mm: introduce 'encoded' page pointers with embedded extra bits
[linux-block.git] / include / linux / mm.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32
33struct mempolicy;
34struct anon_vma;
35struct anon_vma_chain;
36struct user_struct;
37struct pt_regs;
38
39extern int sysctl_page_lock_unfairness;
40
41void init_mm_internals(void);
42
43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
44extern unsigned long max_mapnr;
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
52#endif
53
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
75extern void * high_memory;
76extern int page_cluster;
77extern const int page_cluster_max;
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
96#include <asm/page.h>
97#include <asm/processor.h>
98
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
104 * It's defined as noop for architectures that don't support memory tagging.
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
138 */
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
143 * combine write statements if they are both assignments and can be reordered,
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
158 _pp[9] = 0;
159 fallthrough;
160 case 72:
161 _pp[8] = 0;
162 fallthrough;
163 case 64:
164 _pp[7] = 0;
165 fallthrough;
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214
215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
218#else
219#define nth_page(page,n) ((page) + (n))
220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
221#endif
222
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231
232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
237
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
253
254#ifndef CONFIG_MMU
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
262 * vm_flags in vm_area_struct, see mm_types.h.
263 * When changing, update also include/trace/events/mmflags.h
264 */
265#define VM_NONE 0x00000000
266
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
281#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
282
283#define VM_LOCKED 0x00002000
284#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
285
286 /* Used by sys_madvise() */
287#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
288#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
289
290#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
291#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
292#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
293#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
294#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
295#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
296#define VM_SYNC 0x00800000 /* Synchronous page faults */
297#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
298#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
299#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
300
301#ifdef CONFIG_MEM_SOFT_DIRTY
302# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
303#else
304# define VM_SOFTDIRTY 0
305#endif
306
307#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
308#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
309#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
310#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
311
312#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
313#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
316#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
317#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
319#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
320#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
321#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
322#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
323#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
324
325#ifdef CONFIG_ARCH_HAS_PKEYS
326# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
327# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
328# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
329# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
330# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
331#ifdef CONFIG_PPC
332# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
333#else
334# define VM_PKEY_BIT4 0
335#endif
336#endif /* CONFIG_ARCH_HAS_PKEYS */
337
338#if defined(CONFIG_X86)
339# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
340#elif defined(CONFIG_PPC)
341# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
342#elif defined(CONFIG_PARISC)
343# define VM_GROWSUP VM_ARCH_1
344#elif defined(CONFIG_IA64)
345# define VM_GROWSUP VM_ARCH_1
346#elif defined(CONFIG_SPARC64)
347# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
348# define VM_ARCH_CLEAR VM_SPARC_ADI
349#elif defined(CONFIG_ARM64)
350# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
351# define VM_ARCH_CLEAR VM_ARM64_BTI
352#elif !defined(CONFIG_MMU)
353# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
354#endif
355
356#if defined(CONFIG_ARM64_MTE)
357# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
358# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
359#else
360# define VM_MTE VM_NONE
361# define VM_MTE_ALLOWED VM_NONE
362#endif
363
364#ifndef VM_GROWSUP
365# define VM_GROWSUP VM_NONE
366#endif
367
368#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
369# define VM_UFFD_MINOR_BIT 37
370# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
371#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
372# define VM_UFFD_MINOR VM_NONE
373#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
374
375/* Bits set in the VMA until the stack is in its final location */
376#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
377
378#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379
380/* Common data flag combinations */
381#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
384 VM_MAYWRITE | VM_MAYEXEC)
385#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387
388#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
389#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
390#endif
391
392#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
393#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394#endif
395
396#ifdef CONFIG_STACK_GROWSUP
397#define VM_STACK VM_GROWSUP
398#else
399#define VM_STACK VM_GROWSDOWN
400#endif
401
402#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403
404/* VMA basic access permission flags */
405#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406
407
408/*
409 * Special vmas that are non-mergable, non-mlock()able.
410 */
411#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
412
413/* This mask prevents VMA from being scanned with khugepaged */
414#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415
416/* This mask defines which mm->def_flags a process can inherit its parent */
417#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
418
419/* This mask is used to clear all the VMA flags used by mlock */
420#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
421
422/* Arch-specific flags to clear when updating VM flags on protection change */
423#ifndef VM_ARCH_CLEAR
424# define VM_ARCH_CLEAR VM_NONE
425#endif
426#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427
428/*
429 * mapping from the currently active vm_flags protection bits (the
430 * low four bits) to a page protection mask..
431 */
432
433/*
434 * The default fault flags that should be used by most of the
435 * arch-specific page fault handlers.
436 */
437#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
438 FAULT_FLAG_KILLABLE | \
439 FAULT_FLAG_INTERRUPTIBLE)
440
441/**
442 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
443 * @flags: Fault flags.
444 *
445 * This is mostly used for places where we want to try to avoid taking
446 * the mmap_lock for too long a time when waiting for another condition
447 * to change, in which case we can try to be polite to release the
448 * mmap_lock in the first round to avoid potential starvation of other
449 * processes that would also want the mmap_lock.
450 *
451 * Return: true if the page fault allows retry and this is the first
452 * attempt of the fault handling; false otherwise.
453 */
454static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
455{
456 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
457 (!(flags & FAULT_FLAG_TRIED));
458}
459
460#define FAULT_FLAG_TRACE \
461 { FAULT_FLAG_WRITE, "WRITE" }, \
462 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
463 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
464 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
465 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
466 { FAULT_FLAG_TRIED, "TRIED" }, \
467 { FAULT_FLAG_USER, "USER" }, \
468 { FAULT_FLAG_REMOTE, "REMOTE" }, \
469 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
470 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
471
472/*
473 * vm_fault is filled by the pagefault handler and passed to the vma's
474 * ->fault function. The vma's ->fault is responsible for returning a bitmask
475 * of VM_FAULT_xxx flags that give details about how the fault was handled.
476 *
477 * MM layer fills up gfp_mask for page allocations but fault handler might
478 * alter it if its implementation requires a different allocation context.
479 *
480 * pgoff should be used in favour of virtual_address, if possible.
481 */
482struct vm_fault {
483 const struct {
484 struct vm_area_struct *vma; /* Target VMA */
485 gfp_t gfp_mask; /* gfp mask to be used for allocations */
486 pgoff_t pgoff; /* Logical page offset based on vma */
487 unsigned long address; /* Faulting virtual address - masked */
488 unsigned long real_address; /* Faulting virtual address - unmasked */
489 };
490 enum fault_flag flags; /* FAULT_FLAG_xxx flags
491 * XXX: should really be 'const' */
492 pmd_t *pmd; /* Pointer to pmd entry matching
493 * the 'address' */
494 pud_t *pud; /* Pointer to pud entry matching
495 * the 'address'
496 */
497 union {
498 pte_t orig_pte; /* Value of PTE at the time of fault */
499 pmd_t orig_pmd; /* Value of PMD at the time of fault,
500 * used by PMD fault only.
501 */
502 };
503
504 struct page *cow_page; /* Page handler may use for COW fault */
505 struct page *page; /* ->fault handlers should return a
506 * page here, unless VM_FAULT_NOPAGE
507 * is set (which is also implied by
508 * VM_FAULT_ERROR).
509 */
510 /* These three entries are valid only while holding ptl lock */
511 pte_t *pte; /* Pointer to pte entry matching
512 * the 'address'. NULL if the page
513 * table hasn't been allocated.
514 */
515 spinlock_t *ptl; /* Page table lock.
516 * Protects pte page table if 'pte'
517 * is not NULL, otherwise pmd.
518 */
519 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
520 * vm_ops->map_pages() sets up a page
521 * table from atomic context.
522 * do_fault_around() pre-allocates
523 * page table to avoid allocation from
524 * atomic context.
525 */
526};
527
528/* page entry size for vm->huge_fault() */
529enum page_entry_size {
530 PE_SIZE_PTE = 0,
531 PE_SIZE_PMD,
532 PE_SIZE_PUD,
533};
534
535/*
536 * These are the virtual MM functions - opening of an area, closing and
537 * unmapping it (needed to keep files on disk up-to-date etc), pointer
538 * to the functions called when a no-page or a wp-page exception occurs.
539 */
540struct vm_operations_struct {
541 void (*open)(struct vm_area_struct * area);
542 /**
543 * @close: Called when the VMA is being removed from the MM.
544 * Context: User context. May sleep. Caller holds mmap_lock.
545 */
546 void (*close)(struct vm_area_struct * area);
547 /* Called any time before splitting to check if it's allowed */
548 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
549 int (*mremap)(struct vm_area_struct *area);
550 /*
551 * Called by mprotect() to make driver-specific permission
552 * checks before mprotect() is finalised. The VMA must not
553 * be modified. Returns 0 if mprotect() can proceed.
554 */
555 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end, unsigned long newflags);
557 vm_fault_t (*fault)(struct vm_fault *vmf);
558 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
559 enum page_entry_size pe_size);
560 vm_fault_t (*map_pages)(struct vm_fault *vmf,
561 pgoff_t start_pgoff, pgoff_t end_pgoff);
562 unsigned long (*pagesize)(struct vm_area_struct * area);
563
564 /* notification that a previously read-only page is about to become
565 * writable, if an error is returned it will cause a SIGBUS */
566 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
567
568 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
569 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
570
571 /* called by access_process_vm when get_user_pages() fails, typically
572 * for use by special VMAs. See also generic_access_phys() for a generic
573 * implementation useful for any iomem mapping.
574 */
575 int (*access)(struct vm_area_struct *vma, unsigned long addr,
576 void *buf, int len, int write);
577
578 /* Called by the /proc/PID/maps code to ask the vma whether it
579 * has a special name. Returning non-NULL will also cause this
580 * vma to be dumped unconditionally. */
581 const char *(*name)(struct vm_area_struct *vma);
582
583#ifdef CONFIG_NUMA
584 /*
585 * set_policy() op must add a reference to any non-NULL @new mempolicy
586 * to hold the policy upon return. Caller should pass NULL @new to
587 * remove a policy and fall back to surrounding context--i.e. do not
588 * install a MPOL_DEFAULT policy, nor the task or system default
589 * mempolicy.
590 */
591 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
592
593 /*
594 * get_policy() op must add reference [mpol_get()] to any policy at
595 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
596 * in mm/mempolicy.c will do this automatically.
597 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
598 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
599 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
600 * must return NULL--i.e., do not "fallback" to task or system default
601 * policy.
602 */
603 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
604 unsigned long addr);
605#endif
606 /*
607 * Called by vm_normal_page() for special PTEs to find the
608 * page for @addr. This is useful if the default behavior
609 * (using pte_page()) would not find the correct page.
610 */
611 struct page *(*find_special_page)(struct vm_area_struct *vma,
612 unsigned long addr);
613};
614
615static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
616{
617 static const struct vm_operations_struct dummy_vm_ops = {};
618
619 memset(vma, 0, sizeof(*vma));
620 vma->vm_mm = mm;
621 vma->vm_ops = &dummy_vm_ops;
622 INIT_LIST_HEAD(&vma->anon_vma_chain);
623}
624
625static inline void vma_set_anonymous(struct vm_area_struct *vma)
626{
627 vma->vm_ops = NULL;
628}
629
630static inline bool vma_is_anonymous(struct vm_area_struct *vma)
631{
632 return !vma->vm_ops;
633}
634
635static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
636{
637 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
638
639 if (!maybe_stack)
640 return false;
641
642 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
643 VM_STACK_INCOMPLETE_SETUP)
644 return true;
645
646 return false;
647}
648
649static inline bool vma_is_foreign(struct vm_area_struct *vma)
650{
651 if (!current->mm)
652 return true;
653
654 if (current->mm != vma->vm_mm)
655 return true;
656
657 return false;
658}
659
660static inline bool vma_is_accessible(struct vm_area_struct *vma)
661{
662 return vma->vm_flags & VM_ACCESS_FLAGS;
663}
664
665static inline
666struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
667{
668 return mas_find(&vmi->mas, max);
669}
670
671static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
672{
673 /*
674 * Uses vma_find() to get the first VMA when the iterator starts.
675 * Calling mas_next() could skip the first entry.
676 */
677 return vma_find(vmi, ULONG_MAX);
678}
679
680static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
681{
682 return mas_prev(&vmi->mas, 0);
683}
684
685static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
686{
687 return vmi->mas.index;
688}
689
690#define for_each_vma(__vmi, __vma) \
691 while (((__vma) = vma_next(&(__vmi))) != NULL)
692
693/* The MM code likes to work with exclusive end addresses */
694#define for_each_vma_range(__vmi, __vma, __end) \
695 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
696
697#ifdef CONFIG_SHMEM
698/*
699 * The vma_is_shmem is not inline because it is used only by slow
700 * paths in userfault.
701 */
702bool vma_is_shmem(struct vm_area_struct *vma);
703#else
704static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
705#endif
706
707int vma_is_stack_for_current(struct vm_area_struct *vma);
708
709/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
710#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
711
712struct mmu_gather;
713struct inode;
714
715static inline unsigned int compound_order(struct page *page)
716{
717 if (!PageHead(page))
718 return 0;
719 return page[1].compound_order;
720}
721
722/**
723 * folio_order - The allocation order of a folio.
724 * @folio: The folio.
725 *
726 * A folio is composed of 2^order pages. See get_order() for the definition
727 * of order.
728 *
729 * Return: The order of the folio.
730 */
731static inline unsigned int folio_order(struct folio *folio)
732{
733 if (!folio_test_large(folio))
734 return 0;
735 return folio->_folio_order;
736}
737
738#include <linux/huge_mm.h>
739
740/*
741 * Methods to modify the page usage count.
742 *
743 * What counts for a page usage:
744 * - cache mapping (page->mapping)
745 * - private data (page->private)
746 * - page mapped in a task's page tables, each mapping
747 * is counted separately
748 *
749 * Also, many kernel routines increase the page count before a critical
750 * routine so they can be sure the page doesn't go away from under them.
751 */
752
753/*
754 * Drop a ref, return true if the refcount fell to zero (the page has no users)
755 */
756static inline int put_page_testzero(struct page *page)
757{
758 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
759 return page_ref_dec_and_test(page);
760}
761
762static inline int folio_put_testzero(struct folio *folio)
763{
764 return put_page_testzero(&folio->page);
765}
766
767/*
768 * Try to grab a ref unless the page has a refcount of zero, return false if
769 * that is the case.
770 * This can be called when MMU is off so it must not access
771 * any of the virtual mappings.
772 */
773static inline bool get_page_unless_zero(struct page *page)
774{
775 return page_ref_add_unless(page, 1, 0);
776}
777
778extern int page_is_ram(unsigned long pfn);
779
780enum {
781 REGION_INTERSECTS,
782 REGION_DISJOINT,
783 REGION_MIXED,
784};
785
786int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
787 unsigned long desc);
788
789/* Support for virtually mapped pages */
790struct page *vmalloc_to_page(const void *addr);
791unsigned long vmalloc_to_pfn(const void *addr);
792
793/*
794 * Determine if an address is within the vmalloc range
795 *
796 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
797 * is no special casing required.
798 */
799
800#ifndef is_ioremap_addr
801#define is_ioremap_addr(x) is_vmalloc_addr(x)
802#endif
803
804#ifdef CONFIG_MMU
805extern bool is_vmalloc_addr(const void *x);
806extern int is_vmalloc_or_module_addr(const void *x);
807#else
808static inline bool is_vmalloc_addr(const void *x)
809{
810 return false;
811}
812static inline int is_vmalloc_or_module_addr(const void *x)
813{
814 return 0;
815}
816#endif
817
818/*
819 * How many times the entire folio is mapped as a single unit (eg by a
820 * PMD or PUD entry). This is probably not what you want, except for
821 * debugging purposes - it does not include PTE-mapped sub-pages; look
822 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
823 */
824static inline int folio_entire_mapcount(struct folio *folio)
825{
826 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
827 return atomic_read(folio_mapcount_ptr(folio)) + 1;
828}
829
830/*
831 * Mapcount of compound page as a whole, does not include mapped sub-pages.
832 * Must be called only on head of compound page.
833 */
834static inline int head_compound_mapcount(struct page *head)
835{
836 return atomic_read(compound_mapcount_ptr(head)) + 1;
837}
838
839/*
840 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
841 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
842 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
843 * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
844 */
845#define COMPOUND_MAPPED 0x800000
846#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1)
847
848/*
849 * Number of sub-pages mapped by PTE, does not include compound mapcount.
850 * Must be called only on head of compound page.
851 */
852static inline int head_subpages_mapcount(struct page *head)
853{
854 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
855}
856
857/*
858 * The atomic page->_mapcount, starts from -1: so that transitions
859 * both from it and to it can be tracked, using atomic_inc_and_test
860 * and atomic_add_negative(-1).
861 */
862static inline void page_mapcount_reset(struct page *page)
863{
864 atomic_set(&(page)->_mapcount, -1);
865}
866
867/*
868 * Mapcount of 0-order page; when compound sub-page, includes
869 * compound_mapcount of compound_head of page.
870 *
871 * Result is undefined for pages which cannot be mapped into userspace.
872 * For example SLAB or special types of pages. See function page_has_type().
873 * They use this place in struct page differently.
874 */
875static inline int page_mapcount(struct page *page)
876{
877 int mapcount = atomic_read(&page->_mapcount) + 1;
878
879 if (likely(!PageCompound(page)))
880 return mapcount;
881 page = compound_head(page);
882 return head_compound_mapcount(page) + mapcount;
883}
884
885int total_compound_mapcount(struct page *head);
886
887/**
888 * folio_mapcount() - Calculate the number of mappings of this folio.
889 * @folio: The folio.
890 *
891 * A large folio tracks both how many times the entire folio is mapped,
892 * and how many times each individual page in the folio is mapped.
893 * This function calculates the total number of times the folio is
894 * mapped.
895 *
896 * Return: The number of times this folio is mapped.
897 */
898static inline int folio_mapcount(struct folio *folio)
899{
900 if (likely(!folio_test_large(folio)))
901 return atomic_read(&folio->_mapcount) + 1;
902 return total_compound_mapcount(&folio->page);
903}
904
905static inline int total_mapcount(struct page *page)
906{
907 if (likely(!PageCompound(page)))
908 return atomic_read(&page->_mapcount) + 1;
909 return total_compound_mapcount(compound_head(page));
910}
911
912static inline bool folio_large_is_mapped(struct folio *folio)
913{
914 /*
915 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
916 * participated in incrementing subpages_mapcount when compound mapped.
917 */
918 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
919 atomic_read(folio_mapcount_ptr(folio)) >= 0;
920}
921
922/**
923 * folio_mapped - Is this folio mapped into userspace?
924 * @folio: The folio.
925 *
926 * Return: True if any page in this folio is referenced by user page tables.
927 */
928static inline bool folio_mapped(struct folio *folio)
929{
930 if (likely(!folio_test_large(folio)))
931 return atomic_read(&folio->_mapcount) >= 0;
932 return folio_large_is_mapped(folio);
933}
934
935/*
936 * Return true if this page is mapped into pagetables.
937 * For compound page it returns true if any sub-page of compound page is mapped,
938 * even if this particular sub-page is not itself mapped by any PTE or PMD.
939 */
940static inline bool page_mapped(struct page *page)
941{
942 if (likely(!PageCompound(page)))
943 return atomic_read(&page->_mapcount) >= 0;
944 return folio_large_is_mapped(page_folio(page));
945}
946
947static inline struct page *virt_to_head_page(const void *x)
948{
949 struct page *page = virt_to_page(x);
950
951 return compound_head(page);
952}
953
954static inline struct folio *virt_to_folio(const void *x)
955{
956 struct page *page = virt_to_page(x);
957
958 return page_folio(page);
959}
960
961void __folio_put(struct folio *folio);
962
963void put_pages_list(struct list_head *pages);
964
965void split_page(struct page *page, unsigned int order);
966void folio_copy(struct folio *dst, struct folio *src);
967
968unsigned long nr_free_buffer_pages(void);
969
970/*
971 * Compound pages have a destructor function. Provide a
972 * prototype for that function and accessor functions.
973 * These are _only_ valid on the head of a compound page.
974 */
975typedef void compound_page_dtor(struct page *);
976
977/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
978enum compound_dtor_id {
979 NULL_COMPOUND_DTOR,
980 COMPOUND_PAGE_DTOR,
981#ifdef CONFIG_HUGETLB_PAGE
982 HUGETLB_PAGE_DTOR,
983#endif
984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
985 TRANSHUGE_PAGE_DTOR,
986#endif
987 NR_COMPOUND_DTORS,
988};
989extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
990
991static inline void set_compound_page_dtor(struct page *page,
992 enum compound_dtor_id compound_dtor)
993{
994 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
995 page[1].compound_dtor = compound_dtor;
996}
997
998void destroy_large_folio(struct folio *folio);
999
1000static inline int head_compound_pincount(struct page *head)
1001{
1002 return atomic_read(compound_pincount_ptr(head));
1003}
1004
1005static inline void set_compound_order(struct page *page, unsigned int order)
1006{
1007 page[1].compound_order = order;
1008#ifdef CONFIG_64BIT
1009 page[1].compound_nr = 1U << order;
1010#endif
1011}
1012
1013/* Returns the number of pages in this potentially compound page. */
1014static inline unsigned long compound_nr(struct page *page)
1015{
1016 if (!PageHead(page))
1017 return 1;
1018#ifdef CONFIG_64BIT
1019 return page[1].compound_nr;
1020#else
1021 return 1UL << compound_order(page);
1022#endif
1023}
1024
1025/* Returns the number of bytes in this potentially compound page. */
1026static inline unsigned long page_size(struct page *page)
1027{
1028 return PAGE_SIZE << compound_order(page);
1029}
1030
1031/* Returns the number of bits needed for the number of bytes in a page */
1032static inline unsigned int page_shift(struct page *page)
1033{
1034 return PAGE_SHIFT + compound_order(page);
1035}
1036
1037/**
1038 * thp_order - Order of a transparent huge page.
1039 * @page: Head page of a transparent huge page.
1040 */
1041static inline unsigned int thp_order(struct page *page)
1042{
1043 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1044 return compound_order(page);
1045}
1046
1047/**
1048 * thp_nr_pages - The number of regular pages in this huge page.
1049 * @page: The head page of a huge page.
1050 */
1051static inline int thp_nr_pages(struct page *page)
1052{
1053 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1054 return compound_nr(page);
1055}
1056
1057/**
1058 * thp_size - Size of a transparent huge page.
1059 * @page: Head page of a transparent huge page.
1060 *
1061 * Return: Number of bytes in this page.
1062 */
1063static inline unsigned long thp_size(struct page *page)
1064{
1065 return PAGE_SIZE << thp_order(page);
1066}
1067
1068void free_compound_page(struct page *page);
1069
1070#ifdef CONFIG_MMU
1071/*
1072 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1073 * servicing faults for write access. In the normal case, do always want
1074 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1075 * that do not have writing enabled, when used by access_process_vm.
1076 */
1077static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1078{
1079 if (likely(vma->vm_flags & VM_WRITE))
1080 pte = pte_mkwrite(pte);
1081 return pte;
1082}
1083
1084vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1085void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1086
1087vm_fault_t finish_fault(struct vm_fault *vmf);
1088vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1089#endif
1090
1091/*
1092 * Multiple processes may "see" the same page. E.g. for untouched
1093 * mappings of /dev/null, all processes see the same page full of
1094 * zeroes, and text pages of executables and shared libraries have
1095 * only one copy in memory, at most, normally.
1096 *
1097 * For the non-reserved pages, page_count(page) denotes a reference count.
1098 * page_count() == 0 means the page is free. page->lru is then used for
1099 * freelist management in the buddy allocator.
1100 * page_count() > 0 means the page has been allocated.
1101 *
1102 * Pages are allocated by the slab allocator in order to provide memory
1103 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1104 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1105 * unless a particular usage is carefully commented. (the responsibility of
1106 * freeing the kmalloc memory is the caller's, of course).
1107 *
1108 * A page may be used by anyone else who does a __get_free_page().
1109 * In this case, page_count still tracks the references, and should only
1110 * be used through the normal accessor functions. The top bits of page->flags
1111 * and page->virtual store page management information, but all other fields
1112 * are unused and could be used privately, carefully. The management of this
1113 * page is the responsibility of the one who allocated it, and those who have
1114 * subsequently been given references to it.
1115 *
1116 * The other pages (we may call them "pagecache pages") are completely
1117 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1118 * The following discussion applies only to them.
1119 *
1120 * A pagecache page contains an opaque `private' member, which belongs to the
1121 * page's address_space. Usually, this is the address of a circular list of
1122 * the page's disk buffers. PG_private must be set to tell the VM to call
1123 * into the filesystem to release these pages.
1124 *
1125 * A page may belong to an inode's memory mapping. In this case, page->mapping
1126 * is the pointer to the inode, and page->index is the file offset of the page,
1127 * in units of PAGE_SIZE.
1128 *
1129 * If pagecache pages are not associated with an inode, they are said to be
1130 * anonymous pages. These may become associated with the swapcache, and in that
1131 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1132 *
1133 * In either case (swapcache or inode backed), the pagecache itself holds one
1134 * reference to the page. Setting PG_private should also increment the
1135 * refcount. The each user mapping also has a reference to the page.
1136 *
1137 * The pagecache pages are stored in a per-mapping radix tree, which is
1138 * rooted at mapping->i_pages, and indexed by offset.
1139 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1140 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1141 *
1142 * All pagecache pages may be subject to I/O:
1143 * - inode pages may need to be read from disk,
1144 * - inode pages which have been modified and are MAP_SHARED may need
1145 * to be written back to the inode on disk,
1146 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1147 * modified may need to be swapped out to swap space and (later) to be read
1148 * back into memory.
1149 */
1150
1151#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1152DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1153
1154bool __put_devmap_managed_page_refs(struct page *page, int refs);
1155static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1156{
1157 if (!static_branch_unlikely(&devmap_managed_key))
1158 return false;
1159 if (!is_zone_device_page(page))
1160 return false;
1161 return __put_devmap_managed_page_refs(page, refs);
1162}
1163#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1164static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1165{
1166 return false;
1167}
1168#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1169
1170static inline bool put_devmap_managed_page(struct page *page)
1171{
1172 return put_devmap_managed_page_refs(page, 1);
1173}
1174
1175/* 127: arbitrary random number, small enough to assemble well */
1176#define folio_ref_zero_or_close_to_overflow(folio) \
1177 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1178
1179/**
1180 * folio_get - Increment the reference count on a folio.
1181 * @folio: The folio.
1182 *
1183 * Context: May be called in any context, as long as you know that
1184 * you have a refcount on the folio. If you do not already have one,
1185 * folio_try_get() may be the right interface for you to use.
1186 */
1187static inline void folio_get(struct folio *folio)
1188{
1189 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1190 folio_ref_inc(folio);
1191}
1192
1193static inline void get_page(struct page *page)
1194{
1195 folio_get(page_folio(page));
1196}
1197
1198bool __must_check try_grab_page(struct page *page, unsigned int flags);
1199
1200static inline __must_check bool try_get_page(struct page *page)
1201{
1202 page = compound_head(page);
1203 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1204 return false;
1205 page_ref_inc(page);
1206 return true;
1207}
1208
1209/**
1210 * folio_put - Decrement the reference count on a folio.
1211 * @folio: The folio.
1212 *
1213 * If the folio's reference count reaches zero, the memory will be
1214 * released back to the page allocator and may be used by another
1215 * allocation immediately. Do not access the memory or the struct folio
1216 * after calling folio_put() unless you can be sure that it wasn't the
1217 * last reference.
1218 *
1219 * Context: May be called in process or interrupt context, but not in NMI
1220 * context. May be called while holding a spinlock.
1221 */
1222static inline void folio_put(struct folio *folio)
1223{
1224 if (folio_put_testzero(folio))
1225 __folio_put(folio);
1226}
1227
1228/**
1229 * folio_put_refs - Reduce the reference count on a folio.
1230 * @folio: The folio.
1231 * @refs: The amount to subtract from the folio's reference count.
1232 *
1233 * If the folio's reference count reaches zero, the memory will be
1234 * released back to the page allocator and may be used by another
1235 * allocation immediately. Do not access the memory or the struct folio
1236 * after calling folio_put_refs() unless you can be sure that these weren't
1237 * the last references.
1238 *
1239 * Context: May be called in process or interrupt context, but not in NMI
1240 * context. May be called while holding a spinlock.
1241 */
1242static inline void folio_put_refs(struct folio *folio, int refs)
1243{
1244 if (folio_ref_sub_and_test(folio, refs))
1245 __folio_put(folio);
1246}
1247
1248void release_pages(struct page **pages, int nr);
1249
1250/**
1251 * folios_put - Decrement the reference count on an array of folios.
1252 * @folios: The folios.
1253 * @nr: How many folios there are.
1254 *
1255 * Like folio_put(), but for an array of folios. This is more efficient
1256 * than writing the loop yourself as it will optimise the locks which
1257 * need to be taken if the folios are freed.
1258 *
1259 * Context: May be called in process or interrupt context, but not in NMI
1260 * context. May be called while holding a spinlock.
1261 */
1262static inline void folios_put(struct folio **folios, unsigned int nr)
1263{
1264 release_pages((struct page **)folios, nr);
1265}
1266
1267static inline void put_page(struct page *page)
1268{
1269 struct folio *folio = page_folio(page);
1270
1271 /*
1272 * For some devmap managed pages we need to catch refcount transition
1273 * from 2 to 1:
1274 */
1275 if (put_devmap_managed_page(&folio->page))
1276 return;
1277 folio_put(folio);
1278}
1279
1280/*
1281 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1282 * the page's refcount so that two separate items are tracked: the original page
1283 * reference count, and also a new count of how many pin_user_pages() calls were
1284 * made against the page. ("gup-pinned" is another term for the latter).
1285 *
1286 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1287 * distinct from normal pages. As such, the unpin_user_page() call (and its
1288 * variants) must be used in order to release gup-pinned pages.
1289 *
1290 * Choice of value:
1291 *
1292 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1293 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1294 * simpler, due to the fact that adding an even power of two to the page
1295 * refcount has the effect of using only the upper N bits, for the code that
1296 * counts up using the bias value. This means that the lower bits are left for
1297 * the exclusive use of the original code that increments and decrements by one
1298 * (or at least, by much smaller values than the bias value).
1299 *
1300 * Of course, once the lower bits overflow into the upper bits (and this is
1301 * OK, because subtraction recovers the original values), then visual inspection
1302 * no longer suffices to directly view the separate counts. However, for normal
1303 * applications that don't have huge page reference counts, this won't be an
1304 * issue.
1305 *
1306 * Locking: the lockless algorithm described in folio_try_get_rcu()
1307 * provides safe operation for get_user_pages(), page_mkclean() and
1308 * other calls that race to set up page table entries.
1309 */
1310#define GUP_PIN_COUNTING_BIAS (1U << 10)
1311
1312void unpin_user_page(struct page *page);
1313void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1314 bool make_dirty);
1315void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1316 bool make_dirty);
1317void unpin_user_pages(struct page **pages, unsigned long npages);
1318
1319static inline bool is_cow_mapping(vm_flags_t flags)
1320{
1321 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1322}
1323
1324#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1325#define SECTION_IN_PAGE_FLAGS
1326#endif
1327
1328/*
1329 * The identification function is mainly used by the buddy allocator for
1330 * determining if two pages could be buddies. We are not really identifying
1331 * the zone since we could be using the section number id if we do not have
1332 * node id available in page flags.
1333 * We only guarantee that it will return the same value for two combinable
1334 * pages in a zone.
1335 */
1336static inline int page_zone_id(struct page *page)
1337{
1338 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1339}
1340
1341#ifdef NODE_NOT_IN_PAGE_FLAGS
1342extern int page_to_nid(const struct page *page);
1343#else
1344static inline int page_to_nid(const struct page *page)
1345{
1346 struct page *p = (struct page *)page;
1347
1348 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1349}
1350#endif
1351
1352static inline int folio_nid(const struct folio *folio)
1353{
1354 return page_to_nid(&folio->page);
1355}
1356
1357#ifdef CONFIG_NUMA_BALANCING
1358/* page access time bits needs to hold at least 4 seconds */
1359#define PAGE_ACCESS_TIME_MIN_BITS 12
1360#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1361#define PAGE_ACCESS_TIME_BUCKETS \
1362 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1363#else
1364#define PAGE_ACCESS_TIME_BUCKETS 0
1365#endif
1366
1367#define PAGE_ACCESS_TIME_MASK \
1368 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1369
1370static inline int cpu_pid_to_cpupid(int cpu, int pid)
1371{
1372 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1373}
1374
1375static inline int cpupid_to_pid(int cpupid)
1376{
1377 return cpupid & LAST__PID_MASK;
1378}
1379
1380static inline int cpupid_to_cpu(int cpupid)
1381{
1382 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1383}
1384
1385static inline int cpupid_to_nid(int cpupid)
1386{
1387 return cpu_to_node(cpupid_to_cpu(cpupid));
1388}
1389
1390static inline bool cpupid_pid_unset(int cpupid)
1391{
1392 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1393}
1394
1395static inline bool cpupid_cpu_unset(int cpupid)
1396{
1397 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1398}
1399
1400static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1401{
1402 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1403}
1404
1405#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1406#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1407static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1408{
1409 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1410}
1411
1412static inline int page_cpupid_last(struct page *page)
1413{
1414 return page->_last_cpupid;
1415}
1416static inline void page_cpupid_reset_last(struct page *page)
1417{
1418 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1419}
1420#else
1421static inline int page_cpupid_last(struct page *page)
1422{
1423 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1424}
1425
1426extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1427
1428static inline void page_cpupid_reset_last(struct page *page)
1429{
1430 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1431}
1432#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1433
1434static inline int xchg_page_access_time(struct page *page, int time)
1435{
1436 int last_time;
1437
1438 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1439 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1440}
1441#else /* !CONFIG_NUMA_BALANCING */
1442static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1443{
1444 return page_to_nid(page); /* XXX */
1445}
1446
1447static inline int xchg_page_access_time(struct page *page, int time)
1448{
1449 return 0;
1450}
1451
1452static inline int page_cpupid_last(struct page *page)
1453{
1454 return page_to_nid(page); /* XXX */
1455}
1456
1457static inline int cpupid_to_nid(int cpupid)
1458{
1459 return -1;
1460}
1461
1462static inline int cpupid_to_pid(int cpupid)
1463{
1464 return -1;
1465}
1466
1467static inline int cpupid_to_cpu(int cpupid)
1468{
1469 return -1;
1470}
1471
1472static inline int cpu_pid_to_cpupid(int nid, int pid)
1473{
1474 return -1;
1475}
1476
1477static inline bool cpupid_pid_unset(int cpupid)
1478{
1479 return true;
1480}
1481
1482static inline void page_cpupid_reset_last(struct page *page)
1483{
1484}
1485
1486static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1487{
1488 return false;
1489}
1490#endif /* CONFIG_NUMA_BALANCING */
1491
1492#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1493
1494/*
1495 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1496 * setting tags for all pages to native kernel tag value 0xff, as the default
1497 * value 0x00 maps to 0xff.
1498 */
1499
1500static inline u8 page_kasan_tag(const struct page *page)
1501{
1502 u8 tag = 0xff;
1503
1504 if (kasan_enabled()) {
1505 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1506 tag ^= 0xff;
1507 }
1508
1509 return tag;
1510}
1511
1512static inline void page_kasan_tag_set(struct page *page, u8 tag)
1513{
1514 unsigned long old_flags, flags;
1515
1516 if (!kasan_enabled())
1517 return;
1518
1519 tag ^= 0xff;
1520 old_flags = READ_ONCE(page->flags);
1521 do {
1522 flags = old_flags;
1523 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1524 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1525 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1526}
1527
1528static inline void page_kasan_tag_reset(struct page *page)
1529{
1530 if (kasan_enabled())
1531 page_kasan_tag_set(page, 0xff);
1532}
1533
1534#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1535
1536static inline u8 page_kasan_tag(const struct page *page)
1537{
1538 return 0xff;
1539}
1540
1541static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1542static inline void page_kasan_tag_reset(struct page *page) { }
1543
1544#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1545
1546static inline struct zone *page_zone(const struct page *page)
1547{
1548 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1549}
1550
1551static inline pg_data_t *page_pgdat(const struct page *page)
1552{
1553 return NODE_DATA(page_to_nid(page));
1554}
1555
1556static inline struct zone *folio_zone(const struct folio *folio)
1557{
1558 return page_zone(&folio->page);
1559}
1560
1561static inline pg_data_t *folio_pgdat(const struct folio *folio)
1562{
1563 return page_pgdat(&folio->page);
1564}
1565
1566#ifdef SECTION_IN_PAGE_FLAGS
1567static inline void set_page_section(struct page *page, unsigned long section)
1568{
1569 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1570 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1571}
1572
1573static inline unsigned long page_to_section(const struct page *page)
1574{
1575 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1576}
1577#endif
1578
1579/**
1580 * folio_pfn - Return the Page Frame Number of a folio.
1581 * @folio: The folio.
1582 *
1583 * A folio may contain multiple pages. The pages have consecutive
1584 * Page Frame Numbers.
1585 *
1586 * Return: The Page Frame Number of the first page in the folio.
1587 */
1588static inline unsigned long folio_pfn(struct folio *folio)
1589{
1590 return page_to_pfn(&folio->page);
1591}
1592
1593static inline struct folio *pfn_folio(unsigned long pfn)
1594{
1595 return page_folio(pfn_to_page(pfn));
1596}
1597
1598static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1599{
1600 return &folio_page(folio, 1)->compound_pincount;
1601}
1602
1603/**
1604 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1605 * @folio: The folio.
1606 *
1607 * This function checks if a folio has been pinned via a call to
1608 * a function in the pin_user_pages() family.
1609 *
1610 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1611 * because it means "definitely not pinned for DMA", but true means "probably
1612 * pinned for DMA, but possibly a false positive due to having at least
1613 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1614 *
1615 * False positives are OK, because: a) it's unlikely for a folio to
1616 * get that many refcounts, and b) all the callers of this routine are
1617 * expected to be able to deal gracefully with a false positive.
1618 *
1619 * For large folios, the result will be exactly correct. That's because
1620 * we have more tracking data available: the compound_pincount is used
1621 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1622 *
1623 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1624 *
1625 * Return: True, if it is likely that the page has been "dma-pinned".
1626 * False, if the page is definitely not dma-pinned.
1627 */
1628static inline bool folio_maybe_dma_pinned(struct folio *folio)
1629{
1630 if (folio_test_large(folio))
1631 return atomic_read(folio_pincount_ptr(folio)) > 0;
1632
1633 /*
1634 * folio_ref_count() is signed. If that refcount overflows, then
1635 * folio_ref_count() returns a negative value, and callers will avoid
1636 * further incrementing the refcount.
1637 *
1638 * Here, for that overflow case, use the sign bit to count a little
1639 * bit higher via unsigned math, and thus still get an accurate result.
1640 */
1641 return ((unsigned int)folio_ref_count(folio)) >=
1642 GUP_PIN_COUNTING_BIAS;
1643}
1644
1645static inline bool page_maybe_dma_pinned(struct page *page)
1646{
1647 return folio_maybe_dma_pinned(page_folio(page));
1648}
1649
1650/*
1651 * This should most likely only be called during fork() to see whether we
1652 * should break the cow immediately for an anon page on the src mm.
1653 *
1654 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1655 */
1656static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1657 struct page *page)
1658{
1659 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1660
1661 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1662 return false;
1663
1664 return page_maybe_dma_pinned(page);
1665}
1666
1667/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1668#ifdef CONFIG_MIGRATION
1669static inline bool is_longterm_pinnable_page(struct page *page)
1670{
1671#ifdef CONFIG_CMA
1672 int mt = get_pageblock_migratetype(page);
1673
1674 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1675 return false;
1676#endif
1677 /* The zero page may always be pinned */
1678 if (is_zero_pfn(page_to_pfn(page)))
1679 return true;
1680
1681 /* Coherent device memory must always allow eviction. */
1682 if (is_device_coherent_page(page))
1683 return false;
1684
1685 /* Otherwise, non-movable zone pages can be pinned. */
1686 return !is_zone_movable_page(page);
1687}
1688#else
1689static inline bool is_longterm_pinnable_page(struct page *page)
1690{
1691 return true;
1692}
1693#endif
1694
1695static inline bool folio_is_longterm_pinnable(struct folio *folio)
1696{
1697 return is_longterm_pinnable_page(&folio->page);
1698}
1699
1700static inline void set_page_zone(struct page *page, enum zone_type zone)
1701{
1702 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1703 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1704}
1705
1706static inline void set_page_node(struct page *page, unsigned long node)
1707{
1708 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1709 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1710}
1711
1712static inline void set_page_links(struct page *page, enum zone_type zone,
1713 unsigned long node, unsigned long pfn)
1714{
1715 set_page_zone(page, zone);
1716 set_page_node(page, node);
1717#ifdef SECTION_IN_PAGE_FLAGS
1718 set_page_section(page, pfn_to_section_nr(pfn));
1719#endif
1720}
1721
1722/**
1723 * folio_nr_pages - The number of pages in the folio.
1724 * @folio: The folio.
1725 *
1726 * Return: A positive power of two.
1727 */
1728static inline long folio_nr_pages(struct folio *folio)
1729{
1730 if (!folio_test_large(folio))
1731 return 1;
1732#ifdef CONFIG_64BIT
1733 return folio->_folio_nr_pages;
1734#else
1735 return 1L << folio->_folio_order;
1736#endif
1737}
1738
1739/**
1740 * folio_next - Move to the next physical folio.
1741 * @folio: The folio we're currently operating on.
1742 *
1743 * If you have physically contiguous memory which may span more than
1744 * one folio (eg a &struct bio_vec), use this function to move from one
1745 * folio to the next. Do not use it if the memory is only virtually
1746 * contiguous as the folios are almost certainly not adjacent to each
1747 * other. This is the folio equivalent to writing ``page++``.
1748 *
1749 * Context: We assume that the folios are refcounted and/or locked at a
1750 * higher level and do not adjust the reference counts.
1751 * Return: The next struct folio.
1752 */
1753static inline struct folio *folio_next(struct folio *folio)
1754{
1755 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1756}
1757
1758/**
1759 * folio_shift - The size of the memory described by this folio.
1760 * @folio: The folio.
1761 *
1762 * A folio represents a number of bytes which is a power-of-two in size.
1763 * This function tells you which power-of-two the folio is. See also
1764 * folio_size() and folio_order().
1765 *
1766 * Context: The caller should have a reference on the folio to prevent
1767 * it from being split. It is not necessary for the folio to be locked.
1768 * Return: The base-2 logarithm of the size of this folio.
1769 */
1770static inline unsigned int folio_shift(struct folio *folio)
1771{
1772 return PAGE_SHIFT + folio_order(folio);
1773}
1774
1775/**
1776 * folio_size - The number of bytes in a folio.
1777 * @folio: The folio.
1778 *
1779 * Context: The caller should have a reference on the folio to prevent
1780 * it from being split. It is not necessary for the folio to be locked.
1781 * Return: The number of bytes in this folio.
1782 */
1783static inline size_t folio_size(struct folio *folio)
1784{
1785 return PAGE_SIZE << folio_order(folio);
1786}
1787
1788#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1789static inline int arch_make_page_accessible(struct page *page)
1790{
1791 return 0;
1792}
1793#endif
1794
1795#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1796static inline int arch_make_folio_accessible(struct folio *folio)
1797{
1798 int ret;
1799 long i, nr = folio_nr_pages(folio);
1800
1801 for (i = 0; i < nr; i++) {
1802 ret = arch_make_page_accessible(folio_page(folio, i));
1803 if (ret)
1804 break;
1805 }
1806
1807 return ret;
1808}
1809#endif
1810
1811/*
1812 * Some inline functions in vmstat.h depend on page_zone()
1813 */
1814#include <linux/vmstat.h>
1815
1816static __always_inline void *lowmem_page_address(const struct page *page)
1817{
1818 return page_to_virt(page);
1819}
1820
1821#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1822#define HASHED_PAGE_VIRTUAL
1823#endif
1824
1825#if defined(WANT_PAGE_VIRTUAL)
1826static inline void *page_address(const struct page *page)
1827{
1828 return page->virtual;
1829}
1830static inline void set_page_address(struct page *page, void *address)
1831{
1832 page->virtual = address;
1833}
1834#define page_address_init() do { } while(0)
1835#endif
1836
1837#if defined(HASHED_PAGE_VIRTUAL)
1838void *page_address(const struct page *page);
1839void set_page_address(struct page *page, void *virtual);
1840void page_address_init(void);
1841#endif
1842
1843#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1844#define page_address(page) lowmem_page_address(page)
1845#define set_page_address(page, address) do { } while(0)
1846#define page_address_init() do { } while(0)
1847#endif
1848
1849static inline void *folio_address(const struct folio *folio)
1850{
1851 return page_address(&folio->page);
1852}
1853
1854extern void *page_rmapping(struct page *page);
1855extern pgoff_t __page_file_index(struct page *page);
1856
1857/*
1858 * Return the pagecache index of the passed page. Regular pagecache pages
1859 * use ->index whereas swapcache pages use swp_offset(->private)
1860 */
1861static inline pgoff_t page_index(struct page *page)
1862{
1863 if (unlikely(PageSwapCache(page)))
1864 return __page_file_index(page);
1865 return page->index;
1866}
1867
1868/*
1869 * Return true only if the page has been allocated with
1870 * ALLOC_NO_WATERMARKS and the low watermark was not
1871 * met implying that the system is under some pressure.
1872 */
1873static inline bool page_is_pfmemalloc(const struct page *page)
1874{
1875 /*
1876 * lru.next has bit 1 set if the page is allocated from the
1877 * pfmemalloc reserves. Callers may simply overwrite it if
1878 * they do not need to preserve that information.
1879 */
1880 return (uintptr_t)page->lru.next & BIT(1);
1881}
1882
1883/*
1884 * Only to be called by the page allocator on a freshly allocated
1885 * page.
1886 */
1887static inline void set_page_pfmemalloc(struct page *page)
1888{
1889 page->lru.next = (void *)BIT(1);
1890}
1891
1892static inline void clear_page_pfmemalloc(struct page *page)
1893{
1894 page->lru.next = NULL;
1895}
1896
1897/*
1898 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1899 */
1900extern void pagefault_out_of_memory(void);
1901
1902#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1903#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1904#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1905
1906/*
1907 * Flags passed to show_mem() and show_free_areas() to suppress output in
1908 * various contexts.
1909 */
1910#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1911
1912extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1913static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1914{
1915 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1916}
1917
1918/*
1919 * Parameter block passed down to zap_pte_range in exceptional cases.
1920 */
1921struct zap_details {
1922 struct folio *single_folio; /* Locked folio to be unmapped */
1923 bool even_cows; /* Zap COWed private pages too? */
1924 zap_flags_t zap_flags; /* Extra flags for zapping */
1925};
1926
1927/*
1928 * Whether to drop the pte markers, for example, the uffd-wp information for
1929 * file-backed memory. This should only be specified when we will completely
1930 * drop the page in the mm, either by truncation or unmapping of the vma. By
1931 * default, the flag is not set.
1932 */
1933#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
1934/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1935#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
1936
1937#ifdef CONFIG_MMU
1938extern bool can_do_mlock(void);
1939#else
1940static inline bool can_do_mlock(void) { return false; }
1941#endif
1942extern int user_shm_lock(size_t, struct ucounts *);
1943extern void user_shm_unlock(size_t, struct ucounts *);
1944
1945struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1946 pte_t pte);
1947struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1948 pmd_t pmd);
1949
1950void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1951 unsigned long size);
1952void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1953 unsigned long size);
1954void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1955 unsigned long size, struct zap_details *details);
1956void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1957 struct vm_area_struct *start_vma, unsigned long start,
1958 unsigned long end);
1959
1960struct mmu_notifier_range;
1961
1962void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1963 unsigned long end, unsigned long floor, unsigned long ceiling);
1964int
1965copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1966int follow_pte(struct mm_struct *mm, unsigned long address,
1967 pte_t **ptepp, spinlock_t **ptlp);
1968int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1969 unsigned long *pfn);
1970int follow_phys(struct vm_area_struct *vma, unsigned long address,
1971 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1972int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1973 void *buf, int len, int write);
1974
1975extern void truncate_pagecache(struct inode *inode, loff_t new);
1976extern void truncate_setsize(struct inode *inode, loff_t newsize);
1977void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1978void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1979int generic_error_remove_page(struct address_space *mapping, struct page *page);
1980
1981#ifdef CONFIG_MMU
1982extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1983 unsigned long address, unsigned int flags,
1984 struct pt_regs *regs);
1985extern int fixup_user_fault(struct mm_struct *mm,
1986 unsigned long address, unsigned int fault_flags,
1987 bool *unlocked);
1988void unmap_mapping_pages(struct address_space *mapping,
1989 pgoff_t start, pgoff_t nr, bool even_cows);
1990void unmap_mapping_range(struct address_space *mapping,
1991 loff_t const holebegin, loff_t const holelen, int even_cows);
1992#else
1993static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1994 unsigned long address, unsigned int flags,
1995 struct pt_regs *regs)
1996{
1997 /* should never happen if there's no MMU */
1998 BUG();
1999 return VM_FAULT_SIGBUS;
2000}
2001static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2002 unsigned int fault_flags, bool *unlocked)
2003{
2004 /* should never happen if there's no MMU */
2005 BUG();
2006 return -EFAULT;
2007}
2008static inline void unmap_mapping_pages(struct address_space *mapping,
2009 pgoff_t start, pgoff_t nr, bool even_cows) { }
2010static inline void unmap_mapping_range(struct address_space *mapping,
2011 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2012#endif
2013
2014static inline void unmap_shared_mapping_range(struct address_space *mapping,
2015 loff_t const holebegin, loff_t const holelen)
2016{
2017 unmap_mapping_range(mapping, holebegin, holelen, 0);
2018}
2019
2020extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2021 void *buf, int len, unsigned int gup_flags);
2022extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2023 void *buf, int len, unsigned int gup_flags);
2024extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2025 void *buf, int len, unsigned int gup_flags);
2026
2027long get_user_pages_remote(struct mm_struct *mm,
2028 unsigned long start, unsigned long nr_pages,
2029 unsigned int gup_flags, struct page **pages,
2030 struct vm_area_struct **vmas, int *locked);
2031long pin_user_pages_remote(struct mm_struct *mm,
2032 unsigned long start, unsigned long nr_pages,
2033 unsigned int gup_flags, struct page **pages,
2034 struct vm_area_struct **vmas, int *locked);
2035long get_user_pages(unsigned long start, unsigned long nr_pages,
2036 unsigned int gup_flags, struct page **pages,
2037 struct vm_area_struct **vmas);
2038long pin_user_pages(unsigned long start, unsigned long nr_pages,
2039 unsigned int gup_flags, struct page **pages,
2040 struct vm_area_struct **vmas);
2041long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2042 struct page **pages, unsigned int gup_flags);
2043long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2044 struct page **pages, unsigned int gup_flags);
2045
2046int get_user_pages_fast(unsigned long start, int nr_pages,
2047 unsigned int gup_flags, struct page **pages);
2048int pin_user_pages_fast(unsigned long start, int nr_pages,
2049 unsigned int gup_flags, struct page **pages);
2050
2051int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2052int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2053 struct task_struct *task, bool bypass_rlim);
2054
2055struct kvec;
2056int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2057 struct page **pages);
2058struct page *get_dump_page(unsigned long addr);
2059
2060bool folio_mark_dirty(struct folio *folio);
2061bool set_page_dirty(struct page *page);
2062int set_page_dirty_lock(struct page *page);
2063
2064int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2065
2066extern unsigned long move_page_tables(struct vm_area_struct *vma,
2067 unsigned long old_addr, struct vm_area_struct *new_vma,
2068 unsigned long new_addr, unsigned long len,
2069 bool need_rmap_locks);
2070
2071/*
2072 * Flags used by change_protection(). For now we make it a bitmap so
2073 * that we can pass in multiple flags just like parameters. However
2074 * for now all the callers are only use one of the flags at the same
2075 * time.
2076 */
2077/*
2078 * Whether we should manually check if we can map individual PTEs writable,
2079 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2080 * PTEs automatically in a writable mapping.
2081 */
2082#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2083/* Whether this protection change is for NUMA hints */
2084#define MM_CP_PROT_NUMA (1UL << 1)
2085/* Whether this change is for write protecting */
2086#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2087#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2088#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2089 MM_CP_UFFD_WP_RESOLVE)
2090
2091int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2092static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2093{
2094 /*
2095 * We want to check manually if we can change individual PTEs writable
2096 * if we can't do that automatically for all PTEs in a mapping. For
2097 * private mappings, that's always the case when we have write
2098 * permissions as we properly have to handle COW.
2099 */
2100 if (vma->vm_flags & VM_SHARED)
2101 return vma_wants_writenotify(vma, vma->vm_page_prot);
2102 return !!(vma->vm_flags & VM_WRITE);
2103
2104}
2105bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2106 pte_t pte);
2107extern unsigned long change_protection(struct mmu_gather *tlb,
2108 struct vm_area_struct *vma, unsigned long start,
2109 unsigned long end, pgprot_t newprot,
2110 unsigned long cp_flags);
2111extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2112 struct vm_area_struct **pprev, unsigned long start,
2113 unsigned long end, unsigned long newflags);
2114
2115/*
2116 * doesn't attempt to fault and will return short.
2117 */
2118int get_user_pages_fast_only(unsigned long start, int nr_pages,
2119 unsigned int gup_flags, struct page **pages);
2120int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2121 unsigned int gup_flags, struct page **pages);
2122
2123static inline bool get_user_page_fast_only(unsigned long addr,
2124 unsigned int gup_flags, struct page **pagep)
2125{
2126 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2127}
2128/*
2129 * per-process(per-mm_struct) statistics.
2130 */
2131static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2132{
2133 return percpu_counter_read_positive(&mm->rss_stat[member]);
2134}
2135
2136void mm_trace_rss_stat(struct mm_struct *mm, int member);
2137
2138static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2139{
2140 percpu_counter_add(&mm->rss_stat[member], value);
2141
2142 mm_trace_rss_stat(mm, member);
2143}
2144
2145static inline void inc_mm_counter(struct mm_struct *mm, int member)
2146{
2147 percpu_counter_inc(&mm->rss_stat[member]);
2148
2149 mm_trace_rss_stat(mm, member);
2150}
2151
2152static inline void dec_mm_counter(struct mm_struct *mm, int member)
2153{
2154 percpu_counter_dec(&mm->rss_stat[member]);
2155
2156 mm_trace_rss_stat(mm, member);
2157}
2158
2159/* Optimized variant when page is already known not to be PageAnon */
2160static inline int mm_counter_file(struct page *page)
2161{
2162 if (PageSwapBacked(page))
2163 return MM_SHMEMPAGES;
2164 return MM_FILEPAGES;
2165}
2166
2167static inline int mm_counter(struct page *page)
2168{
2169 if (PageAnon(page))
2170 return MM_ANONPAGES;
2171 return mm_counter_file(page);
2172}
2173
2174static inline unsigned long get_mm_rss(struct mm_struct *mm)
2175{
2176 return get_mm_counter(mm, MM_FILEPAGES) +
2177 get_mm_counter(mm, MM_ANONPAGES) +
2178 get_mm_counter(mm, MM_SHMEMPAGES);
2179}
2180
2181static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2182{
2183 return max(mm->hiwater_rss, get_mm_rss(mm));
2184}
2185
2186static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2187{
2188 return max(mm->hiwater_vm, mm->total_vm);
2189}
2190
2191static inline void update_hiwater_rss(struct mm_struct *mm)
2192{
2193 unsigned long _rss = get_mm_rss(mm);
2194
2195 if ((mm)->hiwater_rss < _rss)
2196 (mm)->hiwater_rss = _rss;
2197}
2198
2199static inline void update_hiwater_vm(struct mm_struct *mm)
2200{
2201 if (mm->hiwater_vm < mm->total_vm)
2202 mm->hiwater_vm = mm->total_vm;
2203}
2204
2205static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2206{
2207 mm->hiwater_rss = get_mm_rss(mm);
2208}
2209
2210static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2211 struct mm_struct *mm)
2212{
2213 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2214
2215 if (*maxrss < hiwater_rss)
2216 *maxrss = hiwater_rss;
2217}
2218
2219#if defined(SPLIT_RSS_COUNTING)
2220void sync_mm_rss(struct mm_struct *mm);
2221#else
2222static inline void sync_mm_rss(struct mm_struct *mm)
2223{
2224}
2225#endif
2226
2227#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2228static inline int pte_special(pte_t pte)
2229{
2230 return 0;
2231}
2232
2233static inline pte_t pte_mkspecial(pte_t pte)
2234{
2235 return pte;
2236}
2237#endif
2238
2239#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2240static inline int pte_devmap(pte_t pte)
2241{
2242 return 0;
2243}
2244#endif
2245
2246extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2247 spinlock_t **ptl);
2248static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2249 spinlock_t **ptl)
2250{
2251 pte_t *ptep;
2252 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2253 return ptep;
2254}
2255
2256#ifdef __PAGETABLE_P4D_FOLDED
2257static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2258 unsigned long address)
2259{
2260 return 0;
2261}
2262#else
2263int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2264#endif
2265
2266#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2267static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2268 unsigned long address)
2269{
2270 return 0;
2271}
2272static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2273static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2274
2275#else
2276int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2277
2278static inline void mm_inc_nr_puds(struct mm_struct *mm)
2279{
2280 if (mm_pud_folded(mm))
2281 return;
2282 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2283}
2284
2285static inline void mm_dec_nr_puds(struct mm_struct *mm)
2286{
2287 if (mm_pud_folded(mm))
2288 return;
2289 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2290}
2291#endif
2292
2293#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2294static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2295 unsigned long address)
2296{
2297 return 0;
2298}
2299
2300static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2301static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2302
2303#else
2304int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2305
2306static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2307{
2308 if (mm_pmd_folded(mm))
2309 return;
2310 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2311}
2312
2313static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2314{
2315 if (mm_pmd_folded(mm))
2316 return;
2317 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2318}
2319#endif
2320
2321#ifdef CONFIG_MMU
2322static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2323{
2324 atomic_long_set(&mm->pgtables_bytes, 0);
2325}
2326
2327static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2328{
2329 return atomic_long_read(&mm->pgtables_bytes);
2330}
2331
2332static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2333{
2334 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2335}
2336
2337static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2338{
2339 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2340}
2341#else
2342
2343static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2344static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2345{
2346 return 0;
2347}
2348
2349static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2350static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2351#endif
2352
2353int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2354int __pte_alloc_kernel(pmd_t *pmd);
2355
2356#if defined(CONFIG_MMU)
2357
2358static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2359 unsigned long address)
2360{
2361 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2362 NULL : p4d_offset(pgd, address);
2363}
2364
2365static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2366 unsigned long address)
2367{
2368 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2369 NULL : pud_offset(p4d, address);
2370}
2371
2372static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2373{
2374 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2375 NULL: pmd_offset(pud, address);
2376}
2377#endif /* CONFIG_MMU */
2378
2379#if USE_SPLIT_PTE_PTLOCKS
2380#if ALLOC_SPLIT_PTLOCKS
2381void __init ptlock_cache_init(void);
2382extern bool ptlock_alloc(struct page *page);
2383extern void ptlock_free(struct page *page);
2384
2385static inline spinlock_t *ptlock_ptr(struct page *page)
2386{
2387 return page->ptl;
2388}
2389#else /* ALLOC_SPLIT_PTLOCKS */
2390static inline void ptlock_cache_init(void)
2391{
2392}
2393
2394static inline bool ptlock_alloc(struct page *page)
2395{
2396 return true;
2397}
2398
2399static inline void ptlock_free(struct page *page)
2400{
2401}
2402
2403static inline spinlock_t *ptlock_ptr(struct page *page)
2404{
2405 return &page->ptl;
2406}
2407#endif /* ALLOC_SPLIT_PTLOCKS */
2408
2409static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2410{
2411 return ptlock_ptr(pmd_page(*pmd));
2412}
2413
2414static inline bool ptlock_init(struct page *page)
2415{
2416 /*
2417 * prep_new_page() initialize page->private (and therefore page->ptl)
2418 * with 0. Make sure nobody took it in use in between.
2419 *
2420 * It can happen if arch try to use slab for page table allocation:
2421 * slab code uses page->slab_cache, which share storage with page->ptl.
2422 */
2423 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2424 if (!ptlock_alloc(page))
2425 return false;
2426 spin_lock_init(ptlock_ptr(page));
2427 return true;
2428}
2429
2430#else /* !USE_SPLIT_PTE_PTLOCKS */
2431/*
2432 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2433 */
2434static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2435{
2436 return &mm->page_table_lock;
2437}
2438static inline void ptlock_cache_init(void) {}
2439static inline bool ptlock_init(struct page *page) { return true; }
2440static inline void ptlock_free(struct page *page) {}
2441#endif /* USE_SPLIT_PTE_PTLOCKS */
2442
2443static inline void pgtable_init(void)
2444{
2445 ptlock_cache_init();
2446 pgtable_cache_init();
2447}
2448
2449static inline bool pgtable_pte_page_ctor(struct page *page)
2450{
2451 if (!ptlock_init(page))
2452 return false;
2453 __SetPageTable(page);
2454 inc_lruvec_page_state(page, NR_PAGETABLE);
2455 return true;
2456}
2457
2458static inline void pgtable_pte_page_dtor(struct page *page)
2459{
2460 ptlock_free(page);
2461 __ClearPageTable(page);
2462 dec_lruvec_page_state(page, NR_PAGETABLE);
2463}
2464
2465#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2466({ \
2467 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2468 pte_t *__pte = pte_offset_map(pmd, address); \
2469 *(ptlp) = __ptl; \
2470 spin_lock(__ptl); \
2471 __pte; \
2472})
2473
2474#define pte_unmap_unlock(pte, ptl) do { \
2475 spin_unlock(ptl); \
2476 pte_unmap(pte); \
2477} while (0)
2478
2479#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2480
2481#define pte_alloc_map(mm, pmd, address) \
2482 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2483
2484#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2485 (pte_alloc(mm, pmd) ? \
2486 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2487
2488#define pte_alloc_kernel(pmd, address) \
2489 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2490 NULL: pte_offset_kernel(pmd, address))
2491
2492#if USE_SPLIT_PMD_PTLOCKS
2493
2494static struct page *pmd_to_page(pmd_t *pmd)
2495{
2496 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2497 return virt_to_page((void *)((unsigned long) pmd & mask));
2498}
2499
2500static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2501{
2502 return ptlock_ptr(pmd_to_page(pmd));
2503}
2504
2505static inline bool pmd_ptlock_init(struct page *page)
2506{
2507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2508 page->pmd_huge_pte = NULL;
2509#endif
2510 return ptlock_init(page);
2511}
2512
2513static inline void pmd_ptlock_free(struct page *page)
2514{
2515#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2516 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2517#endif
2518 ptlock_free(page);
2519}
2520
2521#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2522
2523#else
2524
2525static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2526{
2527 return &mm->page_table_lock;
2528}
2529
2530static inline bool pmd_ptlock_init(struct page *page) { return true; }
2531static inline void pmd_ptlock_free(struct page *page) {}
2532
2533#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2534
2535#endif
2536
2537static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2538{
2539 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2540 spin_lock(ptl);
2541 return ptl;
2542}
2543
2544static inline bool pgtable_pmd_page_ctor(struct page *page)
2545{
2546 if (!pmd_ptlock_init(page))
2547 return false;
2548 __SetPageTable(page);
2549 inc_lruvec_page_state(page, NR_PAGETABLE);
2550 return true;
2551}
2552
2553static inline void pgtable_pmd_page_dtor(struct page *page)
2554{
2555 pmd_ptlock_free(page);
2556 __ClearPageTable(page);
2557 dec_lruvec_page_state(page, NR_PAGETABLE);
2558}
2559
2560/*
2561 * No scalability reason to split PUD locks yet, but follow the same pattern
2562 * as the PMD locks to make it easier if we decide to. The VM should not be
2563 * considered ready to switch to split PUD locks yet; there may be places
2564 * which need to be converted from page_table_lock.
2565 */
2566static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2567{
2568 return &mm->page_table_lock;
2569}
2570
2571static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2572{
2573 spinlock_t *ptl = pud_lockptr(mm, pud);
2574
2575 spin_lock(ptl);
2576 return ptl;
2577}
2578
2579extern void __init pagecache_init(void);
2580extern void free_initmem(void);
2581
2582/*
2583 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2584 * into the buddy system. The freed pages will be poisoned with pattern
2585 * "poison" if it's within range [0, UCHAR_MAX].
2586 * Return pages freed into the buddy system.
2587 */
2588extern unsigned long free_reserved_area(void *start, void *end,
2589 int poison, const char *s);
2590
2591extern void adjust_managed_page_count(struct page *page, long count);
2592extern void mem_init_print_info(void);
2593
2594extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2595
2596/* Free the reserved page into the buddy system, so it gets managed. */
2597static inline void free_reserved_page(struct page *page)
2598{
2599 ClearPageReserved(page);
2600 init_page_count(page);
2601 __free_page(page);
2602 adjust_managed_page_count(page, 1);
2603}
2604#define free_highmem_page(page) free_reserved_page(page)
2605
2606static inline void mark_page_reserved(struct page *page)
2607{
2608 SetPageReserved(page);
2609 adjust_managed_page_count(page, -1);
2610}
2611
2612/*
2613 * Default method to free all the __init memory into the buddy system.
2614 * The freed pages will be poisoned with pattern "poison" if it's within
2615 * range [0, UCHAR_MAX].
2616 * Return pages freed into the buddy system.
2617 */
2618static inline unsigned long free_initmem_default(int poison)
2619{
2620 extern char __init_begin[], __init_end[];
2621
2622 return free_reserved_area(&__init_begin, &__init_end,
2623 poison, "unused kernel image (initmem)");
2624}
2625
2626static inline unsigned long get_num_physpages(void)
2627{
2628 int nid;
2629 unsigned long phys_pages = 0;
2630
2631 for_each_online_node(nid)
2632 phys_pages += node_present_pages(nid);
2633
2634 return phys_pages;
2635}
2636
2637/*
2638 * Using memblock node mappings, an architecture may initialise its
2639 * zones, allocate the backing mem_map and account for memory holes in an
2640 * architecture independent manner.
2641 *
2642 * An architecture is expected to register range of page frames backed by
2643 * physical memory with memblock_add[_node]() before calling
2644 * free_area_init() passing in the PFN each zone ends at. At a basic
2645 * usage, an architecture is expected to do something like
2646 *
2647 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2648 * max_highmem_pfn};
2649 * for_each_valid_physical_page_range()
2650 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2651 * free_area_init(max_zone_pfns);
2652 */
2653void free_area_init(unsigned long *max_zone_pfn);
2654unsigned long node_map_pfn_alignment(void);
2655unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2656 unsigned long end_pfn);
2657extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2658 unsigned long end_pfn);
2659extern void get_pfn_range_for_nid(unsigned int nid,
2660 unsigned long *start_pfn, unsigned long *end_pfn);
2661
2662#ifndef CONFIG_NUMA
2663static inline int early_pfn_to_nid(unsigned long pfn)
2664{
2665 return 0;
2666}
2667#else
2668/* please see mm/page_alloc.c */
2669extern int __meminit early_pfn_to_nid(unsigned long pfn);
2670#endif
2671
2672extern void set_dma_reserve(unsigned long new_dma_reserve);
2673extern void memmap_init_range(unsigned long, int, unsigned long,
2674 unsigned long, unsigned long, enum meminit_context,
2675 struct vmem_altmap *, int migratetype);
2676extern void setup_per_zone_wmarks(void);
2677extern void calculate_min_free_kbytes(void);
2678extern int __meminit init_per_zone_wmark_min(void);
2679extern void mem_init(void);
2680extern void __init mmap_init(void);
2681
2682extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2683static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2684{
2685 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2686}
2687extern long si_mem_available(void);
2688extern void si_meminfo(struct sysinfo * val);
2689extern void si_meminfo_node(struct sysinfo *val, int nid);
2690#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2691extern unsigned long arch_reserved_kernel_pages(void);
2692#endif
2693
2694extern __printf(3, 4)
2695void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2696
2697extern void setup_per_cpu_pageset(void);
2698
2699/* page_alloc.c */
2700extern int min_free_kbytes;
2701extern int watermark_boost_factor;
2702extern int watermark_scale_factor;
2703extern bool arch_has_descending_max_zone_pfns(void);
2704
2705/* nommu.c */
2706extern atomic_long_t mmap_pages_allocated;
2707extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2708
2709/* interval_tree.c */
2710void vma_interval_tree_insert(struct vm_area_struct *node,
2711 struct rb_root_cached *root);
2712void vma_interval_tree_insert_after(struct vm_area_struct *node,
2713 struct vm_area_struct *prev,
2714 struct rb_root_cached *root);
2715void vma_interval_tree_remove(struct vm_area_struct *node,
2716 struct rb_root_cached *root);
2717struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2718 unsigned long start, unsigned long last);
2719struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2720 unsigned long start, unsigned long last);
2721
2722#define vma_interval_tree_foreach(vma, root, start, last) \
2723 for (vma = vma_interval_tree_iter_first(root, start, last); \
2724 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2725
2726void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2727 struct rb_root_cached *root);
2728void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2729 struct rb_root_cached *root);
2730struct anon_vma_chain *
2731anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2732 unsigned long start, unsigned long last);
2733struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2734 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2735#ifdef CONFIG_DEBUG_VM_RB
2736void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2737#endif
2738
2739#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2740 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2741 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2742
2743/* mmap.c */
2744extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2745extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2746 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2747 struct vm_area_struct *expand);
2748static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2749 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2750{
2751 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2752}
2753extern struct vm_area_struct *vma_merge(struct mm_struct *,
2754 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2755 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2756 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2757extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2758extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2759 unsigned long addr, int new_below);
2760extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2761 unsigned long addr, int new_below);
2762extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2763extern void unlink_file_vma(struct vm_area_struct *);
2764extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2765 unsigned long addr, unsigned long len, pgoff_t pgoff,
2766 bool *need_rmap_locks);
2767extern void exit_mmap(struct mm_struct *);
2768
2769void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2770void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2771
2772static inline int check_data_rlimit(unsigned long rlim,
2773 unsigned long new,
2774 unsigned long start,
2775 unsigned long end_data,
2776 unsigned long start_data)
2777{
2778 if (rlim < RLIM_INFINITY) {
2779 if (((new - start) + (end_data - start_data)) > rlim)
2780 return -ENOSPC;
2781 }
2782
2783 return 0;
2784}
2785
2786extern int mm_take_all_locks(struct mm_struct *mm);
2787extern void mm_drop_all_locks(struct mm_struct *mm);
2788
2789extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2790extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2791extern struct file *get_mm_exe_file(struct mm_struct *mm);
2792extern struct file *get_task_exe_file(struct task_struct *task);
2793
2794extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2795extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2796
2797extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2798 const struct vm_special_mapping *sm);
2799extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2800 unsigned long addr, unsigned long len,
2801 unsigned long flags,
2802 const struct vm_special_mapping *spec);
2803/* This is an obsolete alternative to _install_special_mapping. */
2804extern int install_special_mapping(struct mm_struct *mm,
2805 unsigned long addr, unsigned long len,
2806 unsigned long flags, struct page **pages);
2807
2808unsigned long randomize_stack_top(unsigned long stack_top);
2809unsigned long randomize_page(unsigned long start, unsigned long range);
2810
2811extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2812
2813extern unsigned long mmap_region(struct file *file, unsigned long addr,
2814 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2815 struct list_head *uf);
2816extern unsigned long do_mmap(struct file *file, unsigned long addr,
2817 unsigned long len, unsigned long prot, unsigned long flags,
2818 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2819extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2820 unsigned long start, size_t len, struct list_head *uf,
2821 bool downgrade);
2822extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2823 struct list_head *uf);
2824extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2825
2826#ifdef CONFIG_MMU
2827extern int __mm_populate(unsigned long addr, unsigned long len,
2828 int ignore_errors);
2829static inline void mm_populate(unsigned long addr, unsigned long len)
2830{
2831 /* Ignore errors */
2832 (void) __mm_populate(addr, len, 1);
2833}
2834#else
2835static inline void mm_populate(unsigned long addr, unsigned long len) {}
2836#endif
2837
2838/* These take the mm semaphore themselves */
2839extern int __must_check vm_brk(unsigned long, unsigned long);
2840extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2841extern int vm_munmap(unsigned long, size_t);
2842extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2843 unsigned long, unsigned long,
2844 unsigned long, unsigned long);
2845
2846struct vm_unmapped_area_info {
2847#define VM_UNMAPPED_AREA_TOPDOWN 1
2848 unsigned long flags;
2849 unsigned long length;
2850 unsigned long low_limit;
2851 unsigned long high_limit;
2852 unsigned long align_mask;
2853 unsigned long align_offset;
2854};
2855
2856extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2857
2858/* truncate.c */
2859extern void truncate_inode_pages(struct address_space *, loff_t);
2860extern void truncate_inode_pages_range(struct address_space *,
2861 loff_t lstart, loff_t lend);
2862extern void truncate_inode_pages_final(struct address_space *);
2863
2864/* generic vm_area_ops exported for stackable file systems */
2865extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2866extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2867 pgoff_t start_pgoff, pgoff_t end_pgoff);
2868extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2869
2870extern unsigned long stack_guard_gap;
2871/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2872extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2873
2874/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2875extern int expand_downwards(struct vm_area_struct *vma,
2876 unsigned long address);
2877#if VM_GROWSUP
2878extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2879#else
2880 #define expand_upwards(vma, address) (0)
2881#endif
2882
2883/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2884extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2885extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2886 struct vm_area_struct **pprev);
2887
2888/*
2889 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2890 * NULL if none. Assume start_addr < end_addr.
2891 */
2892struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2893 unsigned long start_addr, unsigned long end_addr);
2894
2895/**
2896 * vma_lookup() - Find a VMA at a specific address
2897 * @mm: The process address space.
2898 * @addr: The user address.
2899 *
2900 * Return: The vm_area_struct at the given address, %NULL otherwise.
2901 */
2902static inline
2903struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2904{
2905 return mtree_load(&mm->mm_mt, addr);
2906}
2907
2908static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2909{
2910 unsigned long vm_start = vma->vm_start;
2911
2912 if (vma->vm_flags & VM_GROWSDOWN) {
2913 vm_start -= stack_guard_gap;
2914 if (vm_start > vma->vm_start)
2915 vm_start = 0;
2916 }
2917 return vm_start;
2918}
2919
2920static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2921{
2922 unsigned long vm_end = vma->vm_end;
2923
2924 if (vma->vm_flags & VM_GROWSUP) {
2925 vm_end += stack_guard_gap;
2926 if (vm_end < vma->vm_end)
2927 vm_end = -PAGE_SIZE;
2928 }
2929 return vm_end;
2930}
2931
2932static inline unsigned long vma_pages(struct vm_area_struct *vma)
2933{
2934 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2935}
2936
2937/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2938static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2939 unsigned long vm_start, unsigned long vm_end)
2940{
2941 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
2942
2943 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2944 vma = NULL;
2945
2946 return vma;
2947}
2948
2949static inline bool range_in_vma(struct vm_area_struct *vma,
2950 unsigned long start, unsigned long end)
2951{
2952 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2953}
2954
2955#ifdef CONFIG_MMU
2956pgprot_t vm_get_page_prot(unsigned long vm_flags);
2957void vma_set_page_prot(struct vm_area_struct *vma);
2958#else
2959static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2960{
2961 return __pgprot(0);
2962}
2963static inline void vma_set_page_prot(struct vm_area_struct *vma)
2964{
2965 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2966}
2967#endif
2968
2969void vma_set_file(struct vm_area_struct *vma, struct file *file);
2970
2971#ifdef CONFIG_NUMA_BALANCING
2972unsigned long change_prot_numa(struct vm_area_struct *vma,
2973 unsigned long start, unsigned long end);
2974#endif
2975
2976struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2977int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2978 unsigned long pfn, unsigned long size, pgprot_t);
2979int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2980 unsigned long pfn, unsigned long size, pgprot_t prot);
2981int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2982int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2983 struct page **pages, unsigned long *num);
2984int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2985 unsigned long num);
2986int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2987 unsigned long num);
2988vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2989 unsigned long pfn);
2990vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2991 unsigned long pfn, pgprot_t pgprot);
2992vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2993 pfn_t pfn);
2994vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2995 pfn_t pfn, pgprot_t pgprot);
2996vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2997 unsigned long addr, pfn_t pfn);
2998int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2999
3000static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3001 unsigned long addr, struct page *page)
3002{
3003 int err = vm_insert_page(vma, addr, page);
3004
3005 if (err == -ENOMEM)
3006 return VM_FAULT_OOM;
3007 if (err < 0 && err != -EBUSY)
3008 return VM_FAULT_SIGBUS;
3009
3010 return VM_FAULT_NOPAGE;
3011}
3012
3013#ifndef io_remap_pfn_range
3014static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3015 unsigned long addr, unsigned long pfn,
3016 unsigned long size, pgprot_t prot)
3017{
3018 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3019}
3020#endif
3021
3022static inline vm_fault_t vmf_error(int err)
3023{
3024 if (err == -ENOMEM)
3025 return VM_FAULT_OOM;
3026 return VM_FAULT_SIGBUS;
3027}
3028
3029struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3030 unsigned int foll_flags);
3031
3032#define FOLL_WRITE 0x01 /* check pte is writable */
3033#define FOLL_TOUCH 0x02 /* mark page accessed */
3034#define FOLL_GET 0x04 /* do get_page on page */
3035#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
3036#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
3037#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
3038 * and return without waiting upon it */
3039#define FOLL_NOFAULT 0x80 /* do not fault in pages */
3040#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
3041#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
3042#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
3043#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
3044#define FOLL_ANON 0x8000 /* don't do file mappings */
3045#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
3046#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
3047#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
3048#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
3049
3050/*
3051 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
3052 * other. Here is what they mean, and how to use them:
3053 *
3054 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
3055 * period _often_ under userspace control. This is in contrast to
3056 * iov_iter_get_pages(), whose usages are transient.
3057 *
3058 * FIXME: For pages which are part of a filesystem, mappings are subject to the
3059 * lifetime enforced by the filesystem and we need guarantees that longterm
3060 * users like RDMA and V4L2 only establish mappings which coordinate usage with
3061 * the filesystem. Ideas for this coordination include revoking the longterm
3062 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
3063 * added after the problem with filesystems was found FS DAX VMAs are
3064 * specifically failed. Filesystem pages are still subject to bugs and use of
3065 * FOLL_LONGTERM should be avoided on those pages.
3066 *
3067 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3068 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3069 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3070 * is due to an incompatibility with the FS DAX check and
3071 * FAULT_FLAG_ALLOW_RETRY.
3072 *
3073 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3074 * that region. And so, CMA attempts to migrate the page before pinning, when
3075 * FOLL_LONGTERM is specified.
3076 *
3077 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3078 * but an additional pin counting system) will be invoked. This is intended for
3079 * anything that gets a page reference and then touches page data (for example,
3080 * Direct IO). This lets the filesystem know that some non-file-system entity is
3081 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3082 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3083 * a call to unpin_user_page().
3084 *
3085 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3086 * and separate refcounting mechanisms, however, and that means that each has
3087 * its own acquire and release mechanisms:
3088 *
3089 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3090 *
3091 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3092 *
3093 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3094 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3095 * calls applied to them, and that's perfectly OK. This is a constraint on the
3096 * callers, not on the pages.)
3097 *
3098 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3099 * directly by the caller. That's in order to help avoid mismatches when
3100 * releasing pages: get_user_pages*() pages must be released via put_page(),
3101 * while pin_user_pages*() pages must be released via unpin_user_page().
3102 *
3103 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3104 */
3105
3106static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3107{
3108 if (vm_fault & VM_FAULT_OOM)
3109 return -ENOMEM;
3110 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3111 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3112 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3113 return -EFAULT;
3114 return 0;
3115}
3116
3117/*
3118 * Indicates for which pages that are write-protected in the page table,
3119 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3120 * GUP pin will remain consistent with the pages mapped into the page tables
3121 * of the MM.
3122 *
3123 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3124 * PageAnonExclusive() has to protect against concurrent GUP:
3125 * * Ordinary GUP: Using the PT lock
3126 * * GUP-fast and fork(): mm->write_protect_seq
3127 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3128 * page_try_share_anon_rmap()
3129 *
3130 * Must be called with the (sub)page that's actually referenced via the
3131 * page table entry, which might not necessarily be the head page for a
3132 * PTE-mapped THP.
3133 */
3134static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3135{
3136 /*
3137 * FOLL_WRITE is implicitly handled correctly as the page table entry
3138 * has to be writable -- and if it references (part of) an anonymous
3139 * folio, that part is required to be marked exclusive.
3140 */
3141 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3142 return false;
3143 /*
3144 * Note: PageAnon(page) is stable until the page is actually getting
3145 * freed.
3146 */
3147 if (!PageAnon(page))
3148 return false;
3149
3150 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3151 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3152 smp_rmb();
3153
3154 /*
3155 * Note that PageKsm() pages cannot be exclusive, and consequently,
3156 * cannot get pinned.
3157 */
3158 return !PageAnonExclusive(page);
3159}
3160
3161/*
3162 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3163 * a (NUMA hinting) fault is required.
3164 */
3165static inline bool gup_can_follow_protnone(unsigned int flags)
3166{
3167 /*
3168 * FOLL_FORCE has to be able to make progress even if the VMA is
3169 * inaccessible. Further, FOLL_FORCE access usually does not represent
3170 * application behaviour and we should avoid triggering NUMA hinting
3171 * faults.
3172 */
3173 return flags & FOLL_FORCE;
3174}
3175
3176typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3177extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3178 unsigned long size, pte_fn_t fn, void *data);
3179extern int apply_to_existing_page_range(struct mm_struct *mm,
3180 unsigned long address, unsigned long size,
3181 pte_fn_t fn, void *data);
3182
3183extern void __init init_mem_debugging_and_hardening(void);
3184#ifdef CONFIG_PAGE_POISONING
3185extern void __kernel_poison_pages(struct page *page, int numpages);
3186extern void __kernel_unpoison_pages(struct page *page, int numpages);
3187extern bool _page_poisoning_enabled_early;
3188DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3189static inline bool page_poisoning_enabled(void)
3190{
3191 return _page_poisoning_enabled_early;
3192}
3193/*
3194 * For use in fast paths after init_mem_debugging() has run, or when a
3195 * false negative result is not harmful when called too early.
3196 */
3197static inline bool page_poisoning_enabled_static(void)
3198{
3199 return static_branch_unlikely(&_page_poisoning_enabled);
3200}
3201static inline void kernel_poison_pages(struct page *page, int numpages)
3202{
3203 if (page_poisoning_enabled_static())
3204 __kernel_poison_pages(page, numpages);
3205}
3206static inline void kernel_unpoison_pages(struct page *page, int numpages)
3207{
3208 if (page_poisoning_enabled_static())
3209 __kernel_unpoison_pages(page, numpages);
3210}
3211#else
3212static inline bool page_poisoning_enabled(void) { return false; }
3213static inline bool page_poisoning_enabled_static(void) { return false; }
3214static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3215static inline void kernel_poison_pages(struct page *page, int numpages) { }
3216static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3217#endif
3218
3219DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3220static inline bool want_init_on_alloc(gfp_t flags)
3221{
3222 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3223 &init_on_alloc))
3224 return true;
3225 return flags & __GFP_ZERO;
3226}
3227
3228DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3229static inline bool want_init_on_free(void)
3230{
3231 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3232 &init_on_free);
3233}
3234
3235extern bool _debug_pagealloc_enabled_early;
3236DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3237
3238static inline bool debug_pagealloc_enabled(void)
3239{
3240 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3241 _debug_pagealloc_enabled_early;
3242}
3243
3244/*
3245 * For use in fast paths after init_debug_pagealloc() has run, or when a
3246 * false negative result is not harmful when called too early.
3247 */
3248static inline bool debug_pagealloc_enabled_static(void)
3249{
3250 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3251 return false;
3252
3253 return static_branch_unlikely(&_debug_pagealloc_enabled);
3254}
3255
3256#ifdef CONFIG_DEBUG_PAGEALLOC
3257/*
3258 * To support DEBUG_PAGEALLOC architecture must ensure that
3259 * __kernel_map_pages() never fails
3260 */
3261extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3262
3263static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3264{
3265 if (debug_pagealloc_enabled_static())
3266 __kernel_map_pages(page, numpages, 1);
3267}
3268
3269static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3270{
3271 if (debug_pagealloc_enabled_static())
3272 __kernel_map_pages(page, numpages, 0);
3273}
3274#else /* CONFIG_DEBUG_PAGEALLOC */
3275static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3276static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3277#endif /* CONFIG_DEBUG_PAGEALLOC */
3278
3279#ifdef __HAVE_ARCH_GATE_AREA
3280extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3281extern int in_gate_area_no_mm(unsigned long addr);
3282extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3283#else
3284static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3285{
3286 return NULL;
3287}
3288static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3289static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3290{
3291 return 0;
3292}
3293#endif /* __HAVE_ARCH_GATE_AREA */
3294
3295extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3296
3297#ifdef CONFIG_SYSCTL
3298extern int sysctl_drop_caches;
3299int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3300 loff_t *);
3301#endif
3302
3303void drop_slab(void);
3304
3305#ifndef CONFIG_MMU
3306#define randomize_va_space 0
3307#else
3308extern int randomize_va_space;
3309#endif
3310
3311const char * arch_vma_name(struct vm_area_struct *vma);
3312#ifdef CONFIG_MMU
3313void print_vma_addr(char *prefix, unsigned long rip);
3314#else
3315static inline void print_vma_addr(char *prefix, unsigned long rip)
3316{
3317}
3318#endif
3319
3320void *sparse_buffer_alloc(unsigned long size);
3321struct page * __populate_section_memmap(unsigned long pfn,
3322 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3323 struct dev_pagemap *pgmap);
3324pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3325p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3326pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3327pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3328pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3329 struct vmem_altmap *altmap, struct page *reuse);
3330void *vmemmap_alloc_block(unsigned long size, int node);
3331struct vmem_altmap;
3332void *vmemmap_alloc_block_buf(unsigned long size, int node,
3333 struct vmem_altmap *altmap);
3334void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3335int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3336 int node, struct vmem_altmap *altmap);
3337int vmemmap_populate(unsigned long start, unsigned long end, int node,
3338 struct vmem_altmap *altmap);
3339void vmemmap_populate_print_last(void);
3340#ifdef CONFIG_MEMORY_HOTPLUG
3341void vmemmap_free(unsigned long start, unsigned long end,
3342 struct vmem_altmap *altmap);
3343#endif
3344void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3345 unsigned long nr_pages);
3346
3347enum mf_flags {
3348 MF_COUNT_INCREASED = 1 << 0,
3349 MF_ACTION_REQUIRED = 1 << 1,
3350 MF_MUST_KILL = 1 << 2,
3351 MF_SOFT_OFFLINE = 1 << 3,
3352 MF_UNPOISON = 1 << 4,
3353 MF_SW_SIMULATED = 1 << 5,
3354 MF_NO_RETRY = 1 << 6,
3355};
3356int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3357 unsigned long count, int mf_flags);
3358extern int memory_failure(unsigned long pfn, int flags);
3359extern void memory_failure_queue_kick(int cpu);
3360extern int unpoison_memory(unsigned long pfn);
3361extern int sysctl_memory_failure_early_kill;
3362extern int sysctl_memory_failure_recovery;
3363extern void shake_page(struct page *p);
3364extern atomic_long_t num_poisoned_pages __read_mostly;
3365extern int soft_offline_page(unsigned long pfn, int flags);
3366#ifdef CONFIG_MEMORY_FAILURE
3367extern void memory_failure_queue(unsigned long pfn, int flags);
3368extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3369 bool *migratable_cleared);
3370void num_poisoned_pages_inc(unsigned long pfn);
3371void num_poisoned_pages_sub(unsigned long pfn, long i);
3372#else
3373static inline void memory_failure_queue(unsigned long pfn, int flags)
3374{
3375}
3376
3377static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3378 bool *migratable_cleared)
3379{
3380 return 0;
3381}
3382
3383static inline void num_poisoned_pages_inc(unsigned long pfn)
3384{
3385}
3386
3387static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3388{
3389}
3390#endif
3391
3392#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3393extern void memblk_nr_poison_inc(unsigned long pfn);
3394extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3395#else
3396static inline void memblk_nr_poison_inc(unsigned long pfn)
3397{
3398}
3399
3400static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3401{
3402}
3403#endif
3404
3405#ifndef arch_memory_failure
3406static inline int arch_memory_failure(unsigned long pfn, int flags)
3407{
3408 return -ENXIO;
3409}
3410#endif
3411
3412#ifndef arch_is_platform_page
3413static inline bool arch_is_platform_page(u64 paddr)
3414{
3415 return false;
3416}
3417#endif
3418
3419/*
3420 * Error handlers for various types of pages.
3421 */
3422enum mf_result {
3423 MF_IGNORED, /* Error: cannot be handled */
3424 MF_FAILED, /* Error: handling failed */
3425 MF_DELAYED, /* Will be handled later */
3426 MF_RECOVERED, /* Successfully recovered */
3427};
3428
3429enum mf_action_page_type {
3430 MF_MSG_KERNEL,
3431 MF_MSG_KERNEL_HIGH_ORDER,
3432 MF_MSG_SLAB,
3433 MF_MSG_DIFFERENT_COMPOUND,
3434 MF_MSG_HUGE,
3435 MF_MSG_FREE_HUGE,
3436 MF_MSG_UNMAP_FAILED,
3437 MF_MSG_DIRTY_SWAPCACHE,
3438 MF_MSG_CLEAN_SWAPCACHE,
3439 MF_MSG_DIRTY_MLOCKED_LRU,
3440 MF_MSG_CLEAN_MLOCKED_LRU,
3441 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3442 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3443 MF_MSG_DIRTY_LRU,
3444 MF_MSG_CLEAN_LRU,
3445 MF_MSG_TRUNCATED_LRU,
3446 MF_MSG_BUDDY,
3447 MF_MSG_DAX,
3448 MF_MSG_UNSPLIT_THP,
3449 MF_MSG_UNKNOWN,
3450};
3451
3452#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3453extern void clear_huge_page(struct page *page,
3454 unsigned long addr_hint,
3455 unsigned int pages_per_huge_page);
3456extern void copy_user_huge_page(struct page *dst, struct page *src,
3457 unsigned long addr_hint,
3458 struct vm_area_struct *vma,
3459 unsigned int pages_per_huge_page);
3460extern long copy_huge_page_from_user(struct page *dst_page,
3461 const void __user *usr_src,
3462 unsigned int pages_per_huge_page,
3463 bool allow_pagefault);
3464
3465/**
3466 * vma_is_special_huge - Are transhuge page-table entries considered special?
3467 * @vma: Pointer to the struct vm_area_struct to consider
3468 *
3469 * Whether transhuge page-table entries are considered "special" following
3470 * the definition in vm_normal_page().
3471 *
3472 * Return: true if transhuge page-table entries should be considered special,
3473 * false otherwise.
3474 */
3475static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3476{
3477 return vma_is_dax(vma) || (vma->vm_file &&
3478 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3479}
3480
3481#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3482
3483#ifdef CONFIG_DEBUG_PAGEALLOC
3484extern unsigned int _debug_guardpage_minorder;
3485DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3486
3487static inline unsigned int debug_guardpage_minorder(void)
3488{
3489 return _debug_guardpage_minorder;
3490}
3491
3492static inline bool debug_guardpage_enabled(void)
3493{
3494 return static_branch_unlikely(&_debug_guardpage_enabled);
3495}
3496
3497static inline bool page_is_guard(struct page *page)
3498{
3499 if (!debug_guardpage_enabled())
3500 return false;
3501
3502 return PageGuard(page);
3503}
3504#else
3505static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3506static inline bool debug_guardpage_enabled(void) { return false; }
3507static inline bool page_is_guard(struct page *page) { return false; }
3508#endif /* CONFIG_DEBUG_PAGEALLOC */
3509
3510#if MAX_NUMNODES > 1
3511void __init setup_nr_node_ids(void);
3512#else
3513static inline void setup_nr_node_ids(void) {}
3514#endif
3515
3516extern int memcmp_pages(struct page *page1, struct page *page2);
3517
3518static inline int pages_identical(struct page *page1, struct page *page2)
3519{
3520 return !memcmp_pages(page1, page2);
3521}
3522
3523#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3524unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3525 pgoff_t first_index, pgoff_t nr,
3526 pgoff_t bitmap_pgoff,
3527 unsigned long *bitmap,
3528 pgoff_t *start,
3529 pgoff_t *end);
3530
3531unsigned long wp_shared_mapping_range(struct address_space *mapping,
3532 pgoff_t first_index, pgoff_t nr);
3533#endif
3534
3535extern int sysctl_nr_trim_pages;
3536
3537#ifdef CONFIG_PRINTK
3538void mem_dump_obj(void *object);
3539#else
3540static inline void mem_dump_obj(void *object) {}
3541#endif
3542
3543/**
3544 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3545 * @seals: the seals to check
3546 * @vma: the vma to operate on
3547 *
3548 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3549 * the vma flags. Return 0 if check pass, or <0 for errors.
3550 */
3551static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3552{
3553 if (seals & F_SEAL_FUTURE_WRITE) {
3554 /*
3555 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3556 * "future write" seal active.
3557 */
3558 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3559 return -EPERM;
3560
3561 /*
3562 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3563 * MAP_SHARED and read-only, take care to not allow mprotect to
3564 * revert protections on such mappings. Do this only for shared
3565 * mappings. For private mappings, don't need to mask
3566 * VM_MAYWRITE as we still want them to be COW-writable.
3567 */
3568 if (vma->vm_flags & VM_SHARED)
3569 vma->vm_flags &= ~(VM_MAYWRITE);
3570 }
3571
3572 return 0;
3573}
3574
3575#ifdef CONFIG_ANON_VMA_NAME
3576int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3577 unsigned long len_in,
3578 struct anon_vma_name *anon_name);
3579#else
3580static inline int
3581madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3582 unsigned long len_in, struct anon_vma_name *anon_name) {
3583 return 0;
3584}
3585#endif
3586
3587#endif /* _LINUX_MM_H */