif
3964
3965/*
3966 * Error handlers for various types of pages.
3967 */
3968enum mf_result {
3969 MF_IGNORED, /* Error: cannot be handled */
3970 MF_FAILED, /* Error: handling failed */
3971 MF_DELAYED, /* Will be handled later */
3972 MF_RECOVERED, /* Successfully recovered */
3973};
3974
3975enum mf_action_page_type {
3976 MF_MSG_KERNEL,
3977 MF_MSG_KERNEL_HIGH_ORDER,
3978 MF_MSG_DIFFERENT_COMPOUND,
3979 MF_MSG_HUGE,
3980 MF_MSG_FREE_HUGE,
3981 MF_MSG_GET_HWPOISON,
3982 MF_MSG_UNMAP_FAILED,
3983 MF_MSG_DIRTY_SWAPCACHE,
3984 MF_MSG_CLEAN_SWAPCACHE,
3985 MF_MSG_DIRTY_MLOCKED_LRU,
3986 MF_MSG_CLEAN_MLOCKED_LRU,
3987 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3988 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3989 MF_MSG_DIRTY_LRU,
3990 MF_MSG_CLEAN_LRU,
3991 MF_MSG_TRUNCATED_LRU,
3992 MF_MSG_BUDDY,
3993 MF_MSG_DAX,
3994 MF_MSG_UNSPLIT_THP,
3995 MF_MSG_ALREADY_POISONED,
3996 MF_MSG_UNKNOWN,
3997};
3998
3999#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4000void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4001int copy_user_large_folio(struct folio *dst, struct folio *src,
4002 unsigned long addr_hint,
4003 struct vm_area_struct *vma);
4004long copy_folio_from_user(struct folio *dst_folio,
4005 const void __user *usr_src,
4006 bool allow_pagefault);
4007
4008/**
4009 * vma_is_special_huge - Are transhuge page-table entries considered special?
4010 * @vma: Pointer to the struct vm_area_struct to consider
4011 *
4012 * Whether transhuge page-table entries are considered "special" following
4013 * the definition in vm_normal_page().
4014 *
4015 * Return: true if transhuge page-table entries should be considered special,
4016 * false otherwise.
4017 */
4018static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4019{
4020 return vma_is_dax(vma) || (vma->vm_file &&
4021 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4022}
4023
4024#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4025
4026#if MAX_NUMNODES > 1
4027void __init setup_nr_node_ids(void);
4028#else
4029static inline void setup_nr_node_ids(void) {}
4030#endif
4031
4032extern int memcmp_pages(struct page *page1, struct page *page2);
4033
4034static inline int pages_identical(struct page *page1, struct page *page2)
4035{
4036 return !memcmp_pages(page1, page2);
4037}
4038
4039#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4040unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4041 pgoff_t first_index, pgoff_t nr,
4042 pgoff_t bitmap_pgoff,
4043 unsigned long *bitmap,
4044 pgoff_t *start,
4045 pgoff_t *end);
4046
4047unsigned long wp_shared_mapping_range(struct address_space *mapping,
4048 pgoff_t first_index, pgoff_t nr);
4049#endif
4050
4051#ifdef CONFIG_ANON_VMA_NAME
4052int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4053 unsigned long len_in,
4054 struct anon_vma_name *anon_name);
4055#else
4056static inline int
4057madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4058 unsigned long len_in, struct anon_vma_name *anon_name) {
4059 return 0;
4060}
4061#endif
4062
4063#ifdef CONFIG_UNACCEPTED_MEMORY
4064
4065bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4066void accept_memory(phys_addr_t start, unsigned long size);
4067
4068#else
4069
4070static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4071 unsigned long size)
4072{
4073 return false;
4074}
4075
4076static inline void accept_memory(phys_addr_t start, unsigned long size)
4077{
4078}
4079
4080#endif
4081
4082static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4083{
4084 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4085}
4086
4087void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4088void vma_pgtable_walk_end(struct vm_area_struct *vma);
4089
4090int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4091int reserve_mem_release_by_name(const char *name);
4092
4093#ifdef CONFIG_64BIT
4094int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4095#else
4096static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4097{
4098 /* noop on 32 bit */
4099 return 0;
4100}
4101#endif
4102
4103/*
4104 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4105 * be zeroed or not.
4106 */
4107static inline bool user_alloc_needs_zeroing(void)
4108{
4109 /*
4110 * for user folios, arch with cache aliasing requires cache flush and
4111 * arc changes folio->flags to make icache coherent with dcache, so
4112 * always return false to make caller use
4113 * clear_user_page()/clear_user_highpage().
4114 */
4115 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4116 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4117 &init_on_alloc);
4118}
4119
4120int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4121int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4122int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4123
4124
4125/*
4126 * mseal of userspace process's system mappings.
4127 */
4128#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4129#define VM_SEALED_SYSMAP VM_SEALED
4130#else
4131#define VM_SEALED_SYSMAP VM_NONE
4132#endif
4133
4134/*
4135 * DMA mapping IDs for page_pool
4136 *
4137 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4138 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4139 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4140 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4141 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4142 * mistake a valid kernel pointer with any of the values we write into this
4143 * field.
4144 *
4145 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4146 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4147 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4148 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4149 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4150 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4151 * VMSPLIT setting.
4152 *
4153 * Altogether, this means that the number of bits available is constrained by
4154 * the size of an unsigned long (at the upper end, subtracting two bits per the
4155 * above), and the definition of PP_SIGNATURE (with or without
4156 * POISON_POINTER_DELTA).
4157 */
4158#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4159#if POISON_POINTER_DELTA > 0
4160/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4161 * index to not overlap with that if set
4162 */
4163#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4164#else
4165/* Always leave out the topmost two; see above. */
4166#define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4167#endif
4168
4169#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4170 PP_DMA_INDEX_SHIFT)
4171
4172/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4173 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4174 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4175 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4176 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4177 */
4178#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4179
4180#ifdef CONFIG_PAGE_POOL
4181static inline bool page_pool_page_is_pp(struct page *page)
4182{
4183 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4184}
4185#else
4186static inline bool page_pool_page_is_pp(struct page *page)
4187{
4188 return false;
4189}
4190#endif
4191
4192#endif /* _LINUX_MM_H */