mm/core, x86/mm/pkeys: Differentiate instruction fetches
[linux-2.6-block.git] / include / linux / mm.h
... / ...
CommitLineData
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25
26struct mempolicy;
27struct anon_vma;
28struct anon_vma_chain;
29struct file_ra_state;
30struct user_struct;
31struct writeback_control;
32struct bdi_writeback;
33
34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
35extern unsigned long max_mapnr;
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
43#endif
44
45extern unsigned long totalram_pages;
46extern void * high_memory;
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
69
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
85extern unsigned long sysctl_user_reserve_kbytes;
86extern unsigned long sysctl_admin_reserve_kbytes;
87
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
114extern struct kmem_cache *vm_area_cachep;
115
116#ifndef CONFIG_MMU
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
124 * vm_flags in vm_area_struct, see mm_types.h.
125 */
126#define VM_NONE 0x00000000
127
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
144
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
159#define VM_ARCH_2 0x02000000
160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
161
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
172
173#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
174#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
175#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
176#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
177#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
178#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
179#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
180#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
181#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
182#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
183
184#if defined(CONFIG_X86)
185# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
186#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
187# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
188# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
189# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
190# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
191# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
192#endif
193#elif defined(CONFIG_PPC)
194# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
195#elif defined(CONFIG_PARISC)
196# define VM_GROWSUP VM_ARCH_1
197#elif defined(CONFIG_METAG)
198# define VM_GROWSUP VM_ARCH_1
199#elif defined(CONFIG_IA64)
200# define VM_GROWSUP VM_ARCH_1
201#elif !defined(CONFIG_MMU)
202# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
203#endif
204
205#if defined(CONFIG_X86)
206/* MPX specific bounds table or bounds directory */
207# define VM_MPX VM_ARCH_2
208#endif
209
210#ifndef VM_GROWSUP
211# define VM_GROWSUP VM_NONE
212#endif
213
214/* Bits set in the VMA until the stack is in its final location */
215#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
216
217#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
218#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
219#endif
220
221#ifdef CONFIG_STACK_GROWSUP
222#define VM_STACK VM_GROWSUP
223#else
224#define VM_STACK VM_GROWSDOWN
225#endif
226
227#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
228
229/*
230 * Special vmas that are non-mergable, non-mlock()able.
231 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
232 */
233#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
234
235/* This mask defines which mm->def_flags a process can inherit its parent */
236#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
237
238/* This mask is used to clear all the VMA flags used by mlock */
239#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
240
241/*
242 * mapping from the currently active vm_flags protection bits (the
243 * low four bits) to a page protection mask..
244 */
245extern pgprot_t protection_map[16];
246
247#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
248#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
249#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
250#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
251#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
252#define FAULT_FLAG_TRIED 0x20 /* Second try */
253#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
254#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
255#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
256
257/*
258 * vm_fault is filled by the the pagefault handler and passed to the vma's
259 * ->fault function. The vma's ->fault is responsible for returning a bitmask
260 * of VM_FAULT_xxx flags that give details about how the fault was handled.
261 *
262 * MM layer fills up gfp_mask for page allocations but fault handler might
263 * alter it if its implementation requires a different allocation context.
264 *
265 * pgoff should be used in favour of virtual_address, if possible.
266 */
267struct vm_fault {
268 unsigned int flags; /* FAULT_FLAG_xxx flags */
269 gfp_t gfp_mask; /* gfp mask to be used for allocations */
270 pgoff_t pgoff; /* Logical page offset based on vma */
271 void __user *virtual_address; /* Faulting virtual address */
272
273 struct page *cow_page; /* Handler may choose to COW */
274 struct page *page; /* ->fault handlers should return a
275 * page here, unless VM_FAULT_NOPAGE
276 * is set (which is also implied by
277 * VM_FAULT_ERROR).
278 */
279 /* for ->map_pages() only */
280 pgoff_t max_pgoff; /* map pages for offset from pgoff till
281 * max_pgoff inclusive */
282 pte_t *pte; /* pte entry associated with ->pgoff */
283};
284
285/*
286 * These are the virtual MM functions - opening of an area, closing and
287 * unmapping it (needed to keep files on disk up-to-date etc), pointer
288 * to the functions called when a no-page or a wp-page exception occurs.
289 */
290struct vm_operations_struct {
291 void (*open)(struct vm_area_struct * area);
292 void (*close)(struct vm_area_struct * area);
293 int (*mremap)(struct vm_area_struct * area);
294 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
295 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
296 pmd_t *, unsigned int flags);
297 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
298
299 /* notification that a previously read-only page is about to become
300 * writable, if an error is returned it will cause a SIGBUS */
301 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
302
303 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
304 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
305
306 /* called by access_process_vm when get_user_pages() fails, typically
307 * for use by special VMAs that can switch between memory and hardware
308 */
309 int (*access)(struct vm_area_struct *vma, unsigned long addr,
310 void *buf, int len, int write);
311
312 /* Called by the /proc/PID/maps code to ask the vma whether it
313 * has a special name. Returning non-NULL will also cause this
314 * vma to be dumped unconditionally. */
315 const char *(*name)(struct vm_area_struct *vma);
316
317#ifdef CONFIG_NUMA
318 /*
319 * set_policy() op must add a reference to any non-NULL @new mempolicy
320 * to hold the policy upon return. Caller should pass NULL @new to
321 * remove a policy and fall back to surrounding context--i.e. do not
322 * install a MPOL_DEFAULT policy, nor the task or system default
323 * mempolicy.
324 */
325 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
326
327 /*
328 * get_policy() op must add reference [mpol_get()] to any policy at
329 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
330 * in mm/mempolicy.c will do this automatically.
331 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
332 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
333 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
334 * must return NULL--i.e., do not "fallback" to task or system default
335 * policy.
336 */
337 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
338 unsigned long addr);
339#endif
340 /*
341 * Called by vm_normal_page() for special PTEs to find the
342 * page for @addr. This is useful if the default behavior
343 * (using pte_page()) would not find the correct page.
344 */
345 struct page *(*find_special_page)(struct vm_area_struct *vma,
346 unsigned long addr);
347};
348
349struct mmu_gather;
350struct inode;
351
352#define page_private(page) ((page)->private)
353#define set_page_private(page, v) ((page)->private = (v))
354
355#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
356static inline int pmd_devmap(pmd_t pmd)
357{
358 return 0;
359}
360#endif
361
362/*
363 * FIXME: take this include out, include page-flags.h in
364 * files which need it (119 of them)
365 */
366#include <linux/page-flags.h>
367#include <linux/huge_mm.h>
368
369/*
370 * Methods to modify the page usage count.
371 *
372 * What counts for a page usage:
373 * - cache mapping (page->mapping)
374 * - private data (page->private)
375 * - page mapped in a task's page tables, each mapping
376 * is counted separately
377 *
378 * Also, many kernel routines increase the page count before a critical
379 * routine so they can be sure the page doesn't go away from under them.
380 */
381
382/*
383 * Drop a ref, return true if the refcount fell to zero (the page has no users)
384 */
385static inline int put_page_testzero(struct page *page)
386{
387 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
388 return atomic_dec_and_test(&page->_count);
389}
390
391/*
392 * Try to grab a ref unless the page has a refcount of zero, return false if
393 * that is the case.
394 * This can be called when MMU is off so it must not access
395 * any of the virtual mappings.
396 */
397static inline int get_page_unless_zero(struct page *page)
398{
399 return atomic_inc_not_zero(&page->_count);
400}
401
402extern int page_is_ram(unsigned long pfn);
403
404enum {
405 REGION_INTERSECTS,
406 REGION_DISJOINT,
407 REGION_MIXED,
408};
409
410int region_intersects(resource_size_t offset, size_t size, const char *type);
411
412/* Support for virtually mapped pages */
413struct page *vmalloc_to_page(const void *addr);
414unsigned long vmalloc_to_pfn(const void *addr);
415
416/*
417 * Determine if an address is within the vmalloc range
418 *
419 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
420 * is no special casing required.
421 */
422static inline int is_vmalloc_addr(const void *x)
423{
424#ifdef CONFIG_MMU
425 unsigned long addr = (unsigned long)x;
426
427 return addr >= VMALLOC_START && addr < VMALLOC_END;
428#else
429 return 0;
430#endif
431}
432#ifdef CONFIG_MMU
433extern int is_vmalloc_or_module_addr(const void *x);
434#else
435static inline int is_vmalloc_or_module_addr(const void *x)
436{
437 return 0;
438}
439#endif
440
441extern void kvfree(const void *addr);
442
443static inline atomic_t *compound_mapcount_ptr(struct page *page)
444{
445 return &page[1].compound_mapcount;
446}
447
448static inline int compound_mapcount(struct page *page)
449{
450 if (!PageCompound(page))
451 return 0;
452 page = compound_head(page);
453 return atomic_read(compound_mapcount_ptr(page)) + 1;
454}
455
456/*
457 * The atomic page->_mapcount, starts from -1: so that transitions
458 * both from it and to it can be tracked, using atomic_inc_and_test
459 * and atomic_add_negative(-1).
460 */
461static inline void page_mapcount_reset(struct page *page)
462{
463 atomic_set(&(page)->_mapcount, -1);
464}
465
466int __page_mapcount(struct page *page);
467
468static inline int page_mapcount(struct page *page)
469{
470 VM_BUG_ON_PAGE(PageSlab(page), page);
471
472 if (unlikely(PageCompound(page)))
473 return __page_mapcount(page);
474 return atomic_read(&page->_mapcount) + 1;
475}
476
477#ifdef CONFIG_TRANSPARENT_HUGEPAGE
478int total_mapcount(struct page *page);
479#else
480static inline int total_mapcount(struct page *page)
481{
482 return page_mapcount(page);
483}
484#endif
485
486static inline int page_count(struct page *page)
487{
488 return atomic_read(&compound_head(page)->_count);
489}
490
491static inline struct page *virt_to_head_page(const void *x)
492{
493 struct page *page = virt_to_page(x);
494
495 return compound_head(page);
496}
497
498/*
499 * Setup the page count before being freed into the page allocator for
500 * the first time (boot or memory hotplug)
501 */
502static inline void init_page_count(struct page *page)
503{
504 atomic_set(&page->_count, 1);
505}
506
507void __put_page(struct page *page);
508
509void put_pages_list(struct list_head *pages);
510
511void split_page(struct page *page, unsigned int order);
512int split_free_page(struct page *page);
513
514/*
515 * Compound pages have a destructor function. Provide a
516 * prototype for that function and accessor functions.
517 * These are _only_ valid on the head of a compound page.
518 */
519typedef void compound_page_dtor(struct page *);
520
521/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
522enum compound_dtor_id {
523 NULL_COMPOUND_DTOR,
524 COMPOUND_PAGE_DTOR,
525#ifdef CONFIG_HUGETLB_PAGE
526 HUGETLB_PAGE_DTOR,
527#endif
528#ifdef CONFIG_TRANSPARENT_HUGEPAGE
529 TRANSHUGE_PAGE_DTOR,
530#endif
531 NR_COMPOUND_DTORS,
532};
533extern compound_page_dtor * const compound_page_dtors[];
534
535static inline void set_compound_page_dtor(struct page *page,
536 enum compound_dtor_id compound_dtor)
537{
538 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
539 page[1].compound_dtor = compound_dtor;
540}
541
542static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
543{
544 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
545 return compound_page_dtors[page[1].compound_dtor];
546}
547
548static inline unsigned int compound_order(struct page *page)
549{
550 if (!PageHead(page))
551 return 0;
552 return page[1].compound_order;
553}
554
555static inline void set_compound_order(struct page *page, unsigned int order)
556{
557 page[1].compound_order = order;
558}
559
560void free_compound_page(struct page *page);
561
562#ifdef CONFIG_MMU
563/*
564 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
565 * servicing faults for write access. In the normal case, do always want
566 * pte_mkwrite. But get_user_pages can cause write faults for mappings
567 * that do not have writing enabled, when used by access_process_vm.
568 */
569static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
570{
571 if (likely(vma->vm_flags & VM_WRITE))
572 pte = pte_mkwrite(pte);
573 return pte;
574}
575
576void do_set_pte(struct vm_area_struct *vma, unsigned long address,
577 struct page *page, pte_t *pte, bool write, bool anon);
578#endif
579
580/*
581 * Multiple processes may "see" the same page. E.g. for untouched
582 * mappings of /dev/null, all processes see the same page full of
583 * zeroes, and text pages of executables and shared libraries have
584 * only one copy in memory, at most, normally.
585 *
586 * For the non-reserved pages, page_count(page) denotes a reference count.
587 * page_count() == 0 means the page is free. page->lru is then used for
588 * freelist management in the buddy allocator.
589 * page_count() > 0 means the page has been allocated.
590 *
591 * Pages are allocated by the slab allocator in order to provide memory
592 * to kmalloc and kmem_cache_alloc. In this case, the management of the
593 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
594 * unless a particular usage is carefully commented. (the responsibility of
595 * freeing the kmalloc memory is the caller's, of course).
596 *
597 * A page may be used by anyone else who does a __get_free_page().
598 * In this case, page_count still tracks the references, and should only
599 * be used through the normal accessor functions. The top bits of page->flags
600 * and page->virtual store page management information, but all other fields
601 * are unused and could be used privately, carefully. The management of this
602 * page is the responsibility of the one who allocated it, and those who have
603 * subsequently been given references to it.
604 *
605 * The other pages (we may call them "pagecache pages") are completely
606 * managed by the Linux memory manager: I/O, buffers, swapping etc.
607 * The following discussion applies only to them.
608 *
609 * A pagecache page contains an opaque `private' member, which belongs to the
610 * page's address_space. Usually, this is the address of a circular list of
611 * the page's disk buffers. PG_private must be set to tell the VM to call
612 * into the filesystem to release these pages.
613 *
614 * A page may belong to an inode's memory mapping. In this case, page->mapping
615 * is the pointer to the inode, and page->index is the file offset of the page,
616 * in units of PAGE_CACHE_SIZE.
617 *
618 * If pagecache pages are not associated with an inode, they are said to be
619 * anonymous pages. These may become associated with the swapcache, and in that
620 * case PG_swapcache is set, and page->private is an offset into the swapcache.
621 *
622 * In either case (swapcache or inode backed), the pagecache itself holds one
623 * reference to the page. Setting PG_private should also increment the
624 * refcount. The each user mapping also has a reference to the page.
625 *
626 * The pagecache pages are stored in a per-mapping radix tree, which is
627 * rooted at mapping->page_tree, and indexed by offset.
628 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
629 * lists, we instead now tag pages as dirty/writeback in the radix tree.
630 *
631 * All pagecache pages may be subject to I/O:
632 * - inode pages may need to be read from disk,
633 * - inode pages which have been modified and are MAP_SHARED may need
634 * to be written back to the inode on disk,
635 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
636 * modified may need to be swapped out to swap space and (later) to be read
637 * back into memory.
638 */
639
640/*
641 * The zone field is never updated after free_area_init_core()
642 * sets it, so none of the operations on it need to be atomic.
643 */
644
645/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
646#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
647#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
648#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
649#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
650
651/*
652 * Define the bit shifts to access each section. For non-existent
653 * sections we define the shift as 0; that plus a 0 mask ensures
654 * the compiler will optimise away reference to them.
655 */
656#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
657#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
658#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
659#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
660
661/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
662#ifdef NODE_NOT_IN_PAGE_FLAGS
663#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
664#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
665 SECTIONS_PGOFF : ZONES_PGOFF)
666#else
667#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
668#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
669 NODES_PGOFF : ZONES_PGOFF)
670#endif
671
672#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
673
674#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
675#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
676#endif
677
678#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
679#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
680#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
681#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
682#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
683
684static inline enum zone_type page_zonenum(const struct page *page)
685{
686 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
687}
688
689#ifdef CONFIG_ZONE_DEVICE
690void get_zone_device_page(struct page *page);
691void put_zone_device_page(struct page *page);
692static inline bool is_zone_device_page(const struct page *page)
693{
694 return page_zonenum(page) == ZONE_DEVICE;
695}
696#else
697static inline void get_zone_device_page(struct page *page)
698{
699}
700static inline void put_zone_device_page(struct page *page)
701{
702}
703static inline bool is_zone_device_page(const struct page *page)
704{
705 return false;
706}
707#endif
708
709static inline void get_page(struct page *page)
710{
711 page = compound_head(page);
712 /*
713 * Getting a normal page or the head of a compound page
714 * requires to already have an elevated page->_count.
715 */
716 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
717 atomic_inc(&page->_count);
718
719 if (unlikely(is_zone_device_page(page)))
720 get_zone_device_page(page);
721}
722
723static inline void put_page(struct page *page)
724{
725 page = compound_head(page);
726
727 if (put_page_testzero(page))
728 __put_page(page);
729
730 if (unlikely(is_zone_device_page(page)))
731 put_zone_device_page(page);
732}
733
734#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
735#define SECTION_IN_PAGE_FLAGS
736#endif
737
738/*
739 * The identification function is mainly used by the buddy allocator for
740 * determining if two pages could be buddies. We are not really identifying
741 * the zone since we could be using the section number id if we do not have
742 * node id available in page flags.
743 * We only guarantee that it will return the same value for two combinable
744 * pages in a zone.
745 */
746static inline int page_zone_id(struct page *page)
747{
748 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
749}
750
751static inline int zone_to_nid(struct zone *zone)
752{
753#ifdef CONFIG_NUMA
754 return zone->node;
755#else
756 return 0;
757#endif
758}
759
760#ifdef NODE_NOT_IN_PAGE_FLAGS
761extern int page_to_nid(const struct page *page);
762#else
763static inline int page_to_nid(const struct page *page)
764{
765 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
766}
767#endif
768
769#ifdef CONFIG_NUMA_BALANCING
770static inline int cpu_pid_to_cpupid(int cpu, int pid)
771{
772 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
773}
774
775static inline int cpupid_to_pid(int cpupid)
776{
777 return cpupid & LAST__PID_MASK;
778}
779
780static inline int cpupid_to_cpu(int cpupid)
781{
782 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
783}
784
785static inline int cpupid_to_nid(int cpupid)
786{
787 return cpu_to_node(cpupid_to_cpu(cpupid));
788}
789
790static inline bool cpupid_pid_unset(int cpupid)
791{
792 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
793}
794
795static inline bool cpupid_cpu_unset(int cpupid)
796{
797 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
798}
799
800static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
801{
802 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
803}
804
805#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
806#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
807static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
808{
809 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
810}
811
812static inline int page_cpupid_last(struct page *page)
813{
814 return page->_last_cpupid;
815}
816static inline void page_cpupid_reset_last(struct page *page)
817{
818 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
819}
820#else
821static inline int page_cpupid_last(struct page *page)
822{
823 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
824}
825
826extern int page_cpupid_xchg_last(struct page *page, int cpupid);
827
828static inline void page_cpupid_reset_last(struct page *page)
829{
830 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
831
832 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
833 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
834}
835#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
836#else /* !CONFIG_NUMA_BALANCING */
837static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
838{
839 return page_to_nid(page); /* XXX */
840}
841
842static inline int page_cpupid_last(struct page *page)
843{
844 return page_to_nid(page); /* XXX */
845}
846
847static inline int cpupid_to_nid(int cpupid)
848{
849 return -1;
850}
851
852static inline int cpupid_to_pid(int cpupid)
853{
854 return -1;
855}
856
857static inline int cpupid_to_cpu(int cpupid)
858{
859 return -1;
860}
861
862static inline int cpu_pid_to_cpupid(int nid, int pid)
863{
864 return -1;
865}
866
867static inline bool cpupid_pid_unset(int cpupid)
868{
869 return 1;
870}
871
872static inline void page_cpupid_reset_last(struct page *page)
873{
874}
875
876static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
877{
878 return false;
879}
880#endif /* CONFIG_NUMA_BALANCING */
881
882static inline struct zone *page_zone(const struct page *page)
883{
884 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
885}
886
887#ifdef SECTION_IN_PAGE_FLAGS
888static inline void set_page_section(struct page *page, unsigned long section)
889{
890 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
891 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
892}
893
894static inline unsigned long page_to_section(const struct page *page)
895{
896 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
897}
898#endif
899
900static inline void set_page_zone(struct page *page, enum zone_type zone)
901{
902 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
903 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
904}
905
906static inline void set_page_node(struct page *page, unsigned long node)
907{
908 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
909 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
910}
911
912static inline void set_page_links(struct page *page, enum zone_type zone,
913 unsigned long node, unsigned long pfn)
914{
915 set_page_zone(page, zone);
916 set_page_node(page, node);
917#ifdef SECTION_IN_PAGE_FLAGS
918 set_page_section(page, pfn_to_section_nr(pfn));
919#endif
920}
921
922#ifdef CONFIG_MEMCG
923static inline struct mem_cgroup *page_memcg(struct page *page)
924{
925 return page->mem_cgroup;
926}
927
928static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
929{
930 page->mem_cgroup = memcg;
931}
932#else
933static inline struct mem_cgroup *page_memcg(struct page *page)
934{
935 return NULL;
936}
937
938static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
939{
940}
941#endif
942
943/*
944 * Some inline functions in vmstat.h depend on page_zone()
945 */
946#include <linux/vmstat.h>
947
948static __always_inline void *lowmem_page_address(const struct page *page)
949{
950 return __va(PFN_PHYS(page_to_pfn(page)));
951}
952
953#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
954#define HASHED_PAGE_VIRTUAL
955#endif
956
957#if defined(WANT_PAGE_VIRTUAL)
958static inline void *page_address(const struct page *page)
959{
960 return page->virtual;
961}
962static inline void set_page_address(struct page *page, void *address)
963{
964 page->virtual = address;
965}
966#define page_address_init() do { } while(0)
967#endif
968
969#if defined(HASHED_PAGE_VIRTUAL)
970void *page_address(const struct page *page);
971void set_page_address(struct page *page, void *virtual);
972void page_address_init(void);
973#endif
974
975#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
976#define page_address(page) lowmem_page_address(page)
977#define set_page_address(page, address) do { } while(0)
978#define page_address_init() do { } while(0)
979#endif
980
981extern void *page_rmapping(struct page *page);
982extern struct anon_vma *page_anon_vma(struct page *page);
983extern struct address_space *page_mapping(struct page *page);
984
985extern struct address_space *__page_file_mapping(struct page *);
986
987static inline
988struct address_space *page_file_mapping(struct page *page)
989{
990 if (unlikely(PageSwapCache(page)))
991 return __page_file_mapping(page);
992
993 return page->mapping;
994}
995
996/*
997 * Return the pagecache index of the passed page. Regular pagecache pages
998 * use ->index whereas swapcache pages use ->private
999 */
1000static inline pgoff_t page_index(struct page *page)
1001{
1002 if (unlikely(PageSwapCache(page)))
1003 return page_private(page);
1004 return page->index;
1005}
1006
1007extern pgoff_t __page_file_index(struct page *page);
1008
1009/*
1010 * Return the file index of the page. Regular pagecache pages use ->index
1011 * whereas swapcache pages use swp_offset(->private)
1012 */
1013static inline pgoff_t page_file_index(struct page *page)
1014{
1015 if (unlikely(PageSwapCache(page)))
1016 return __page_file_index(page);
1017
1018 return page->index;
1019}
1020
1021/*
1022 * Return true if this page is mapped into pagetables.
1023 * For compound page it returns true if any subpage of compound page is mapped.
1024 */
1025static inline bool page_mapped(struct page *page)
1026{
1027 int i;
1028 if (likely(!PageCompound(page)))
1029 return atomic_read(&page->_mapcount) >= 0;
1030 page = compound_head(page);
1031 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1032 return true;
1033 for (i = 0; i < hpage_nr_pages(page); i++) {
1034 if (atomic_read(&page[i]._mapcount) >= 0)
1035 return true;
1036 }
1037 return false;
1038}
1039
1040/*
1041 * Return true only if the page has been allocated with
1042 * ALLOC_NO_WATERMARKS and the low watermark was not
1043 * met implying that the system is under some pressure.
1044 */
1045static inline bool page_is_pfmemalloc(struct page *page)
1046{
1047 /*
1048 * Page index cannot be this large so this must be
1049 * a pfmemalloc page.
1050 */
1051 return page->index == -1UL;
1052}
1053
1054/*
1055 * Only to be called by the page allocator on a freshly allocated
1056 * page.
1057 */
1058static inline void set_page_pfmemalloc(struct page *page)
1059{
1060 page->index = -1UL;
1061}
1062
1063static inline void clear_page_pfmemalloc(struct page *page)
1064{
1065 page->index = 0;
1066}
1067
1068/*
1069 * Different kinds of faults, as returned by handle_mm_fault().
1070 * Used to decide whether a process gets delivered SIGBUS or
1071 * just gets major/minor fault counters bumped up.
1072 */
1073
1074#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1075
1076#define VM_FAULT_OOM 0x0001
1077#define VM_FAULT_SIGBUS 0x0002
1078#define VM_FAULT_MAJOR 0x0004
1079#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1080#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1081#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1082#define VM_FAULT_SIGSEGV 0x0040
1083
1084#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1085#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1086#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1087#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1088
1089#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1090
1091#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1092 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1093 VM_FAULT_FALLBACK)
1094
1095/* Encode hstate index for a hwpoisoned large page */
1096#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1097#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1098
1099/*
1100 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1101 */
1102extern void pagefault_out_of_memory(void);
1103
1104#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1105
1106/*
1107 * Flags passed to show_mem() and show_free_areas() to suppress output in
1108 * various contexts.
1109 */
1110#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1111
1112extern void show_free_areas(unsigned int flags);
1113extern bool skip_free_areas_node(unsigned int flags, int nid);
1114
1115int shmem_zero_setup(struct vm_area_struct *);
1116#ifdef CONFIG_SHMEM
1117bool shmem_mapping(struct address_space *mapping);
1118#else
1119static inline bool shmem_mapping(struct address_space *mapping)
1120{
1121 return false;
1122}
1123#endif
1124
1125extern bool can_do_mlock(void);
1126extern int user_shm_lock(size_t, struct user_struct *);
1127extern void user_shm_unlock(size_t, struct user_struct *);
1128
1129/*
1130 * Parameter block passed down to zap_pte_range in exceptional cases.
1131 */
1132struct zap_details {
1133 struct address_space *check_mapping; /* Check page->mapping if set */
1134 pgoff_t first_index; /* Lowest page->index to unmap */
1135 pgoff_t last_index; /* Highest page->index to unmap */
1136};
1137
1138struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1139 pte_t pte);
1140
1141int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1142 unsigned long size);
1143void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1144 unsigned long size, struct zap_details *);
1145void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1146 unsigned long start, unsigned long end);
1147
1148/**
1149 * mm_walk - callbacks for walk_page_range
1150 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1151 * this handler is required to be able to handle
1152 * pmd_trans_huge() pmds. They may simply choose to
1153 * split_huge_page() instead of handling it explicitly.
1154 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1155 * @pte_hole: if set, called for each hole at all levels
1156 * @hugetlb_entry: if set, called for each hugetlb entry
1157 * @test_walk: caller specific callback function to determine whether
1158 * we walk over the current vma or not. A positive returned
1159 * value means "do page table walk over the current vma,"
1160 * and a negative one means "abort current page table walk
1161 * right now." 0 means "skip the current vma."
1162 * @mm: mm_struct representing the target process of page table walk
1163 * @vma: vma currently walked (NULL if walking outside vmas)
1164 * @private: private data for callbacks' usage
1165 *
1166 * (see the comment on walk_page_range() for more details)
1167 */
1168struct mm_walk {
1169 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1170 unsigned long next, struct mm_walk *walk);
1171 int (*pte_entry)(pte_t *pte, unsigned long addr,
1172 unsigned long next, struct mm_walk *walk);
1173 int (*pte_hole)(unsigned long addr, unsigned long next,
1174 struct mm_walk *walk);
1175 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1176 unsigned long addr, unsigned long next,
1177 struct mm_walk *walk);
1178 int (*test_walk)(unsigned long addr, unsigned long next,
1179 struct mm_walk *walk);
1180 struct mm_struct *mm;
1181 struct vm_area_struct *vma;
1182 void *private;
1183};
1184
1185int walk_page_range(unsigned long addr, unsigned long end,
1186 struct mm_walk *walk);
1187int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1188void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1189 unsigned long end, unsigned long floor, unsigned long ceiling);
1190int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1191 struct vm_area_struct *vma);
1192void unmap_mapping_range(struct address_space *mapping,
1193 loff_t const holebegin, loff_t const holelen, int even_cows);
1194int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1195 unsigned long *pfn);
1196int follow_phys(struct vm_area_struct *vma, unsigned long address,
1197 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1198int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1199 void *buf, int len, int write);
1200
1201static inline void unmap_shared_mapping_range(struct address_space *mapping,
1202 loff_t const holebegin, loff_t const holelen)
1203{
1204 unmap_mapping_range(mapping, holebegin, holelen, 0);
1205}
1206
1207extern void truncate_pagecache(struct inode *inode, loff_t new);
1208extern void truncate_setsize(struct inode *inode, loff_t newsize);
1209void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1210void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1211int truncate_inode_page(struct address_space *mapping, struct page *page);
1212int generic_error_remove_page(struct address_space *mapping, struct page *page);
1213int invalidate_inode_page(struct page *page);
1214
1215#ifdef CONFIG_MMU
1216extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1217 unsigned long address, unsigned int flags);
1218extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1219 unsigned long address, unsigned int fault_flags,
1220 bool *unlocked);
1221#else
1222static inline int handle_mm_fault(struct mm_struct *mm,
1223 struct vm_area_struct *vma, unsigned long address,
1224 unsigned int flags)
1225{
1226 /* should never happen if there's no MMU */
1227 BUG();
1228 return VM_FAULT_SIGBUS;
1229}
1230static inline int fixup_user_fault(struct task_struct *tsk,
1231 struct mm_struct *mm, unsigned long address,
1232 unsigned int fault_flags, bool *unlocked)
1233{
1234 /* should never happen if there's no MMU */
1235 BUG();
1236 return -EFAULT;
1237}
1238#endif
1239
1240extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1241extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1242 void *buf, int len, int write);
1243
1244long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1245 unsigned long start, unsigned long nr_pages,
1246 unsigned int foll_flags, struct page **pages,
1247 struct vm_area_struct **vmas, int *nonblocking);
1248long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1249 unsigned long start, unsigned long nr_pages,
1250 int write, int force, struct page **pages,
1251 struct vm_area_struct **vmas);
1252long get_user_pages6(unsigned long start, unsigned long nr_pages,
1253 int write, int force, struct page **pages,
1254 struct vm_area_struct **vmas);
1255long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
1256 int write, int force, struct page **pages, int *locked);
1257long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1258 unsigned long start, unsigned long nr_pages,
1259 int write, int force, struct page **pages,
1260 unsigned int gup_flags);
1261long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
1262 int write, int force, struct page **pages);
1263int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1264 struct page **pages);
1265
1266/* suppress warnings from use in EXPORT_SYMBOL() */
1267#ifndef __DISABLE_GUP_DEPRECATED
1268#define __gup_deprecated __deprecated
1269#else
1270#define __gup_deprecated
1271#endif
1272/*
1273 * These macros provide backward-compatibility with the old
1274 * get_user_pages() variants which took tsk/mm. These
1275 * functions/macros provide both compile-time __deprecated so we
1276 * can catch old-style use and not break the build. The actual
1277 * functions also have WARN_ON()s to let us know at runtime if
1278 * the get_user_pages() should have been the "remote" variant.
1279 *
1280 * These are hideous, but temporary.
1281 *
1282 * If you run into one of these __deprecated warnings, look
1283 * at how you are calling get_user_pages(). If you are calling
1284 * it with current/current->mm as the first two arguments,
1285 * simply remove those arguments. The behavior will be the same
1286 * as it is now. If you are calling it on another task, use
1287 * get_user_pages_remote() instead.
1288 *
1289 * Any questions? Ask Dave Hansen <dave@sr71.net>
1290 */
1291long
1292__gup_deprecated
1293get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1294 unsigned long start, unsigned long nr_pages,
1295 int write, int force, struct page **pages,
1296 struct vm_area_struct **vmas);
1297#define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
1298 get_user_pages
1299#define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
1300 get_user_pages8, x, \
1301 get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
1302
1303__gup_deprecated
1304long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1305 unsigned long start, unsigned long nr_pages,
1306 int write, int force, struct page **pages,
1307 int *locked);
1308#define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
1309 get_user_pages_locked
1310#define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
1311 get_user_pages_locked8, x, \
1312 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
1313
1314__gup_deprecated
1315long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1316 unsigned long start, unsigned long nr_pages,
1317 int write, int force, struct page **pages);
1318#define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
1319 get_user_pages_unlocked
1320#define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
1321 get_user_pages_unlocked7, x, \
1322 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
1323
1324/* Container for pinned pfns / pages */
1325struct frame_vector {
1326 unsigned int nr_allocated; /* Number of frames we have space for */
1327 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1328 bool got_ref; /* Did we pin pages by getting page ref? */
1329 bool is_pfns; /* Does array contain pages or pfns? */
1330 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1331 * pfns_vector_pages() or pfns_vector_pfns()
1332 * for access */
1333};
1334
1335struct frame_vector *frame_vector_create(unsigned int nr_frames);
1336void frame_vector_destroy(struct frame_vector *vec);
1337int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1338 bool write, bool force, struct frame_vector *vec);
1339void put_vaddr_frames(struct frame_vector *vec);
1340int frame_vector_to_pages(struct frame_vector *vec);
1341void frame_vector_to_pfns(struct frame_vector *vec);
1342
1343static inline unsigned int frame_vector_count(struct frame_vector *vec)
1344{
1345 return vec->nr_frames;
1346}
1347
1348static inline struct page **frame_vector_pages(struct frame_vector *vec)
1349{
1350 if (vec->is_pfns) {
1351 int err = frame_vector_to_pages(vec);
1352
1353 if (err)
1354 return ERR_PTR(err);
1355 }
1356 return (struct page **)(vec->ptrs);
1357}
1358
1359static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1360{
1361 if (!vec->is_pfns)
1362 frame_vector_to_pfns(vec);
1363 return (unsigned long *)(vec->ptrs);
1364}
1365
1366struct kvec;
1367int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1368 struct page **pages);
1369int get_kernel_page(unsigned long start, int write, struct page **pages);
1370struct page *get_dump_page(unsigned long addr);
1371
1372extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1373extern void do_invalidatepage(struct page *page, unsigned int offset,
1374 unsigned int length);
1375
1376int __set_page_dirty_nobuffers(struct page *page);
1377int __set_page_dirty_no_writeback(struct page *page);
1378int redirty_page_for_writepage(struct writeback_control *wbc,
1379 struct page *page);
1380void account_page_dirtied(struct page *page, struct address_space *mapping,
1381 struct mem_cgroup *memcg);
1382void account_page_cleaned(struct page *page, struct address_space *mapping,
1383 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1384int set_page_dirty(struct page *page);
1385int set_page_dirty_lock(struct page *page);
1386void cancel_dirty_page(struct page *page);
1387int clear_page_dirty_for_io(struct page *page);
1388
1389int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1390
1391/* Is the vma a continuation of the stack vma above it? */
1392static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1393{
1394 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1395}
1396
1397static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1398{
1399 return !vma->vm_ops;
1400}
1401
1402static inline int stack_guard_page_start(struct vm_area_struct *vma,
1403 unsigned long addr)
1404{
1405 return (vma->vm_flags & VM_GROWSDOWN) &&
1406 (vma->vm_start == addr) &&
1407 !vma_growsdown(vma->vm_prev, addr);
1408}
1409
1410/* Is the vma a continuation of the stack vma below it? */
1411static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1412{
1413 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1414}
1415
1416static inline int stack_guard_page_end(struct vm_area_struct *vma,
1417 unsigned long addr)
1418{
1419 return (vma->vm_flags & VM_GROWSUP) &&
1420 (vma->vm_end == addr) &&
1421 !vma_growsup(vma->vm_next, addr);
1422}
1423
1424int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1425
1426extern unsigned long move_page_tables(struct vm_area_struct *vma,
1427 unsigned long old_addr, struct vm_area_struct *new_vma,
1428 unsigned long new_addr, unsigned long len,
1429 bool need_rmap_locks);
1430extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1431 unsigned long end, pgprot_t newprot,
1432 int dirty_accountable, int prot_numa);
1433extern int mprotect_fixup(struct vm_area_struct *vma,
1434 struct vm_area_struct **pprev, unsigned long start,
1435 unsigned long end, unsigned long newflags);
1436
1437/*
1438 * doesn't attempt to fault and will return short.
1439 */
1440int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1441 struct page **pages);
1442/*
1443 * per-process(per-mm_struct) statistics.
1444 */
1445static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1446{
1447 long val = atomic_long_read(&mm->rss_stat.count[member]);
1448
1449#ifdef SPLIT_RSS_COUNTING
1450 /*
1451 * counter is updated in asynchronous manner and may go to minus.
1452 * But it's never be expected number for users.
1453 */
1454 if (val < 0)
1455 val = 0;
1456#endif
1457 return (unsigned long)val;
1458}
1459
1460static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1461{
1462 atomic_long_add(value, &mm->rss_stat.count[member]);
1463}
1464
1465static inline void inc_mm_counter(struct mm_struct *mm, int member)
1466{
1467 atomic_long_inc(&mm->rss_stat.count[member]);
1468}
1469
1470static inline void dec_mm_counter(struct mm_struct *mm, int member)
1471{
1472 atomic_long_dec(&mm->rss_stat.count[member]);
1473}
1474
1475/* Optimized variant when page is already known not to be PageAnon */
1476static inline int mm_counter_file(struct page *page)
1477{
1478 if (PageSwapBacked(page))
1479 return MM_SHMEMPAGES;
1480 return MM_FILEPAGES;
1481}
1482
1483static inline int mm_counter(struct page *page)
1484{
1485 if (PageAnon(page))
1486 return MM_ANONPAGES;
1487 return mm_counter_file(page);
1488}
1489
1490static inline unsigned long get_mm_rss(struct mm_struct *mm)
1491{
1492 return get_mm_counter(mm, MM_FILEPAGES) +
1493 get_mm_counter(mm, MM_ANONPAGES) +
1494 get_mm_counter(mm, MM_SHMEMPAGES);
1495}
1496
1497static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1498{
1499 return max(mm->hiwater_rss, get_mm_rss(mm));
1500}
1501
1502static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1503{
1504 return max(mm->hiwater_vm, mm->total_vm);
1505}
1506
1507static inline void update_hiwater_rss(struct mm_struct *mm)
1508{
1509 unsigned long _rss = get_mm_rss(mm);
1510
1511 if ((mm)->hiwater_rss < _rss)
1512 (mm)->hiwater_rss = _rss;
1513}
1514
1515static inline void update_hiwater_vm(struct mm_struct *mm)
1516{
1517 if (mm->hiwater_vm < mm->total_vm)
1518 mm->hiwater_vm = mm->total_vm;
1519}
1520
1521static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1522{
1523 mm->hiwater_rss = get_mm_rss(mm);
1524}
1525
1526static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1527 struct mm_struct *mm)
1528{
1529 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1530
1531 if (*maxrss < hiwater_rss)
1532 *maxrss = hiwater_rss;
1533}
1534
1535#if defined(SPLIT_RSS_COUNTING)
1536void sync_mm_rss(struct mm_struct *mm);
1537#else
1538static inline void sync_mm_rss(struct mm_struct *mm)
1539{
1540}
1541#endif
1542
1543#ifndef __HAVE_ARCH_PTE_DEVMAP
1544static inline int pte_devmap(pte_t pte)
1545{
1546 return 0;
1547}
1548#endif
1549
1550int vma_wants_writenotify(struct vm_area_struct *vma);
1551
1552extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1553 spinlock_t **ptl);
1554static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1555 spinlock_t **ptl)
1556{
1557 pte_t *ptep;
1558 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1559 return ptep;
1560}
1561
1562#ifdef __PAGETABLE_PUD_FOLDED
1563static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1564 unsigned long address)
1565{
1566 return 0;
1567}
1568#else
1569int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1570#endif
1571
1572#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1573static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1574 unsigned long address)
1575{
1576 return 0;
1577}
1578
1579static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1580
1581static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1582{
1583 return 0;
1584}
1585
1586static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1587static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1588
1589#else
1590int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1591
1592static inline void mm_nr_pmds_init(struct mm_struct *mm)
1593{
1594 atomic_long_set(&mm->nr_pmds, 0);
1595}
1596
1597static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1598{
1599 return atomic_long_read(&mm->nr_pmds);
1600}
1601
1602static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1603{
1604 atomic_long_inc(&mm->nr_pmds);
1605}
1606
1607static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1608{
1609 atomic_long_dec(&mm->nr_pmds);
1610}
1611#endif
1612
1613int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1614 pmd_t *pmd, unsigned long address);
1615int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1616
1617/*
1618 * The following ifdef needed to get the 4level-fixup.h header to work.
1619 * Remove it when 4level-fixup.h has been removed.
1620 */
1621#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1622static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1623{
1624 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1625 NULL: pud_offset(pgd, address);
1626}
1627
1628static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1629{
1630 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1631 NULL: pmd_offset(pud, address);
1632}
1633#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1634
1635#if USE_SPLIT_PTE_PTLOCKS
1636#if ALLOC_SPLIT_PTLOCKS
1637void __init ptlock_cache_init(void);
1638extern bool ptlock_alloc(struct page *page);
1639extern void ptlock_free(struct page *page);
1640
1641static inline spinlock_t *ptlock_ptr(struct page *page)
1642{
1643 return page->ptl;
1644}
1645#else /* ALLOC_SPLIT_PTLOCKS */
1646static inline void ptlock_cache_init(void)
1647{
1648}
1649
1650static inline bool ptlock_alloc(struct page *page)
1651{
1652 return true;
1653}
1654
1655static inline void ptlock_free(struct page *page)
1656{
1657}
1658
1659static inline spinlock_t *ptlock_ptr(struct page *page)
1660{
1661 return &page->ptl;
1662}
1663#endif /* ALLOC_SPLIT_PTLOCKS */
1664
1665static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1666{
1667 return ptlock_ptr(pmd_page(*pmd));
1668}
1669
1670static inline bool ptlock_init(struct page *page)
1671{
1672 /*
1673 * prep_new_page() initialize page->private (and therefore page->ptl)
1674 * with 0. Make sure nobody took it in use in between.
1675 *
1676 * It can happen if arch try to use slab for page table allocation:
1677 * slab code uses page->slab_cache, which share storage with page->ptl.
1678 */
1679 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1680 if (!ptlock_alloc(page))
1681 return false;
1682 spin_lock_init(ptlock_ptr(page));
1683 return true;
1684}
1685
1686/* Reset page->mapping so free_pages_check won't complain. */
1687static inline void pte_lock_deinit(struct page *page)
1688{
1689 page->mapping = NULL;
1690 ptlock_free(page);
1691}
1692
1693#else /* !USE_SPLIT_PTE_PTLOCKS */
1694/*
1695 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1696 */
1697static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1698{
1699 return &mm->page_table_lock;
1700}
1701static inline void ptlock_cache_init(void) {}
1702static inline bool ptlock_init(struct page *page) { return true; }
1703static inline void pte_lock_deinit(struct page *page) {}
1704#endif /* USE_SPLIT_PTE_PTLOCKS */
1705
1706static inline void pgtable_init(void)
1707{
1708 ptlock_cache_init();
1709 pgtable_cache_init();
1710}
1711
1712static inline bool pgtable_page_ctor(struct page *page)
1713{
1714 if (!ptlock_init(page))
1715 return false;
1716 inc_zone_page_state(page, NR_PAGETABLE);
1717 return true;
1718}
1719
1720static inline void pgtable_page_dtor(struct page *page)
1721{
1722 pte_lock_deinit(page);
1723 dec_zone_page_state(page, NR_PAGETABLE);
1724}
1725
1726#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1727({ \
1728 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1729 pte_t *__pte = pte_offset_map(pmd, address); \
1730 *(ptlp) = __ptl; \
1731 spin_lock(__ptl); \
1732 __pte; \
1733})
1734
1735#define pte_unmap_unlock(pte, ptl) do { \
1736 spin_unlock(ptl); \
1737 pte_unmap(pte); \
1738} while (0)
1739
1740#define pte_alloc_map(mm, vma, pmd, address) \
1741 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1742 pmd, address))? \
1743 NULL: pte_offset_map(pmd, address))
1744
1745#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1746 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1747 pmd, address))? \
1748 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1749
1750#define pte_alloc_kernel(pmd, address) \
1751 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1752 NULL: pte_offset_kernel(pmd, address))
1753
1754#if USE_SPLIT_PMD_PTLOCKS
1755
1756static struct page *pmd_to_page(pmd_t *pmd)
1757{
1758 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1759 return virt_to_page((void *)((unsigned long) pmd & mask));
1760}
1761
1762static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1763{
1764 return ptlock_ptr(pmd_to_page(pmd));
1765}
1766
1767static inline bool pgtable_pmd_page_ctor(struct page *page)
1768{
1769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1770 page->pmd_huge_pte = NULL;
1771#endif
1772 return ptlock_init(page);
1773}
1774
1775static inline void pgtable_pmd_page_dtor(struct page *page)
1776{
1777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1778 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1779#endif
1780 ptlock_free(page);
1781}
1782
1783#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1784
1785#else
1786
1787static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1788{
1789 return &mm->page_table_lock;
1790}
1791
1792static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1793static inline void pgtable_pmd_page_dtor(struct page *page) {}
1794
1795#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1796
1797#endif
1798
1799static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1800{
1801 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1802 spin_lock(ptl);
1803 return ptl;
1804}
1805
1806extern void free_area_init(unsigned long * zones_size);
1807extern void free_area_init_node(int nid, unsigned long * zones_size,
1808 unsigned long zone_start_pfn, unsigned long *zholes_size);
1809extern void free_initmem(void);
1810
1811/*
1812 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1813 * into the buddy system. The freed pages will be poisoned with pattern
1814 * "poison" if it's within range [0, UCHAR_MAX].
1815 * Return pages freed into the buddy system.
1816 */
1817extern unsigned long free_reserved_area(void *start, void *end,
1818 int poison, char *s);
1819
1820#ifdef CONFIG_HIGHMEM
1821/*
1822 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1823 * and totalram_pages.
1824 */
1825extern void free_highmem_page(struct page *page);
1826#endif
1827
1828extern void adjust_managed_page_count(struct page *page, long count);
1829extern void mem_init_print_info(const char *str);
1830
1831extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1832
1833/* Free the reserved page into the buddy system, so it gets managed. */
1834static inline void __free_reserved_page(struct page *page)
1835{
1836 ClearPageReserved(page);
1837 init_page_count(page);
1838 __free_page(page);
1839}
1840
1841static inline void free_reserved_page(struct page *page)
1842{
1843 __free_reserved_page(page);
1844 adjust_managed_page_count(page, 1);
1845}
1846
1847static inline void mark_page_reserved(struct page *page)
1848{
1849 SetPageReserved(page);
1850 adjust_managed_page_count(page, -1);
1851}
1852
1853/*
1854 * Default method to free all the __init memory into the buddy system.
1855 * The freed pages will be poisoned with pattern "poison" if it's within
1856 * range [0, UCHAR_MAX].
1857 * Return pages freed into the buddy system.
1858 */
1859static inline unsigned long free_initmem_default(int poison)
1860{
1861 extern char __init_begin[], __init_end[];
1862
1863 return free_reserved_area(&__init_begin, &__init_end,
1864 poison, "unused kernel");
1865}
1866
1867static inline unsigned long get_num_physpages(void)
1868{
1869 int nid;
1870 unsigned long phys_pages = 0;
1871
1872 for_each_online_node(nid)
1873 phys_pages += node_present_pages(nid);
1874
1875 return phys_pages;
1876}
1877
1878#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1879/*
1880 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1881 * zones, allocate the backing mem_map and account for memory holes in a more
1882 * architecture independent manner. This is a substitute for creating the
1883 * zone_sizes[] and zholes_size[] arrays and passing them to
1884 * free_area_init_node()
1885 *
1886 * An architecture is expected to register range of page frames backed by
1887 * physical memory with memblock_add[_node]() before calling
1888 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1889 * usage, an architecture is expected to do something like
1890 *
1891 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1892 * max_highmem_pfn};
1893 * for_each_valid_physical_page_range()
1894 * memblock_add_node(base, size, nid)
1895 * free_area_init_nodes(max_zone_pfns);
1896 *
1897 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1898 * registered physical page range. Similarly
1899 * sparse_memory_present_with_active_regions() calls memory_present() for
1900 * each range when SPARSEMEM is enabled.
1901 *
1902 * See mm/page_alloc.c for more information on each function exposed by
1903 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1904 */
1905extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1906unsigned long node_map_pfn_alignment(void);
1907unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1908 unsigned long end_pfn);
1909extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1910 unsigned long end_pfn);
1911extern void get_pfn_range_for_nid(unsigned int nid,
1912 unsigned long *start_pfn, unsigned long *end_pfn);
1913extern unsigned long find_min_pfn_with_active_regions(void);
1914extern void free_bootmem_with_active_regions(int nid,
1915 unsigned long max_low_pfn);
1916extern void sparse_memory_present_with_active_regions(int nid);
1917
1918#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1919
1920#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1921 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1922static inline int __early_pfn_to_nid(unsigned long pfn,
1923 struct mminit_pfnnid_cache *state)
1924{
1925 return 0;
1926}
1927#else
1928/* please see mm/page_alloc.c */
1929extern int __meminit early_pfn_to_nid(unsigned long pfn);
1930/* there is a per-arch backend function. */
1931extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1932 struct mminit_pfnnid_cache *state);
1933#endif
1934
1935extern void set_dma_reserve(unsigned long new_dma_reserve);
1936extern void memmap_init_zone(unsigned long, int, unsigned long,
1937 unsigned long, enum memmap_context);
1938extern void setup_per_zone_wmarks(void);
1939extern int __meminit init_per_zone_wmark_min(void);
1940extern void mem_init(void);
1941extern void __init mmap_init(void);
1942extern void show_mem(unsigned int flags);
1943extern void si_meminfo(struct sysinfo * val);
1944extern void si_meminfo_node(struct sysinfo *val, int nid);
1945
1946extern __printf(3, 4)
1947void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1948 const char *fmt, ...);
1949
1950extern void setup_per_cpu_pageset(void);
1951
1952extern void zone_pcp_update(struct zone *zone);
1953extern void zone_pcp_reset(struct zone *zone);
1954
1955/* page_alloc.c */
1956extern int min_free_kbytes;
1957
1958/* nommu.c */
1959extern atomic_long_t mmap_pages_allocated;
1960extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1961
1962/* interval_tree.c */
1963void vma_interval_tree_insert(struct vm_area_struct *node,
1964 struct rb_root *root);
1965void vma_interval_tree_insert_after(struct vm_area_struct *node,
1966 struct vm_area_struct *prev,
1967 struct rb_root *root);
1968void vma_interval_tree_remove(struct vm_area_struct *node,
1969 struct rb_root *root);
1970struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1971 unsigned long start, unsigned long last);
1972struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1973 unsigned long start, unsigned long last);
1974
1975#define vma_interval_tree_foreach(vma, root, start, last) \
1976 for (vma = vma_interval_tree_iter_first(root, start, last); \
1977 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1978
1979void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1980 struct rb_root *root);
1981void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1982 struct rb_root *root);
1983struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1984 struct rb_root *root, unsigned long start, unsigned long last);
1985struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1986 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1987#ifdef CONFIG_DEBUG_VM_RB
1988void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1989#endif
1990
1991#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1992 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1993 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1994
1995/* mmap.c */
1996extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1997extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1998 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1999extern struct vm_area_struct *vma_merge(struct mm_struct *,
2000 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2001 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2002 struct mempolicy *, struct vm_userfaultfd_ctx);
2003extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2004extern int split_vma(struct mm_struct *,
2005 struct vm_area_struct *, unsigned long addr, int new_below);
2006extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2007extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2008 struct rb_node **, struct rb_node *);
2009extern void unlink_file_vma(struct vm_area_struct *);
2010extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2011 unsigned long addr, unsigned long len, pgoff_t pgoff,
2012 bool *need_rmap_locks);
2013extern void exit_mmap(struct mm_struct *);
2014
2015static inline int check_data_rlimit(unsigned long rlim,
2016 unsigned long new,
2017 unsigned long start,
2018 unsigned long end_data,
2019 unsigned long start_data)
2020{
2021 if (rlim < RLIM_INFINITY) {
2022 if (((new - start) + (end_data - start_data)) > rlim)
2023 return -ENOSPC;
2024 }
2025
2026 return 0;
2027}
2028
2029extern int mm_take_all_locks(struct mm_struct *mm);
2030extern void mm_drop_all_locks(struct mm_struct *mm);
2031
2032extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2033extern struct file *get_mm_exe_file(struct mm_struct *mm);
2034
2035extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2036extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2037
2038extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2039 unsigned long addr, unsigned long len,
2040 unsigned long flags,
2041 const struct vm_special_mapping *spec);
2042/* This is an obsolete alternative to _install_special_mapping. */
2043extern int install_special_mapping(struct mm_struct *mm,
2044 unsigned long addr, unsigned long len,
2045 unsigned long flags, struct page **pages);
2046
2047extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2048
2049extern unsigned long mmap_region(struct file *file, unsigned long addr,
2050 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2051extern unsigned long do_mmap(struct file *file, unsigned long addr,
2052 unsigned long len, unsigned long prot, unsigned long flags,
2053 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2054extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2055
2056static inline unsigned long
2057do_mmap_pgoff(struct file *file, unsigned long addr,
2058 unsigned long len, unsigned long prot, unsigned long flags,
2059 unsigned long pgoff, unsigned long *populate)
2060{
2061 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2062}
2063
2064#ifdef CONFIG_MMU
2065extern int __mm_populate(unsigned long addr, unsigned long len,
2066 int ignore_errors);
2067static inline void mm_populate(unsigned long addr, unsigned long len)
2068{
2069 /* Ignore errors */
2070 (void) __mm_populate(addr, len, 1);
2071}
2072#else
2073static inline void mm_populate(unsigned long addr, unsigned long len) {}
2074#endif
2075
2076/* These take the mm semaphore themselves */
2077extern unsigned long vm_brk(unsigned long, unsigned long);
2078extern int vm_munmap(unsigned long, size_t);
2079extern unsigned long vm_mmap(struct file *, unsigned long,
2080 unsigned long, unsigned long,
2081 unsigned long, unsigned long);
2082
2083struct vm_unmapped_area_info {
2084#define VM_UNMAPPED_AREA_TOPDOWN 1
2085 unsigned long flags;
2086 unsigned long length;
2087 unsigned long low_limit;
2088 unsigned long high_limit;
2089 unsigned long align_mask;
2090 unsigned long align_offset;
2091};
2092
2093extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2094extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2095
2096/*
2097 * Search for an unmapped address range.
2098 *
2099 * We are looking for a range that:
2100 * - does not intersect with any VMA;
2101 * - is contained within the [low_limit, high_limit) interval;
2102 * - is at least the desired size.
2103 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2104 */
2105static inline unsigned long
2106vm_unmapped_area(struct vm_unmapped_area_info *info)
2107{
2108 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2109 return unmapped_area_topdown(info);
2110 else
2111 return unmapped_area(info);
2112}
2113
2114/* truncate.c */
2115extern void truncate_inode_pages(struct address_space *, loff_t);
2116extern void truncate_inode_pages_range(struct address_space *,
2117 loff_t lstart, loff_t lend);
2118extern void truncate_inode_pages_final(struct address_space *);
2119
2120/* generic vm_area_ops exported for stackable file systems */
2121extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2122extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2123extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2124
2125/* mm/page-writeback.c */
2126int write_one_page(struct page *page, int wait);
2127void task_dirty_inc(struct task_struct *tsk);
2128
2129/* readahead.c */
2130#define VM_MAX_READAHEAD 128 /* kbytes */
2131#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2132
2133int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2134 pgoff_t offset, unsigned long nr_to_read);
2135
2136void page_cache_sync_readahead(struct address_space *mapping,
2137 struct file_ra_state *ra,
2138 struct file *filp,
2139 pgoff_t offset,
2140 unsigned long size);
2141
2142void page_cache_async_readahead(struct address_space *mapping,
2143 struct file_ra_state *ra,
2144 struct file *filp,
2145 struct page *pg,
2146 pgoff_t offset,
2147 unsigned long size);
2148
2149/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2150extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2151
2152/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2153extern int expand_downwards(struct vm_area_struct *vma,
2154 unsigned long address);
2155#if VM_GROWSUP
2156extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2157#else
2158 #define expand_upwards(vma, address) (0)
2159#endif
2160
2161/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2162extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2163extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2164 struct vm_area_struct **pprev);
2165
2166/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2167 NULL if none. Assume start_addr < end_addr. */
2168static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2169{
2170 struct vm_area_struct * vma = find_vma(mm,start_addr);
2171
2172 if (vma && end_addr <= vma->vm_start)
2173 vma = NULL;
2174 return vma;
2175}
2176
2177static inline unsigned long vma_pages(struct vm_area_struct *vma)
2178{
2179 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2180}
2181
2182/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2183static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2184 unsigned long vm_start, unsigned long vm_end)
2185{
2186 struct vm_area_struct *vma = find_vma(mm, vm_start);
2187
2188 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2189 vma = NULL;
2190
2191 return vma;
2192}
2193
2194#ifdef CONFIG_MMU
2195pgprot_t vm_get_page_prot(unsigned long vm_flags);
2196void vma_set_page_prot(struct vm_area_struct *vma);
2197#else
2198static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2199{
2200 return __pgprot(0);
2201}
2202static inline void vma_set_page_prot(struct vm_area_struct *vma)
2203{
2204 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2205}
2206#endif
2207
2208#ifdef CONFIG_NUMA_BALANCING
2209unsigned long change_prot_numa(struct vm_area_struct *vma,
2210 unsigned long start, unsigned long end);
2211#endif
2212
2213struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2214int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2215 unsigned long pfn, unsigned long size, pgprot_t);
2216int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2217int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2218 unsigned long pfn);
2219int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2220 unsigned long pfn, pgprot_t pgprot);
2221int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2222 pfn_t pfn);
2223int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2224
2225
2226struct page *follow_page_mask(struct vm_area_struct *vma,
2227 unsigned long address, unsigned int foll_flags,
2228 unsigned int *page_mask);
2229
2230static inline struct page *follow_page(struct vm_area_struct *vma,
2231 unsigned long address, unsigned int foll_flags)
2232{
2233 unsigned int unused_page_mask;
2234 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2235}
2236
2237#define FOLL_WRITE 0x01 /* check pte is writable */
2238#define FOLL_TOUCH 0x02 /* mark page accessed */
2239#define FOLL_GET 0x04 /* do get_page on page */
2240#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2241#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2242#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2243 * and return without waiting upon it */
2244#define FOLL_POPULATE 0x40 /* fault in page */
2245#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2246#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2247#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2248#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2249#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2250#define FOLL_MLOCK 0x1000 /* lock present pages */
2251#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2252
2253typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2254 void *data);
2255extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2256 unsigned long size, pte_fn_t fn, void *data);
2257
2258
2259#ifdef CONFIG_DEBUG_PAGEALLOC
2260extern bool _debug_pagealloc_enabled;
2261extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2262
2263static inline bool debug_pagealloc_enabled(void)
2264{
2265 return _debug_pagealloc_enabled;
2266}
2267
2268static inline void
2269kernel_map_pages(struct page *page, int numpages, int enable)
2270{
2271 if (!debug_pagealloc_enabled())
2272 return;
2273
2274 __kernel_map_pages(page, numpages, enable);
2275}
2276#ifdef CONFIG_HIBERNATION
2277extern bool kernel_page_present(struct page *page);
2278#endif /* CONFIG_HIBERNATION */
2279#else
2280static inline void
2281kernel_map_pages(struct page *page, int numpages, int enable) {}
2282#ifdef CONFIG_HIBERNATION
2283static inline bool kernel_page_present(struct page *page) { return true; }
2284#endif /* CONFIG_HIBERNATION */
2285#endif
2286
2287#ifdef __HAVE_ARCH_GATE_AREA
2288extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2289extern int in_gate_area_no_mm(unsigned long addr);
2290extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2291#else
2292static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2293{
2294 return NULL;
2295}
2296static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2297static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2298{
2299 return 0;
2300}
2301#endif /* __HAVE_ARCH_GATE_AREA */
2302
2303#ifdef CONFIG_SYSCTL
2304extern int sysctl_drop_caches;
2305int drop_caches_sysctl_handler(struct ctl_table *, int,
2306 void __user *, size_t *, loff_t *);
2307#endif
2308
2309void drop_slab(void);
2310void drop_slab_node(int nid);
2311
2312#ifndef CONFIG_MMU
2313#define randomize_va_space 0
2314#else
2315extern int randomize_va_space;
2316#endif
2317
2318const char * arch_vma_name(struct vm_area_struct *vma);
2319void print_vma_addr(char *prefix, unsigned long rip);
2320
2321void sparse_mem_maps_populate_node(struct page **map_map,
2322 unsigned long pnum_begin,
2323 unsigned long pnum_end,
2324 unsigned long map_count,
2325 int nodeid);
2326
2327struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2328pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2329pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2330pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2331pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2332void *vmemmap_alloc_block(unsigned long size, int node);
2333struct vmem_altmap;
2334void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2335 struct vmem_altmap *altmap);
2336static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2337{
2338 return __vmemmap_alloc_block_buf(size, node, NULL);
2339}
2340
2341void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2342int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2343 int node);
2344int vmemmap_populate(unsigned long start, unsigned long end, int node);
2345void vmemmap_populate_print_last(void);
2346#ifdef CONFIG_MEMORY_HOTPLUG
2347void vmemmap_free(unsigned long start, unsigned long end);
2348#endif
2349void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2350 unsigned long size);
2351
2352enum mf_flags {
2353 MF_COUNT_INCREASED = 1 << 0,
2354 MF_ACTION_REQUIRED = 1 << 1,
2355 MF_MUST_KILL = 1 << 2,
2356 MF_SOFT_OFFLINE = 1 << 3,
2357};
2358extern int memory_failure(unsigned long pfn, int trapno, int flags);
2359extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2360extern int unpoison_memory(unsigned long pfn);
2361extern int get_hwpoison_page(struct page *page);
2362#define put_hwpoison_page(page) put_page(page)
2363extern int sysctl_memory_failure_early_kill;
2364extern int sysctl_memory_failure_recovery;
2365extern void shake_page(struct page *p, int access);
2366extern atomic_long_t num_poisoned_pages;
2367extern int soft_offline_page(struct page *page, int flags);
2368
2369
2370/*
2371 * Error handlers for various types of pages.
2372 */
2373enum mf_result {
2374 MF_IGNORED, /* Error: cannot be handled */
2375 MF_FAILED, /* Error: handling failed */
2376 MF_DELAYED, /* Will be handled later */
2377 MF_RECOVERED, /* Successfully recovered */
2378};
2379
2380enum mf_action_page_type {
2381 MF_MSG_KERNEL,
2382 MF_MSG_KERNEL_HIGH_ORDER,
2383 MF_MSG_SLAB,
2384 MF_MSG_DIFFERENT_COMPOUND,
2385 MF_MSG_POISONED_HUGE,
2386 MF_MSG_HUGE,
2387 MF_MSG_FREE_HUGE,
2388 MF_MSG_UNMAP_FAILED,
2389 MF_MSG_DIRTY_SWAPCACHE,
2390 MF_MSG_CLEAN_SWAPCACHE,
2391 MF_MSG_DIRTY_MLOCKED_LRU,
2392 MF_MSG_CLEAN_MLOCKED_LRU,
2393 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2394 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2395 MF_MSG_DIRTY_LRU,
2396 MF_MSG_CLEAN_LRU,
2397 MF_MSG_TRUNCATED_LRU,
2398 MF_MSG_BUDDY,
2399 MF_MSG_BUDDY_2ND,
2400 MF_MSG_UNKNOWN,
2401};
2402
2403#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2404extern void clear_huge_page(struct page *page,
2405 unsigned long addr,
2406 unsigned int pages_per_huge_page);
2407extern void copy_user_huge_page(struct page *dst, struct page *src,
2408 unsigned long addr, struct vm_area_struct *vma,
2409 unsigned int pages_per_huge_page);
2410#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2411
2412extern struct page_ext_operations debug_guardpage_ops;
2413extern struct page_ext_operations page_poisoning_ops;
2414
2415#ifdef CONFIG_DEBUG_PAGEALLOC
2416extern unsigned int _debug_guardpage_minorder;
2417extern bool _debug_guardpage_enabled;
2418
2419static inline unsigned int debug_guardpage_minorder(void)
2420{
2421 return _debug_guardpage_minorder;
2422}
2423
2424static inline bool debug_guardpage_enabled(void)
2425{
2426 return _debug_guardpage_enabled;
2427}
2428
2429static inline bool page_is_guard(struct page *page)
2430{
2431 struct page_ext *page_ext;
2432
2433 if (!debug_guardpage_enabled())
2434 return false;
2435
2436 page_ext = lookup_page_ext(page);
2437 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2438}
2439#else
2440static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2441static inline bool debug_guardpage_enabled(void) { return false; }
2442static inline bool page_is_guard(struct page *page) { return false; }
2443#endif /* CONFIG_DEBUG_PAGEALLOC */
2444
2445#if MAX_NUMNODES > 1
2446void __init setup_nr_node_ids(void);
2447#else
2448static inline void setup_nr_node_ids(void) {}
2449#endif
2450
2451#endif /* __KERNEL__ */
2452#endif /* _LINUX_MM_H */