| 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_MM_H |
| 3 | #define _LINUX_MM_H |
| 4 | |
| 5 | #include <linux/errno.h> |
| 6 | #include <linux/mmdebug.h> |
| 7 | #include <linux/gfp.h> |
| 8 | #include <linux/pgalloc_tag.h> |
| 9 | #include <linux/bug.h> |
| 10 | #include <linux/list.h> |
| 11 | #include <linux/mmzone.h> |
| 12 | #include <linux/rbtree.h> |
| 13 | #include <linux/atomic.h> |
| 14 | #include <linux/debug_locks.h> |
| 15 | #include <linux/compiler.h> |
| 16 | #include <linux/mm_types.h> |
| 17 | #include <linux/mmap_lock.h> |
| 18 | #include <linux/range.h> |
| 19 | #include <linux/pfn.h> |
| 20 | #include <linux/percpu-refcount.h> |
| 21 | #include <linux/bit_spinlock.h> |
| 22 | #include <linux/shrinker.h> |
| 23 | #include <linux/resource.h> |
| 24 | #include <linux/page_ext.h> |
| 25 | #include <linux/err.h> |
| 26 | #include <linux/page-flags.h> |
| 27 | #include <linux/page_ref.h> |
| 28 | #include <linux/overflow.h> |
| 29 | #include <linux/sizes.h> |
| 30 | #include <linux/sched.h> |
| 31 | #include <linux/pgtable.h> |
| 32 | #include <linux/kasan.h> |
| 33 | #include <linux/memremap.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/cacheinfo.h> |
| 36 | #include <linux/rcuwait.h> |
| 37 | |
| 38 | struct mempolicy; |
| 39 | struct anon_vma; |
| 40 | struct anon_vma_chain; |
| 41 | struct user_struct; |
| 42 | struct pt_regs; |
| 43 | struct folio_batch; |
| 44 | |
| 45 | void arch_mm_preinit(void); |
| 46 | void mm_core_init(void); |
| 47 | void init_mm_internals(void); |
| 48 | |
| 49 | extern atomic_long_t _totalram_pages; |
| 50 | static inline unsigned long totalram_pages(void) |
| 51 | { |
| 52 | return (unsigned long)atomic_long_read(&_totalram_pages); |
| 53 | } |
| 54 | |
| 55 | static inline void totalram_pages_inc(void) |
| 56 | { |
| 57 | atomic_long_inc(&_totalram_pages); |
| 58 | } |
| 59 | |
| 60 | static inline void totalram_pages_dec(void) |
| 61 | { |
| 62 | atomic_long_dec(&_totalram_pages); |
| 63 | } |
| 64 | |
| 65 | static inline void totalram_pages_add(long count) |
| 66 | { |
| 67 | atomic_long_add(count, &_totalram_pages); |
| 68 | } |
| 69 | |
| 70 | extern void * high_memory; |
| 71 | |
| 72 | #ifdef CONFIG_SYSCTL |
| 73 | extern int sysctl_legacy_va_layout; |
| 74 | #else |
| 75 | #define sysctl_legacy_va_layout 0 |
| 76 | #endif |
| 77 | |
| 78 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
| 79 | extern const int mmap_rnd_bits_min; |
| 80 | extern int mmap_rnd_bits_max __ro_after_init; |
| 81 | extern int mmap_rnd_bits __read_mostly; |
| 82 | #endif |
| 83 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| 84 | extern const int mmap_rnd_compat_bits_min; |
| 85 | extern const int mmap_rnd_compat_bits_max; |
| 86 | extern int mmap_rnd_compat_bits __read_mostly; |
| 87 | #endif |
| 88 | |
| 89 | #ifndef DIRECT_MAP_PHYSMEM_END |
| 90 | # ifdef MAX_PHYSMEM_BITS |
| 91 | # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) |
| 92 | # else |
| 93 | # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) |
| 94 | # endif |
| 95 | #endif |
| 96 | |
| 97 | #include <asm/page.h> |
| 98 | #include <asm/processor.h> |
| 99 | |
| 100 | #ifndef __pa_symbol |
| 101 | #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) |
| 102 | #endif |
| 103 | |
| 104 | #ifndef page_to_virt |
| 105 | #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) |
| 106 | #endif |
| 107 | |
| 108 | #ifndef lm_alias |
| 109 | #define lm_alias(x) __va(__pa_symbol(x)) |
| 110 | #endif |
| 111 | |
| 112 | /* |
| 113 | * To prevent common memory management code establishing |
| 114 | * a zero page mapping on a read fault. |
| 115 | * This macro should be defined within <asm/pgtable.h>. |
| 116 | * s390 does this to prevent multiplexing of hardware bits |
| 117 | * related to the physical page in case of virtualization. |
| 118 | */ |
| 119 | #ifndef mm_forbids_zeropage |
| 120 | #define mm_forbids_zeropage(X) (0) |
| 121 | #endif |
| 122 | |
| 123 | /* |
| 124 | * On some architectures it is expensive to call memset() for small sizes. |
| 125 | * If an architecture decides to implement their own version of |
| 126 | * mm_zero_struct_page they should wrap the defines below in a #ifndef and |
| 127 | * define their own version of this macro in <asm/pgtable.h> |
| 128 | */ |
| 129 | #if BITS_PER_LONG == 64 |
| 130 | /* This function must be updated when the size of struct page grows above 96 |
| 131 | * or reduces below 56. The idea that compiler optimizes out switch() |
| 132 | * statement, and only leaves move/store instructions. Also the compiler can |
| 133 | * combine write statements if they are both assignments and can be reordered, |
| 134 | * this can result in several of the writes here being dropped. |
| 135 | */ |
| 136 | #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) |
| 137 | static inline void __mm_zero_struct_page(struct page *page) |
| 138 | { |
| 139 | unsigned long *_pp = (void *)page; |
| 140 | |
| 141 | /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ |
| 142 | BUILD_BUG_ON(sizeof(struct page) & 7); |
| 143 | BUILD_BUG_ON(sizeof(struct page) < 56); |
| 144 | BUILD_BUG_ON(sizeof(struct page) > 96); |
| 145 | |
| 146 | switch (sizeof(struct page)) { |
| 147 | case 96: |
| 148 | _pp[11] = 0; |
| 149 | fallthrough; |
| 150 | case 88: |
| 151 | _pp[10] = 0; |
| 152 | fallthrough; |
| 153 | case 80: |
| 154 | _pp[9] = 0; |
| 155 | fallthrough; |
| 156 | case 72: |
| 157 | _pp[8] = 0; |
| 158 | fallthrough; |
| 159 | case 64: |
| 160 | _pp[7] = 0; |
| 161 | fallthrough; |
| 162 | case 56: |
| 163 | _pp[6] = 0; |
| 164 | _pp[5] = 0; |
| 165 | _pp[4] = 0; |
| 166 | _pp[3] = 0; |
| 167 | _pp[2] = 0; |
| 168 | _pp[1] = 0; |
| 169 | _pp[0] = 0; |
| 170 | } |
| 171 | } |
| 172 | #else |
| 173 | #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) |
| 174 | #endif |
| 175 | |
| 176 | /* |
| 177 | * Default maximum number of active map areas, this limits the number of vmas |
| 178 | * per mm struct. Users can overwrite this number by sysctl but there is a |
| 179 | * problem. |
| 180 | * |
| 181 | * When a program's coredump is generated as ELF format, a section is created |
| 182 | * per a vma. In ELF, the number of sections is represented in unsigned short. |
| 183 | * This means the number of sections should be smaller than 65535 at coredump. |
| 184 | * Because the kernel adds some informative sections to a image of program at |
| 185 | * generating coredump, we need some margin. The number of extra sections is |
| 186 | * 1-3 now and depends on arch. We use "5" as safe margin, here. |
| 187 | * |
| 188 | * ELF extended numbering allows more than 65535 sections, so 16-bit bound is |
| 189 | * not a hard limit any more. Although some userspace tools can be surprised by |
| 190 | * that. |
| 191 | */ |
| 192 | #define MAPCOUNT_ELF_CORE_MARGIN (5) |
| 193 | #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) |
| 194 | |
| 195 | extern int sysctl_max_map_count; |
| 196 | |
| 197 | extern unsigned long sysctl_user_reserve_kbytes; |
| 198 | extern unsigned long sysctl_admin_reserve_kbytes; |
| 199 | |
| 200 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 201 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
| 202 | #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) |
| 203 | #else |
| 204 | #define nth_page(page,n) ((page) + (n)) |
| 205 | #define folio_page_idx(folio, p) ((p) - &(folio)->page) |
| 206 | #endif |
| 207 | |
| 208 | /* to align the pointer to the (next) page boundary */ |
| 209 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
| 210 | |
| 211 | /* to align the pointer to the (prev) page boundary */ |
| 212 | #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) |
| 213 | |
| 214 | /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ |
| 215 | #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) |
| 216 | |
| 217 | static inline struct folio *lru_to_folio(struct list_head *head) |
| 218 | { |
| 219 | return list_entry((head)->prev, struct folio, lru); |
| 220 | } |
| 221 | |
| 222 | void setup_initial_init_mm(void *start_code, void *end_code, |
| 223 | void *end_data, void *brk); |
| 224 | |
| 225 | /* |
| 226 | * Linux kernel virtual memory manager primitives. |
| 227 | * The idea being to have a "virtual" mm in the same way |
| 228 | * we have a virtual fs - giving a cleaner interface to the |
| 229 | * mm details, and allowing different kinds of memory mappings |
| 230 | * (from shared memory to executable loading to arbitrary |
| 231 | * mmap() functions). |
| 232 | */ |
| 233 | |
| 234 | struct vm_area_struct *vm_area_alloc(struct mm_struct *); |
| 235 | struct vm_area_struct *vm_area_dup(struct vm_area_struct *); |
| 236 | void vm_area_free(struct vm_area_struct *); |
| 237 | |
| 238 | #ifndef CONFIG_MMU |
| 239 | extern struct rb_root nommu_region_tree; |
| 240 | extern struct rw_semaphore nommu_region_sem; |
| 241 | |
| 242 | extern unsigned int kobjsize(const void *objp); |
| 243 | #endif |
| 244 | |
| 245 | /* |
| 246 | * vm_flags in vm_area_struct, see mm_types.h. |
| 247 | * When changing, update also include/trace/events/mmflags.h |
| 248 | */ |
| 249 | #define VM_NONE 0x00000000 |
| 250 | |
| 251 | #define VM_READ 0x00000001 /* currently active flags */ |
| 252 | #define VM_WRITE 0x00000002 |
| 253 | #define VM_EXEC 0x00000004 |
| 254 | #define VM_SHARED 0x00000008 |
| 255 | |
| 256 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
| 257 | #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
| 258 | #define VM_MAYWRITE 0x00000020 |
| 259 | #define VM_MAYEXEC 0x00000040 |
| 260 | #define VM_MAYSHARE 0x00000080 |
| 261 | |
| 262 | #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
| 263 | #ifdef CONFIG_MMU |
| 264 | #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ |
| 265 | #else /* CONFIG_MMU */ |
| 266 | #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ |
| 267 | #define VM_UFFD_MISSING 0 |
| 268 | #endif /* CONFIG_MMU */ |
| 269 | #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
| 270 | #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ |
| 271 | |
| 272 | #define VM_LOCKED 0x00002000 |
| 273 | #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
| 274 | |
| 275 | /* Used by sys_madvise() */ |
| 276 | #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
| 277 | #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
| 278 | |
| 279 | #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
| 280 | #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
| 281 | #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ |
| 282 | #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
| 283 | #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ |
| 284 | #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
| 285 | #define VM_SYNC 0x00800000 /* Synchronous page faults */ |
| 286 | #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ |
| 287 | #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ |
| 288 | #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ |
| 289 | |
| 290 | #ifdef CONFIG_MEM_SOFT_DIRTY |
| 291 | # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ |
| 292 | #else |
| 293 | # define VM_SOFTDIRTY 0 |
| 294 | #endif |
| 295 | |
| 296 | #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ |
| 297 | #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ |
| 298 | #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ |
| 299 | #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ |
| 300 | |
| 301 | #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS |
| 302 | #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ |
| 303 | #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ |
| 304 | #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ |
| 305 | #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ |
| 306 | #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ |
| 307 | #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ |
| 308 | #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ |
| 309 | #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) |
| 310 | #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) |
| 311 | #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) |
| 312 | #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) |
| 313 | #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) |
| 314 | #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) |
| 315 | #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) |
| 316 | #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ |
| 317 | |
| 318 | #ifdef CONFIG_ARCH_HAS_PKEYS |
| 319 | # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 |
| 320 | # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 |
| 321 | # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 |
| 322 | # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 |
| 323 | #if CONFIG_ARCH_PKEY_BITS > 3 |
| 324 | # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 |
| 325 | #else |
| 326 | # define VM_PKEY_BIT3 0 |
| 327 | #endif |
| 328 | #if CONFIG_ARCH_PKEY_BITS > 4 |
| 329 | # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 |
| 330 | #else |
| 331 | # define VM_PKEY_BIT4 0 |
| 332 | #endif |
| 333 | #endif /* CONFIG_ARCH_HAS_PKEYS */ |
| 334 | |
| 335 | #ifdef CONFIG_X86_USER_SHADOW_STACK |
| 336 | /* |
| 337 | * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of |
| 338 | * support core mm. |
| 339 | * |
| 340 | * These VMAs will get a single end guard page. This helps userspace protect |
| 341 | * itself from attacks. A single page is enough for current shadow stack archs |
| 342 | * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c |
| 343 | * for more details on the guard size. |
| 344 | */ |
| 345 | # define VM_SHADOW_STACK VM_HIGH_ARCH_5 |
| 346 | #endif |
| 347 | |
| 348 | #if defined(CONFIG_ARM64_GCS) |
| 349 | /* |
| 350 | * arm64's Guarded Control Stack implements similar functionality and |
| 351 | * has similar constraints to shadow stacks. |
| 352 | */ |
| 353 | # define VM_SHADOW_STACK VM_HIGH_ARCH_6 |
| 354 | #endif |
| 355 | |
| 356 | #ifndef VM_SHADOW_STACK |
| 357 | # define VM_SHADOW_STACK VM_NONE |
| 358 | #endif |
| 359 | |
| 360 | #if defined(CONFIG_PPC64) |
| 361 | # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ |
| 362 | #elif defined(CONFIG_PARISC) |
| 363 | # define VM_GROWSUP VM_ARCH_1 |
| 364 | #elif defined(CONFIG_SPARC64) |
| 365 | # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ |
| 366 | # define VM_ARCH_CLEAR VM_SPARC_ADI |
| 367 | #elif defined(CONFIG_ARM64) |
| 368 | # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ |
| 369 | # define VM_ARCH_CLEAR VM_ARM64_BTI |
| 370 | #elif !defined(CONFIG_MMU) |
| 371 | # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ |
| 372 | #endif |
| 373 | |
| 374 | #if defined(CONFIG_ARM64_MTE) |
| 375 | # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ |
| 376 | # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ |
| 377 | #else |
| 378 | # define VM_MTE VM_NONE |
| 379 | # define VM_MTE_ALLOWED VM_NONE |
| 380 | #endif |
| 381 | |
| 382 | #ifndef VM_GROWSUP |
| 383 | # define VM_GROWSUP VM_NONE |
| 384 | #endif |
| 385 | |
| 386 | #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| 387 | # define VM_UFFD_MINOR_BIT 41 |
| 388 | # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ |
| 389 | #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
| 390 | # define VM_UFFD_MINOR VM_NONE |
| 391 | #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
| 392 | |
| 393 | /* |
| 394 | * This flag is used to connect VFIO to arch specific KVM code. It |
| 395 | * indicates that the memory under this VMA is safe for use with any |
| 396 | * non-cachable memory type inside KVM. Some VFIO devices, on some |
| 397 | * platforms, are thought to be unsafe and can cause machine crashes |
| 398 | * if KVM does not lock down the memory type. |
| 399 | */ |
| 400 | #ifdef CONFIG_64BIT |
| 401 | #define VM_ALLOW_ANY_UNCACHED_BIT 39 |
| 402 | #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) |
| 403 | #else |
| 404 | #define VM_ALLOW_ANY_UNCACHED VM_NONE |
| 405 | #endif |
| 406 | |
| 407 | #ifdef CONFIG_64BIT |
| 408 | #define VM_DROPPABLE_BIT 40 |
| 409 | #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) |
| 410 | #elif defined(CONFIG_PPC32) |
| 411 | #define VM_DROPPABLE VM_ARCH_1 |
| 412 | #else |
| 413 | #define VM_DROPPABLE VM_NONE |
| 414 | #endif |
| 415 | |
| 416 | #ifdef CONFIG_64BIT |
| 417 | /* VM is sealed, in vm_flags */ |
| 418 | #define VM_SEALED _BITUL(63) |
| 419 | #endif |
| 420 | |
| 421 | /* Bits set in the VMA until the stack is in its final location */ |
| 422 | #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) |
| 423 | |
| 424 | #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) |
| 425 | |
| 426 | /* Common data flag combinations */ |
| 427 | #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ |
| 428 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| 429 | #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ |
| 430 | VM_MAYWRITE | VM_MAYEXEC) |
| 431 | #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ |
| 432 | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| 433 | |
| 434 | #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ |
| 435 | #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC |
| 436 | #endif |
| 437 | |
| 438 | #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
| 439 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
| 440 | #endif |
| 441 | |
| 442 | #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) |
| 443 | |
| 444 | #ifdef CONFIG_STACK_GROWSUP |
| 445 | #define VM_STACK VM_GROWSUP |
| 446 | #define VM_STACK_EARLY VM_GROWSDOWN |
| 447 | #else |
| 448 | #define VM_STACK VM_GROWSDOWN |
| 449 | #define VM_STACK_EARLY 0 |
| 450 | #endif |
| 451 | |
| 452 | #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| 453 | |
| 454 | /* VMA basic access permission flags */ |
| 455 | #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) |
| 456 | |
| 457 | |
| 458 | /* |
| 459 | * Special vmas that are non-mergable, non-mlock()able. |
| 460 | */ |
| 461 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) |
| 462 | |
| 463 | /* This mask prevents VMA from being scanned with khugepaged */ |
| 464 | #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) |
| 465 | |
| 466 | /* This mask defines which mm->def_flags a process can inherit its parent */ |
| 467 | #define VM_INIT_DEF_MASK VM_NOHUGEPAGE |
| 468 | |
| 469 | /* This mask represents all the VMA flag bits used by mlock */ |
| 470 | #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) |
| 471 | |
| 472 | /* Arch-specific flags to clear when updating VM flags on protection change */ |
| 473 | #ifndef VM_ARCH_CLEAR |
| 474 | # define VM_ARCH_CLEAR VM_NONE |
| 475 | #endif |
| 476 | #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) |
| 477 | |
| 478 | /* |
| 479 | * mapping from the currently active vm_flags protection bits (the |
| 480 | * low four bits) to a page protection mask.. |
| 481 | */ |
| 482 | |
| 483 | /* |
| 484 | * The default fault flags that should be used by most of the |
| 485 | * arch-specific page fault handlers. |
| 486 | */ |
| 487 | #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ |
| 488 | FAULT_FLAG_KILLABLE | \ |
| 489 | FAULT_FLAG_INTERRUPTIBLE) |
| 490 | |
| 491 | /** |
| 492 | * fault_flag_allow_retry_first - check ALLOW_RETRY the first time |
| 493 | * @flags: Fault flags. |
| 494 | * |
| 495 | * This is mostly used for places where we want to try to avoid taking |
| 496 | * the mmap_lock for too long a time when waiting for another condition |
| 497 | * to change, in which case we can try to be polite to release the |
| 498 | * mmap_lock in the first round to avoid potential starvation of other |
| 499 | * processes that would also want the mmap_lock. |
| 500 | * |
| 501 | * Return: true if the page fault allows retry and this is the first |
| 502 | * attempt of the fault handling; false otherwise. |
| 503 | */ |
| 504 | static inline bool fault_flag_allow_retry_first(enum fault_flag flags) |
| 505 | { |
| 506 | return (flags & FAULT_FLAG_ALLOW_RETRY) && |
| 507 | (!(flags & FAULT_FLAG_TRIED)); |
| 508 | } |
| 509 | |
| 510 | #define FAULT_FLAG_TRACE \ |
| 511 | { FAULT_FLAG_WRITE, "WRITE" }, \ |
| 512 | { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ |
| 513 | { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ |
| 514 | { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ |
| 515 | { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ |
| 516 | { FAULT_FLAG_TRIED, "TRIED" }, \ |
| 517 | { FAULT_FLAG_USER, "USER" }, \ |
| 518 | { FAULT_FLAG_REMOTE, "REMOTE" }, \ |
| 519 | { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ |
| 520 | { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ |
| 521 | { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } |
| 522 | |
| 523 | /* |
| 524 | * vm_fault is filled by the pagefault handler and passed to the vma's |
| 525 | * ->fault function. The vma's ->fault is responsible for returning a bitmask |
| 526 | * of VM_FAULT_xxx flags that give details about how the fault was handled. |
| 527 | * |
| 528 | * MM layer fills up gfp_mask for page allocations but fault handler might |
| 529 | * alter it if its implementation requires a different allocation context. |
| 530 | * |
| 531 | * pgoff should be used in favour of virtual_address, if possible. |
| 532 | */ |
| 533 | struct vm_fault { |
| 534 | const struct { |
| 535 | struct vm_area_struct *vma; /* Target VMA */ |
| 536 | gfp_t gfp_mask; /* gfp mask to be used for allocations */ |
| 537 | pgoff_t pgoff; /* Logical page offset based on vma */ |
| 538 | unsigned long address; /* Faulting virtual address - masked */ |
| 539 | unsigned long real_address; /* Faulting virtual address - unmasked */ |
| 540 | }; |
| 541 | enum fault_flag flags; /* FAULT_FLAG_xxx flags |
| 542 | * XXX: should really be 'const' */ |
| 543 | pmd_t *pmd; /* Pointer to pmd entry matching |
| 544 | * the 'address' */ |
| 545 | pud_t *pud; /* Pointer to pud entry matching |
| 546 | * the 'address' |
| 547 | */ |
| 548 | union { |
| 549 | pte_t orig_pte; /* Value of PTE at the time of fault */ |
| 550 | pmd_t orig_pmd; /* Value of PMD at the time of fault, |
| 551 | * used by PMD fault only. |
| 552 | */ |
| 553 | }; |
| 554 | |
| 555 | struct page *cow_page; /* Page handler may use for COW fault */ |
| 556 | struct page *page; /* ->fault handlers should return a |
| 557 | * page here, unless VM_FAULT_NOPAGE |
| 558 | * is set (which is also implied by |
| 559 | * VM_FAULT_ERROR). |
| 560 | */ |
| 561 | /* These three entries are valid only while holding ptl lock */ |
| 562 | pte_t *pte; /* Pointer to pte entry matching |
| 563 | * the 'address'. NULL if the page |
| 564 | * table hasn't been allocated. |
| 565 | */ |
| 566 | spinlock_t *ptl; /* Page table lock. |
| 567 | * Protects pte page table if 'pte' |
| 568 | * is not NULL, otherwise pmd. |
| 569 | */ |
| 570 | pgtable_t prealloc_pte; /* Pre-allocated pte page table. |
| 571 | * vm_ops->map_pages() sets up a page |
| 572 | * table from atomic context. |
| 573 | * do_fault_around() pre-allocates |
| 574 | * page table to avoid allocation from |
| 575 | * atomic context. |
| 576 | */ |
| 577 | }; |
| 578 | |
| 579 | /* |
| 580 | * These are the virtual MM functions - opening of an area, closing and |
| 581 | * unmapping it (needed to keep files on disk up-to-date etc), pointer |
| 582 | * to the functions called when a no-page or a wp-page exception occurs. |
| 583 | */ |
| 584 | struct vm_operations_struct { |
| 585 | void (*open)(struct vm_area_struct * area); |
| 586 | /** |
| 587 | * @close: Called when the VMA is being removed from the MM. |
| 588 | * Context: User context. May sleep. Caller holds mmap_lock. |
| 589 | */ |
| 590 | void (*close)(struct vm_area_struct * area); |
| 591 | /* Called any time before splitting to check if it's allowed */ |
| 592 | int (*may_split)(struct vm_area_struct *area, unsigned long addr); |
| 593 | int (*mremap)(struct vm_area_struct *area); |
| 594 | /* |
| 595 | * Called by mprotect() to make driver-specific permission |
| 596 | * checks before mprotect() is finalised. The VMA must not |
| 597 | * be modified. Returns 0 if mprotect() can proceed. |
| 598 | */ |
| 599 | int (*mprotect)(struct vm_area_struct *vma, unsigned long start, |
| 600 | unsigned long end, unsigned long newflags); |
| 601 | vm_fault_t (*fault)(struct vm_fault *vmf); |
| 602 | vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); |
| 603 | vm_fault_t (*map_pages)(struct vm_fault *vmf, |
| 604 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
| 605 | unsigned long (*pagesize)(struct vm_area_struct * area); |
| 606 | |
| 607 | /* notification that a previously read-only page is about to become |
| 608 | * writable, if an error is returned it will cause a SIGBUS */ |
| 609 | vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); |
| 610 | |
| 611 | /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ |
| 612 | vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); |
| 613 | |
| 614 | /* called by access_process_vm when get_user_pages() fails, typically |
| 615 | * for use by special VMAs. See also generic_access_phys() for a generic |
| 616 | * implementation useful for any iomem mapping. |
| 617 | */ |
| 618 | int (*access)(struct vm_area_struct *vma, unsigned long addr, |
| 619 | void *buf, int len, int write); |
| 620 | |
| 621 | /* Called by the /proc/PID/maps code to ask the vma whether it |
| 622 | * has a special name. Returning non-NULL will also cause this |
| 623 | * vma to be dumped unconditionally. */ |
| 624 | const char *(*name)(struct vm_area_struct *vma); |
| 625 | |
| 626 | #ifdef CONFIG_NUMA |
| 627 | /* |
| 628 | * set_policy() op must add a reference to any non-NULL @new mempolicy |
| 629 | * to hold the policy upon return. Caller should pass NULL @new to |
| 630 | * remove a policy and fall back to surrounding context--i.e. do not |
| 631 | * install a MPOL_DEFAULT policy, nor the task or system default |
| 632 | * mempolicy. |
| 633 | */ |
| 634 | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
| 635 | |
| 636 | /* |
| 637 | * get_policy() op must add reference [mpol_get()] to any policy at |
| 638 | * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
| 639 | * in mm/mempolicy.c will do this automatically. |
| 640 | * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
| 641 | * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. |
| 642 | * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
| 643 | * must return NULL--i.e., do not "fallback" to task or system default |
| 644 | * policy. |
| 645 | */ |
| 646 | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
| 647 | unsigned long addr, pgoff_t *ilx); |
| 648 | #endif |
| 649 | /* |
| 650 | * Called by vm_normal_page() for special PTEs to find the |
| 651 | * page for @addr. This is useful if the default behavior |
| 652 | * (using pte_page()) would not find the correct page. |
| 653 | */ |
| 654 | struct page *(*find_special_page)(struct vm_area_struct *vma, |
| 655 | unsigned long addr); |
| 656 | }; |
| 657 | |
| 658 | #ifdef CONFIG_NUMA_BALANCING |
| 659 | static inline void vma_numab_state_init(struct vm_area_struct *vma) |
| 660 | { |
| 661 | vma->numab_state = NULL; |
| 662 | } |
| 663 | static inline void vma_numab_state_free(struct vm_area_struct *vma) |
| 664 | { |
| 665 | kfree(vma->numab_state); |
| 666 | } |
| 667 | #else |
| 668 | static inline void vma_numab_state_init(struct vm_area_struct *vma) {} |
| 669 | static inline void vma_numab_state_free(struct vm_area_struct *vma) {} |
| 670 | #endif /* CONFIG_NUMA_BALANCING */ |
| 671 | |
| 672 | /* |
| 673 | * These must be here rather than mmap_lock.h as dependent on vm_fault type, |
| 674 | * declared in this header. |
| 675 | */ |
| 676 | #ifdef CONFIG_PER_VMA_LOCK |
| 677 | static inline void release_fault_lock(struct vm_fault *vmf) |
| 678 | { |
| 679 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| 680 | vma_end_read(vmf->vma); |
| 681 | else |
| 682 | mmap_read_unlock(vmf->vma->vm_mm); |
| 683 | } |
| 684 | |
| 685 | static inline void assert_fault_locked(struct vm_fault *vmf) |
| 686 | { |
| 687 | if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| 688 | vma_assert_locked(vmf->vma); |
| 689 | else |
| 690 | mmap_assert_locked(vmf->vma->vm_mm); |
| 691 | } |
| 692 | #else |
| 693 | static inline void release_fault_lock(struct vm_fault *vmf) |
| 694 | { |
| 695 | mmap_read_unlock(vmf->vma->vm_mm); |
| 696 | } |
| 697 | |
| 698 | static inline void assert_fault_locked(struct vm_fault *vmf) |
| 699 | { |
| 700 | mmap_assert_locked(vmf->vma->vm_mm); |
| 701 | } |
| 702 | #endif /* CONFIG_PER_VMA_LOCK */ |
| 703 | |
| 704 | extern const struct vm_operations_struct vma_dummy_vm_ops; |
| 705 | |
| 706 | static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) |
| 707 | { |
| 708 | memset(vma, 0, sizeof(*vma)); |
| 709 | vma->vm_mm = mm; |
| 710 | vma->vm_ops = &vma_dummy_vm_ops; |
| 711 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
| 712 | vma_lock_init(vma, false); |
| 713 | } |
| 714 | |
| 715 | /* Use when VMA is not part of the VMA tree and needs no locking */ |
| 716 | static inline void vm_flags_init(struct vm_area_struct *vma, |
| 717 | vm_flags_t flags) |
| 718 | { |
| 719 | ACCESS_PRIVATE(vma, __vm_flags) = flags; |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Use when VMA is part of the VMA tree and modifications need coordination |
| 724 | * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and |
| 725 | * it should be locked explicitly beforehand. |
| 726 | */ |
| 727 | static inline void vm_flags_reset(struct vm_area_struct *vma, |
| 728 | vm_flags_t flags) |
| 729 | { |
| 730 | vma_assert_write_locked(vma); |
| 731 | vm_flags_init(vma, flags); |
| 732 | } |
| 733 | |
| 734 | static inline void vm_flags_reset_once(struct vm_area_struct *vma, |
| 735 | vm_flags_t flags) |
| 736 | { |
| 737 | vma_assert_write_locked(vma); |
| 738 | WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); |
| 739 | } |
| 740 | |
| 741 | static inline void vm_flags_set(struct vm_area_struct *vma, |
| 742 | vm_flags_t flags) |
| 743 | { |
| 744 | vma_start_write(vma); |
| 745 | ACCESS_PRIVATE(vma, __vm_flags) |= flags; |
| 746 | } |
| 747 | |
| 748 | static inline void vm_flags_clear(struct vm_area_struct *vma, |
| 749 | vm_flags_t flags) |
| 750 | { |
| 751 | vma_start_write(vma); |
| 752 | ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * Use only if VMA is not part of the VMA tree or has no other users and |
| 757 | * therefore needs no locking. |
| 758 | */ |
| 759 | static inline void __vm_flags_mod(struct vm_area_struct *vma, |
| 760 | vm_flags_t set, vm_flags_t clear) |
| 761 | { |
| 762 | vm_flags_init(vma, (vma->vm_flags | set) & ~clear); |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Use only when the order of set/clear operations is unimportant, otherwise |
| 767 | * use vm_flags_{set|clear} explicitly. |
| 768 | */ |
| 769 | static inline void vm_flags_mod(struct vm_area_struct *vma, |
| 770 | vm_flags_t set, vm_flags_t clear) |
| 771 | { |
| 772 | vma_start_write(vma); |
| 773 | __vm_flags_mod(vma, set, clear); |
| 774 | } |
| 775 | |
| 776 | static inline void vma_set_anonymous(struct vm_area_struct *vma) |
| 777 | { |
| 778 | vma->vm_ops = NULL; |
| 779 | } |
| 780 | |
| 781 | static inline bool vma_is_anonymous(struct vm_area_struct *vma) |
| 782 | { |
| 783 | return !vma->vm_ops; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Indicate if the VMA is a heap for the given task; for |
| 788 | * /proc/PID/maps that is the heap of the main task. |
| 789 | */ |
| 790 | static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) |
| 791 | { |
| 792 | return vma->vm_start < vma->vm_mm->brk && |
| 793 | vma->vm_end > vma->vm_mm->start_brk; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Indicate if the VMA is a stack for the given task; for |
| 798 | * /proc/PID/maps that is the stack of the main task. |
| 799 | */ |
| 800 | static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) |
| 801 | { |
| 802 | /* |
| 803 | * We make no effort to guess what a given thread considers to be |
| 804 | * its "stack". It's not even well-defined for programs written |
| 805 | * languages like Go. |
| 806 | */ |
| 807 | return vma->vm_start <= vma->vm_mm->start_stack && |
| 808 | vma->vm_end >= vma->vm_mm->start_stack; |
| 809 | } |
| 810 | |
| 811 | static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) |
| 812 | { |
| 813 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
| 814 | |
| 815 | if (!maybe_stack) |
| 816 | return false; |
| 817 | |
| 818 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
| 819 | VM_STACK_INCOMPLETE_SETUP) |
| 820 | return true; |
| 821 | |
| 822 | return false; |
| 823 | } |
| 824 | |
| 825 | static inline bool vma_is_foreign(struct vm_area_struct *vma) |
| 826 | { |
| 827 | if (!current->mm) |
| 828 | return true; |
| 829 | |
| 830 | if (current->mm != vma->vm_mm) |
| 831 | return true; |
| 832 | |
| 833 | return false; |
| 834 | } |
| 835 | |
| 836 | static inline bool vma_is_accessible(struct vm_area_struct *vma) |
| 837 | { |
| 838 | return vma->vm_flags & VM_ACCESS_FLAGS; |
| 839 | } |
| 840 | |
| 841 | static inline bool is_shared_maywrite(vm_flags_t vm_flags) |
| 842 | { |
| 843 | return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == |
| 844 | (VM_SHARED | VM_MAYWRITE); |
| 845 | } |
| 846 | |
| 847 | static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) |
| 848 | { |
| 849 | return is_shared_maywrite(vma->vm_flags); |
| 850 | } |
| 851 | |
| 852 | static inline |
| 853 | struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) |
| 854 | { |
| 855 | return mas_find(&vmi->mas, max - 1); |
| 856 | } |
| 857 | |
| 858 | static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) |
| 859 | { |
| 860 | /* |
| 861 | * Uses mas_find() to get the first VMA when the iterator starts. |
| 862 | * Calling mas_next() could skip the first entry. |
| 863 | */ |
| 864 | return mas_find(&vmi->mas, ULONG_MAX); |
| 865 | } |
| 866 | |
| 867 | static inline |
| 868 | struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) |
| 869 | { |
| 870 | return mas_next_range(&vmi->mas, ULONG_MAX); |
| 871 | } |
| 872 | |
| 873 | |
| 874 | static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) |
| 875 | { |
| 876 | return mas_prev(&vmi->mas, 0); |
| 877 | } |
| 878 | |
| 879 | static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, |
| 880 | unsigned long start, unsigned long end, gfp_t gfp) |
| 881 | { |
| 882 | __mas_set_range(&vmi->mas, start, end - 1); |
| 883 | mas_store_gfp(&vmi->mas, NULL, gfp); |
| 884 | if (unlikely(mas_is_err(&vmi->mas))) |
| 885 | return -ENOMEM; |
| 886 | |
| 887 | return 0; |
| 888 | } |
| 889 | |
| 890 | /* Free any unused preallocations */ |
| 891 | static inline void vma_iter_free(struct vma_iterator *vmi) |
| 892 | { |
| 893 | mas_destroy(&vmi->mas); |
| 894 | } |
| 895 | |
| 896 | static inline int vma_iter_bulk_store(struct vma_iterator *vmi, |
| 897 | struct vm_area_struct *vma) |
| 898 | { |
| 899 | vmi->mas.index = vma->vm_start; |
| 900 | vmi->mas.last = vma->vm_end - 1; |
| 901 | mas_store(&vmi->mas, vma); |
| 902 | if (unlikely(mas_is_err(&vmi->mas))) |
| 903 | return -ENOMEM; |
| 904 | |
| 905 | vma_mark_attached(vma); |
| 906 | return 0; |
| 907 | } |
| 908 | |
| 909 | static inline void vma_iter_invalidate(struct vma_iterator *vmi) |
| 910 | { |
| 911 | mas_pause(&vmi->mas); |
| 912 | } |
| 913 | |
| 914 | static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) |
| 915 | { |
| 916 | mas_set(&vmi->mas, addr); |
| 917 | } |
| 918 | |
| 919 | #define for_each_vma(__vmi, __vma) \ |
| 920 | while (((__vma) = vma_next(&(__vmi))) != NULL) |
| 921 | |
| 922 | /* The MM code likes to work with exclusive end addresses */ |
| 923 | #define for_each_vma_range(__vmi, __vma, __end) \ |
| 924 | while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) |
| 925 | |
| 926 | #ifdef CONFIG_SHMEM |
| 927 | /* |
| 928 | * The vma_is_shmem is not inline because it is used only by slow |
| 929 | * paths in userfault. |
| 930 | */ |
| 931 | bool vma_is_shmem(struct vm_area_struct *vma); |
| 932 | bool vma_is_anon_shmem(struct vm_area_struct *vma); |
| 933 | #else |
| 934 | static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } |
| 935 | static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } |
| 936 | #endif |
| 937 | |
| 938 | int vma_is_stack_for_current(struct vm_area_struct *vma); |
| 939 | |
| 940 | /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ |
| 941 | #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } |
| 942 | |
| 943 | struct mmu_gather; |
| 944 | struct inode; |
| 945 | |
| 946 | extern void prep_compound_page(struct page *page, unsigned int order); |
| 947 | |
| 948 | static inline unsigned int folio_large_order(const struct folio *folio) |
| 949 | { |
| 950 | return folio->_flags_1 & 0xff; |
| 951 | } |
| 952 | |
| 953 | #ifdef NR_PAGES_IN_LARGE_FOLIO |
| 954 | static inline long folio_large_nr_pages(const struct folio *folio) |
| 955 | { |
| 956 | return folio->_nr_pages; |
| 957 | } |
| 958 | #else |
| 959 | static inline long folio_large_nr_pages(const struct folio *folio) |
| 960 | { |
| 961 | return 1L << folio_large_order(folio); |
| 962 | } |
| 963 | #endif |
| 964 | |
| 965 | /* |
| 966 | * compound_order() can be called without holding a reference, which means |
| 967 | * that niceties like page_folio() don't work. These callers should be |
| 968 | * prepared to handle wild return values. For example, PG_head may be |
| 969 | * set before the order is initialised, or this may be a tail page. |
| 970 | * See compaction.c for some good examples. |
| 971 | */ |
| 972 | static inline unsigned int compound_order(struct page *page) |
| 973 | { |
| 974 | struct folio *folio = (struct folio *)page; |
| 975 | |
| 976 | if (!test_bit(PG_head, &folio->flags)) |
| 977 | return 0; |
| 978 | return folio_large_order(folio); |
| 979 | } |
| 980 | |
| 981 | /** |
| 982 | * folio_order - The allocation order of a folio. |
| 983 | * @folio: The folio. |
| 984 | * |
| 985 | * A folio is composed of 2^order pages. See get_order() for the definition |
| 986 | * of order. |
| 987 | * |
| 988 | * Return: The order of the folio. |
| 989 | */ |
| 990 | static inline unsigned int folio_order(const struct folio *folio) |
| 991 | { |
| 992 | if (!folio_test_large(folio)) |
| 993 | return 0; |
| 994 | return folio_large_order(folio); |
| 995 | } |
| 996 | |
| 997 | /** |
| 998 | * folio_reset_order - Reset the folio order and derived _nr_pages |
| 999 | * @folio: The folio. |
| 1000 | * |
| 1001 | * Reset the order and derived _nr_pages to 0. Must only be used in the |
| 1002 | * process of splitting large folios. |
| 1003 | */ |
| 1004 | static inline void folio_reset_order(struct folio *folio) |
| 1005 | { |
| 1006 | if (WARN_ON_ONCE(!folio_test_large(folio))) |
| 1007 | return; |
| 1008 | folio->_flags_1 &= ~0xffUL; |
| 1009 | #ifdef NR_PAGES_IN_LARGE_FOLIO |
| 1010 | folio->_nr_pages = 0; |
| 1011 | #endif |
| 1012 | } |
| 1013 | |
| 1014 | #include <linux/huge_mm.h> |
| 1015 | |
| 1016 | /* |
| 1017 | * Methods to modify the page usage count. |
| 1018 | * |
| 1019 | * What counts for a page usage: |
| 1020 | * - cache mapping (page->mapping) |
| 1021 | * - private data (page->private) |
| 1022 | * - page mapped in a task's page tables, each mapping |
| 1023 | * is counted separately |
| 1024 | * |
| 1025 | * Also, many kernel routines increase the page count before a critical |
| 1026 | * routine so they can be sure the page doesn't go away from under them. |
| 1027 | */ |
| 1028 | |
| 1029 | /* |
| 1030 | * Drop a ref, return true if the refcount fell to zero (the page has no users) |
| 1031 | */ |
| 1032 | static inline int put_page_testzero(struct page *page) |
| 1033 | { |
| 1034 | VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
| 1035 | return page_ref_dec_and_test(page); |
| 1036 | } |
| 1037 | |
| 1038 | static inline int folio_put_testzero(struct folio *folio) |
| 1039 | { |
| 1040 | return put_page_testzero(&folio->page); |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * Try to grab a ref unless the page has a refcount of zero, return false if |
| 1045 | * that is the case. |
| 1046 | * This can be called when MMU is off so it must not access |
| 1047 | * any of the virtual mappings. |
| 1048 | */ |
| 1049 | static inline bool get_page_unless_zero(struct page *page) |
| 1050 | { |
| 1051 | return page_ref_add_unless(page, 1, 0); |
| 1052 | } |
| 1053 | |
| 1054 | static inline struct folio *folio_get_nontail_page(struct page *page) |
| 1055 | { |
| 1056 | if (unlikely(!get_page_unless_zero(page))) |
| 1057 | return NULL; |
| 1058 | return (struct folio *)page; |
| 1059 | } |
| 1060 | |
| 1061 | extern int page_is_ram(unsigned long pfn); |
| 1062 | |
| 1063 | enum { |
| 1064 | REGION_INTERSECTS, |
| 1065 | REGION_DISJOINT, |
| 1066 | REGION_MIXED, |
| 1067 | }; |
| 1068 | |
| 1069 | int region_intersects(resource_size_t offset, size_t size, unsigned long flags, |
| 1070 | unsigned long desc); |
| 1071 | |
| 1072 | /* Support for virtually mapped pages */ |
| 1073 | struct page *vmalloc_to_page(const void *addr); |
| 1074 | unsigned long vmalloc_to_pfn(const void *addr); |
| 1075 | |
| 1076 | /* |
| 1077 | * Determine if an address is within the vmalloc range |
| 1078 | * |
| 1079 | * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
| 1080 | * is no special casing required. |
| 1081 | */ |
| 1082 | #ifdef CONFIG_MMU |
| 1083 | extern bool is_vmalloc_addr(const void *x); |
| 1084 | extern int is_vmalloc_or_module_addr(const void *x); |
| 1085 | #else |
| 1086 | static inline bool is_vmalloc_addr(const void *x) |
| 1087 | { |
| 1088 | return false; |
| 1089 | } |
| 1090 | static inline int is_vmalloc_or_module_addr(const void *x) |
| 1091 | { |
| 1092 | return 0; |
| 1093 | } |
| 1094 | #endif |
| 1095 | |
| 1096 | /* |
| 1097 | * How many times the entire folio is mapped as a single unit (eg by a |
| 1098 | * PMD or PUD entry). This is probably not what you want, except for |
| 1099 | * debugging purposes or implementation of other core folio_*() primitives. |
| 1100 | */ |
| 1101 | static inline int folio_entire_mapcount(const struct folio *folio) |
| 1102 | { |
| 1103 | VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| 1104 | if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) |
| 1105 | return 0; |
| 1106 | return atomic_read(&folio->_entire_mapcount) + 1; |
| 1107 | } |
| 1108 | |
| 1109 | static inline int folio_large_mapcount(const struct folio *folio) |
| 1110 | { |
| 1111 | VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); |
| 1112 | return atomic_read(&folio->_large_mapcount) + 1; |
| 1113 | } |
| 1114 | |
| 1115 | /** |
| 1116 | * folio_mapcount() - Number of mappings of this folio. |
| 1117 | * @folio: The folio. |
| 1118 | * |
| 1119 | * The folio mapcount corresponds to the number of present user page table |
| 1120 | * entries that reference any part of a folio. Each such present user page |
| 1121 | * table entry must be paired with exactly on folio reference. |
| 1122 | * |
| 1123 | * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts |
| 1124 | * exactly once. |
| 1125 | * |
| 1126 | * For hugetlb folios, each abstracted "hugetlb" user page table entry that |
| 1127 | * references the entire folio counts exactly once, even when such special |
| 1128 | * page table entries are comprised of multiple ordinary page table entries. |
| 1129 | * |
| 1130 | * Will report 0 for pages which cannot be mapped into userspace, such as |
| 1131 | * slab, page tables and similar. |
| 1132 | * |
| 1133 | * Return: The number of times this folio is mapped. |
| 1134 | */ |
| 1135 | static inline int folio_mapcount(const struct folio *folio) |
| 1136 | { |
| 1137 | int mapcount; |
| 1138 | |
| 1139 | if (likely(!folio_test_large(folio))) { |
| 1140 | mapcount = atomic_read(&folio->_mapcount) + 1; |
| 1141 | if (page_mapcount_is_type(mapcount)) |
| 1142 | mapcount = 0; |
| 1143 | return mapcount; |
| 1144 | } |
| 1145 | return folio_large_mapcount(folio); |
| 1146 | } |
| 1147 | |
| 1148 | /** |
| 1149 | * folio_mapped - Is this folio mapped into userspace? |
| 1150 | * @folio: The folio. |
| 1151 | * |
| 1152 | * Return: True if any page in this folio is referenced by user page tables. |
| 1153 | */ |
| 1154 | static inline bool folio_mapped(const struct folio *folio) |
| 1155 | { |
| 1156 | return folio_mapcount(folio) >= 1; |
| 1157 | } |
| 1158 | |
| 1159 | /* |
| 1160 | * Return true if this page is mapped into pagetables. |
| 1161 | * For compound page it returns true if any sub-page of compound page is mapped, |
| 1162 | * even if this particular sub-page is not itself mapped by any PTE or PMD. |
| 1163 | */ |
| 1164 | static inline bool page_mapped(const struct page *page) |
| 1165 | { |
| 1166 | return folio_mapped(page_folio(page)); |
| 1167 | } |
| 1168 | |
| 1169 | static inline struct page *virt_to_head_page(const void *x) |
| 1170 | { |
| 1171 | struct page *page = virt_to_page(x); |
| 1172 | |
| 1173 | return compound_head(page); |
| 1174 | } |
| 1175 | |
| 1176 | static inline struct folio *virt_to_folio(const void *x) |
| 1177 | { |
| 1178 | struct page *page = virt_to_page(x); |
| 1179 | |
| 1180 | return page_folio(page); |
| 1181 | } |
| 1182 | |
| 1183 | void __folio_put(struct folio *folio); |
| 1184 | |
| 1185 | void split_page(struct page *page, unsigned int order); |
| 1186 | void folio_copy(struct folio *dst, struct folio *src); |
| 1187 | int folio_mc_copy(struct folio *dst, struct folio *src); |
| 1188 | |
| 1189 | unsigned long nr_free_buffer_pages(void); |
| 1190 | |
| 1191 | /* Returns the number of bytes in this potentially compound page. */ |
| 1192 | static inline unsigned long page_size(struct page *page) |
| 1193 | { |
| 1194 | return PAGE_SIZE << compound_order(page); |
| 1195 | } |
| 1196 | |
| 1197 | /* Returns the number of bits needed for the number of bytes in a page */ |
| 1198 | static inline unsigned int page_shift(struct page *page) |
| 1199 | { |
| 1200 | return PAGE_SHIFT + compound_order(page); |
| 1201 | } |
| 1202 | |
| 1203 | /** |
| 1204 | * thp_order - Order of a transparent huge page. |
| 1205 | * @page: Head page of a transparent huge page. |
| 1206 | */ |
| 1207 | static inline unsigned int thp_order(struct page *page) |
| 1208 | { |
| 1209 | VM_BUG_ON_PGFLAGS(PageTail(page), page); |
| 1210 | return compound_order(page); |
| 1211 | } |
| 1212 | |
| 1213 | /** |
| 1214 | * thp_size - Size of a transparent huge page. |
| 1215 | * @page: Head page of a transparent huge page. |
| 1216 | * |
| 1217 | * Return: Number of bytes in this page. |
| 1218 | */ |
| 1219 | static inline unsigned long thp_size(struct page *page) |
| 1220 | { |
| 1221 | return PAGE_SIZE << thp_order(page); |
| 1222 | } |
| 1223 | |
| 1224 | #ifdef CONFIG_MMU |
| 1225 | /* |
| 1226 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
| 1227 | * servicing faults for write access. In the normal case, do always want |
| 1228 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
| 1229 | * that do not have writing enabled, when used by access_process_vm. |
| 1230 | */ |
| 1231 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| 1232 | { |
| 1233 | if (likely(vma->vm_flags & VM_WRITE)) |
| 1234 | pte = pte_mkwrite(pte, vma); |
| 1235 | return pte; |
| 1236 | } |
| 1237 | |
| 1238 | vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page); |
| 1239 | void set_pte_range(struct vm_fault *vmf, struct folio *folio, |
| 1240 | struct page *page, unsigned int nr, unsigned long addr); |
| 1241 | |
| 1242 | vm_fault_t finish_fault(struct vm_fault *vmf); |
| 1243 | #endif |
| 1244 | |
| 1245 | /* |
| 1246 | * Multiple processes may "see" the same page. E.g. for untouched |
| 1247 | * mappings of /dev/null, all processes see the same page full of |
| 1248 | * zeroes, and text pages of executables and shared libraries have |
| 1249 | * only one copy in memory, at most, normally. |
| 1250 | * |
| 1251 | * For the non-reserved pages, page_count(page) denotes a reference count. |
| 1252 | * page_count() == 0 means the page is free. page->lru is then used for |
| 1253 | * freelist management in the buddy allocator. |
| 1254 | * page_count() > 0 means the page has been allocated. |
| 1255 | * |
| 1256 | * Pages are allocated by the slab allocator in order to provide memory |
| 1257 | * to kmalloc and kmem_cache_alloc. In this case, the management of the |
| 1258 | * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
| 1259 | * unless a particular usage is carefully commented. (the responsibility of |
| 1260 | * freeing the kmalloc memory is the caller's, of course). |
| 1261 | * |
| 1262 | * A page may be used by anyone else who does a __get_free_page(). |
| 1263 | * In this case, page_count still tracks the references, and should only |
| 1264 | * be used through the normal accessor functions. The top bits of page->flags |
| 1265 | * and page->virtual store page management information, but all other fields |
| 1266 | * are unused and could be used privately, carefully. The management of this |
| 1267 | * page is the responsibility of the one who allocated it, and those who have |
| 1268 | * subsequently been given references to it. |
| 1269 | * |
| 1270 | * The other pages (we may call them "pagecache pages") are completely |
| 1271 | * managed by the Linux memory manager: I/O, buffers, swapping etc. |
| 1272 | * The following discussion applies only to them. |
| 1273 | * |
| 1274 | * A pagecache page contains an opaque `private' member, which belongs to the |
| 1275 | * page's address_space. Usually, this is the address of a circular list of |
| 1276 | * the page's disk buffers. PG_private must be set to tell the VM to call |
| 1277 | * into the filesystem to release these pages. |
| 1278 | * |
| 1279 | * A folio may belong to an inode's memory mapping. In this case, |
| 1280 | * folio->mapping points to the inode, and folio->index is the file |
| 1281 | * offset of the folio, in units of PAGE_SIZE. |
| 1282 | * |
| 1283 | * If pagecache pages are not associated with an inode, they are said to be |
| 1284 | * anonymous pages. These may become associated with the swapcache, and in that |
| 1285 | * case PG_swapcache is set, and page->private is an offset into the swapcache. |
| 1286 | * |
| 1287 | * In either case (swapcache or inode backed), the pagecache itself holds one |
| 1288 | * reference to the page. Setting PG_private should also increment the |
| 1289 | * refcount. The each user mapping also has a reference to the page. |
| 1290 | * |
| 1291 | * The pagecache pages are stored in a per-mapping radix tree, which is |
| 1292 | * rooted at mapping->i_pages, and indexed by offset. |
| 1293 | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
| 1294 | * lists, we instead now tag pages as dirty/writeback in the radix tree. |
| 1295 | * |
| 1296 | * All pagecache pages may be subject to I/O: |
| 1297 | * - inode pages may need to be read from disk, |
| 1298 | * - inode pages which have been modified and are MAP_SHARED may need |
| 1299 | * to be written back to the inode on disk, |
| 1300 | * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
| 1301 | * modified may need to be swapped out to swap space and (later) to be read |
| 1302 | * back into memory. |
| 1303 | */ |
| 1304 | |
| 1305 | /* 127: arbitrary random number, small enough to assemble well */ |
| 1306 | #define folio_ref_zero_or_close_to_overflow(folio) \ |
| 1307 | ((unsigned int) folio_ref_count(folio) + 127u <= 127u) |
| 1308 | |
| 1309 | /** |
| 1310 | * folio_get - Increment the reference count on a folio. |
| 1311 | * @folio: The folio. |
| 1312 | * |
| 1313 | * Context: May be called in any context, as long as you know that |
| 1314 | * you have a refcount on the folio. If you do not already have one, |
| 1315 | * folio_try_get() may be the right interface for you to use. |
| 1316 | */ |
| 1317 | static inline void folio_get(struct folio *folio) |
| 1318 | { |
| 1319 | VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); |
| 1320 | folio_ref_inc(folio); |
| 1321 | } |
| 1322 | |
| 1323 | static inline void get_page(struct page *page) |
| 1324 | { |
| 1325 | struct folio *folio = page_folio(page); |
| 1326 | if (WARN_ON_ONCE(folio_test_slab(folio))) |
| 1327 | return; |
| 1328 | folio_get(folio); |
| 1329 | } |
| 1330 | |
| 1331 | static inline __must_check bool try_get_page(struct page *page) |
| 1332 | { |
| 1333 | page = compound_head(page); |
| 1334 | if (WARN_ON_ONCE(page_ref_count(page) <= 0)) |
| 1335 | return false; |
| 1336 | page_ref_inc(page); |
| 1337 | return true; |
| 1338 | } |
| 1339 | |
| 1340 | /** |
| 1341 | * folio_put - Decrement the reference count on a folio. |
| 1342 | * @folio: The folio. |
| 1343 | * |
| 1344 | * If the folio's reference count reaches zero, the memory will be |
| 1345 | * released back to the page allocator and may be used by another |
| 1346 | * allocation immediately. Do not access the memory or the struct folio |
| 1347 | * after calling folio_put() unless you can be sure that it wasn't the |
| 1348 | * last reference. |
| 1349 | * |
| 1350 | * Context: May be called in process or interrupt context, but not in NMI |
| 1351 | * context. May be called while holding a spinlock. |
| 1352 | */ |
| 1353 | static inline void folio_put(struct folio *folio) |
| 1354 | { |
| 1355 | if (folio_put_testzero(folio)) |
| 1356 | __folio_put(folio); |
| 1357 | } |
| 1358 | |
| 1359 | /** |
| 1360 | * folio_put_refs - Reduce the reference count on a folio. |
| 1361 | * @folio: The folio. |
| 1362 | * @refs: The amount to subtract from the folio's reference count. |
| 1363 | * |
| 1364 | * If the folio's reference count reaches zero, the memory will be |
| 1365 | * released back to the page allocator and may be used by another |
| 1366 | * allocation immediately. Do not access the memory or the struct folio |
| 1367 | * after calling folio_put_refs() unless you can be sure that these weren't |
| 1368 | * the last references. |
| 1369 | * |
| 1370 | * Context: May be called in process or interrupt context, but not in NMI |
| 1371 | * context. May be called while holding a spinlock. |
| 1372 | */ |
| 1373 | static inline void folio_put_refs(struct folio *folio, int refs) |
| 1374 | { |
| 1375 | if (folio_ref_sub_and_test(folio, refs)) |
| 1376 | __folio_put(folio); |
| 1377 | } |
| 1378 | |
| 1379 | void folios_put_refs(struct folio_batch *folios, unsigned int *refs); |
| 1380 | |
| 1381 | /* |
| 1382 | * union release_pages_arg - an array of pages or folios |
| 1383 | * |
| 1384 | * release_pages() releases a simple array of multiple pages, and |
| 1385 | * accepts various different forms of said page array: either |
| 1386 | * a regular old boring array of pages, an array of folios, or |
| 1387 | * an array of encoded page pointers. |
| 1388 | * |
| 1389 | * The transparent union syntax for this kind of "any of these |
| 1390 | * argument types" is all kinds of ugly, so look away. |
| 1391 | */ |
| 1392 | typedef union { |
| 1393 | struct page **pages; |
| 1394 | struct folio **folios; |
| 1395 | struct encoded_page **encoded_pages; |
| 1396 | } release_pages_arg __attribute__ ((__transparent_union__)); |
| 1397 | |
| 1398 | void release_pages(release_pages_arg, int nr); |
| 1399 | |
| 1400 | /** |
| 1401 | * folios_put - Decrement the reference count on an array of folios. |
| 1402 | * @folios: The folios. |
| 1403 | * |
| 1404 | * Like folio_put(), but for a batch of folios. This is more efficient |
| 1405 | * than writing the loop yourself as it will optimise the locks which need |
| 1406 | * to be taken if the folios are freed. The folios batch is returned |
| 1407 | * empty and ready to be reused for another batch; there is no need to |
| 1408 | * reinitialise it. |
| 1409 | * |
| 1410 | * Context: May be called in process or interrupt context, but not in NMI |
| 1411 | * context. May be called while holding a spinlock. |
| 1412 | */ |
| 1413 | static inline void folios_put(struct folio_batch *folios) |
| 1414 | { |
| 1415 | folios_put_refs(folios, NULL); |
| 1416 | } |
| 1417 | |
| 1418 | static inline void put_page(struct page *page) |
| 1419 | { |
| 1420 | struct folio *folio = page_folio(page); |
| 1421 | |
| 1422 | if (folio_test_slab(folio)) |
| 1423 | return; |
| 1424 | |
| 1425 | folio_put(folio); |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload |
| 1430 | * the page's refcount so that two separate items are tracked: the original page |
| 1431 | * reference count, and also a new count of how many pin_user_pages() calls were |
| 1432 | * made against the page. ("gup-pinned" is another term for the latter). |
| 1433 | * |
| 1434 | * With this scheme, pin_user_pages() becomes special: such pages are marked as |
| 1435 | * distinct from normal pages. As such, the unpin_user_page() call (and its |
| 1436 | * variants) must be used in order to release gup-pinned pages. |
| 1437 | * |
| 1438 | * Choice of value: |
| 1439 | * |
| 1440 | * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference |
| 1441 | * counts with respect to pin_user_pages() and unpin_user_page() becomes |
| 1442 | * simpler, due to the fact that adding an even power of two to the page |
| 1443 | * refcount has the effect of using only the upper N bits, for the code that |
| 1444 | * counts up using the bias value. This means that the lower bits are left for |
| 1445 | * the exclusive use of the original code that increments and decrements by one |
| 1446 | * (or at least, by much smaller values than the bias value). |
| 1447 | * |
| 1448 | * Of course, once the lower bits overflow into the upper bits (and this is |
| 1449 | * OK, because subtraction recovers the original values), then visual inspection |
| 1450 | * no longer suffices to directly view the separate counts. However, for normal |
| 1451 | * applications that don't have huge page reference counts, this won't be an |
| 1452 | * issue. |
| 1453 | * |
| 1454 | * Locking: the lockless algorithm described in folio_try_get_rcu() |
| 1455 | * provides safe operation for get_user_pages(), folio_mkclean() and |
| 1456 | * other calls that race to set up page table entries. |
| 1457 | */ |
| 1458 | #define GUP_PIN_COUNTING_BIAS (1U << 10) |
| 1459 | |
| 1460 | void unpin_user_page(struct page *page); |
| 1461 | void unpin_folio(struct folio *folio); |
| 1462 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
| 1463 | bool make_dirty); |
| 1464 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
| 1465 | bool make_dirty); |
| 1466 | void unpin_user_pages(struct page **pages, unsigned long npages); |
| 1467 | void unpin_user_folio(struct folio *folio, unsigned long npages); |
| 1468 | void unpin_folios(struct folio **folios, unsigned long nfolios); |
| 1469 | |
| 1470 | static inline bool is_cow_mapping(vm_flags_t flags) |
| 1471 | { |
| 1472 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
| 1473 | } |
| 1474 | |
| 1475 | #ifndef CONFIG_MMU |
| 1476 | static inline bool is_nommu_shared_mapping(vm_flags_t flags) |
| 1477 | { |
| 1478 | /* |
| 1479 | * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected |
| 1480 | * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of |
| 1481 | * a file mapping. R/O MAP_PRIVATE mappings might still modify |
| 1482 | * underlying memory if ptrace is active, so this is only possible if |
| 1483 | * ptrace does not apply. Note that there is no mprotect() to upgrade |
| 1484 | * write permissions later. |
| 1485 | */ |
| 1486 | return flags & (VM_MAYSHARE | VM_MAYOVERLAY); |
| 1487 | } |
| 1488 | #endif |
| 1489 | |
| 1490 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| 1491 | #define SECTION_IN_PAGE_FLAGS |
| 1492 | #endif |
| 1493 | |
| 1494 | /* |
| 1495 | * The identification function is mainly used by the buddy allocator for |
| 1496 | * determining if two pages could be buddies. We are not really identifying |
| 1497 | * the zone since we could be using the section number id if we do not have |
| 1498 | * node id available in page flags. |
| 1499 | * We only guarantee that it will return the same value for two combinable |
| 1500 | * pages in a zone. |
| 1501 | */ |
| 1502 | static inline int page_zone_id(struct page *page) |
| 1503 | { |
| 1504 | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; |
| 1505 | } |
| 1506 | |
| 1507 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
| 1508 | int page_to_nid(const struct page *page); |
| 1509 | #else |
| 1510 | static inline int page_to_nid(const struct page *page) |
| 1511 | { |
| 1512 | return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; |
| 1513 | } |
| 1514 | #endif |
| 1515 | |
| 1516 | static inline int folio_nid(const struct folio *folio) |
| 1517 | { |
| 1518 | return page_to_nid(&folio->page); |
| 1519 | } |
| 1520 | |
| 1521 | #ifdef CONFIG_NUMA_BALANCING |
| 1522 | /* page access time bits needs to hold at least 4 seconds */ |
| 1523 | #define PAGE_ACCESS_TIME_MIN_BITS 12 |
| 1524 | #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS |
| 1525 | #define PAGE_ACCESS_TIME_BUCKETS \ |
| 1526 | (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) |
| 1527 | #else |
| 1528 | #define PAGE_ACCESS_TIME_BUCKETS 0 |
| 1529 | #endif |
| 1530 | |
| 1531 | #define PAGE_ACCESS_TIME_MASK \ |
| 1532 | (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) |
| 1533 | |
| 1534 | static inline int cpu_pid_to_cpupid(int cpu, int pid) |
| 1535 | { |
| 1536 | return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); |
| 1537 | } |
| 1538 | |
| 1539 | static inline int cpupid_to_pid(int cpupid) |
| 1540 | { |
| 1541 | return cpupid & LAST__PID_MASK; |
| 1542 | } |
| 1543 | |
| 1544 | static inline int cpupid_to_cpu(int cpupid) |
| 1545 | { |
| 1546 | return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; |
| 1547 | } |
| 1548 | |
| 1549 | static inline int cpupid_to_nid(int cpupid) |
| 1550 | { |
| 1551 | return cpu_to_node(cpupid_to_cpu(cpupid)); |
| 1552 | } |
| 1553 | |
| 1554 | static inline bool cpupid_pid_unset(int cpupid) |
| 1555 | { |
| 1556 | return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); |
| 1557 | } |
| 1558 | |
| 1559 | static inline bool cpupid_cpu_unset(int cpupid) |
| 1560 | { |
| 1561 | return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); |
| 1562 | } |
| 1563 | |
| 1564 | static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) |
| 1565 | { |
| 1566 | return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); |
| 1567 | } |
| 1568 | |
| 1569 | #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) |
| 1570 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
| 1571 | static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| 1572 | { |
| 1573 | return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); |
| 1574 | } |
| 1575 | |
| 1576 | static inline int folio_last_cpupid(struct folio *folio) |
| 1577 | { |
| 1578 | return folio->_last_cpupid; |
| 1579 | } |
| 1580 | static inline void page_cpupid_reset_last(struct page *page) |
| 1581 | { |
| 1582 | page->_last_cpupid = -1 & LAST_CPUPID_MASK; |
| 1583 | } |
| 1584 | #else |
| 1585 | static inline int folio_last_cpupid(struct folio *folio) |
| 1586 | { |
| 1587 | return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; |
| 1588 | } |
| 1589 | |
| 1590 | int folio_xchg_last_cpupid(struct folio *folio, int cpupid); |
| 1591 | |
| 1592 | static inline void page_cpupid_reset_last(struct page *page) |
| 1593 | { |
| 1594 | page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; |
| 1595 | } |
| 1596 | #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ |
| 1597 | |
| 1598 | static inline int folio_xchg_access_time(struct folio *folio, int time) |
| 1599 | { |
| 1600 | int last_time; |
| 1601 | |
| 1602 | last_time = folio_xchg_last_cpupid(folio, |
| 1603 | time >> PAGE_ACCESS_TIME_BUCKETS); |
| 1604 | return last_time << PAGE_ACCESS_TIME_BUCKETS; |
| 1605 | } |
| 1606 | |
| 1607 | static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| 1608 | { |
| 1609 | unsigned int pid_bit; |
| 1610 | |
| 1611 | pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); |
| 1612 | if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { |
| 1613 | __set_bit(pid_bit, &vma->numab_state->pids_active[1]); |
| 1614 | } |
| 1615 | } |
| 1616 | |
| 1617 | bool folio_use_access_time(struct folio *folio); |
| 1618 | #else /* !CONFIG_NUMA_BALANCING */ |
| 1619 | static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| 1620 | { |
| 1621 | return folio_nid(folio); /* XXX */ |
| 1622 | } |
| 1623 | |
| 1624 | static inline int folio_xchg_access_time(struct folio *folio, int time) |
| 1625 | { |
| 1626 | return 0; |
| 1627 | } |
| 1628 | |
| 1629 | static inline int folio_last_cpupid(struct folio *folio) |
| 1630 | { |
| 1631 | return folio_nid(folio); /* XXX */ |
| 1632 | } |
| 1633 | |
| 1634 | static inline int cpupid_to_nid(int cpupid) |
| 1635 | { |
| 1636 | return -1; |
| 1637 | } |
| 1638 | |
| 1639 | static inline int cpupid_to_pid(int cpupid) |
| 1640 | { |
| 1641 | return -1; |
| 1642 | } |
| 1643 | |
| 1644 | static inline int cpupid_to_cpu(int cpupid) |
| 1645 | { |
| 1646 | return -1; |
| 1647 | } |
| 1648 | |
| 1649 | static inline int cpu_pid_to_cpupid(int nid, int pid) |
| 1650 | { |
| 1651 | return -1; |
| 1652 | } |
| 1653 | |
| 1654 | static inline bool cpupid_pid_unset(int cpupid) |
| 1655 | { |
| 1656 | return true; |
| 1657 | } |
| 1658 | |
| 1659 | static inline void page_cpupid_reset_last(struct page *page) |
| 1660 | { |
| 1661 | } |
| 1662 | |
| 1663 | static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) |
| 1664 | { |
| 1665 | return false; |
| 1666 | } |
| 1667 | |
| 1668 | static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| 1669 | { |
| 1670 | } |
| 1671 | static inline bool folio_use_access_time(struct folio *folio) |
| 1672 | { |
| 1673 | return false; |
| 1674 | } |
| 1675 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1676 | |
| 1677 | #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) |
| 1678 | |
| 1679 | /* |
| 1680 | * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid |
| 1681 | * setting tags for all pages to native kernel tag value 0xff, as the default |
| 1682 | * value 0x00 maps to 0xff. |
| 1683 | */ |
| 1684 | |
| 1685 | static inline u8 page_kasan_tag(const struct page *page) |
| 1686 | { |
| 1687 | u8 tag = KASAN_TAG_KERNEL; |
| 1688 | |
| 1689 | if (kasan_enabled()) { |
| 1690 | tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; |
| 1691 | tag ^= 0xff; |
| 1692 | } |
| 1693 | |
| 1694 | return tag; |
| 1695 | } |
| 1696 | |
| 1697 | static inline void page_kasan_tag_set(struct page *page, u8 tag) |
| 1698 | { |
| 1699 | unsigned long old_flags, flags; |
| 1700 | |
| 1701 | if (!kasan_enabled()) |
| 1702 | return; |
| 1703 | |
| 1704 | tag ^= 0xff; |
| 1705 | old_flags = READ_ONCE(page->flags); |
| 1706 | do { |
| 1707 | flags = old_flags; |
| 1708 | flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); |
| 1709 | flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; |
| 1710 | } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); |
| 1711 | } |
| 1712 | |
| 1713 | static inline void page_kasan_tag_reset(struct page *page) |
| 1714 | { |
| 1715 | if (kasan_enabled()) |
| 1716 | page_kasan_tag_set(page, KASAN_TAG_KERNEL); |
| 1717 | } |
| 1718 | |
| 1719 | #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| 1720 | |
| 1721 | static inline u8 page_kasan_tag(const struct page *page) |
| 1722 | { |
| 1723 | return 0xff; |
| 1724 | } |
| 1725 | |
| 1726 | static inline void page_kasan_tag_set(struct page *page, u8 tag) { } |
| 1727 | static inline void page_kasan_tag_reset(struct page *page) { } |
| 1728 | |
| 1729 | #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| 1730 | |
| 1731 | static inline struct zone *page_zone(const struct page *page) |
| 1732 | { |
| 1733 | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
| 1734 | } |
| 1735 | |
| 1736 | static inline pg_data_t *page_pgdat(const struct page *page) |
| 1737 | { |
| 1738 | return NODE_DATA(page_to_nid(page)); |
| 1739 | } |
| 1740 | |
| 1741 | static inline struct zone *folio_zone(const struct folio *folio) |
| 1742 | { |
| 1743 | return page_zone(&folio->page); |
| 1744 | } |
| 1745 | |
| 1746 | static inline pg_data_t *folio_pgdat(const struct folio *folio) |
| 1747 | { |
| 1748 | return page_pgdat(&folio->page); |
| 1749 | } |
| 1750 | |
| 1751 | #ifdef SECTION_IN_PAGE_FLAGS |
| 1752 | static inline void set_page_section(struct page *page, unsigned long section) |
| 1753 | { |
| 1754 | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
| 1755 | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
| 1756 | } |
| 1757 | |
| 1758 | static inline unsigned long page_to_section(const struct page *page) |
| 1759 | { |
| 1760 | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
| 1761 | } |
| 1762 | #endif |
| 1763 | |
| 1764 | /** |
| 1765 | * folio_pfn - Return the Page Frame Number of a folio. |
| 1766 | * @folio: The folio. |
| 1767 | * |
| 1768 | * A folio may contain multiple pages. The pages have consecutive |
| 1769 | * Page Frame Numbers. |
| 1770 | * |
| 1771 | * Return: The Page Frame Number of the first page in the folio. |
| 1772 | */ |
| 1773 | static inline unsigned long folio_pfn(const struct folio *folio) |
| 1774 | { |
| 1775 | return page_to_pfn(&folio->page); |
| 1776 | } |
| 1777 | |
| 1778 | static inline struct folio *pfn_folio(unsigned long pfn) |
| 1779 | { |
| 1780 | return page_folio(pfn_to_page(pfn)); |
| 1781 | } |
| 1782 | |
| 1783 | #ifdef CONFIG_MMU |
| 1784 | static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) |
| 1785 | { |
| 1786 | return pfn_pte(page_to_pfn(page), pgprot); |
| 1787 | } |
| 1788 | |
| 1789 | /** |
| 1790 | * folio_mk_pte - Create a PTE for this folio |
| 1791 | * @folio: The folio to create a PTE for |
| 1792 | * @pgprot: The page protection bits to use |
| 1793 | * |
| 1794 | * Create a page table entry for the first page of this folio. |
| 1795 | * This is suitable for passing to set_ptes(). |
| 1796 | * |
| 1797 | * Return: A page table entry suitable for mapping this folio. |
| 1798 | */ |
| 1799 | static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot) |
| 1800 | { |
| 1801 | return pfn_pte(folio_pfn(folio), pgprot); |
| 1802 | } |
| 1803 | |
| 1804 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 1805 | /** |
| 1806 | * folio_mk_pmd - Create a PMD for this folio |
| 1807 | * @folio: The folio to create a PMD for |
| 1808 | * @pgprot: The page protection bits to use |
| 1809 | * |
| 1810 | * Create a page table entry for the first page of this folio. |
| 1811 | * This is suitable for passing to set_pmd_at(). |
| 1812 | * |
| 1813 | * Return: A page table entry suitable for mapping this folio. |
| 1814 | */ |
| 1815 | static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot) |
| 1816 | { |
| 1817 | return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot)); |
| 1818 | } |
| 1819 | #endif |
| 1820 | #endif /* CONFIG_MMU */ |
| 1821 | |
| 1822 | static inline bool folio_has_pincount(const struct folio *folio) |
| 1823 | { |
| 1824 | if (IS_ENABLED(CONFIG_64BIT)) |
| 1825 | return folio_test_large(folio); |
| 1826 | return folio_order(folio) > 1; |
| 1827 | } |
| 1828 | |
| 1829 | /** |
| 1830 | * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. |
| 1831 | * @folio: The folio. |
| 1832 | * |
| 1833 | * This function checks if a folio has been pinned via a call to |
| 1834 | * a function in the pin_user_pages() family. |
| 1835 | * |
| 1836 | * For small folios, the return value is partially fuzzy: false is not fuzzy, |
| 1837 | * because it means "definitely not pinned for DMA", but true means "probably |
| 1838 | * pinned for DMA, but possibly a false positive due to having at least |
| 1839 | * GUP_PIN_COUNTING_BIAS worth of normal folio references". |
| 1840 | * |
| 1841 | * False positives are OK, because: a) it's unlikely for a folio to |
| 1842 | * get that many refcounts, and b) all the callers of this routine are |
| 1843 | * expected to be able to deal gracefully with a false positive. |
| 1844 | * |
| 1845 | * For most large folios, the result will be exactly correct. That's because |
| 1846 | * we have more tracking data available: the _pincount field is used |
| 1847 | * instead of the GUP_PIN_COUNTING_BIAS scheme. |
| 1848 | * |
| 1849 | * For more information, please see Documentation/core-api/pin_user_pages.rst. |
| 1850 | * |
| 1851 | * Return: True, if it is likely that the folio has been "dma-pinned". |
| 1852 | * False, if the folio is definitely not dma-pinned. |
| 1853 | */ |
| 1854 | static inline bool folio_maybe_dma_pinned(struct folio *folio) |
| 1855 | { |
| 1856 | if (folio_has_pincount(folio)) |
| 1857 | return atomic_read(&folio->_pincount) > 0; |
| 1858 | |
| 1859 | /* |
| 1860 | * folio_ref_count() is signed. If that refcount overflows, then |
| 1861 | * folio_ref_count() returns a negative value, and callers will avoid |
| 1862 | * further incrementing the refcount. |
| 1863 | * |
| 1864 | * Here, for that overflow case, use the sign bit to count a little |
| 1865 | * bit higher via unsigned math, and thus still get an accurate result. |
| 1866 | */ |
| 1867 | return ((unsigned int)folio_ref_count(folio)) >= |
| 1868 | GUP_PIN_COUNTING_BIAS; |
| 1869 | } |
| 1870 | |
| 1871 | /* |
| 1872 | * This should most likely only be called during fork() to see whether we |
| 1873 | * should break the cow immediately for an anon page on the src mm. |
| 1874 | * |
| 1875 | * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. |
| 1876 | */ |
| 1877 | static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, |
| 1878 | struct folio *folio) |
| 1879 | { |
| 1880 | VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); |
| 1881 | |
| 1882 | if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) |
| 1883 | return false; |
| 1884 | |
| 1885 | return folio_maybe_dma_pinned(folio); |
| 1886 | } |
| 1887 | |
| 1888 | /** |
| 1889 | * is_zero_page - Query if a page is a zero page |
| 1890 | * @page: The page to query |
| 1891 | * |
| 1892 | * This returns true if @page is one of the permanent zero pages. |
| 1893 | */ |
| 1894 | static inline bool is_zero_page(const struct page *page) |
| 1895 | { |
| 1896 | return is_zero_pfn(page_to_pfn(page)); |
| 1897 | } |
| 1898 | |
| 1899 | /** |
| 1900 | * is_zero_folio - Query if a folio is a zero page |
| 1901 | * @folio: The folio to query |
| 1902 | * |
| 1903 | * This returns true if @folio is one of the permanent zero pages. |
| 1904 | */ |
| 1905 | static inline bool is_zero_folio(const struct folio *folio) |
| 1906 | { |
| 1907 | return is_zero_page(&folio->page); |
| 1908 | } |
| 1909 | |
| 1910 | /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ |
| 1911 | #ifdef CONFIG_MIGRATION |
| 1912 | static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| 1913 | { |
| 1914 | #ifdef CONFIG_CMA |
| 1915 | int mt = folio_migratetype(folio); |
| 1916 | |
| 1917 | if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) |
| 1918 | return false; |
| 1919 | #endif |
| 1920 | /* The zero page can be "pinned" but gets special handling. */ |
| 1921 | if (is_zero_folio(folio)) |
| 1922 | return true; |
| 1923 | |
| 1924 | /* Coherent device memory must always allow eviction. */ |
| 1925 | if (folio_is_device_coherent(folio)) |
| 1926 | return false; |
| 1927 | |
| 1928 | /* |
| 1929 | * Filesystems can only tolerate transient delays to truncate and |
| 1930 | * hole-punch operations |
| 1931 | */ |
| 1932 | if (folio_is_fsdax(folio)) |
| 1933 | return false; |
| 1934 | |
| 1935 | /* Otherwise, non-movable zone folios can be pinned. */ |
| 1936 | return !folio_is_zone_movable(folio); |
| 1937 | |
| 1938 | } |
| 1939 | #else |
| 1940 | static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| 1941 | { |
| 1942 | return true; |
| 1943 | } |
| 1944 | #endif |
| 1945 | |
| 1946 | static inline void set_page_zone(struct page *page, enum zone_type zone) |
| 1947 | { |
| 1948 | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
| 1949 | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
| 1950 | } |
| 1951 | |
| 1952 | static inline void set_page_node(struct page *page, unsigned long node) |
| 1953 | { |
| 1954 | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
| 1955 | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
| 1956 | } |
| 1957 | |
| 1958 | static inline void set_page_links(struct page *page, enum zone_type zone, |
| 1959 | unsigned long node, unsigned long pfn) |
| 1960 | { |
| 1961 | set_page_zone(page, zone); |
| 1962 | set_page_node(page, node); |
| 1963 | #ifdef SECTION_IN_PAGE_FLAGS |
| 1964 | set_page_section(page, pfn_to_section_nr(pfn)); |
| 1965 | #endif |
| 1966 | } |
| 1967 | |
| 1968 | /** |
| 1969 | * folio_nr_pages - The number of pages in the folio. |
| 1970 | * @folio: The folio. |
| 1971 | * |
| 1972 | * Return: A positive power of two. |
| 1973 | */ |
| 1974 | static inline long folio_nr_pages(const struct folio *folio) |
| 1975 | { |
| 1976 | if (!folio_test_large(folio)) |
| 1977 | return 1; |
| 1978 | return folio_large_nr_pages(folio); |
| 1979 | } |
| 1980 | |
| 1981 | /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ |
| 1982 | #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE |
| 1983 | #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) |
| 1984 | #else |
| 1985 | #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES |
| 1986 | #endif |
| 1987 | |
| 1988 | /* |
| 1989 | * compound_nr() returns the number of pages in this potentially compound |
| 1990 | * page. compound_nr() can be called on a tail page, and is defined to |
| 1991 | * return 1 in that case. |
| 1992 | */ |
| 1993 | static inline long compound_nr(struct page *page) |
| 1994 | { |
| 1995 | struct folio *folio = (struct folio *)page; |
| 1996 | |
| 1997 | if (!test_bit(PG_head, &folio->flags)) |
| 1998 | return 1; |
| 1999 | return folio_large_nr_pages(folio); |
| 2000 | } |
| 2001 | |
| 2002 | /** |
| 2003 | * folio_next - Move to the next physical folio. |
| 2004 | * @folio: The folio we're currently operating on. |
| 2005 | * |
| 2006 | * If you have physically contiguous memory which may span more than |
| 2007 | * one folio (eg a &struct bio_vec), use this function to move from one |
| 2008 | * folio to the next. Do not use it if the memory is only virtually |
| 2009 | * contiguous as the folios are almost certainly not adjacent to each |
| 2010 | * other. This is the folio equivalent to writing ``page++``. |
| 2011 | * |
| 2012 | * Context: We assume that the folios are refcounted and/or locked at a |
| 2013 | * higher level and do not adjust the reference counts. |
| 2014 | * Return: The next struct folio. |
| 2015 | */ |
| 2016 | static inline struct folio *folio_next(struct folio *folio) |
| 2017 | { |
| 2018 | return (struct folio *)folio_page(folio, folio_nr_pages(folio)); |
| 2019 | } |
| 2020 | |
| 2021 | /** |
| 2022 | * folio_shift - The size of the memory described by this folio. |
| 2023 | * @folio: The folio. |
| 2024 | * |
| 2025 | * A folio represents a number of bytes which is a power-of-two in size. |
| 2026 | * This function tells you which power-of-two the folio is. See also |
| 2027 | * folio_size() and folio_order(). |
| 2028 | * |
| 2029 | * Context: The caller should have a reference on the folio to prevent |
| 2030 | * it from being split. It is not necessary for the folio to be locked. |
| 2031 | * Return: The base-2 logarithm of the size of this folio. |
| 2032 | */ |
| 2033 | static inline unsigned int folio_shift(const struct folio *folio) |
| 2034 | { |
| 2035 | return PAGE_SHIFT + folio_order(folio); |
| 2036 | } |
| 2037 | |
| 2038 | /** |
| 2039 | * folio_size - The number of bytes in a folio. |
| 2040 | * @folio: The folio. |
| 2041 | * |
| 2042 | * Context: The caller should have a reference on the folio to prevent |
| 2043 | * it from being split. It is not necessary for the folio to be locked. |
| 2044 | * Return: The number of bytes in this folio. |
| 2045 | */ |
| 2046 | static inline size_t folio_size(const struct folio *folio) |
| 2047 | { |
| 2048 | return PAGE_SIZE << folio_order(folio); |
| 2049 | } |
| 2050 | |
| 2051 | /** |
| 2052 | * folio_maybe_mapped_shared - Whether the folio is mapped into the page |
| 2053 | * tables of more than one MM |
| 2054 | * @folio: The folio. |
| 2055 | * |
| 2056 | * This function checks if the folio maybe currently mapped into more than one |
| 2057 | * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single |
| 2058 | * MM ("mapped exclusively"). |
| 2059 | * |
| 2060 | * For KSM folios, this function also returns "mapped shared" when a folio is |
| 2061 | * mapped multiple times into the same MM, because the individual page mappings |
| 2062 | * are independent. |
| 2063 | * |
| 2064 | * For small anonymous folios and anonymous hugetlb folios, the return |
| 2065 | * value will be exactly correct: non-KSM folios can only be mapped at most once |
| 2066 | * into an MM, and they cannot be partially mapped. KSM folios are |
| 2067 | * considered shared even if mapped multiple times into the same MM. |
| 2068 | * |
| 2069 | * For other folios, the result can be fuzzy: |
| 2070 | * #. For partially-mappable large folios (THP), the return value can wrongly |
| 2071 | * indicate "mapped shared" (false positive) if a folio was mapped by |
| 2072 | * more than two MMs at one point in time. |
| 2073 | * #. For pagecache folios (including hugetlb), the return value can wrongly |
| 2074 | * indicate "mapped shared" (false positive) when two VMAs in the same MM |
| 2075 | * cover the same file range. |
| 2076 | * |
| 2077 | * Further, this function only considers current page table mappings that |
| 2078 | * are tracked using the folio mapcount(s). |
| 2079 | * |
| 2080 | * This function does not consider: |
| 2081 | * #. If the folio might get mapped in the (near) future (e.g., swapcache, |
| 2082 | * pagecache, temporary unmapping for migration). |
| 2083 | * #. If the folio is mapped differently (VM_PFNMAP). |
| 2084 | * #. If hugetlb page table sharing applies. Callers might want to check |
| 2085 | * hugetlb_pmd_shared(). |
| 2086 | * |
| 2087 | * Return: Whether the folio is estimated to be mapped into more than one MM. |
| 2088 | */ |
| 2089 | static inline bool folio_maybe_mapped_shared(struct folio *folio) |
| 2090 | { |
| 2091 | int mapcount = folio_mapcount(folio); |
| 2092 | |
| 2093 | /* Only partially-mappable folios require more care. */ |
| 2094 | if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) |
| 2095 | return mapcount > 1; |
| 2096 | |
| 2097 | /* |
| 2098 | * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... |
| 2099 | * simply assume "mapped shared", nobody should really care |
| 2100 | * about this for arbitrary kernel allocations. |
| 2101 | */ |
| 2102 | if (!IS_ENABLED(CONFIG_MM_ID)) |
| 2103 | return true; |
| 2104 | |
| 2105 | /* |
| 2106 | * A single mapping implies "mapped exclusively", even if the |
| 2107 | * folio flag says something different: it's easier to handle this |
| 2108 | * case here instead of on the RMAP hot path. |
| 2109 | */ |
| 2110 | if (mapcount <= 1) |
| 2111 | return false; |
| 2112 | return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids); |
| 2113 | } |
| 2114 | |
| 2115 | /** |
| 2116 | * folio_expected_ref_count - calculate the expected folio refcount |
| 2117 | * @folio: the folio |
| 2118 | * |
| 2119 | * Calculate the expected folio refcount, taking references from the pagecache, |
| 2120 | * swapcache, PG_private and page table mappings into account. Useful in |
| 2121 | * combination with folio_ref_count() to detect unexpected references (e.g., |
| 2122 | * GUP or other temporary references). |
| 2123 | * |
| 2124 | * Does currently not consider references from the LRU cache. If the folio |
| 2125 | * was isolated from the LRU (which is the case during migration or split), |
| 2126 | * the LRU cache does not apply. |
| 2127 | * |
| 2128 | * Calling this function on an unmapped folio -- !folio_mapped() -- that is |
| 2129 | * locked will return a stable result. |
| 2130 | * |
| 2131 | * Calling this function on a mapped folio will not result in a stable result, |
| 2132 | * because nothing stops additional page table mappings from coming (e.g., |
| 2133 | * fork()) or going (e.g., munmap()). |
| 2134 | * |
| 2135 | * Calling this function without the folio lock will also not result in a |
| 2136 | * stable result: for example, the folio might get dropped from the swapcache |
| 2137 | * concurrently. |
| 2138 | * |
| 2139 | * However, even when called without the folio lock or on a mapped folio, |
| 2140 | * this function can be used to detect unexpected references early (for example, |
| 2141 | * if it makes sense to even lock the folio and unmap it). |
| 2142 | * |
| 2143 | * The caller must add any reference (e.g., from folio_try_get()) it might be |
| 2144 | * holding itself to the result. |
| 2145 | * |
| 2146 | * Returns the expected folio refcount. |
| 2147 | */ |
| 2148 | static inline int folio_expected_ref_count(const struct folio *folio) |
| 2149 | { |
| 2150 | const int order = folio_order(folio); |
| 2151 | int ref_count = 0; |
| 2152 | |
| 2153 | if (WARN_ON_ONCE(folio_test_slab(folio))) |
| 2154 | return 0; |
| 2155 | |
| 2156 | if (folio_test_anon(folio)) { |
| 2157 | /* One reference per page from the swapcache. */ |
| 2158 | ref_count += folio_test_swapcache(folio) << order; |
| 2159 | } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) { |
| 2160 | /* One reference per page from the pagecache. */ |
| 2161 | ref_count += !!folio->mapping << order; |
| 2162 | /* One reference from PG_private. */ |
| 2163 | ref_count += folio_test_private(folio); |
| 2164 | } |
| 2165 | |
| 2166 | /* One reference per page table mapping. */ |
| 2167 | return ref_count + folio_mapcount(folio); |
| 2168 | } |
| 2169 | |
| 2170 | #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE |
| 2171 | static inline int arch_make_folio_accessible(struct folio *folio) |
| 2172 | { |
| 2173 | return 0; |
| 2174 | } |
| 2175 | #endif |
| 2176 | |
| 2177 | /* |
| 2178 | * Some inline functions in vmstat.h depend on page_zone() |
| 2179 | */ |
| 2180 | #include <linux/vmstat.h> |
| 2181 | |
| 2182 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
| 2183 | #define HASHED_PAGE_VIRTUAL |
| 2184 | #endif |
| 2185 | |
| 2186 | #if defined(WANT_PAGE_VIRTUAL) |
| 2187 | static inline void *page_address(const struct page *page) |
| 2188 | { |
| 2189 | return page->virtual; |
| 2190 | } |
| 2191 | static inline void set_page_address(struct page *page, void *address) |
| 2192 | { |
| 2193 | page->virtual = address; |
| 2194 | } |
| 2195 | #define page_address_init() do { } while(0) |
| 2196 | #endif |
| 2197 | |
| 2198 | #if defined(HASHED_PAGE_VIRTUAL) |
| 2199 | void *page_address(const struct page *page); |
| 2200 | void set_page_address(struct page *page, void *virtual); |
| 2201 | void page_address_init(void); |
| 2202 | #endif |
| 2203 | |
| 2204 | static __always_inline void *lowmem_page_address(const struct page *page) |
| 2205 | { |
| 2206 | return page_to_virt(page); |
| 2207 | } |
| 2208 | |
| 2209 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
| 2210 | #define page_address(page) lowmem_page_address(page) |
| 2211 | #define set_page_address(page, address) do { } while(0) |
| 2212 | #define page_address_init() do { } while(0) |
| 2213 | #endif |
| 2214 | |
| 2215 | static inline void *folio_address(const struct folio *folio) |
| 2216 | { |
| 2217 | return page_address(&folio->page); |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | * Return true only if the page has been allocated with |
| 2222 | * ALLOC_NO_WATERMARKS and the low watermark was not |
| 2223 | * met implying that the system is under some pressure. |
| 2224 | */ |
| 2225 | static inline bool page_is_pfmemalloc(const struct page *page) |
| 2226 | { |
| 2227 | /* |
| 2228 | * lru.next has bit 1 set if the page is allocated from the |
| 2229 | * pfmemalloc reserves. Callers may simply overwrite it if |
| 2230 | * they do not need to preserve that information. |
| 2231 | */ |
| 2232 | return (uintptr_t)page->lru.next & BIT(1); |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | * Return true only if the folio has been allocated with |
| 2237 | * ALLOC_NO_WATERMARKS and the low watermark was not |
| 2238 | * met implying that the system is under some pressure. |
| 2239 | */ |
| 2240 | static inline bool folio_is_pfmemalloc(const struct folio *folio) |
| 2241 | { |
| 2242 | /* |
| 2243 | * lru.next has bit 1 set if the page is allocated from the |
| 2244 | * pfmemalloc reserves. Callers may simply overwrite it if |
| 2245 | * they do not need to preserve that information. |
| 2246 | */ |
| 2247 | return (uintptr_t)folio->lru.next & BIT(1); |
| 2248 | } |
| 2249 | |
| 2250 | /* |
| 2251 | * Only to be called by the page allocator on a freshly allocated |
| 2252 | * page. |
| 2253 | */ |
| 2254 | static inline void set_page_pfmemalloc(struct page *page) |
| 2255 | { |
| 2256 | page->lru.next = (void *)BIT(1); |
| 2257 | } |
| 2258 | |
| 2259 | static inline void clear_page_pfmemalloc(struct page *page) |
| 2260 | { |
| 2261 | page->lru.next = NULL; |
| 2262 | } |
| 2263 | |
| 2264 | /* |
| 2265 | * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
| 2266 | */ |
| 2267 | extern void pagefault_out_of_memory(void); |
| 2268 | |
| 2269 | #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
| 2270 | #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) |
| 2271 | |
| 2272 | /* |
| 2273 | * Parameter block passed down to zap_pte_range in exceptional cases. |
| 2274 | */ |
| 2275 | struct zap_details { |
| 2276 | struct folio *single_folio; /* Locked folio to be unmapped */ |
| 2277 | bool even_cows; /* Zap COWed private pages too? */ |
| 2278 | bool reclaim_pt; /* Need reclaim page tables? */ |
| 2279 | zap_flags_t zap_flags; /* Extra flags for zapping */ |
| 2280 | }; |
| 2281 | |
| 2282 | /* |
| 2283 | * Whether to drop the pte markers, for example, the uffd-wp information for |
| 2284 | * file-backed memory. This should only be specified when we will completely |
| 2285 | * drop the page in the mm, either by truncation or unmapping of the vma. By |
| 2286 | * default, the flag is not set. |
| 2287 | */ |
| 2288 | #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) |
| 2289 | /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ |
| 2290 | #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) |
| 2291 | |
| 2292 | #ifdef CONFIG_SCHED_MM_CID |
| 2293 | void sched_mm_cid_before_execve(struct task_struct *t); |
| 2294 | void sched_mm_cid_after_execve(struct task_struct *t); |
| 2295 | void sched_mm_cid_fork(struct task_struct *t); |
| 2296 | void sched_mm_cid_exit_signals(struct task_struct *t); |
| 2297 | static inline int task_mm_cid(struct task_struct *t) |
| 2298 | { |
| 2299 | return t->mm_cid; |
| 2300 | } |
| 2301 | #else |
| 2302 | static inline void sched_mm_cid_before_execve(struct task_struct *t) { } |
| 2303 | static inline void sched_mm_cid_after_execve(struct task_struct *t) { } |
| 2304 | static inline void sched_mm_cid_fork(struct task_struct *t) { } |
| 2305 | static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } |
| 2306 | static inline int task_mm_cid(struct task_struct *t) |
| 2307 | { |
| 2308 | /* |
| 2309 | * Use the processor id as a fall-back when the mm cid feature is |
| 2310 | * disabled. This provides functional per-cpu data structure accesses |
| 2311 | * in user-space, althrough it won't provide the memory usage benefits. |
| 2312 | */ |
| 2313 | return raw_smp_processor_id(); |
| 2314 | } |
| 2315 | #endif |
| 2316 | |
| 2317 | #ifdef CONFIG_MMU |
| 2318 | extern bool can_do_mlock(void); |
| 2319 | #else |
| 2320 | static inline bool can_do_mlock(void) { return false; } |
| 2321 | #endif |
| 2322 | extern int user_shm_lock(size_t, struct ucounts *); |
| 2323 | extern void user_shm_unlock(size_t, struct ucounts *); |
| 2324 | |
| 2325 | struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, |
| 2326 | pte_t pte); |
| 2327 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
| 2328 | pte_t pte); |
| 2329 | struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, |
| 2330 | unsigned long addr, pmd_t pmd); |
| 2331 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, |
| 2332 | pmd_t pmd); |
| 2333 | |
| 2334 | void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
| 2335 | unsigned long size); |
| 2336 | void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
| 2337 | unsigned long size, struct zap_details *details); |
| 2338 | static inline void zap_vma_pages(struct vm_area_struct *vma) |
| 2339 | { |
| 2340 | zap_page_range_single(vma, vma->vm_start, |
| 2341 | vma->vm_end - vma->vm_start, NULL); |
| 2342 | } |
| 2343 | void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, |
| 2344 | struct vm_area_struct *start_vma, unsigned long start, |
| 2345 | unsigned long end, unsigned long tree_end, bool mm_wr_locked); |
| 2346 | |
| 2347 | struct mmu_notifier_range; |
| 2348 | |
| 2349 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
| 2350 | unsigned long end, unsigned long floor, unsigned long ceiling); |
| 2351 | int |
| 2352 | copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); |
| 2353 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
| 2354 | void *buf, int len, int write); |
| 2355 | |
| 2356 | struct follow_pfnmap_args { |
| 2357 | /** |
| 2358 | * Inputs: |
| 2359 | * @vma: Pointer to @vm_area_struct struct |
| 2360 | * @address: the virtual address to walk |
| 2361 | */ |
| 2362 | struct vm_area_struct *vma; |
| 2363 | unsigned long address; |
| 2364 | /** |
| 2365 | * Internals: |
| 2366 | * |
| 2367 | * The caller shouldn't touch any of these. |
| 2368 | */ |
| 2369 | spinlock_t *lock; |
| 2370 | pte_t *ptep; |
| 2371 | /** |
| 2372 | * Outputs: |
| 2373 | * |
| 2374 | * @pfn: the PFN of the address |
| 2375 | * @addr_mask: address mask covering pfn |
| 2376 | * @pgprot: the pgprot_t of the mapping |
| 2377 | * @writable: whether the mapping is writable |
| 2378 | * @special: whether the mapping is a special mapping (real PFN maps) |
| 2379 | */ |
| 2380 | unsigned long pfn; |
| 2381 | unsigned long addr_mask; |
| 2382 | pgprot_t pgprot; |
| 2383 | bool writable; |
| 2384 | bool special; |
| 2385 | }; |
| 2386 | int follow_pfnmap_start(struct follow_pfnmap_args *args); |
| 2387 | void follow_pfnmap_end(struct follow_pfnmap_args *args); |
| 2388 | |
| 2389 | extern void truncate_pagecache(struct inode *inode, loff_t new); |
| 2390 | extern void truncate_setsize(struct inode *inode, loff_t newsize); |
| 2391 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); |
| 2392 | void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); |
| 2393 | int generic_error_remove_folio(struct address_space *mapping, |
| 2394 | struct folio *folio); |
| 2395 | |
| 2396 | struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, |
| 2397 | unsigned long address, struct pt_regs *regs); |
| 2398 | |
| 2399 | #ifdef CONFIG_MMU |
| 2400 | extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| 2401 | unsigned long address, unsigned int flags, |
| 2402 | struct pt_regs *regs); |
| 2403 | extern int fixup_user_fault(struct mm_struct *mm, |
| 2404 | unsigned long address, unsigned int fault_flags, |
| 2405 | bool *unlocked); |
| 2406 | void unmap_mapping_pages(struct address_space *mapping, |
| 2407 | pgoff_t start, pgoff_t nr, bool even_cows); |
| 2408 | void unmap_mapping_range(struct address_space *mapping, |
| 2409 | loff_t const holebegin, loff_t const holelen, int even_cows); |
| 2410 | #else |
| 2411 | static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| 2412 | unsigned long address, unsigned int flags, |
| 2413 | struct pt_regs *regs) |
| 2414 | { |
| 2415 | /* should never happen if there's no MMU */ |
| 2416 | BUG(); |
| 2417 | return VM_FAULT_SIGBUS; |
| 2418 | } |
| 2419 | static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, |
| 2420 | unsigned int fault_flags, bool *unlocked) |
| 2421 | { |
| 2422 | /* should never happen if there's no MMU */ |
| 2423 | BUG(); |
| 2424 | return -EFAULT; |
| 2425 | } |
| 2426 | static inline void unmap_mapping_pages(struct address_space *mapping, |
| 2427 | pgoff_t start, pgoff_t nr, bool even_cows) { } |
| 2428 | static inline void unmap_mapping_range(struct address_space *mapping, |
| 2429 | loff_t const holebegin, loff_t const holelen, int even_cows) { } |
| 2430 | #endif |
| 2431 | |
| 2432 | static inline void unmap_shared_mapping_range(struct address_space *mapping, |
| 2433 | loff_t const holebegin, loff_t const holelen) |
| 2434 | { |
| 2435 | unmap_mapping_range(mapping, holebegin, holelen, 0); |
| 2436 | } |
| 2437 | |
| 2438 | static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, |
| 2439 | unsigned long addr); |
| 2440 | |
| 2441 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, |
| 2442 | void *buf, int len, unsigned int gup_flags); |
| 2443 | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
| 2444 | void *buf, int len, unsigned int gup_flags); |
| 2445 | |
| 2446 | #ifdef CONFIG_BPF_SYSCALL |
| 2447 | extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, |
| 2448 | void *buf, int len, unsigned int gup_flags); |
| 2449 | #endif |
| 2450 | |
| 2451 | long get_user_pages_remote(struct mm_struct *mm, |
| 2452 | unsigned long start, unsigned long nr_pages, |
| 2453 | unsigned int gup_flags, struct page **pages, |
| 2454 | int *locked); |
| 2455 | long pin_user_pages_remote(struct mm_struct *mm, |
| 2456 | unsigned long start, unsigned long nr_pages, |
| 2457 | unsigned int gup_flags, struct page **pages, |
| 2458 | int *locked); |
| 2459 | |
| 2460 | /* |
| 2461 | * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. |
| 2462 | */ |
| 2463 | static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, |
| 2464 | unsigned long addr, |
| 2465 | int gup_flags, |
| 2466 | struct vm_area_struct **vmap) |
| 2467 | { |
| 2468 | struct page *page; |
| 2469 | struct vm_area_struct *vma; |
| 2470 | int got; |
| 2471 | |
| 2472 | if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) |
| 2473 | return ERR_PTR(-EINVAL); |
| 2474 | |
| 2475 | got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); |
| 2476 | |
| 2477 | if (got < 0) |
| 2478 | return ERR_PTR(got); |
| 2479 | |
| 2480 | vma = vma_lookup(mm, addr); |
| 2481 | if (WARN_ON_ONCE(!vma)) { |
| 2482 | put_page(page); |
| 2483 | return ERR_PTR(-EINVAL); |
| 2484 | } |
| 2485 | |
| 2486 | *vmap = vma; |
| 2487 | return page; |
| 2488 | } |
| 2489 | |
| 2490 | long get_user_pages(unsigned long start, unsigned long nr_pages, |
| 2491 | unsigned int gup_flags, struct page **pages); |
| 2492 | long pin_user_pages(unsigned long start, unsigned long nr_pages, |
| 2493 | unsigned int gup_flags, struct page **pages); |
| 2494 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 2495 | struct page **pages, unsigned int gup_flags); |
| 2496 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| 2497 | struct page **pages, unsigned int gup_flags); |
| 2498 | long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, |
| 2499 | struct folio **folios, unsigned int max_folios, |
| 2500 | pgoff_t *offset); |
| 2501 | int folio_add_pins(struct folio *folio, unsigned int pins); |
| 2502 | |
| 2503 | int get_user_pages_fast(unsigned long start, int nr_pages, |
| 2504 | unsigned int gup_flags, struct page **pages); |
| 2505 | int pin_user_pages_fast(unsigned long start, int nr_pages, |
| 2506 | unsigned int gup_flags, struct page **pages); |
| 2507 | void folio_add_pin(struct folio *folio); |
| 2508 | |
| 2509 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); |
| 2510 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, |
| 2511 | struct task_struct *task, bool bypass_rlim); |
| 2512 | |
| 2513 | struct kvec; |
| 2514 | struct page *get_dump_page(unsigned long addr, int *locked); |
| 2515 | |
| 2516 | bool folio_mark_dirty(struct folio *folio); |
| 2517 | bool folio_mark_dirty_lock(struct folio *folio); |
| 2518 | bool set_page_dirty(struct page *page); |
| 2519 | int set_page_dirty_lock(struct page *page); |
| 2520 | |
| 2521 | int get_cmdline(struct task_struct *task, char *buffer, int buflen); |
| 2522 | |
| 2523 | /* |
| 2524 | * Flags used by change_protection(). For now we make it a bitmap so |
| 2525 | * that we can pass in multiple flags just like parameters. However |
| 2526 | * for now all the callers are only use one of the flags at the same |
| 2527 | * time. |
| 2528 | */ |
| 2529 | /* |
| 2530 | * Whether we should manually check if we can map individual PTEs writable, |
| 2531 | * because something (e.g., COW, uffd-wp) blocks that from happening for all |
| 2532 | * PTEs automatically in a writable mapping. |
| 2533 | */ |
| 2534 | #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) |
| 2535 | /* Whether this protection change is for NUMA hints */ |
| 2536 | #define MM_CP_PROT_NUMA (1UL << 1) |
| 2537 | /* Whether this change is for write protecting */ |
| 2538 | #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ |
| 2539 | #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ |
| 2540 | #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ |
| 2541 | MM_CP_UFFD_WP_RESOLVE) |
| 2542 | |
| 2543 | bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, |
| 2544 | pte_t pte); |
| 2545 | extern long change_protection(struct mmu_gather *tlb, |
| 2546 | struct vm_area_struct *vma, unsigned long start, |
| 2547 | unsigned long end, unsigned long cp_flags); |
| 2548 | extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, |
| 2549 | struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| 2550 | unsigned long start, unsigned long end, unsigned long newflags); |
| 2551 | |
| 2552 | /* |
| 2553 | * doesn't attempt to fault and will return short. |
| 2554 | */ |
| 2555 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
| 2556 | unsigned int gup_flags, struct page **pages); |
| 2557 | |
| 2558 | static inline bool get_user_page_fast_only(unsigned long addr, |
| 2559 | unsigned int gup_flags, struct page **pagep) |
| 2560 | { |
| 2561 | return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; |
| 2562 | } |
| 2563 | /* |
| 2564 | * per-process(per-mm_struct) statistics. |
| 2565 | */ |
| 2566 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
| 2567 | { |
| 2568 | return percpu_counter_read_positive(&mm->rss_stat[member]); |
| 2569 | } |
| 2570 | |
| 2571 | static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member) |
| 2572 | { |
| 2573 | return percpu_counter_sum_positive(&mm->rss_stat[member]); |
| 2574 | } |
| 2575 | |
| 2576 | void mm_trace_rss_stat(struct mm_struct *mm, int member); |
| 2577 | |
| 2578 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
| 2579 | { |
| 2580 | percpu_counter_add(&mm->rss_stat[member], value); |
| 2581 | |
| 2582 | mm_trace_rss_stat(mm, member); |
| 2583 | } |
| 2584 | |
| 2585 | static inline void inc_mm_counter(struct mm_struct *mm, int member) |
| 2586 | { |
| 2587 | percpu_counter_inc(&mm->rss_stat[member]); |
| 2588 | |
| 2589 | mm_trace_rss_stat(mm, member); |
| 2590 | } |
| 2591 | |
| 2592 | static inline void dec_mm_counter(struct mm_struct *mm, int member) |
| 2593 | { |
| 2594 | percpu_counter_dec(&mm->rss_stat[member]); |
| 2595 | |
| 2596 | mm_trace_rss_stat(mm, member); |
| 2597 | } |
| 2598 | |
| 2599 | /* Optimized variant when folio is already known not to be anon */ |
| 2600 | static inline int mm_counter_file(struct folio *folio) |
| 2601 | { |
| 2602 | if (folio_test_swapbacked(folio)) |
| 2603 | return MM_SHMEMPAGES; |
| 2604 | return MM_FILEPAGES; |
| 2605 | } |
| 2606 | |
| 2607 | static inline int mm_counter(struct folio *folio) |
| 2608 | { |
| 2609 | if (folio_test_anon(folio)) |
| 2610 | return MM_ANONPAGES; |
| 2611 | return mm_counter_file(folio); |
| 2612 | } |
| 2613 | |
| 2614 | static inline unsigned long get_mm_rss(struct mm_struct *mm) |
| 2615 | { |
| 2616 | return get_mm_counter(mm, MM_FILEPAGES) + |
| 2617 | get_mm_counter(mm, MM_ANONPAGES) + |
| 2618 | get_mm_counter(mm, MM_SHMEMPAGES); |
| 2619 | } |
| 2620 | |
| 2621 | static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) |
| 2622 | { |
| 2623 | return max(mm->hiwater_rss, get_mm_rss(mm)); |
| 2624 | } |
| 2625 | |
| 2626 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
| 2627 | { |
| 2628 | return max(mm->hiwater_vm, mm->total_vm); |
| 2629 | } |
| 2630 | |
| 2631 | static inline void update_hiwater_rss(struct mm_struct *mm) |
| 2632 | { |
| 2633 | unsigned long _rss = get_mm_rss(mm); |
| 2634 | |
| 2635 | if (data_race(mm->hiwater_rss) < _rss) |
| 2636 | (mm)->hiwater_rss = _rss; |
| 2637 | } |
| 2638 | |
| 2639 | static inline void update_hiwater_vm(struct mm_struct *mm) |
| 2640 | { |
| 2641 | if (mm->hiwater_vm < mm->total_vm) |
| 2642 | mm->hiwater_vm = mm->total_vm; |
| 2643 | } |
| 2644 | |
| 2645 | static inline void reset_mm_hiwater_rss(struct mm_struct *mm) |
| 2646 | { |
| 2647 | mm->hiwater_rss = get_mm_rss(mm); |
| 2648 | } |
| 2649 | |
| 2650 | static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, |
| 2651 | struct mm_struct *mm) |
| 2652 | { |
| 2653 | unsigned long hiwater_rss = get_mm_hiwater_rss(mm); |
| 2654 | |
| 2655 | if (*maxrss < hiwater_rss) |
| 2656 | *maxrss = hiwater_rss; |
| 2657 | } |
| 2658 | |
| 2659 | #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL |
| 2660 | static inline int pte_special(pte_t pte) |
| 2661 | { |
| 2662 | return 0; |
| 2663 | } |
| 2664 | |
| 2665 | static inline pte_t pte_mkspecial(pte_t pte) |
| 2666 | { |
| 2667 | return pte; |
| 2668 | } |
| 2669 | #endif |
| 2670 | |
| 2671 | #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP |
| 2672 | static inline bool pmd_special(pmd_t pmd) |
| 2673 | { |
| 2674 | return false; |
| 2675 | } |
| 2676 | |
| 2677 | static inline pmd_t pmd_mkspecial(pmd_t pmd) |
| 2678 | { |
| 2679 | return pmd; |
| 2680 | } |
| 2681 | #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ |
| 2682 | |
| 2683 | #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP |
| 2684 | static inline bool pud_special(pud_t pud) |
| 2685 | { |
| 2686 | return false; |
| 2687 | } |
| 2688 | |
| 2689 | static inline pud_t pud_mkspecial(pud_t pud) |
| 2690 | { |
| 2691 | return pud; |
| 2692 | } |
| 2693 | #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ |
| 2694 | |
| 2695 | #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP |
| 2696 | static inline int pte_devmap(pte_t pte) |
| 2697 | { |
| 2698 | return 0; |
| 2699 | } |
| 2700 | #endif |
| 2701 | |
| 2702 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| 2703 | spinlock_t **ptl); |
| 2704 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| 2705 | spinlock_t **ptl) |
| 2706 | { |
| 2707 | pte_t *ptep; |
| 2708 | __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
| 2709 | return ptep; |
| 2710 | } |
| 2711 | |
| 2712 | #ifdef __PAGETABLE_P4D_FOLDED |
| 2713 | static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| 2714 | unsigned long address) |
| 2715 | { |
| 2716 | return 0; |
| 2717 | } |
| 2718 | #else |
| 2719 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
| 2720 | #endif |
| 2721 | |
| 2722 | #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) |
| 2723 | static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| 2724 | unsigned long address) |
| 2725 | { |
| 2726 | return 0; |
| 2727 | } |
| 2728 | static inline void mm_inc_nr_puds(struct mm_struct *mm) {} |
| 2729 | static inline void mm_dec_nr_puds(struct mm_struct *mm) {} |
| 2730 | |
| 2731 | #else |
| 2732 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); |
| 2733 | |
| 2734 | static inline void mm_inc_nr_puds(struct mm_struct *mm) |
| 2735 | { |
| 2736 | if (mm_pud_folded(mm)) |
| 2737 | return; |
| 2738 | atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
| 2739 | } |
| 2740 | |
| 2741 | static inline void mm_dec_nr_puds(struct mm_struct *mm) |
| 2742 | { |
| 2743 | if (mm_pud_folded(mm)) |
| 2744 | return; |
| 2745 | atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
| 2746 | } |
| 2747 | #endif |
| 2748 | |
| 2749 | #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) |
| 2750 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
| 2751 | unsigned long address) |
| 2752 | { |
| 2753 | return 0; |
| 2754 | } |
| 2755 | |
| 2756 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} |
| 2757 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} |
| 2758 | |
| 2759 | #else |
| 2760 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
| 2761 | |
| 2762 | static inline void mm_inc_nr_pmds(struct mm_struct *mm) |
| 2763 | { |
| 2764 | if (mm_pmd_folded(mm)) |
| 2765 | return; |
| 2766 | atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
| 2767 | } |
| 2768 | |
| 2769 | static inline void mm_dec_nr_pmds(struct mm_struct *mm) |
| 2770 | { |
| 2771 | if (mm_pmd_folded(mm)) |
| 2772 | return; |
| 2773 | atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
| 2774 | } |
| 2775 | #endif |
| 2776 | |
| 2777 | #ifdef CONFIG_MMU |
| 2778 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) |
| 2779 | { |
| 2780 | atomic_long_set(&mm->pgtables_bytes, 0); |
| 2781 | } |
| 2782 | |
| 2783 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| 2784 | { |
| 2785 | return atomic_long_read(&mm->pgtables_bytes); |
| 2786 | } |
| 2787 | |
| 2788 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) |
| 2789 | { |
| 2790 | atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
| 2791 | } |
| 2792 | |
| 2793 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) |
| 2794 | { |
| 2795 | atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
| 2796 | } |
| 2797 | #else |
| 2798 | |
| 2799 | static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} |
| 2800 | static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| 2801 | { |
| 2802 | return 0; |
| 2803 | } |
| 2804 | |
| 2805 | static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} |
| 2806 | static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} |
| 2807 | #endif |
| 2808 | |
| 2809 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); |
| 2810 | int __pte_alloc_kernel(pmd_t *pmd); |
| 2811 | |
| 2812 | #if defined(CONFIG_MMU) |
| 2813 | |
| 2814 | static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| 2815 | unsigned long address) |
| 2816 | { |
| 2817 | return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? |
| 2818 | NULL : p4d_offset(pgd, address); |
| 2819 | } |
| 2820 | |
| 2821 | static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| 2822 | unsigned long address) |
| 2823 | { |
| 2824 | return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? |
| 2825 | NULL : pud_offset(p4d, address); |
| 2826 | } |
| 2827 | |
| 2828 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| 2829 | { |
| 2830 | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
| 2831 | NULL: pmd_offset(pud, address); |
| 2832 | } |
| 2833 | #endif /* CONFIG_MMU */ |
| 2834 | |
| 2835 | static inline struct ptdesc *virt_to_ptdesc(const void *x) |
| 2836 | { |
| 2837 | return page_ptdesc(virt_to_page(x)); |
| 2838 | } |
| 2839 | |
| 2840 | static inline void *ptdesc_to_virt(const struct ptdesc *pt) |
| 2841 | { |
| 2842 | return page_to_virt(ptdesc_page(pt)); |
| 2843 | } |
| 2844 | |
| 2845 | static inline void *ptdesc_address(const struct ptdesc *pt) |
| 2846 | { |
| 2847 | return folio_address(ptdesc_folio(pt)); |
| 2848 | } |
| 2849 | |
| 2850 | static inline bool pagetable_is_reserved(struct ptdesc *pt) |
| 2851 | { |
| 2852 | return folio_test_reserved(ptdesc_folio(pt)); |
| 2853 | } |
| 2854 | |
| 2855 | /** |
| 2856 | * pagetable_alloc - Allocate pagetables |
| 2857 | * @gfp: GFP flags |
| 2858 | * @order: desired pagetable order |
| 2859 | * |
| 2860 | * pagetable_alloc allocates memory for page tables as well as a page table |
| 2861 | * descriptor to describe that memory. |
| 2862 | * |
| 2863 | * Return: The ptdesc describing the allocated page tables. |
| 2864 | */ |
| 2865 | static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) |
| 2866 | { |
| 2867 | struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); |
| 2868 | |
| 2869 | return page_ptdesc(page); |
| 2870 | } |
| 2871 | #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) |
| 2872 | |
| 2873 | /** |
| 2874 | * pagetable_free - Free pagetables |
| 2875 | * @pt: The page table descriptor |
| 2876 | * |
| 2877 | * pagetable_free frees the memory of all page tables described by a page |
| 2878 | * table descriptor and the memory for the descriptor itself. |
| 2879 | */ |
| 2880 | static inline void pagetable_free(struct ptdesc *pt) |
| 2881 | { |
| 2882 | struct page *page = ptdesc_page(pt); |
| 2883 | |
| 2884 | __free_pages(page, compound_order(page)); |
| 2885 | } |
| 2886 | |
| 2887 | #if defined(CONFIG_SPLIT_PTE_PTLOCKS) |
| 2888 | #if ALLOC_SPLIT_PTLOCKS |
| 2889 | void __init ptlock_cache_init(void); |
| 2890 | bool ptlock_alloc(struct ptdesc *ptdesc); |
| 2891 | void ptlock_free(struct ptdesc *ptdesc); |
| 2892 | |
| 2893 | static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| 2894 | { |
| 2895 | return ptdesc->ptl; |
| 2896 | } |
| 2897 | #else /* ALLOC_SPLIT_PTLOCKS */ |
| 2898 | static inline void ptlock_cache_init(void) |
| 2899 | { |
| 2900 | } |
| 2901 | |
| 2902 | static inline bool ptlock_alloc(struct ptdesc *ptdesc) |
| 2903 | { |
| 2904 | return true; |
| 2905 | } |
| 2906 | |
| 2907 | static inline void ptlock_free(struct ptdesc *ptdesc) |
| 2908 | { |
| 2909 | } |
| 2910 | |
| 2911 | static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| 2912 | { |
| 2913 | return &ptdesc->ptl; |
| 2914 | } |
| 2915 | #endif /* ALLOC_SPLIT_PTLOCKS */ |
| 2916 | |
| 2917 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 2918 | { |
| 2919 | return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); |
| 2920 | } |
| 2921 | |
| 2922 | static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| 2923 | { |
| 2924 | BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); |
| 2925 | BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); |
| 2926 | return ptlock_ptr(virt_to_ptdesc(pte)); |
| 2927 | } |
| 2928 | |
| 2929 | static inline bool ptlock_init(struct ptdesc *ptdesc) |
| 2930 | { |
| 2931 | /* |
| 2932 | * prep_new_page() initialize page->private (and therefore page->ptl) |
| 2933 | * with 0. Make sure nobody took it in use in between. |
| 2934 | * |
| 2935 | * It can happen if arch try to use slab for page table allocation: |
| 2936 | * slab code uses page->slab_cache, which share storage with page->ptl. |
| 2937 | */ |
| 2938 | VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); |
| 2939 | if (!ptlock_alloc(ptdesc)) |
| 2940 | return false; |
| 2941 | spin_lock_init(ptlock_ptr(ptdesc)); |
| 2942 | return true; |
| 2943 | } |
| 2944 | |
| 2945 | #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| 2946 | /* |
| 2947 | * We use mm->page_table_lock to guard all pagetable pages of the mm. |
| 2948 | */ |
| 2949 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 2950 | { |
| 2951 | return &mm->page_table_lock; |
| 2952 | } |
| 2953 | static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| 2954 | { |
| 2955 | return &mm->page_table_lock; |
| 2956 | } |
| 2957 | static inline void ptlock_cache_init(void) {} |
| 2958 | static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } |
| 2959 | static inline void ptlock_free(struct ptdesc *ptdesc) {} |
| 2960 | #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| 2961 | |
| 2962 | static inline void __pagetable_ctor(struct ptdesc *ptdesc) |
| 2963 | { |
| 2964 | struct folio *folio = ptdesc_folio(ptdesc); |
| 2965 | |
| 2966 | __folio_set_pgtable(folio); |
| 2967 | lruvec_stat_add_folio(folio, NR_PAGETABLE); |
| 2968 | } |
| 2969 | |
| 2970 | static inline void pagetable_dtor(struct ptdesc *ptdesc) |
| 2971 | { |
| 2972 | struct folio *folio = ptdesc_folio(ptdesc); |
| 2973 | |
| 2974 | ptlock_free(ptdesc); |
| 2975 | __folio_clear_pgtable(folio); |
| 2976 | lruvec_stat_sub_folio(folio, NR_PAGETABLE); |
| 2977 | } |
| 2978 | |
| 2979 | static inline void pagetable_dtor_free(struct ptdesc *ptdesc) |
| 2980 | { |
| 2981 | pagetable_dtor(ptdesc); |
| 2982 | pagetable_free(ptdesc); |
| 2983 | } |
| 2984 | |
| 2985 | static inline bool pagetable_pte_ctor(struct mm_struct *mm, |
| 2986 | struct ptdesc *ptdesc) |
| 2987 | { |
| 2988 | if (mm != &init_mm && !ptlock_init(ptdesc)) |
| 2989 | return false; |
| 2990 | __pagetable_ctor(ptdesc); |
| 2991 | return true; |
| 2992 | } |
| 2993 | |
| 2994 | pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); |
| 2995 | static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, |
| 2996 | pmd_t *pmdvalp) |
| 2997 | { |
| 2998 | pte_t *pte; |
| 2999 | |
| 3000 | __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); |
| 3001 | return pte; |
| 3002 | } |
| 3003 | static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) |
| 3004 | { |
| 3005 | return __pte_offset_map(pmd, addr, NULL); |
| 3006 | } |
| 3007 | |
| 3008 | pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| 3009 | unsigned long addr, spinlock_t **ptlp); |
| 3010 | static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| 3011 | unsigned long addr, spinlock_t **ptlp) |
| 3012 | { |
| 3013 | pte_t *pte; |
| 3014 | |
| 3015 | __cond_lock(RCU, __cond_lock(*ptlp, |
| 3016 | pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); |
| 3017 | return pte; |
| 3018 | } |
| 3019 | |
| 3020 | pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, |
| 3021 | unsigned long addr, spinlock_t **ptlp); |
| 3022 | pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, |
| 3023 | unsigned long addr, pmd_t *pmdvalp, |
| 3024 | spinlock_t **ptlp); |
| 3025 | |
| 3026 | #define pte_unmap_unlock(pte, ptl) do { \ |
| 3027 | spin_unlock(ptl); \ |
| 3028 | pte_unmap(pte); \ |
| 3029 | } while (0) |
| 3030 | |
| 3031 | #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) |
| 3032 | |
| 3033 | #define pte_alloc_map(mm, pmd, address) \ |
| 3034 | (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) |
| 3035 | |
| 3036 | #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
| 3037 | (pte_alloc(mm, pmd) ? \ |
| 3038 | NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) |
| 3039 | |
| 3040 | #define pte_alloc_kernel(pmd, address) \ |
| 3041 | ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ |
| 3042 | NULL: pte_offset_kernel(pmd, address)) |
| 3043 | |
| 3044 | #if defined(CONFIG_SPLIT_PMD_PTLOCKS) |
| 3045 | |
| 3046 | static inline struct page *pmd_pgtable_page(pmd_t *pmd) |
| 3047 | { |
| 3048 | unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
| 3049 | return virt_to_page((void *)((unsigned long) pmd & mask)); |
| 3050 | } |
| 3051 | |
| 3052 | static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) |
| 3053 | { |
| 3054 | return page_ptdesc(pmd_pgtable_page(pmd)); |
| 3055 | } |
| 3056 | |
| 3057 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3058 | { |
| 3059 | return ptlock_ptr(pmd_ptdesc(pmd)); |
| 3060 | } |
| 3061 | |
| 3062 | static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) |
| 3063 | { |
| 3064 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| 3065 | ptdesc->pmd_huge_pte = NULL; |
| 3066 | #endif |
| 3067 | return ptlock_init(ptdesc); |
| 3068 | } |
| 3069 | |
| 3070 | #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) |
| 3071 | |
| 3072 | #else |
| 3073 | |
| 3074 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| 3075 | { |
| 3076 | return &mm->page_table_lock; |
| 3077 | } |
| 3078 | |
| 3079 | static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } |
| 3080 | |
| 3081 | #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) |
| 3082 | |
| 3083 | #endif |
| 3084 | |
| 3085 | static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) |
| 3086 | { |
| 3087 | spinlock_t *ptl = pmd_lockptr(mm, pmd); |
| 3088 | spin_lock(ptl); |
| 3089 | return ptl; |
| 3090 | } |
| 3091 | |
| 3092 | static inline bool pagetable_pmd_ctor(struct mm_struct *mm, |
| 3093 | struct ptdesc *ptdesc) |
| 3094 | { |
| 3095 | if (mm != &init_mm && !pmd_ptlock_init(ptdesc)) |
| 3096 | return false; |
| 3097 | ptdesc_pmd_pts_init(ptdesc); |
| 3098 | __pagetable_ctor(ptdesc); |
| 3099 | return true; |
| 3100 | } |
| 3101 | |
| 3102 | /* |
| 3103 | * No scalability reason to split PUD locks yet, but follow the same pattern |
| 3104 | * as the PMD locks to make it easier if we decide to. The VM should not be |
| 3105 | * considered ready to switch to split PUD locks yet; there may be places |
| 3106 | * which need to be converted from page_table_lock. |
| 3107 | */ |
| 3108 | static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) |
| 3109 | { |
| 3110 | return &mm->page_table_lock; |
| 3111 | } |
| 3112 | |
| 3113 | static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) |
| 3114 | { |
| 3115 | spinlock_t *ptl = pud_lockptr(mm, pud); |
| 3116 | |
| 3117 | spin_lock(ptl); |
| 3118 | return ptl; |
| 3119 | } |
| 3120 | |
| 3121 | static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) |
| 3122 | { |
| 3123 | __pagetable_ctor(ptdesc); |
| 3124 | } |
| 3125 | |
| 3126 | static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) |
| 3127 | { |
| 3128 | __pagetable_ctor(ptdesc); |
| 3129 | } |
| 3130 | |
| 3131 | static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) |
| 3132 | { |
| 3133 | __pagetable_ctor(ptdesc); |
| 3134 | } |
| 3135 | |
| 3136 | extern void __init pagecache_init(void); |
| 3137 | extern void free_initmem(void); |
| 3138 | |
| 3139 | /* |
| 3140 | * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) |
| 3141 | * into the buddy system. The freed pages will be poisoned with pattern |
| 3142 | * "poison" if it's within range [0, UCHAR_MAX]. |
| 3143 | * Return pages freed into the buddy system. |
| 3144 | */ |
| 3145 | extern unsigned long free_reserved_area(void *start, void *end, |
| 3146 | int poison, const char *s); |
| 3147 | |
| 3148 | extern void adjust_managed_page_count(struct page *page, long count); |
| 3149 | |
| 3150 | extern void reserve_bootmem_region(phys_addr_t start, |
| 3151 | phys_addr_t end, int nid); |
| 3152 | |
| 3153 | /* Free the reserved page into the buddy system, so it gets managed. */ |
| 3154 | void free_reserved_page(struct page *page); |
| 3155 | |
| 3156 | static inline void mark_page_reserved(struct page *page) |
| 3157 | { |
| 3158 | SetPageReserved(page); |
| 3159 | adjust_managed_page_count(page, -1); |
| 3160 | } |
| 3161 | |
| 3162 | static inline void free_reserved_ptdesc(struct ptdesc *pt) |
| 3163 | { |
| 3164 | free_reserved_page(ptdesc_page(pt)); |
| 3165 | } |
| 3166 | |
| 3167 | /* |
| 3168 | * Default method to free all the __init memory into the buddy system. |
| 3169 | * The freed pages will be poisoned with pattern "poison" if it's within |
| 3170 | * range [0, UCHAR_MAX]. |
| 3171 | * Return pages freed into the buddy system. |
| 3172 | */ |
| 3173 | static inline unsigned long free_initmem_default(int poison) |
| 3174 | { |
| 3175 | extern char __init_begin[], __init_end[]; |
| 3176 | |
| 3177 | return free_reserved_area(&__init_begin, &__init_end, |
| 3178 | poison, "unused kernel image (initmem)"); |
| 3179 | } |
| 3180 | |
| 3181 | static inline unsigned long get_num_physpages(void) |
| 3182 | { |
| 3183 | int nid; |
| 3184 | unsigned long phys_pages = 0; |
| 3185 | |
| 3186 | for_each_online_node(nid) |
| 3187 | phys_pages += node_present_pages(nid); |
| 3188 | |
| 3189 | return phys_pages; |
| 3190 | } |
| 3191 | |
| 3192 | /* |
| 3193 | * Using memblock node mappings, an architecture may initialise its |
| 3194 | * zones, allocate the backing mem_map and account for memory holes in an |
| 3195 | * architecture independent manner. |
| 3196 | * |
| 3197 | * An architecture is expected to register range of page frames backed by |
| 3198 | * physical memory with memblock_add[_node]() before calling |
| 3199 | * free_area_init() passing in the PFN each zone ends at. At a basic |
| 3200 | * usage, an architecture is expected to do something like |
| 3201 | * |
| 3202 | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
| 3203 | * max_highmem_pfn}; |
| 3204 | * for_each_valid_physical_page_range() |
| 3205 | * memblock_add_node(base, size, nid, MEMBLOCK_NONE) |
| 3206 | * free_area_init(max_zone_pfns); |
| 3207 | */ |
| 3208 | void free_area_init(unsigned long *max_zone_pfn); |
| 3209 | unsigned long node_map_pfn_alignment(void); |
| 3210 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
| 3211 | unsigned long end_pfn); |
| 3212 | extern void get_pfn_range_for_nid(unsigned int nid, |
| 3213 | unsigned long *start_pfn, unsigned long *end_pfn); |
| 3214 | |
| 3215 | #ifndef CONFIG_NUMA |
| 3216 | static inline int early_pfn_to_nid(unsigned long pfn) |
| 3217 | { |
| 3218 | return 0; |
| 3219 | } |
| 3220 | #else |
| 3221 | /* please see mm/page_alloc.c */ |
| 3222 | extern int __meminit early_pfn_to_nid(unsigned long pfn); |
| 3223 | #endif |
| 3224 | |
| 3225 | extern void mem_init(void); |
| 3226 | extern void __init mmap_init(void); |
| 3227 | |
| 3228 | extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); |
| 3229 | static inline void show_mem(void) |
| 3230 | { |
| 3231 | __show_mem(0, NULL, MAX_NR_ZONES - 1); |
| 3232 | } |
| 3233 | extern long si_mem_available(void); |
| 3234 | extern void si_meminfo(struct sysinfo * val); |
| 3235 | extern void si_meminfo_node(struct sysinfo *val, int nid); |
| 3236 | |
| 3237 | extern __printf(3, 4) |
| 3238 | void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); |
| 3239 | |
| 3240 | extern void setup_per_cpu_pageset(void); |
| 3241 | |
| 3242 | /* nommu.c */ |
| 3243 | extern atomic_long_t mmap_pages_allocated; |
| 3244 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
| 3245 | |
| 3246 | /* interval_tree.c */ |
| 3247 | void vma_interval_tree_insert(struct vm_area_struct *node, |
| 3248 | struct rb_root_cached *root); |
| 3249 | void vma_interval_tree_insert_after(struct vm_area_struct *node, |
| 3250 | struct vm_area_struct *prev, |
| 3251 | struct rb_root_cached *root); |
| 3252 | void vma_interval_tree_remove(struct vm_area_struct *node, |
| 3253 | struct rb_root_cached *root); |
| 3254 | struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, |
| 3255 | unsigned long start, unsigned long last); |
| 3256 | struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, |
| 3257 | unsigned long start, unsigned long last); |
| 3258 | |
| 3259 | #define vma_interval_tree_foreach(vma, root, start, last) \ |
| 3260 | for (vma = vma_interval_tree_iter_first(root, start, last); \ |
| 3261 | vma; vma = vma_interval_tree_iter_next(vma, start, last)) |
| 3262 | |
| 3263 | void anon_vma_interval_tree_insert(struct anon_vma_chain *node, |
| 3264 | struct rb_root_cached *root); |
| 3265 | void anon_vma_interval_tree_remove(struct anon_vma_chain *node, |
| 3266 | struct rb_root_cached *root); |
| 3267 | struct anon_vma_chain * |
| 3268 | anon_vma_interval_tree_iter_first(struct rb_root_cached *root, |
| 3269 | unsigned long start, unsigned long last); |
| 3270 | struct anon_vma_chain *anon_vma_interval_tree_iter_next( |
| 3271 | struct anon_vma_chain *node, unsigned long start, unsigned long last); |
| 3272 | #ifdef CONFIG_DEBUG_VM_RB |
| 3273 | void anon_vma_interval_tree_verify(struct anon_vma_chain *node); |
| 3274 | #endif |
| 3275 | |
| 3276 | #define anon_vma_interval_tree_foreach(avc, root, start, last) \ |
| 3277 | for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ |
| 3278 | avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) |
| 3279 | |
| 3280 | /* mmap.c */ |
| 3281 | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); |
| 3282 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
| 3283 | extern void exit_mmap(struct mm_struct *); |
| 3284 | bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, |
| 3285 | unsigned long addr, bool write); |
| 3286 | |
| 3287 | static inline int check_data_rlimit(unsigned long rlim, |
| 3288 | unsigned long new, |
| 3289 | unsigned long start, |
| 3290 | unsigned long end_data, |
| 3291 | unsigned long start_data) |
| 3292 | { |
| 3293 | if (rlim < RLIM_INFINITY) { |
| 3294 | if (((new - start) + (end_data - start_data)) > rlim) |
| 3295 | return -ENOSPC; |
| 3296 | } |
| 3297 | |
| 3298 | return 0; |
| 3299 | } |
| 3300 | |
| 3301 | extern int mm_take_all_locks(struct mm_struct *mm); |
| 3302 | extern void mm_drop_all_locks(struct mm_struct *mm); |
| 3303 | |
| 3304 | extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| 3305 | extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| 3306 | extern struct file *get_mm_exe_file(struct mm_struct *mm); |
| 3307 | extern struct file *get_task_exe_file(struct task_struct *task); |
| 3308 | |
| 3309 | extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); |
| 3310 | extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); |
| 3311 | |
| 3312 | extern bool vma_is_special_mapping(const struct vm_area_struct *vma, |
| 3313 | const struct vm_special_mapping *sm); |
| 3314 | extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, |
| 3315 | unsigned long addr, unsigned long len, |
| 3316 | unsigned long flags, |
| 3317 | const struct vm_special_mapping *spec); |
| 3318 | |
| 3319 | unsigned long randomize_stack_top(unsigned long stack_top); |
| 3320 | unsigned long randomize_page(unsigned long start, unsigned long range); |
| 3321 | |
| 3322 | unsigned long |
| 3323 | __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| 3324 | unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); |
| 3325 | |
| 3326 | static inline unsigned long |
| 3327 | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| 3328 | unsigned long pgoff, unsigned long flags) |
| 3329 | { |
| 3330 | return __get_unmapped_area(file, addr, len, pgoff, flags, 0); |
| 3331 | } |
| 3332 | |
| 3333 | extern unsigned long do_mmap(struct file *file, unsigned long addr, |
| 3334 | unsigned long len, unsigned long prot, unsigned long flags, |
| 3335 | vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, |
| 3336 | struct list_head *uf); |
| 3337 | extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
| 3338 | unsigned long start, size_t len, struct list_head *uf, |
| 3339 | bool unlock); |
| 3340 | int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| 3341 | struct mm_struct *mm, unsigned long start, |
| 3342 | unsigned long end, struct list_head *uf, bool unlock); |
| 3343 | extern int do_munmap(struct mm_struct *, unsigned long, size_t, |
| 3344 | struct list_head *uf); |
| 3345 | extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); |
| 3346 | |
| 3347 | #ifdef CONFIG_MMU |
| 3348 | extern int __mm_populate(unsigned long addr, unsigned long len, |
| 3349 | int ignore_errors); |
| 3350 | static inline void mm_populate(unsigned long addr, unsigned long len) |
| 3351 | { |
| 3352 | /* Ignore errors */ |
| 3353 | (void) __mm_populate(addr, len, 1); |
| 3354 | } |
| 3355 | #else |
| 3356 | static inline void mm_populate(unsigned long addr, unsigned long len) {} |
| 3357 | #endif |
| 3358 | |
| 3359 | /* This takes the mm semaphore itself */ |
| 3360 | extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); |
| 3361 | extern int vm_munmap(unsigned long, size_t); |
| 3362 | extern unsigned long __must_check vm_mmap(struct file *, unsigned long, |
| 3363 | unsigned long, unsigned long, |
| 3364 | unsigned long, unsigned long); |
| 3365 | |
| 3366 | struct vm_unmapped_area_info { |
| 3367 | #define VM_UNMAPPED_AREA_TOPDOWN 1 |
| 3368 | unsigned long flags; |
| 3369 | unsigned long length; |
| 3370 | unsigned long low_limit; |
| 3371 | unsigned long high_limit; |
| 3372 | unsigned long align_mask; |
| 3373 | unsigned long align_offset; |
| 3374 | unsigned long start_gap; |
| 3375 | }; |
| 3376 | |
| 3377 | extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); |
| 3378 | |
| 3379 | /* truncate.c */ |
| 3380 | extern void truncate_inode_pages(struct address_space *, loff_t); |
| 3381 | extern void truncate_inode_pages_range(struct address_space *, |
| 3382 | loff_t lstart, loff_t lend); |
| 3383 | extern void truncate_inode_pages_final(struct address_space *); |
| 3384 | |
| 3385 | /* generic vm_area_ops exported for stackable file systems */ |
| 3386 | extern vm_fault_t filemap_fault(struct vm_fault *vmf); |
| 3387 | extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, |
| 3388 | pgoff_t start_pgoff, pgoff_t end_pgoff); |
| 3389 | extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); |
| 3390 | |
| 3391 | extern unsigned long stack_guard_gap; |
| 3392 | /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ |
| 3393 | int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); |
| 3394 | struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); |
| 3395 | |
| 3396 | /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
| 3397 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
| 3398 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
| 3399 | struct vm_area_struct **pprev); |
| 3400 | |
| 3401 | /* |
| 3402 | * Look up the first VMA which intersects the interval [start_addr, end_addr) |
| 3403 | * NULL if none. Assume start_addr < end_addr. |
| 3404 | */ |
| 3405 | struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, |
| 3406 | unsigned long start_addr, unsigned long end_addr); |
| 3407 | |
| 3408 | /** |
| 3409 | * vma_lookup() - Find a VMA at a specific address |
| 3410 | * @mm: The process address space. |
| 3411 | * @addr: The user address. |
| 3412 | * |
| 3413 | * Return: The vm_area_struct at the given address, %NULL otherwise. |
| 3414 | */ |
| 3415 | static inline |
| 3416 | struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) |
| 3417 | { |
| 3418 | return mtree_load(&mm->mm_mt, addr); |
| 3419 | } |
| 3420 | |
| 3421 | static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) |
| 3422 | { |
| 3423 | if (vma->vm_flags & VM_GROWSDOWN) |
| 3424 | return stack_guard_gap; |
| 3425 | |
| 3426 | /* See reasoning around the VM_SHADOW_STACK definition */ |
| 3427 | if (vma->vm_flags & VM_SHADOW_STACK) |
| 3428 | return PAGE_SIZE; |
| 3429 | |
| 3430 | return 0; |
| 3431 | } |
| 3432 | |
| 3433 | static inline unsigned long vm_start_gap(struct vm_area_struct *vma) |
| 3434 | { |
| 3435 | unsigned long gap = stack_guard_start_gap(vma); |
| 3436 | unsigned long vm_start = vma->vm_start; |
| 3437 | |
| 3438 | vm_start -= gap; |
| 3439 | if (vm_start > vma->vm_start) |
| 3440 | vm_start = 0; |
| 3441 | return vm_start; |
| 3442 | } |
| 3443 | |
| 3444 | static inline unsigned long vm_end_gap(struct vm_area_struct *vma) |
| 3445 | { |
| 3446 | unsigned long vm_end = vma->vm_end; |
| 3447 | |
| 3448 | if (vma->vm_flags & VM_GROWSUP) { |
| 3449 | vm_end += stack_guard_gap; |
| 3450 | if (vm_end < vma->vm_end) |
| 3451 | vm_end = -PAGE_SIZE; |
| 3452 | } |
| 3453 | return vm_end; |
| 3454 | } |
| 3455 | |
| 3456 | static inline unsigned long vma_pages(struct vm_area_struct *vma) |
| 3457 | { |
| 3458 | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| 3459 | } |
| 3460 | |
| 3461 | /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ |
| 3462 | static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, |
| 3463 | unsigned long vm_start, unsigned long vm_end) |
| 3464 | { |
| 3465 | struct vm_area_struct *vma = vma_lookup(mm, vm_start); |
| 3466 | |
| 3467 | if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) |
| 3468 | vma = NULL; |
| 3469 | |
| 3470 | return vma; |
| 3471 | } |
| 3472 | |
| 3473 | static inline bool range_in_vma(struct vm_area_struct *vma, |
| 3474 | unsigned long start, unsigned long end) |
| 3475 | { |
| 3476 | return (vma && vma->vm_start <= start && end <= vma->vm_end); |
| 3477 | } |
| 3478 | |
| 3479 | #ifdef CONFIG_MMU |
| 3480 | pgprot_t vm_get_page_prot(unsigned long vm_flags); |
| 3481 | void vma_set_page_prot(struct vm_area_struct *vma); |
| 3482 | #else |
| 3483 | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) |
| 3484 | { |
| 3485 | return __pgprot(0); |
| 3486 | } |
| 3487 | static inline void vma_set_page_prot(struct vm_area_struct *vma) |
| 3488 | { |
| 3489 | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| 3490 | } |
| 3491 | #endif |
| 3492 | |
| 3493 | void vma_set_file(struct vm_area_struct *vma, struct file *file); |
| 3494 | |
| 3495 | #ifdef CONFIG_NUMA_BALANCING |
| 3496 | unsigned long change_prot_numa(struct vm_area_struct *vma, |
| 3497 | unsigned long start, unsigned long end); |
| 3498 | #endif |
| 3499 | |
| 3500 | struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, |
| 3501 | unsigned long addr); |
| 3502 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
| 3503 | unsigned long pfn, unsigned long size, pgprot_t); |
| 3504 | int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
| 3505 | unsigned long pfn, unsigned long size, pgprot_t prot); |
| 3506 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
| 3507 | int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, |
| 3508 | struct page **pages, unsigned long *num); |
| 3509 | int vm_map_pages(struct vm_area_struct *vma, struct page **pages, |
| 3510 | unsigned long num); |
| 3511 | int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, |
| 3512 | unsigned long num); |
| 3513 | vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, |
| 3514 | bool write); |
| 3515 | vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
| 3516 | unsigned long pfn); |
| 3517 | vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, |
| 3518 | unsigned long pfn, pgprot_t pgprot); |
| 3519 | vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
| 3520 | pfn_t pfn); |
| 3521 | vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
| 3522 | unsigned long addr, pfn_t pfn); |
| 3523 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); |
| 3524 | |
| 3525 | static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, |
| 3526 | unsigned long addr, struct page *page) |
| 3527 | { |
| 3528 | int err = vm_insert_page(vma, addr, page); |
| 3529 | |
| 3530 | if (err == -ENOMEM) |
| 3531 | return VM_FAULT_OOM; |
| 3532 | if (err < 0 && err != -EBUSY) |
| 3533 | return VM_FAULT_SIGBUS; |
| 3534 | |
| 3535 | return VM_FAULT_NOPAGE; |
| 3536 | } |
| 3537 | |
| 3538 | #ifndef io_remap_pfn_range |
| 3539 | static inline int io_remap_pfn_range(struct vm_area_struct *vma, |
| 3540 | unsigned long addr, unsigned long pfn, |
| 3541 | unsigned long size, pgprot_t prot) |
| 3542 | { |
| 3543 | return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); |
| 3544 | } |
| 3545 | #endif |
| 3546 | |
| 3547 | static inline vm_fault_t vmf_error(int err) |
| 3548 | { |
| 3549 | if (err == -ENOMEM) |
| 3550 | return VM_FAULT_OOM; |
| 3551 | else if (err == -EHWPOISON) |
| 3552 | return VM_FAULT_HWPOISON; |
| 3553 | return VM_FAULT_SIGBUS; |
| 3554 | } |
| 3555 | |
| 3556 | /* |
| 3557 | * Convert errno to return value for ->page_mkwrite() calls. |
| 3558 | * |
| 3559 | * This should eventually be merged with vmf_error() above, but will need a |
| 3560 | * careful audit of all vmf_error() callers. |
| 3561 | */ |
| 3562 | static inline vm_fault_t vmf_fs_error(int err) |
| 3563 | { |
| 3564 | if (err == 0) |
| 3565 | return VM_FAULT_LOCKED; |
| 3566 | if (err == -EFAULT || err == -EAGAIN) |
| 3567 | return VM_FAULT_NOPAGE; |
| 3568 | if (err == -ENOMEM) |
| 3569 | return VM_FAULT_OOM; |
| 3570 | /* -ENOSPC, -EDQUOT, -EIO ... */ |
| 3571 | return VM_FAULT_SIGBUS; |
| 3572 | } |
| 3573 | |
| 3574 | static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) |
| 3575 | { |
| 3576 | if (vm_fault & VM_FAULT_OOM) |
| 3577 | return -ENOMEM; |
| 3578 | if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| 3579 | return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; |
| 3580 | if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
| 3581 | return -EFAULT; |
| 3582 | return 0; |
| 3583 | } |
| 3584 | |
| 3585 | /* |
| 3586 | * Indicates whether GUP can follow a PROT_NONE mapped page, or whether |
| 3587 | * a (NUMA hinting) fault is required. |
| 3588 | */ |
| 3589 | static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, |
| 3590 | unsigned int flags) |
| 3591 | { |
| 3592 | /* |
| 3593 | * If callers don't want to honor NUMA hinting faults, no need to |
| 3594 | * determine if we would actually have to trigger a NUMA hinting fault. |
| 3595 | */ |
| 3596 | if (!(flags & FOLL_HONOR_NUMA_FAULT)) |
| 3597 | return true; |
| 3598 | |
| 3599 | /* |
| 3600 | * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. |
| 3601 | * |
| 3602 | * Requiring a fault here even for inaccessible VMAs would mean that |
| 3603 | * FOLL_FORCE cannot make any progress, because handle_mm_fault() |
| 3604 | * refuses to process NUMA hinting faults in inaccessible VMAs. |
| 3605 | */ |
| 3606 | return !vma_is_accessible(vma); |
| 3607 | } |
| 3608 | |
| 3609 | typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); |
| 3610 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
| 3611 | unsigned long size, pte_fn_t fn, void *data); |
| 3612 | extern int apply_to_existing_page_range(struct mm_struct *mm, |
| 3613 | unsigned long address, unsigned long size, |
| 3614 | pte_fn_t fn, void *data); |
| 3615 | |
| 3616 | #ifdef CONFIG_PAGE_POISONING |
| 3617 | extern void __kernel_poison_pages(struct page *page, int numpages); |
| 3618 | extern void __kernel_unpoison_pages(struct page *page, int numpages); |
| 3619 | extern bool _page_poisoning_enabled_early; |
| 3620 | DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); |
| 3621 | static inline bool page_poisoning_enabled(void) |
| 3622 | { |
| 3623 | return _page_poisoning_enabled_early; |
| 3624 | } |
| 3625 | /* |
| 3626 | * For use in fast paths after init_mem_debugging() has run, or when a |
| 3627 | * false negative result is not harmful when called too early. |
| 3628 | */ |
| 3629 | static inline bool page_poisoning_enabled_static(void) |
| 3630 | { |
| 3631 | return static_branch_unlikely(&_page_poisoning_enabled); |
| 3632 | } |
| 3633 | static inline void kernel_poison_pages(struct page *page, int numpages) |
| 3634 | { |
| 3635 | if (page_poisoning_enabled_static()) |
| 3636 | __kernel_poison_pages(page, numpages); |
| 3637 | } |
| 3638 | static inline void kernel_unpoison_pages(struct page *page, int numpages) |
| 3639 | { |
| 3640 | if (page_poisoning_enabled_static()) |
| 3641 | __kernel_unpoison_pages(page, numpages); |
| 3642 | } |
| 3643 | #else |
| 3644 | static inline bool page_poisoning_enabled(void) { return false; } |
| 3645 | static inline bool page_poisoning_enabled_static(void) { return false; } |
| 3646 | static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } |
| 3647 | static inline void kernel_poison_pages(struct page *page, int numpages) { } |
| 3648 | static inline void kernel_unpoison_pages(struct page *page, int numpages) { } |
| 3649 | #endif |
| 3650 | |
| 3651 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
| 3652 | static inline bool want_init_on_alloc(gfp_t flags) |
| 3653 | { |
| 3654 | if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| 3655 | &init_on_alloc)) |
| 3656 | return true; |
| 3657 | return flags & __GFP_ZERO; |
| 3658 | } |
| 3659 | |
| 3660 | DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
| 3661 | static inline bool want_init_on_free(void) |
| 3662 | { |
| 3663 | return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
| 3664 | &init_on_free); |
| 3665 | } |
| 3666 | |
| 3667 | extern bool _debug_pagealloc_enabled_early; |
| 3668 | DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); |
| 3669 | |
| 3670 | static inline bool debug_pagealloc_enabled(void) |
| 3671 | { |
| 3672 | return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
| 3673 | _debug_pagealloc_enabled_early; |
| 3674 | } |
| 3675 | |
| 3676 | /* |
| 3677 | * For use in fast paths after mem_debugging_and_hardening_init() has run, |
| 3678 | * or when a false negative result is not harmful when called too early. |
| 3679 | */ |
| 3680 | static inline bool debug_pagealloc_enabled_static(void) |
| 3681 | { |
| 3682 | if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) |
| 3683 | return false; |
| 3684 | |
| 3685 | return static_branch_unlikely(&_debug_pagealloc_enabled); |
| 3686 | } |
| 3687 | |
| 3688 | /* |
| 3689 | * To support DEBUG_PAGEALLOC architecture must ensure that |
| 3690 | * __kernel_map_pages() never fails |
| 3691 | */ |
| 3692 | extern void __kernel_map_pages(struct page *page, int numpages, int enable); |
| 3693 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 3694 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) |
| 3695 | { |
| 3696 | if (debug_pagealloc_enabled_static()) |
| 3697 | __kernel_map_pages(page, numpages, 1); |
| 3698 | } |
| 3699 | |
| 3700 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) |
| 3701 | { |
| 3702 | if (debug_pagealloc_enabled_static()) |
| 3703 | __kernel_map_pages(page, numpages, 0); |
| 3704 | } |
| 3705 | |
| 3706 | extern unsigned int _debug_guardpage_minorder; |
| 3707 | DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); |
| 3708 | |
| 3709 | static inline unsigned int debug_guardpage_minorder(void) |
| 3710 | { |
| 3711 | return _debug_guardpage_minorder; |
| 3712 | } |
| 3713 | |
| 3714 | static inline bool debug_guardpage_enabled(void) |
| 3715 | { |
| 3716 | return static_branch_unlikely(&_debug_guardpage_enabled); |
| 3717 | } |
| 3718 | |
| 3719 | static inline bool page_is_guard(struct page *page) |
| 3720 | { |
| 3721 | if (!debug_guardpage_enabled()) |
| 3722 | return false; |
| 3723 | |
| 3724 | return PageGuard(page); |
| 3725 | } |
| 3726 | |
| 3727 | bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| 3728 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
| 3729 | unsigned int order) |
| 3730 | { |
| 3731 | if (!debug_guardpage_enabled()) |
| 3732 | return false; |
| 3733 | return __set_page_guard(zone, page, order); |
| 3734 | } |
| 3735 | |
| 3736 | void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| 3737 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
| 3738 | unsigned int order) |
| 3739 | { |
| 3740 | if (!debug_guardpage_enabled()) |
| 3741 | return; |
| 3742 | __clear_page_guard(zone, page, order); |
| 3743 | } |
| 3744 | |
| 3745 | #else /* CONFIG_DEBUG_PAGEALLOC */ |
| 3746 | static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} |
| 3747 | static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} |
| 3748 | static inline unsigned int debug_guardpage_minorder(void) { return 0; } |
| 3749 | static inline bool debug_guardpage_enabled(void) { return false; } |
| 3750 | static inline bool page_is_guard(struct page *page) { return false; } |
| 3751 | static inline bool set_page_guard(struct zone *zone, struct page *page, |
| 3752 | unsigned int order) { return false; } |
| 3753 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
| 3754 | unsigned int order) {} |
| 3755 | #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| 3756 | |
| 3757 | #ifdef __HAVE_ARCH_GATE_AREA |
| 3758 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
| 3759 | extern int in_gate_area_no_mm(unsigned long addr); |
| 3760 | extern int in_gate_area(struct mm_struct *mm, unsigned long addr); |
| 3761 | #else |
| 3762 | static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
| 3763 | { |
| 3764 | return NULL; |
| 3765 | } |
| 3766 | static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } |
| 3767 | static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) |
| 3768 | { |
| 3769 | return 0; |
| 3770 | } |
| 3771 | #endif /* __HAVE_ARCH_GATE_AREA */ |
| 3772 | |
| 3773 | extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); |
| 3774 | |
| 3775 | void drop_slab(void); |
| 3776 | |
| 3777 | #ifndef CONFIG_MMU |
| 3778 | #define randomize_va_space 0 |
| 3779 | #else |
| 3780 | extern int randomize_va_space; |
| 3781 | #endif |
| 3782 | |
| 3783 | const char * arch_vma_name(struct vm_area_struct *vma); |
| 3784 | #ifdef CONFIG_MMU |
| 3785 | void print_vma_addr(char *prefix, unsigned long rip); |
| 3786 | #else |
| 3787 | static inline void print_vma_addr(char *prefix, unsigned long rip) |
| 3788 | { |
| 3789 | } |
| 3790 | #endif |
| 3791 | |
| 3792 | void *sparse_buffer_alloc(unsigned long size); |
| 3793 | unsigned long section_map_size(void); |
| 3794 | struct page * __populate_section_memmap(unsigned long pfn, |
| 3795 | unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| 3796 | struct dev_pagemap *pgmap); |
| 3797 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
| 3798 | p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); |
| 3799 | pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); |
| 3800 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
| 3801 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| 3802 | struct vmem_altmap *altmap, unsigned long ptpfn, |
| 3803 | unsigned long flags); |
| 3804 | void *vmemmap_alloc_block(unsigned long size, int node); |
| 3805 | struct vmem_altmap; |
| 3806 | void *vmemmap_alloc_block_buf(unsigned long size, int node, |
| 3807 | struct vmem_altmap *altmap); |
| 3808 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
| 3809 | void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| 3810 | unsigned long addr, unsigned long next); |
| 3811 | int vmemmap_check_pmd(pmd_t *pmd, int node, |
| 3812 | unsigned long addr, unsigned long next); |
| 3813 | int vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| 3814 | int node, struct vmem_altmap *altmap); |
| 3815 | int vmemmap_populate_hugepages(unsigned long start, unsigned long end, |
| 3816 | int node, struct vmem_altmap *altmap); |
| 3817 | int vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 3818 | struct vmem_altmap *altmap); |
| 3819 | int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, |
| 3820 | unsigned long headsize); |
| 3821 | int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, |
| 3822 | unsigned long headsize); |
| 3823 | void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, |
| 3824 | unsigned long headsize); |
| 3825 | void vmemmap_populate_print_last(void); |
| 3826 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 3827 | void vmemmap_free(unsigned long start, unsigned long end, |
| 3828 | struct vmem_altmap *altmap); |
| 3829 | #endif |
| 3830 | |
| 3831 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 3832 | static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) |
| 3833 | { |
| 3834 | /* number of pfns from base where pfn_to_page() is valid */ |
| 3835 | if (altmap) |
| 3836 | return altmap->reserve + altmap->free; |
| 3837 | return 0; |
| 3838 | } |
| 3839 | |
| 3840 | static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| 3841 | unsigned long nr_pfns) |
| 3842 | { |
| 3843 | altmap->alloc -= nr_pfns; |
| 3844 | } |
| 3845 | #else |
| 3846 | static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) |
| 3847 | { |
| 3848 | return 0; |
| 3849 | } |
| 3850 | |
| 3851 | static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| 3852 | unsigned long nr_pfns) |
| 3853 | { |
| 3854 | } |
| 3855 | #endif |
| 3856 | |
| 3857 | #define VMEMMAP_RESERVE_NR 2 |
| 3858 | #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP |
| 3859 | static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, |
| 3860 | struct dev_pagemap *pgmap) |
| 3861 | { |
| 3862 | unsigned long nr_pages; |
| 3863 | unsigned long nr_vmemmap_pages; |
| 3864 | |
| 3865 | if (!pgmap || !is_power_of_2(sizeof(struct page))) |
| 3866 | return false; |
| 3867 | |
| 3868 | nr_pages = pgmap_vmemmap_nr(pgmap); |
| 3869 | nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); |
| 3870 | /* |
| 3871 | * For vmemmap optimization with DAX we need minimum 2 vmemmap |
| 3872 | * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst |
| 3873 | */ |
| 3874 | return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); |
| 3875 | } |
| 3876 | /* |
| 3877 | * If we don't have an architecture override, use the generic rule |
| 3878 | */ |
| 3879 | #ifndef vmemmap_can_optimize |
| 3880 | #define vmemmap_can_optimize __vmemmap_can_optimize |
| 3881 | #endif |
| 3882 | |
| 3883 | #else |
| 3884 | static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, |
| 3885 | struct dev_pagemap *pgmap) |
| 3886 | { |
| 3887 | return false; |
| 3888 | } |
| 3889 | #endif |
| 3890 | |
| 3891 | enum mf_flags { |
| 3892 | MF_COUNT_INCREASED = 1 << 0, |
| 3893 | MF_ACTION_REQUIRED = 1 << 1, |
| 3894 | MF_MUST_KILL = 1 << 2, |
| 3895 | MF_SOFT_OFFLINE = 1 << 3, |
| 3896 | MF_UNPOISON = 1 << 4, |
| 3897 | MF_SW_SIMULATED = 1 << 5, |
| 3898 | MF_NO_RETRY = 1 << 6, |
| 3899 | MF_MEM_PRE_REMOVE = 1 << 7, |
| 3900 | }; |
| 3901 | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, |
| 3902 | unsigned long count, int mf_flags); |
| 3903 | extern int memory_failure(unsigned long pfn, int flags); |
| 3904 | extern void memory_failure_queue_kick(int cpu); |
| 3905 | extern int unpoison_memory(unsigned long pfn); |
| 3906 | extern atomic_long_t num_poisoned_pages __read_mostly; |
| 3907 | extern int soft_offline_page(unsigned long pfn, int flags); |
| 3908 | #ifdef CONFIG_MEMORY_FAILURE |
| 3909 | /* |
| 3910 | * Sysfs entries for memory failure handling statistics. |
| 3911 | */ |
| 3912 | extern const struct attribute_group memory_failure_attr_group; |
| 3913 | extern void memory_failure_queue(unsigned long pfn, int flags); |
| 3914 | extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| 3915 | bool *migratable_cleared); |
| 3916 | void num_poisoned_pages_inc(unsigned long pfn); |
| 3917 | void num_poisoned_pages_sub(unsigned long pfn, long i); |
| 3918 | #else |
| 3919 | static inline void memory_failure_queue(unsigned long pfn, int flags) |
| 3920 | { |
| 3921 | } |
| 3922 | |
| 3923 | static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| 3924 | bool *migratable_cleared) |
| 3925 | { |
| 3926 | return 0; |
| 3927 | } |
| 3928 | |
| 3929 | static inline void num_poisoned_pages_inc(unsigned long pfn) |
| 3930 | { |
| 3931 | } |
| 3932 | |
| 3933 | static inline void num_poisoned_pages_sub(unsigned long pfn, long i) |
| 3934 | { |
| 3935 | } |
| 3936 | #endif |
| 3937 | |
| 3938 | #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) |
| 3939 | extern void memblk_nr_poison_inc(unsigned long pfn); |
| 3940 | extern void memblk_nr_poison_sub(unsigned long pfn, long i); |
| 3941 | #else |
| 3942 | static inline void memblk_nr_poison_inc(unsigned long pfn) |
| 3943 | { |
| 3944 | } |
| 3945 | |
| 3946 | static inline void memblk_nr_poison_sub(unsigned long pfn, long i) |
| 3947 | { |
| 3948 | } |
| 3949 | #endif |
| 3950 | |
| 3951 | #ifndef arch_memory_failure |
| 3952 | static inline int arch_memory_failure(unsigned long pfn, int flags) |
| 3953 | { |
| 3954 | return -ENXIO; |
| 3955 | } |
| 3956 | #endif |
| 3957 | |
| 3958 | #ifndef arch_is_platform_page |
| 3959 | static inline bool arch_is_platform_page(u64 paddr) |
| 3960 | { |
| 3961 | return false; |
| 3962 | } |
| 3963 | #endif |
| 3964 | |
| 3965 | /* |
| 3966 | * Error handlers for various types of pages. |
| 3967 | */ |
| 3968 | enum mf_result { |
| 3969 | MF_IGNORED, /* Error: cannot be handled */ |
| 3970 | MF_FAILED, /* Error: handling failed */ |
| 3971 | MF_DELAYED, /* Will be handled later */ |
| 3972 | MF_RECOVERED, /* Successfully recovered */ |
| 3973 | }; |
| 3974 | |
| 3975 | enum mf_action_page_type { |
| 3976 | MF_MSG_KERNEL, |
| 3977 | MF_MSG_KERNEL_HIGH_ORDER, |
| 3978 | MF_MSG_DIFFERENT_COMPOUND, |
| 3979 | MF_MSG_HUGE, |
| 3980 | MF_MSG_FREE_HUGE, |
| 3981 | MF_MSG_GET_HWPOISON, |
| 3982 | MF_MSG_UNMAP_FAILED, |
| 3983 | MF_MSG_DIRTY_SWAPCACHE, |
| 3984 | MF_MSG_CLEAN_SWAPCACHE, |
| 3985 | MF_MSG_DIRTY_MLOCKED_LRU, |
| 3986 | MF_MSG_CLEAN_MLOCKED_LRU, |
| 3987 | MF_MSG_DIRTY_UNEVICTABLE_LRU, |
| 3988 | MF_MSG_CLEAN_UNEVICTABLE_LRU, |
| 3989 | MF_MSG_DIRTY_LRU, |
| 3990 | MF_MSG_CLEAN_LRU, |
| 3991 | MF_MSG_TRUNCATED_LRU, |
| 3992 | MF_MSG_BUDDY, |
| 3993 | MF_MSG_DAX, |
| 3994 | MF_MSG_UNSPLIT_THP, |
| 3995 | MF_MSG_ALREADY_POISONED, |
| 3996 | MF_MSG_UNKNOWN, |
| 3997 | }; |
| 3998 | |
| 3999 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
| 4000 | void folio_zero_user(struct folio *folio, unsigned long addr_hint); |
| 4001 | int copy_user_large_folio(struct folio *dst, struct folio *src, |
| 4002 | unsigned long addr_hint, |
| 4003 | struct vm_area_struct *vma); |
| 4004 | long copy_folio_from_user(struct folio *dst_folio, |
| 4005 | const void __user *usr_src, |
| 4006 | bool allow_pagefault); |
| 4007 | |
| 4008 | /** |
| 4009 | * vma_is_special_huge - Are transhuge page-table entries considered special? |
| 4010 | * @vma: Pointer to the struct vm_area_struct to consider |
| 4011 | * |
| 4012 | * Whether transhuge page-table entries are considered "special" following |
| 4013 | * the definition in vm_normal_page(). |
| 4014 | * |
| 4015 | * Return: true if transhuge page-table entries should be considered special, |
| 4016 | * false otherwise. |
| 4017 | */ |
| 4018 | static inline bool vma_is_special_huge(const struct vm_area_struct *vma) |
| 4019 | { |
| 4020 | return vma_is_dax(vma) || (vma->vm_file && |
| 4021 | (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); |
| 4022 | } |
| 4023 | |
| 4024 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
| 4025 | |
| 4026 | #if MAX_NUMNODES > 1 |
| 4027 | void __init setup_nr_node_ids(void); |
| 4028 | #else |
| 4029 | static inline void setup_nr_node_ids(void) {} |
| 4030 | #endif |
| 4031 | |
| 4032 | extern int memcmp_pages(struct page *page1, struct page *page2); |
| 4033 | |
| 4034 | static inline int pages_identical(struct page *page1, struct page *page2) |
| 4035 | { |
| 4036 | return !memcmp_pages(page1, page2); |
| 4037 | } |
| 4038 | |
| 4039 | #ifdef CONFIG_MAPPING_DIRTY_HELPERS |
| 4040 | unsigned long clean_record_shared_mapping_range(struct address_space *mapping, |
| 4041 | pgoff_t first_index, pgoff_t nr, |
| 4042 | pgoff_t bitmap_pgoff, |
| 4043 | unsigned long *bitmap, |
| 4044 | pgoff_t *start, |
| 4045 | pgoff_t *end); |
| 4046 | |
| 4047 | unsigned long wp_shared_mapping_range(struct address_space *mapping, |
| 4048 | pgoff_t first_index, pgoff_t nr); |
| 4049 | #endif |
| 4050 | |
| 4051 | #ifdef CONFIG_ANON_VMA_NAME |
| 4052 | int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| 4053 | unsigned long len_in, |
| 4054 | struct anon_vma_name *anon_name); |
| 4055 | #else |
| 4056 | static inline int |
| 4057 | madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| 4058 | unsigned long len_in, struct anon_vma_name *anon_name) { |
| 4059 | return 0; |
| 4060 | } |
| 4061 | #endif |
| 4062 | |
| 4063 | #ifdef CONFIG_UNACCEPTED_MEMORY |
| 4064 | |
| 4065 | bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); |
| 4066 | void accept_memory(phys_addr_t start, unsigned long size); |
| 4067 | |
| 4068 | #else |
| 4069 | |
| 4070 | static inline bool range_contains_unaccepted_memory(phys_addr_t start, |
| 4071 | unsigned long size) |
| 4072 | { |
| 4073 | return false; |
| 4074 | } |
| 4075 | |
| 4076 | static inline void accept_memory(phys_addr_t start, unsigned long size) |
| 4077 | { |
| 4078 | } |
| 4079 | |
| 4080 | #endif |
| 4081 | |
| 4082 | static inline bool pfn_is_unaccepted_memory(unsigned long pfn) |
| 4083 | { |
| 4084 | return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); |
| 4085 | } |
| 4086 | |
| 4087 | void vma_pgtable_walk_begin(struct vm_area_struct *vma); |
| 4088 | void vma_pgtable_walk_end(struct vm_area_struct *vma); |
| 4089 | |
| 4090 | int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); |
| 4091 | int reserve_mem_release_by_name(const char *name); |
| 4092 | |
| 4093 | #ifdef CONFIG_64BIT |
| 4094 | int do_mseal(unsigned long start, size_t len_in, unsigned long flags); |
| 4095 | #else |
| 4096 | static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) |
| 4097 | { |
| 4098 | /* noop on 32 bit */ |
| 4099 | return 0; |
| 4100 | } |
| 4101 | #endif |
| 4102 | |
| 4103 | /* |
| 4104 | * user_alloc_needs_zeroing checks if a user folio from page allocator needs to |
| 4105 | * be zeroed or not. |
| 4106 | */ |
| 4107 | static inline bool user_alloc_needs_zeroing(void) |
| 4108 | { |
| 4109 | /* |
| 4110 | * for user folios, arch with cache aliasing requires cache flush and |
| 4111 | * arc changes folio->flags to make icache coherent with dcache, so |
| 4112 | * always return false to make caller use |
| 4113 | * clear_user_page()/clear_user_highpage(). |
| 4114 | */ |
| 4115 | return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || |
| 4116 | !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| 4117 | &init_on_alloc); |
| 4118 | } |
| 4119 | |
| 4120 | int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); |
| 4121 | int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); |
| 4122 | int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); |
| 4123 | |
| 4124 | |
| 4125 | /* |
| 4126 | * mseal of userspace process's system mappings. |
| 4127 | */ |
| 4128 | #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS |
| 4129 | #define VM_SEALED_SYSMAP VM_SEALED |
| 4130 | #else |
| 4131 | #define VM_SEALED_SYSMAP VM_NONE |
| 4132 | #endif |
| 4133 | |
| 4134 | /* |
| 4135 | * DMA mapping IDs for page_pool |
| 4136 | * |
| 4137 | * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and |
| 4138 | * stashes it in the upper bits of page->pp_magic. We always want to be able to |
| 4139 | * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP |
| 4140 | * pages can have arbitrary kernel pointers stored in the same field as pp_magic |
| 4141 | * (since it overlaps with page->lru.next), so we must ensure that we cannot |
| 4142 | * mistake a valid kernel pointer with any of the values we write into this |
| 4143 | * field. |
| 4144 | * |
| 4145 | * On architectures that set POISON_POINTER_DELTA, this is already ensured, |
| 4146 | * since this value becomes part of PP_SIGNATURE; meaning we can just use the |
| 4147 | * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the |
| 4148 | * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is |
| 4149 | * 0, we make sure that we leave the two topmost bits empty, as that guarantees |
| 4150 | * we won't mistake a valid kernel pointer for a value we set, regardless of the |
| 4151 | * VMSPLIT setting. |
| 4152 | * |
| 4153 | * Altogether, this means that the number of bits available is constrained by |
| 4154 | * the size of an unsigned long (at the upper end, subtracting two bits per the |
| 4155 | * above), and the definition of PP_SIGNATURE (with or without |
| 4156 | * POISON_POINTER_DELTA). |
| 4157 | */ |
| 4158 | #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA)) |
| 4159 | #if POISON_POINTER_DELTA > 0 |
| 4160 | /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA |
| 4161 | * index to not overlap with that if set |
| 4162 | */ |
| 4163 | #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT) |
| 4164 | #else |
| 4165 | /* Always leave out the topmost two; see above. */ |
| 4166 | #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2) |
| 4167 | #endif |
| 4168 | |
| 4169 | #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \ |
| 4170 | PP_DMA_INDEX_SHIFT) |
| 4171 | |
| 4172 | /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is |
| 4173 | * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for |
| 4174 | * the head page of compound page and bit 1 for pfmemalloc page, as well as the |
| 4175 | * bits used for the DMA index. page_is_pfmemalloc() is checked in |
| 4176 | * __page_pool_put_page() to avoid recycling the pfmemalloc page. |
| 4177 | */ |
| 4178 | #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL) |
| 4179 | |
| 4180 | #ifdef CONFIG_PAGE_POOL |
| 4181 | static inline bool page_pool_page_is_pp(struct page *page) |
| 4182 | { |
| 4183 | return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE; |
| 4184 | } |
| 4185 | #else |
| 4186 | static inline bool page_pool_page_is_pp(struct page *page) |
| 4187 | { |
| 4188 | return false; |
| 4189 | } |
| 4190 | #endif |
| 4191 | |
| 4192 | #endif /* _LINUX_MM_H */ |