hugetlbfs: zero partial pages during fallocate hole punch
[linux-block.git] / include / linux / mm.h
... / ...
CommitLineData
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31
32struct mempolicy;
33struct anon_vma;
34struct anon_vma_chain;
35struct user_struct;
36struct pt_regs;
37
38extern int sysctl_page_lock_unfairness;
39
40void init_mm_internals(void);
41
42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
43extern unsigned long max_mapnr;
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
51#endif
52
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
74extern void * high_memory;
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
94#include <asm/page.h>
95#include <asm/processor.h>
96
97/*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
102 * It's defined as noop for architectures that don't support memory tagging.
103 */
104#ifndef untagged_addr
105#define untagged_addr(addr) (addr)
106#endif
107
108#ifndef __pa_symbol
109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110#endif
111
112#ifndef page_to_virt
113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114#endif
115
116#ifndef lm_alias
117#define lm_alias(x) __va(__pa_symbol(x))
118#endif
119
120/*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127#ifndef mm_forbids_zeropage
128#define mm_forbids_zeropage(X) (0)
129#endif
130
131/*
132 * On some architectures it is expensive to call memset() for small sizes.
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
136 */
137#if BITS_PER_LONG == 64
138/* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
141 * combine write statements if they are both assignments and can be reordered,
142 * this can result in several of the writes here being dropped.
143 */
144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145static inline void __mm_zero_struct_page(struct page *page)
146{
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
156 _pp[9] = 0;
157 fallthrough;
158 case 72:
159 _pp[8] = 0;
160 fallthrough;
161 case 64:
162 _pp[7] = 0;
163 fallthrough;
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
199extern unsigned long sysctl_user_reserve_kbytes;
200extern unsigned long sysctl_admin_reserve_kbytes;
201
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212
213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
216#else
217#define nth_page(page,n) ((page) + (n))
218#define folio_page_idx(folio, p) ((p) - &(folio)->page)
219#endif
220
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
226
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228static inline struct folio *lru_to_folio(struct list_head *head)
229{
230 return list_entry((head)->prev, struct folio, lru);
231}
232
233void setup_initial_init_mm(void *start_code, void *end_code,
234 void *end_data, void *brk);
235
236/*
237 * Linux kernel virtual memory manager primitives.
238 * The idea being to have a "virtual" mm in the same way
239 * we have a virtual fs - giving a cleaner interface to the
240 * mm details, and allowing different kinds of memory mappings
241 * (from shared memory to executable loading to arbitrary
242 * mmap() functions).
243 */
244
245struct vm_area_struct *vm_area_alloc(struct mm_struct *);
246struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247void vm_area_free(struct vm_area_struct *);
248
249#ifndef CONFIG_MMU
250extern struct rb_root nommu_region_tree;
251extern struct rw_semaphore nommu_region_sem;
252
253extern unsigned int kobjsize(const void *objp);
254#endif
255
256/*
257 * vm_flags in vm_area_struct, see mm_types.h.
258 * When changing, update also include/trace/events/mmflags.h
259 */
260#define VM_NONE 0x00000000
261
262#define VM_READ 0x00000001 /* currently active flags */
263#define VM_WRITE 0x00000002
264#define VM_EXEC 0x00000004
265#define VM_SHARED 0x00000008
266
267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
268#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
269#define VM_MAYWRITE 0x00000020
270#define VM_MAYEXEC 0x00000040
271#define VM_MAYSHARE 0x00000080
272
273#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
274#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
275#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
276#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
277
278#define VM_LOCKED 0x00002000
279#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
280
281 /* Used by sys_madvise() */
282#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
283#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
284
285#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
286#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
287#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
288#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
289#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
290#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
291#define VM_SYNC 0x00800000 /* Synchronous page faults */
292#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
293#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
294#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
295
296#ifdef CONFIG_MEM_SOFT_DIRTY
297# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
298#else
299# define VM_SOFTDIRTY 0
300#endif
301
302#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
303#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
304#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
305#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
306
307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
308#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
310#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
314#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
315#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
316#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
317#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
319
320#ifdef CONFIG_ARCH_HAS_PKEYS
321# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
322# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
323# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
324# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
325# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
326#ifdef CONFIG_PPC
327# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
328#else
329# define VM_PKEY_BIT4 0
330#endif
331#endif /* CONFIG_ARCH_HAS_PKEYS */
332
333#if defined(CONFIG_X86)
334# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
335#elif defined(CONFIG_PPC)
336# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
337#elif defined(CONFIG_PARISC)
338# define VM_GROWSUP VM_ARCH_1
339#elif defined(CONFIG_IA64)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_SPARC64)
342# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
343# define VM_ARCH_CLEAR VM_SPARC_ADI
344#elif defined(CONFIG_ARM64)
345# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
346# define VM_ARCH_CLEAR VM_ARM64_BTI
347#elif !defined(CONFIG_MMU)
348# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
349#endif
350
351#if defined(CONFIG_ARM64_MTE)
352# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
353# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
354#else
355# define VM_MTE VM_NONE
356# define VM_MTE_ALLOWED VM_NONE
357#endif
358
359#ifndef VM_GROWSUP
360# define VM_GROWSUP VM_NONE
361#endif
362
363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
364# define VM_UFFD_MINOR_BIT 37
365# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367# define VM_UFFD_MINOR VM_NONE
368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
369
370/* Bits set in the VMA until the stack is in its final location */
371#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
372
373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
374
375/* Common data flag combinations */
376#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
379 VM_MAYWRITE | VM_MAYEXEC)
380#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382
383#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
384#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
385#endif
386
387#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389#endif
390
391#ifdef CONFIG_STACK_GROWSUP
392#define VM_STACK VM_GROWSUP
393#else
394#define VM_STACK VM_GROWSDOWN
395#endif
396
397#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
398
399/* VMA basic access permission flags */
400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
401
402
403/*
404 * Special vmas that are non-mergable, non-mlock()able.
405 */
406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
407
408/* This mask prevents VMA from being scanned with khugepaged */
409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
410
411/* This mask defines which mm->def_flags a process can inherit its parent */
412#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
413
414/* This mask is used to clear all the VMA flags used by mlock */
415#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
416
417/* Arch-specific flags to clear when updating VM flags on protection change */
418#ifndef VM_ARCH_CLEAR
419# define VM_ARCH_CLEAR VM_NONE
420#endif
421#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422
423/*
424 * mapping from the currently active vm_flags protection bits (the
425 * low four bits) to a page protection mask..
426 */
427extern pgprot_t protection_map[16];
428
429/*
430 * The default fault flags that should be used by most of the
431 * arch-specific page fault handlers.
432 */
433#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
434 FAULT_FLAG_KILLABLE | \
435 FAULT_FLAG_INTERRUPTIBLE)
436
437/**
438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
439 * @flags: Fault flags.
440 *
441 * This is mostly used for places where we want to try to avoid taking
442 * the mmap_lock for too long a time when waiting for another condition
443 * to change, in which case we can try to be polite to release the
444 * mmap_lock in the first round to avoid potential starvation of other
445 * processes that would also want the mmap_lock.
446 *
447 * Return: true if the page fault allows retry and this is the first
448 * attempt of the fault handling; false otherwise.
449 */
450static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
451{
452 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
453 (!(flags & FAULT_FLAG_TRIED));
454}
455
456#define FAULT_FLAG_TRACE \
457 { FAULT_FLAG_WRITE, "WRITE" }, \
458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
462 { FAULT_FLAG_TRIED, "TRIED" }, \
463 { FAULT_FLAG_USER, "USER" }, \
464 { FAULT_FLAG_REMOTE, "REMOTE" }, \
465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
467
468/*
469 * vm_fault is filled by the pagefault handler and passed to the vma's
470 * ->fault function. The vma's ->fault is responsible for returning a bitmask
471 * of VM_FAULT_xxx flags that give details about how the fault was handled.
472 *
473 * MM layer fills up gfp_mask for page allocations but fault handler might
474 * alter it if its implementation requires a different allocation context.
475 *
476 * pgoff should be used in favour of virtual_address, if possible.
477 */
478struct vm_fault {
479 const struct {
480 struct vm_area_struct *vma; /* Target VMA */
481 gfp_t gfp_mask; /* gfp mask to be used for allocations */
482 pgoff_t pgoff; /* Logical page offset based on vma */
483 unsigned long address; /* Faulting virtual address - masked */
484 unsigned long real_address; /* Faulting virtual address - unmasked */
485 };
486 enum fault_flag flags; /* FAULT_FLAG_xxx flags
487 * XXX: should really be 'const' */
488 pmd_t *pmd; /* Pointer to pmd entry matching
489 * the 'address' */
490 pud_t *pud; /* Pointer to pud entry matching
491 * the 'address'
492 */
493 union {
494 pte_t orig_pte; /* Value of PTE at the time of fault */
495 pmd_t orig_pmd; /* Value of PMD at the time of fault,
496 * used by PMD fault only.
497 */
498 };
499
500 struct page *cow_page; /* Page handler may use for COW fault */
501 struct page *page; /* ->fault handlers should return a
502 * page here, unless VM_FAULT_NOPAGE
503 * is set (which is also implied by
504 * VM_FAULT_ERROR).
505 */
506 /* These three entries are valid only while holding ptl lock */
507 pte_t *pte; /* Pointer to pte entry matching
508 * the 'address'. NULL if the page
509 * table hasn't been allocated.
510 */
511 spinlock_t *ptl; /* Page table lock.
512 * Protects pte page table if 'pte'
513 * is not NULL, otherwise pmd.
514 */
515 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
516 * vm_ops->map_pages() sets up a page
517 * table from atomic context.
518 * do_fault_around() pre-allocates
519 * page table to avoid allocation from
520 * atomic context.
521 */
522};
523
524/* page entry size for vm->huge_fault() */
525enum page_entry_size {
526 PE_SIZE_PTE = 0,
527 PE_SIZE_PMD,
528 PE_SIZE_PUD,
529};
530
531/*
532 * These are the virtual MM functions - opening of an area, closing and
533 * unmapping it (needed to keep files on disk up-to-date etc), pointer
534 * to the functions called when a no-page or a wp-page exception occurs.
535 */
536struct vm_operations_struct {
537 void (*open)(struct vm_area_struct * area);
538 /**
539 * @close: Called when the VMA is being removed from the MM.
540 * Context: User context. May sleep. Caller holds mmap_lock.
541 */
542 void (*close)(struct vm_area_struct * area);
543 /* Called any time before splitting to check if it's allowed */
544 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
545 int (*mremap)(struct vm_area_struct *area);
546 /*
547 * Called by mprotect() to make driver-specific permission
548 * checks before mprotect() is finalised. The VMA must not
549 * be modified. Returns 0 if eprotect() can proceed.
550 */
551 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
552 unsigned long end, unsigned long newflags);
553 vm_fault_t (*fault)(struct vm_fault *vmf);
554 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
555 enum page_entry_size pe_size);
556 vm_fault_t (*map_pages)(struct vm_fault *vmf,
557 pgoff_t start_pgoff, pgoff_t end_pgoff);
558 unsigned long (*pagesize)(struct vm_area_struct * area);
559
560 /* notification that a previously read-only page is about to become
561 * writable, if an error is returned it will cause a SIGBUS */
562 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
563
564 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
565 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
566
567 /* called by access_process_vm when get_user_pages() fails, typically
568 * for use by special VMAs. See also generic_access_phys() for a generic
569 * implementation useful for any iomem mapping.
570 */
571 int (*access)(struct vm_area_struct *vma, unsigned long addr,
572 void *buf, int len, int write);
573
574 /* Called by the /proc/PID/maps code to ask the vma whether it
575 * has a special name. Returning non-NULL will also cause this
576 * vma to be dumped unconditionally. */
577 const char *(*name)(struct vm_area_struct *vma);
578
579#ifdef CONFIG_NUMA
580 /*
581 * set_policy() op must add a reference to any non-NULL @new mempolicy
582 * to hold the policy upon return. Caller should pass NULL @new to
583 * remove a policy and fall back to surrounding context--i.e. do not
584 * install a MPOL_DEFAULT policy, nor the task or system default
585 * mempolicy.
586 */
587 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
588
589 /*
590 * get_policy() op must add reference [mpol_get()] to any policy at
591 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
592 * in mm/mempolicy.c will do this automatically.
593 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
594 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
595 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
596 * must return NULL--i.e., do not "fallback" to task or system default
597 * policy.
598 */
599 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
600 unsigned long addr);
601#endif
602 /*
603 * Called by vm_normal_page() for special PTEs to find the
604 * page for @addr. This is useful if the default behavior
605 * (using pte_page()) would not find the correct page.
606 */
607 struct page *(*find_special_page)(struct vm_area_struct *vma,
608 unsigned long addr);
609};
610
611static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
612{
613 static const struct vm_operations_struct dummy_vm_ops = {};
614
615 memset(vma, 0, sizeof(*vma));
616 vma->vm_mm = mm;
617 vma->vm_ops = &dummy_vm_ops;
618 INIT_LIST_HEAD(&vma->anon_vma_chain);
619}
620
621static inline void vma_set_anonymous(struct vm_area_struct *vma)
622{
623 vma->vm_ops = NULL;
624}
625
626static inline bool vma_is_anonymous(struct vm_area_struct *vma)
627{
628 return !vma->vm_ops;
629}
630
631static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
632{
633 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
634
635 if (!maybe_stack)
636 return false;
637
638 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
639 VM_STACK_INCOMPLETE_SETUP)
640 return true;
641
642 return false;
643}
644
645static inline bool vma_is_foreign(struct vm_area_struct *vma)
646{
647 if (!current->mm)
648 return true;
649
650 if (current->mm != vma->vm_mm)
651 return true;
652
653 return false;
654}
655
656static inline bool vma_is_accessible(struct vm_area_struct *vma)
657{
658 return vma->vm_flags & VM_ACCESS_FLAGS;
659}
660
661#ifdef CONFIG_SHMEM
662/*
663 * The vma_is_shmem is not inline because it is used only by slow
664 * paths in userfault.
665 */
666bool vma_is_shmem(struct vm_area_struct *vma);
667#else
668static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
669#endif
670
671int vma_is_stack_for_current(struct vm_area_struct *vma);
672
673/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
674#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
675
676struct mmu_gather;
677struct inode;
678
679static inline unsigned int compound_order(struct page *page)
680{
681 if (!PageHead(page))
682 return 0;
683 return page[1].compound_order;
684}
685
686/**
687 * folio_order - The allocation order of a folio.
688 * @folio: The folio.
689 *
690 * A folio is composed of 2^order pages. See get_order() for the definition
691 * of order.
692 *
693 * Return: The order of the folio.
694 */
695static inline unsigned int folio_order(struct folio *folio)
696{
697 return compound_order(&folio->page);
698}
699
700#include <linux/huge_mm.h>
701
702/*
703 * Methods to modify the page usage count.
704 *
705 * What counts for a page usage:
706 * - cache mapping (page->mapping)
707 * - private data (page->private)
708 * - page mapped in a task's page tables, each mapping
709 * is counted separately
710 *
711 * Also, many kernel routines increase the page count before a critical
712 * routine so they can be sure the page doesn't go away from under them.
713 */
714
715/*
716 * Drop a ref, return true if the refcount fell to zero (the page has no users)
717 */
718static inline int put_page_testzero(struct page *page)
719{
720 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
721 return page_ref_dec_and_test(page);
722}
723
724static inline int folio_put_testzero(struct folio *folio)
725{
726 return put_page_testzero(&folio->page);
727}
728
729/*
730 * Try to grab a ref unless the page has a refcount of zero, return false if
731 * that is the case.
732 * This can be called when MMU is off so it must not access
733 * any of the virtual mappings.
734 */
735static inline bool get_page_unless_zero(struct page *page)
736{
737 return page_ref_add_unless(page, 1, 0);
738}
739
740extern int page_is_ram(unsigned long pfn);
741
742enum {
743 REGION_INTERSECTS,
744 REGION_DISJOINT,
745 REGION_MIXED,
746};
747
748int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
749 unsigned long desc);
750
751/* Support for virtually mapped pages */
752struct page *vmalloc_to_page(const void *addr);
753unsigned long vmalloc_to_pfn(const void *addr);
754
755/*
756 * Determine if an address is within the vmalloc range
757 *
758 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
759 * is no special casing required.
760 */
761
762#ifndef is_ioremap_addr
763#define is_ioremap_addr(x) is_vmalloc_addr(x)
764#endif
765
766#ifdef CONFIG_MMU
767extern bool is_vmalloc_addr(const void *x);
768extern int is_vmalloc_or_module_addr(const void *x);
769#else
770static inline bool is_vmalloc_addr(const void *x)
771{
772 return false;
773}
774static inline int is_vmalloc_or_module_addr(const void *x)
775{
776 return 0;
777}
778#endif
779
780/*
781 * How many times the entire folio is mapped as a single unit (eg by a
782 * PMD or PUD entry). This is probably not what you want, except for
783 * debugging purposes; look at folio_mapcount() or page_mapcount()
784 * instead.
785 */
786static inline int folio_entire_mapcount(struct folio *folio)
787{
788 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
789 return atomic_read(folio_mapcount_ptr(folio)) + 1;
790}
791
792/*
793 * Mapcount of compound page as a whole, does not include mapped sub-pages.
794 *
795 * Must be called only for compound pages.
796 */
797static inline int compound_mapcount(struct page *page)
798{
799 return folio_entire_mapcount(page_folio(page));
800}
801
802/*
803 * The atomic page->_mapcount, starts from -1: so that transitions
804 * both from it and to it can be tracked, using atomic_inc_and_test
805 * and atomic_add_negative(-1).
806 */
807static inline void page_mapcount_reset(struct page *page)
808{
809 atomic_set(&(page)->_mapcount, -1);
810}
811
812int __page_mapcount(struct page *page);
813
814/*
815 * Mapcount of 0-order page; when compound sub-page, includes
816 * compound_mapcount().
817 *
818 * Result is undefined for pages which cannot be mapped into userspace.
819 * For example SLAB or special types of pages. See function page_has_type().
820 * They use this place in struct page differently.
821 */
822static inline int page_mapcount(struct page *page)
823{
824 if (unlikely(PageCompound(page)))
825 return __page_mapcount(page);
826 return atomic_read(&page->_mapcount) + 1;
827}
828
829int folio_mapcount(struct folio *folio);
830
831#ifdef CONFIG_TRANSPARENT_HUGEPAGE
832static inline int total_mapcount(struct page *page)
833{
834 return folio_mapcount(page_folio(page));
835}
836
837#else
838static inline int total_mapcount(struct page *page)
839{
840 return page_mapcount(page);
841}
842#endif
843
844static inline struct page *virt_to_head_page(const void *x)
845{
846 struct page *page = virt_to_page(x);
847
848 return compound_head(page);
849}
850
851static inline struct folio *virt_to_folio(const void *x)
852{
853 struct page *page = virt_to_page(x);
854
855 return page_folio(page);
856}
857
858void __put_page(struct page *page);
859
860void put_pages_list(struct list_head *pages);
861
862void split_page(struct page *page, unsigned int order);
863void folio_copy(struct folio *dst, struct folio *src);
864
865unsigned long nr_free_buffer_pages(void);
866
867/*
868 * Compound pages have a destructor function. Provide a
869 * prototype for that function and accessor functions.
870 * These are _only_ valid on the head of a compound page.
871 */
872typedef void compound_page_dtor(struct page *);
873
874/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
875enum compound_dtor_id {
876 NULL_COMPOUND_DTOR,
877 COMPOUND_PAGE_DTOR,
878#ifdef CONFIG_HUGETLB_PAGE
879 HUGETLB_PAGE_DTOR,
880#endif
881#ifdef CONFIG_TRANSPARENT_HUGEPAGE
882 TRANSHUGE_PAGE_DTOR,
883#endif
884 NR_COMPOUND_DTORS,
885};
886extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
887
888static inline void set_compound_page_dtor(struct page *page,
889 enum compound_dtor_id compound_dtor)
890{
891 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
892 page[1].compound_dtor = compound_dtor;
893}
894
895static inline void destroy_compound_page(struct page *page)
896{
897 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
898 compound_page_dtors[page[1].compound_dtor](page);
899}
900
901static inline int head_compound_pincount(struct page *head)
902{
903 return atomic_read(compound_pincount_ptr(head));
904}
905
906static inline void set_compound_order(struct page *page, unsigned int order)
907{
908 page[1].compound_order = order;
909#ifdef CONFIG_64BIT
910 page[1].compound_nr = 1U << order;
911#endif
912}
913
914/* Returns the number of pages in this potentially compound page. */
915static inline unsigned long compound_nr(struct page *page)
916{
917 if (!PageHead(page))
918 return 1;
919#ifdef CONFIG_64BIT
920 return page[1].compound_nr;
921#else
922 return 1UL << compound_order(page);
923#endif
924}
925
926/* Returns the number of bytes in this potentially compound page. */
927static inline unsigned long page_size(struct page *page)
928{
929 return PAGE_SIZE << compound_order(page);
930}
931
932/* Returns the number of bits needed for the number of bytes in a page */
933static inline unsigned int page_shift(struct page *page)
934{
935 return PAGE_SHIFT + compound_order(page);
936}
937
938/**
939 * thp_order - Order of a transparent huge page.
940 * @page: Head page of a transparent huge page.
941 */
942static inline unsigned int thp_order(struct page *page)
943{
944 VM_BUG_ON_PGFLAGS(PageTail(page), page);
945 return compound_order(page);
946}
947
948/**
949 * thp_nr_pages - The number of regular pages in this huge page.
950 * @page: The head page of a huge page.
951 */
952static inline int thp_nr_pages(struct page *page)
953{
954 VM_BUG_ON_PGFLAGS(PageTail(page), page);
955 return compound_nr(page);
956}
957
958/**
959 * thp_size - Size of a transparent huge page.
960 * @page: Head page of a transparent huge page.
961 *
962 * Return: Number of bytes in this page.
963 */
964static inline unsigned long thp_size(struct page *page)
965{
966 return PAGE_SIZE << thp_order(page);
967}
968
969void free_compound_page(struct page *page);
970
971#ifdef CONFIG_MMU
972/*
973 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
974 * servicing faults for write access. In the normal case, do always want
975 * pte_mkwrite. But get_user_pages can cause write faults for mappings
976 * that do not have writing enabled, when used by access_process_vm.
977 */
978static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
979{
980 if (likely(vma->vm_flags & VM_WRITE))
981 pte = pte_mkwrite(pte);
982 return pte;
983}
984
985vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
986void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
987
988vm_fault_t finish_fault(struct vm_fault *vmf);
989vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
990#endif
991
992/*
993 * Multiple processes may "see" the same page. E.g. for untouched
994 * mappings of /dev/null, all processes see the same page full of
995 * zeroes, and text pages of executables and shared libraries have
996 * only one copy in memory, at most, normally.
997 *
998 * For the non-reserved pages, page_count(page) denotes a reference count.
999 * page_count() == 0 means the page is free. page->lru is then used for
1000 * freelist management in the buddy allocator.
1001 * page_count() > 0 means the page has been allocated.
1002 *
1003 * Pages are allocated by the slab allocator in order to provide memory
1004 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1005 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1006 * unless a particular usage is carefully commented. (the responsibility of
1007 * freeing the kmalloc memory is the caller's, of course).
1008 *
1009 * A page may be used by anyone else who does a __get_free_page().
1010 * In this case, page_count still tracks the references, and should only
1011 * be used through the normal accessor functions. The top bits of page->flags
1012 * and page->virtual store page management information, but all other fields
1013 * are unused and could be used privately, carefully. The management of this
1014 * page is the responsibility of the one who allocated it, and those who have
1015 * subsequently been given references to it.
1016 *
1017 * The other pages (we may call them "pagecache pages") are completely
1018 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1019 * The following discussion applies only to them.
1020 *
1021 * A pagecache page contains an opaque `private' member, which belongs to the
1022 * page's address_space. Usually, this is the address of a circular list of
1023 * the page's disk buffers. PG_private must be set to tell the VM to call
1024 * into the filesystem to release these pages.
1025 *
1026 * A page may belong to an inode's memory mapping. In this case, page->mapping
1027 * is the pointer to the inode, and page->index is the file offset of the page,
1028 * in units of PAGE_SIZE.
1029 *
1030 * If pagecache pages are not associated with an inode, they are said to be
1031 * anonymous pages. These may become associated with the swapcache, and in that
1032 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1033 *
1034 * In either case (swapcache or inode backed), the pagecache itself holds one
1035 * reference to the page. Setting PG_private should also increment the
1036 * refcount. The each user mapping also has a reference to the page.
1037 *
1038 * The pagecache pages are stored in a per-mapping radix tree, which is
1039 * rooted at mapping->i_pages, and indexed by offset.
1040 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1041 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1042 *
1043 * All pagecache pages may be subject to I/O:
1044 * - inode pages may need to be read from disk,
1045 * - inode pages which have been modified and are MAP_SHARED may need
1046 * to be written back to the inode on disk,
1047 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1048 * modified may need to be swapped out to swap space and (later) to be read
1049 * back into memory.
1050 */
1051
1052/*
1053 * The zone field is never updated after free_area_init_core()
1054 * sets it, so none of the operations on it need to be atomic.
1055 */
1056
1057/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1060#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1061#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063
1064/*
1065 * Define the bit shifts to access each section. For non-existent
1066 * sections we define the shift as 0; that plus a 0 mask ensures
1067 * the compiler will optimise away reference to them.
1068 */
1069#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1070#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1071#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1072#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1073#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1074
1075/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1076#ifdef NODE_NOT_IN_PAGE_FLAGS
1077#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1078#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1079 SECTIONS_PGOFF : ZONES_PGOFF)
1080#else
1081#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1082#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1083 NODES_PGOFF : ZONES_PGOFF)
1084#endif
1085
1086#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1087
1088#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1089#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1090#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1091#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1092#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1093#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1094
1095static inline enum zone_type page_zonenum(const struct page *page)
1096{
1097 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1098 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1099}
1100
1101static inline enum zone_type folio_zonenum(const struct folio *folio)
1102{
1103 return page_zonenum(&folio->page);
1104}
1105
1106#ifdef CONFIG_ZONE_DEVICE
1107static inline bool is_zone_device_page(const struct page *page)
1108{
1109 return page_zonenum(page) == ZONE_DEVICE;
1110}
1111extern void memmap_init_zone_device(struct zone *, unsigned long,
1112 unsigned long, struct dev_pagemap *);
1113#else
1114static inline bool is_zone_device_page(const struct page *page)
1115{
1116 return false;
1117}
1118#endif
1119
1120static inline bool folio_is_zone_device(const struct folio *folio)
1121{
1122 return is_zone_device_page(&folio->page);
1123}
1124
1125static inline bool is_zone_movable_page(const struct page *page)
1126{
1127 return page_zonenum(page) == ZONE_MOVABLE;
1128}
1129
1130#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1131DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1132
1133bool __put_devmap_managed_page(struct page *page);
1134static inline bool put_devmap_managed_page(struct page *page)
1135{
1136 if (!static_branch_unlikely(&devmap_managed_key))
1137 return false;
1138 if (!is_zone_device_page(page))
1139 return false;
1140 return __put_devmap_managed_page(page);
1141}
1142
1143#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1144static inline bool put_devmap_managed_page(struct page *page)
1145{
1146 return false;
1147}
1148#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1149
1150/* 127: arbitrary random number, small enough to assemble well */
1151#define folio_ref_zero_or_close_to_overflow(folio) \
1152 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1153
1154/**
1155 * folio_get - Increment the reference count on a folio.
1156 * @folio: The folio.
1157 *
1158 * Context: May be called in any context, as long as you know that
1159 * you have a refcount on the folio. If you do not already have one,
1160 * folio_try_get() may be the right interface for you to use.
1161 */
1162static inline void folio_get(struct folio *folio)
1163{
1164 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1165 folio_ref_inc(folio);
1166}
1167
1168static inline void get_page(struct page *page)
1169{
1170 folio_get(page_folio(page));
1171}
1172
1173bool __must_check try_grab_page(struct page *page, unsigned int flags);
1174
1175static inline __must_check bool try_get_page(struct page *page)
1176{
1177 page = compound_head(page);
1178 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1179 return false;
1180 page_ref_inc(page);
1181 return true;
1182}
1183
1184/**
1185 * folio_put - Decrement the reference count on a folio.
1186 * @folio: The folio.
1187 *
1188 * If the folio's reference count reaches zero, the memory will be
1189 * released back to the page allocator and may be used by another
1190 * allocation immediately. Do not access the memory or the struct folio
1191 * after calling folio_put() unless you can be sure that it wasn't the
1192 * last reference.
1193 *
1194 * Context: May be called in process or interrupt context, but not in NMI
1195 * context. May be called while holding a spinlock.
1196 */
1197static inline void folio_put(struct folio *folio)
1198{
1199 if (folio_put_testzero(folio))
1200 __put_page(&folio->page);
1201}
1202
1203/**
1204 * folio_put_refs - Reduce the reference count on a folio.
1205 * @folio: The folio.
1206 * @refs: The amount to subtract from the folio's reference count.
1207 *
1208 * If the folio's reference count reaches zero, the memory will be
1209 * released back to the page allocator and may be used by another
1210 * allocation immediately. Do not access the memory or the struct folio
1211 * after calling folio_put_refs() unless you can be sure that these weren't
1212 * the last references.
1213 *
1214 * Context: May be called in process or interrupt context, but not in NMI
1215 * context. May be called while holding a spinlock.
1216 */
1217static inline void folio_put_refs(struct folio *folio, int refs)
1218{
1219 if (folio_ref_sub_and_test(folio, refs))
1220 __put_page(&folio->page);
1221}
1222
1223static inline void put_page(struct page *page)
1224{
1225 struct folio *folio = page_folio(page);
1226
1227 /*
1228 * For some devmap managed pages we need to catch refcount transition
1229 * from 2 to 1:
1230 */
1231 if (put_devmap_managed_page(&folio->page))
1232 return;
1233 folio_put(folio);
1234}
1235
1236/*
1237 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1238 * the page's refcount so that two separate items are tracked: the original page
1239 * reference count, and also a new count of how many pin_user_pages() calls were
1240 * made against the page. ("gup-pinned" is another term for the latter).
1241 *
1242 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1243 * distinct from normal pages. As such, the unpin_user_page() call (and its
1244 * variants) must be used in order to release gup-pinned pages.
1245 *
1246 * Choice of value:
1247 *
1248 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1249 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1250 * simpler, due to the fact that adding an even power of two to the page
1251 * refcount has the effect of using only the upper N bits, for the code that
1252 * counts up using the bias value. This means that the lower bits are left for
1253 * the exclusive use of the original code that increments and decrements by one
1254 * (or at least, by much smaller values than the bias value).
1255 *
1256 * Of course, once the lower bits overflow into the upper bits (and this is
1257 * OK, because subtraction recovers the original values), then visual inspection
1258 * no longer suffices to directly view the separate counts. However, for normal
1259 * applications that don't have huge page reference counts, this won't be an
1260 * issue.
1261 *
1262 * Locking: the lockless algorithm described in folio_try_get_rcu()
1263 * provides safe operation for get_user_pages(), page_mkclean() and
1264 * other calls that race to set up page table entries.
1265 */
1266#define GUP_PIN_COUNTING_BIAS (1U << 10)
1267
1268void unpin_user_page(struct page *page);
1269void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1270 bool make_dirty);
1271void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1272 bool make_dirty);
1273void unpin_user_pages(struct page **pages, unsigned long npages);
1274
1275static inline bool is_cow_mapping(vm_flags_t flags)
1276{
1277 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1278}
1279
1280#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1281#define SECTION_IN_PAGE_FLAGS
1282#endif
1283
1284/*
1285 * The identification function is mainly used by the buddy allocator for
1286 * determining if two pages could be buddies. We are not really identifying
1287 * the zone since we could be using the section number id if we do not have
1288 * node id available in page flags.
1289 * We only guarantee that it will return the same value for two combinable
1290 * pages in a zone.
1291 */
1292static inline int page_zone_id(struct page *page)
1293{
1294 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1295}
1296
1297#ifdef NODE_NOT_IN_PAGE_FLAGS
1298extern int page_to_nid(const struct page *page);
1299#else
1300static inline int page_to_nid(const struct page *page)
1301{
1302 struct page *p = (struct page *)page;
1303
1304 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1305}
1306#endif
1307
1308static inline int folio_nid(const struct folio *folio)
1309{
1310 return page_to_nid(&folio->page);
1311}
1312
1313#ifdef CONFIG_NUMA_BALANCING
1314static inline int cpu_pid_to_cpupid(int cpu, int pid)
1315{
1316 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1317}
1318
1319static inline int cpupid_to_pid(int cpupid)
1320{
1321 return cpupid & LAST__PID_MASK;
1322}
1323
1324static inline int cpupid_to_cpu(int cpupid)
1325{
1326 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1327}
1328
1329static inline int cpupid_to_nid(int cpupid)
1330{
1331 return cpu_to_node(cpupid_to_cpu(cpupid));
1332}
1333
1334static inline bool cpupid_pid_unset(int cpupid)
1335{
1336 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1337}
1338
1339static inline bool cpupid_cpu_unset(int cpupid)
1340{
1341 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1342}
1343
1344static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1345{
1346 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1347}
1348
1349#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1350#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1351static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1352{
1353 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1354}
1355
1356static inline int page_cpupid_last(struct page *page)
1357{
1358 return page->_last_cpupid;
1359}
1360static inline void page_cpupid_reset_last(struct page *page)
1361{
1362 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1363}
1364#else
1365static inline int page_cpupid_last(struct page *page)
1366{
1367 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1368}
1369
1370extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1371
1372static inline void page_cpupid_reset_last(struct page *page)
1373{
1374 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1375}
1376#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1377#else /* !CONFIG_NUMA_BALANCING */
1378static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1379{
1380 return page_to_nid(page); /* XXX */
1381}
1382
1383static inline int page_cpupid_last(struct page *page)
1384{
1385 return page_to_nid(page); /* XXX */
1386}
1387
1388static inline int cpupid_to_nid(int cpupid)
1389{
1390 return -1;
1391}
1392
1393static inline int cpupid_to_pid(int cpupid)
1394{
1395 return -1;
1396}
1397
1398static inline int cpupid_to_cpu(int cpupid)
1399{
1400 return -1;
1401}
1402
1403static inline int cpu_pid_to_cpupid(int nid, int pid)
1404{
1405 return -1;
1406}
1407
1408static inline bool cpupid_pid_unset(int cpupid)
1409{
1410 return true;
1411}
1412
1413static inline void page_cpupid_reset_last(struct page *page)
1414{
1415}
1416
1417static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1418{
1419 return false;
1420}
1421#endif /* CONFIG_NUMA_BALANCING */
1422
1423#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1424
1425/*
1426 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1427 * setting tags for all pages to native kernel tag value 0xff, as the default
1428 * value 0x00 maps to 0xff.
1429 */
1430
1431static inline u8 page_kasan_tag(const struct page *page)
1432{
1433 u8 tag = 0xff;
1434
1435 if (kasan_enabled()) {
1436 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1437 tag ^= 0xff;
1438 }
1439
1440 return tag;
1441}
1442
1443static inline void page_kasan_tag_set(struct page *page, u8 tag)
1444{
1445 unsigned long old_flags, flags;
1446
1447 if (!kasan_enabled())
1448 return;
1449
1450 tag ^= 0xff;
1451 old_flags = READ_ONCE(page->flags);
1452 do {
1453 flags = old_flags;
1454 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1455 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1456 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1457}
1458
1459static inline void page_kasan_tag_reset(struct page *page)
1460{
1461 if (kasan_enabled())
1462 page_kasan_tag_set(page, 0xff);
1463}
1464
1465#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1466
1467static inline u8 page_kasan_tag(const struct page *page)
1468{
1469 return 0xff;
1470}
1471
1472static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1473static inline void page_kasan_tag_reset(struct page *page) { }
1474
1475#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1476
1477static inline struct zone *page_zone(const struct page *page)
1478{
1479 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1480}
1481
1482static inline pg_data_t *page_pgdat(const struct page *page)
1483{
1484 return NODE_DATA(page_to_nid(page));
1485}
1486
1487static inline struct zone *folio_zone(const struct folio *folio)
1488{
1489 return page_zone(&folio->page);
1490}
1491
1492static inline pg_data_t *folio_pgdat(const struct folio *folio)
1493{
1494 return page_pgdat(&folio->page);
1495}
1496
1497#ifdef SECTION_IN_PAGE_FLAGS
1498static inline void set_page_section(struct page *page, unsigned long section)
1499{
1500 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1501 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1502}
1503
1504static inline unsigned long page_to_section(const struct page *page)
1505{
1506 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1507}
1508#endif
1509
1510/**
1511 * folio_pfn - Return the Page Frame Number of a folio.
1512 * @folio: The folio.
1513 *
1514 * A folio may contain multiple pages. The pages have consecutive
1515 * Page Frame Numbers.
1516 *
1517 * Return: The Page Frame Number of the first page in the folio.
1518 */
1519static inline unsigned long folio_pfn(struct folio *folio)
1520{
1521 return page_to_pfn(&folio->page);
1522}
1523
1524static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1525{
1526 return &folio_page(folio, 1)->compound_pincount;
1527}
1528
1529/**
1530 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1531 * @folio: The folio.
1532 *
1533 * This function checks if a folio has been pinned via a call to
1534 * a function in the pin_user_pages() family.
1535 *
1536 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1537 * because it means "definitely not pinned for DMA", but true means "probably
1538 * pinned for DMA, but possibly a false positive due to having at least
1539 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1540 *
1541 * False positives are OK, because: a) it's unlikely for a folio to
1542 * get that many refcounts, and b) all the callers of this routine are
1543 * expected to be able to deal gracefully with a false positive.
1544 *
1545 * For large folios, the result will be exactly correct. That's because
1546 * we have more tracking data available: the compound_pincount is used
1547 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1548 *
1549 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1550 *
1551 * Return: True, if it is likely that the page has been "dma-pinned".
1552 * False, if the page is definitely not dma-pinned.
1553 */
1554static inline bool folio_maybe_dma_pinned(struct folio *folio)
1555{
1556 if (folio_test_large(folio))
1557 return atomic_read(folio_pincount_ptr(folio)) > 0;
1558
1559 /*
1560 * folio_ref_count() is signed. If that refcount overflows, then
1561 * folio_ref_count() returns a negative value, and callers will avoid
1562 * further incrementing the refcount.
1563 *
1564 * Here, for that overflow case, use the sign bit to count a little
1565 * bit higher via unsigned math, and thus still get an accurate result.
1566 */
1567 return ((unsigned int)folio_ref_count(folio)) >=
1568 GUP_PIN_COUNTING_BIAS;
1569}
1570
1571static inline bool page_maybe_dma_pinned(struct page *page)
1572{
1573 return folio_maybe_dma_pinned(page_folio(page));
1574}
1575
1576/*
1577 * This should most likely only be called during fork() to see whether we
1578 * should break the cow immediately for an anon page on the src mm.
1579 *
1580 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1581 */
1582static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1583 struct page *page)
1584{
1585 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1586
1587 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1588 return false;
1589
1590 return page_maybe_dma_pinned(page);
1591}
1592
1593/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1594#ifdef CONFIG_MIGRATION
1595static inline bool is_pinnable_page(struct page *page)
1596{
1597#ifdef CONFIG_CMA
1598 int mt = get_pageblock_migratetype(page);
1599
1600 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1601 return false;
1602#endif
1603 return !is_zone_movable_page(page) || is_zero_pfn(page_to_pfn(page));
1604}
1605#else
1606static inline bool is_pinnable_page(struct page *page)
1607{
1608 return true;
1609}
1610#endif
1611
1612static inline bool folio_is_pinnable(struct folio *folio)
1613{
1614 return is_pinnable_page(&folio->page);
1615}
1616
1617static inline void set_page_zone(struct page *page, enum zone_type zone)
1618{
1619 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1620 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1621}
1622
1623static inline void set_page_node(struct page *page, unsigned long node)
1624{
1625 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1626 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1627}
1628
1629static inline void set_page_links(struct page *page, enum zone_type zone,
1630 unsigned long node, unsigned long pfn)
1631{
1632 set_page_zone(page, zone);
1633 set_page_node(page, node);
1634#ifdef SECTION_IN_PAGE_FLAGS
1635 set_page_section(page, pfn_to_section_nr(pfn));
1636#endif
1637}
1638
1639/**
1640 * folio_nr_pages - The number of pages in the folio.
1641 * @folio: The folio.
1642 *
1643 * Return: A positive power of two.
1644 */
1645static inline long folio_nr_pages(struct folio *folio)
1646{
1647 return compound_nr(&folio->page);
1648}
1649
1650/**
1651 * folio_next - Move to the next physical folio.
1652 * @folio: The folio we're currently operating on.
1653 *
1654 * If you have physically contiguous memory which may span more than
1655 * one folio (eg a &struct bio_vec), use this function to move from one
1656 * folio to the next. Do not use it if the memory is only virtually
1657 * contiguous as the folios are almost certainly not adjacent to each
1658 * other. This is the folio equivalent to writing ``page++``.
1659 *
1660 * Context: We assume that the folios are refcounted and/or locked at a
1661 * higher level and do not adjust the reference counts.
1662 * Return: The next struct folio.
1663 */
1664static inline struct folio *folio_next(struct folio *folio)
1665{
1666 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1667}
1668
1669/**
1670 * folio_shift - The size of the memory described by this folio.
1671 * @folio: The folio.
1672 *
1673 * A folio represents a number of bytes which is a power-of-two in size.
1674 * This function tells you which power-of-two the folio is. See also
1675 * folio_size() and folio_order().
1676 *
1677 * Context: The caller should have a reference on the folio to prevent
1678 * it from being split. It is not necessary for the folio to be locked.
1679 * Return: The base-2 logarithm of the size of this folio.
1680 */
1681static inline unsigned int folio_shift(struct folio *folio)
1682{
1683 return PAGE_SHIFT + folio_order(folio);
1684}
1685
1686/**
1687 * folio_size - The number of bytes in a folio.
1688 * @folio: The folio.
1689 *
1690 * Context: The caller should have a reference on the folio to prevent
1691 * it from being split. It is not necessary for the folio to be locked.
1692 * Return: The number of bytes in this folio.
1693 */
1694static inline size_t folio_size(struct folio *folio)
1695{
1696 return PAGE_SIZE << folio_order(folio);
1697}
1698
1699#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1700static inline int arch_make_page_accessible(struct page *page)
1701{
1702 return 0;
1703}
1704#endif
1705
1706#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1707static inline int arch_make_folio_accessible(struct folio *folio)
1708{
1709 int ret;
1710 long i, nr = folio_nr_pages(folio);
1711
1712 for (i = 0; i < nr; i++) {
1713 ret = arch_make_page_accessible(folio_page(folio, i));
1714 if (ret)
1715 break;
1716 }
1717
1718 return ret;
1719}
1720#endif
1721
1722/*
1723 * Some inline functions in vmstat.h depend on page_zone()
1724 */
1725#include <linux/vmstat.h>
1726
1727static __always_inline void *lowmem_page_address(const struct page *page)
1728{
1729 return page_to_virt(page);
1730}
1731
1732#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1733#define HASHED_PAGE_VIRTUAL
1734#endif
1735
1736#if defined(WANT_PAGE_VIRTUAL)
1737static inline void *page_address(const struct page *page)
1738{
1739 return page->virtual;
1740}
1741static inline void set_page_address(struct page *page, void *address)
1742{
1743 page->virtual = address;
1744}
1745#define page_address_init() do { } while(0)
1746#endif
1747
1748#if defined(HASHED_PAGE_VIRTUAL)
1749void *page_address(const struct page *page);
1750void set_page_address(struct page *page, void *virtual);
1751void page_address_init(void);
1752#endif
1753
1754#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1755#define page_address(page) lowmem_page_address(page)
1756#define set_page_address(page, address) do { } while(0)
1757#define page_address_init() do { } while(0)
1758#endif
1759
1760static inline void *folio_address(const struct folio *folio)
1761{
1762 return page_address(&folio->page);
1763}
1764
1765extern void *page_rmapping(struct page *page);
1766extern pgoff_t __page_file_index(struct page *page);
1767
1768/*
1769 * Return the pagecache index of the passed page. Regular pagecache pages
1770 * use ->index whereas swapcache pages use swp_offset(->private)
1771 */
1772static inline pgoff_t page_index(struct page *page)
1773{
1774 if (unlikely(PageSwapCache(page)))
1775 return __page_file_index(page);
1776 return page->index;
1777}
1778
1779bool page_mapped(struct page *page);
1780bool folio_mapped(struct folio *folio);
1781
1782/*
1783 * Return true only if the page has been allocated with
1784 * ALLOC_NO_WATERMARKS and the low watermark was not
1785 * met implying that the system is under some pressure.
1786 */
1787static inline bool page_is_pfmemalloc(const struct page *page)
1788{
1789 /*
1790 * lru.next has bit 1 set if the page is allocated from the
1791 * pfmemalloc reserves. Callers may simply overwrite it if
1792 * they do not need to preserve that information.
1793 */
1794 return (uintptr_t)page->lru.next & BIT(1);
1795}
1796
1797/*
1798 * Only to be called by the page allocator on a freshly allocated
1799 * page.
1800 */
1801static inline void set_page_pfmemalloc(struct page *page)
1802{
1803 page->lru.next = (void *)BIT(1);
1804}
1805
1806static inline void clear_page_pfmemalloc(struct page *page)
1807{
1808 page->lru.next = NULL;
1809}
1810
1811/*
1812 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1813 */
1814extern void pagefault_out_of_memory(void);
1815
1816#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1817#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1818#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1819
1820/*
1821 * Flags passed to show_mem() and show_free_areas() to suppress output in
1822 * various contexts.
1823 */
1824#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1825
1826extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1827
1828#ifdef CONFIG_MMU
1829extern bool can_do_mlock(void);
1830#else
1831static inline bool can_do_mlock(void) { return false; }
1832#endif
1833extern int user_shm_lock(size_t, struct ucounts *);
1834extern void user_shm_unlock(size_t, struct ucounts *);
1835
1836struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1837 pte_t pte);
1838struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1839 pmd_t pmd);
1840
1841void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1842 unsigned long size);
1843void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1844 unsigned long size);
1845void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1846 unsigned long start, unsigned long end);
1847
1848struct mmu_notifier_range;
1849
1850void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1851 unsigned long end, unsigned long floor, unsigned long ceiling);
1852int
1853copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1854int follow_pte(struct mm_struct *mm, unsigned long address,
1855 pte_t **ptepp, spinlock_t **ptlp);
1856int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1857 unsigned long *pfn);
1858int follow_phys(struct vm_area_struct *vma, unsigned long address,
1859 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1860int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1861 void *buf, int len, int write);
1862
1863extern void truncate_pagecache(struct inode *inode, loff_t new);
1864extern void truncate_setsize(struct inode *inode, loff_t newsize);
1865void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1866void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1867int generic_error_remove_page(struct address_space *mapping, struct page *page);
1868
1869#ifdef CONFIG_MMU
1870extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1871 unsigned long address, unsigned int flags,
1872 struct pt_regs *regs);
1873extern int fixup_user_fault(struct mm_struct *mm,
1874 unsigned long address, unsigned int fault_flags,
1875 bool *unlocked);
1876void unmap_mapping_pages(struct address_space *mapping,
1877 pgoff_t start, pgoff_t nr, bool even_cows);
1878void unmap_mapping_range(struct address_space *mapping,
1879 loff_t const holebegin, loff_t const holelen, int even_cows);
1880#else
1881static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1882 unsigned long address, unsigned int flags,
1883 struct pt_regs *regs)
1884{
1885 /* should never happen if there's no MMU */
1886 BUG();
1887 return VM_FAULT_SIGBUS;
1888}
1889static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1890 unsigned int fault_flags, bool *unlocked)
1891{
1892 /* should never happen if there's no MMU */
1893 BUG();
1894 return -EFAULT;
1895}
1896static inline void unmap_mapping_pages(struct address_space *mapping,
1897 pgoff_t start, pgoff_t nr, bool even_cows) { }
1898static inline void unmap_mapping_range(struct address_space *mapping,
1899 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1900#endif
1901
1902static inline void unmap_shared_mapping_range(struct address_space *mapping,
1903 loff_t const holebegin, loff_t const holelen)
1904{
1905 unmap_mapping_range(mapping, holebegin, holelen, 0);
1906}
1907
1908extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1909 void *buf, int len, unsigned int gup_flags);
1910extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1911 void *buf, int len, unsigned int gup_flags);
1912extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1913 void *buf, int len, unsigned int gup_flags);
1914
1915long get_user_pages_remote(struct mm_struct *mm,
1916 unsigned long start, unsigned long nr_pages,
1917 unsigned int gup_flags, struct page **pages,
1918 struct vm_area_struct **vmas, int *locked);
1919long pin_user_pages_remote(struct mm_struct *mm,
1920 unsigned long start, unsigned long nr_pages,
1921 unsigned int gup_flags, struct page **pages,
1922 struct vm_area_struct **vmas, int *locked);
1923long get_user_pages(unsigned long start, unsigned long nr_pages,
1924 unsigned int gup_flags, struct page **pages,
1925 struct vm_area_struct **vmas);
1926long pin_user_pages(unsigned long start, unsigned long nr_pages,
1927 unsigned int gup_flags, struct page **pages,
1928 struct vm_area_struct **vmas);
1929long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1930 struct page **pages, unsigned int gup_flags);
1931long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1932 struct page **pages, unsigned int gup_flags);
1933
1934int get_user_pages_fast(unsigned long start, int nr_pages,
1935 unsigned int gup_flags, struct page **pages);
1936int pin_user_pages_fast(unsigned long start, int nr_pages,
1937 unsigned int gup_flags, struct page **pages);
1938
1939int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1940int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1941 struct task_struct *task, bool bypass_rlim);
1942
1943struct kvec;
1944int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1945 struct page **pages);
1946struct page *get_dump_page(unsigned long addr);
1947
1948bool folio_mark_dirty(struct folio *folio);
1949bool set_page_dirty(struct page *page);
1950int set_page_dirty_lock(struct page *page);
1951
1952int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1953
1954extern unsigned long move_page_tables(struct vm_area_struct *vma,
1955 unsigned long old_addr, struct vm_area_struct *new_vma,
1956 unsigned long new_addr, unsigned long len,
1957 bool need_rmap_locks);
1958
1959/*
1960 * Flags used by change_protection(). For now we make it a bitmap so
1961 * that we can pass in multiple flags just like parameters. However
1962 * for now all the callers are only use one of the flags at the same
1963 * time.
1964 */
1965/* Whether we should allow dirty bit accounting */
1966#define MM_CP_DIRTY_ACCT (1UL << 0)
1967/* Whether this protection change is for NUMA hints */
1968#define MM_CP_PROT_NUMA (1UL << 1)
1969/* Whether this change is for write protecting */
1970#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1971#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1972#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1973 MM_CP_UFFD_WP_RESOLVE)
1974
1975extern unsigned long change_protection(struct mmu_gather *tlb,
1976 struct vm_area_struct *vma, unsigned long start,
1977 unsigned long end, pgprot_t newprot,
1978 unsigned long cp_flags);
1979extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1980 struct vm_area_struct **pprev, unsigned long start,
1981 unsigned long end, unsigned long newflags);
1982
1983/*
1984 * doesn't attempt to fault and will return short.
1985 */
1986int get_user_pages_fast_only(unsigned long start, int nr_pages,
1987 unsigned int gup_flags, struct page **pages);
1988int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1989 unsigned int gup_flags, struct page **pages);
1990
1991static inline bool get_user_page_fast_only(unsigned long addr,
1992 unsigned int gup_flags, struct page **pagep)
1993{
1994 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1995}
1996/*
1997 * per-process(per-mm_struct) statistics.
1998 */
1999static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2000{
2001 long val = atomic_long_read(&mm->rss_stat.count[member]);
2002
2003#ifdef SPLIT_RSS_COUNTING
2004 /*
2005 * counter is updated in asynchronous manner and may go to minus.
2006 * But it's never be expected number for users.
2007 */
2008 if (val < 0)
2009 val = 0;
2010#endif
2011 return (unsigned long)val;
2012}
2013
2014void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2015
2016static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2017{
2018 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2019
2020 mm_trace_rss_stat(mm, member, count);
2021}
2022
2023static inline void inc_mm_counter(struct mm_struct *mm, int member)
2024{
2025 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2026
2027 mm_trace_rss_stat(mm, member, count);
2028}
2029
2030static inline void dec_mm_counter(struct mm_struct *mm, int member)
2031{
2032 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2033
2034 mm_trace_rss_stat(mm, member, count);
2035}
2036
2037/* Optimized variant when page is already known not to be PageAnon */
2038static inline int mm_counter_file(struct page *page)
2039{
2040 if (PageSwapBacked(page))
2041 return MM_SHMEMPAGES;
2042 return MM_FILEPAGES;
2043}
2044
2045static inline int mm_counter(struct page *page)
2046{
2047 if (PageAnon(page))
2048 return MM_ANONPAGES;
2049 return mm_counter_file(page);
2050}
2051
2052static inline unsigned long get_mm_rss(struct mm_struct *mm)
2053{
2054 return get_mm_counter(mm, MM_FILEPAGES) +
2055 get_mm_counter(mm, MM_ANONPAGES) +
2056 get_mm_counter(mm, MM_SHMEMPAGES);
2057}
2058
2059static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2060{
2061 return max(mm->hiwater_rss, get_mm_rss(mm));
2062}
2063
2064static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2065{
2066 return max(mm->hiwater_vm, mm->total_vm);
2067}
2068
2069static inline void update_hiwater_rss(struct mm_struct *mm)
2070{
2071 unsigned long _rss = get_mm_rss(mm);
2072
2073 if ((mm)->hiwater_rss < _rss)
2074 (mm)->hiwater_rss = _rss;
2075}
2076
2077static inline void update_hiwater_vm(struct mm_struct *mm)
2078{
2079 if (mm->hiwater_vm < mm->total_vm)
2080 mm->hiwater_vm = mm->total_vm;
2081}
2082
2083static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2084{
2085 mm->hiwater_rss = get_mm_rss(mm);
2086}
2087
2088static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2089 struct mm_struct *mm)
2090{
2091 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2092
2093 if (*maxrss < hiwater_rss)
2094 *maxrss = hiwater_rss;
2095}
2096
2097#if defined(SPLIT_RSS_COUNTING)
2098void sync_mm_rss(struct mm_struct *mm);
2099#else
2100static inline void sync_mm_rss(struct mm_struct *mm)
2101{
2102}
2103#endif
2104
2105#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2106static inline int pte_special(pte_t pte)
2107{
2108 return 0;
2109}
2110
2111static inline pte_t pte_mkspecial(pte_t pte)
2112{
2113 return pte;
2114}
2115#endif
2116
2117#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2118static inline int pte_devmap(pte_t pte)
2119{
2120 return 0;
2121}
2122#endif
2123
2124int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2125
2126extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2127 spinlock_t **ptl);
2128static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2129 spinlock_t **ptl)
2130{
2131 pte_t *ptep;
2132 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2133 return ptep;
2134}
2135
2136#ifdef __PAGETABLE_P4D_FOLDED
2137static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2138 unsigned long address)
2139{
2140 return 0;
2141}
2142#else
2143int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2144#endif
2145
2146#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2147static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2148 unsigned long address)
2149{
2150 return 0;
2151}
2152static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2153static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2154
2155#else
2156int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2157
2158static inline void mm_inc_nr_puds(struct mm_struct *mm)
2159{
2160 if (mm_pud_folded(mm))
2161 return;
2162 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2163}
2164
2165static inline void mm_dec_nr_puds(struct mm_struct *mm)
2166{
2167 if (mm_pud_folded(mm))
2168 return;
2169 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2170}
2171#endif
2172
2173#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2174static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2175 unsigned long address)
2176{
2177 return 0;
2178}
2179
2180static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2181static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2182
2183#else
2184int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2185
2186static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2187{
2188 if (mm_pmd_folded(mm))
2189 return;
2190 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2191}
2192
2193static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2194{
2195 if (mm_pmd_folded(mm))
2196 return;
2197 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2198}
2199#endif
2200
2201#ifdef CONFIG_MMU
2202static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2203{
2204 atomic_long_set(&mm->pgtables_bytes, 0);
2205}
2206
2207static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2208{
2209 return atomic_long_read(&mm->pgtables_bytes);
2210}
2211
2212static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2213{
2214 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2215}
2216
2217static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2218{
2219 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2220}
2221#else
2222
2223static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2224static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2225{
2226 return 0;
2227}
2228
2229static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2230static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2231#endif
2232
2233int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2234int __pte_alloc_kernel(pmd_t *pmd);
2235
2236#if defined(CONFIG_MMU)
2237
2238static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2239 unsigned long address)
2240{
2241 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2242 NULL : p4d_offset(pgd, address);
2243}
2244
2245static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2246 unsigned long address)
2247{
2248 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2249 NULL : pud_offset(p4d, address);
2250}
2251
2252static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2253{
2254 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2255 NULL: pmd_offset(pud, address);
2256}
2257#endif /* CONFIG_MMU */
2258
2259#if USE_SPLIT_PTE_PTLOCKS
2260#if ALLOC_SPLIT_PTLOCKS
2261void __init ptlock_cache_init(void);
2262extern bool ptlock_alloc(struct page *page);
2263extern void ptlock_free(struct page *page);
2264
2265static inline spinlock_t *ptlock_ptr(struct page *page)
2266{
2267 return page->ptl;
2268}
2269#else /* ALLOC_SPLIT_PTLOCKS */
2270static inline void ptlock_cache_init(void)
2271{
2272}
2273
2274static inline bool ptlock_alloc(struct page *page)
2275{
2276 return true;
2277}
2278
2279static inline void ptlock_free(struct page *page)
2280{
2281}
2282
2283static inline spinlock_t *ptlock_ptr(struct page *page)
2284{
2285 return &page->ptl;
2286}
2287#endif /* ALLOC_SPLIT_PTLOCKS */
2288
2289static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2290{
2291 return ptlock_ptr(pmd_page(*pmd));
2292}
2293
2294static inline bool ptlock_init(struct page *page)
2295{
2296 /*
2297 * prep_new_page() initialize page->private (and therefore page->ptl)
2298 * with 0. Make sure nobody took it in use in between.
2299 *
2300 * It can happen if arch try to use slab for page table allocation:
2301 * slab code uses page->slab_cache, which share storage with page->ptl.
2302 */
2303 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2304 if (!ptlock_alloc(page))
2305 return false;
2306 spin_lock_init(ptlock_ptr(page));
2307 return true;
2308}
2309
2310#else /* !USE_SPLIT_PTE_PTLOCKS */
2311/*
2312 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2313 */
2314static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2315{
2316 return &mm->page_table_lock;
2317}
2318static inline void ptlock_cache_init(void) {}
2319static inline bool ptlock_init(struct page *page) { return true; }
2320static inline void ptlock_free(struct page *page) {}
2321#endif /* USE_SPLIT_PTE_PTLOCKS */
2322
2323static inline void pgtable_init(void)
2324{
2325 ptlock_cache_init();
2326 pgtable_cache_init();
2327}
2328
2329static inline bool pgtable_pte_page_ctor(struct page *page)
2330{
2331 if (!ptlock_init(page))
2332 return false;
2333 __SetPageTable(page);
2334 inc_lruvec_page_state(page, NR_PAGETABLE);
2335 return true;
2336}
2337
2338static inline void pgtable_pte_page_dtor(struct page *page)
2339{
2340 ptlock_free(page);
2341 __ClearPageTable(page);
2342 dec_lruvec_page_state(page, NR_PAGETABLE);
2343}
2344
2345#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2346({ \
2347 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2348 pte_t *__pte = pte_offset_map(pmd, address); \
2349 *(ptlp) = __ptl; \
2350 spin_lock(__ptl); \
2351 __pte; \
2352})
2353
2354#define pte_unmap_unlock(pte, ptl) do { \
2355 spin_unlock(ptl); \
2356 pte_unmap(pte); \
2357} while (0)
2358
2359#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2360
2361#define pte_alloc_map(mm, pmd, address) \
2362 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2363
2364#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2365 (pte_alloc(mm, pmd) ? \
2366 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2367
2368#define pte_alloc_kernel(pmd, address) \
2369 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2370 NULL: pte_offset_kernel(pmd, address))
2371
2372#if USE_SPLIT_PMD_PTLOCKS
2373
2374static struct page *pmd_to_page(pmd_t *pmd)
2375{
2376 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2377 return virt_to_page((void *)((unsigned long) pmd & mask));
2378}
2379
2380static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2381{
2382 return ptlock_ptr(pmd_to_page(pmd));
2383}
2384
2385static inline bool pmd_ptlock_init(struct page *page)
2386{
2387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2388 page->pmd_huge_pte = NULL;
2389#endif
2390 return ptlock_init(page);
2391}
2392
2393static inline void pmd_ptlock_free(struct page *page)
2394{
2395#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2396 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2397#endif
2398 ptlock_free(page);
2399}
2400
2401#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2402
2403#else
2404
2405static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2406{
2407 return &mm->page_table_lock;
2408}
2409
2410static inline bool pmd_ptlock_init(struct page *page) { return true; }
2411static inline void pmd_ptlock_free(struct page *page) {}
2412
2413#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2414
2415#endif
2416
2417static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2418{
2419 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2420 spin_lock(ptl);
2421 return ptl;
2422}
2423
2424static inline bool pgtable_pmd_page_ctor(struct page *page)
2425{
2426 if (!pmd_ptlock_init(page))
2427 return false;
2428 __SetPageTable(page);
2429 inc_lruvec_page_state(page, NR_PAGETABLE);
2430 return true;
2431}
2432
2433static inline void pgtable_pmd_page_dtor(struct page *page)
2434{
2435 pmd_ptlock_free(page);
2436 __ClearPageTable(page);
2437 dec_lruvec_page_state(page, NR_PAGETABLE);
2438}
2439
2440/*
2441 * No scalability reason to split PUD locks yet, but follow the same pattern
2442 * as the PMD locks to make it easier if we decide to. The VM should not be
2443 * considered ready to switch to split PUD locks yet; there may be places
2444 * which need to be converted from page_table_lock.
2445 */
2446static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2447{
2448 return &mm->page_table_lock;
2449}
2450
2451static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2452{
2453 spinlock_t *ptl = pud_lockptr(mm, pud);
2454
2455 spin_lock(ptl);
2456 return ptl;
2457}
2458
2459extern void __init pagecache_init(void);
2460extern void free_initmem(void);
2461
2462/*
2463 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2464 * into the buddy system. The freed pages will be poisoned with pattern
2465 * "poison" if it's within range [0, UCHAR_MAX].
2466 * Return pages freed into the buddy system.
2467 */
2468extern unsigned long free_reserved_area(void *start, void *end,
2469 int poison, const char *s);
2470
2471extern void adjust_managed_page_count(struct page *page, long count);
2472extern void mem_init_print_info(void);
2473
2474extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2475
2476/* Free the reserved page into the buddy system, so it gets managed. */
2477static inline void free_reserved_page(struct page *page)
2478{
2479 ClearPageReserved(page);
2480 init_page_count(page);
2481 __free_page(page);
2482 adjust_managed_page_count(page, 1);
2483}
2484#define free_highmem_page(page) free_reserved_page(page)
2485
2486static inline void mark_page_reserved(struct page *page)
2487{
2488 SetPageReserved(page);
2489 adjust_managed_page_count(page, -1);
2490}
2491
2492/*
2493 * Default method to free all the __init memory into the buddy system.
2494 * The freed pages will be poisoned with pattern "poison" if it's within
2495 * range [0, UCHAR_MAX].
2496 * Return pages freed into the buddy system.
2497 */
2498static inline unsigned long free_initmem_default(int poison)
2499{
2500 extern char __init_begin[], __init_end[];
2501
2502 return free_reserved_area(&__init_begin, &__init_end,
2503 poison, "unused kernel image (initmem)");
2504}
2505
2506static inline unsigned long get_num_physpages(void)
2507{
2508 int nid;
2509 unsigned long phys_pages = 0;
2510
2511 for_each_online_node(nid)
2512 phys_pages += node_present_pages(nid);
2513
2514 return phys_pages;
2515}
2516
2517/*
2518 * Using memblock node mappings, an architecture may initialise its
2519 * zones, allocate the backing mem_map and account for memory holes in an
2520 * architecture independent manner.
2521 *
2522 * An architecture is expected to register range of page frames backed by
2523 * physical memory with memblock_add[_node]() before calling
2524 * free_area_init() passing in the PFN each zone ends at. At a basic
2525 * usage, an architecture is expected to do something like
2526 *
2527 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2528 * max_highmem_pfn};
2529 * for_each_valid_physical_page_range()
2530 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2531 * free_area_init(max_zone_pfns);
2532 */
2533void free_area_init(unsigned long *max_zone_pfn);
2534unsigned long node_map_pfn_alignment(void);
2535unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2536 unsigned long end_pfn);
2537extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2538 unsigned long end_pfn);
2539extern void get_pfn_range_for_nid(unsigned int nid,
2540 unsigned long *start_pfn, unsigned long *end_pfn);
2541extern unsigned long find_min_pfn_with_active_regions(void);
2542
2543#ifndef CONFIG_NUMA
2544static inline int early_pfn_to_nid(unsigned long pfn)
2545{
2546 return 0;
2547}
2548#else
2549/* please see mm/page_alloc.c */
2550extern int __meminit early_pfn_to_nid(unsigned long pfn);
2551#endif
2552
2553extern void set_dma_reserve(unsigned long new_dma_reserve);
2554extern void memmap_init_range(unsigned long, int, unsigned long,
2555 unsigned long, unsigned long, enum meminit_context,
2556 struct vmem_altmap *, int migratetype);
2557extern void setup_per_zone_wmarks(void);
2558extern void calculate_min_free_kbytes(void);
2559extern int __meminit init_per_zone_wmark_min(void);
2560extern void mem_init(void);
2561extern void __init mmap_init(void);
2562extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2563extern long si_mem_available(void);
2564extern void si_meminfo(struct sysinfo * val);
2565extern void si_meminfo_node(struct sysinfo *val, int nid);
2566#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2567extern unsigned long arch_reserved_kernel_pages(void);
2568#endif
2569
2570extern __printf(3, 4)
2571void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2572
2573extern void setup_per_cpu_pageset(void);
2574
2575/* page_alloc.c */
2576extern int min_free_kbytes;
2577extern int watermark_boost_factor;
2578extern int watermark_scale_factor;
2579extern bool arch_has_descending_max_zone_pfns(void);
2580
2581/* nommu.c */
2582extern atomic_long_t mmap_pages_allocated;
2583extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2584
2585/* interval_tree.c */
2586void vma_interval_tree_insert(struct vm_area_struct *node,
2587 struct rb_root_cached *root);
2588void vma_interval_tree_insert_after(struct vm_area_struct *node,
2589 struct vm_area_struct *prev,
2590 struct rb_root_cached *root);
2591void vma_interval_tree_remove(struct vm_area_struct *node,
2592 struct rb_root_cached *root);
2593struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2594 unsigned long start, unsigned long last);
2595struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2596 unsigned long start, unsigned long last);
2597
2598#define vma_interval_tree_foreach(vma, root, start, last) \
2599 for (vma = vma_interval_tree_iter_first(root, start, last); \
2600 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2601
2602void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2603 struct rb_root_cached *root);
2604void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2605 struct rb_root_cached *root);
2606struct anon_vma_chain *
2607anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2608 unsigned long start, unsigned long last);
2609struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2610 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2611#ifdef CONFIG_DEBUG_VM_RB
2612void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2613#endif
2614
2615#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2616 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2617 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2618
2619/* mmap.c */
2620extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2621extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2622 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2623 struct vm_area_struct *expand);
2624static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2625 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2626{
2627 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2628}
2629extern struct vm_area_struct *vma_merge(struct mm_struct *,
2630 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2631 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2632 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2633extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2634extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2635 unsigned long addr, int new_below);
2636extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2637 unsigned long addr, int new_below);
2638extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2639extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2640 struct rb_node **, struct rb_node *);
2641extern void unlink_file_vma(struct vm_area_struct *);
2642extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2643 unsigned long addr, unsigned long len, pgoff_t pgoff,
2644 bool *need_rmap_locks);
2645extern void exit_mmap(struct mm_struct *);
2646
2647static inline int check_data_rlimit(unsigned long rlim,
2648 unsigned long new,
2649 unsigned long start,
2650 unsigned long end_data,
2651 unsigned long start_data)
2652{
2653 if (rlim < RLIM_INFINITY) {
2654 if (((new - start) + (end_data - start_data)) > rlim)
2655 return -ENOSPC;
2656 }
2657
2658 return 0;
2659}
2660
2661extern int mm_take_all_locks(struct mm_struct *mm);
2662extern void mm_drop_all_locks(struct mm_struct *mm);
2663
2664extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2665extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2666extern struct file *get_mm_exe_file(struct mm_struct *mm);
2667extern struct file *get_task_exe_file(struct task_struct *task);
2668
2669extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2670extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2671
2672extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2673 const struct vm_special_mapping *sm);
2674extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2675 unsigned long addr, unsigned long len,
2676 unsigned long flags,
2677 const struct vm_special_mapping *spec);
2678/* This is an obsolete alternative to _install_special_mapping. */
2679extern int install_special_mapping(struct mm_struct *mm,
2680 unsigned long addr, unsigned long len,
2681 unsigned long flags, struct page **pages);
2682
2683unsigned long randomize_stack_top(unsigned long stack_top);
2684unsigned long randomize_page(unsigned long start, unsigned long range);
2685
2686extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2687
2688extern unsigned long mmap_region(struct file *file, unsigned long addr,
2689 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2690 struct list_head *uf);
2691extern unsigned long do_mmap(struct file *file, unsigned long addr,
2692 unsigned long len, unsigned long prot, unsigned long flags,
2693 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2694extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2695 struct list_head *uf, bool downgrade);
2696extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2697 struct list_head *uf);
2698extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2699
2700#ifdef CONFIG_MMU
2701extern int __mm_populate(unsigned long addr, unsigned long len,
2702 int ignore_errors);
2703static inline void mm_populate(unsigned long addr, unsigned long len)
2704{
2705 /* Ignore errors */
2706 (void) __mm_populate(addr, len, 1);
2707}
2708#else
2709static inline void mm_populate(unsigned long addr, unsigned long len) {}
2710#endif
2711
2712/* These take the mm semaphore themselves */
2713extern int __must_check vm_brk(unsigned long, unsigned long);
2714extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2715extern int vm_munmap(unsigned long, size_t);
2716extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2717 unsigned long, unsigned long,
2718 unsigned long, unsigned long);
2719
2720struct vm_unmapped_area_info {
2721#define VM_UNMAPPED_AREA_TOPDOWN 1
2722 unsigned long flags;
2723 unsigned long length;
2724 unsigned long low_limit;
2725 unsigned long high_limit;
2726 unsigned long align_mask;
2727 unsigned long align_offset;
2728};
2729
2730extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2731
2732/* truncate.c */
2733extern void truncate_inode_pages(struct address_space *, loff_t);
2734extern void truncate_inode_pages_range(struct address_space *,
2735 loff_t lstart, loff_t lend);
2736extern void truncate_inode_pages_final(struct address_space *);
2737
2738/* generic vm_area_ops exported for stackable file systems */
2739extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2740extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2741 pgoff_t start_pgoff, pgoff_t end_pgoff);
2742extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2743
2744extern unsigned long stack_guard_gap;
2745/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2746extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2747
2748/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2749extern int expand_downwards(struct vm_area_struct *vma,
2750 unsigned long address);
2751#if VM_GROWSUP
2752extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2753#else
2754 #define expand_upwards(vma, address) (0)
2755#endif
2756
2757/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2758extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2759extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2760 struct vm_area_struct **pprev);
2761
2762/**
2763 * find_vma_intersection() - Look up the first VMA which intersects the interval
2764 * @mm: The process address space.
2765 * @start_addr: The inclusive start user address.
2766 * @end_addr: The exclusive end user address.
2767 *
2768 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2769 * start_addr < end_addr.
2770 */
2771static inline
2772struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2773 unsigned long start_addr,
2774 unsigned long end_addr)
2775{
2776 struct vm_area_struct *vma = find_vma(mm, start_addr);
2777
2778 if (vma && end_addr <= vma->vm_start)
2779 vma = NULL;
2780 return vma;
2781}
2782
2783/**
2784 * vma_lookup() - Find a VMA at a specific address
2785 * @mm: The process address space.
2786 * @addr: The user address.
2787 *
2788 * Return: The vm_area_struct at the given address, %NULL otherwise.
2789 */
2790static inline
2791struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2792{
2793 struct vm_area_struct *vma = find_vma(mm, addr);
2794
2795 if (vma && addr < vma->vm_start)
2796 vma = NULL;
2797
2798 return vma;
2799}
2800
2801static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2802{
2803 unsigned long vm_start = vma->vm_start;
2804
2805 if (vma->vm_flags & VM_GROWSDOWN) {
2806 vm_start -= stack_guard_gap;
2807 if (vm_start > vma->vm_start)
2808 vm_start = 0;
2809 }
2810 return vm_start;
2811}
2812
2813static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2814{
2815 unsigned long vm_end = vma->vm_end;
2816
2817 if (vma->vm_flags & VM_GROWSUP) {
2818 vm_end += stack_guard_gap;
2819 if (vm_end < vma->vm_end)
2820 vm_end = -PAGE_SIZE;
2821 }
2822 return vm_end;
2823}
2824
2825static inline unsigned long vma_pages(struct vm_area_struct *vma)
2826{
2827 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2828}
2829
2830/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2831static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2832 unsigned long vm_start, unsigned long vm_end)
2833{
2834 struct vm_area_struct *vma = find_vma(mm, vm_start);
2835
2836 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2837 vma = NULL;
2838
2839 return vma;
2840}
2841
2842static inline bool range_in_vma(struct vm_area_struct *vma,
2843 unsigned long start, unsigned long end)
2844{
2845 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2846}
2847
2848#ifdef CONFIG_MMU
2849pgprot_t vm_get_page_prot(unsigned long vm_flags);
2850void vma_set_page_prot(struct vm_area_struct *vma);
2851#else
2852static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2853{
2854 return __pgprot(0);
2855}
2856static inline void vma_set_page_prot(struct vm_area_struct *vma)
2857{
2858 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2859}
2860#endif
2861
2862void vma_set_file(struct vm_area_struct *vma, struct file *file);
2863
2864#ifdef CONFIG_NUMA_BALANCING
2865unsigned long change_prot_numa(struct vm_area_struct *vma,
2866 unsigned long start, unsigned long end);
2867#endif
2868
2869struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2870int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2871 unsigned long pfn, unsigned long size, pgprot_t);
2872int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2873 unsigned long pfn, unsigned long size, pgprot_t prot);
2874int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2875int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2876 struct page **pages, unsigned long *num);
2877int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2878 unsigned long num);
2879int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2880 unsigned long num);
2881vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2882 unsigned long pfn);
2883vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2884 unsigned long pfn, pgprot_t pgprot);
2885vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2886 pfn_t pfn);
2887vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2888 pfn_t pfn, pgprot_t pgprot);
2889vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2890 unsigned long addr, pfn_t pfn);
2891int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2892
2893static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2894 unsigned long addr, struct page *page)
2895{
2896 int err = vm_insert_page(vma, addr, page);
2897
2898 if (err == -ENOMEM)
2899 return VM_FAULT_OOM;
2900 if (err < 0 && err != -EBUSY)
2901 return VM_FAULT_SIGBUS;
2902
2903 return VM_FAULT_NOPAGE;
2904}
2905
2906#ifndef io_remap_pfn_range
2907static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2908 unsigned long addr, unsigned long pfn,
2909 unsigned long size, pgprot_t prot)
2910{
2911 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2912}
2913#endif
2914
2915static inline vm_fault_t vmf_error(int err)
2916{
2917 if (err == -ENOMEM)
2918 return VM_FAULT_OOM;
2919 return VM_FAULT_SIGBUS;
2920}
2921
2922struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2923 unsigned int foll_flags);
2924
2925#define FOLL_WRITE 0x01 /* check pte is writable */
2926#define FOLL_TOUCH 0x02 /* mark page accessed */
2927#define FOLL_GET 0x04 /* do get_page on page */
2928#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2929#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2930#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2931 * and return without waiting upon it */
2932#define FOLL_NOFAULT 0x80 /* do not fault in pages */
2933#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2934#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2935#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2936#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2937#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2938#define FOLL_COW 0x4000 /* internal GUP flag */
2939#define FOLL_ANON 0x8000 /* don't do file mappings */
2940#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2941#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2942#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2943#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2944
2945/*
2946 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2947 * other. Here is what they mean, and how to use them:
2948 *
2949 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2950 * period _often_ under userspace control. This is in contrast to
2951 * iov_iter_get_pages(), whose usages are transient.
2952 *
2953 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2954 * lifetime enforced by the filesystem and we need guarantees that longterm
2955 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2956 * the filesystem. Ideas for this coordination include revoking the longterm
2957 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2958 * added after the problem with filesystems was found FS DAX VMAs are
2959 * specifically failed. Filesystem pages are still subject to bugs and use of
2960 * FOLL_LONGTERM should be avoided on those pages.
2961 *
2962 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2963 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2964 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2965 * is due to an incompatibility with the FS DAX check and
2966 * FAULT_FLAG_ALLOW_RETRY.
2967 *
2968 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2969 * that region. And so, CMA attempts to migrate the page before pinning, when
2970 * FOLL_LONGTERM is specified.
2971 *
2972 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2973 * but an additional pin counting system) will be invoked. This is intended for
2974 * anything that gets a page reference and then touches page data (for example,
2975 * Direct IO). This lets the filesystem know that some non-file-system entity is
2976 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2977 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2978 * a call to unpin_user_page().
2979 *
2980 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2981 * and separate refcounting mechanisms, however, and that means that each has
2982 * its own acquire and release mechanisms:
2983 *
2984 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2985 *
2986 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2987 *
2988 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2989 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2990 * calls applied to them, and that's perfectly OK. This is a constraint on the
2991 * callers, not on the pages.)
2992 *
2993 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2994 * directly by the caller. That's in order to help avoid mismatches when
2995 * releasing pages: get_user_pages*() pages must be released via put_page(),
2996 * while pin_user_pages*() pages must be released via unpin_user_page().
2997 *
2998 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2999 */
3000
3001static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3002{
3003 if (vm_fault & VM_FAULT_OOM)
3004 return -ENOMEM;
3005 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3006 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3007 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3008 return -EFAULT;
3009 return 0;
3010}
3011
3012/*
3013 * Indicates for which pages that are write-protected in the page table,
3014 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3015 * GUP pin will remain consistent with the pages mapped into the page tables
3016 * of the MM.
3017 *
3018 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3019 * PageAnonExclusive() has to protect against concurrent GUP:
3020 * * Ordinary GUP: Using the PT lock
3021 * * GUP-fast and fork(): mm->write_protect_seq
3022 * * GUP-fast and KSM or temporary unmapping (swap, migration):
3023 * clear/invalidate+flush of the page table entry
3024 *
3025 * Must be called with the (sub)page that's actually referenced via the
3026 * page table entry, which might not necessarily be the head page for a
3027 * PTE-mapped THP.
3028 */
3029static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3030{
3031 /*
3032 * FOLL_WRITE is implicitly handled correctly as the page table entry
3033 * has to be writable -- and if it references (part of) an anonymous
3034 * folio, that part is required to be marked exclusive.
3035 */
3036 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3037 return false;
3038 /*
3039 * Note: PageAnon(page) is stable until the page is actually getting
3040 * freed.
3041 */
3042 if (!PageAnon(page))
3043 return false;
3044 /*
3045 * Note that PageKsm() pages cannot be exclusive, and consequently,
3046 * cannot get pinned.
3047 */
3048 return !PageAnonExclusive(page);
3049}
3050
3051typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3052extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3053 unsigned long size, pte_fn_t fn, void *data);
3054extern int apply_to_existing_page_range(struct mm_struct *mm,
3055 unsigned long address, unsigned long size,
3056 pte_fn_t fn, void *data);
3057
3058extern void init_mem_debugging_and_hardening(void);
3059#ifdef CONFIG_PAGE_POISONING
3060extern void __kernel_poison_pages(struct page *page, int numpages);
3061extern void __kernel_unpoison_pages(struct page *page, int numpages);
3062extern bool _page_poisoning_enabled_early;
3063DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3064static inline bool page_poisoning_enabled(void)
3065{
3066 return _page_poisoning_enabled_early;
3067}
3068/*
3069 * For use in fast paths after init_mem_debugging() has run, or when a
3070 * false negative result is not harmful when called too early.
3071 */
3072static inline bool page_poisoning_enabled_static(void)
3073{
3074 return static_branch_unlikely(&_page_poisoning_enabled);
3075}
3076static inline void kernel_poison_pages(struct page *page, int numpages)
3077{
3078 if (page_poisoning_enabled_static())
3079 __kernel_poison_pages(page, numpages);
3080}
3081static inline void kernel_unpoison_pages(struct page *page, int numpages)
3082{
3083 if (page_poisoning_enabled_static())
3084 __kernel_unpoison_pages(page, numpages);
3085}
3086#else
3087static inline bool page_poisoning_enabled(void) { return false; }
3088static inline bool page_poisoning_enabled_static(void) { return false; }
3089static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3090static inline void kernel_poison_pages(struct page *page, int numpages) { }
3091static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3092#endif
3093
3094DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3095static inline bool want_init_on_alloc(gfp_t flags)
3096{
3097 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3098 &init_on_alloc))
3099 return true;
3100 return flags & __GFP_ZERO;
3101}
3102
3103DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3104static inline bool want_init_on_free(void)
3105{
3106 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3107 &init_on_free);
3108}
3109
3110extern bool _debug_pagealloc_enabled_early;
3111DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3112
3113static inline bool debug_pagealloc_enabled(void)
3114{
3115 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3116 _debug_pagealloc_enabled_early;
3117}
3118
3119/*
3120 * For use in fast paths after init_debug_pagealloc() has run, or when a
3121 * false negative result is not harmful when called too early.
3122 */
3123static inline bool debug_pagealloc_enabled_static(void)
3124{
3125 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3126 return false;
3127
3128 return static_branch_unlikely(&_debug_pagealloc_enabled);
3129}
3130
3131#ifdef CONFIG_DEBUG_PAGEALLOC
3132/*
3133 * To support DEBUG_PAGEALLOC architecture must ensure that
3134 * __kernel_map_pages() never fails
3135 */
3136extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3137
3138static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3139{
3140 if (debug_pagealloc_enabled_static())
3141 __kernel_map_pages(page, numpages, 1);
3142}
3143
3144static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3145{
3146 if (debug_pagealloc_enabled_static())
3147 __kernel_map_pages(page, numpages, 0);
3148}
3149#else /* CONFIG_DEBUG_PAGEALLOC */
3150static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3151static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3152#endif /* CONFIG_DEBUG_PAGEALLOC */
3153
3154#ifdef __HAVE_ARCH_GATE_AREA
3155extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3156extern int in_gate_area_no_mm(unsigned long addr);
3157extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3158#else
3159static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3160{
3161 return NULL;
3162}
3163static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3164static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3165{
3166 return 0;
3167}
3168#endif /* __HAVE_ARCH_GATE_AREA */
3169
3170extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3171
3172#ifdef CONFIG_SYSCTL
3173extern int sysctl_drop_caches;
3174int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3175 loff_t *);
3176#endif
3177
3178void drop_slab(void);
3179
3180#ifndef CONFIG_MMU
3181#define randomize_va_space 0
3182#else
3183extern int randomize_va_space;
3184#endif
3185
3186const char * arch_vma_name(struct vm_area_struct *vma);
3187#ifdef CONFIG_MMU
3188void print_vma_addr(char *prefix, unsigned long rip);
3189#else
3190static inline void print_vma_addr(char *prefix, unsigned long rip)
3191{
3192}
3193#endif
3194
3195#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
3196int vmemmap_remap_free(unsigned long start, unsigned long end,
3197 unsigned long reuse);
3198int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3199 unsigned long reuse, gfp_t gfp_mask);
3200#endif
3201
3202void *sparse_buffer_alloc(unsigned long size);
3203struct page * __populate_section_memmap(unsigned long pfn,
3204 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3205 struct dev_pagemap *pgmap);
3206pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3207p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3208pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3209pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3210pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3211 struct vmem_altmap *altmap, struct page *reuse);
3212void *vmemmap_alloc_block(unsigned long size, int node);
3213struct vmem_altmap;
3214void *vmemmap_alloc_block_buf(unsigned long size, int node,
3215 struct vmem_altmap *altmap);
3216void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3217int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3218 int node, struct vmem_altmap *altmap);
3219int vmemmap_populate(unsigned long start, unsigned long end, int node,
3220 struct vmem_altmap *altmap);
3221void vmemmap_populate_print_last(void);
3222#ifdef CONFIG_MEMORY_HOTPLUG
3223void vmemmap_free(unsigned long start, unsigned long end,
3224 struct vmem_altmap *altmap);
3225#endif
3226void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3227 unsigned long nr_pages);
3228
3229enum mf_flags {
3230 MF_COUNT_INCREASED = 1 << 0,
3231 MF_ACTION_REQUIRED = 1 << 1,
3232 MF_MUST_KILL = 1 << 2,
3233 MF_SOFT_OFFLINE = 1 << 3,
3234 MF_UNPOISON = 1 << 4,
3235};
3236extern int memory_failure(unsigned long pfn, int flags);
3237extern void memory_failure_queue(unsigned long pfn, int flags);
3238extern void memory_failure_queue_kick(int cpu);
3239extern int unpoison_memory(unsigned long pfn);
3240extern int sysctl_memory_failure_early_kill;
3241extern int sysctl_memory_failure_recovery;
3242extern void shake_page(struct page *p);
3243extern atomic_long_t num_poisoned_pages __read_mostly;
3244extern int soft_offline_page(unsigned long pfn, int flags);
3245#ifdef CONFIG_MEMORY_FAILURE
3246extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3247#else
3248static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3249{
3250 return 0;
3251}
3252#endif
3253
3254#ifndef arch_memory_failure
3255static inline int arch_memory_failure(unsigned long pfn, int flags)
3256{
3257 return -ENXIO;
3258}
3259#endif
3260
3261#ifndef arch_is_platform_page
3262static inline bool arch_is_platform_page(u64 paddr)
3263{
3264 return false;
3265}
3266#endif
3267
3268/*
3269 * Error handlers for various types of pages.
3270 */
3271enum mf_result {
3272 MF_IGNORED, /* Error: cannot be handled */
3273 MF_FAILED, /* Error: handling failed */
3274 MF_DELAYED, /* Will be handled later */
3275 MF_RECOVERED, /* Successfully recovered */
3276};
3277
3278enum mf_action_page_type {
3279 MF_MSG_KERNEL,
3280 MF_MSG_KERNEL_HIGH_ORDER,
3281 MF_MSG_SLAB,
3282 MF_MSG_DIFFERENT_COMPOUND,
3283 MF_MSG_HUGE,
3284 MF_MSG_FREE_HUGE,
3285 MF_MSG_NON_PMD_HUGE,
3286 MF_MSG_UNMAP_FAILED,
3287 MF_MSG_DIRTY_SWAPCACHE,
3288 MF_MSG_CLEAN_SWAPCACHE,
3289 MF_MSG_DIRTY_MLOCKED_LRU,
3290 MF_MSG_CLEAN_MLOCKED_LRU,
3291 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3292 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3293 MF_MSG_DIRTY_LRU,
3294 MF_MSG_CLEAN_LRU,
3295 MF_MSG_TRUNCATED_LRU,
3296 MF_MSG_BUDDY,
3297 MF_MSG_DAX,
3298 MF_MSG_UNSPLIT_THP,
3299 MF_MSG_UNKNOWN,
3300};
3301
3302#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3303extern void clear_huge_page(struct page *page,
3304 unsigned long addr_hint,
3305 unsigned int pages_per_huge_page);
3306extern void copy_user_huge_page(struct page *dst, struct page *src,
3307 unsigned long addr_hint,
3308 struct vm_area_struct *vma,
3309 unsigned int pages_per_huge_page);
3310extern long copy_huge_page_from_user(struct page *dst_page,
3311 const void __user *usr_src,
3312 unsigned int pages_per_huge_page,
3313 bool allow_pagefault);
3314
3315/**
3316 * vma_is_special_huge - Are transhuge page-table entries considered special?
3317 * @vma: Pointer to the struct vm_area_struct to consider
3318 *
3319 * Whether transhuge page-table entries are considered "special" following
3320 * the definition in vm_normal_page().
3321 *
3322 * Return: true if transhuge page-table entries should be considered special,
3323 * false otherwise.
3324 */
3325static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3326{
3327 return vma_is_dax(vma) || (vma->vm_file &&
3328 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3329}
3330
3331#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3332
3333#ifdef CONFIG_DEBUG_PAGEALLOC
3334extern unsigned int _debug_guardpage_minorder;
3335DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3336
3337static inline unsigned int debug_guardpage_minorder(void)
3338{
3339 return _debug_guardpage_minorder;
3340}
3341
3342static inline bool debug_guardpage_enabled(void)
3343{
3344 return static_branch_unlikely(&_debug_guardpage_enabled);
3345}
3346
3347static inline bool page_is_guard(struct page *page)
3348{
3349 if (!debug_guardpage_enabled())
3350 return false;
3351
3352 return PageGuard(page);
3353}
3354#else
3355static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3356static inline bool debug_guardpage_enabled(void) { return false; }
3357static inline bool page_is_guard(struct page *page) { return false; }
3358#endif /* CONFIG_DEBUG_PAGEALLOC */
3359
3360#if MAX_NUMNODES > 1
3361void __init setup_nr_node_ids(void);
3362#else
3363static inline void setup_nr_node_ids(void) {}
3364#endif
3365
3366extern int memcmp_pages(struct page *page1, struct page *page2);
3367
3368static inline int pages_identical(struct page *page1, struct page *page2)
3369{
3370 return !memcmp_pages(page1, page2);
3371}
3372
3373#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3374unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3375 pgoff_t first_index, pgoff_t nr,
3376 pgoff_t bitmap_pgoff,
3377 unsigned long *bitmap,
3378 pgoff_t *start,
3379 pgoff_t *end);
3380
3381unsigned long wp_shared_mapping_range(struct address_space *mapping,
3382 pgoff_t first_index, pgoff_t nr);
3383#endif
3384
3385extern int sysctl_nr_trim_pages;
3386
3387#ifdef CONFIG_PRINTK
3388void mem_dump_obj(void *object);
3389#else
3390static inline void mem_dump_obj(void *object) {}
3391#endif
3392
3393/**
3394 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3395 * @seals: the seals to check
3396 * @vma: the vma to operate on
3397 *
3398 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3399 * the vma flags. Return 0 if check pass, or <0 for errors.
3400 */
3401static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3402{
3403 if (seals & F_SEAL_FUTURE_WRITE) {
3404 /*
3405 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3406 * "future write" seal active.
3407 */
3408 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3409 return -EPERM;
3410
3411 /*
3412 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3413 * MAP_SHARED and read-only, take care to not allow mprotect to
3414 * revert protections on such mappings. Do this only for shared
3415 * mappings. For private mappings, don't need to mask
3416 * VM_MAYWRITE as we still want them to be COW-writable.
3417 */
3418 if (vma->vm_flags & VM_SHARED)
3419 vma->vm_flags &= ~(VM_MAYWRITE);
3420 }
3421
3422 return 0;
3423}
3424
3425#ifdef CONFIG_ANON_VMA_NAME
3426int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3427 unsigned long len_in,
3428 struct anon_vma_name *anon_name);
3429#else
3430static inline int
3431madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3432 unsigned long len_in, struct anon_vma_name *anon_name) {
3433 return 0;
3434}
3435#endif
3436
3437/*
3438 * Whether to drop the pte markers, for example, the uffd-wp information for
3439 * file-backed memory. This should only be specified when we will completely
3440 * drop the page in the mm, either by truncation or unmapping of the vma. By
3441 * default, the flag is not set.
3442 */
3443#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
3444
3445#endif /* _LINUX_MM_H */